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CHAPTER I

INTRODUCTION

1.1 General Background of the Kirkendall Effect

The Kirkendall effect refers to the inert marker motion caused by lattice shifts during a

diffusion process and was first discovered by E. O. Kirkendall [1]. In his experiments,

the embedded molybdenum wires, which are not involved in diffusion of zinc and

copper, shift from their original positions in a brass-copper diffusion couple. Accord-

ing to his biography [2], Kirkendall strongly suspected that the shift was stemming

from lattice reconstruction/destruction and was a form of material flow, which was in

conflict with the existing theory of solid diffusion. In order to successfully complete

his Ph.D., he proceeded to explain that the volume change caused by compositional

evolution during the diffusion process was the origin of the shift [2]. After receiving

his Ph.D. from the University of Michigan, Kirkendall became a faculty member in

Wayne State University. There, he and his graduate student, A. D. Smigelskas, per-

formed similar experiments with higher precision to confirm that the marker motion

must result from lattice generation and destruction caused by unequal diffusion fluxes

of zinc and copper in the diffusion couples [3, 4].

The concept of unbalanced diffusion was not immediately accepted when Kirk-

endall submitted his experimental results and theory for publication. The work [4]

was finally published after an initial rejection and a six-month argument [2, 5], ac-

companied by reviewers opposing comments. Three years later, the validity of the

1



unbalanced diffusion and the Kirkendall effect were widely approved, along with the

theoretical works of the vacancy-mediated mechanism [6] and the Darken’s analysis

[7] in a diffusion conference [8, 9]. Subsequently, the Kirkendall effect led to the rev-

olutionary concept of the vacancy-mediated mechanism in solid diffusion and opened

a new field in diffusion science referred to as the interdiffusion [10].

Diffusion in crystalline solids occurs through atomic migration along the lattice

networks driven by chemical potential gradients. When the diffusing species have

smaller atomic radii than the atoms forming the lattice structure, their diffusion

tends to occur through the interstitial sites. On the other hand, diffusing species

with similar atomic radii to those of the lattice atoms tend to migrate through the

lattice sites in a process referred to as the substitutional diffusion. When one species

has a larger successful atomic hop frequency (or rate) to the neighboring vacant lattice

sites, the overall diffusion flux of this species will be larger than that of the counter-

diffusing species. As a result, a net vacancy flux arises from the slow-diffuser side

to the fast-diffuser side as vacancies exchange positions with the atomic species. (In

diffusion science, the atomic species with a larger exchange rate of vacancies is referred

to as the fast diffuser, while the other species is termed the slow diffuser.) During

this process, vacancies are injected to (eliminated from) the solids at vacancy sources

(sinks) to maintain the vacancy mole fraction at the thermodynamic equilibrium

value. Consequently, lattice planes are created (destroyed), and the lattice shifts

with respect to the source (sink) locations. This results in two phenomena: marker

migration and pore formation. The former is a result of the lattice motion in the

laboratory frame caused by vacancy injection and elimination at internal vacancy

sources and sinks. The later involves surface evolution stemming from the vacancy

injection and elimination at external vacancy sources and sinks at the void surfaces.

This is also known as the Frenkel effect, which does not involve internal lattice shift.

In this thesis, both phenomena are generally referred to as “the Kirkendall effect”.
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(We use the term, the Kirkendall effect, in a broad sense to include all phenomena

involving nonreciprocal diffusion.) The Kirkendall effect has been widely reported

in a variety of diffusion couples, such as copper-zinc [1, 3, 4], copper-tin [11, 12],

gold-platinum [13, 14, 15], gold-silver [16, 17], and many other types of diffusion

couples [9, 18, 19, 20, 21, 22, 23, 24, 25], as well as in many practical engineering

components, such as solder joints [26, 27, 28], wire bonding [29, 30, 31], composite

materials [32, 33], thin-film devices [34, 35, 36, 37], and heterogeneous alloys [38,

39, 40]. They are observed in the forms of pore formation [9, 41, 42, 43, 44, 32],

deformation [45, 46] near interfaces [47, 48], internal stresses [49, 50], and material

segregation [51, 52, 53, 54, 55]. Figure 1.1 shows examples of various phenomena

related to the Kirkendall effect.

Figure 1.1: (a) Kirkendall voids form near diffusion interface in a Cu-Ni diffusion couple, from
Ref. [42]. (b) Monocrystalline spinel nanotube fabricated by Kirkendall void formation, from
Ref. [61]. (c) Surface deformation near diffusion interface in a Au-Pt diffusion couple, from Ref. [14].
(d) Kirkendall-effect-induced bending in a Ti-Zr sample, from Ref. [50].
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Darken’s analysis [7] was the first and most widely accepted model that explains

the lattice shift caused by vacancy generation and annihilation due to unequal mo-

bilities of the atomic diffusing species. When atomic species with unequal mobility

diffuse, nonzero vacancy flux arises. When the vacancy flux is not constant, it can give

rise to deviations in vacancy concentration. Darken’s model assumes that crystalline

solids contain a sufficient amount of vacancy sources and sinks such that vacancies

can be generated or eliminated everywhere in a crystal to equilibrate vacancy mole

fraction to its thermal equilibrium value. Under this assumption, all excess vacancies

are consumed by internal vacancy sinks immediately after they are generated. As

a result, vacancy concentration remains at equilibrium and is uniform throughout a

solid.

