
Analyzing Infeasible Constraint Systems

by

Mark H. Liffiton

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2009

Doctoral Committee:

Professor Karem A. Sakallah, Chair
Professor Edmund H. Durfee
Associate Professor Igor L. Markov
Assistant Professor Amy E. M. Cohn

Graduate school, except I didn’t have a pet lion.

Albrecht Dürer’s meisterstiche:
St. Jerome in his Study; Melancholia I; and Knight, Death, and the Devil

c©Mark H. Liffiton

All Rights Reserved

2009

to Mom and Dad, because they’re pretty great parents,

and they even listen when I try to explain this stuff to them.

ii

Acknowledgments

I would like to acknowledge my debts to the following people:
• Rob Felty, for his LATEX class file for Rackham-compliant dissertations. I owe him

one week of my life, in which I did not have to wrestle with formatting, margins,
numbering, or anything of the sort.
• Aaron Johnson, for introducing me to the joy of the frontispiece. I owe him one

“borrowed” idea.
• Karem Sakallah, my advisor, for letting me find my own way through graduate school

with appropriate nudges and advice when needed. I owe him a good portion of my
confidence in my ability to perform independent research and at least a meal or two.
• The faculty members here at Michigan, at WPI, and at Simon’s Rock from whom I’ve

taken classes or with whom I’ve interacted in some way. They all taught me a lot,
whether I wanted them to at the time or not, and thanks to them I now get to become
one of them. I’ll figure out what, exactly, I owe them for this after I’ve tried it out for
a while.
• My friends, who all either helped me edit large pieces of this dissertation at some

point, fed me (hey, it counts for a lot), or generally provided invaluable friendship for
the past six years. After all of this, I owe them many visits, phone calls, and emails,
all of which will further increase my debts as I crash on their couches, eat their food,
and request their advice and counsel.
• My parents, for... oh, this one is obvious. I owe them more than can ever be repaid. I

just hope they had some idea of what they were getting themselves into.

iii

Table of Contents

Dedication . ii

Acknowledgments . iii

List of Tables . vi

List of Figures . vii

List of Appendices . ix

Abstract . x

Chapter 1 Introduction and Background . 1
1.1 Problem Space: Constraint Systems . 2

1.1.1 Classes of Constraint Systems . 3
1.1.2 Important Concepts . 6

1.2 Related Work on Infeasibility . 8
1.2.1 Resolution Proof Checkers . 10
1.2.2 Extracting Unsatisfiable Subsets 11
1.2.3 Multiple / All Unsatisfiable Subsets 17
1.2.4 MaxSAT / MaxCSP . 21
1.2.5 Autarkies . 25

1.3 Thesis Contributions . 27

Chapter 2 Foundations of CAMUS . 30
2.1 MUS/MCS Duality . 30
2.2 Computing MCSes . 33
2.3 Computing MUSes . 37

2.3.1 Computing a Single MUS . 38
2.3.2 Computing All MUSes . 40

2.4 Performance . 42
2.5 Comparison to Existing Work . 46

2.5.1 All MUSes . 46
2.5.2 MSSes and MCSes . 49

iv

2.5.3 Hypergraph Transversals / Hitting Sets 50
2.6 Other Constraint Types . 53

Chapter 3 Extending CAMUS . 57
3.1 Relaxing Completeness . 57

3.1.1 Performance . 63
3.2 Constraint Grouping . 66

3.2.1 Performance . 67
3.3 Finding Smallest MUSes . 70
3.4 Finding / Pruning Autarkies . 73

3.4.1 Algorithm . 74
3.4.2 Performance . 77

3.5 Exploiting Unsatisfiable Cores . 82
3.5.1 Using Cores to Find MCSes . 83
3.5.2 Performance . 90

3.6 Exploiting Symmetry . 93
3.6.1 Boosting MCSes . 95
3.6.2 Seeking Exponential Compression 101

3.7 Application to Other Constraint Types . 108

Chapter 4 Applications and Conclusion . 111
4.1 Reveal . 111
4.2 Circuit Error Diagnosis / Debugging . 115
4.3 Conclusion . 117

Appendices . 121

Bibliography . 129

v

List of Tables

Table

1.1 Comparison of all MSU* algorithms . 23

2.1 Experimental results for automotive product configuration benchmarks . . . 43

3.1 Using PCSes to compute MUSes of the more difficult product configuration
benchmarks . 64

3.2 Computing MCSes for Reveal benchmarks using constraint groups (“G”)
and without (“noG”) . 68

3.3 Formula Sizes vs Autarky Sizes . 78
3.4 Applicability of CAMUS extensions to constraint types beyond Boolean SAT108

B.1 Benchmark Characteristics . 125

vi

List of Figures

Figure

2.1 Covering Problems Linking MCSes(ϕ) and MUSes(ϕ) 32
2.2 Algorithm for finding all MCSes of a formula ϕ 34
2.3 Algorithm for altering MCSes to make the choice of thisClause irre-

dundant as the only element hitting thisMCS 39
2.4 Algorithm for computing a single MUS from a set of MCSes 40
2.5 Algorithm for computing the complete set of MUSes from a set of MCSes . 40
2.6 Anytime graph of computing MUSes for instance C208 FA RZ 43 45
2.7 Comparing DAA and CAMUS (automotive product configuration benchmarks) 47
2.8 Comparing AMC1 and the first phase of CAMUS (3SAT instances have 30

variables) . 49
2.9 Comparing Partition, KS, and BEGK to the second phase of CAMUS on

MCSes from automotive product configuration benchmarks 51

3.1 A generalization of MCSes, capable of finding PCSes (Partial Correction
Subsets) of a formula ϕ [A ? indicates a line not in MCSes] 59

3.2 Running PCSes on an example formula ϕ (see Fig. 2.1) – three separate
runs with the truncation limit set to 1 kept clause, biasing clause selection
by previous selection frequency . 62

3.3 The operation of the recursive second phase of CAMUS-min using
MIS-quick to compute lower bounds and prune subtrees. 72

3.4 Sifter finds the maximum autarky of a CNF formula C by “instrumenting”
the instance and using a SAT solver to search for satisfying partial assignments. 76

3.5 Comparing the performance of Sifter and Scraper on a variety of benchmarks 78
3.6 Boosting SMUS by trimming autarkies for the Benz benchmarks 81
3.7 Boosting CAMUS (first phase) by trimming autarkies for the Benz benchmarks 81
3.8 The MCSes-U algorithm finds all MCSes of an unsatisfiable formula ϕ

using unsatisfiable cores. 84
3.9 Comparing the performance of MCSes and MCSes-U on industrial bench-

marks. (600 second timeout, 0 velocity mapped to 0.001.) 91
3.10 Comparing the performance of MCSes solving Max-SAT against MCSes-U

MSU1.1, and MSU1.2 on industrial benchmarks. (FVP-UNSAT.2.0 bench-
marks.) . 92

vii

3.11 The MCSes-Symm algorithm finds all MCSes of an unsatisfiable formula
ϕ using symmetries. [A ? indicates a difference from MCSes.] 96

3.12 Percentage of MCSes found by applying symmetry generators vs number of
symmetry generators (DC benchmarks) 97

3.13 Velocities (MCSes per second) when using symmetry generators (y-axis) vs
without (x-axis), 1) counting the runtime of MCSes alone in the velocity
calculation and 2) including the runtime of the symmetry detection as well
(DC benchmarks) . 98

3.14 Visualizations of two sets of MCSes. The MCSes from an industrial bench-
mark (left) exhibit far more structure than those from a random 3-SAT
instance (right). Both images were generated with the same algorithm,
which uses ordering heuristics to draw out structure visually. 103

3.15 Number of MCS orbits for instances in the DC benchmark family, given: 1)
no symmetries, 2) CNF symmetries, 3) CNF symmetries following autarky
pruning, 4) CNF symmetries following pruning to MCS clauses, 5) MCS
symmetries. (Subset of DC instances with all MCSes found in under 600
seconds.) . 105

4.1 Two possible solutions for Abs: A lies within Conc, while B does not. . . . 112
4.2 MUSes of Conc∧B, projected onto B, produce generalizations of B that

cover more of the solution space. 113
4.3 Refining the abstraction with all MUSes produces a maximal reduction in

the solution space. 114
4.4 CAMUS+debug (max-sat20+debug) versus debug 116
4.5 CAMUS+debug (max-sat20+debug) versus debug 117

viii

List of Appendices

Appendix

A Example CNF Formulas . 122
A.1 Exponential Number of MUSes . 122
A.2 Exponential Number of MCSes . 123

B Catalog of Benchmarks . 124
B.1 Automotive Product Configuration / Benz / Daimler-Chrysler / DC 124
B.2 Reveal . 126
B.3 Miter, Dimacs . 126
B.4 AIM . 126
B.5 FVP-UNSAT-2.0 / nPipe . 127
B.6 BMC . 127
B.7 Diagnosis / Debugging . 127
B.8 Random 3SAT . 127

ix

Abstract

Constraint systems, problems defined by sets of variables and constraints affecting the

allowed assignments to those variables, arise in a wide range of real-world problems, from

planning and scheduling to digital logic circuit verification. These problems have been

studied widely in computer science and operations research, and a great deal of research

has gone into developing algorithms that solve them quickly, producing assignments to

variables that satisfy all of a system’s constraints. Many constraint systems turn out to have

no satisfying assignments – they are said to be overconstrained or infeasible – and work on

analyzing these instances is much less mature. It is in this area that this work lies.

Most work on analyzing infeasibility has focused on producing singular, approximate,

partial views of the infeasibility of a given problem; a distinguishing feature of this work is

that it is focused on complete analyses. We have developed algorithms that compute the full

structure of a problem’s infeasibility in the form of minimal correction sets (MCSes) and

minimal unsatisfiable subsets (MUSes), both of which are subsets of a system’s constraints

that irreducibly describe part of its infeasibility. The value of these complete analyses has

been demonstrated by applications of this work to two different logic circuit verification

tasks, in which the complete views these algorithms produce have been shown to be critical

for performance. Spurred partially by the needs of the industrial applications and also by

theoretical considerations regarding the innate intractability of the given problems, exten-

sions of these algorithms have been developed in several directions, enhancing performance

by integrating partial, approximate analyses as guides, solving related problems that avoid

the intractability while still providing more information than the singular views offered by

x

other work, and generally exploring the space of infeasibility analysis in novel ways.

Overall, this work helps to expand the field of constraint system research with new tools

for analyzing infeasibility. This research, which has been kept as broadly-applicable as

possible, serves as a base, opening up complete infeasibility analysis to researchers across

the field of constraint research.

xi

Chapter 1

Introduction and Background

A wide variety of real-world combinatorial problems can be modeled as constraint satisfac-

tion problems (CSPs), ranging from scheduling to digital circuit verification. They have

been used in industrial and commercial applications for several decades, with a great deal of

research put into developing efficient algorithms for solving them. These constraint solvers

almost always operate in a manner common to solving any problem in NP: by providing

a short “proof” in the form of a satisfying solution when a problem is satisfiable and a

one-word answer, “Unsatisfiable,” if it is not. Recently, however, more people have focused

on expanding that one-word answer; researchers have been investigating techniques for

extracting useful information from unsatisfiable constraint systems.

The information in an unsatisfiable instance can take numerous forms depending on

the application. It can provide a compact diagnosis of an error in some cases or separate

irrelevant details from important constraints in an intentionally unsatisfiable instance in

others. For example, in a scheduling problem, the infeasibility may be due to a human error

in entering the constraints. Simply hearing “Unsatisfiable” from the solver will do little to

help a user correct the error. Alternatively, in some circuit verification tasks, a circuit is

modeled with constraints in such a way that the instance is known to be unsatisfiable, but

the important information is which constraints make it so, with the rest being irrelevant to

the task at hand.

Traditional constraint solvers provide no information in these cases, because fundamen-

tally, all unsatisfiable constraint systems are equivalent in the sense that none have any

1

solutions. While there is nothing to be learned from this empty solution space, the struc-

ture of the constraints themselves and their interrelations can provide valuable information

about the problem being modeled. In the examples above, they provide insight into why

an instance is unsatisfiable, and information about which parts are satisfiable and how to

correct the infeasibility can be produced as well. Overall, the instances do implicitly possess

information beyond “Unsatisfiable.”

This work lies in this field of analyzing infeasible constraint systems. We have developed

several tools that allow us to look into an unsatisfiable system and extract explanations,

isolate conflicts, prune redundancies, and otherwise probe the structure behind the empty

solution space. Starting from a theoretical foundation that links two different structural views

of infeasibility, we developed an algorithmic base, called CAMUS (pronounced “ka-moo”

after the French writer), for producing complete views of both types, as described in Chapter

2. From this base, several extensions and modifications have been made to enhance perfor-

mance and solve related problems, which comprise Chapter 3. Finally, Chapter 4 outlines

how these algorithms have been applied in two different industrially-relevant applications,

demonstrating the value of the work and motivating further investigations in some of the

directions mentioned in the conclusion.

The remainder of this chapter lays out the problem space of this work in more detail,

describing constraint systems and some common types of constraints; presents related

work in the general area of infeasibility analysis; and describes the contributions of this

dissertation in the final section.

1.1 Problem Space: Constraint Systems

There are many ways to formally define a constraint system, even without getting into the

multitude of constraint formalisms adopted by researchers in areas ranging from logic circuit

analysis, to package routing, to assigning radio link frequencies within a limited spectrum

2

while minimizing interference (19). One fairly generic description of a constraint system is

as follows:

A constraint system C consists of a set of variables and a set of constraints. Each variable

has a particular domain; in the case of Boolean Satisfiability (SAT), the domain of each

variable is {TRUE, FALSE}, while in other cases the domain may be the set of integers,

reals, or a finite set of arbitrary symbols. We can consider any assignment to the variables

as an element in the cross product of the variables’ domains, i.e., an assignment of a value

to every variable. Then, each constraint partitions the assignments into two sets: those

that satisfy the constraint and those that do not. This can be specified in many ways, for

example by describing the sets implicitly (“x≥ 5”) or by explicitly listing tuples that satisfy

the constraint (“{{x = 2,y = 4},{x = 3,y = 3},{x = 4,y = 2}}”). Given, then, a set of

variables and a set of constraints, one can state whether the constraint system is “satisfiable,”

if there exists some variable assignment that satisfies every constraint, or “unsatisfiable,” if

there is none.

1.1.1 Classes of Constraint Systems

Generally, one can describe a class of constraint systems by the domain of their variables

and the form of their constraints. There are more classes than can be listed here, but what

follows is a list of some of the most common and most important in terms of application.

Boolean Satisfiability (SAT): Every variable in a SAT instance can take one of two val-

ues, TRUE or FALSE. The constraints can be any expression in Boolean logic that will

evaluate to TRUE (the constraint is satisfied) or FALSE (it is not). Often, SAT instances

are encoded in Conjunctive Normal Form (CNF). Formally, a CNF formula ϕ is defined as

follows:

ϕ =
∧

i=1...n

Ci Ci =
∨

j=1...ki

ai j

3

where each literal ai j is either a positive or negative instance of some Boolean variable (e.g.,

x3 or ¬x3, where the domain of x3 is {0,1}), the value ki is the number of literals in the

clause Ci (a disjunction of literals), and n is the number of clauses in the formula. In more

general terms, each clause is a constraint of the constraint system ϕ . We often treat CNF

formulas as sets of clauses (clause sets), so equivalently: ϕ =
⋃

i=1...nCi.

A CNF instance is said to be satisfiable if there exists some assignment to its variables

that makes the formula evaluate to 1 or TRUE; otherwise, it is unsatisfiable. The problem of

deciding whether a given CNF instance is satisfiable is the canonical NP-Complete problem

to which many other combinatorial problems can be polynomially reduced. A SAT solver

evaluates the satisfiability of a given CNF formula and returns a satisfying assignment of its

variables if it is satisfiable.

The most common solution technique in use today is based on an algorithm developed

by Davis, Putnam, Logemann, and Loveland (24; 25), dubbed “DPLL.” DPLL utilizes a

backtracking search that selects a variable at every level and splits on the two possible values

of that variable. When it reaches a point where it has chosen values for a set of variables

such that a clause is invalidated, called a conflict, it backtracks and tries a different path. If

it ever reaches a node in which all variables have been assigned values without reaching a

conflict, it has found a satisfying assignment; otherwise, the search exhausts all branches and

exits with a result of “Unsatisfiable.” The basic backtracking search has been extended with

numerous optimizations, which include learning conflicts to prune the search space, efficient

propagation techniques for quickly determining effects of new variable assignments, and

variable ordering heuristics that on average reduce the size of the search tree by reaching

conflicts faster.

Linear Programs (LP): The domain of the variables in a linear program is the set of reals

(often the positive reals, though the restriction that all variables are greater than or equal

to 0 can be seen as an additional constraint on every variable), and every constraint is an

4

inequality of the form a1x1 +a2x2 + · · ·+anxn ≤ b, where x1 through xn are the variables,

and the ai and b terms are constants. The solution space (the set of all satisfying assign-

ments) can be seen as the interior of a convex n-dimensional polytope, for which every

irredundant constraint defines a facet. Linear programs are most often used in optimization

tasks with an objective function specified as a linear combination of the variables that is to

be minimized or maximized. An optimal solution for an LP can be found very quickly using

the well-known Simplex algorithm (though it has exponential worst-case complexity, it most

often in practice finds solutions in polynomial time).

Integer Linear Programs (ILP): An ILP has the same type of constraints as an LP, but the

domain of each variable is instead the integers. This additional restriction makes the problem

much harder, and the problem of deciding the satisfiability of an ILP is NP-Complete.

Satisfiability Modulo Theories (SMT): SMT is a constraint formalism that subsumes

all of the above constraint types. Formally, an SMT instance is a first-order logic (FOL)

formula with particular interpretations for some predicates and functions. Essentially, it is a

Boolean SAT formula where some variables have been replaced by constraints (formally,

predicates) from any number of different “background theories.” The expressiveness of SMT

is limited only by the background theories; every SMT solver has capabilities to handle

some set of theories. Examples of background theories include the theory of real numbers

(thus subsuming LP and various “temporal” problem types from AI), the theory of integers

(ILP), and the theory of bit vectors (allowing for efficient modeling of microprocessors, for

example).

SMT can be solved by enhanced DPLL-style algorithms that make decisions about the

truth values of a formula’s predicates in the backtracking search described above and then

can pass the collection of predicates assigned TRUE at any given point to a solver or solvers

for the underlying theories to check their satisfiability together. Communication between the

theory solvers and the overarching search allows for learning new constraints and additional

5

optimizations that yield efficient SMT solvers suitable for many industrial applications

across a variety of domains.

Constraint Satisfaction Problems (CSP): While the name is rather non-specific, “CSP”

has traditionally been used in the artificial intelligence community to refer to problems

whose variables have finite domains and whose constraints are enumerations of “allowed”

tuples of values for sets of variables. For example, the graph coloring problem is a CSP

of this type: every node is a variable whose domain is the set of allowed colors and the

edges are constraints that only include tuples that assign the two connected nodes different

colors. As both SAT and CSP are NP-complete problems, either can be reduced to the

other, and straightforward translations exist; however, the two problems have historically

been studied in separate communities focusing on different techniques and using different

terminology. Throughout this dissertation, “CSP” will generally be used to refer to this type

of finite-domain constraint satisfaction problem.

From these constraint types, the work in this dissertation has focused on implementing

algorithms in the SAT and SMT domains. Boolean SAT, especially, is also an area with

a great deal of work related to infeasible constraint systems, perhaps because analyses of

infeasibility have found direct application in industrial logic circuit design and verification

tasks. However, this work is broadly applicable to any constraint type, as one goal has been

to produce general algorithms that do not rely on the details of any one constraint type or

solver.

1.1.2 Important Concepts

Two important concepts common in much of the research on constraint systems are best

described here, as they are referenced throughout this work:

6

AtMost Constraints are a type of counting or cardinality constraint. Given a set of n

literals {l1, l2, . . . , ln} and a positive integer k, s.t. k < n, an AtMost constraint is defined as

AtMost({l1, l2, . . . , ln},k)≡
n

∑
i=1

val(li)≤ k

where val(li) is 1 if li is assigned TRUE and 0 otherwise. This constraint places an upper

bound on the number of literals in the set assigned TRUE.

This constraint can be encoded into Boolean CNF using encodings such as in (79),

or it can be implemented efficiently in a SAT solver that employs watched variables. An

implementation of an AtMost constraint can watch the assignments to the variables in

the constraint and immediately propagate the negation of each remaining literal once k of

them have been assigned TRUE. On a closed SAT solver that does not allow for a built-in

implementation of the AtMost constraint, the CNF encoding can still be used.

Clause-Selector Variables can be used to augment a CNF formula in such a way that

standard SAT solvers can manipulate and, in effect, reason about the formula’s clauses

without any modification to the solver itself. For two examples of the use of clause-selector

variables, see the algorithms in (66) and (72).

Every clause Ci in a CNF formula ϕ is augmented with a negated clause-selector vari-

able yi to give C′i = (¬yi∨Ci) in a new formula ϕ ′. Notice that each C′i is an implication,

C′i = (yi→Ci). Assigning a particular yi the value TRUE implies the original clause, essen-

tially enabling it. Conversely, assigning yi FALSE has the effect of disabling or removing Ci

from the set of constraints, as the augmented clause C′i is satisfied by the assignment to yi.

The original constraint Ci is no longer enforced when yi is assigned FALSE, though it may

still be satisfied. This change gives a SAT solver the ability to enable and disable constraints

as part of its normal search, checking the satisfiability of different subsets of constraints

within a single backtracking search tree.

7

1.2 Related Work on Infeasibility

Work related to unsatisfiable constraint systems can be found in numerous independent

fields of research. Furthermore, the terminology used to describe problems, techniques, and

relevant concepts is often unique to each individual field. The following terms have all been

used in different publications just to name the conceptual focus of this dissertation:

• Conflicting
• Defeasible
• Inconsistent
• Infeasible
• Overconstrained
• Overdetermined
• Unsatisfiable

With varied terminology and few citation links between different fields, discovering

all related work is difficult. Many research contributions have arisen independently in two

or more fields, each seemingly without knowledge of the other. In an attempt to give this

work a solid base and avoid this duplication of effort as much as possible, this section is an

attempt to collect an exhaustive list of existing related work, though there may be a related

area of research not covered. We try to draw conceptual links between the references as

much as possible.

Previous research into unsatisfiable constraint systems can be roughly partitioned along

the lines of the “answer” that is sought, of course with some work straddling multiple classes.

Most research related to analyzing infeasibility focuses on one of the following:
1. Proving a result of “Unsatisfiable” returned by a solver (resolution proof checkers).
2. Finding one small, minimum, or smallest subset or core of the instance that causes the

infeasibility (one unsatisfiable subset (US) or minimal unsatisfiable subset (MUS)).
3. Finding multiple or all such subsets (many or all MUSes).
4. Determining how much of the instance can be satisfied if the remainder is ignored

(MaxSAT/MaxCSP).
5. Discovering portions of the instance not involved in the infeasibility (autarkies).

Another partition of the research can be made into theoretical and applied classes. Theo-

retical work has focused on complexity analysis problems related to analyzing unsatisfiable

instances, often considering subclasses of instances for which tractability results can be

8

proven. The applied work involves the development and testing of algorithms for solving

such problems and investigating particular aspects of overconstrained instances; each effort

is usually focused on solving a particular problem for a particular type of constraint system.

And finally, most researchers work with a particular type of constraint system. A great

deal of research on infeasibility has been done on Boolean satisfiability (SAT), often in

relation to its application to logic circuit verification, while some has also been done on

linear programs (LP) and integer programs (IP) in the field of operations research, along

with scattered work in other domains.

The following is organized by the “answer” on which any given work focuses. Within

each subsection, we first define relevant terminology (including synonymous terms from

other fields that have studied the problem); then, we present both the major theoretical

contributions as well as the most relevant applied work, indicating the domain or constraint

type used in each.

The work in this dissertation has fallen mainly in the “applied” domain so we will

present related work mainly from that group; we will discuss the more prominent theoretical

work in the area as well as that which is directly related, but we will not explore theoretical

results exhaustively. The constraint type to which we have the most exposure is Boolean

Satisfiability, and we have implemented algorithms for that type of constraint; furthermore,

this research focuses on extracting all MCSes, MUSes, and autarkies (all defined in the

following subsections). This section looks at research related to this work directly, but it

also presents major research that informs or is otherwise influential to the research described

in later chapters.

9

1.2.1 Resolution Proof Checkers

Definition 1. Resolution in Boolean CNF formulas is a logical equivalence rule by

which two clauses a∨ x1 ∨ ·· · ∨ xm and ¬a∨ y1 ∨ ·· · ∨ yn produce a resolvent clause

x1∨·· ·∨ xm∨ y1∨·· ·∨ yn, which is implied by the original two clauses. The resolvent of

two clauses in a formula can be added to the formula without changing its function.

Definition 2. A Resolution Proof of an unsatisfiable Boolean CNF formula F is a directed

acyclic graph (DAG) whose source nodes are labeled with a subset of the clauses of F;

every non-source node has two parents such that the node’s label is the result of perform-

ing resolution on the parents’ labels; and the sole sink node contains the empty clause,

indicating a conflict.

A resolution proof of an unsatisfiable formula contains a complete trace of the resolution

steps needed to form resolvent clauses implied by original clauses until a conflict (e.g.,

between xi and ¬xi) is found, proving the infeasibility of the formula.

Resolution proof checkers were introduced as a means of verifying “Unsatisfiable” re-

sults returned by SAT solvers. Affirmative solutions to any problem in NP have short

proofs of the result; in the case of SAT, these are in the form of satisfying assignments that

can be verified in polynomial time against the formula. No such short proof is known for

unsatisfiable formulas, but a resolution proof is a generally tractable technique for verifying

such solutions. Certain solvers operate by resolution internally to learn additional clauses as

they progress and detect a conflict in the case of an infeasible formula. Their results can be

verified by providing the resolution graphs they form to an external program. Van Gelder

first proposed the idea of extracting resolution proofs from DPLL SAT solvers in order to

verify their results (84). Later work, mentioned in the following subsection, extended this

concept to apply it to the problem of extracting unsatisfiable subsets of Boolean formulas,

which is the main connection to this dissertation.

10

1.2.2 Extracting Unsatisfiable Subsets

Definition 3. Minimal Unsatisfiable Subset (MUS): Given an unsatisfiable constraints

system C, a set of clauses U ⊆C is an MUS if U is unsatisfiable and ∀Ci ∈U, U−{Ci} is

satisfiable.

(Within the operations research domain, an MUS of a linear program is called an Irre-

ducible Inconsistent/Infeasible Subset/Subsystem (IIS) (85).)

Additionally, many algorithms have been developed that extract an Unsatisfiable Subset

(US), which is simply any unsatisfiable subset of an unsatisfiable constraint system. USes

are often also referred to as unsatisfiable cores (UCes). Furthermore, some algorithms find

a smallest MUS (SMUS) or minimum unsatisfiable subset/core of a formula.

This subsection covers work on finding generally one MUS or core of an unsatisfiable

constraint system. This dissertation deals with the problem of extracting all MUSes, as

discussed further in the next subsection, but the work arose from research on finding a

single MUS. Therefore, the research presented here is quite relevant to this dissertation as

underlying inspiration and influential theory.

Theoretical. Much of the theoretical work related to MUSes has proven complexity

bounds for the problems of recognizing or finding MUSes both in general and in particular

classes of CNF formulas.

A central theoretical result was produced by Papadimitriou and Wolfe (74), who proved

that recognizing a minimal unsatisfiable formula (i.e., “is the formula F an MUS?”) is

DP-complete. A DP-complete problem is equivalent to solving a SAT-UNSAT problem

defined as: given two formulas φ and ψ , in CNF, is it the case that φ is satisfiable and

ψ is unsatisfiable? This result implies that algorithms for computing MUSes will require

superpolynomial time (unless, of course P=NP).

Certain subclasses of unsatisfiable formulas do have tractable solutions to these prob-

11

lems, however. Minimally unsatisfiable formulas have positive deficiency (1) (a formula’s

deficiency is its number of clauses minus its number of variables). Davydov et al. (26)

showed that MUSes with deficiency 1 can be recognized in quadratic time. Büning (18)

showed that for a fixed integer k, recognizing an MUS with deficiency k is in NP, and he

presented a cubic-time algorithm for recognizing MUSes with deficiency 2. Kullmann (55)

proved that recognizing a minimal unsatisfiable formula with deficiency k is decidable in

polynomial time, and Fleischner et al. (34) showed that such formulas can be recognized

in nO(k) time, where n is the number of variables. Szeider (82) improved this result and

presented an algorithm with time complexity O(2kn4). Note that the problem of finding an

MUS within a formula is more difficult than recognizing a formula as an MUS.

Applied. Algorithmic work on finding MUSes has been done primarily in the fields of

linear programming and Boolean satisfiability.

LP/ILP. Some of the earliest work on extracting unsatisfiable cores was done in the

domain of linear programming (LP). Gleeson and Ryan (40) describe a method to compute

all IISes of a linear program by producing a polytope whose vertices correspond to the IISes,

though no implementation was provided. Chinneck and Dravnieks (20) contemporaneously

developed several filtering routines (“deletion,” “additive,” “elastic,” etc.) that can be used

to iteratively remove constraints from a system until those that remain constitute an IIS.