Darken’s theory explains the lattice motion that was observed by Kirkendall, and it

was instrumental in the acceptance of Kirkendalls work on vacancy-mediated diffusion

in substitutional alloys. However, experimental observations suggest that not all

vacancies are annihilated by the internal vacancy sinks. In fact, without vacancy

supersaturation, no void would form, contradicting experimental observations of void

formation. Vacancy supersaturation does occur in mole fractions as high as 1 ∼ 2

% [44], and those vacancies coalesce to form voids during interdiffusion. The void

surfaces then consume vacancies during the void growth stage. This phenomenon is

called the Frenkel effect [10] and provides evidence that Darken’s approximation may

not always be applicable [56, 57, 58].

The Kirkendall porosity can cause engineering problems such as weakening in me-

chanical properties at the wire bonding on integrated circuit boards [29, 30, 31] or

at the bond coat [59, 60] between the thermal barrier coating and the base metal

in turbine blades. Thus, the Kirkendall porosity has been long considered as an

undesirable phenomenon. Recently, there has been renewed interest in utilizing the

Kirkendall effect to fabricate micro/nano hollow objects, such as hollow rods [61, 62]
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and hollow particles [63, 64, 65, 66]. These hollow objects possess potential for ap-

plications such as drug delivery [67], wave guides [68] and light-emitting devices [69].

A core-shell-type diffusion couple is constructed by coating a layer of a slow diffuser

on a fast-diffuser core. As diffusion occurs, the fast diffuser atoms diffuse to the

outer region by exchanging their lattice positions with vacancies. Voids form from

the supersaturated vacancies and then grow within the diffusion couple, resulting in

a hollow object. (See Fig. 1.1(b) for an example of nanotubes fabricated by Kirk-

endall void formation.) This process cannot be described by Darken’s model of the

Kirkendall effect. Some theoretical works have been performed to model the hollow

object formation by excluding the internal vacancy sources and sinks in the diffu-

sion couples [70, 71] so that vacancy concentration can vary from the equilibrium

value. These models assume a quasi-steady-state diffusion of vacancies and atomic

diffusers in the compound layer between fast-diffuser-rich and slow-diffuser-rich re-

gions, and can only be used to predict the thickness of the compound layer. However,

Kirkendall-effect-induced hollow particle formation was also reported in micro-scale

solid-solution alloy particles decades ago [72]. This indicates that the Frenkel effect

itself (not the solid-state reaction in the compound layer) should be the key element

of void growth within such crystalline solid objects.

The Kirkendall effect was also observed along free surfaces [73, 74, 75] and grain

boundaries [36, 76, 77] that can simultaneously serve as fast paths for diffusion and as

primary vacancy sources and sinks due to the loose lattice structure. This enhanced

interdiffusion results not only in inert marker motion but also in surface evolution

and void growth along grain boundaries. Moreover, the Kirkendall effect has recently

been proposed to be responsible for the whisker growth phenomenon in lead-free

solder. The whisker growth process is thought to involve two factors [78]. One

is the compressive stress built in the film layer. The other is the grain boundary

diffusion along the columnar grain surfaces. A whisker grain grows in order to relieve
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compressive stresses in the film layer. This compressive stress can originate from

several possible sources, such as oxide formation and unequal thermal expansion rates

between the film and the substrate. Recently, the Kirkendall effect is suggested to

be one of the stress sources [78]. While stress relaxation provides the energetics for

whisker growth, grain boundary diffusion provides the kinetic path that enables creep

flow along the columnar grain boundaries. However, theoretical investigations on

the subject of Kirkendall-effect-induced stress and Kirkendall-effect-enhanced grain

boundary diffusion have only recently begun (see, e.g., Refs. [79, 80, 81, 82]).

1.2 Diffuse Interface Method

To investigate the phenomena resulting from the Kirkendall effect, a numerical method

capable of tracking shape change and void growth is necessary. Although the con-

ventional sharp interface model and the diffuse interface model are both able to solve

moving interface problems, these pose computational challenges when the geometry

is complex. Therefore, we developed a diffuse interface method for numerical simu-

lations of the Kirkendall effect in higher dimensions (two or three dimensions). For

one-dimensional problems, we employ a sharp interface description, which is adequate

and straightforward to implement with simple geometries and is more computation-

ally efficient.

A diffuse interface model can be traced back to as early as van der Waal’s calcu-

lation of capillary energy across an interface with spatially varying density [83]. Half

a century later, Cahn and Hilliard developed a free energy functional to describe the

total energy of a system containing two phases by using a single order parameter [84].

This order parameter has different values in each phase but is continuously transi-

tioning from the value in one phase to that in the other phase. The free energy of

the bulk in a phase is calculated by assuming a uniformly distributed order param-

eter in that phase. On the other hand, the gradient of the order parameter across
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the two phases, as well as the energy barrier between the two phases, gives rise to

the interfacial energy. The morphology of the phase boundaries is therefore naturally

tracked according to the order parameter redistribution during free energy dissipation

processes. This method is referred to as the phase field method. The evolution of

the system is described by the Cahn-Hilliard equation for conserved order parameters

such as density. Analogously, for non-conserved order parameters such as magnetism

or the structural order parameter, Ginzburg et al. [85] and Allen et al. [86] devel-

oped a model, which is described by the so-called time-dependent Ginzburg-Landau

equation or Allen-Cahn equation. In practice, the equations mentioned above can

be employed for conserved or non-conserved order parameters alone or for coupling

these two types of order parameters to form a family of phase field models.

The most significant advantage of a phase field model is that an explicit track-

ing of the interface is unnecessary. As order parameter profiles evolve, the system

determines the phase distribution and the interfaces automatically. The same equa-

tion (or set of equations) is solved in the entire computational domain containing

different phases represented by the order parameter(s). Conversely, a conventional

sharp interface model requires solving differential equations within each domain of

different phases and matching the boundary conditions at the interfaces. In a free-

boundary problem where interfaces can migrate, a re-meshing process is required in

a conventional sharp interface model and can be computationally intensive. Further-

more, topological changes such as coalescence and breakup of domains are difficult

to handle in such methods. Phase field models are also very flexible in modeling a

wide variety of physical systems by allowing the coupling of multiple physical fields

that enter into the energy expressions. For example, the Allen-Cahn equation can

be coupled with a temperature field to simulate dendritic growth during solidifica-

tion process [87, 88, 89], and the Cahn-Hilliard equation can be coupled with fluid

flow (Navier-Stokes equation) to model two-phase flow dynamics [90, 91]. These
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advantages make phase field models well suited for moving boundary problems in

computational materials science.

Despite these advantages, phase field models are not widely employed in simula-

tions that involve explicit boundary conditions along interfaces. There are only a few

well-recognized cases where phase field models were used in simulations with explicit

boundary conditions at interfaces. For example, in solidification problems, equilib-

rium conditions such as equilibrium temperature or concentration [92, 93] are imposed

at the solid-liquid interfaces where the order parameter field and the temperature field

are coupled via a latent heat term. Except for this type of phase field model, directly

applying boundary conditions at interfaces is rarely used. Despite the fact that Cahn

[94] had suggested a technique to apply boundary conditions at interfaces by includ-

ing an extra energy term in the energy functional three decades ago, practical works

adopting such a concept have only recently been published, e.g., by Warren et al.

[95, 96], who demonstrated the ability of a phase field model to allow explicit bound-

ary conditions at interfaces. In addition to Warren’s work, Bueno-Orovio [97, 98]

proposed a different technique to impose no-flux boundary conditions at interfaces in

a general static diffuse interface model, i.e., numerically assigning internal boundary

conditions within a computational domain on boundaries defined by a static, phase-

field-like function. We further advance this method to include more general boundary

conditions, such as Neumann, Dirichlet, and mixed boundary conditions. By allowing

the coupling between the order parameter and the concentration field, this method is

applied to simulate moving interface problems induced by the Kirkendall effect, such

as surface shape change, void growth, and deformation during diffusion.

1.3 Research Objectives

There are many observations of the phenomena stemming from the Kirkendall effect,

including formations of voids, deformation, and internal stress. These experimental
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observations and measurements provided firsthand evidence and understanding of in-

terdiffusion. However, it is difficult to predict diffusion phenomena involving more

complicated geometries based on experimental observations involving simpler geome-

tries (for example, thin films) alone. Therefore, a reliable model and a numerical

method will be important tools for verification of theories and quantitative predic-

tions. In this dissertation, we propose a new, more rigorous model of the Kirkendall

effect. We consider explicit and localized sources and sinks of vacancies, where vacan-

cies can be supplied or eliminated. We assume that free surfaces and grain boundaries

are more efficient vacancy sources and sinks, and the role of dislocations as a vacancy

source or sink in the bulk of a grain is ignored. This assumption is different from

the current standard model based on Darken’s analysis, where vacancy sources and

sinks are assumed to exist everywhere within a solid. As with Darken’s model, we

assume that sources and sinks act ideally; i.e., any supersaturation or undersaturation

is immediately accommodated at these locations.

The overarching objective of this research is to enhance the understanding of

interdiffusion by developing and applying a rigorous formulation of substitutional dif-

fusion that would properly describe systems without continuous and uniform vacancy

sources. This would involve two main tasks. One is to formulate the theory and math-

ematical models, and the other is to develop flexible numerical methods that allow

simulation of physically realistic systems. Crystalline solids contain explicit vacancy

sources and sinks, such as surfaces, grain boundaries, and dislocations. Diffusion in

the lattice regions other than vacancy sources and sinks should occur through regular

atomic jumps to neighboring vacant sites. The diffusion coefficients of a crystalline

solid with a well-defined lattice structure have been theoretically calculated consid-

ering atomic hops through the lattice structure in the past decades. For example,

analytical derivations were obtained for ideally mixing random alloys [99, 100], and

kinetic Monte Carlo simulations were performed for non-ideal alloys [101]. To apply
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these diffusion coefficients to predict diffusion behavior, a model of concentration evo-

lutions at the continuous scale is required. However, these diffusion coefficients are for

diffusion in lattice structures in the absence of defects serving as vacancy sources and

thus are inappropriate to be employed within the standard Darken’s model, which

cannot distinguish vacancy sources from regular lattice regions. In addition, since

Darken’s equations implicitly include vacancy injection and elimination, the diffusion

coefficients calculated by applying Darken’s equations to experimental measurements

of concentration profiles could be incorrect [102]. Therefore, our model, where the

diffusion process and vacancy injection are treated separately, is expected to provide a

link between the theoretically predicted diffusion coefficients and the macroscopic dif-

fusion phenomena. This model will be used as a tool to identify important physics that

are not revealed using the traditional model and also to provide proper comparisons

between theoretical predictions and experimental measurements at the macroscopic

scale.

To implement the simulations for our model in higher dimensions (two or three

dimensions), we developed a new numerical approach that employs a diffuse inter-

face description that does not require explicit tracking of boundaries between two

domains. This method is promising as an efficient solver for general partial differen-

tial equations with the flexibility of applying boundary conditions with a complicated

geometry within a computational domain. We expect that the simulations of the

Kirkendall-effect-induced surface evolution, void growth, and deformation will pro-

vide an excellent opportunity for examining and verifying the capabilities of this new

method.

1.4 Thesis Outline

This dissertation contains seven chapters: (1) Introduction, (2) Diffusion in Binary

Substitutional Crystalline Solids, (3) One-Dimensional Sharp Interface Simulations,
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(4) Kirkendall-Effect-Induced Grain Boundary Diffusion, (5) Diffuse Interface Ap-

proach for Conventional Modeling, (6) Diffuse Interface Approach for Rigorous Mod-

eling, and (7) Summary, Conclusions, and Future Work.