Guieu and Chinneck (43) later proposed and implemented methods for finding IISes of

mixed-integer and integer linear programs (MILP), relying on additive and deletion methods

as the core techniques, essentially manipulating the inclusion of constraints until a small

(not necessarily minimal) infeasible subset of constraints is found. This work is interesting

because it bridges a gap between two domains, finding MUSes (IISes) of constraint problems

whose decision problems are NP-complete (MILP, along with Boolean SAT and others) with

techniques informed by work done with LPs, whose solutions can be found in polynomial

time. Now, most large commercial LP solvers contain methods for finding IISes.

12

SAT. Aside from the work on IISes of LPs, most research on extracting unsatisfiable

cores was done in the domain of Boolean CNF formulas, and this is the domain in which

most work in this dissertation has been done. These have numerous applications in the logic

circuit industry, as circuits can be directly encoded into CNF to solve various problems

related to design and verification.

In one of the earliest implemented algorithms for computing small unsatisfiable subfor-

mulas, Bruni and Sassano (16) utilize heuristics to estimate the hardness of each clause in a

formula. Their algorithm then performs an adaptive search for a small core, expanding and

contracting a core, guided by the hardness scores of each clause, until an unsatisfiable core

is found.

Oh et al. (72) instrument a CNF formula with clause-selector variables: for any clause

Ci, make it C′i = ¬yi∨Ci; this allows a SAT solver to enable and disable clauses by assigning

TRUE or FALSE, respectively, to any particular yi. In their algorithm, AMUSE, they utilize

information from a DPLL-style search to implicitly search for a US instead of a satisfying

assignment of the original formula. They note that AMUSE can be biased to favor particular

variables, enabling them to find multiple MUSes if they favor variables that did not appear

in previously found MUSes.

Huang (49) produced a “Minimal Unsatisfiability Prover” (MUP), which can be used

to prove that an MUS is minimal and to find an exact MUS of the formula when it is not.

It works by augmenting the formula with new variables such that every assignment to the

additional variables corresponds to the removal of one clause from the original formula. Un-

like AMUSE, which adds one variable per clause, MUP only needs dlog(m+1)e variables,

where m is the number of clauses; this reduces the search space of the augmented formula

greatly. If the augmented formula has a model for each assignment to the new variables, then

the formula is an MUS, as this is equivalent to saying that removing any one clause makes

the formula satisfiable. MUP can also be used to produce an MUS extractor (positioned as a

post-processor to a core extractor like AMUSE that may not produce a minimal result) by

13

identifying and removing clauses whose removal does not yield a satisfiable formula.

As mentioned in the previous subsection, several researchers have used resolution tree

proofs as the basis of extracting unsatisfiable cores. Goldberg and Novikov (41) record

conflict clauses during a SAT solver’s search and verify each using Boolean constraint prop-

agation. By verifying the conflict clauses in reverse chronological order and only checking

those that are needed to form previously checked clauses, the process can identify a subset

of the original clauses needed to form the final conflict; such a subset is an unsatisfiable

core.

Zhang and Malik (87; 88) also use a resolution proof generated by the SAT solver to

derive an unsatisfiable core, proposing the idea independently of and concurrently with

Goldberg and Novikov. The leaf nodes (original clauses) in the transitive fan-in of the sink

node (the empty clause indicating a conflict) are a subset of the original clauses that can

be used to produce a conflict via resolution, thus they must be unsatisfiable by themselves.

They noted that their procedure could be repeated, by taking an output core as an input to

another iteration of the algorithm, to possibly produce a smaller core. This can be repeated

until a fixed point is reached at which no further clauses are removed. This repetition can

also be applied to any approach that produces small but not minimal cores.

Motivated by the idea that smaller cores are more useful, as they more concisely describe

and isolate a conflict within a formula, Dershowitz et al. (29) and Gershman et al. (39) have

both developed techniques for improving on the results produced by Zhang and Malik’s

resolution proof approach. Both produce smaller cores at the expense of higher runtime.

Gershman, et al. focused more on the velocity of their algorithm (clauses removed per time

unit).

Grégoire et al. (42) apply local search to the problem of computing MUSes. They

employ a scoring heuristic based on clauses’ relations to others with which they share

literals to identify which clauses are more or less likely to be included in some MUS. Scores

are recorded within a local search, and clauses deemed unlikely to participate in an MUS are

14

removed. The last unsatisfiable set of clauses (before removing the final clause which makes

it satisfiable) is an approximate MUS (unsatisfiable core). The authors extend this approach

to 1) compute one MUS exactly (using a procedure that “fine tunes” the approximation), 2)

compute “strict inconsistent covers” (sets of MUSes that share no clauses with one another),

and 3) approximate the set of all MUSes (relying on removing a clause from the formula to

find each subsequent MUSes, and thus finding at most a number of MUSes linear in the size

of the formula, as compared to the potentially exponential number of MUSes present).

Other Constraint Types. Work on extracting USes and MUSes has been done beyond

LP and Boolean SAT, as well. Junker (51; 52) developed algorithms for extracting “conflicts”

(MUSes) and “relaxations” (complements of MCSes) of arbitrary constraint systems. Much

of his discussion about relaxations and conflicts skirts on the edge of the hitting set duality

between the two (described in the next subsection) without ever fully recognizing it. His

methods are “non-intrusive,” in that they do not require modifications to an underlying solver

or consistency checker to function and they can be applied to any solver for any constraint

type. The algorithms he presents are based on the basic additive method (as described

by Chinneck and Dravnieks (20) and others): add constraints one-by-one until the set is

inconsistent, the final constraint added is a member of an MUS. Then the algorithms differ

on how to determine which of the chosen constraints form an MUS and which should be

removed. His QuickXplain algorithm (first presented in (51), then more succinctly in (52))

employs a novel divide-and-conquer partitioning approach, à la quicksort, to reduce the

total number of consistency checks needed. QuickXplain has an added feature of producing

“preferred” conflicts, given a total order of the constraints and an essentially lexicographic

ordering of conflict sets based on it.

Recently, Cimatti et al. (21) extended the resolution proof US extraction procedures to

find unsatisfiable cores (still not necessarily minimal) of SMT instances.

15

SMUSes. Some research has also been directed towards algorithms for finding a small-

est MUS (SMUS) of a constraint system, all within the domain of Boolean SAT, as far as we

are aware. Lynce and Marques-Silva (66) augment a formula with clause-selector variables

(as in AMUSE (72) and others) and search the space of all unsatisfiable subformulas for

one of minimum size (a formula may have multiple SMUSes of equal size). Even with a

few optimizations, this algorithm runs up against the size of the space of all unsatisfiable

subformulas: exponential in the number of clauses. Mneimneh et al. (70) utilize a more

efficient branch-and-bound search along with a strong lower-bound heuristic to search the

same space with far more pruning, leading to much better runtimes. Most recently, Zhang

et al. (86) developed an approach to compute an SMUS using CAMUS (Chapter 2), an

algorithm developed for finding all MUSes (described in detail in Chapter 2), coupled with

a greedy genetic algorithm (GGA) to find small MUSes. Because the genetic algorithm is

an incomplete local search, their approach cannot guarantee the minimality of the result; in

practice it returns either an SMUS or a small US whose size is within a few percent of the

number of clauses in an SMUS.

16

1.2.3 Multiple / All Unsatisfiable Subsets

Definition 4. Minimal Correction Subset (MCS): Given an unsatisfiable constraint system

C, a set of clauses M ⊆C is an MCS if C−M is satisfiable and ∀Ci ∈M, C− (M−{Ci})

is unsatisfiable.

In earlier work, we used “CoMSS” (the Complement of a Maximal Satisfiable Subset)

instead of MCS, but “minimal correction set” is both simpler and more expressive. Most

confusingly, the equivalent of an MUS in the field of model-based diagnosis is sometimes

called a minimal conflict set (again, MCS), while the equivalent of a minimal correction

set is known as a diagnosis. We will use the terms and acronyms from Definitions 3 and 4

in this dissertation, as those are most common within this research and the most closely

related fields.

Definition 5. Hitting Set: Given a collection Ω of sets from some finite domain D, a

hitting set H of Ω is H ⊆ D such that ∀S ∈Ω, H ∩S 6= /0. Intuitively, every set in Ω is hit

by at least one element in H.

A minimal or irreducible hitting set is a hitting set whose proper subsets are not hitting

sets.

The problem of finding all minimal hitting sets of a collection of sets is directly equivalent

to several problems such as hypergraph transversal, monotone dualization, and others

(32).

MCSes can be understood as generalizations of Max-SAT solutions (cf. Section 1.2.4).

Given any Max-SAT solution in the form of a satisfiable subset of clauses, we can look

at those clauses left unsatisfied as a correction set (CS), because removing them from the

formula corrects it, making it satisfiable. Due to the maximum cardinality of a Max-SAT

solution, its corresponding correction set has minimum cardinality; no smaller correction

sets exist. We generalize this to the concept of minimal correction sets: An MCS is a

17

correction set such that all of its proper subsets are not correction sets. MCSes are minimal,

or irreducible, but not necessarily minimum. Every Max-SAT solution indicates an MCS,

but there can be more MCSes than those that are complements of a Max-SAT solution.

Theoretical. An important connection between MCSes and MUSes was first noted in the

model-based diagnosis community (27; 76): Every MCS is a minimal hitting set of the

complete set of MUSes. This can be understood by considering that the complement of an

MCS is a maximal subset of a formula’s constraints that is satisfiable, i.e., it contains no

MUSes. Conversely, those constraints in the MCS form a minimal set that can be removed to

“neutralize” every MUS in the formula, thus it must “hit” every MUS. The field of diagnosis

is not concerned with constraints as such; rather, the problems of interest are systems of

components with defined behaviors, observations of correct and/or incorrect outputs of

those systems, and techniques for determining a set of components whose combined failure

could have caused an observed erroneous output. However, this has a direct mapping into

infeasible constraint systems and satisfiability: Map every constraint into a component and

a “Satisfiable” result returned by a solver into an erroneous output; a diagnosis is thus a

minimal set of constraints whose failure (removal from the constraint system) could yield

the “Satisfiable” result, i.e., an MCS.

Diagnosis techniques such as those pioneered by de Kleer and Williams (27) and Reiter

(76) use this relation between MCSes and MUSes to find diagnoses: they first find all

MUSes (conflict sets, in their terms) and compute MCSes (diagnoses) as minimal hitting

sets of those MUSes. Interestingly, some work on finding all MUSes of constraint systems

has taken exactly the opposite approach, utilizing this converse of the relationship identified

and used by those in the diagnosis community: Every MUS is a minimal hitting set of the

complete set of MCSes. This was noted by Birnbaum and Lozinskii (11), though they were

interested in MCSes only, noting this result as an interesting fact but not exploiting it to find

MUSes.

18

Applied. As noted earlier, Gleeson and Ryan (40) proposed a technique to compute all

IISes of a linear program. They did not provide an implementation, however, and their

approach is very specific to linear programming.

One series of algorithms for finding all MUSes of general constraints began in diagnosis

with Hou (48), who developed a method to produce all MUSes while avoiding the production

and investigation of all subsets of constraints. Hou defines a “conflict-set” (C-S) tree that,

unpruned, enumerates all subsets of constraints. Hou’s algorithm traverses the C-S tree

depth-first, checking every subset for consistency (satisfiability). Any inconsistent set whose

subsets are found to be consistent is an MUS. The algorithm employs several pruning rules

to reduce the size of the C-S tree. An error in Hou’s algorithm was corrected and further

improvements were made by Han and Lee (45). Finally, de la Banda et al. (28) enhanced

the C-S tree concept yet further with several optimizations and modifications, implementing

their algorithm for Herbrand constraints, a class of constraint system used in a software

verification task for which all MUSes are needed.

For the same software verification task, Bailey and Stuckey (8) then developed a new

system using the MCS/MUS relationship in the opposite direction, exploiting it to produce

MUSes from MCSes instead of the other way around. Their algorithm, Dualize and Advance

(DAA) was based on an interleaved approach, originally produced for a data mining task,

that computes MCSes from “seed” satisfiable subsets and searches for minimal hitting sets

of the MCSes found thus far. Each such hitting set will either be an MUS or a satisfiable

subset of constraints that can serve as a new seed.

Interestingly, Cohn and Barnhart (22) independently solved a version of this problem, in

an airline crew scheduling operations research domain, using the same general algorithm

as Bailey and Stuckey. They implemented the equivalent of the MCS search and hitting

set computation with OR techniques, interleaving the two in the same manner as DAA to

find all MUSes (“minimally infeasible sets” in their terminology). As another example of

such “convergent evolution,” their overall approach to solving the crew scheduling problem

19

employed what is essentially abstraction refinement as used in the hardware verification

community (described in Section 4.1), using the computation of all MUSes in the same man-

ner as our algorithm for computing all MUSes has been used in an abstraction refinement

flow for verifying microprocessor designs.

CAMUS (Compute All MUSes), our system of algorithms for finding all MCSes and

MUSes, was developed at the same time as DAA. It exploits the MCS/MUS relationship in

this direction also, though in a serial, two-phase approach described in more detail below.

An experimental comparison of CAMUS to DAA adapted to Boolean Satisfiability (63)

showed that CAMUS outperforms DAA in this domain.

Gasca et al. (37) have developed methods for computing all MUSes of overconstrained

numerical CSPs (NCSPs). NCSPs consist of numeric variables defined over the reals and

constraints in the form of inequalities or equalities between linear or polynomial combina-

tions of the variables. Their approach uses the idea of exploring all subsets of constraints

with rules for pruning unnecessary collections of subsets based on several concepts of

“neighborhood” defined for subsets of constraints using structure specific to NCSPs. Results

show that their approaches are superior to the naive check-everything approach, but their

ideas are tied tightly to the structure of their numeric variables and constraints and may not

generalize readily.

20

1.2.4 MaxSAT / MaxCSP

Definition 6. Given an unsatisfiable constraint system, MaxSAT / MaxCSP / MaxFS (for

SAT, CSP, and LP/ILP, respectively) is the problem of identifying an assignment that

satisfies the maximum possible number of constraints.

These problems can also be seen as the problem of identifying the largest set of satisfiable

constraints. Whether approached with a focus on the assignment or the set of satisfiable

constraints, the methods for solving the problem are the same, as one directly identifies

the other.

Definition 7. Given a Boolean CNF formula with a weight for every clause, Weighted

MaxSAT is the problem of finding an assignment that minimizes the sum of the weights of

the unsatisfied clauses

Definition 8. Given a Boolean CNF formula with some clauses marked “hard” and the

rest marked “soft,” Partial MaxSAT is the problem of finding an assignment that satisfies

all hard clauses and the maximum possible number of soft clauses.

The Weighted MaxSAT and Partial MaxSAT problems can be combined, naturally, into

Weighted Partial MaxSAT. Weighted MaxSAT has an analog in the domain of CSPs:

Weighted CSPs (WCSPs). Partial Constraint Satisfaction is a different concept than

Partial MaxSAT, and it is described below. The MaxFS problem also has a weighted

analog.

The MaxSAT (or “maximum satisfiability”) problem has been studied since the earliest

work on Boolean satisfiability and the study of NP-complete problems. As optimization

problems, MaxSAT and MaxCSP have been tackled with the range of optimization tech-

niques du jour: branch-and-bound, simulated annealing, genetic algorithms, ant colony

optimization, tabu search, random walk, etc. Here, we lay out some of the fundamental

results and state-of-the-art algorithms.

21

SAT. Until recently, MaxSAT algorithms could only tackle “small” problems (relative to

the problems solvable in reasonable time by contemporary SAT solvers). Much applied work

developed incomplete algorithms, usually based on some form of local search, as complete

solvers did not scale well. Recent work, however, has reached the point where modern algo-

rithms can solve “medium”-sized problems. For example, MiniMaxSAT (46) incorporates

many different techniques, including those developed for standard SAT solvers, in a com-

plete branch-and-bound search that performs well on industrial benchmarks. MiniMaxSAT

can also solve the Weighted-, Partial-, and Partial Weighted MaxSAT problems.

More recently, researchers have developed a number of algorithms exploiting a connec-

tion between unsatisfiable subsets of constraints and Max-SAT, all using the inexpensive

resolution proof method for generating unsatisfiable cores. Fu & Malik first introduced the

idea of using unsatisfiable cores to assist in solving Max-SAT in (36). They described an

algorithm based on “diagnosis” that repeatedly finds a core by the resolution proof method,

adds clause-selector variables to the clauses in that core, places a one-hot constraint on those

clause-selector variables, and searches for a satisfying solution to the modified problem.

Essentially, the algorithm identifies a core in each iteration that must be neutralized (by the

removal of a clause) in any Max-SAT solution.

Marques-Silva, Planes, and Manquinho (67; 68; 69) improved upon Fu & Malik’s al-

gorithm, which they dubbed MSU1, with several refinements and optimizations. In (68)

and (69), Marques-Silva and Planes introduce algorithms MSU1.1, MSU3, and MSU41.

The MSU1.1 algorithm is a variant of MSU1 with two important modifications. First,

it uses a better encoding for the one-hot constraints, namely a BDD representation of a

counter converted to CNF with several optimizations. Second, MSU1.1 exploits the authors’

observation that the one-hot constraints can actually be AtMost(1) constraints, because the

identified cores are unsatisfiable if no clauses are removed; thus, omitting the constraint

that requires at least one clause be removed will not alter the results. The authors also

1we have adopted the algorithm naming from the most recent paper (67), which is slightly changed from
earlier papers.

22

Algorithm Cardinality Constraints Cardinality Encoding
MSU1 Per-core One-Hot Adder tree
MSU1.1 Per-core AtMost BDD to CNF
MSU1.2 Per-core AtMost Bitwise on variables
MSU2 Per-core One-Hot Bitwise on clauses
MSU3 Single AtMost BDD to CNF
MSU4-v1 Single AtMost BDD to CNF
MSU4-v2 Single AtMost Sorting networks

Table 1.1 Comparison of all MSU* algorithms

describe MSU3, which avoids some of the size explosion of the additional variables and

clauses created by MSU1 by using a single clause-selector variable per clause and a single

AtMost constraint over all of them. In (69), the authors further introduce MSU4, essentially

a modification of MSU3 that exploits relationships between unsatisfiable cores and bounds

on Max-SAT solutions. Finally, Marques-Silva and Manquinho introduce MSU1.2 and

MSU2 in (67). MSU1.2 uses a bitwise encoding, with a logarithmic number of auxiliary

variables, for each cardinality constraint, and MSU2 takes that a step further, employing a

bitwise one-hot encoding on the clause-selector variables themselves.

A parallel development of the concept of using unsatisfiable cores for Max-SAT was

done in the domain of logic circuit debugging/diagnosis by Sülflow, et al. (81). Without

explicitly noting the connection to Max-SAT, they developed a new SAT-based debugging

framework that exploits unsatisfiable core extraction. Though the terminology is different,

and the theories and algorithms are often described in terms of gates instead of constraints

or clauses, SAT-based debugging is essentially the process of solving Max-SAT for circuit-

derived CNF instances. Though this connection was noted in (77), the concept does not

seem to be widespread in the SAT-based debugging community.

One difference between the work of Sülflow, et al. and the MSU* algorithms is that the

debugging framework produces all Max-SAT results (equivalent to finding all minimum-

cardinality MCSes) by an iterative solving procedure. Their use of cores seems closest to

MSU3, with a single cardinality constraint covering all identified cores; however, they treat

non-overlapping cores with separate cardinality constraints, as this limits the size of the

23

search space with little overhead. They do mention alternative approaches for producing

cardinality constraints, including one which creates a separate constraint for every intersec-

tion of any subset of the cores, but they dismiss these as not outperforming their chosen

approach in most of their experiments.

CSP. Freuder and Wallace (35) presented what they called Partial Constraint Satisfac-

tion Problems (PCSPs), a framework that subsumes MaxSAT and MaxCSP, as a search

through a space of related problems defined by their solution spaces. In this framework,

MaxCSP, for example, becomes the problem of finding a solvable problem as close to the

original problem as possible, measured by the number of removed constraints. The metric

one optimizes can be more complex than this, however, which allows the framework to

encompass more than just maximizing the number of satisfied constraints. They focused

on algorithms for maximal satisfaction (MaxCSP, essentially), but the work is applicable

to related problems of sufficient satisfaction (terminate upon finding a sufficiently good

solution) and resource-bounded satisfaction (terminate with the best solution found thus far

when a resource bound is reached). Later, two other frameworks encompassing MaxCSP,

Weighted CSP, Partial CSP, and more were introduced, one based on a semiring (13), the

other on an ordered monoid (78). Both interpret the various types of constraint problems

in terms of these mathematical structures, using them to inform the understanding and

development of related algorithms; the two frameworks are compared in (12).

A good example of a state-of-the-art WCSP (and MaxSAT) solver is Toolbar (15), which

has performed well in several recent evaluations and competitions of solvers. Toolbar

implements a depth-first branch-and-bound search along with routines to maintain various

forms of local consistency (a technique for manipulating a problem to an equivalent but

simpler form, generally by propagating information through the system), and much of the

recent work on WCSP solvers has been in developing more advanced local consistency

maintenance techniques.

24

1.2.5 Autarkies

Definition 9. Autarky: An autarky (or autark assignment) of a Boolean CNF formula is

an assignment to a subset of a formula’s variables that satisfies every clause containing

one of the assigned variables.

Following the meaning of the term in other fields, an autarky is a self-sufficient partial

assignment. Because the work in this dissertation involves autarkies in a system that trims

clause sets, we will refer to autarkies in terms of the clauses they satisfy. Thus, the maximum

autarky is the largest set of clauses satisfiable by an autarky, as opposed to the largest partial

assignment.

Definition 10. Pure Literals: One simple form of autarky arises from pure literals. A

pure literal is a variable that occurs in only one polarity (either always positive or always

negated) in a CNF formula.

Pure literals can be found in a linear time scan of a formula. Removing the clauses

satisfied by pure literals may cause other literals to become pure in the formula, so repeatedly

detecting, recording, and removing pure literals is a simple first step for any algorithm that

finds autarkies. The process terminates when the formula no longer contains pure literals.

Theoretical. Monien and Speckenmeyer (71) first introduced the concept of an autark

assignment or autarky, using autarkies in a modification of the DPLL satisfiability algorithm

(24; 25) that reduced its complexity upper bound below 2n splitting steps (for a formula

with n variables).

More recently, Kullmann has investigated autarkies in several papers. In (56), he in-

troduces the idea of lean clause-sets, sets of clauses that have no autarkies. The largest

lean clause-set is the complement of the maximum autarky of a formula; all clauses can be

partitioned into one or the other. Kullmann investigates a special case of autarky that can

be found in polynomial time using linear programming, though this does not generalize to

25

finding all autarkies. He also proves, with Theorem 3.16, that a set of clauses F is lean “if

and only if every clause of F can be used by some resolution refutation of F .” Conversely,

a set of clauses A⊆ F is an autarky if and only if each clause in A can not be used in any

resolution refutation of F .

Applied. Autarkies were used in a satisfiability algorithm by Van Gelder (83) named

Modoc. Modoc integrates autarky pruning, removing those clauses satisfied by autarkies,

into a resolution-based model elimination approach to satisfiability. Both Monien and Speck-

enmeyer’s algorithm and Modoc find autarkies as side-effects of their operation, but neither

is aiming to find the maximum autarky. Additionally, both find many more “conditional

autarkies,” i.e., autarkies that appear after propagating a partial assignment through the

formula, than “top-level autarkies” for the entire formula.

Later, in (57), Kullmann uses this fact to develop an algorithm for computing the max-

imum autarky. Using a SAT solver that provides a resolution refutation for unsatisfiable

instances, one can iteratively remove the variables included in some resolution proof. When

the reduced formula becomes satisfiable, the satisfying assignment is an autarky of the

original formula.

Finally, Kullmann, et al. (58) use both autarkies and MUSes as tools to describe and

examine unsatisfiable formulas. They characterize clauses in such formulas into several

classes based on each clause’s involvement in MUSes, resolution refutations, and autarkies.

Clauses contained in every MUS are called “necessary”; those in any MUS are “potentially

necessary”; “usable” indicates a clause is in some resolution refutation; and thus “unusable”

refers to clauses in an autarky. Complements and intersections of these classes are defined as

well. They experimentally evaluate a set of industrial benchmarks from an automotive prod-

uct configuration domain (80), reporting on the MUSes and clauses in the different levels of

“necessity” in each instance. To compute all MUSes of the instances, they use CAMUS, and

they found maximum autarkies using the algorithm described in (57), implemented using

26

the ZChaff SAT solver’s ability to produce resolution refutations (87).

1.3 Thesis Contributions

The contributions of this dissertation can be broadly categorized under the banner of ad-

vancing the field of analyzing infeasible constraint systems, and they fall roughly into the

following categories.

Synthesis of Existing Work Throughout this research, connections often arose to existing

work in diverse domains. Much of the work on infeasibility analysis, including some not

explicitly recognized as such, is done in a domain-specific manner, focusing on implemen-

tations and implications for a particular application or type of constraint system; however,

the work is often much more broadly applicable. This research has mainly been done in

the domain of Boolean Satisfiability, for example, but an effort has been made to note the

general applicability of any concepts or algorithms developed. Many of the connections

found were not described elsewhere in the literature, and one of the contributions is thus to

bring together the pieces, linking them explicitly and illuminating the connections for the

benefit of other researchers. In this dissertation, many of these connections are described

in this chapter in Sections 1.1 and 1.2. Other connections are mentioned as appropriate

throughout the remaining chapters.

Algorithm Development In the pursuit of answers to the overarching question, “How can

we analyze infeasible constraint systems?” this work has developed several algorithms to

perform various analyses. All of these algorithms extract information about the infeasibility

of a set of constraints, and the primary distinction between most of the related work and that

here is that this involves algorithms that produce complete views of infeasibility. Existing

work has mostly been concerned with extracting single, approximate unsatisfiable cores

of constraint systems. In contrast to these partial, approximate views, the algorithms here

27

produce complete views that enable much more detailed analyses of infeasibility. Much of

the implementation has been specific to Boolean Satisfiability, but most of the algorithms are

applicable to constraint systems in general. A foundational set of algorithms for computing

both complete sets of MCSes and complete sets of MUSes (60; 62; 63; 64) is presented in

Chapter 2. This is followed by several variations and additions to the base set in Chapter

3. We developed modified algorithms that relax the completeness criteria in order to avoid

the potential intractability of computing complete sets of results (64), an extension that

groups constraints for performance or to represent high-level constraints (64), and a variant

that finds a smallest MUS of an instance (61). Further, we developed a novel algorithm for

computing autarkies, using it to find and prune autarkies from an instance before applying

the other algorithms (65), exploited unsatisfiable cores to boost the search for MCSes as a

generalization of existing work on using unsatisfiable cores in Max-SAT, and investigated

the potential of using symmetry information from a constraint system in order to aid the

search for MCSes and to potentially compress sets of MCSes and MUSes.

Specific Applications Through collaborations with other researchers, these algorithms

have been applied to industrially-relevant problems. Infeasibility analysis has found applica-

tions in several logic circuit verification tasks, and the algorithms in this work have been

applied in particular to two of them. Both applications, described in Chapter 4, have shown

impressive performance gains due directly to the application of this work, specifically relying

on the completeness of the analyses the algorithms produce. The first, Reveal, a system for

equivalence checking of Verilog circuit designs, uses MUSes in an abstraction refinement

loop, and experiments have shown that using all MUSes of a generated constraint system is

crucial for performance (3; 4; 5). The second application is a circuit error debugging system

in which the desired output, candidate error locations, can be found by extracting MCSes of

Boolean formulas generated from a circuit; to find all such candidates, all MCSes must be

found (77).

28

Expanding Knowledge about the Structure of Infeasibility Woven throughout this

work are a variety of simple but valuable observations about the nature of infeasibility in

constraint systems. When this research began, knowledge about the structure of infeasibility

was minimal and scattered in the literature. Early research presented several surprises, such

as the simple fact that infeasible constraint systems can have a massive, in fact intractably

exponential, number of “causes” of their infeasibility. This work, as some of the most

detailed research looking at complete analyses of infeasibility, has brought ideas like this to

light, not only for theoretical, pathological cases such as presented in Appendix A, but also

in a large number of industrial instances as well.

Tool Development Several of the algorithms developed here are implemented in tools

that are made available to any who request them. The tools enable other researchers to 1)

investigate the structure of the infeasibility in constraint systems arising in their own work,

making use of the complete analyses the algorithms produce, 2) determine the potential of

applying infeasibility analyses to their research, and 3) extend the work or compare their

own to it in order to further the field of infeasibility analysis.

29

Chapter 2

Foundations of CAMUS

This dissertation is centered around a system of algorithms called CAMUS (Compute All

Minimal Unsatisfiable Subsets - pronounced “ka-moo” after the French writer). CAMUS

is a set of sound and complete algorithms that, as the name indicates, produce a complete

set of MUSes for a given unsatisfiable constraint system. Additionally, and as an integral

intermediate result, CAMUS computes the complete set of MCSes for the constraint system.

In this way, CAMUS provides two complete views of the infeasibility of a constraint system,

each a different view of the same structure. CAMUS is a platform upon which we have

developed further extensions and which we have integrated into real-world applications.

This chapter lays out the theoretical foundations of CAMUS, describes its base algorithms,

discusses empirical results illustrating its performance, and explains how it is generalizable

to many types of constraint systems.

2.1 MUS/MCS Duality

An important connection between MUSes and MCSes was noted independently by Bailey

and Stuckey (8), Birnbaum and Lozinskii (11), and Liffiton, et al. (63; 62). This relationship

is the foundation of much of this work. We describe here the relationship and a general

approach for finding all MUSes of a constraint system that follows from it.