A brief historical and background review is given in Chapter One, followed by the

research objectives and thesis outline.

In Chapter Two, the flux and diffusion equations governing interdiffusion in binary

alloys are derived from the phenomenological laws for substitutional alloys. The

Darken’s equations are derived by approximating the vacancy concentration to be

uniform and at the thermodynamic equilibrium value, while the rigorous model is

derived without such approximation.

Chapter Three consists of the simulation results of the rigorous model in one-

dimensional sharp interface descriptions in planar and cylindrical symmetries. We

observe the surface and grain boundary motion due to vacancy injection and elimi-

nation at surfaces and grain boundaries, and the results reveal two competing factors

(the Kirkendall effect and the Gibbs-Thomson effect) in void growth dynamics. The

results also show that the Darken’s model is one limiting case in the rigorous model,

and demonstrate the importance of a vacancy source-sink pair in diffusion involving

the Kirkendall effect.

Chapter Four demonstrates a new mechanism of enhanced grain boundary dif-

fusion based on the rigorous model results. Two diffusion modes, unbalanced diffu-

sion mode and intermixing diffusion mode, are identified during interdiffusion. The

Darken’s model reflects only an unbalanced diffusion mode and excludes the inter-

mixing diffusion mode.

In Chapter Five, a smooth boundary method for the standard Darken’s model

with a no-flux boundary condition on the solid-air interface is developed. It pro-

vides an efficient numerical method for simulating the diffusion-induced deformation

phenomena.
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Chapter Six contains simulations of our rigorous model in two dimensions, where

equilibrium vacancy concentration remains only along free surfaces and grain bound-

aries. Preliminary results are presented.

Chapter Seven summarizes the work presented in this thesis and describes the

direction of future work.

12



CHAPTER II

DIFFUSION IN BINARY SUBSTITUTIONAL

CRYSTALLINE SOLIDS

2.1 General Flux Expression

Our starting point is a rigorous description of vacancy-mediated substitutional diffu-

sion in a binary crystalline solid. While two atomic species form such an alloy, three

species in fact exist in an A-B binary system: atomic species A and B, and vacancies

V . Throughout this thesis, we take A as the slow diffuser and B as the fast diffuser.

Irreversible thermodynamics stipulates that the driving forces for diffusion are the

existence of gradients in chemical potentials [103]:

JA = −LAA∇µA − LAB∇µB − LAV∇µV , (2.1a)

JB = −LBA∇µA − LBB∇µB − LBV∇µV , (2.1b)

JV = −LV A∇µA − LV B∇µB − LV V∇µV , (2.1c)

where Ji is the flux vector of the i-th species, whose magnitude is given by the number

of atoms or vacancies crossing a unit area per unit time in the direction of the flow,

Lij is the kinetic transport coefficient, and µi is the chemical potential. According

to Onsager’s reciprocity theorem [104, 105], the kinetic transport coefficients form a

symmetric matrix:

LAB = LBA and LAV = LV A and LV B = LBV . (2.2)
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In a perfect lattice region (containing only dilute vacant lattice sites, and devoid

of dislocations, grain boundaries, and surfaces), the lattice sites are conserved and,

therefore, the net flux must be zero:

JA + JB + JV = 0. (2.3)

This imposes a constraint,

LAV = − (LAA + LAB) and LBV = − (LAB + LBB) , (2.4)

such that two of the three flux equations are sufficient to completely describe the

system:

JA = −LAA∇ (µA − µV ) − LAB∇ (µB − µV ) = −LAA∇µ̃A − LAB∇µ̃B, (2.5a)

JB = −LAB∇ (µA − µV ) − LBB∇ (µB − µV ) = −LAB∇µ̃A − LBB∇µ̃B, (2.5b)

where µ̃i = µi − µV is the chemical potential measured relative to that of vacancies

(i= A or B). As indicated in Ref. [106], a driving force of this form reflects the

fact that substitutional diffusion of an atom within a perfect lattice structure occurs

via positional exchange with a neighboring vacant site. This driving force can be

expressed as

µ̃i =
∂G

∂Xi
, (2.6)

where G is the Gibbs free energy per crystal site of the alloy and Xi is the mole

fraction of the i-th species, with XA +XB +XV = 1.

While a linear relationship between the fluxes and their driving forces, Eq. (2.5),

can be employed to describe concentration evolution, it is more convenient to relate a

flux in terms of experimentally measurable quantities, i.e., concentrations. Invoking
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the chain rule of differentiation, Eq. (2.5) can be rewritten as

JA = − LAA

(

∂µ̃A
∂CA

∇CA +
∂µ̃A
∂CB

∇CB
)

− LAB

(

∂µ̃B
∂CA

∇CA +
∂µ̃B
∂CB

∇CB
)

= −
(

LAA
∂µ̃A
∂CA

+ LAB
∂µ̃B
∂CA

)

∇CA −
(

LAA
∂µ̃A
∂CB

+ LAB
∂µ̃B
∂CB

)

∇CB,
(2.7a)

JB = − LAB

(

∂µ̃A
∂CA

∇CA +
∂µ̃A
∂CB

∇CB
)

− LBB

(

∂µ̃B
∂CA

∇CA +
∂µ̃B
∂CB

∇CB
)

= −
(

LAB
∂µ̃A
∂CA

+ LBB
∂µ̃B
∂CA

)

∇CA −
(

LAB
∂µ̃A
∂CB

+ LBB
∂µ̃B
∂CB

)

∇CB.
(2.7b)

By absorbing the thermodynamic factors and the kinetic coefficients in the diffusion

coefficients, one obtains the following:

JA = −DAA∇CA −DAB∇CB, (2.8a)