This relationship can be stated simply: The set of MUSes of a constraint system C and

the set of MCSes of C are “hitting set duals” of one another. The set of MUSes is equivalent

to the set of all irreducible hitting sets of the MCSes, and the MCSes are likewise all the

30

irreducible hitting sets of the MUSes. This is stated formally in the following theorem,

whose proof appears in (11) as Theorem 4.5 (c) and (d). We provide a more intuitive

explanation and an example in this section.

Theorem 1. Given an unsatisfiable constraint system C:
1. A subset M of C is an MCS of C iff M is an irreducible hitting set of MUSes(C);
2. A subset U of C is an MUS of C iff U is an irreducible hitting set of MCSes(C).

Recall that the presence of any MUS in a constraint system C makes C infeasible. By

nature of its minimality, an MUS can be made satisfiable by removing any one constraint

from it. Therefore, one way to make C feasible is to “neutralize” its MUSes by removing at

least one constraint from each. An MCS of C provides a set of constraints whose removal

will accomplish this: an MCS M is an irreducible set of constraints whose removal makes

C satisfiable. Thus, every MCS contains at least one constraint from every MUS of C. So

almost directly from the definition of MCS we can see that MCSes and minimal hitting sets

of the MUSes are equivalent: both are minimal sets of constraints whose removal makes

C satisfiable. A similar argument goes the other way to show that MUSes are irreducible

hitting sets of the MCSes, but it is not as intuitive.

This relationship is depicted in Figure 2.1 for an example formula. The first table corre-

sponds to the problem of finding hitting sets of the MCSes to generate MUSes(ϕ), while

the second table corresponds to the dual problem of finding hitting sets of the MUSes to

generate MCSes(ϕ). In the first table, each column corresponds to a clause from the formula,

and each row represents a single MCS. We say that a clause “covers” an MCS (marked with

an ‘X’ in that row) if it is contained in the MCS. Each MUS is then an irreducible subset of

the columns that covers all of the rows. The table below represents the MUSes in the same

fashion, and every MCS is an irreducible subset of the columns that covers all of its rows.

Underneath each table, we show how the MUSes can be found from the table of MCSes

(and the MCSes from the table of MUSes) in a straightforward, though computationally

inefficient, manner: each row becomes a disjunction of the columns that cover that row, and

the disjunctions are multiplied out and simplified by removing subsumed terms to produce

31

C1 C2 C3 C4 C5 C6
ϕ = (x1) ∧ (¬x1) ∧ (¬x1∨ x2) ∧ (¬x2) ∧ (¬x1∨ x3) ∧ (¬x3)

MCSes(ϕ) C1 C2 C3 C4 C5 C6
{C1} X

{C2,C3,C5} X X X
{C2,C3,C6} X X X
{C2,C4,C5} X X X
{C2,C4,C6} X X X

MUSes(ϕ) = (C1)(C2∨C3∨C5)(C2∨C3∨C6)(C2∨C4∨C5)(C2∨C4∨C6)
= C1C2∨C1C3C4∨C1C5C6

= {{C1,C2},{C1,C3,C4},{C1,C5,C6}}

MUSes(ϕ) C1 C2 C3 C4 C5 C6
{C1,C2} X X
{C1,C3,C4} X X X
{C1,C5,C6} X X X

MCSes(ϕ) = (C1∨C2)(C1∨C3∨C4)(C1∨C5∨C6)
= C1∨C2C3C5∨C2C3C6∨C2C4C5∨C2C4C6

= {{C1},{C2,C3,C5},{C2,C3,C6},{C2,C4,C5},{C2,C4,C6}}

Figure 2.1 Covering Problems Linking MCSes(ϕ) and MUSes(ϕ)

the minimal hitting sets.

In practice, it is easier to find satisfiable subsets of constraints than unsatisfiable subsets;

thus, finding MCSes (equivalent to finding their complementary Maximal Satisfiable Subsets

(MSSes)) is easier than finding MUSes directly. This follows from the relative simplicity of

problems in NP (e.g., SAT), for which a single “solution” must be found, as compared to

those in Co-NP (e.g., UNSAT), for which all “solutions” must be checked. Therefore, our

approach for generating all MUSes of a constraint system C is to first find MCSes(C) and

then to compute the irreducible hitting sets of MCSes(C), which are all MUSes of C.

Our implementation of this approach for Boolean satisfiability finds MUSes of unsatisfi-

able CNF instances in two distinct phases, using an independent algorithm for each. The

32

first phase, computing MCSes, is built on top of a constraint solver and requires few changes,

if any, to the underlying solver. This makes the algorithm easily generalizable and simple

to build on top of other solvers, for example to immediately exploit advances in constraint

solver technology or to provide the functionality of finding MUSes for new types of con-

straints. The second phase, computing MUSes from the MCSes, uses a recursive branching

algorithm to efficiently compute irreducible hitting sets, and it operates independently of the

source of the MCSes.

Recall that both computing MUSes and computing MCSes are cases of computing irre-

ducible hitting sets of some collection of sets. Why then do we use such different methods

for the two phases of CAMUS? The methods contrast because in the first phase we are

finding hitting sets of the MUSes, but the collection of MUSes is hidden. It is “encoded”

within the constraints. We use a constraint solver to work with the information given and

provide hitting sets (MCSes) without ever revealing the underlying MUSes themselves. In

the second phase, all of the information we need is given explicitly in the set of MCSes, and

so we can use a more direct, efficient method to compute irreducible hitting sets.

In this light, the method employed by CAMUS for computing MUSes of a constraint

system may seem roundabout and unnecessary; it seems a more direct algorithm, which

extracts the “hidden” information of the MUSes without going through the intermediate

stage of MCSes, should exist. At this time, we are unaware of any technique that utilizes the

hitting set duality efficiently without generating MCSes or their equivalent. The question of

whether any such technique exists remains open for further research.

2.2 Computing MCSes

The first phase of CAMUS finds MCSes by successively solving an optimization problem

similar to the MAXSAT problem. The goal is to find minimal sets of clauses whose removal

renders the given formula satisfiable. As noted above, this is equivalent to finding maximal

33

MCSes(ϕ)
1. ϕ ′← AddYVars(ϕ)
2. MCSes← /0
3. k← 1
4. while (SAT(ϕ ′))
5. ϕ ′k← ϕ ′ ∧ AtMost({¬y1,¬y2, . . . ,¬yn},k)
6. while (newMCS← IncrementalSAT(ϕ ′k))
7. MCSes← MCSes ∪ {newMCS}
8. ϕ ′k← ϕ ′k ∧ BlockingClause(newMCS)
9. ϕ ′← ϕ ′ ∧ BlockingClause(newMCS)

10. end while
11. k← k + 1
12. end while
13. return MCSes

Figure 2.2 Algorithm for finding all MCSes of a formula ϕ

satisfiable subsets (MSSes) because the complement of any MCS (resp. MSS) is an MSS

(resp. MCS). CAMUS finds MSSes by iteratively finding the largest satisfiable subset

that has not been found in a previous iteration. Essentially, it solves a set of consecutive

MAXSAT problems, each with the added restriction of excluding previously found results,

until no satisfiable sets of clauses (modulo the restriction) remain. Solving independent

sequential optimization problems of that sort is very expensive, however; we avoid some

of this expense by utilizing an incremental solver and retaining some information, such as

learned clauses, between solutions. The pseudocode for the algorithm CAMUS uses to find

every MCS of a formula ϕ is shown in Figure 2.2.

The implementation for Boolean satisfiability is integrated directly with a modern SAT

solver (specifically MiniSAT (31) version 1.12b in the current implementation), exploiting its

efficient pruning and variable ordering heuristics. Satisfiable subsets are found in a standard

SAT backtracking search after augmenting the input CNF instance ϕ with clause-selector

variables to create ϕ ′ (line 1 of the pseudocode) as described in Section 1.1.2.

Using these clause selector variables does significantly increase the number of variables

34

in the instance, and the search space grows correspondingly to the set of assignments to

the original variables for any subset of the original clauses. This is the exactly the space

we wish to search, however, and the increased instance complexity is unavoidable in this

domain1. Furthermore, the clause-selector variables are added in a structurally very simple

way. Along with the fact that learned clauses can now record interactions between original

variables and clause activation, this leads to a tractable increase in complexity.

MCSes are obtained by finding assignments that satisfy ϕ ′ with a minimal set of yi

variables assigned FALSE, which ensures that as few constraints as possible are disabled.

The set of yi variables assigned FALSE indicates the clauses in an MCS. Solving multiple

optimization problems of this sort separately would involve a great deal of duplicate work,

so CAMUS utilizes a sliding objective approach that enables a more efficient incremental

search, avoiding much redundancy. CAMUS finds all MCSes of a particular size within

a single search tree, efficiently reusing information such as learned clauses and variable

ordering. Specifically, each iteration of the outer while loop (lines 4–12) finds all MCSes of

size k, which is incremented by 1 after each iteration.

Line 5 places an AtMost bound on the number of clause-selector variables that may be

assigned FALSE by adding a constraint of the form AtMost({¬y1,¬y2, . . . ,¬yn},k) to ϕ ′,

creating ϕ ′k. Then, the while loop on lines 6–10 exhaustively searches for all satisfiable

assignments to the augmented formula ϕ ′k, thus finding all MCSes of size k. The call to

IncrementalSAT on line 6 uses MiniSAT’s incremental solving ability to find a solution to

the formula augmented with selector variables and the AtMost bound (ϕ ′k). Each satisfying

assignment produces an MCS from the set of yi variables assigned FALSE. We made one

small change to MiniSAT’s ordering heuristics to better suit this problem: The default

variable ordering was changed to always try the positive polarity of a variable first (the origi-

nal code always tries the negative value first). This matches the general variable-ordering

heuristic of aiming for solutions, as solutions will have most clause-selector variables set

1As opposed to, for example, linear constraints over the reals such as in (47), where the slack variables
already used by the SIMPLEX algorithm can be used to similarly deactivate constraints.

35

TRUE, and those make up the majority of the variables. This change also performed better

empirically than the original ordering. Future work can investigate more complex variable

and value orderings crafted for this particular problem.

Each new MCS is recorded (line 7), and a blocking clause is added to both ϕ ′ and ϕ ′k to

block that solution (lines 8 and 9). The blocking clause asserts that at least one of the clauses

in the MCS must be enabled in any future solution. For example, if the MCS consists of

clauses C2, C3, and C6 (i.e., y2, y3, and y6 are all FALSE in the satisfying assignment), the

blocking clause will be (y2∨ y3∨ y6). This forces at least one of the yi variables to be true,

excluding the MCS and any of its supersets from any future solutions.

Finding MCSes in order of increasing size (i.e., MSSes in order of decreasing size)

and excluding supersets from future solutions ensures that all MCSes found are irreducible.

Incrementing by 1 after exhausting all solutions with a bound of k forces any solutions then

found with k + 1 disabled clauses to be irreducible, because any potential subsets would

have been found earlier and blocked. Within a search with a given bound, the incremental

SAT solver can utilize learned clauses and dynamic variable ordering heuristics to full effect.

An incremental search only works if changes to the constraint system do not create

new solutions in previously explored portions of the search tree; as long as CAMUS adds

constraints (the blocking clauses), it can use an incremental search. Incrementing the bound,

however, relaxes a constraint, potentially creating new solutions where there were none

before and invalidating much of the learned clause database. When that occurs, the search

starts over for solutions of ϕ ′ augmented with all blocking clauses created thus far and the

new AtMost bound.

The condition of the outer while loop on line 4 checks that ϕ ′ augmented with all

collected blocking clauses is still satisfiable without any bound on the yi variables. If there

is no satisfying assignment, even with no AtMost constraint on the yi variables, then this

indicates that we have found and blocked all possible ways of removing clauses to yield a

satisfiable set. Thus, the entire set of MCSes has been found, and the algorithm terminates.

36

Consider the execution of MCSes on the example formula in Figure 2.1. In its first

iteration, it will add an AtMost bound with k = 1, and it will find the only one-clause MCS

{C1}, corresponding to the MAXSAT solution. After adding the blocking clause, (y1), the

incremental solver will be unable to find any further solutions with the same AtMost bound

in place. There is no other way to remove one clause to satisfy ϕ , no other single clause

covers all of its MUSes. After exiting the inner while loop, the bound is increased to 2,

and the search continues, because the augmented formula ϕ ′ (without the AtMost bound)

is still satisfiable. This iteration will not find any new MCSes, however, because without

being able to remove the first clause, there is no set of two clauses that covers all of the

MUSes (i.e., there are no two-clause MCSes). After incrementing the bound once more to 3,

the remaining MCSes will all be found within the next iteration. When all of the 3-clause

MCSes are found, the main while loop will exit, because ϕ ′ with all of the blocking clauses

added is no longer satisfiable; there is no way to choose one yi (enabling one original clause)

from each blocking clause without enabling an entire MUS.

2.3 Computing MUSes

Once the entire collection of MCSes has been computed, the second phase of CAMUS

produces all MUSes of the given instance by finding all irreducible hitting sets of the

MCSes. This problem is equivalent to computing all minimal transversals of a hypergraph,

for which many algorithms have been developed. We developed a new algorithm from first

principles, as described below, that performs better experimentally in the specific application

of CAMUS, i.e., on collections of MCSes, than any other algorithm of which we are aware

(an experimental comparison is presented in Section 2.5.3).

The following subsections describe algorithms for finding all irreducible hitting sets of

any collection of sets. They are independent of the first phase of CAMUS in that they do not

depend on the semantics of the inputs as MCSes, and they can be applied to any minimal

37

hitting set or hypergraph transversal problem. We present the algorithms in terms of their

inputs being MCSes and their outputs MUSes, however, to maintain a stronger connection

with the other concepts in this chapter.

2.3.1 Computing a Single MUS

Consider the problem of computing a single MUS. Given a collection of sets of clauses, the

MCSes, the goal is a set of clauses that “hits” every set in that collection and is irreducible.

The first criterion, that of hitting each set, could be met by iteratively choosing arbitrary

clauses from MCSes that have not yet been hit until we have hit each MCS at least once.

This alone does not guarantee an irreducible solution, however.

Notice that for a solution to be irreducible, each element must be irredundant. In the

case of generating MUSes, this means that every clause in the solution must be the sole “rep-

resentative” of at least one MCS. For example, given a collection {{C1,C2,C3},{C2,C4}},

one could generate a hitting set by the simple algorithm described above: {C1,C2}. But

the element C1 is redundant, because there is no set for which it is the sole representative;

the trivial algorithm will not produce irreducible hitting sets. One potential solution to this

problem is to filter redundant clauses out of every candidate MUS, but this will not scale.

The approach that is taken here is to force every selected clause to be irredundant by

altering the remaining problem after each selection. Given some clause Ci and a particular

MCS in which it appears, removing the other clauses in that MCS from the remaining

problem ensures that Ci will not be redundant in the solution. For example, given a set of

MCSes {{C1,C2,C3},{C2,C4},{C2,C5}}, we can select C3 to be contained in a growing

MUS. It appears only in the first MCS of the set, so we will alter the remaining MCSes to

enforce that C3 is irredundant by removing C1 and C2 entirely. This leaves {{C4},{C5}} as

the remaining subproblem.

Figure 2.3 contains pseudocode for a subroutine that propagates a choice of clause and

MCS containing it in this way. Lines 1–7 make the choice of thisClause irredundant

38

PropagateChoice(MCSes, thisClause, thisMCS)
1. for each clause ∈ thisMCS
2. for each testMCS ∈ MCSes
3. if (clause ∈ testMCS)
4. testMCS← testMCS - {clause}
5. end if
6. end for
7. end for
8. for each testMCS ∈ MCSes
9. if (thisClause ∈ testMCS)

10. MCSes← MCSes - {testMCS}
11. end if
12. end for
13. MaintainNoSupersets(MCSes)

Figure 2.3 Algorithm for altering MCSes to make the choice of thisClause irredundant as the
only element hitting thisMCS

as described, preventing any of the other clauses in thisMCS from being added in later

iterations. Lines 8–12 remove any other MCSes hit by choosing thisClause, because

they have now been “satisfied” by the partial solution. Line 13 calls a subroutine that

removes any set in MCSes that is now a superset of some other. This last step is needed

because the algorithm requires that no MCS is a superset of any other (which is by definition

the case for the initial set of “real” MCSes, but must be maintained manually in the induced

subproblems).

Computing a single MUS from the collection of MCSes is shown in pseudocode in

Figure 2.4. It follows the simple method outlined above, using the PropagateChoice sub-

routine to modify the remaining MCSes after selecting a clause for inclusion in the MUS

and some MCS containing that clause. The choice of clause and MCS can be arbitrary.

When MCSes is empty, the set MUS contains an irreducible hitting set of MCSes; every

MCS has been hit by some selection, and each selection was forced to be irredundant.

39

SingleMUS(MCSes)
1. MUS← /0
2. while (MCSes 6= /0)
3. selClause← SelectRemainingClause(MCSes)
4. selMCS← SelectMCSContaining(MCSes,selClause)
5. MUS← MUS ∪ {selClause}
6. PropagateChoice(MCSes, selClause, selMCS)
7. end while
8. return MUS

Figure 2.4 Algorithm for computing a single MUS from a set of MCSes

AllMUSes(MCSes, currentMUS)
1. if (MCSes = /0)
2. print(currentMUS)
3. return
4. end if
5. for each selClause ∈ RemainingClauses(MCSes)
6. newMUS← currentMUS ∪ selClause
7. for each selMCS ∈ MCSes such that selClause ∈ selMCS
8. newMCSes← MCSes

9. PropagateChoice(newMCSes, selClause, selMCS)
10. AllMUSes(newMCSes, newMUS)
11. end for
12. end for
13. return

Figure 2.5 Algorithm for computing the complete set of MUSes from a set of MCSes

2.3.2 Computing All MUSes

The algorithm for computing all MUSes was developed from the algorithm for finding a

single MUS above. Notice that the selections of a clause and an MCS in which it appears

(on lines 3 and 4 in Figure 2.4) are arbitrary. Different MUSes can be computed by making

different choices at those two points. Therefore, we generate the complete set of MUSes

with a recursive algorithm that branches at those two points and tries all possible choices for

each. The pseudocode for this algorithm is shown in Figure 2.5.

40

AllMUSes takes as input (1) the remaining set of MCSes and (2) the MUS currently

being constructed in each branch of the recursion (initialized at the root of the recursion to

the complete set of MCSes and the empty set, respectively). The recursion terminates in

the conditional on lines 1–4 when no MCSes remain, at which point it outputs the MUS

constructed in the current recursion branch and returns to explore other branches. Lines

5–12 iterate through all possible choices of a clause (selected on line 5) that is added

to the growing MUS and an MCS (line 7) in which it appears. For every such choice,

PropagateChoice is called to modify a copy of the current MCSes. The recursion then

descends into another call to AllMUSes with the new MCSes and the current MUS. In

terms of the matrix representation of a set of MCSes depicted in Figure 2.1, the nested for

loops can be thought of as iterating over every single X in the matrix of the current MCSes.

The selection order does not affect correctness, and what we show here is just one possible

ordering that works well in one implementation. Other orderings can be explored in future

work, mainly with regards to their interplay with the optimizations discussed below and

their effect on runtime.

We have presented the algorithm in its most basic form to illustrate the fundamental

concepts behind its operation. We made a number of additions and optimizations to increase

the performance well beyond that of the basic algorithm, though the overall operation

remains the same.

The first optimization addresses the fact that this algorithm can produce duplicate out-

puts. While the selections made on lines 5 and 7 determine which MUS is produced, the

result for a given set of selections is not unique. For example, given a partial set of MCSes,

{{C1,C2},{C1,C3}}, the simple algorithm will return {C1} as a solution twice, because

there are two MCSes from which to chose C1, both leading to that solution. Reporting

duplicate results can be eliminated by recording visited states and pruning portions of the

recursion tree that match any stored state. The saved state could be as simple as the final

MUSes output (in which case nothing is pruned, but duplicate outputs are avoided) or as

41

complex as the complete input to the recursive AllMUSes algorithm. Our implementation

uses a hash table to store an intermediate state (based on the currentMUS input and the

set of removed clauses) at each call to AllMUSes, returning immediately from AllMUSes

if the current state matches an entry already in the table. This prunes a large portion of

the recursion tree, yielding considerable speedups in our experience: up to an order of

magnitude in the automotive product configuration benchmarks reported in Section 2.4.

An ordering heuristic provides the second major optimization. Though we are using a

complete search, which will have the same number of solution leaf nodes regardless of order,

the ordering does affect the number of redundant nodes and interacts with the pruning from

the first optimization to change the size of the recursion tree. We impose a static ordering of

the clauses that is used by the for each loop on line 5 to select the next remaining clause in

each iteration. We order the clauses by their frequency, i.e., the number of MCSes in which

they appear. Selecting clauses in order of increasing frequency experimentally yields the

best performance overall, though the opposite ordering performs better in some instances.

Other important optimizations are a subroutine that immediately includes the clauses

in any single-element MCSes (similar to unit-clause propagation in Boolean satisfiability

solvers (25; 24)) when they appear due to modifications made by PropagateChoice; explic-

itly removing a clause from the remaining MCSes after it has been tried in an iteration of

the for each loop starting on line 5; and carefully optimizing the MaintainNoSupersets

subroutine, as well as how it is called, to avoid redundant work.

2.4 Performance

Table 2.1 contains experimental data produced with a set of CNF benchmarks from an

automotive product configuration domain (Appendix B.1). We set a 600 second timeout on

each phase of CAMUS. It was able to complete the stage of finding all MCSes within this

42

Runtime (sec) MCS sizes
Name MCSes MUSes #MCSes Min Max #MUSes
C168 FW UT 851 0.301 0.001 30 1 8 102
C170 FR RZ 32 0.269 0.486 242 1 2 32768
C170 FR SZ 58 0.341 7.18 177 1 8 218692
C170 FR SZ 92 0.141 0 131 1 1 1
C170 FR SZ 95 0.218 − 175 1 3 > 2 ·107

C170 FR SZ 96 4.19 − 2605 1 22 > 1 ·107

C202 FS RZ 44 5.93 − 2658 1 48 > 7 ·106

C202 FS SZ 121 0.101 0.001 24 1 2 4
C202 FS SZ 122 0.109 0 33 1 1 1
C202 FS SZ 95 448 − 59307 1 51 > 6 ·106

C202 FS SZ 97 20.6 − 7823 1 46 > 5 ·106

C202 FW RZ 57 0.434 0.001 213 1 1 1
C202 FW SZ 118 0.5 − 257 1 2 > 1 ·107

C202 FW SZ 123 0.174 0 38 1 2 4
C208 FA RZ 43 6.66 − 4317 1 20 > 8 ·104

C208 FA RZ 64 0.215 0.001 212 1 1 1
C208 FA SZ 120 0.076 0 34 1 2 2
C208 FA SZ 87 0.309 0.545 139 1 12 12884
C208 FA UT 3254 0.387 0.349 155 1 4 17408
C208 FC RZ 70 0.229 0.001 212 1 1 1
C208 FC SZ 127 0.067 0 34 1 1 1
C210 FS RZ 38 113 − 12715 1 141 > 5 ·106

C210 FS RZ 40 0.275 0.002 212 1 2 15
C210 FS SZ 107 163 − 16511 1 141 > 2 ·106

C210 FS SZ 123 0.526 − 363 1 3 > 1 ·107

C210 FS SZ 129 0.088 0 33 1 1 1
C210 FW RZ 57 337 − 20007 1 213 > 4 ·106

C210 FW RZ 59 0.374 0.001 212 1 2 15
C210 FW SZ 111 374 − 23625 1 179 > 6 ·106

C210 FW SZ 129 1.13 − 584 1 5 > 7 ·106

C210 FW SZ 135 0.138 0.001 33 1 1 1
C220 FV RZ 12 0.253 1.4 150 1 6 80272
C220 FV RZ 13 0.199 0.118 76 1 6 6772
C220 FV RZ 14 0.085 0.001 20 1 3 80
C220 FV SZ 114 10.8 − 5654 1 55 > 1 ·106

C220 FV SZ 121 0.163 0.001 102 1 3 9
C220 FV SZ 46 4.44 − 1533 1 52 > 1 ·107

C220 FV SZ 55 18.1 − 3974 1 22 > 2 ·106

C220 FV SZ 65 0.524 2.66 198 1 26 103442

Table 2.1 Experimental results for automotive product configuration benchmarks

43

timeout for 49 of the 84 instances. Table 2.1 reports on 39 of these 49 instances2. On the

35 instances for which CAMUS did not find all MCSes in 600 seconds, it did output an

average of 26,000 MCSes per instance within that time, indicating that the output size was

the primary factor in the hardness of those instances.

The first column of Table 2.1 gives the instance name. The next two columns contain

the CPU time (in seconds) used by each phase of CAMUS; an entry of “-” indicates that the

timeout for that phase was reached. The next group of columns lists the number of MCSes

in each instance as well as the size of the smallest and largest MCS, and the final column

reports the number of MUSes found. A number of MUSes preceded by a “>” indicates the

number output before reaching the timeout.

Though all of the instances were generated in the same manner and have the same

general size, the number and size of MCSes and MUSes in each instance vary widely.

Some have a single MUS, while others have millions; runtimes can range from less than a

millisecond to days or longer. This is to be expected, because either the number of MCSes

or MUSes can potentially be exponential in the size of the original instance (see Appendix

A). One set can also provide an exponential “compression” of the other. C202 FW SZ 118,

for instance, has structured MCSes that can be analyzed to find that the instance has 2127

(approximately 1.7×1038) MUSes.

Because of these potential output sizes, the best complexity one can hope to achieve for

finding all MUSes is polynomial in the size of the output. In these benchmarks, both phases

of CAMUS certainly do scale with the size of their outputs, though neither has theoretical

guarantees that their runtimes will be sub-exponential in the size of the output.

When faced with exponential output, an anytime algorithm is essential. While we have

not formulated the entirety of CAMUS as such, the second phase does provide good anytime

performance. It guarantees that the initial output will come in polynomial time, and the

2The 10 instances excluded from this table all matched very closely in terms of runtimes and out-
put to at least one instance that is included in the table. The full results for the benchmark set, as
well as additional data such as MUS sizes and results for other benchmarks, are available online at:
http://www.eecs.umich.edu/˜liffiton/camus/

44

http://www.eecs.umich.edu/~liffiton/camus/

0

20000

40000

60000

80000

100000

0 100 200 300 400 500 600
seconds

C
um

ul
at

iv
e

#M
U

S
es

Figure 2.6 Anytime graph of computing MUSes for instance C208 FA RZ 43

remaining results are returned at a high rate. Comparing the number of MUSes found to

the runtime of the second phase of CAMUS (including the partial results for instances

that timed out) in Table 2.1 shows that, for these instances, the second phase of CAMUS

generated close to 26,000 MUSes per second on average. Figure 2.6 shows an anytime curve

(cumulative number of MUSes returned over time) for C208 FA RZ 43, the slowest of the

instances that timed out in the second phase. In this benchmark, there are some periods

during which little is produced, but the overall rate of output remains relatively constant.

Given some target number of MUSes, one could predict with reasonable accuracy how long

the algorithm would take to generate it.

One interesting result is that the smallest MCS in every one of these instances contains

a single clause. This indicates that all of the MUSes in each instance share at least one

common clause, often more, because the only way to “hit” such a singleton MCS is to

include its sole clause. Along with the fact that the largest MCS is usually a small percent

of the clauses in each instance, this supports the technique of searching for MCSes by size

incrementally. The MCSes are generally found within a small number of sizes, and the time

spent searching empty “size blocks” is very small on average. We have observed the same

45

characteristics in many other benchmark suites as well, though one can generate pathological

cases for which they do not hold (see Appendix A).

2.5 Comparison to Existing Work

The related research can be split into three separate areas. First, there is work on finding a

minimal unsatisfiable subset of a constraint system in general as well as that on specifically

finding all MUSes of a given system. Second, we looked at research related specifically

to the first half of CAMUS: finding the set of all MCSes. Finally, we present existing

work related to the second half of CAMUS: the problem of finding all minimal hypergraph

transversals or hitting sets.

2.5.1 All MUSes

Aside from the many algorithms for finding a single US or MUS, the work that is most

relevant to this research, which addresses the problem of finding all MUSes, is the Dualize

and Advance (DAA) algorithm by Bailey and Stuckey (8). They developed DAA for finding

all MUSes of a system of Herbrand constraints and applied it to a software verification

problem, namely the problem of type-error debugging of Haskell code.

DAA interleaves the use of the hitting-set duality with the search for what we call MCSes.

Whereas CAMUS finds all MCSes before finding hitting sets of them, DAA computes hitting

sets on a partial set of MCSes after finding each MCS – it outputs any MUSes found at that

stage and also uses the results to direct the search for the next MCS.

We performed an experimental comparison of DAA with CAMUS. DAA was imple-

mented by Baily and Stuckey for Herbrand constraints, though the basic algorithm applies

to any type of constraint system, so we had to create a version for Boolean satisfiability. To

keep things as fair as possible, we used the same SAT solver and the same basic solving

methods in DAA as in CAMUS.

46

1000

100

1000

600 sec.

timeout

10

100

1

10

D
A

A
 (

se
c)

0.1

1

0.01

0.1

0.01

0.01 0.1 1 10 100 1000

CAMUS (sec)

Figure 2.7 Comparing DAA and CAMUS (automotive product configuration benchmarks)

We compared DAA to CAMUS on the automotive product configuration benchmarks

(Appendix B.1), using both to attempt to generate the complete set of MUSes for each

instance. The tests were run in Linux on a 3.0GHz Intel Core 2 Due E6850 with 3GB

of physical RAM. A 600 second timeout was set for every instance. Figure 2.7 displays

the results of the comparison for the 32 out of 84 benchmarks on which either algorithm

completed within the 600 second timeout. CAMUS found all MUSes for the 32 instances,

while DAA completed 26; the relative runtimes show that CAMUS is consistently faster by

several orders of magnitude. We have learned that further improvements could be made to

the published description of Bailey and Stuckey’s algorithm (personal communication, J.