JB = −DBA∇CA −DBB∇CB, (2.8b)

where Ci is the concentration of the i-th species and is defined as the number of

atoms per unit volume. These are known as the generalized Fick’s equations for

substitutional diffusion in a perfect crystal. Since each lattice site is occupied by

an atom or a vacancy, the mole fraction (or lattice site fraction) is related to the

concentration by Ci = ρXi, where ρ is the lattice site density, having the same

units as concentration. In a perfect lattice, the number of lattice sites is conserved:

CA + CB + CV = ρ. This provides a constraint on the concentration gradients, such

that

∇CA + ∇CB + ∇CV = 0. (2.9)

Comparing Eqs. (2.7) and (2.8), the diffusion coefficient Dij is related to the kinetic

transport coefficients Lij according to







DAA DAB

DBA DBB






=







LAA LAB

LBA LBB













∂µ̃A/∂CA ∂µ̃A/∂CB

∂µ̃B/∂CA ∂µ̃B/∂CB






. (2.10)

A calculation of the diffusion coefficients requires not only the kinetic transport co-
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efficients, but also the partial derivatives of the chemical potentials − the so-called

thermodynamic factors.

When considering diffusion in a binary alloy, evolution of the concentration of

A and B is important. Practically, however, it is more convenient to describe the

system with the concentrations of vacancies and the fast diffuser. (Numerically, it

is essential to track the vacancy concentration, which is orders of magnitude smaller

than the concentrations of the atomic species.) Using Eqs. (2.3) and (2.9), one can

reformulate Eq. (2.8) to obtain:

JV = −DV V∇CV −DV B∇CB, (2.11a)

JB = −DBV∇CV −DV
BB∇CB, (2.11b)

where the diffusion coefficients are given by DV V = DAA+DBA, DV B = DAA−DAB+

DBA −DBB, DBV = −DBA and DV
BB = DBB −DBA.

2.2 Darken’s Equations

Darken [7] proposed the first analysis relating marker motion to the difference between

the two atomic fluxes in an A-B binary alloy system. Darken postulated that each

atomic species diffuses independently of the other. Thus, each atomic diffuser has its

own diffusion coefficient, and diffusion of each atomic species is driven only by the

gradient of its own concentration. In this case, a binary alloy is assumed to consist of

only two diffusing species, but the fluxes can differ from each other. In this analysis,

two reference frames of the coordinate are introduced in the binary crystalline solid.

One reference frame is fixed with the observer outside the crystal, and is referred to

as the laboratory frame. The other is fixed with the lattice planes, and is referred to

as the lattice frame. The model predicts that the lattice frame moves with a velocity,

v, during diffusion. Therefore, when the lattice frame is labeled with fiducial markers

in a diffusion couple, the motion of the lattice frame can be observed. In this analysis,
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neither the vacancy-mediated diffusion mechanism, nor the origin of marker motion

and its relation to vacancy generation and elimination were explicitly considered.

In a one-dimensional Cartesian coordinate system, diffusion fluxes in the lattice

frame inside an A-B binary alloy are governed by Fick’s First Law as:

JA = −DA
∂CA
∂x

, (2.12a)

JB = −DB
∂CB
∂x

, (2.12b)

where Di is the diffusion coefficient, which can be different for each species. Since

each of the atomic species possesses its own independent diffusion coefficient, these

coefficients are commonly referred to as the intrinsic diffusion coefficients or self-

diffusion coefficients. From the view of an observer fixed in the laboratory frame, the

diffusion fluxes are advected by the moving lattice frame. Thus, the fluxes are given

by

J̃A = JA + vCA = −DA
∂CA
∂x

+ vCA, (2.13a)

J̃B = JB + vCB = −DB
∂CB
∂x

+ vCB. (2.13b)

The rates of concentration change of the diffusers are given by the divergences of the

fluxes according to Fick’s Second Law:

∂CA
∂t

= − ∂

∂x
J̃A =

∂

∂x

(

DA
∂CA
∂x

− vCA

)

, (2.14a)

∂CB
∂t

= − ∂

∂x
J̃B =

∂

∂x

(

DB
∂CB
∂x

− vCB

)

. (2.14b)

Here, there is no distinction between spatial derivatives in the two reference frames

because the local region in the lattice frame is assumed to be a rigid translation of

the laboratory frame, traveling at a velocity, v. The summation of Eq. (2.14a) and

Eq. (2.14b) gives the rate of change of the sum of the atomic concentrations:

∂

∂t
(CA + CB) =

∂

∂x

[

DA
∂CA
∂x

+DB
∂CB
∂x

− v (CA + CB)

]

. (2.15)
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In Darken’s analysis, all lattice sites are assumed to be occupied by either A or B

atoms: CA+CB = ρ. If the lattice density is assumed to remain constant, one obtains

the following relation:

∂CA
∂t

+
∂CB
∂t

= 0 and
∂CA
∂x

+
∂CB
∂x

= 0. (2.16)

Substituting Eq. (2.16) into (2.15) gives:

∂

∂x

[

(DA −DB)
∂CA
∂x

− vρ

]

= 0. (2.17)

Integrating this expression from the left end of the diffusion couple to an arbitrary

point, x, in the diffusion zone, one obtains

(DA −DB)
∂CA
∂x

∣

∣

∣

∣

x

−∞

− vρ

∣

∣

∣

∣

x

−∞

= I, (2.18)

where I is an integration constant. Since the concentration is uniform outside the

diffusion zone, and diffusion only takes place within the diffusion zone,

∂CA
∂x

∣

∣

∣

∣

−∞

= 0 and v

∣

∣

∣

∣

−∞

= 0. (2.19)

This relation provides the boundary conditions for Eq. (2.18), which subsequently

yields I = 0. Equation (2.18) therefore provides the lattice velocity at an arbitrary

point x as:

v(x) =
1

ρ
(DA −DB)

∂CA(x)

∂x
=

1

ρ
(DB −DA)

∂CB(x)

∂x
= −1

ρ
(JA + JB) . (2.20)

Eq. (2.20) indicates that the lattice density of a strictly defined binary alloy remains

constant from an observer’s view only if the local lattice planes in the diffusion zone

shift at a velocity that is proportional to the difference between the two intrinsic

diffusion coefficients, or, more precisely, to the difference between the two diffusion

fluxes. This relation is commonly known as Darken’s First equation.