Bailey, October 2005), but it is unlikely that they would completely erase the performance

gap.

The performance numbers paint a clear picture that CAMUS is faster than DAA for

Boolean constraints. However, the performance of each algorithm is dependent on a number

of factors.

One difference contributing greatly to the performance of CAMUS is its tight integration

47

with a modern SAT solver. By formulating the problem with clause-selector variables, the

SAT solver handles the search for MCSes itself. Additionally, by finding multiple MCSes

(of a single size) within a single search tree, CAMUS immediately takes advantage of all

of the features of modern SAT solvers, especially learned clauses. While DAA can use an

incremental search within the search for a single MCS, it must restart the search after any

added constraint makes the growing MCS unsatisfiable. It also restarts with a new search

tree for every MCS, as compared to CAMUS which only restarts the search after all MCSes

of a particular size have been found.

Note that while CAMUS is more heavily integrated with a SAT solver, it is still fairly

independent of the particular solver itself. It can be implemented with any SAT solver that

provides an incremental solving interface, allows the addition of constraints mid-search,

and supports the AtMost constraint. (While the last requirement is not standard, its im-

plementation in MiniSAT is quite simple, and as noted earlier, the effect can be obtained

by modifying other SAT solvers with little difficulty.) The DAA algorithm simply calls a

standard solver as a subroutine, making it even simpler to implement with different solvers.

Another large difference between CAMUS and DAA is the distinction between CAMUS’

serial, two-phase algorithm and DAA’s interleaved approach. Obtaining MUSes before

computing the entire set of MCSes is beneficial in applications that do not require the

complete set of MCSes nor all MUSes because it can provide results sooner. The interleaved

approach could easily be adopted in CAMUS. Hitting sets of the partial set of MCSes

could be calculated after every MCS is found, between stages of the incremental search

(when incrementing the bound on MCS size), or at any desired interval. This could add

a great deal of overhead, however, especially if every potential MUS had to be checked

for unsatisfiability. This seems to be the case for DAA, as the instance for which it had

its fastest runtime also had the fewest MCSes, and thus the fewest incremental hitting-set

calculations. Though CAMUS could be interleaved to potentially gain efficiency, DAA

could not be “deinterleaved,” as it depends on the set of potential MUSes to provide the seed

48

0.001

0.01

0.1

1

10

100

1000

1 10 100 1000

AMC1 (seconds)

C
A

M
U

S
 (s

ec
on

ds
)

3SAT, r=3.0
3SAT, r=3.2
3SAT, r=3.4
AIM suite

600 sec.
timeout

Figure 2.8 Comparing AMC1 and the first phase of CAMUS (3SAT instances have 30 variables)

for the next iteration and to determine when it has found all MCSes.

2.5.2 MSSes and MCSes

Maximal satisfiable subsets have been studied apart from their application to finding MUSes

by Birnbaum and Lozinskii (11). They are concerned with using MSSes (which they call

maximally consistent subsets or mc-subsets) in knowledge systems, specifically to reason

about inconsistent knowledge. As stated earlier, they noted the connection to MUSes (mini-

mally inconsistent subsets in their paper), but they did not explore it further. They describe

two algorithms, AMC1 and AMC2, for finding all MSSes (hence all MCSes) of a given

CNF formula using a much different approach than that employed in CAMUS.

We were unable to obtain Birnbaum and Lozinskii’s implementations of their algorithms,

so a direct comparison of their results with ours is difficult. To perform a limited comparison,

we implemented AMC1, the faster of the two in their results, on top of the same SAT solver

infrastructure used for our implementation of CAMUS. We implemented the algorithm

exactly as shown in the paper, along with the suggested variable ordering, optimizing as

49

much as we could without altering the algorithm3. Figure 2.8 contains a comparison of

the runtimes of our implementation of AMC1 with the first phase of CAMUS on random

3SAT instances (Appendix B.8; each with 30 variables and clause/variable ratios (r) as

indicated in the legend) and unsatisfiable instances from the AIM benchmarks (Appendix

B.4). We selected these smaller benchmarks for this comparison because AMC1 could not

scale to solve the larger industrial instances. Even taking the implementation differences

into account, it is clear that the first phase of CAMUS is faster than AMC1 by several orders

of magnitude.

AMC1 is a DPLL-style algorithm, searching through the space of variable assignments.

It essentially enumerates complete variable assignments, checking the set of clauses satisfied

by each to see if it is an MSS. Its only pruning rule is the pure literal rule; otherwise, it

searches the entire space. This leads to very poor scaling; it even finds each solution multiple

times, equal to the number of different complete assignments that satisfy the corresponding

MSS.

AMC2 performs more poorly than AMC1 in Birnbaum and Lozinskii’s results. It is

similar to the first phase of CAMUS in that it searches subsets of clauses for satisfiability,

but as with AMC1 it has limited pruning abilities. It also has a less sophisticated search

than CAMUS, which searches subsets of clauses implicitly within a standard SAT search,

exploiting the SAT solver’s pruning and dynamic ordering heuristics automatically.

2.5.3 Hypergraph Transversals / Hitting Sets

As noted earlier, the second phase of CAMUS consists of computing minimal hypergraph

transversals (also known as hitting sets), a general graph problem (resp. set covering prob-

lem) with a long history in mathematics and computer science research. See (33) for an

3Comparing the runtime of our implementation of AMC1 to their reported results for random 3SAT
instances and correcting for processor differences, we estimate that the runtimes of our implementation of
AMC1 are approximately 3 times those of their implementation – not enough to significantly affect the orders
of magnitude result in Figure 2.8.

50

0.0001

0.001

0.01

0.1

1

10

100

1000

0.0001 0.001 0.01 0.1 1 10 100 1000

Partition, KS, and BEGK (seconds)

C
A

M
U

S
 -

 2
nd

 P
ha

se
 (

se
co

nd
s)

Partition
KS
BEGK

600 sec.
timeout

600 sec.
timeout

Figure 2.9 Comparing Partition, KS, and BEGK to the second phase of CAMUS on MCSes from
automotive product configuration benchmarks

overview of applications of hypergraph transversals and some theoretical complexity results.

Our minimal hypergraph transversal algorithm for computing MUSes was created from

first principles independently of existing algorithms. Since creating this algorithm for our

purposes, we looked for other algorithms for learning and comparison purposes. Of the other

algorithms found, those with the most efficient implementations are Partition, by Bailey, et.

al. (7); an algorithm by Kavvadias and Stavropoulos (53; 54) (KS); and another by Boros,

et. al. (14) (BEGK). The three algorithms were experimentally compared in (54), and while

KS generally performed well, it did not entirely dominate the results over either of the other

two. We obtained executables for all three algorithms4 to compare their performance to that

of CAMUS’ second phase on sets of MCSes.

Figure 2.9 compares the runtimes of Partition, KS, and BEGK against the MCSes

algorithm in CAMUS on the sets of MCSes from the automotive product configuration

benchmarks. We have only included benchmarks for which at least one of the algorithms

4James Bailey provided an executable for Partition, while KS and BEGK were downloaded from
http://lca.ceid.upatras.gr/˜estavrop/transversal/ and http://paul.rutgers.
edu/˜elbassio/dual.html, respectively.

51

http://lca.ceid.upatras.gr/~estavrop/transversal/
http://paul.rutgers.edu/~elbassio/dual.html
http://paul.rutgers.edu/~elbassio/dual.html

finished within the 600 second timeout. Each point plots the runtime in seconds of MCSes

(y-axis) against either Partition, KS, or BEGK (x-axis); points below the diagonal indicate

CAMUS outperforming the other algorithm for that point. To preserve results measured as

zero seconds on the logarithmic scales, zero second runtimes have been changed to 0.0002

seconds. In all but two benchmarks, MCSes either matches or outperforms the others: on

the MCSes of C202 FS SZ 104, KS completed in 70 seconds while MCSes (as well as

the other two) timed out; the other point above the diagonal is a result that is below the

threshold of timing accuracy in this experiment.

This is not meant to be a complete comparison of these algorithms, but rather it serves to

motivate ours as a good choice for the types of hypergraphs (the MCSes) seen in CAMUS.

In fact, the Partition algorithm is faster than ours on the machine-learning datasets for which

it was developed (personal communication, J. Bailey, October 2005). Likewise, the results

in (54) indicate that all three of the other algorithms have mixed performance rankings

on different types of problems. Though it was not targeted directly, it is likely that the

hypergraph transversal algorithm we developed for CAMUS is suited particularly well for

some structural characteristic of sets of MCSes.

The algorithm most similar to ours is KS. It is similar to that in CAMUS in that it

generates transversals (hitting sets) incrementally in a tree with complete transversals at

the leaves. The algorithm therefore has the same good anytime properties as the second

phase of CAMUS, taking negligible time to produce the first output and little time between

each successive output. KS employs the concept of “generalized nodes,” which treats sets

of nodes that appear in the same set of hyperedges as a single generalized node to increase

efficiency and reduce the size of the tree (each solution containing a generalized node may

be expanded into several real solutions). Generalized nodes could be implemented in our

algorithm for a likely increase in efficiency. KS also employs a node-selection technique

when adding nodes incrementally to prune redundant branches from the tree, as opposed to

our algorithm, which accomplishes similar pruning by modifying the remaining subproblem

52

at each point in the tree and storing “seen” branches in a hash table. This latter difference

gives KS polynomial memory requirements as compared to the exponential memory re-

quirements of a hash table of seen branches. The memory usage of our algorithm has never

presented a problem in practice, however, with experiments reaching practical timeouts well

before practical memory limits were reached.

The hypergraph transversal / hitting set problem is also equivalent (with minor transla-

tion) to set covering, which has been studied extensively in the field of operations research

(OR). Specifically, the problem we solve is closest to the unicost set covering problem; we

have no weights or costs on the elements we are choosing. OR is mainly concerned with

optimization problems, however, and any OR approaches of which we are aware are geared

towards producing the smallest hitting set. For a recent example of one such approach to

the unicost set covering problem and references to related techniques in OR, refer to (9).

OR approaches like this could be adapted to find all irreducible hitting sets by utilizing an

iterative approach, blocking solutions as they are found as in the first phase of CAMUS, and

this is an interesting direction for future research. However, preliminary experiments using

a similar incremental approach with MAXSAT to find all minimal hitting sets showed that

it performs much worse than the algorithms presented here. It is likely that any procedure

using repeated search/optimization to find all minimal hitting sets will not scale well.

2.6 Other Constraint Types

The results of the previous section were generated by the primary implementation of

CAMUS, which operates on Boolean satisfiability instances. The algorithms in CAMUS

generalize easily to other types of constraint systems, as well. Here, we describe the require-

ments of such generalizations and describe two different implementations we developed for

other constraint types.

The second phase of CAMUS operates entirely independently of the first phase, and its

53

input is nothing more than a collection of sets of discrete elements, which may as well be

anonymous integers. Therefore, the MUSes algorithm can be reused in any implementa-

tion of CAMUS with no changes whatsoever. Additionally, other hypergraph transversal

algorithms can be used in its place easily. The first phase of CAMUS does operate on

the constraints directly, and this it is the piece for which changes must be made to tackle

different constraint types.

As described, the MCSes algorithm uses clause-selector variables and the solver’s ability

to handle AtMost constraints and an incremental solving method. The incremental solving

is a performance optimization, however, and the algorithm only relies on clause-selector

variables and AtMost constraints. Both of these can be implemented in many different types

of constraints. For example, in an integer program, the constraint ∑i aixi ≤ b can be aug-

mented with a new binary variable y to form cy+∑i aixi ≤ b, where c > b. Other constraint

types can be similarly augmented with variables for which particular assignments either

satisfy the constraint or propagate out to imply the original constraint, pre-augmentation.

AtMost constraints can likewise be directly expressed, e.g. the definition of an AtMost

constraint given in Section 1.1.2 is an integer programming constraint, or they can be en-

coded into the underlying constraint type, as in the CNF encodings of cardinality constraints

described in (79). With either of these options, CAMUS can be implemented on top of an

existing constraint solver with no modifications to the solver itself. Better performance may

be obtained, however, by adding a “native” AtMost constraint to the solver, as we did with

MiniSAT in our implementation of CAMUS. As only one AtMost constraint is needed at

any given time, the implementation needs only keep a single counter, incremented when

one of the variables in its scope is assigned. Any backtracking solver with some form of

propagation can then propagate the negation of the remaining literals when the AtMost

bound is reached.

Our first alternative implementation of CAMUS follows the approach of making minor

modifications to an existing solver. In joint work with Michael Moffitt (62), we adapted

54

Maxilitis, a solver developed for the Max-CSP problem for Disjunctive Temporal Problems

(DTPs) to find all MCSes. DTP constraints are defined as disjunctions of difference inequal-

ities:
∨

i xi− yi ≤ bi. Maxilitis, as it existed prior to this work, already utilized a form of

clause-selector variables, and the AtMost constraint was built directly into the solver, as

described above.

The basic form of MCSes can be implemented with any solver that provides some way

of maximizing the number of satisfied constraints and avoiding previous solutions. Our

second alternative implementation of CAMUS, in the Satisfiability Modulo Theories (SMT)

domain, performed well following this approach. As described in more detail in Section

1.1, every constraint in an SMT instance is a disjunction of predicates from any number

of “background theories.” A clause-selector variable can be added naturally to any SMT

constraint by adding a new disjunct to a constraint that is simply a single, new variable, just

as we do for CNF instances. AtMost constraints can be expressed as long as the SMT solver

supports integer inequalities. We found, experimentally, that YICES (30), the SMT solver

we used, performed better when using its own built-in Max-SAT functionality than when we

added clause-selector variables and AtMost constraints ourselves.

The YICES-based SMT implementation of CAMUS, then, calls the Max-SAT routine in

YICES repeatedly to generate MCSes. YICES supports weighted constraints, which allows

for blocking constraints to be made “hard,” such that the Max-SAT routine must satisfy

them. A blocking constraint is created for every MCS found by creating a disjunction of the

disjuncts in all constraints in the MCS. This requires that at least one of the constraints in the

MCS be satisfied in any later solution, just as blocking clauses created from clause-selector

variables do.

Note that SMT subsumes both Boolean SAT and DTPs (difference inequalities are a

common “background theory” for SMT solvers). However, the SAT-specific and DTP-

specific implementations of CAMUS outperform the more general YICES-based version.

Domain-specific implementations definitely have their place, but the SMT implementation

55

is a good general-purpose tool for exploring infeasibility in domains for which a specific

implementation does not exist, such as linear or integer programming.

56

Chapter 3

Extending CAMUS

Over time, CAMUS has been extended with new capabilities to solve additional problems

related to finding all MCSes and MUSes. Note that many of these modifications are made

to the general CAMUS algorithms, not any specific implementation, and thus they can be

applied to any specific implementation for a given type of constraint.

3.1 Relaxing Completeness

In addition to the fact that the set of MUSes can be exponentially large, the complete

set of MCSes is potentially exponential in the size of the original instance as well.

For example, an instance with n pairwise disjoint MUSes each having k clauses (e.g.,

{{C1,C2,C3},{C4,C5,C6}, . . .}) will have kn MCSes with n clauses each (see Appendix A

for details). The second phase of CAMUS can be stopped at any time to deal with massive

sets of MUSes, but for those cases with intractably large sets of MCSes, the completeness

criterion of the first phase of CAMUS must be relaxed. While the MCSes algorithm in

Section 2.2 is technically an anytime algorithm in that it returns results as they are found

during search, one cannot generate MUSes by halting MCSes early and passing a subset of

the MCSes to the AllMUSes algorithm. Hitting sets of any proper subset of the collection

of MCSes may not be unsatisfiable.

Therefore, we have developed a modification of the MCSes algorithm that produces

an output smaller than the complete set of MCSes while still guaranteeing that irreducible

hitting sets of its output will be MUSes. It is not possible to generate all MUSes from

57

this smaller first stage result, but that is a direct consequence of relaxing the completeness

criterion of the first phase.

As presented, the first phase of CAMUS computes all of the MCSes and the second

builds MUSes by branching on which clauses will be included in each resulting MUS.

Clearly, by pruning some of the branches in the second phase (i.e., eliminating some choices

from each branching point), we can greatly reduce the number of MUSes returned by the

algorithm. And that pruning can in fact be done earlier, within the first phase, to reduce

the number of MCSes computed as well. Just as the AllMUSes algorithm removes clauses

from the problem when descending into a branch, so too can we remove clauses from the

remaining problem at any point during the search for MCSes. By doing this, we can reduce

the size of the results of both phases, reducing the complexity and effectively overcoming

intractability by returning a portion of the complete results. Note that this does not relax

correctness at all; all of the outputs of the second phase will still be minimal.

Figure 3.1 contains pseudocode for a modified MCSes algorithm, called PCSes (Partial

Correction Subsets), that accomplishes the described relaxation. Lines 7–10 and 17, marked

with ? symbols, have been added, while the remaining lines are not significantly changed

from MCSes. The major change in this algorithm is that we are now interested in subsets

of MCSes, found by truncating MCSes, which are still computed in the same way as in

MCSes. We refer to a truncated MCS as a Partial Correction Subset (PCS):

Definition 11. A subset P⊆C is a PCS if there exists some MCS M such that P⊆M.

Lines 7–10 accomplish this truncation in three main steps: First, each computed MCS is

split into two subsets via a Truncate subroutine, keptClauses and removedClauses;

second, a PCS is created that contains only keptClauses; and third, the clauses in the

set removedClauses are removed entirely from the instance. Overall, this is equiv-

alent to pruning any branches of the AllMUSes algorithm in which any clause from

removedClauses is selected; it can reduce the number of MUSes computed in the

second phase, and it has an added benefit of reducing the size of the first phase’s output as

58

PCSes(ϕ)
1. ϕ ′← AddYVars(ϕ)
2. k← 1
3. PCSes← /0
4. while (SAT(ϕ ′))
5. ϕ ′k← ϕ ′ ∧ AtMost({¬y1,¬y2, . . . ,¬yn},k)
6. while (newMCS← IncrementalSAT(ϕ ′k))

?7. (keptClauses,removedClauses)← Truncate(newMCS)
?8. newPCS← keptClauses

?9. ϕ ′k← RemoveClauses(ϕ ′k, removedClauses)
?10. ϕ ′← RemoveClauses(ϕ ′, removedClauses)
11. PCSes← PCSes ∪ {newPCS}
12. ϕ ′k← ϕ ′k ∧ BlockingClause(newPCS)
13. ϕ ′← ϕ ′ ∧ BlockingClause(newPCS)
14. end while
15. k← k + 1
16. end while

?17. PCSes← RemoveSubsumed(PCSes)
18. return PCSes

Figure 3.1 A generalization of MCSes, capable of finding PCSes (Partial Correction Subsets) of a
formula ϕ [A ? indicates a line not in MCSes]

well (each PCS “represents” all of the MCSes that are supersets of it, so fewer are needed to

form a complete set).

The internals of Truncate are left unspecified because the subroutine can be imple-

mented in different ways to achieve numerous different goals. The only requirements are that

1) it splits the given MCS into two subsets, keptClauses and removedClauses, such

that keptClauses is non-empty, and 2) any clauses that were included in keptClauses

in a previous call to Truncate are again in keptClauses. The latter requirement, crucial

for correct operation, arises from the idea that any earlier split into keptClauses and

removedClauses was making a decision about which clauses to consider, and removing

a previously kept clause would conflict with that decision1.

1Another way to handle this conflict is to remove any clauses in the removedClauses set from any

59

Line 17 adds a call to a subroutine that removes subsumed PCSes, that is, PCSes that are

supersets of others in the collection. We did not need this in the earlier MCSes algorithm

because the technique of computing (and blocking) MCSes in increasing order of size

precluded finding spurious supersets. In PCSes, the Truncate subroutine may invalidate

the condition that results are found in this order. To have any real control over the size of

the output, Truncate must be able to limit the size of keptClauses as much as possible.

Yet the requirement that it include any clauses kept in previous calls could force it to return

more than the desired limit. For example, while in the main loop of PCSes with an AtMost

bound of k = 3, it could be forced to include four clauses in one PCS because all four have

been included in previous PCSes. When it returns to the prescribed limit of three clauses

per PCS in later iterations, it could produce PCSes that are subsets of the one that was

forced to be larger. This would cause the larger PCS to be subsumed and redundant. In the

pseudocode, we have placed the call to RemoveSubsumed at the end of the entire process,

though it could be somewhat more efficiently implemented within the main loop.

Whenever Truncate returns a non-empty removedClauses set, those clauses are

removed from the problem entirely. The final result is equivalent to pruning any branches of

AllMUSes in which one of those clauses is chosen. Removing the clauses from the problem

in the first phase has the added benefit of reducing the size of the first phase’s output as well.

The following examples should aid in understanding how the addition of MCS truncation

affects the performance and the results of the PCSes algorithm. Many different behaviors

can be built from these examples, and the variety of possible implementations is quite large.

Example 1. The behavior of the original MCSes algorithm is contained within PCSes in

the case where Truncate always returns the entire MCS in keptClauses and the empty

set for removedClauses.

Example 2. Consider the variant of PCSes in which Truncate returns only a single clause

previously computed PCSes as well. We have implemented the approach that prevents previously kept clauses
from being removed.

60

in keptClauses every time it is called. This variant (the most extreme possible in terms

of number of clauses removed) finds a single MUS of the original instance. The final set

of PCSes will be a collection of single-element sets, whose only irreducible hitting set is

the union of those sets. Compare this result to a single path to a leaf node in the AllMUSes

algorithm. For every MCS under consideration, we chose one clause to represent it and

removed the others from the problem; we essentially moved the decisions made along one

path of AllMUSes into the first phase of CAMUS. This method can generate any of the

MUSes of a given instance, depending only on the clause chosen by Truncate to be kept in

each iteration.

Example 3. PCSes can be used to heuristically obtain a diverse sampling of the space of

MUSes by attempting to find dissimilar MUSes. This is useful in systems with goals of

correcting or acting on knowledge of all causes of the infeasibility. Just as eliminating one

MUS may not be enough to eliminate infeasibility, it is also unlikely that removing a cluster

of similar MUSes would. Furthermore, interactive systems presenting MUSes to users, for

example to explain the infeasibility of a scheduling problem, are more useful if they present

a diverse set of MUSes, as this will provide a more comprehensive set of explanations than

one MUS or several similar MUSes.

This variant operates in a greedy fashion by iteratively finding a single MUS with the ap-

proach in Example 2 while biasing the clause selection within Truncate each time towards

keeping clauses that were not included in a previous iteration’s result. That is, a counter is

kept for every clause, and a clause’s counter is incremented when that clause is included

in one of the MUSes returned. Truncate takes the clauses in newMCS and sorts them in

increasing order of that count, taking the clause with the smallest count for keptClauses

each time it is called. This will produce a sampling of the MUSes biased towards including

“underrepresented” clauses in each new result. It can be extended to more complex biases,

such as looking at the actual structure of the MUSes found thus far and biasing the search

away from those structures, as opposed to just the contents of previous MUSes.

61

C1 C2 C3 C4 C5 C6
ϕ = (x1) ∧ (¬x1) ∧ (¬x1∨ x2) ∧ (¬x2) ∧ (¬x1∨ x3) ∧ (¬x3)

Execution Clause Counts
Initialization [0,0,0,0,0,0]
1st Run Find MCS {C1} [0,0,0,0,0,0]

Keep PCS {C1}
Find MCS {C2,C3,C5} [0,0,0,0,0,0]

Keep PCS {C2}
Final MUS {C1,C2} [1,1,0,0,0,0]

2nd Run Find MCS {C1} [1,1,0,0,0,0]
Keep PCS {C1}

Find MCS {C2,C3,C5} [1,1,0,0,0,0]
Keep PCS {C3}

Find MCS {C4} [1,1,0,0,0,0]
Keep PCS {C4}

Final MUS {C1,C3,C4} [2,1,1,1,0,0]
3rd Run Find MCS {C1} [2,1,1,1,0,0]

Keep PCS {C1}
Find MCS {C2,C3,C5} [2,1,1,1,0,0]

Keep PCS {C5}
Find MCS {C6} [2,1,1,1,0,0]

Keep PCS {C6}
Final MUS {C1,C5,C6}

Figure 3.2 Running PCSes on an example formula ϕ (see Fig. 2.1) – three separate runs with the
truncation limit set to 1 kept clause, biasing clause selection by previous selection frequency

Figure 3.2 shows the execution of this variant of PCSes on the example formula from

Figure 2.1. The algorithm is run three times with a truncation limit of 1 clause, keeping a

count for each clause of how many times it has been in some resulting MUS. The clause

counts guide the truncation in each run.

An adaptive implementation of Truncate can provide more complex behaviors, such as

enabling rough limits on runtime or output size without sacrificing correctness. Its imple-

mentation is left for future work, but we present important considerations here. Each clause

removed by Truncate directly impacts the runtime and output size of the first phase of

CAMUS, so both can be controlled to some degree by controlling the frequency of removing

clauses. For example, one could set a rough runtime limit and gradually (or sharply) increase

62

the frequency of removing clauses as the limit is approached. This cannot immediately halt

execution – recall that previously kept clauses must be kept in each new PCS, so several

more PCSes may be generated even after setting a truncation limit to remove as many clauses

as possible – but it can drastically reduce the remaining runtime; hence it can provide a

rough limit on runtime.

A rough limit can be placed on the size of the generated MUS set in the same way.

However, knowing when to increase the clause removal frequency requires a means of

estimating the number of MUSes that will be produced by the final set of PCSes at any point

as they are generated. One such estimation function approximates a maximal independent

set (MIS) of the current PCSes; multiplying the cardinalities of the PCSes included in the

MIS estimate gives an estimate of how many MUSes would be produced from the PCSes.

Unfortunately, this is neither a strict upper nor lower bound on the actual size, and in practice

it can be off by several orders of magnitude. Other inaccurate yet simple estimates could be

produced from the number of PCSes of each size, using the idea that each PCS of size k

will generally increase the number of MUSes by a factor proportional to k – such factors

could be determined experimentally for any given class of problems. These estimates will

function if the goal is to differentiate between, say, 100 and 100,000 MUSes, but not for

fine-grained estimation.

3.1.1 Performance

To demonstrate the value of the PCSes algorithm, we used it to find MUSes of the automo-

tive product configuration benchmarks (Appendix B.1) for which MCSes times out after

600 seconds without producing all MCSes. We ran PCSes with a simple implementation

of Truncate that takes a bound on the number of clauses to keep in each PCS and attempts

to match it (it will at times be forced to keep more clauses if they were all kept previously).

Table 3.1 lists results on the 35 automotive benchmark instances that time out in MCSes.

We report the runtime of PCSes in seconds and the number of MUSes constructed from the

63

Size limit = 2 Size limit = 3
Name PCSes

(sec)
#MUSes PCSes

(sec)
#MUSes

C168 FW SZ 107 29.6 2136 124 > 1.4 ·107

C168 FW SZ 128 3.02 6268144 7.32 > 2.2 ·107

C168 FW SZ 41 2.9 118 10.1 4500
C168 FW SZ 66 4.16 248 13.1 434035
C168 FW SZ 75 2.39 824 6.69 418463
C168 FW UT 2463 6.14 1152 38.1 > 8.3 ·105

C168 FW UT 2468 5.66 13184 9.28 409509
C168 FW UT 2469 5.43 1792 30.9 403392
C168 FW UT 714 0.397 2 0.38 3
C202 FS SZ 74 0.408 16 0.388 60
C202 FS SZ 84 32.6 > 1.3 ·106 138 > 4.0 ·106

C202 FW SZ 100 3.78 267 13.9 1105768
C202 FW SZ 103 115 > 1.2 ·105 273 > 4.1 ·106

C202 FW SZ 61 12.3 314 31.7 43238
C202 FW SZ 77 0.826 64 0.727 144
C202 FW SZ 87 101 > 8.5 ·104 −
C202 FW SZ 96 35.2 > 4.3 ·104 339 > 5.6 ·106

C202 FW SZ 98 1.66 123 9.38 37718
C202 FW UT 2814 43.1 1198 267 4869852
C202 FW UT 2815 43 1198 262 4869852
C208 FC RZ 65 0.335 48 1.12 2494
C208 FC SZ 107 1.74 400 4.5 32718
C210 FS RZ 23 3.19 15406 3.59 474404
C210 FS SZ 103 1.9 > 1.4 ·107 6.42 > 1.5 ·107

C210 FS SZ 55 2.43 42608 4.93 14589828
C210 FS SZ 78 1.17 48 1.35 432
C210 FW RZ 30 8.03 58842 10.8 > 1.6 ·107

C210 FW SZ 106 11.2 > 4.2 ·106 29.8 > 1.8 ·107

C210 FW SZ 128 1.03 28672 2.66 493568
C210 FW SZ 80 2.53 16 2.74 440
C210 FW SZ 90 35.1 > 3.7 ·104 101 > 1.6 ·106

C210 FW SZ 91 34.5 > 2.3 ·106 112 > 2.4 ·106

C210 FW UT 8630 15.8 16016 65.7 4192496
C210 FW UT 8634 6.08 20480 68.9 5207976
C220 FV SZ 39 12.6 > 1.3 ·104 30 > 2.7 ·106

Table 3.1 Using PCSes to compute MUSes of the more difficult product configuration benchmarks

64

PCSes found for two different truncation bounds. We have not reported the runtime of the

AllMUSes algorithm in this case; the strong correlation between its runtime and the number

of MUSes produced has already been established. Cases in which this algorithm timed

out (again, with a 600 second timeout) are noted by a “> n” number of MUSes, indicating

roughly how many MUSes were generated before the timeout.

The results show that the PCSes algorithm allows us to overcome the intractability of

instances with massive numbers of MCSes by relaxing the requirement that we find all of

them. Take the results of truncating every MCS found to a PCS of size 2 (or larger only in

cases where it is forced as explained earlier), for example. With this setting, we can find

a complete set of PCSes, allowing us to generate correct MUSes, in under two minutes –

most under ten seconds – for all of the instances which timed out at 600 seconds in the

complete MCSes algorithm. Even with this rather strict limitation on the size of the PCSes,

we still compute very many MUSes for most instances, timing out after computing millions

of MUSes in some.

At a PCS size “limit” of 3, we see that we have substantially higher runtimes. Related to

this, we also generate much larger sets of PCSes; the median size of the set of PCSes is 185

for a size limit of 2, and this increases to 369 for a size limit of 3. These larger sets of PCSes

produce many more MUSes, however, and thus there is a correlation between the runtime

of PCSes and the number of MUSes the PCSes produce. This motivates the adaptive im-

plementation of Truncate, which could provide a way to roughly aim for a certain number

of MUSes within the execution PCSes. Along with the anytime nature of AllMUSes, this

gives us a quasi-anytime algorithm for generating multiple exact MUSes. The runtime of the

first phase, employing PCSes, can manipulated by controlling the frequency of removing

clauses from the remaining problem. Furthermore, this can be adjusted based on an estimate

of how many MUSes will be produced in the second phase. The second phase, as mentioned

earlier, produces MUSes rapidly and can be stopped at any point, based on either reaching

output goals or hitting limits on time or other resources.

65

Notice that with a PCS size limit of 1 clause, CAMUS will produce a single, exact MUS,

as described in Example 2. CAMUS is not intended to compete with algorithms for finding

a single MUS, and indeed it does not. The runtimes for a size limit of 1 over the instances in

Table 3.1 range from 0.077 to 31.1 seconds, with a median runtime of 1.06 seconds, which

is not competitive with existing algorithms for finding single unsatisfiable cores of CNF

instances (e.g., (72) and (87)). However, with the generality of the algorithms in CAMUS,

such that they can be easily built on top of any existing constraint solver, this provides a

simple way to produce single MUSes in cases where no single-MUS algorithm exists for a

particular type of constraint (with the bonus of guaranteeing minimality).

3.2 Constraint Grouping

In many applications of constraint solvers, including Boolean satisfiability solvers, instances

are created by encoding constraints from some higher level language. For example, several

model checking systems take problems specified in expressive first-order logics such as

Alloy (50) and the CLU logic (17) and encode them as Boolean CNF instances which

are passed on to standard SAT solvers. In these cases, knowledge about which low-level

constraints are generated from which high-level statements can be used to greatly increase

performance and produce MUSes of the high-level statements directly. Instead of assigning

a single clause-selector variable yi per low-level constraint, one yi variable is created per

high-level statement, and it is added to every constraint generated from that statement.

With these selector variables, the search for satisfiable subsets (in MCSes) can now en-

able or disable entire statements from the original problem at once; the MCSes and MUSes

generated are subsets of those high-level statements. In addition to providing directly

meaningful results (not requiring a mapping back from low-level constraints), this greatly

improves performance by reducing the size of the search space exponentially (because the

size of the search space is exponential in the number of selector variables). Additionally,

66

a single MUS of the high-level statements may lead to several MUSes in its low-level

encoding (potentially exponential in the size of the high-level MUS), and the grouping

eliminates this added complexity as well. Grouping constraints in this way proved to be

valuable when applying CAMUS in (3) (which uses the CLU logic), because the running

time of CAMUS was unusably high without this optimization.

3.2.1 Performance

The effectiveness of constraint grouping is demonstrated using a set of benchmarks from Re-

veal, a hardware design verification system (Appendix B.2). As described in the Appendix,

The Reveal flow (3) performs equivalence checking of hardware designs including, but not

limited to, microprocessors. The flow uses counterexample-guided abstraction refinement, in

which abstractions of the input designs are checked for equivalence, and if a counterexample

(indicating a difference) is found to be spurious (due to the abstraction over-approximating

the designs’ behaviors), then MUSes are used to refine the abstractions.

Specifically, abstract counterexamples are written as constraints in a first-order logic.

These high-level constraints are encoded into CNF to find corresponding concrete, bit-level

counterexamples. If the CNF instance is UNSAT, then no such concretization exists and the

abstract counterexample is spurious. MUSes of this instance represent generalizations of the

infeasibility, each essentially saying “This counterexample is spurious because [x,y, and z]

can never occur together,” where x, y, and z are some subset of the complete counterexample.

Using this information, new facts can be added to the abstractions to avoid this counterexam-

ple, and due to the generalizations provided by the MUSes, a large class of related spurious

counterexamples will be removed as well. Using all MUSes provides the best refinement of

the abstraction, eliminating the largest set of spurious counterexamples.

The desired generalizations are actually MUSes of the high-level constraints. These

can be obtained by mapping an MUS of the individual CNF clauses back to their corre-

sponding high-level constraints or by using constraint grouping and computing MUSes

67

Name Vars Clauses Groups Runtime (sec) #MCSes #MUSes
noG G noG G noG G

dlx 1 6804 78364 25 - 0.720 >795 3 - 5
dlx 2 6268 98290 23 - 0.664 >15196 2 - 2
dlx 3 5976 139141 18 - 1.160 >8172 2 - 4
dlx 4 12428 161242 16 15.7 1.120 327 2 3 2
dlx 5 17951 54212 21 - 0.428 >145 3 - 3
dlx 6 30852 92213 54 - 1.500 >0 9 - 9
dlx 7 36315 138197 15 2.27 0.716 39 2 1 1
int 1 1756 4634 7 - 0.232 >882 7 - 2
int 2 3512 4634 7 - 0.148 >1413 6 - 2
int 3 1704 4222 7 0.076 0.020 39 2 1 1
int 4 3886 5402 9 0.084 0.024 39 2 1 1
int 5 6291 5976 10 - 0.028 >62056 2 - 1
int 6 9481 8174 13 - 0.268 >1143 7 - 2
int 7 12671 8174 13 - 0.208 >978 6 - 2
oc 1 6129 14717 25 - 0.104 >12268 4 - 2
oc 2 12124 17500 24 - 0.100 >5420 3 - 1
oc 3 18436 18162 25 - 0.112 >5559 3 - 1
oc 4 23959 13405 23 - 0.124 >10882 3 - 2
oc 5 30271 18162 25 - 0.120 >4970 3 - 1
oc 6 5093 18129 19 - 0.124 >7563 2 - 2
oc 7 11277 17696 24 - 0.168 >7 3 - 4
oc 8 17374 14685 25 - 0.128 >10830 4 - 2
oc 9 23898 18762 26 - 0.164 >2130 2 - 2
oc 10 29421 13405 23 - 0.140 >10727 3 - 2
oc 11 32089 6197 10 0.288 0.052 38 2 1 1
oc 12 38401 18162 25 - 0.124 >5530 3 - 1
oc 13 44396 17500 24 - 0.132 >5458 3 - 1
oc 14 50708 18162 25 - 0.136 >5002 3 - 1
oc 15 54039 10834 12 - 0.092 >1760 2 - 1
oc 16 58995 14916 19 - 0.116 >13646 2 - 1
oc 17 63153 12853 17 - 0.108 >639 2 - 1

Table 3.2 Computing MCSes for Reveal benchmarks using constraint groups (“G”) and without
(“noG”)

68

of the high-level constraints directly. Table 3.2 contains results for using both approaches

on benchmarks taken from the abstraction refinement phases of Reveal running on three

different microprocessor designs.

The first four columns list the instance name and its size in terms of CNF variables, CNF

clauses, and clause groups (equal to the number of high-level constraints). The following

pairs of columns list the runtime in seconds of the first phase of CAMUS, the number of

MCSes produced, and the number of MUSes (the runtime of the MUS phase is negligible in

all of these instances). Each metric is reported both for the case of ignoring the constraint

grouping information (“noG”) and for the case of using the groups and finding MCSes and

MUSes in terms of those groups (“G”). A 600 second timeout was used for these experi-

ments. For those instances that timed out, we report the runtime as “-” and the #MCSes

column contains the number of MCSes found before the timeout was reached.

These instances are all much larger than the automotive product configuration bench-

marks used in earlier experiments with MCSes, some reaching above 100,000 clauses. For

this reason, running the first phase of CAMUS on them almost always times out. However,

using the clause groups imposed by the higher level constraints results in greatly reduced

runtime; all instances finished in under 2 seconds, most in a few hundred milliseconds. The

number of MCSes found in both cases illustrates the source of the difference. The bare CNF

instances tend to have several thousand MCSes (and quite likely several orders of magnitude

more in many cases), and the size of the result set is simply too large. But when mapped

to the high-level constraints, nearly all of these MCSes are redundant, in that they all map

to just a few MCSes of the original constraints from which they were generated. The only

instances on which the algorithm can complete without using the grouping information have

very few MUSes (even in the raw CNF) and a structurally simple set of MCSes. Any appli-

cation in which CNF clauses are generated from higher-level constraints will see the same

benefits from this simple modification of the algorithm: markedly decreased runtime and

direct applicability of the results. Another option is to use an implementation of CAMUS

69

for the high-level constraints using a suitable solver. This is a good option if the constraint

solver is more efficient than a modern SAT solver on the CNF encoding, and we have used

this approach to good effect for the Reveal system with an implementation of CAMUS for

SMT (4).

3.3 Finding Smallest MUSes

Minimal Unsatisfiable Subsets are of interest mainly because of their minimality, because

they provide concise, compact representations or explanations of infeasibility. Following

this logic, a smallest MUS (SMUS) can be seen as the ultimate result in conflict-explanation.

This is not always the case, as SMUSes are defined by their minimum cardinality, which

doesn’t take into account the complexity of the included constraints, nor does the size

necessarily relate to ease of understanding or analysis, but the SMUS presents a reasonable

goal.

A constraint system may, and often will, contain multiple MUSes of minimum cardinal-

ity. In these cases, we are interested in searching for any one of them, a single SMUS out of

the many.

CAMUS can be used to find an SMUS in a trivial fashion by generating all MUSes

and selecting the smallest. Better performance, however, can be achieved with a variant of

CAMUS, modified to use branch-and-bound to avoid some of the intractability of generating

all MUSes. CAMUS exploits the connection between MCSes and MUSes described in

Section 2.1 to generate all MUSes of a given formula. CAMUS operates in two phases: 1)

compute all MCSes of a given formula, 2) compute all MUSes of the formula by finding all

minimal hitting sets of the MCSes in a recursive tree. For finding an SMUS, the first phase

is unchanged, but we have modified the second phase in this work. Instead of computing all

minimal hitting sets (MUSes), we added a branch-and-bound capability to the recursion tree

to prune large portions of the tree and produce only the smallest hitting set (an SMUS). We

70

call this variant CAMUS-min.

The algorithm in the second phase of CAMUS recursively generates all MUSes from

the set of all MCSes produced in the first phase. At every recursive step, it selects a clause

from the MCSes to include in a growing MUS and an MCS in which it appears. It then

alters the remaining MCSes to remove any others that include that clause and to remove

any clauses in the chosen MCS from other MCSes. The alterations ensure that no further

choices would make that clause redundant within the constructed MUS. At every step, a

clause and an MCS in which it occurs can be selected arbitrarily from the remaining set to

produce different MUSes, and thus the algorithm branches on all such choices to recursively

generate all MUSes.

The second phase of CAMUS-min calculates a lower bound on the size of the smallest

MUS that can be constructed below any node by summing the number of clauses chosen

above the node with the size of an approximation of the maximal independent set (MIS) of

the remaining altered MCSes. Every node in the recursion tree is operating on a set of sets,

either the complete set of MCSes in the root node or some smaller set of altered MCSes in

the other nodes. An MIS of the (potentially altered) MCSes will be pairwise disjoint and

thus the number of sets it contains is a lower bound on the number of clauses that must still

be selected to hit all remaining MCSes. For the approximation, we use a greedy heuristic

called MIS-quick (44) that iteratively selects the smallest remaining set and removes any

other sets that intersect it. It finishes when no sets remain, all having been removed due to

either selection or intersection with a selected set.

Figure 3.3 illustrates an example of using this lower bound to prune portions of the

recursive tree and return an SMUS. In this example, the algorithm is given the set of MCSes

{{1,4},{1,6},{1,7},{2,3},{2,5}} (using “1” as shorthand for C1, for example). The

MIS-quick routine could return two independent sets at this node {{1,4},{2,3}}, indicat-

ing that the lower bound on the size of any MUS is 2. In the first branch, the MCS {1,4} and

clause 1 are chosen. The MCSes are altered by discarding those that contain 1; removing

71

Figure 3.3 The operation of the recursive second phase of CAMUS-min using MIS-quick to
compute lower bounds and prune subtrees.

the other clause in the chosen MCS, 4, from those that remain; and removing any altered

MCSes that are now supersets of another; thus node 2 of the recursive tree has the altered

MCSes {2,3} and {2,5}. Here, MIS-quick will return just a single set (e.g., {2,3}) and so

the lower bound is still 2: one clause chosen in this path plus one independent set.

The next choice, of clause 2 and MCS {2,3}, results in an empty set of MCSes in node

3, thus the chosen clauses along this path are an MUS: {1,2}. The upper bound is set to its

size, 2, and the algorithm backtracks. When it returns to node 2, the upper bound is equal

to the lower bound estimated from MIS-quick, so any further branches below the node are

pruned. Backtracking to node 1 produces a similar result, as the lower bound there is again

equal to the upper bound. The algorithm terminates, having found an SMUS, {1,2}, and

having pruned any subtrees in which an equal-sized or larger MUS would have been found.

With this lower bound provided by MIS-quick, CAMUS-min can prune any branches

of the recursion tree that are proven to contain no MUSes smaller than the smallest found

thus far. This prunes out large portions of the tree, decreasing runtime substantially, and

the last MUS produced will be an SMUS. The pruning induced by the lower bound does

greatly decrease the runtime, but only for the second phase of CAMUS-min. The first phase

is unaffected, and it still must generate all MCSes of the formula before the second phase

72

can commence. This can be intractable, because the number of MCSes can be exponential

in the size of the formula.

CAMUS-min can be used to find an SMUS directly, but it is even more useful as a

component of another algorithm for finding SMUSes by Mneimneh, et al. (70; 61). The al-

gorithm, Digger, uses some consequences of the same MCS/MUS duality used by CAMUS

in order to split a CNF formula into more tractable subformulas and to compute strong

upper and lower bounds on the size of an SMUS. CAMUS-min is used inside Digger to

compute SMUSes of those smaller subformulas that Digger produces. An initial imple-

mentation of Digger (70) used CAMUS to enumerate all MUSes of each subformula and

selected the smallest, while a later implementation (61) used CAMUS-min, along with other

improvements, to gain orders of magnitude speedups over the first.

3.4 Finding / Pruning Autarkies

Autarkies provide another tool for looking into the structure of an unsatisfiable formula;

they essentially provide information about portions of the formula that can be considered

independent of the infeasibility. Autarkies have recently been linked to MUSes in (58),

where Kullmann, et al., develop a classification of clauses in Boolean formulas based on

their involvement in MUSes, autarkies, and resolution refutations. They use CAMUS and

the only existing full approach for finding autarkies of which we are aware (first introduced

in (57)) to investigate the complete set of MUSes and the autarkies, respectively, of a set

of industrial benchmarks. They do not report runtime results, and we are not aware of any

other experimental research on algorithms for finding the largest, or maximum, autarky of

an instance.
In (58), the authors suggest two directions of research that are undertaken in this work:

1. An algorithm that directly searches for autarkies could be developed and compared
to their algorithm, which makes use of a “duality” between autarkies and resolution
refutations to find autarkies indirectly.

2. As clauses involved in autarkies are never contained in any MUS, such clauses can be
removed as a preprocessing step for computing MUSes of a formula. (This also holds

73

for MCSes, as they are comprised of the same clauses as MUSes.)

We have developed a novel algorithm, named Sifter, that directly performs a complete

search for maximum autarkies, and we compare it to the existing approach based on reso-

lution proofs. We also investigate the use of this algorithm as a preprocessing step to trim

autarkies from unsatisfiable instances before searching for MUSes or MCSes.

The approach taken here to the problem of finding the maximum autarky for a formula

treats it as an optimization problem. We search for the largest partial assignment that satisfies

the clauses it touches, i.e., the largest autarky, by explicitly searching in the space of all

partial assignments and maximizing the size of the result (in terms of the number of satisfied

clauses). Specifically, we “instrument” the formula to give a standard SAT solver the ability

to enable and disable individual clauses and variables within its normal search, and we use

AtMost constraints to perform a sliding objective maximization of the autarky size. This

draws inspiration from the similar technique we employ for finding MCSes, which uses a

less-involved instrumentation and the same optimization technique to allow a SAT solver to

search for maximal satisfiable subsets of clauses. This can directly exploit the efficiency

gains made in SAT solvers in recent years by using an “off-the-shelf” solver; the algorithm

works with any solver2, so it can benefit from future improvements as well.

3.4.1 Algorithm
To give a SAT solver the ability to search for autarkies, we instrument a formula C with the
following modifications:

1. We replace every literal in the formula with a literal-substitute; x j in the formula
becomes x1

j , while ¬x j is replaced with x0
j .

2. Each clause Ci is augmented with a clause-selector yi to form a new clause
C′i = (yi→Ci) = (¬yi∨Ci).

3. We create a variable-selector x+
j for every variable x j. When x+

j is TRUE, x j will be
enabled, and it is disabled otherwise. For every variable x j, we add clauses to relate its
variable-selector x+

j , its two literal-substitutes x0
j and x1

j , and the value of the variable
itself, x j. In short, we want each literal-substitute to be TRUE when the variable is

2SAT solvers that implement AtMost constraints internally will likely perform better than those that require
using a CNF encoding of them, but all will work.

74

enabled (x+
j is TRUE) and x j has the corresponding value. This leads to new clauses

encoding the following: (x1
j = x+

j ∧ x j) and (x0
j = x+

j ∧¬x j).
4. Finally, we add clauses to require that a clause be enabled (yi = TRUE) if any one

of its variables is enabled. Thus, for any x j present in clause Ci, we add a clause
(x+

j → yi) = (¬x+
j ∨ yi).

This is not the only option for instrumenting the formula; other encodings have the same

effect. However, while preliminary experiments showed that similar encodings yield slightly

different runtimes, the differences in efficiency were not substantial.

The complete instrumented formula for any example formula is too large to be useful

here, but here we show the constraints produced from a single clause, assuming it is C2, the

second clause in the formula:

C2,(¬x1∨ x2) =⇒



1 & 2: (¬y2∨ x0
1∨ x1

2)

3:
(x1

1 = x+
1 ∧ x1)(x0

1 = x+
1 ∧¬x1)

(x1
2 = x+

2 ∧ x2)(x0
2 = x+

2 ∧¬x2)

4: (¬x+
1 ∨ y2)(¬x+

2 ∨ y2)


The clause derived from modifications 1 and 2 replaces the original clause, while the

rest are additions. The clauses from modification 3 (presented in shorthand as equalities;

each is three clauses in CNF) are specific to variables, and the complete formula will only

contain each set once per variable. The final two clauses, resulting from modification 4, are

specific to C2.

With the formula instrumented in this way, any satisfying assignment will indicate an

autarky of the original formula. The x+
j variables indicate which variables are “activated,”

i.e., included in the autarky; the original variables contain the autarky assignment; and the

clauses satisfied by the autarky are represented by those yi variables set to TRUE. One such

assignment is the trivial solution in which all variables and all clauses are disabled. To find

the maximum autarky, we must maximize the number of enabled clauses.

75

Sifter(C)
1. (C,autarky)← PureLits(C)
2. C′← Instrument(C)
3. bound← |C|−1
4. loop
5. C′b←C′∧AtMost({¬y1,¬y2, . . . ,¬yn},bound)
6. (isSAT,model)← Solve(C′b)
7. if not isSAT
8. return autarky
9. autarky← autarky∪SatisfiedClauses(model)

10. bound← |C|− |autarky|−1

Figure 3.4 Sifter finds the maximum autarky of a CNF formula C by “instrumenting” the instance
and using a SAT solver to search for satisfying partial assignments.

We maximize the number of enabled clauses (yi variables assigned TRUE) by way of an

iterative optimization approach. We use AtMost constraints to bound the number of disabled

clauses, tightening the bound as solutions are found. If an autarky is found that leaves n

clauses disabled, we start the search for a larger autarky by bounding the disabled clauses

to n−1. Eventually, if the instance is unsatisfiable, we will reach a bound k for which no

solution can be found. At this point, we have proven that there exists an autarky of size k−1

and none with size k, thus the previously found autarky is the maximum autarky.

Figure 3.4 contains pseudocode for the complete algorithm, called Sifter. First, it re-

peatedly scans for pure literals, recording and removing them as described in Section 1.2.5:

the call to PureLits returns 1) C with any clauses containing pure literals removed and 2)

the set of such clauses as an initial autarky. The algorithm then instruments the formula

and uses the sliding objective method described above to find the rest of the maximum

autarky or to prove that the pure literal approach found it in its entirety. The Instrument

subroutine produces instrumented clauses via the modifications described above. The bound

on the number of disabled clauses is set initially to |C|−1 to begin the search by looking

for an autarky that satisfies at least one clause, and the loop then proceeds by searching for a

76

satisfying assignment, model, of the instrumented, bounded formula, C′b. If none is found

(isSAT is false), the algorithm returns autarky, which must be the maximum autarky.

Otherwise, the satisfied clauses are added to autarky, the bound is set to search for an

autarky that satisfies at least one more clause, and the loop repeats.

3.4.2 Performance

The two experimental goals were 1) to compare and contrast Sifter, our direct search-based

approach for finding the maximum autarky, with the earlier iterative technique using res-

olution refutation trees (57), and 2) to investigate the value of trimming autarkies as a

preprocessing step for finding MUSes and MCSes.

Comparing Search to an Iterated Resolution Proof Approach

Sifter was implemented in C++ using MiniSAT (31) version 1.12b (the last version contain-

ing support for AtMost constraints). We wrote the iterative approach (57), which we will call

Scraper, as a Perl script. First, Scraper uses the pure literal elimination written for Sifter,

making that phase equivalent in both implementations. Then, it employs the tools zchaff

and zverify df (87) from the ZChaff distribution zchaff.64bit.2007.3.12 to

repeatedly produce resolution refutations and eliminate the involved variables until the

instance becomes satisfiable. All executables were compiled for the x86-64 instruction set

using GCC 4.1.2 with standard optimizations, and all experiments were run under Linux

(Fedora 7) on a 3.0GHz Intel Core 2 Duo E6850 with 4GB of RAM.

Figure 3.5 contains a log-log scatterplot comparing the runtimes of Sifter and Scraper

on a variety of industrial benchmarks. Runtimes for Sifter are represented on the y-axis,

so points lying below the diagonal indicate instances in which Sifter outperforms Scraper.

A timeout of 600 seconds was used for every run, indicated by the dashed lines on the

extremes of the chart; points on these lines indicate that a timeout was reached by the

77

0.0001

0.001

0.01

0.1

1

10

100

1000

0.0001 0.001 0.01 0.1 1 10 100 1000

Scraper (seconds)

S
if
te
r
(s
e
c
o
n
d
s
)

Benz

Miter

Dimacs

nPipe

BMC:Barrel

BMC:Longmult

BMC:Queueinvar

600 sec.

timeout

600 sec.

timeout

Figure 3.5 Comparing the performance of Sifter and Scraper on a variety of benchmarks

Family Variables Clauses |autarky|
min max min max min max

Benz 1,513 1,891 4,013 9,957 2,097 7,025
Miter 1,266 17,303 1,027 34,238 1 1,831
Dimacs 389 7,767 1,115 20,812 0 0
nPipe 861 15,469 6,695 394,739 0 0
BMC:Barrel 50 8,903 159 36,606 0 0
BMC:Longmult 437 7,807 1,206 24,351 2 2
BMC:Queueinvar 116 2,435 399 20,671 0 0

Table 3.3 Formula Sizes vs Autarky Sizes

corresponding algorithms. The reported runtimes are processor time, which for Sifter are

essentially equivalent to wall-clock time. Our implementation of Scraper, however, stores

several intermediate results to disk; we ignore this I/O time in these results to estimate the

runtime of a more efficient approach that retains everything in memory.

To provide a more complete understanding of these results, Table 3.3 lists some overall

characteristics of each benchmark family. The table lists the minimum and maximum

number of variables, number of clauses, and size of the maximum autarky (in clauses) for

the instances in each family. Appendix B contains further details and descriptions of these

benchmark families.
From Figure 3.5 and Table 3.3, we can draw several conclusions:

78

1. Across all of the benchmarks, neither Sifter nor Scraper dominates the other in terms
of runtime. In some benchmarks, Scraper is faster, up to 20x, while in others, Sifter
is faster, up to 46x.

2. In just those benchmarks with non-trivial autarkies, however, the Sifter algorithm is
faster in nearly every instance. Specifically, looking at the Benz and Miter families (the
autarkies covering 2 clauses in each BMC:Longmult instance are all found by pure-
literal elimination alone), we see that Sifter outperforms Scraper by approximately
one order of magnitude.

3. The presence and size of autarkies is fairly consistent within benchmark families.
Each particular family in Dimacs, nPipe, and BMC:[] has either no autarkies in any
instance or an autarky that covers 2 clauses in each. The Benz family consistently has
autarkies that cover a large portion (between 32 and 98 percent) of each instance’s
clauses. Every instance in the Miter family has a non-empty autarky, though the
autarky sizes vary more than they do in the Benz instances.

Overall, these conclusions imply a strategy for exploiting autarkies in practice. First, by

searching for autarkies on a small representative set of instances from a particular applica-

tion, one can determine whether the instances in that domain have autarkies at all. If none

of the test set have autarkies of any appreciable size, then it is likely that none generated in

the application will, in which case autarkies will be of no use. This is likely in applications

such as bounded model checking, where performing a cone of influence reduction of the

circuit will likely eliminate all autarkies. In these applications, checking for autarkies could

be a simple test of the sanity of the CNF encoding. In the other case, in which instances do

contain autarkies, it is probable that most if not all instances will have autarkies, and Sifter

is likely the more efficient algorithm to use.

Trimming Autarkies to Boost Searching for MUSes and MCSes

Trimming autarkies holds the most promise for boosting algorithms that have a high com-

plexity and are affected heavily by the number of clauses in an instance. An algorithm

for finding any single unsatisfiable subformula, such as that developed in ZChaff (87), is

unlikely to benefit from such boosting, as the time taken to find the maximum autarky will

likely dwarf the runtime of the unboosted algorithm.

We identified two algorithms that are good candidates for this boosting. One is the first

79

phase of CAMUS (Section 2.2), and the other is an algorithm developed by Mneimneh, et. al.

(70; 61) for computing an SMUS directly, which we will refer to as SMUS. Both of these

candidate algorithms use clause-selector variables (as used in Sifter and described in Section

3.4.1) and use a SAT solver to implicitly search through subsets of clauses. Therefore, both

can benefit from the reduced search space produced by a reduction in the number of input

clauses.

We investigated the impact of trimming autarkies on both of these algorithms for the

Benz benchmarks (Appendix B.1), which have the largest autarkies, and the results are

displayed in Figures 3.6 and 3.7. Each figure is a log-log scatterplot that charts the runtime

of the specified algorithm alone on the x-axis against the runtime of the boosted version on

the y-axis. The runtime reported for the boosted version is the sum of finding an instance’s

maximum autarky with Sifter and running the algorithm on the trimmed instance. A point

below the diagonal indicates an instance for which the boosting produced a net decrease in

runtime.

The results are mixed. In Figure 3.6, we see that the boosting does not produce markedly

better or worse results overall for finding SMUSes with SMUS. While the runtimes for

SMUS alone (not shown) do improve in nearly all cases when it is run on the trimmed

instances, the runtime of Sifter outweighs this gain in many cases. There are two outliers:

one in which SMUS’s runtime improves by over two orders of magnitude when run on the

trimmed instance, and another that takes less than 10 seconds on the untrimmed instance yet

times out at 600 seconds on the trimmed version. These are artifacts of the susceptibility of

combinatorial search algorithms like SMUS to variations in runtime due to minor ordering

changes and similar effects.

The results for boosting the first phase of CAMUS, shown in Figure 3.7, show that

the boosting does have value in some cases. For this algorithm, the runtime of Sifter can

outweigh the decrease in runtime due to the boosting in cases with small runtimes (below 1

second in these benchmarks), but the boosted algorithm always outperforms the original

80

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

Without trimming autarkies (seconds)

A
u
ta
rk
ie
s
 t
ri
m
m
e
d
 (
s
e
c
o
n
d
s
)

600 sec.

timeout

600 sec.

timeout

Figure 3.6 Boosting SMUS by trimming autarkies for the Benz benchmarks

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

Without trimming autarkies (seconds)

A
u
ta
rk
ie
s
 t
ri
m
m
e
d
 (
s
e
c
o
n
d
s
)

600 sec.

timeout

600 sec.

timeout

Figure 3.7 Boosting CAMUS (first phase) by trimming autarkies for the Benz benchmarks

81

algorithm in cases with longer runtimes. Taken as a whole, this is a net benefit, because the

runtime increases in some “small” instances are far outweighed by the gains in the “large”

instances. The total runtime, over all instances that did not time out in both techniques, de-

creased from 931 seconds on untrimmed instances to 704 seconds for the boosted algorithm,

a 24% decrease in total runtime.