With this expression of lattice velocity, the rates of concentration evolution within
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the diffusion zone from an observer’s view, Eq. (2.14), are then reformulated as

∂CA
∂t

=
∂

∂x

[(

XBDA +XADB

)

∂CA
∂x

]

=
∂

∂x

(

D̃
∂CA
∂x

)

, (2.21a)

∂CB
∂t

=
∂

∂x

[(

XADB +XBDA

)

∂CB
∂x

]

=
∂

∂x

(

D̃
∂CB
∂x

)

. (2.21b)

Each of these expressions for the rate of concentration evolution now depends only on

its concentration gradient and a diffusion coefficient. These expressions have a form

identical to that of Fick’s Second Law. The coefficient D̃ is a combination of the two

intrinsic diffusion coefficients. This factor reflects the fact that, from the observer’s

standpoint, the process of concentration homogenization depends on diffusion of both

species. Therefore, D̃ is referred to as the interdiffusion coefficient, and the relation

D̃ = XADB +XBDA is known as Darken’s second equation. Equation (2.21) can be

solved to predict the evolution of the concentration profiles.

The result of Darken’s analysis described above has been widely employed to

experimentally determine intrinsic diffusion coefficients. This analysis is considered

to be the standard model describing marker motion resulting from interdiffusion in

systems with two components having unequal mobilities. By measuring the concen-

tration variation along the diffusion axis as a function of time and by comparing

it to the prediction based on Eq.(2.21), D̃ can be extracted. Marker velocities can

also be measured by determining the marker position as a function of time. There-

fore, the difference between the two intrinsic diffusion coefficients can be obtained

according to Eq. (2.20). By using the measured interdiffusion coefficient and the

difference between intrinsic diffusion coefficients, the intrinsic diffusion coefficients of

the binary-alloy components can be determined.

While Darken’s analysis starts from Fick’s First Law for fluxes, Eq. (2.12), these

fluxes must be consistent with the generalized flux expressions, Eq. (2.5). If there are

no vacancies and no interstitial diffusion is possible, diffusion can only take place via

direct exchange of atoms located next to each other or by a ring-rotation mechanism
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that involves simultaneous motion of more than two atoms. Thus, the total flux of the

diffusers must be zero relative to the lattice planes: JA+JB = 0. However, according

to Darken’s analysis of this case, there would be no lattice shift, as pointed out by

Bardeen [107].

To resolve this apparent conflict, Bardeen performed the following analysis [107].

In a crystalline solid containing A atoms, B atoms, and vacancies, the Gibbs-Duhem

relation is given by XAdµA + XBdµB + XV dµV = 0. This relation can be reduced

to XAdµA + XBdµB = 0 if one makes the additional assumption that dµV = 0.

Thermodynamically, this means that adding or removing vacancies to or from lattice

sites does not change the chemical potential for vacancies, i.e., µV is constant. This

condition could be achieved by assuming there is a sufficient concentration of very

efficient vacancy sources and sinks that maintain the vacancy concentration at its

equilibrium value instantaneously. In this case, terms proportional to the ∇µV can

be dropped, and one constraint relating ∇µA to ∇µB by the mole fractions emerges.

Equation (2.5) can then be simplified to

JA =

(

LAA
XA

− LAB
XB

)

XA∇µA = −DA∇CA, (2.22a)

JB =

(

LBB
XB

− LAB
XA

)

XB∇µB = −DB∇CB, (2.22b)

where the intrinsic diffusion coefficients Di can now be linked to the kinetic transport

coefficients and thermodynamic factors by

DA =

(

LAA
XA

− LAB
XB

)

XA
∂µA
∂CA

, (2.23a)

DB =

(

LBB
XB

− LAB
XA

)

XB
∂µB
∂CB

. (2.23b)

These results link the fundamental flux expressions, Eq. (2.5), to the phenomenolog-

ical Ficks First Law, Eq. (2.12). These results also reveal that, in multicomponent

systems, the cross terms of the kinetic coefficients play a significant role in the deter-
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mination of the intrinsic diffusivities. Furthermore, these relations show that Darken’s

equations only hold true when the vacancy concentration remains at its equilibrium

value throughout a crystal via the action of vacancy sources and sinks.

2.3 Rigorous Model

When separations between vacancy sources and sinks are larger than a typical vacancy

migration distance over the diffusion time scale, vacancies can no longer be assumed

to generate or vanish throughout the crystalline solid. Instead, vacancies are injected

or eliminated only at discrete sources and sinks. In this case, the assumptions that

the vacancy chemical potential is constant and that the vacancy concentration is

at equilibrium are no longer valid. The vacancy concentration can deviate from its

equilibrium value according to the governing diffusion mechanisms. In this case, the

models must explicitly consider the kinetic process of vacancy diffusion in the lattice

network.

In the present treatment, we will assume that vacancy sources and sinks are ideal.