3.5 Exploiting Unsatisfiable Cores

In this section, we take one of the recent advances in analyzing infeasible instances, namely

unsatisfiable-core-guided maximum satisfiability (core-guided Max-SAT), and generalize it

to solve a related analysis with direct industrial applications: the identification of minimal

correction sets (MCSes).

The concept of core-guided Max-SAT was first developed by Fu & Malik (36) and later

enhanced and optimized by Marques-Silva and others (67; 68; 69); the algorithms and

differences in their approaches are detailed in Section 1.2.4. The technique relies on and

exploits one of the relationships between satisfiable and unsatisfiable subsets of infeasible

systems that are discussed in Chapter 2. Briefly, an unsatisfiable instance will contain one or

more unsatisfiable cores. No satisfiable subset of such an instance can contain any complete

cores; therefore, any Max-SAT solution must must leave unsatisfied at least one clause from

every core. The core-guided Max-SAT approach thus identifies unsatisfiable cores of an

instance and only considers clauses within those cores as potential “removals,” limiting the

search space dramatically.

The use of unsatisfiable cores in solving Max-SAT yields drastically different perfor-

mance than other current Max-SAT techniques, which are generally based on branch-and-

bound. In the 2008 Max-SAT Evaluation (6), core-guided Max-SAT algorithms performed

extremely well in the industrial Max-SAT category (one solving 72 of 112 instances within

the timeout, when other approaches solved 0-3 and, in one case, 10 instances within the

82

timeout), while performing among the bottom of the pack on random and crafted instances.

The industrial Max-SAT instances in the Max-SAT Evaluation are in fact produced by the

circuit debugging system in (77), in which the desired result is actually MCSes of the CNF

instances. In that work, the MCSes algorithm (Section 2.2) is used as a preprocessing step,

identifying approximations of MCSes which are then used to boost a complete SAT-based

search. This work, motivated by the success of core-guided Max-SAT on these instances,

generalizes the core-guided Max-SAT approach to apply it to the problem of finding MCSes

of CNF instances. A new algorithm, MCSes-U, is described and its correctness proven in

Section 3.5.1, and we present experimental results showing its improvement over MCSes

in Section 3.5.2.

3.5.1 Using Cores to Find MCSes

Our algorithm is a synthesis of 1) the MCSes algorithm for finding all MCSes of an in-

feasible constraint system and 2) the application of unsatisfiable cores to the Max-SAT

problem as first shown by Fu & Malik (36) and refined by Marques-Silva, et al. (67; 68; 69).

Because finding MCSes is a generalization of the Max-SAT problem (cf. Section 1.2.3), this

combination is a natural one. In fact, the MCSes algorithm is very similar to the MSU3

algorithm described in (68).

Briefly, the overall approach of both MCSes and MSU3 is to instrument clauses in an

unsatisfiable clause set with clause-selector variables, then to use cardinality constraints on

those clause-selector variables to search for small subsets of clauses whose removal leaves

the remaining set satisfiable. For Max-SAT, the goal is to find such a set of the smallest

cardinality; finding MCSes requires finding all such sets that are minimal or irreducible.

Therefore, it is reasonable to assume that an approach used to solve Max-SAT, especially

one that has been paired with a basic algorithm so similar to that used for finding MCSes,

could be applied to an algorithm for finding MCSes.

Figure 3.8 contains pseudocode for the algorithm, dubbed MCSes-U (the -U signifies its

83

MCSes-U(ϕ)
1. k← 1 / iteration counter
2. MCSes← /0 / growing set of results
3. Corek← Core(ϕ) / any unsatisfiable core (preferably small) of ϕ

4. while (InstrumentAll(ϕ)+Blocking(MCSes)) is satisfiable
O clauses contained in Corek are instrumented with clause-selector variables

5. ϕk← Instrument(ϕ,Corek)+AtMost(Corek,k)

O AllSAT finds all models of ϕk corresponding to MCSes of size k
6. MCSes← MCSes+AllSAT(ϕk)

O the Core function projects instrumented clauses onto clauses of ϕ

7. Corek+1← Corek +Core(ϕk +Blocking(MCSes))
8. k← k +1
9. return MCSes

Figure 3.8 The MCSes-U algorithm finds all MCSes of an unsatisfiable formula ϕ using unsatis-
fiable cores.

use of unsatisfiable cores). Two persistent variables, k and MCSes, keep track of the current

iteration and the set of results, respectively. In any particular iteration of the do/while loop,

Corek contains the set of clauses that will be considered for removal, and thus potentially

included in an MCS, in that iteration. The input formula is instrumented with clause-selector

variables on those clauses contained within Corek, and an AtMost constraint is added

on those selector variables with the current bound k. The AllSAT function in MCSes-U

behaves exactly like the incremental solving employed in MCSes: find a solution, record

the MCS, block that MCS from future solutions with a blocking clause formed from its

clause-selector variables, and continue until no solutions remain.

The core extraction in line 7 produces an unsatisfiable core of the combination of the

instrumented formula ϕk with the blocking clauses produced from the set of MCSes found

thus far (ϕk itself is satisfiable). This core is mapped back to clauses in the original clause

set ϕ and added to Corek to make Corek+1 for the following iteration. The process repeats

as long as further MCSes remain, which can be determined by checking whether there is

any way to make ϕ satisfiable by removing clauses without removing any MCS identified

84

thus far.

For comparison purposes, consider that the previous algorithm MCSes is equivalent to

MCSes-U under the condition that Core always returns the complete set of clauses in ϕ .

In this situation, the entire formula will be instrumented with clause-selector variables in

each iteration, and the AtMost bound will always apply to all of the clause-selector variables

as well. The primary difference between MCSes and MCSes-U is that here we are using

unsatisfiable cores to identify subsets of the clause set in which we know the MCSes must

be found, or, conversely, we determine subsets that we know must not contain any MCSes.

The following section contains a proof of the completeness and correctness of this use of

unsatisfiable cores.

Completeness/Correctness Proof

Fu and Malik proved that their use of unsatisfiable cores in Max-SAT is correct in (36);

however, that proof does not carry over to our algorithm other than to prove that the first

result returned will be a Max-SAT solution. We must further prove both 1) that every result

returned by MCSes-U is an MCS (correctness) and 2) that all MCSes are found by the

algorithm (completeness). These two points are interrelated:

Theorem 2. Given an unsatisfiable clause set ϕ and a positive integer k:

If all MCSes of ϕ of size less than k are found, then every result of size k returned by

MCSes-U(ϕ) is an MCS of ϕ .

This theorem is stated without a formal proof, but it follows from the correctness of

the underlying algorithm for finding MCSes, described fully in Section 2.2, that we have

adapted in this work. Briefly, the algorithm finds MCSes in increasing order of size; as every

MCS of a size less than k is found, it is blocked from future solutions, and any correction set

of size k that is found then must be minimal. With this theorem, we see that the algorithm’s

correctness here hinges on its completeness. We will prove that MCSes-U is complete in

the following.

85

To prove that the algorithm produces all MCSes of an instance, we will presuppose the

completeness of the base algorithm as described in Section 2.2 and focus on the effect of

the use of unsatisfiable cores. The base algorithm is equivalent to that presented in Figure

3.8 if we take Corek to be the complete formula ϕ in every iteration of the while loop (i.e.,

with no limitation on the clauses considered for finding MCSes). Therefore, we will prove

here that the MCSes-U algorithm is complete in that it does not miss any MCSes due to

restricting the search for MCSes to the clauses in Corek.

First, we must define a useful term, “k-correction,” and prove a useful lemma linking

k-corrections to MCSes.

Definition 12. A k-correction of a set of clauses C is a set of k or fewer clauses whose

removal makes C satisfiable.

Lemma 1. Given an unsatisfiable subset C of a clause set ϕ and an integer k:

If every (k−1)-correction of C contains some MCS of ϕ , then C contains all MCSes of

ϕ with size k.

Proof. By contradiction: Assume that there exists some MCS M of ϕ with size k that is

not contained entirely within C. We will denote the subset of M contained within C by

M′ = M∩C. Thus, the assumption requires |M′| ≤ k−1.

Because M is an MCS of ϕ and C is a subset of ϕ , M′ must be a correction set of C.

Formally, if ϕ−M is satisfiable, then C∩ (ϕ−M) must be as well. This can be transformed:

C∩ (ϕ−M) = (ϕ ∩C)− (M∩C)

= C−M′

And so M′ is a correction set of C, because C−M′ is satisfiable.

Furthermore, M′ is a (k−1)-correction of C, because |M′| ≤ k−1. By the antecedent

of this lemma, we know that M′ must contain some MCS of ϕ . Because M is a proper

86

superset of M′, which contains an MCS, M cannot be a minimal correction set of ϕ . This is

a contradiction, and therefore we have proven that any MCS M of ϕ with size k must be

contained entirely within C.

�

With this lemma, we can prove the completeness of our algorithm by induction. We

wish to prove that the MCSes-U algorithm finds all MCSes of size k in the kth iteration of

its loop. We will first prove by induction that every (k−1)-correction of Corek contains an

MCS of ϕ . Then, using Lemma 1, we can directly show that Corek contains all MCSes of

size k, for all k. First, we will prove the base case of the inductive portion of the proof, for

k = 1.

Lemma 2. In the MCSes-U algorithm, every 0-correction3 of Core1 contains an MCS of

ϕ .

Proof. Core1 is an unsatisfiable clause set; therefore, Core1 has no 0-corrections, and the

lemma is trivially true.

�

With Lemmas 1 and 2, we see that the algorithm is complete for k = 1. Core1 contains

all single-clause MCSes of ϕ , and the algorithm produces all MCSes of size 1. This can

be seen from a different perspective by noting that an MCS of size 1 is a single clause, c,

contained in every MUS of a formula, and thus Corek, which is some unsatisfiable core of

ϕ , must contain every MCS of size 1.

With the base case proven in Lemma 2, we now prove the inductive step.

Lemma 3. Given some positive integer k:

In the MCSes-U algorithm, if every (k−1)-correction of Corek contains an MCS of

ϕ , then every k-correction of Corek+1 contains an MCS of ϕ .

3Following the definition, a 0-correction must be the empty set. Unsatisfiable clause sets have no 0-
corrections, as removing 0 clauses cannot make them satisfiable.

87

Proof. Proof by cases, depending on the k-corrections of Corek:

This proof relates to the following lines from the MCSes-U algorithm:

O clauses contained in Corek are instrumented with clause-selector variables
5. ϕk← Instrument(ϕ,Corek)+AtMost(Corek,k)
6. . . .

O the Core function projects instrumented clauses onto clauses of ϕ

7. Corek+1← Corek +Core(ϕk +Blocking(MCSes))

Case 1: Corek has no k-corrections.

The algorithm includes Corek in Corek+1. Therefore, in this case, Corek+1 will

have no k-corrections, as it is a superset of Corek. Thus, trivially, every k-correction

of Corek+1 contains an MCS of ϕ .

Case 2: Every k-correction of Corek contains an MCS of ϕ .

Again, due to the fact that Corek ⊆ Corek+1, every k-correction of Corek+1 is

also a k-correction of Corek, and thus every k-correction of Corek+1 must contain

some MCS of ϕ .

Case 3: At least one k-correction, δ , of Corek contains no MCSes of ϕ .

Because δ does not contain any MCSes of ϕ , the blocking clauses added to ϕk

based on the MCSes of ϕ will all allow the relaxation of the clauses in δ . We will

say that δ is thus an unblocked k-correction. When going into line 6 of the algorithm,

there exists at least one complete assignment for ϕk that relaxes all MUSes contained

within Corek without violating the AtMost bound on relaxed constraints. Namely, the

clauses in any unblocked k-correction can be relaxed.

However, ϕk is unsatisfiable at this point, after the addition of all blocking clauses

for the MCSes found thus far (up to size k). Therefore, for any complete assignment

that satisfies the blocking clauses and relaxes all MUSes contained in Corek, there

88

must be some MUS of ϕ that is not relaxed by that assignment. Any unsatisfiable

core of ϕk will necessarily include one MUS of ϕ that is not relaxed for every such

assignment. That is, any unblocked k-correction δ of Corek must be “counteracted”

by including in Corek+1 an MUS of ϕ untouched by δ .

Any k-correction of Corek+1 must contain a k-correction of Corek, because

Corek ⊆ Corek+1. Any unblocked k-correction of Corek necessarily leaves at least

one MUS in Corek+1 untouched (by the construction of Corek+1 in the paragraph

above). Thus, unblocked k-corrections of Corek cannot be k-corrections of Corek+1.

This leaves only “blocked” k-corrections, which all contain at least one MCS of ϕ .

Therefore, every k-correction of Corek+1 must contain an MCS of ϕ .

These cases cover all possibilities, and, in every case, every k-correction of Corek+1

contains an MCS of ϕ .

�

Now, we can finally prove the completeness of MCSes-U.

Theorem 3. For any positive integer k: the MCSes-U algorithm finds all MCSes of size k

in the kth iteration of its loop.

Proof. By Lemmas 2 and 3, we have that every (k−1)-correction of Corek contains an

MCS of ϕ , for all k. With Lemma 1, then, Corek contains every MCS of ϕ of size k for all

k.

�

Theorem 3 proves that MCSes-U is complete, and, with Theorem 2, this proves that it

is correct as well.

89

3.5.2 Performance

The primary experimental goal was to determine the value of using unsatisfiable cores to

guide the search for MCSes in practice; specifically, we wished to compare the performance

of MCSes and MCSes-U on industrial instances. In the course of running these experi-

ments, we noticed an interesting situation in which using cores was in fact detrimental to

the performance of Max-SAT algorithms but the MCSes-U algorithm still benefited, and

we explore this case here as well.

Experimental Setup: All experiments were run in Linux (Fedora 9) on a 3.0GHz Intel

Core 2 Duo E6850 with 3GB of physical RAM. The MCSes and MCSes-U algorithms

were implemented in C++ using MiniSAT version 1.12b (31), which allows “native” AtMost

constraints (instead of CNF encodings thereof). We added unsatisfiable core extraction

to this version of MiniSAT using the resolution-graph method (87), storing the parents of

each learned clause in memory. Binaries for MSU1.1 and MSU1.2 were supplied by João

Marques-Silva.

Benchmark Families: We selected four sets of unsatisfiable industrial CNF benchmarks

for these experiments, described in detail in Appendix B: “Diagnosis,” “Reveal,” “FVP-

UNSAT.2.0,” and “DC.”

The value of using cores is evident when we look at the results for finding multiple

MCSes across all of these instances. Because the complete set of MCSes can be intractably

large, we look at the velocity of finding MCSes: the number of MCSes found per second

until all have been found or until a set timeout (600 seconds, here) has been reached. Many

applications do not require the complete set of MCSes: the diagnosis task in (77) finds

MCSes up to a certain cardinality, and the application of CAMUS in Reveal can use a

subset of the MCSes to find a subset of the MUSes of an instance (cf. Section 3.1). Figure

3.9 compares the velocity of MCSes (w/o cores) to that of MCSes-U (w/ cores) on these

90

10000

1000

10000

U
 (

w
/

C
o

re
s)

:
V

e
lo

ci
ty

 (
#

M
C

S
e

s/
se

c)
10

100

U
 (

w
/

C
o

re
s)

:
V

e
lo

ci
ty

 (
#

M
C

S
e

s/
se

c)

1

10
U

 (
w

/
C

o
re

s)
:

V
e

lo
ci

ty
 (

#
M

C
S

e
s/

se
c)

Diagnosis

0.1

M
C

S
e

s-
U

 (
w

/
C

o
re

s)
:

V
e

lo
ci

ty
 (

#
M

C
S

e
s/

se
c)

Reveal

FVP-UNSAT.2.0

0.001

0.01

M
C

S
e

s

DC

0.001

0.001 0.01 0.1 1 10 100 1000 10000

MCSes (w/o Cores): Velocity (#MCSes/sec)

Figure 3.9 Comparing the performance of MCSes and MCSes-U on industrial benchmarks. (600
second timeout, 0 velocity mapped to 0.001.)

instances. Points above the diagonal are instances where MCSes-U finds MCSes more

quickly. MCSes-U outperforms MCSes in nearly all cases. With the Diagnosis instances

in particular, we see several benchmarks for which MCSes finds no MCSes within the

timeout, while MCSes-U outputs up to several hundred per second.

An interesting situation is displayed in Figure 3.10, which compares the runtime of

the MCSes algorithm solving Max-SAT (stopping after the first MCS is found) against

three Max-SAT algorithms that use unsatisfiable cores: MCSes-U in the same Max-SAT

mode, MSU1.1, and MSU1.2. This set of results is for the FVP-UNSAT.2.0 benchmarks.

For these instances, we see that all of the algorithms that use cores take about two orders

of magnitude longer than the vanilla MCSes algorithm. The time taken to identify an

unsatisfiable core far outweighs the time needed to find a single minimum correction set

(Max-SAT solution) in these instances. In these instances, the number of Max-SAT solutions

is fairly large. For example, for each of the three 2pipe* instances in this set, approximately

91

1000

100

1000

600 sec.

timeout

10

100

S
A

T
 T

im
e

 (
se

c)

1

10

M
a

x-
S
A

T
 T

im
e

 (
se

c)

MCSes-U

0.1

1

M
a

x

MCSes-U

MSU1.1

MSU1.2

0.01

0.1
MSU1.2

0.01

0.01 0.1 1 10 100 1000

MCSes (w/o Cores): Max-SAT Time (sec)

Figure 3.10 Comparing the performance of MCSes solving Max-SAT against MCSes-U
MSU1.1, and MSU1.2 on industrial benchmarks. (FVP-UNSAT.2.0 benchmarks.)

one quarter of the clauses are single-clause MCSes; removing any one of them makes the

instance satisfiable. Therefore, solving Max-SAT for these instances is fairly simple, as

there are so many solutions, and they will be found in the first iteration of MCSes. In these

instances, the time taken to solve the plain instance (in order to extract a core) far outweighs

that taken to identify a single clause whose removal yields satisfiability.

It would seem that extracting cores is most useful for Max-SAT in instances where the

cores are small (to provide the most benefit in limiting the search space) and the number

of Max-SAT solutions is small. Otherwise, as we have seen, the time to find a core may

outweigh that needed to find a solution, even with no core guidance. However, when finding

MCSes, the overhead of finding cores appears to be amortized over the large number of

results and outweighed itself by the increase in velocity gained from limiting the search

space. Therefore, core extraction appears to be a safe addition to MCS algorithms in most

industrial instances, which tend to have both small MUSes and small MCSes, relative to

92

their formula sizes.

Looking forward, there are further ideas from the Max-SAT domain that can be applied

to MCS algorithms. Notably, adding a single AtMost constraint per identified core, as done

in the MSU1.* algorithms, may be applicable to MCSes-U. For Max-SAT, the MSU1.*

approach has shown better performance than the approach used in MSU3 and MSU4 of

creating a single monolithic AtMost constraint over all extracted cores, and it may be benefi-

cial for MCSes-U as well. As with the proofs in this section, determining and proving the

correct application of the concept to the generalized problem of finding MCSes may require

non-trivial work. There is also potential in investigating the combination and interplay of

the core-guidance technique with autarky pruning, another method for reducing the search

space of the MCS search.

Further, the results here motivate applying MCSes-U in circuit debugging / diagnosis,

as MCSes was applied in (77). While MCSes was used as an approximating preprocessor

for an exact search in that work, the improved performance of MCSes-U may make it

suitable for solving problems directly. A comparison to the algorithm in (81) could be

instructive as well; though it is algorithmically very similar to MCSes-U, any substantial

performance differences would indicate important implementation details that would aid

in engineering future implementations. Further, (81) is restricted to only find minimum-

cardinality solutions, and the more complete view of examining the set of all MCSes in such

instances, which MCSes-U enables, could be beneficial.

3.6 Exploiting Symmetry

We investigated exploiting symmetries in CAMUS in two distinct ways. First, we looked at

using symmetries to accelerate the search for MCSes. Secondly, we explored how symme-

tries can, in some cases, be used to provide concise encodings or descriptions of the sets of

MCSes and MUSes, which can be exponentially large in the size of the original constraint

93

system.

“Symmetry” here refers to a structural symmetry, an automorphism or a structure-

preserving permutation of “pieces” of some “object.” We can speak of symmetries of a

constraint system as permutations of constraints, variables, or values that produce the same

system. The precise definition of this depends on the type of constraint system. For Boolean

CNF, for example, researchers have studied symmetries in terms of mapping clauses to

clauses and literals (variables or their negations) to other literals with the added requirement

that a literal and its negation must both map to literals of the same variable (note that

{{x→ ¬y},{¬x→ y}} is a valid permutation). Symmetries of Boolean CNF formulas

have been used to speed SAT search, especially for unsatisfiable instances, by breaking

symmetries in the formula, which lets a solver avoid searching redundant branches of the

search tree (2).

Example 4.

ϕ = (a∨b)∧ (a∨¬b)∧ (¬a∨ c)∧ (¬c)

This formula has a single non-trivial symmetry that permutes b with ¬b and the first clause

with the second. From this symmetry, we know that any assignment with b assigned TRUE

is equivalent to the same assignment with b assigned FALSE; therefore, we can avoid

searching redundant assignments by adding a new clause, (b), to restrict the space to just

those assignments with b assigned TRUE. This effectively cuts the size of the search space

in half.

Symmetries can be applied to MCSes and MUSes as well. Formally, in the language of

group theory, we have a group action where clause symmetries form a group that can act

on the set of MCSes (equivalently MUSes throughout this paragraph) such that applying

a symmetry to an MCS produces another MCS. Given this group action, an orbit of a

particular MCS is the set of MCSes produced by applying every symmetry to it. Every MCS

thus appears in exactly one orbit, and the orbits form an orbit partition of the collection of

94

MCSes. Given the symmetry group and one representative MCS from every orbit, all other

MCSes can be created by applying the symmetries to the orbit representatives.

3.6.1 Boosting MCSes

We investigated exploiting symmetries to boost MCSes, the first phase of CAMUS, because,

in practice, MCSes is the main performance bottleneck of CAMUS. Using symmetries

to boost the search for MCSes can be approached in several ways. In general, applying

symmetry to MCSes computed by search can produce new, as-yet-unfound MCSes. The

process of applying symmetries is computationally inexpensive compared to search, and we

have applied it in order to reduce the time spent in those expensive tasks.

First, in any case, we must find the relevant symmetries. Using a tool like Saucy (23),

a state-of-the-art tool for extracting symmetry information from graphs, we can find the

symmetries of a CNF formula by converting it to a graph such that symmetries of the graph

correspond to symmetries of the formula. Projecting these symmetries onto the clauses

produces symmetries of the clauses alone (each valid given some permutation of the literals

that is unimportant to this application). Now, given an MCS of those clauses, applying any

of these symmetries will produce another valid MCS.

One simple way to employ these symmetries is during the search for MCSes. Whenever

an MCS is found, immediately generate its orbit under the symmetries (all symmetric

MCSes). Add blocking clauses for the generated MCSes to prune them from the search tree

preemptively. Another idea is to add symmetry breaking predicates (SBPs) to the formula

as in (2) and apply the symmetries after the search completes. We investigated both of these

options.

95

MCSes-Symm(ϕ)
?1. Generators←GetSymm(ϕ)
2. k← 1 / iteration counter
3. MCSes← /0 / growing set of results
4. while (InstrumentAll(ϕ)+Blocking(MCSes)) is satisfiable
5. ϕk← InstrumentAll(ϕ)+AtMost({y1 . . .yn},k)

O find all models of ϕk corresponding to MCSes of size k
6. while (ϕk +Blocking(MCSes)) is satisfiable
7. newMCS←ModelToMCS(ϕk+)
8. MCSes← MCSes+newMCS

O generate all symmetric MCSes
?9. MCSes← MCSes+ApplyGenerators(Generators,newMCS)
10. k← k +1
11. return MCSes

Figure 3.11 The MCSes-Symm algorithm finds all MCSes of an unsatisfiable formula ϕ using
symmetries. [A ? indicates a difference from MCSes.]

Applying Symmetries During Search

Figure 3.11 contains pseudocode for the MCSes-Symm algorithm, which implements the

idea of generating results by applying symmetries to each MCS as it is found. The changes

from the base MCSes algorithm are minimal, and they are indicated by ? symbols. The

symmetry generators are found at the beginning of the algorithm, and they are applied to

every MCS found by the standard search, adding the new MCSes thus generated to the

results set immediately.

Clearly, any performance gains of this modification will depend on an instance having

significant applicable symmetries. However, the technique has negligible overhead in any

situation where the symmetries are not applicable. Saucy scales extremely well, taking far

less time to find the symmetries of an instance than the search needed for finding MCSes.

Furthermore, an efficient implementation of the ApplyGenerators function can use hash

tables to waste a minimal amount of time looking for generators applicable to any given

MCS.

96

100%

80%

100%

60%

80%

%
 M

C
S

e
s

F
o

u
n

d
 b

y
 S

y
m

m
e

tr
y

40%

60%

%
 M

C
S

e
s

F
o

u
n

d
 b

y
 S

y
m

m
e

tr
y

20%

40%

%
 M

C
S

e
s

F
o

u
n

d
 b

y
 S

y
m

m
e

tr
y

0%

20%

0%

1000 1100 1200 1300 1400

Symmetry Generators

Figure 3.12 Percentage of MCSes found by applying symmetry generators vs number of symmetry
generators (DC benchmarks)

Figure 3.12 shows the percentage of MCSes found by applying symmetry generators

(line 9 of MCSes-Symm) versus the number of symmetry generators for the DC bench-

marks (Appendix B.1). First, we can see that, in these instances, the number of MCSes

found by applying symmetry information ranges from 0% to nearly all, with a fairly even

distribution of percentages. Furthermore, we see that the number of symmetry generators

does not have an effect on the percentage of symmetric MCSes. Similarly, the Reveal family

of benchmarks (Appendix B.2) contains instances with tens of thousands of symmetry

generators yet no symmetric MCSes whatsoever. The symmetries of an instance’s clauses

do not necessarily apply to its MCSes.

Though the high percentages of MCSes that can be generated from symmetries is encour-

aging, the actual performance gains are mixed. Figure 3.13 shows the MCS velocities for the

DC benchmarks both with (y-axis) and without using symmetries (x-axis). The diamonds

indicate a velocity on the y-axis that was calculated with the runtime of the MCSes algo-

rithm alone, while the values marked by the red squares include the time taken for finding

97

1000010000

MCSes runtime alone

MCSes + Symmetry Generation runtime

1000

V
e

lo
ci

ty
 (

M
C

S
e

s/
se

c)
 w

/
Sy

m
m

e
tr

y
V

e
lo

ci
ty

 (
M

C
S

e
s/

se
c)

 w
/

Sy
m

m
e

tr
y

100

V
e

lo
ci

ty
 (

M
C

S
e

s/
se

c)
 w

/
Sy

m
m

e
tr

y

1010

10 100 1000 10000

Velocity (MCSes/sec) std.

Figure 3.13 Velocities (MCSes per second) when using symmetry generators (y-axis) vs without
(x-axis), 1) counting the runtime of MCSes alone in the velocity calculation and 2) including the
runtime of the symmetry detection as well (DC benchmarks)

the symmetry generators in that calculation as well. Thought the MCSes algorithm itself

sees either no change or reasonable performance gains from using symmetries, including

the time taken to find symmetries often overwhelms those gains. It should be noted that

this only occurs in those cases where the MCSes are found very quickly, as the time spent

computing symmetries is consistently very short, but the gains from using symmetries were

mainly in those instances with few MCSes found quickly as well.

Symmetry Breaking Predicates

Symmetry breaking predicates (SBPs) work well when solving satisfiability problem (2), but

we have found that they are not directly applicable to finding MCSes. The idea is that SBPs

are added to a formula in the form of additional constraints that permit only one solution out

of a given set of symmetric solutions and block the remainder. Each SBP thus cuts out a

portion of the search space that is symmetric to some other portion; this does not change

98

whether an instance is satisfiable or not, so it can be used directly for solving satisfiability

problems.

At first glance, it appears to be a reasonable approach to finding MCSes as well. Block-

ing symmetric portions of the search space should speed up search and reduce the number

of results returned; blocked results can be generated by applying symmetries, after search,

to those MCSes that were found. However, consider the following example.

99

Example 5. In this example, adding a symmetry breaking predicate to the formula pre-

vents a symmetric MCS from being found, but it does not prevent a superset of that MCS

from being a valid solution. This results in a spurious result (and in general can result in

many spurious solutions).

ϕ = 1.(a) 2.(¬a) 3.(b) 4.(¬b) 5.(a∨b)

Clauses are numbered for easy reference, and we will refer to them by their number alone.

The MCSes of this formula are:

{{1,4},{2,4},{2,3},{1,3,5}}

The only clause-symmetry of this formula maps clause 1 to 3 and 2 to 4 simultaneously.

Following the construction in (2), a symmetry breaking predicate for this symmetry is

(y1 > y3)∧ (y1 = y3∨ y2 ≥ y4)

where > and ≥ are the numerical “greater than” and “greater than or equal to” operators

applied to the {0,1} values of the clause selector variables.