An ideal vacancy source or sink will instantaneously accommodate any supersatura-

tion of vacancies in its immediate vicinity so that the local vacancy concentration

always equals the equilibrium vacancy concentration. Regions where the vacancy

mole fraction is specified can act as sources, where vacancies are created, or as sinks

(negative sources), where vacancies are annihilated. Vacancy generation will lead

to an expansion of the local volume by adding new lattice planes to the adjacent

crystal, while vacancy annihilation at sinks will lead to a contraction of the local

volume resulting from the elimination of lattice planes. In reality, dislocations and

grain boundaries may not act as ideal vacancy sources and sinks. Some degree of va-

cancy supersaturation may be needed before these features can generate or annihilate

vacancies.

The vacancy concentration in a crystalline solid containing vacancy sources and
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sinks is defined as the number of vacancies per unit volume:

CV =
NV

U
, (2.24)

where NV is the number of vacancies and U is an arbitrary control volume element.

The control volume element is taken at an arbitrary point in the lattice frame. Thus,

the velocity relative to the laboratory frame is not included in the flux expressions.

The rate of change in the vacancy concentration is obtained by taking the time deriva-

tive of Eq.(2.24):

∂CV
∂t

=
∂

∂t

(

NV

U

)

=
1

U

∂NV

∂t
− NV

U2

∂U

∂t
. (2.25)

Here, the second term in Eq. (2.25) will not vanish because the volume of the arbitrary

control volume element can change due to vacancy generation or annihilation. The

rate of change in the number of vacancies is due to two factors. One factor accounts

for the difference between incoming and outgoing vacancy fluxes, and is given by the

divergence of the vacancy flux. The other factor accounts for the vacancies produced

by the vacancy sources within the control volume:

∂NV

∂t
= (−∇ · JV + g)U, (2.26)

where g is the vacancy generation rate per unit volume. Similarly, the rate of change

of the total number of all three species is expressed by

∂

∂t
(NV +NA +NB) = (−∇ · JV + g −∇ · JA −∇ · JB)U. (2.27)

Lattice site conservation, Eq. (2.3), is assumed on all faces of the control volume.

Thus, the cumulative divergence of the fluxes is zero (∇ · JA + ∇ · JB + ∇ · JV = 0).

The total number of all species is related to the volume by NV +NA+NB = ρU . Since

substitutional diffusion tends to take place when the diffusers have similar atomic sizes

and the vacancy mole fraction is very small compared to the mole fractions of the

atomic species, it is suitable to assume that the lattice density remains constant. Eq.
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(2.27) is thus rewritten as

∂U

∂t
=
g

ρ
U. (2.28)

Substituting Eqs. (2.26) and (2.28) into (2.25), one obtains

∂CV
∂t

= −∇ · JV +

(

1 − CV
ρ

)

g, (2.29)

where CV /ρ = XV . Following a similar procedure as in the derivation of Eq. (2.29),

the rate of change of the B concentration is expressed by

∂CB
∂t

=
∂

∂t

(

NB

U

)

=
1

U

∂NB

∂t
− NB

U2

∂U

∂t
= −∇ · JB − CB

ρ
g, (2.30)

where CB/ρ = XB. Within a perfect lattice region with no vacancy sources or

sinks, the vacancy generation rate is zero (g = 0). In this case, Eqs. (2.29) and

(2.30) simplify to the standard diffusion equations for vacancy and B concentrations,

respectively:

∂CV
∂t

= −∇ · JV and
∂CB
∂t

= −∇ · JB. (2.31)

Bulk diffusion within the perfect lattice regions between explicit vacancy sources and

sinks will then be governed by Fick’s Second Law, Eq. (2.31).

In the derivations of Eqs. (2.29) and (2.30), we do not specify the properties of the

vacancy sources and sinks. These expressions should be valid for both ideal and non-

ideal vacancy sources and sinks in the bulk (dislocations) or at boundaries (surfaces

and grain boundaries). A typical non-ideal source or sink can be modeled by having

the generation rate be proportional to (Ceq
V − CV )/τV , where τV is the lifetime of a

vacancy, as proposed in Ref. [58]. In a macroscopic view, the vacancy lifetime in the

bulk can be related to the ratio between the average vacancy source-sink distance

and the vacancy drift velocity, defined as the flux divided by the concentration. Since

our aim is to investigate vacancy diffusion in the presence of discretely distributed

sources and sinks, we will defer the consideration of non-ideal sources and sinks to

future work. Moreover, the above derivations are developed under the assumption
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that the lattice density remains constant, which stems from two implicit assumptions.

First, it is assumed that the molar volumes of all species in perfect lattice regions are

equal. Analogous derivations that incorporate molar volume variations and interstitial

fluxes are also available [108, 109, 110]. Second, the solid is assumed to be completely

incompressible; that is, any increase or decrease in lattice sites immediately results

in volume changes without elastic deformation. This assumption is acceptable when

the geometry of the diffusion couple is thin and planar, such that a rigid shift can

naturally take place. With more complex geometries, however, elastic deformation

of the lattice structure can occur. Such deformation can result in an elastic stress,

which can alter diffusion phenomena in some material systems that can sustain a

large strain. Here, we ignore these factors for simplicity, which is acceptable with

simple, small objects or for systems that easily deform plastically. This assumption

has been made widely in the modeling of Kirkendall-effect-induced deformation [81].