With this additional predicate, the MCSes algorithm will find these sets as MCSes:

{{1,4},{2,4},{1,2,3},{1,3,5}}

The SBP has blocked the solution {2,3}, because it is symmetrical to {1,4}. However,

{1,2,3} : (y1 = 0,y2 = 0,y3 = 0) is not blocked by the SBP, and because we never found

{2,3}, the algorithm never creates a blocking clause preventing (y2 = 0,y3 = 0).

This example shows how SBPs do remove symmetric solutions from the search space,

but this disrupts one of the invariants needed for the correctness of the MCSes algorithm:

when finding MCSes of size k, all MCSes of size less than k must be blocked. This invariant

100

prevents the search from finding non-minimal correction sets, because they will be subsumed

by smaller MCSes that are blocked with added constraints. SBPs disrupt this invariant by

skipping some solutions.

Furthermore, we cannot specially craft SBPs beforehand to avoid the subsumed, non-

minimal correction sets as well, because we do not know which sets to avoid until we have

found the MCSes that subsume them. In Example 5, we cannot know that the correction set

{1,2,3} should be blocked until we have discovered that {2,3} is an MCS. In general, we

are faced with the problem that we cannot break symmetries statically, before the search,

because the decision to block certain solutions can only be made once earlier solutions

(smaller MCSes) have been found. Some form of dynamic symmetry breaking, making

decisions about pruning search subspaces during the search itself, may work. For example,

GAPLex (75) could be used; it employs the GAP computational group theory system to

perform symmetry breaking during search, dynamically pruning portions of a search tree by

reasoning about the symmetry group of a problem at every node in the tree.

We can use the SBPs if we somehow block solutions symmetric to known MCSes as

they are found. This becomes equivalent to adding static SBPs to MCSes-Symm, however,

and the SBPs then serve little purpose other than to guide the search to specific solutions;

the complete set of results will (and must) still be generated. We have run experiments that

indicate that adding SBPs to MCSes-Symm does not aid performance, and it often slows

the algorithm greatly. The SBPs add complexity and overhead to the constraint solving

without providing any clear benefit.

3.6.2 Seeking Exponential Compression

Using symmetries to provide short, implicit encodings of the potentially exponential sets of

MCSes or MUSes, holds the promise of tackling the intractability of computing exponentially

large sets while still maintaining completeness, in a sense.

101

Example 6. Consider a scheduling application, in which meetings, or any other type

of event, are assigned to rooms at certain times. Every event has constraints on these

assignments, some restricting the locations of certain events, others constraining their

times, and still others effecting certain combinations of locations and times, perhaps even

linking multiple events. A particular instance in this application may have constraints that

altogether end up producing a variant of the pigeonhole problem, in which m events must

be assigned to n (where n < m) locations all at the same time.

If n = m−1, then we have the standard pigeonhole problem, with one too many pigeons

(events) for the holes (locations). This creates a single MUS, because removing any single

constraint (that any particular location can have at most one event at a time or that any

particular event must be assigned a location) eliminates the conflict. If n≤m−2, however,

the instance is much more overconstrained and has a large number of MUSes. However,

because all events are symmetric within the context of the pigeonhole problem and all

locations are as well, the entire set can be represented much more simply.

For five locations (n = 5) and seven events (m = 7), the pigeonhole problem encoded in

CNF has 112 constraints and 27,587 MUSes (found experimentally with CAMUS). How-

ever, these can all be generated from just 14 different MUSes by applying the symmetries

among the constraints related to symmetric locations and symmetric events in order to

generate the remaining 27,573 MUSes.

If a large collection of sets exhibits a great deal of symmetry, the entire collection can

be represented by a small selection of its sets along with permutations that describe the

collection’s symmetry group. This representation is both compact, potentially an exponential

compression of the entire collection, and intuitive. The following example illustrates this in

a more formal manner.

102

Figure 3.14 Visualizations of two sets of MCSes. The MCSes from an industrial benchmark (left)
exhibit far more structure than those from a random 3-SAT instance (right). Both images were
generated with the same algorithm, which uses ordering heuristics to draw out structure visually.

Example 7. A collection of sets of integers can be described as follows:

Every set contains one element of {1,2,3}, one element of {10,11, ...,19}, and one

element of {20,21, ...29}.

This collection of 300 sets can be represented by a single set, {1,10,20}, and the following

permutations: {1→ 2→ 3}, {10→ 11→ ...→ 19}, and {20→ 21→ ...→ 29}.

{1,10,20} can be seen as an orbit representative of the entire collection of sets, which

falls into a single orbit under the group action of the symmetry group defined by those

permutations.

This “representatives plus permutations” representation of a collection is both tractable

and human-readable, compared to a full enumeration of the collection. Formally, we are

interested in computing orbit representatives for the collection of MCSes or MUSes and

generators of their symmetry groups.

We hypothesized that many of the intractably large sets of MCSes and MUSes arising

from real-world problems (as opposed to randomly-generated instances) contain symmetric

structure sufficient to encode entire sets in exponentially smaller representations. We have

done work on visualizing the sets of MCSes and MUSes of CNF formulas that supports

this hypothesis; a great deal of structure is visible in industrial instances when compared to

randomized formulas, as seen in the MCSes of such a pair of instances in Figure 3.14.

We investigated the prevalence of symmetry in the MCSes of real-world instances to

103

determine the potential of using symmetries to combat the intractable MCS-set sizes. First,

we explored the potential benefit. Using several instances for which the complete set of

MCSes was available, we computed their orbits under the group actions of clause symmetries

extracted from each instance’s CNF formula. The following example illustrates this further,

using the same formula as in Example 5.

Example 8.

ϕ = 1.(a) 2.(¬a) 3.(b) 4.(¬b) 5.(a∨b)

MCSes(ϕ) : {{1,4},{2,4},{2,3},{1,3,5}}

The only clause-symmetry of this formula maps clause 1 to 3 and 2 to 4 simultaneously.

This symmetry maps {1,4} to {2,3}, thus these two MCSes are in the same orbit. The

other two MCSes map to themselves under the symmetry.

Therefore, the set of MCSes can be represented by three orbit representatives and the

symmetry:

{{1,4},{2,4},{1,3,5}} {(1→ 3)(2→ 4)}

The end goal would be an algorithm that computes the orbit representatives directly,

avoiding enumerating all of the MCSes. Initially, looking at the number of MCS orbit

representatives, even if generated from a complete enumeration, gives us an idea of how

well such an algorithm could work.

Empirical Investigation

The chart in Figure 3.15 shows results for this experiment. Instances along the horizontal

axis are sorted by their number of MCSes (a subset of the DC benchmarks whose MCSes

can be calculated in under 600 seconds was used), and the top line shows this number for

104

100000100000

None (#MCSes)

10000

M
C

S
 O

rb
it

s
(u

n
d

e
r

th
e

 s
p

e
ci

fi
e

d
 s

y
m

m
e

tr
ie

s)

CNF

CNF/Autarky

CNF/MCS

1000

M
C

S
 O

rb
it

s
(u

n
d

e
r

th
e

 s
p

e
ci

fi
e

d
 s

y
m

m
e

tr
ie

s)

CNF/MCS

MCS

100

M
C

S
 O

rb
it

s
(u

n
d

e
r

th
e

 s
p

e
ci

fi
e

d
 s

y
m

m
e

tr
ie

s)

10

M
C

S
 O

rb
it

s
(u

n
d

e
r

th
e

 s
p

e
ci

fi
e

d
 s

y
m

m
e

tr
ie

s)

10

1

Instance (sorted by #MCSes)

Figure 3.15 Number of MCS orbits for instances in the DC benchmark family, given: 1) no
symmetries, 2) CNF symmetries, 3) CNF symmetries following autarky pruning, 4) CNF symmetries
following pruning to MCS clauses, 5) MCS symmetries. (Subset of DC instances with all MCSes
found in under 600 seconds.)

each. The second line down, labeled “CNF” in the legend, shows the number of MCS

orbits computed, given the clause symmetries of the original CNF formula. While there are

some cases in which the number of orbits is an order of magnitude lower than the number

of MCSes, these cases are in the minority. Most instances range from no difference (the

symmetries provide no “compression” at all) to differing by a factor of 2 or less.

The idea of conditional symmetries (similar to those described for CSPs in (38)) motivate

looking further. Conditional symmetries are symmetries that emerge after some modification

to the constraint system such as removing a constraint or propagating a partial assignment.

Conditional symmetries may allow for further exploitation of problem structure in cases

where the problem as given does not exhibit significant symmetry. Consider the following

motivating example:

105

Example 9.

ϕ = (a∨b)∧ (¬a∨b)∧ (¬b)∧ (a∨ c)

This formula has no symmetries. However, if the final clause, (a∨ c), is removed, the first

two clauses become symmetric to each other (with the permutation {a→¬a}).

Symmetries of the original formula provide no benefit (there are none), but the symmetry

of the first two clauses conditional on the removal of the last clause can be applied to an

MCS such as (a∨b) to produce (¬a∨b) without search, as the MCS does not contain

(a∨ c) and the conditional symmetry applies.

Following this idea, we looked at the number of MCS orbits generated by symmetries

computed from the formula after removing extraneous clauses. The results of these experi-

ments are also displayed in Figure 3.15. The third line from the top, labeled “CNF/Autarky,”

indicates the number of MCS orbits computed with symmetries found in the formula after

pruning the maximum autarky (as described in Section 3.4), while the fourth line, labeled

“CNF/MCS,” shows the MCS orbits found with the symmetries of the formula after removing

all clauses not in any MCS. Both show additional gains in reducing the number of represen-

tatives, with the the MCS clauses alone dominating the autarky pruning (as they should; the

MCS clauses will always be a subset of the formula minus its maximum autarky).

Finally, we investigated the truly ideal case: generating MCS orbits under the symmetries

of the MCSes themselves. To do this, we translated the MCSes into a graph structure with a

node per clause, a node per MCS, and edges connecting clauses with the MCSes in which

they occur. We again used Saucy to find the symmetries of the graph, which we mapped

back to the clauses. This is the ideal case because it has shed the formula entirely, looking

at the symmetry of the MCSes themselves, unencumbered by the structure of the original

formula. The number of orbits found in this case are shown in the bottom line in Figure 3.15,

labeled “MCS.” Again, there are improvements over the other cases, though even in this

scenario, the potential compression is often under a factor of 2, especially in the instances

106

with larger sets of MCSes, for which the compression would be the most useful.

Observations

While they provide interesting information about the symmetries in these instances, the

“MCS” case and the “CNF/MCS” case are unrealistic in practice. Each relies on having the

symmetry group of the complete set of MCSes, which is of course unavailable until after

a complete set of MCSes has been calculated. Any algorithm that makes practical use of

symmetries will have to use only that symmetry information that can be gleaned from the

formula without finding all MCSes first.

Given the definition of symmetry of an MCS that we are using, MCSes can only map to

other MCSes of the same size. However, in a CNF formula, it is quite likely that groups of

clauses with different sizes could have the same effect on the formula’s infeasibility. For

example {(a∨b)} could be swapped for {(a∨ c),(¬c∨b)} in some MCSes, but this would

never be captured given the symmetries we have defined which must have 1-to-1 permuta-

tions of clauses. A more general definition of symmetry that allows these more complex

swaps could capture additional structure information and allow increased compression.

Those cases in Figure 3.15 that report 1 orbit for the “MCS” scenario all contain only

single-clause MCSes (thus they must contain a single MUS), otherwise there would have

to be further orbits to account for other MCS sizes. In fact, all single-clause MCSes will

always be symmetric to one another in the “MCS” symmetry scenario, because they will

never interact with other clauses in any other MCS.

Because the set of MCSes and MUSes are implicit encodings of each other (i.e., each

MCS encodes “every MUS contains one of these,” and each MUS encodes the same about

the MCSes), either can in fact be an exponential compression of the other. One benchmark

has 257 MCSes and exactly 2127 (about 1038) MUSes, which can only be determined by

considering the symmetries present in the MCSes. In cases like this, the MCSes are an

exponential compression of the MUSes, and it may be that the MCSes themselves are as

107

Extension Applicable To:
Relaxing Completeness Any implementation
Constraint Grouping Any implementation with selector variables
Smallest MUSes Any implementation
Autarkies Boolean SAT only
Exploiting Cores Any implementation w/ an approximate core algorithm
Exploiting Symmetry Any implementation

Table 3.4 Applicability of CAMUS extensions to constraint types beyond Boolean SAT

concise as any representation can be.

All of this work on using symmetries is complementary to that of O’Sullivan et al. (73),

who developed an algorithm, based on Bailey and Stuckey’s DAA (8), to generate a Minimal

Representative Set of Explanations. In our terminology, they provide a minimal set of MCSes

such that every constraint in any MCS is represented at least once and every constraint in

the complement of any MCS is in the complement of at least one of the presented MCSes.

While their algorithm does guarantee a linear number of explanations, in fact bounded

by the number of constraints, it may still require enumerating all MCSes in the system, a

potentially exponential set. This work is complementary in that it employs a different notion

of “representative” (though it may be possible to combine the two concepts) and in that it

aims to avoid the intractability of computing all MCSes.

3.7 Application to Other Constraint Types

As with the base algorithms of CAMUS, many of the extensions described in this chapter

can be applied to constraint types beyond Boolean satisfiability as well. Table 3.4 outlines

the potential for applying each of these extensions to constraint types beyond Boolean

satisfiability.

The primary change to the basic algorithms in the extension of relaxing the completeness

of CAMUS was to truncate MCSes as they are found to produce PCSes. The only extra

interaction with the actual constraints is to remove constraints from the problem when they

108

have been eliminated by the Truncate subroutine. This can be accomplished in exactly

the same way blocking clauses are created, by adding new constraints on the selector vari-

ables for the removed constraints. Therefore, this relaxation can be accomplished with any

implementation of CAMUS.

Constraint grouping is similarly wide in its applicability, but it is only immediately

applicable to implementations that use selector variables. Grouping is accomplished for any

constraint type by assigning the same selector variable to multiple constraints. Grouping can

be achieved even in implementations without selector variables, like our implementation on

top of YICES (cf. Section 2.6), however. In that implementation, constraints can be grouped

by creating a single constraint that is a conjunction of the grouped constraints, as the SMT

formalism supports logical AND combinations natively. This creates an object, treated

by the solver as a single constraint, that accomplishes the same search space reduction as

grouping constraints with selector variables.

The modification to CAMUS to find a smallest MUS of an instance is purely a modifi-

cation to the second phase. Because the second phase is already independent of the type

of constraints from which the MCSes were generated, this extension can be built into any

implementation of CAMUS.

The extension of finding and pruning autarkies is the sole extension that is specific

to Boolean Satisfiability. Autarkies have only been defined for SAT instances, and while

similar definitions can be considered for other constraint types, the algorithm we developed

for finding them will not translate easily.

Exploiting cores to boost the search for MCSes relies heavily on the ability to produce

unsatisfiable cores of an instance quickly. In the case of Boolean SAT, this can be done

by one of the many approximate-core resolution-proof (e.g., (72) and (87)). While similar

algorithms exist for other constraint types (e.g., SMT (21)), developing such an algorithm

for a new domain is not a simple task. Therefore, this extension is practically limited to

those constraint types for which efficient core extractors exist.

109

Finally, symmetries exist in both constraint systems and their MCSes. Symmetries of

MCSes can be found and used after the MCSes are found in any constraint type, because as

usual the MCSes can be analyzed without any consideration for the underlying constraints.

Symmetries of the constraints themselves can be more difficult to find, but the approach

we used, of creating a graph representation of the constraints and finding graph automor-

phisms, should work for any constraint type. A specific graph representation will need to be

developed for each type of constraint, and certain constraint types may naturally yield more

symmetries than others, but the concepts are equally valid in any case.

110

Chapter 4

Applications and Conclusion

This chapter briefly outlines two applications in which, through collaborations with other

researchers, CAMUS has successfully been applied to practical applications, and the disser-

tation concludes with a summary of the work and directions for future research. CAMUS

has been used in two distinct logic circuit verification tasks that demonstrate its real-world

potential. The first application, a system called Reveal (3), is a model-checking system

developed to operate directly on high-level Verilog circuit descriptions (as opposed to lower

level logic gate circuits). The second task is a circuit diagnosis system that employs the

first phase of CAMUS, along with the constraint grouping technique (Section 3.2), to locate

potential causes within a circuit of an observed erroneous output (77).

4.1 Reveal

In Reveal, MUSes are used as a tool for generalization; if one considers every constraint

in an unsatisfiable system to be part of a description of the infeasibility, an MUS is a

more general description than the entire set. Reveal verifies properties of circuits using

counterexample-guided abstraction refinement (CEGAR) (59). In the CEGAR framework,

inconsistent constraint systems are created that represent invalid solutions to a problem;

each invalid solution is removed from the solution space by refining the problem using

information about the inconsistency. Generalizing that information via an MUS eliminates a

larger class of invalid solutions, leading to faster convergence of the entire process.

111

Figure 4.1 Two possible solutions for Abs: A lies within Conc, while B does not.

To avoid delving into the details of the circuit verification performed by REVEAL, this

section will instead describe the process it uses in general terms to illustrate the application

of CAMUS. In CEGAR, and abstraction refinement in general, a complex problem is tackled

by first making an abstraction Abs of the problem that removes certain details. The abstrac-

tion can be much simpler than the fully-specified concrete problem Conc, as long as it has

the property that any solution to Conc is also a solution to Abs; the other direction may not

hold, however, as Abs is allowed to be an over-approximation of the problem with solutions

that are not valid for Conc. The idea is essentially the same as “relaxation” methods used in

operations research.

If Abs has no solution, then Conc cannot have one either, and the process is done. Any

solution found for Abs, however, may be spurious, so it must be checked against Conc.

To check a solution to Abs, a constraint system is formed from the conjunction or in-

tersection of Conc with the solution S: Conc∧S. If Conc∧S is satisfiable, the solution is

valid and the process exits (solution A in Figure 4.1). If Conc∧S is unsatisfiable (solution

B in Figure 4.1), however, the solution is spurious, and Abs must be refined to remove this

invalid solution, after which the process repeats with an updated abstraction.

So Abs needs to be refined by removing the spurious solution S from its solution space.

Any addition of constraints to Abs that conflict with S will suffice, but they also must not

remove any real solutions. For example, asserting the negation of the counterexample is a

valid option; S is not a solution to Abs∧¬(S), and the only solution removed is the spurious

112

Figure 4.2 MUSes of Conc∧B, projected onto B, produce generalizations of B that cover more of
the solution space.

solution itself. However, this will only eliminate that exact solution from the abstraction, and

the next iteration of the process may find a very similar solution that differs only slightly.

By using MUSes, larger classes of solutions can be eliminated with fewer constraints

added. An MUS of the system Conc∧ S projected onto the spurious solution (i.e., only

considering the constraints in the MUS that came from S) is a generalization of S, a partially-

specified spurious solution. By the minimal nature of the MUS, the specification is minimal

(maximally general), and so it is an ideal candidate for updating the abstraction.

Furthermore, Conc∧S may contain multiple MUSes, each indicating a distinct class of

spurious solutions represented by that one counterexample. Refining with multiple MUSes

does yield a larger model, as more constraints are added for each MUS used, but it eliminates

more spurious behaviors at the same time. Experimental results have shown that refinement

using multiple MUSes, as found by CAMUS, yields faster convergence of the refinement

process both in terms of number of iterations and overall runtime (4). Generalization and

refinement with multiple MUSes is illustrated in Figures 4.2 and 4.3.

Experimental results have shown that refinement using multiple MUSes, as found by

CAMUS, yields faster convergence of the refinement process both in terms of number of

iterations and overall runtime (4; 5). For example, in 9 out of 20 test cases, Reveal timed

out, still working after reaching one- to two-thousand refinement iterations, when using a

single MUS for refinement each time. Switching to using multiple MUSes per refinement

113

Figure 4.3 Refining the abstraction with all MUSes produces a maximal reduction in the solution
space.

iteration reduced those all to between 7 and 93 iterations to completion, with corresponding

runtime reductions. This shows the value of CAMUS over algorithms for finding a single

MUS or US.

Initially, Reveal used the Boolean SAT implementation of CAMUS. We developed an

implementation of CAMUS for SMT formulas using YICES (30) when Reveal was updated

to use an SMT solver. This provided a large performance boost due to keeping everything

at the higher level allowed by the more complex and expressive constraint types. The

implementation was fairly straightforward, thanks to the generality of CAMUS and its lack

of reliance on specific constraint solver abilities. YICES has a mode in which it can solve

Max-SAT / Max-CSP, which, while not well-documented, appears to follow the same sliding

objective approach that the MCSes algorithm uses. Using this mode and YICES’ ability to

apply weights to constraints (allowing for hardening previously soft constraints), the first

phase of CAMUS was implemented with minimal trouble.

The second phase of CAMUS, which operates on MCSes, is entirely independent of the

constraints from which the MCSes were generated. Every MCS is simply a set of values

that do serve as constraint indices, but which are treated as nothing more than numbers by

the hitting-set algorithm. Therefore, no changes whatsoever were required to the second

phase of CAMUS for the port.

114

4.2 Circuit Error Diagnosis / Debugging

In this work, with Safarpour et al. (77), the goal was the same as that in the model-based

diagnosis work begun in the 1980’s: given a circuit producing the wrong output, identify

minimal sets of locations in the circuit where errors could produce that output. Our main

insight in this work was that the error diagnoses we sought to compute were in fact MCSes

of the constraint system formed by joining the circuit model with the observed incorrect

outputs. While experiments showed that computing the MCSes directly with the first phase

of CAMUS was not efficient, we were able to use the ability of CAMUS to group constraints

to reduce the complexity and find approximate solutions.

As described in Section 3.2, CAMUS can treat any subset of constraints as a single,

higher-level constraint, and MCSes and MUSes can be found in terms of these high-level

constraints. For example, by treating groups of 10 clauses each as single constraints, the

number of constraints is reduced by a factor of 10 and the search space for CAMUS is

reduced by an exponential factor.

The MCSes returned by CAMUS when this sort of grouping is used are approximations,

as each group in a “high-level” MCS may bring in clauses that are not part of an MCS

of the lower-level clauses. Thus, we used these as seeds to Safarpour, et al.’s existing

technique for circuit diagnosis, called debug, which could find the exact diagnoses within

the high-level MCSes. The debug algorithm works by instrumenting each gate in the circuit

model in order to permit it to be disabled, and it uses a CNF encoding of the instrumented

circuit to find diagnoses; the seeds provided by CAMUS allow debug to limit the gates

that it instruments to those indicated by the approximate MCS. In this way, CAMUS was

essentially used to boost the existing debug algorithm.

The runtime depended on the size of the constraint groups created. If the groups were

too small, the runtime of the boosting phase that found all MCSes of the grouped constraints

dominated that taken by debug. On the other hand, if the groups are too large, the ap-

proximation is so great that the results of the first phase provide little benefit to the debug

115

10
−1

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

run−time of max−sat20+debug (sec)

ru
n−

tim
e

of
 d

eb
ug

 (
se

c)

Figure 4.4 CAMUS+debug (max-sat20+debug) versus debug

algorithm, and runtime is little changed from running debug by itself. Experimentally, it

was found that groups of 20 clauses each provided the best tradeoff between spending time

in CAMUS and saving time in debug, and a hybrid boosted version of debug was created:

max-sat20+debug.

Experimental results, shown in Figures 4.4 and 4.5, displayed speed increases in all but

two out of 24 instances that either the new or the old technique solved within a timeout. The

runtime changes ranged from one to over three orders of magnitude improvement. (One

instance was solved in under 4 seconds by the boosted version of debug using CAMUS and

timed out after 3600 seconds in the plain debug algorithm.) Further, the boosted system

solved 24 out of 26 instances within the timeout, compared to 16 out of 26 for the previous

algorithm.

The unsatisfiable core-guided variation of CAMUS was developed after this collabora-

tion. The results in Section 3.5 on the “Diagnosis” benchmarks, from this very application,

116

10
−1

10
0

10
1

10
2

10
3

5

10

15

20

run−time (sec)

nu
m

be
r

of
 s

ol
ve

d
in

st
an

ce
s

max−sat20+debug
debug

Figure 4.5 CAMUS+debug (max-sat20+debug) versus debug

show substantial improvements in the performance of CAMUS alone on these instances.

It remains to be seen whether this makes the first phase of CAMUS, which produces the

MCSes that are the error diagnoses sought in this application, competitive on its own with

other systems developed specifically for circuit error diagnosis.

4.3 Conclusion

The study of analyzing infeasible constraint systems is still in its infancy, relative to the

time and effort that has been put into solution-seeking constraint solvers. As the field grows

and capabilities are advanced, new applications are identified; and as new applications are

identified, the field is pulled in new directions. The work in this dissertation has formed

part of this expanding wave, synthesizing existing work, developing new algorithms for new

problems, and enabling practical applications.

It became clear in the early stages of this work that the field was fractured along lines

117

separating large bodies of research. Constraint systems were used and studied in a variety

of domains, with different focuses and different terminology in each, and though there

was some cross-pollination between domains, it rarely, if ever, occurred in the field of

infeasibility analysis. Even if an artificial intelligence researcher were well aware of the

constraints-related work occurring in operations research, he or she would be unlikely to

know about the few papers coming out of OR, spread across conferences and journals, that

were relevant to infeasibility. In my publications, and in this dissertation especially, we have

attempted to draw connections between work on infeasibility analysis in different domains

where we find it, taking a small step towards consolidating the field.

This research itself occupies an important niche within infeasibility analysis, that of

producing complete analyses of infeasibility. The majority of the work in the field has been

related to producing a single view of the infeasibility of a constraint system, a glimpse of

the structure underlying it. Many algorithms were developed to find single, approximate

unsatisfiable subsets of constraints or single Max-SAT solutions. We became curious early

on about how we could produce a complete view of the structure of infeasibility and what

that would even look like.

The algorithms in CAMUS (Compute All Minimal Unsatisfiable Subsets) produce such

complete views. These algorithms compute both the complete set of minimal corrections

for an unsatisfiable system (MCSes) and the complete set of minimal conflicts (MUSes), ex-

ploiting a strong theoretical relationship between the two. And these algorithms immediately

illuminated real-world constraint systems that in fact have impossibly-large structures for

their infeasibility; computing an entire set of MCSes and/or MUSes was at times intractable.

No algorithm could possibly produce the complete view within a lifetime.

This wall of intractability motivated looking for ways to avoid it; CAMUS has been

extended in several ways, either pushing the wall back by improving the performance of

the algorithms or glancing over the wall by modifying them to produce more than a single

glimpse but less than the complete view. The performance increases were achieved by being

118

smarter about where the algorithms look for solutions; we remove or ignore sections of

the constraint system that can be shown to be redundant or uninvolved in any infeasibility,

which reduces the search space and yields often impressive gains. Relaxing the original

question enables us to avoid the intractability; extensions of CAMUS compute subsets or

approximations of the complete result set. Throughout all of this, the work was kept as

general as possible, often applicable to any type of constraint, to avoid becoming stuck in a

single domain and to make the work useful to researchers in other areas.

This basic research and algorithm development was proved practical and needed by

real-world applications. We found that two distinct digital logic circuit verification tasks

benefited from the complete view of infeasibility provided by CAMUS and its extensions,

and in fact it was critical for their performance and functionality. The Reveal equivalence

checking system required the ability to compute all MUSes of a constraint system produced

during its abstraction refinement flow. Using a single MUS from each constraint system

proved to be insufficient, and without using all MUSes, runs would often fail to complete

within the experimental timeout. A collaboration with a team of researchers at another

university began with the observation that the circuit error diagnoses they were computing

were in fact equivalent to the MCSes that CAMUS produced in its first phase. The ability of

CAMUS to produce all MCSes (as opposed to the more common result of returning a single

Max-SAT solution) was crucial for its application to their work, which resulted in orders

of magnitude performance increases. Both of these collaborations were bidirectionally

beneficial; the verification system gained impressive performance increases in one direction,

and new benchmarks and test cases to spur further development of the algorithms flowed in

the other.

Looking forward, the basic research should continue, examining further extensions

and enhancements to the core algorithms. The work done so far on exploiting symmetries

has unveiled some unforeseen barriers, but it has also provided some tantalizing results

about potential for future work. Applying CAMUS to new applications in other domains

119

holds great potential. We plan on using CAMUS to explore optimization problems, mostly

arising in the operations research domain; these are satisfiable for any value of the objective

function worse than the optimum, but what information could we gain by looking at a

system made unsatisfiable by requiring an objective function value better than optimum?

And the shift in computer architecture towards multi-core, parallel machines raises the

question of parallelizing CAMUS. While work on parallelizing constraint solvers has met

difficulties, the “all-solutions” nature of CAMUS makes it a different problem, and it may

be better-suited to parallel processing.

Taking a broad view, this work has helped lay a foundation for a more rigorous study of

infeasibility. Even in applications that do not require a complete view of the unsatisfiability

of constraints, that view can help researchers better understand their constraint systems. Part

of the coming work will likely be evangelism, finding others who can benefit from these

tools and helping them exploit the work. We also intend to make these analyses more useful

by way of visualizations and interactive tools that assist researchers in exploring their own

constraint systems. Overall, we hope to continue working in and advancing this field, and

we are excited by the possibilities that its relative youth provides.

120

Appendices

121

Appendix A

Example CNF Formulas

A.1 Exponential Number of MUSes

The following formula, parameterized for n, has 2n MUSes, each of size 2n+1. (Clauses

have been written as implications for clarity; each implication (a→ b) is simply (¬a∨b) in

CNF.)

ϕexpMUSes = (c0)

∧ (c0→ a1)∧ (c0→ b1)∧ (a1→ c1)∧ (b1→ c1)

∧ (c1→ a2)∧ (c1→ b2)∧ (a2→ c2)∧ (b2→ c2)

...

∧ (cn−1→ an)∧ (cn−1→ bn)∧ (an→¬c0)∧ (bn→¬c0)

This formula has 3n variables and 4n + 1 clauses. Every MUS contains (c0) and, for

each of the n groups of 4 related implications, either the 2-clause implication chain through

ai or that through bi. These n binary choices lead to the instance containing 2n MUSes.

122

A.2 Exponential Number of MCSes

In addition to the fact that the set of MUSes can be exponentially large, the complete

set of MCSes is potentially exponential in the size of the original instance as well.

For example, any instance with n pairwise disjoint MUSes each having k clauses (e.g.,

{{C1,C2,C3},{C4,C5,C6}, . . .}) will have kn MCSes with n clauses each. One simple

example is:

ϕexpMCSes = (x1,1)∧ (x1,1→ x1,2)∧ (x1,2→ x1,3)∧·· ·∧ (x1,k−1→¬x1,1)

∧ (x2,1)∧ (x2,1→ x2,2)∧ (x2,2→ x2,3)∧·· ·∧ (x2,k−1→¬x2,1)

...

∧ (xn,1)∧ (xn,1→ xn,2)∧ (xn,2→ xn,3)∧·· ·∧ (xn,k−1→¬xn,1)

Each line is independent, sharing no variables with the others, and each is an MUS.

There are n · k clauses, n MUSes, and kn MCSes.

123

Appendix B

Catalog of Benchmarks

Table B.1 lists size characteristics of the benchmark families used throughout this disserta-

tion. These are all CNF formulas, and for each family, the table lists the number of instances

“#”, and the minimum/median/maximum number of variables and clauses. The benchmark

families, their origins, and any salient features are described below.

B.1 Automotive Product Configuration / Benz / Daimler-
Chrysler / DC

This is a set of CNF benchmarks from an automotive product configuration domain (80).

Each instance encodes a set of available configurations for a product, along with constraints

enforcing a specific property to be checked. Analysis showed that the original formulas

contained numerous duplicate clauses, which can yield a combinatorial explosion of MUSes;

the duplicate clauses were removed from each instance before gathering data. There are a

total of 84 benchmarks in the set, each with around 1500–1800 variables and 4000–8000

clauses (after removing duplicate clauses).

These benchmarks have a wide range of characteristics with respect to each instance’s

set of MUSes. While all of the instances have around 4000–8000 clauses, they range from

having just a single MUS to intractably large sets, such as C202 FW SZ 118, for which

analysis of the MCSes shows that it has exactly 2127 (about 1038) MUSes. Likewise, the

sizes of the MUSes range from 8 clauses up to at least 670, representing between about 0.1%

and 13% of an instance’s clauses. This diversity of results exercises algorithms broadly.

124

Fa
m

ily
#

V
ar

ia
bl

es
C

la
us

es
m

in
m

ed
m

ax
m

in
m

ed
m

ax
B

en
z

84
1,

51
3

1,
56

1
1,

89
1

4,
01

3
5,

39
9

9,
95

7
R

ev
ea

l
62

1,
70

4
6,

26
8

63
,1

53
4,

00
4

14
,3

47
16

1,
24

2
M

ite
r

8
1,

26
6

3,
76

1
17

,3
03

1,
02

7
3,

43
4

34
,2

38
D

im
ac

s
20

38
9

1,
91

9
7,

76
7

1,
11

5
5,

10
8

20
,8

12
A

IM
24

50
10

0
20

0
80

16
0

40
0

FV
P-

U
N

SA
T-

2.
0

21
83

4
5,

23
7

23
,9

10
6,

69
5

89
,4

73
75

1,
11

8
B

M
C

:B
ar

re
l

8
50

1,
40

7
8,

90
3

15
9

5,
38

3
36

,6
06

B
M

C
:L

on
gm

ul
t

16
43

7
3,

31
9

7,
80

7
1,

20
6

10
,3

35
24

,3
51

B
M

C
:Q

ue
ue

in
va

r
10

11
6

88
6

2,
43

5
39

9
5,

62
2

20
,6

71
D

ia
gn

os
is

10
8

1,
88

0
22

2,
85

1
4,

42
6,

32
3

5,
04

9
72

8,
51

6
15

,9
83

,6
33

3S
A

T
(p

ar
am

et
er

iz
ed

on
n

an
d

r)
-

n
n
∗r

Ta
bl

e
B

.1
B

en
ch

m
ar

k
C

ha
ra

ct
er

is
tic

s

125

Source: http://www-sr.informatik.uni-tuebingen.de/˜sinz/DC/

B.2 Reveal

The Reveal benchmarks were generated by a hardware design verification system. The

Reveal flow (Section 4.1) performs equivalence checking of hardware designs including,

but not limited to, microprocessors. The flow uses counterexample-guided abstraction

refinement, in which abstractions of the input designs are checked for equivalence, and if

a counterexample (indicating a difference) is found to be spurious (due to the abstraction

over-approximating the designs’ behaviors), then MUSes are used to refine the abstractions.

For more details, see Section 4.1.

These 62 instances were generated in the abstraction refinement phase of a version of

Reveal that used the CNF implementation of CAMUS. Instances were generated from three

different designs.

B.3 Miter, Dimacs

These families contain CNF benchmarks generated from performing circuit verification

tasks such as equivalence checking on industrial logic circuits. The benchmarks have been

made available by João Marques-Silva.

Source: http://sat.inesc.pt/benchmarks/cnf/

B.4 AIM

These are the unsatisfiable instances from the AIM benchmarks, a set of small generated

benchmarks often used in MUS papers. All instances have either one or two MUSes, and

they are by far the smallest benchmarks used in this work.

Source: http://sat.inesc.pt/benchmarks/cnf/

126

http://www-sr.informatik.uni-tuebingen.de/~sinz/DC/
http://sat.inesc.pt/benchmarks/cnf/
http://sat.inesc.pt/benchmarks/cnf/

B.5 FVP-UNSAT-2.0 / nPipe

The nPipe instances from Miroslav Velev’s FVP-UNSAT-2.0 benchmarks were “generated

in the formal verification of correct superscalar microprocessors.”

Source: http://www.miroslav-velev.com/sat_benchmarks.html

B.6 BMC

The BMC:[] instances are formulas generated in a bounded model checking (BMC) system

as described in (10).

Source:

http://www.cs.cmu.edu/˜modelcheck/bmc/bmc-benchmarks.html

B.7 Diagnosis / Debugging

Diagnosis: These 108 instances, from the Max-SAT 2008 Evaluation (6), are generated

in a process that diagnoses potential error locations in a physical circuit that is producing

incorrect output(s) (77). In this application, the MCSes of each instance directly identify the

candidate error locations. See Section 4.2 for further details. These instances tend to have

small MUSes relative to their total number of clauses, which makes them well-suited to the

core-guided extension to CAMUS described in Section 3.5. (The set used in the Max-SAT

Evaluation has 112 instances, and II removed 4 that are satisfiable.)

Source: http://www.maxsat.udl.cat/08/maxsat-industrial.tgz

B.8 Random 3SAT

Randomized constraint systems were avoided in this work because they do not provide

a useful or practical view of performance. Characteristics of randomized instances are

127

http://www.miroslav-velev.com/sat_benchmarks.html
http://www.cs.cmu.edu/~modelcheck/bmc/bmc-benchmarks.html
http://www.maxsat.udl.cat/08/maxsat-industrial.tgz

much different than those of structured, man-made instances, and conclusions drawn from

experiments on randomized instances may not hold for real-world use.

One set of experiments (Section 2.5.2), however, used an algorithm that did not scale

well and could not solve most of the industrial benchmarks. For these experiments, we gen-

erated sets of small randomized 3SAT instances (CNF formulas with exactly three variables

per clause).

The generated 3SAT instances were parameterized on n, the number of variables, and r,

the ratio of constraints to variables. Given n and r, each of the r ∗n clauses were generated

by randomly selecting 3 literals (without replacement) given a uniform distribution over

all n positive literals {x1, . . . ,xn} and n negative literals {¬x1, . . . ,¬xn}. Duplicate clauses

were discarded until n∗ r clauses had been generated.

To produce a set of unsatisfiable instances with a given set of parameters, we simply

generated instances, checked each for satisfiability using a standard SAT solver, and kept

the unsatisfiable instances until the desired number had been collected.

128

Bibliography

129

[1] Ron Aharoni and Nathan Linial. Minimal non-two-colorable hypergraphs and minimal
unsatisfiable formulas. Journal of Combinatorial Theory Series A, 43(2):196–204,
1986.

[2] Fadi A. Aloul, Karem A. Sakallah, and Igor L. Markov. Efficient symmetry breaking
for boolean satisfiability. IEEE Transactions on Computers, 55(5):549–558, May
2006.

[3] Zaher S. Andraus, Mark H. Liffiton, and Karem A. Sakallah. Refinement strategies
for verification methods based on datapath abstraction. In Proceedings of the 2006
conference on Asia South Pacific design automation (ASP-DAC’06), pages 19–24,
2006.

[4] Zaher S. Andraus, Mark H. Liffiton, and Karem A. Sakallah. CEGAR-based formal
hardware verification: a case study. Technical Report CSE-TR-531-07, University of
Michigan, 2007.

[5] Zaher S. Andraus, Mark H. Liffiton, and Karem A. Sakallah. Reveal: A formal ver-
ification tool for verilog designs. In Proc. 15th International Conference on Logic
for Programming Artificial Intelligence and Reasoning (LPAR-2008), pages 343–352,
November 2008.

[6] Josep Argelich, Chu Min Li, Felip Manyà, and Jordi Planes. Max-SAT evaluation
2008. Website.
http://www.maxsat.udl.es/08/.

[7] James Bailey, Thomas Manoukian, and Kotagiri Ramamohanarao. A fast algorithm
for computing hypergraph transversals and its application in mining emerging patterns.
In Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM’03),
page 485, 2003.

[8] James Bailey and Peter J. Stuckey. Discovery of minimal unsatisfiable subsets of
constraints using hitting set dualization. In Proceedings of the 7th International Sym-
posium on Practical Aspects of Declarative Languages (PADL’05), volume 3350 of
LNCS, pages 174–186, 2005.

[9] Joaquı́n Bautista and Jordi Pereira. A GRASP algorithm to solve the unicost set
covering problem. Computers and Operations Research, 34(10):3162–3173, 2007.

[10] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic
model checking without BDDs. In Proceedings of the 5th International Conference on
Tools and Algorithms for Construction and Analysis of Systems (TACAS’99), volume
1579 of LNCS, pages 193–207, 1999.

[11] E. Birnbaum and E. L. Lozinskii. Consistent subsets of inconsistent systems: struc-
ture and behaviour. Journal of Experimental and Theoretical Artificial Intelligence,
15:25–46, 2003.

130

http://www.maxsat.udl.es/08/

[12] S. Bistarelli, U. Montanari, F. Rossi, T. Schiex, G. Verfaillie, and H. Fargier. Semiring-
based CSPs and valued CSPs: Frameworks, properties, and comparison. Constraints,
4(3):199–240, September 1999.

[13] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based constraint
satisfaction and optimization. Journal of the ACM (JACM), 44(2):201–236, 1997.

[14] Endre Boros, Khaled M. Elbassioni, Vladimir Gurvich, and Leonid Khachiyan. An
efficient implementation of a quasi-polynomial algorithm for generating hypergraph
transversals. In Proceedings of the 11th European Symposioum on Algorithms (ESA
2003), volume 2832 of LNCS, pages 556–567. Springer, 2003.

[15] S. Bouveret, F. Heras, S. de Givry, J. Larrosa, M. Sanchez, , and T. Schiex.
Toolbar. Website. http://carlit.toulouse.inra.fr/cgi-bin/awki.
cgi/ToolBarIntro.

[16] Renato Bruni and Antonio Sassano. Restoring satisfiability or maintaining unsatisfia-
bility by finding small unsatisfiable subformulae. In LICS 2001 Workshop on Theory
and Applications of Satisfiability Testing (SAT-2001), volume 9 of Electronic Notes in
Discrete Mathematics, pages 162–173, 2001.

[17] Randal E. Bryant, Shuvendu K. Lahiri, and Sanjit A. Seshia. Modeling and verifying
systems using a logic of counter arithmetic with lambda expressions and uninterpreted
functions. In Proceedings of the 14th International Conference on Computer Aided
Verification (CAV’02), pages 78–92, 2002.

[18] Hans Kleine Büning. On subclasses of minimal unsatisfiable formulas. Discrete
Applied Mathematics, 107(1-3):83–98, 2000.

[19] B. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J.P. Warners. Radio link frequency
assignment. Constraints, 4(1):79–89, 1999.

[20] John W. Chinneck and Erik W. Dravnieks. Locating minimal infeasible constraint sets
in linear programs. ORSA Journal on Computing, 3(2):157–168, 1991.

[21] Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. A simple and flexible
way of computing small unsatisfiable cores in SAT Modulo Theories. In Proceedings of
the 10th International Conference on Theory and Applications of Satisfiability Testing
(SAT-2007), volume 4501 of LNCS, pages 334–339, 2007.

[22] Amy M. Cohn and Cynthia Barnhart. Improving crew scheduling by incorporating
key maintenance routing decisions. Operations Research, 51(3):387–396, 2003.

[23] Paul T. Darga, Mark H. Liffiton, Karem A. Sakallah, and Igor L. Markov. Exploit-
ing structure in symmetry detection for CNF. In Proceedings of the 41st Annual
Conference on Design Automation (DAC’04), pages 530–534, 2004.

[24] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

131

http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro
http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro

[25] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7(3):201–215, 1960.

[26] Gennady Davydov, Inna Davydova, and Hans Kleine Büning. An efficient algorithm
for the minimal unsatisfiability problem for a subclass of CNF. Annals of Mathematics
and Artificial Intelligence, 23(3-4):229–245, 1998.

[27] Johan de Kleer and Brian C. Williams. Diagnosing multiple faults. Artificial Intelli-
gence, 32(1):97–130, 1987.

[28] Maria J. Garca de la Banda, Peter J. Stuckey, and Jeremy Wazny. Finding all minimal
unsatisfiable subsets. In Proceedings of the 5th ACM SIGPLAN international confer-
ence on Principles and practice of declaritive programming (PPDP’03), pages 32–43,
2003.

[29] Nachum Dershowitz, Ziyad Hanna, and Alexander Nadel. A scalable algorithm for
minimal unsatisfiable core extraction. In Proceedings of the 9th International Confer-
ence on Theory and Applications of Satisfiability Testing (SAT-2006), volume 4121 of
LNCS, pages 36–41, 2006.

[30] Bruno Dutertre and Leonardo Mendonça de Moura. A fast linear-arithmetic solver for
DPLL(T). In Proceedings of the 18th International Conference on Computer Aided
Verification (CAV’06), pages 81–94, 2006.

[31] N. Eén and N. Sörensson. An extensible SAT-solver. In Proceedings of the 6th Inter-
national Conference on Theory and Applications of Satisfiability Testing (SAT-2003),
volume 2919 of LNCS, pages 502–518, 2003.

[32] Thomas Eiter and Georg Gottlob. Identifying the minimal transversals of a hypergraph
and related problems. SIAM Journal on Computing, 24(6):1278–1304, 1995.

[33] Thomas Eiter and Georg Gottlob. Hypergraph transversal computation and related
problems in logic and AI. In Proceedings of the 8th European Conference on Logics
in Artificial Intelligence (JELIA 2002), pages 549–564, 2002.

[34] Herbert Fleischner, Oliver Kullmann, and Stefan Szeider. Polynomial-time recognition
of minimal unsatisfiable formulas with fixed clause-variable difference. Theoretical
Computer Science, 289(1):503–516, 2002.

[35] Eugene C. Freuder and Richard J. Wallace. Partial constraint satisfaction. Artificial
Intelligence, 58:21–70, December 1992.

[36] Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT problem. In Proceed-
ings of the 9th International Conference on Theory and Applications of Satisfiability
Testing (SAT-2006), volume 4121 of LNCS, pages 252–265, 2006.

[37] Rafael M. Gasca, Carmelo Del Valle, Marı́a Teresa Gómez López, and Rafael Ceballos.
NMUS: Structural analysis for improving the derivation of all MUSes in overcon-
strained numeric CSPs. In Current Topics in Artificial Intelligence, 12th Conference of

132

the Spanish Association for Artificial Intelligence (CAEPIA 2007), volume 4788 of
LNCS, pages 160–169, 2007.

[38] I.P. Gent, T. Kelsey, S. Linton, J. Pearson, and C.M. Roney-Dougal. Groupoids and
conditional symmetry. In Principles and Practice of Constraint Programming (CP
2007), volume 4741 of LNCS, pages 823–830, 2007.

[39] Roman Gershman, Maya Koifman, and Ofer Strichman. Deriving small unsatisfi-
able cores with dominators. In Proceedings of the 18th International Conference on
Computer Aided Verification (CAV’06), pages 109–122, 2006.

[40] John Gleeson and Jennifer Ryan. Identifying minimally infeasible subsytems. ORSA
Journal on Computing, 2(1):61–67, 1990.

[41] Evgueni Goldberg and Yakov Novikov. Verification of proofs of unsatisfiability for
CNF formulas. In Proceedings of the Conference on Design, Automation, and Test in
Europe (DATE’03), pages 10886–10891, 2003.

[42] Éric Grégoire, Bertrand Mazure, and Cédric Piette. Local-search extraction of MUSes.
Constraints, 12(3):325–344, 2007.

[43] Olivier Guieu and John W. Chinneck. Analyzing infeasible mixed-integer and integer
linear programs. INFORMS Journal on Computing, 11(1):63–77, 1999.

[44] G. D. Hachtel and F. Somenzi. Logic Synthesis and Verification Algorithms. Kluwer
Academic Publishers, 1996.

[45] Benjamin Han and Shie-Jue Lee. Deriving minimal conflict sets by CS-trees with
mark set in diagnosis from first principles. IEEE Transactions on Systems, Man, and
Cybernetics, Part B, 29(2):281–286, April 1999.

[46] Federico Heras, Javier Larrosa, and Albert Oliveras. MiniMaxSat: An efficient
weighted Max-SAT solver. Journal of Artificial Intelligence Research, 31:1–32, 2008.

[47] Christian Holzbaur, Francisco Menezes, and Pedro Barahona. Defeasibility in CLP(Q)
through generalized slack variables. In Proceedings of the 2nd International Confer-
ence on Principles and Practice of Constraint Programming (CP’96), pages 209–223,
1996.

[48] Aimin Hou. A theory of measurement in diagnosis from first principles. Artificial
Intelligence, 65(2):281–328, 1994.

[49] Jinbo Huang. MUP: A minimal unsatisfiability prover. In Proceedings of the 10th
Asia and South Pacific Design Automation Conference (ASP-DAC’05), pages 432–437,
2005.

[50] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology (TOSEM), 11(2):256–290, 2002.

133

[51] Ulrich Junker. QuickXplain: Conflict detection for arbitrary constraint propagation
algorithms. In IJCAI’01 Workshop on Modelling and Solving problems with constraints
(CONS-1), pages 75–82, 2001.

[52] Ulrich Junker. QuickXplain: Preferred explanations and relaxations for over-
constrained problems. In Proceedings of the 19th AAAI Conference on Artificial
Intelligence (AAAI 2004), pages 167–172, 2004.

[53] Dimitris J. Kavvadias and Elias C. Stavropoulos. Evaluation of an algorithm for the
transversal hypergraph problem. In Proceedings of the 3rd Workshop on Algorithm
Engineering (WAE’99), pages 72–84, 1999.

[54] Dimitris J. Kavvadias and Elias C. Stavropoulos. An efficient algorithm for the
transversal hypergraph generation. Journal of Graph Algorithms and Applications,
9(2):239–264, 2005.

[55] Oliver Kullmann. An application of matroid theory to the SAT problem. In 15th
Annual IEEE Conference on Computational Complexity, pages 116–124, July 2000.

[56] Oliver Kullmann. Investigations on autark assignments. Discrete Applied Mathematics,
107(1-3):99–137, 2000.

[57] Oliver Kullmann. On the use of autarkies for satisfiability decision. In LICS 2001
Workshop on Theory and Applications of Satisfiability Testing (SAT-2001), volume 9
of Electronic Notes in Discrete Mathematics, pages 231–253, 2001.

[58] Oliver Kullmann, Inês Lynce, and João Marques-Silva. Categorisation of clauses in
conjunctive normal forms: Minimally unsatisfiable sub-clause-sets and the lean kernel.
In Proceedings of the 9th International Conference on Theory and Applications of
Satisfiability Testing (SAT-2006), volume 4121 of LNCS, pages 22–35, 2006.

[59] R. P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton
University Press, Princeton, NJ, 1994.

[60] Mark H. Liffiton, Zaher S. Andraus, and Karem A. Sakallah. From Max-SAT to
Min-UNSAT: Insights and applications. Technical Report CSE-TR-506-05, University
of Michigan, February 2005.

[61] Mark H. Liffiton, Maher N. Mneimneh, Inês Lynce, Zaher S. Andraus, João P. Marques
Silva, and Karem A. Sakallah. A branch and bound algorithm for extracting smallest
minimal unsatisfiable subformulas. Constraints, 2008. In press.

[62] Mark H. Liffiton, Michael D. Moffitt, Martha E. Pollack, and Karem A. Sakallah.
Identifying conflicts in overconstrained temporal problems. In Proceedings of the 19th
International Joint Conference on Artificial Intelligence (IJCAI’05), pages 205–211,
2005.

134

[63] Mark H. Liffiton and Karem A. Sakallah. On finding all minimally unsatisfiable subfor-
mulas. In Proceedings of the 8th International Conference on Theory and Applications
of Satisfiability Testing (SAT-2005), volume 3569 of LNCS, pages 173–186, 2005.

[64] Mark H. Liffiton and Karem A. Sakallah. Algorithms for computing minimal unsatis-
fiable subsets of constraints. Journal of Automated Reasoning, 40(1):1–33, January
2008.

[65] Mark H. Liffiton and Karem A. Sakallah. Searching for autarkies to trim unsatisfiable
clause sets. In Proceedings of the 11th International Conference on Theory and Appli-
cations of Satisfiability Testing (SAT-2008), volume 4996 of LNCS, pages 182–195,
May 2008.

[66] Inês Lynce and João Marques-Silva. On computing minimum unsatisfiable cores. In
The 7th International Conference on Theory and Applications of Satisfiability Testing
(SAT-2004), 2004.

[67] João Marques-Silva and Vasco Manquinho. Towards more effective unsatisfiability-
based maximum satisfiability algorithms. In Proceedings of the 11th International
Conference on Theory and Applications of Satisfiability Testing (SAT-2008), volume
4996 of LNCS, pages 225–230, May 2008.

[68] João Marques-Silva and Jordi Planes. On using unsatisfiability for solving maximum
satisfiability. Computing Research Repository, abs/0712.1097, December 2007.

[69] João Marques-Silva and Jordi Planes. Algorithms for maximum satisfiability using
unsatisfiable cores. In Proceedings of the Conference on Design, Automation, and Test
in Europe (DATE’08), March 2008.

[70] Maher N. Mneimneh, Inês Lynce, Zaher S. Andraus, João P. Marques Silva, and
Karem A. Sakallah. A branch-and-bound algorithm for extracting smallest minimal
unsatisfiable formulas. In Proceedings of the 8th International Conference on Theory
and Applications of Satisfiability Testing (SAT-2005), volume 3569 of LNCS, pages
467–474, 2005.

[71] Burkhard Monien and Ewald Speckenmeyer. Solving satisfiability in less than 2n steps.
Discrete Applied Mathematics, 10(3):287–295, March 1985.

[72] Yoonna Oh, Maher N. Mneimneh, Zaher S. Andraus, Karem A. Sakallah, and Igor L.
Markov. AMUSE: a minimally-unsatisfiable subformula extractor. In Proceedings of
the 41st Annual Conference on Design Automation (DAC’04), pages 518–523, 2004.

[73] Barry O’Sullivan, Alexandre Papadopoulos, Boi Faltings, and Pearl Pu. Representa-
tive explanations for over-constrained problems. In Proceedings of the 22nd AAAI
Conference on Artificial Intelligence (AAAI 2007), 2007.

[74] Christos H. Papadimitriou and David Wolfe. The complexity of facets resolved.
Journal of Computer and System Sciences, 37(1):2–13, 1988.

135

[75] Karen Petrie, Chris Jefferson, Tom Kelsey, and Steve Linton. GAPLex: Generalised
static symmetry breaking. Trends in Constraint Programming, pages 329–376, 2007.

[76] Raymond Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57–95, 1987.

[77] Sean Safarpour, Mark H. Liffiton, Hratch Mangassarian, Andreas Veneris, and
Karem A. Sakallah. Improved design debugging using maximum satisfiability. In
Proceedings of the International Conference on Formal Methods in Computer-Aided
Design (FMCAD’07), pages 13–19, November 2007.

[78] Thomas Schiex, Hélène Fargier, and Gerard Verfaillie. Valued constraint satisfaction
problems: Hard and easy problems. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence (IJCAI’95), 1995.

[79] Carsten Sinz. Towards an optimal CNF encoding of Boolean cardinality constraints.
In Proceedings of the 11th International Conference on Principles and Practice of
Constraint Programming (CP’05), pages 827–831, 2005.

[80] Carsten Sinz, Andreas Kaiser, and Wolfgang Küchlin. Formal methods for the valida-
tion of automotive product configuration data. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, 17(1):75–97, 2003.

[81] Andre Sülflow, Görschwin Fey, Roderick Bloem, and Rolf Drechsler. Using unsatis-
fiable cores to debug multiple design errors. In Proceedings of the 18th ACM Great
Lakes symposium on VLSI, 2008, pages 77–82, 2008.

[82] Stefan Szeider. Minimal unsatisfiable formulas with bounded clause-variable dif-
ference are fixed-parameter tractable. Journal of Computer and System Sciences,
69(4):656–674, December 2004.

[83] Allen Van Gelder. Autarky pruning in propositional model elimination reduces failure
redundancy. Journal of Automated Reasoning, 23(2):137–193, 1999.

[84] Allen Van Gelder. Extracting (easily) checkable proofs from a satisfiability solver that
employs both preorder and postorder resolution. Seventh International Symposium on
AI and Mathematics, 2002.

[85] J.N.M. van Loon. Irreducibly inconsistent systems of linear inequalities. European
Journal of Operational Research, 8(3):283–288, November 1981.

[86] Jianmin Zhang, Sikun Li, and Shengyu Shen. Extracting minimum unsatisfiable cores
with a greedy genetic algorithm. In AI 2006: Advances in Artificial Intelligence,
volume 4304 of LNCS, pages 847–856, 2006.

[87] Lintao Zhang and Sharad Malik. Extracting small unsatisfiable cores from unsatisfiable
Boolean formula. In The 6th International Conference on Theory and Applications of
Satisfiability Testing (SAT-2003), 2003.

136

[88] Lintao Zhang and Sharad Malik. Validating SAT solvers using an independent
resolution-based checker: Practical implementations and other applications. In Pro-
ceedings of the Conference on Design, Automation, and Test in Europe (DATE’03),
pages 10880–10885, 2003.

137

	Title
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Appendices
	Abstract
	Chapter 1 Introduction and Background
	1.1 Problem Space: Constraint Systems
	1.1.1 Classes of Constraint Systems
	1.1.2 Important Concepts

	1.2 Related Work on Infeasibility
	1.2.1 Resolution Proof Checkers
	1.2.2 Extracting Unsatisfiable Subsets
	1.2.3 Multiple / All Unsatisfiable Subsets
	1.2.4 MaxSAT / MaxCSP
	1.2.5 Autarkies

	1.3 Thesis Contributions

	Chapter 2 Foundations of CAMUS
	2.1 MUS/MCS Duality
	2.2 Computing MCSes
	2.3 Computing MUSes
	2.3.1 Computing a Single MUS
	2.3.2 Computing All MUSes

	2.4 Performance
	2.5 Comparison to Existing Work
	2.5.1 All MUSes
	2.5.2 MSSes and MCSes
	2.5.3 Hypergraph Transversals / Hitting Sets

	2.6 Other Constraint Types

	Chapter 3 Extending CAMUS
	3.1 Relaxing Completeness
	3.1.1 Performance

	3.2 Constraint Grouping
	3.2.1 Performance

	3.3 Finding Smallest MUSes
	3.4 Finding / Pruning Autarkies
	3.4.1 Algorithm
	3.4.2 Performance

	3.5 Exploiting Unsatisfiable Cores
	3.5.1 Using Cores to Find MCSes
	3.5.2 Performance

	3.6 Exploiting Symmetry
	3.6.1 Boosting MCSes
	3.6.2 Seeking Exponential Compression

	3.7 Application to Other Constraint Types

	Chapter 4 Applications and Conclusion
	4.1 Reveal
	4.2 Circuit Error Diagnosis / Debugging
	4.3 Conclusion

	 A Example CNF Formulas
	A.1 Exponential Number of MUSes
	A.2 Exponential Number of MCSes

	 B Catalog of Benchmarks
	B.1 Automotive Product Configuration / Benz / Daimler-Chrysler / DC
	B.2 Reveal
	B.3 Miter, Dimacs
	B.4 AIM
	B.5 FVP-UNSAT-2.0 / nPipe
	B.6 BMC
	B.7 Diagnosis / Debugging
	B.8 Random 3SAT

	Bibliography