At vacancy sources, g can be positive or negative depending on whether vacancies

are injected into or eliminated from the crystal. For an ideal vacancy source or

sink, the vacancy concentration at the source/sink position remains at the constant

equilibrium value; thus, the time derivative goes to zero in Eq. (2.29). The vacancy

generation rate is obtained by

g(rs) =
∇ · JV (rs)

1 −Xeq
V

, (2.32)

where rs is the position vector of the vacancy source or sink, and Xeq
V is the va-

cancy mole fraction at thermodynamic equilibrium. By substituting Eq. (2.32) into

(2.30), the rate of change of the B concentration at vacancy sources and sinks can be

obtained:

∂CB
∂t

= −∇ · JB −XB
∇ · JV
1 −Xeq

V

. (2.33)

Equation (2.33) can be reformulated by applying lattice conservation, XA + XB +
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Xeq
V = 1, to obtain

∂CB
∂t

= − 1

1 −Xeq
V

∇ · (XAJB −XBJA) , (2.34)

which is similar to the equation obtained by directly substituting Eq. (2.20) into

(2.14b), ∂CB/∂t = −∇ · (XAJB − XBJA), except for the factor 1/(1 − Xeq
V ), which

accounts for the nonzero vacancy mole fraction. When Xeq
V = 0, the above two

equations become identical. Thus, the analysis again shows that Darken’s model

is only valid when there are uniformly distributed ideal sources/sinks in the solid.

Here, the divergence operator should be considered to be a change in flux over a

characteristic thickness of the source or sink region (which is of the lattice parameter

scale). If vacancy sources and sinks are located at a surface or grain boundary, this

value should be divided by the thickness of that region.

Now let us consider the local volume change in the immediate vicinity of a vacancy

source or sink due to vacancy generation or annihilation. When lattice sites are

created or annihilated, the rate of the fractional dilatational volume change is given

by the vacancy generation rate according to Eq. (2.28):

ε̇Ω =
1

U

∆U

∆t
=
g

ρ
. (2.35)

At an arbitrary point inside a solid, this expression applies to the three principal

axes in a tensorial form: ε̇Ωδij , where δij is the Kronecker delta (δij = 1 for i = j,

and δij = 0 for i 6= j). To maintain a constant lattice site density, this volume

expansion/contraction will result in a lattice flow that moves fiducial markers in the

laboratory frame.

At a free surface, lattice planes are generated or eliminated layer by layer parallel

to the surface. The velocity of the surface is obtained by dividing the overall volume
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change per unit time of an arbitrary cubic region by its cross-sectional area:

vn =
∆U

S∆t
=
gU

ρS
=
g

ρ
lb, (2.36)

where S is the cross-sectional area of the control volume element (parallel to the free

surface), and lb is the length of the control volume element perpendicular to the free

surface (taken to be small). In a vector form, this expression is given by vn = nε̇Ωlb,

where n is the unit normal vector of the surface. In a simpler case where no tangential

diffusion is allowed, Eq. (2.36) can be written as

vn =
1

(1 −Xeq
V )ρ

∂JV
∂n

lb. (2.37)

The product of ∂JV /∂n and lb reflects that the velocity of a surface is, in fact, pro-

portional to a jump in flux across the subsurface layer, as is commonly recognized.

Therefore, we obtain:

vn =
1

(1 −Xeq
V )ρ

[JV ]+
−
, (2.38)

where [ ]+− denotes the jump (change) of the flux across the surface region in the

direction perpendicular to the surface. For convenience in numerical solutions, we

solve Eq. (2.37), where a finite value of lb is used. Physically, the value of lb can be

arbitrary as long as it is smaller than the characteristic thickness of the surface region

acting as a source/sink. In practice, lb can be taken to be larger than this limit, as

long as the bulk changes of concentration fields over lb are small enough, which should

hold when lb is much smaller than the typical diffusion length of the system.

For a grain boundary, the velocity of the grain boundary with respect to the grain

into which vacancies are injected (or from which they are eliminated) can be similarly

obtained. Since a grain boundary adjoins two grains, there are two velocities, vα and

vβ, associated with each grain, defined relative to the corresponding grains. The net
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velocity of the second grain with respect to the first grain is thus

vβ−α = vβ − vα. (2.39)

When calculating the evolution of a planar system containing grain boundaries, the

velocities of all grains with respect to one grain assumed to be fixed to the refer-

ence frame can be calculated from the individual values of relative velocities [111].

Alternatively, plastic deformation can be calculated based on the assumption of in-

compressible viscous flow for more general cases.

2.4 Kinetic Transport Coefficient

In a substitutional crystalline solid, atoms are located in a well-defined lattice net-

work with small thermal fluctuations. Occasionally, atoms change their positions by

moving to vacant neighboring positions. These quantized motions are referred to as

diffusive hops, and take place through substitutional lattice networks. When aver-

aged over time, the mean-square atomic hop distances of their trajectory can serve

as an indication of their kinetic transport coefficients as in, for example, the Einstein

formulation [112] for a random-walk process. The probability of a successful diffusive

hop depends on the energy of local states and the frequency of thermal vibrations,

and can be described from a statistical point of view [113]: Γ = ν exp (−∆Eb/kBT ),

where ν is the vibration prefactor with units of Hz, ∆Eb is the activation barrier,

kB is the Boltzmann constant, and T is the absolute temperature. Since atoms only

exchange positions with neighboring vacant sites, the next hop is related to the pre-

vious hop. Thus, the hop trajectories will not follow a true random walk process, and

the mean-square displacement for a general sequence of hops needs to be modified by

a correlation factor.

In this dissertation, we select a thermodynamically ideal random alloy system

where the interactions between A, B, and V are assumed to be identical for simplic-
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ity without the loss of important physics. Analytical expressions of the correlation

factors for a thermodynamically ideal random binary substitutional alloy have been

derived by Manning [99] based on the vacancy-mediated mechanism for atomic hops.

An equivalent expression has also been analytically derived by Moleko [100], using a

self-consistent formalism. The kinetic transport coefficients for such a system are ex-

pressed in terms of the atomic hop frequencies of the diffusing species, the composition

of the alloy, and parameters that depend on the lattice structure:

LAA =
λa2

ΩkBT
XVXAΓA

(

1 − 2XBΓA
Λ

)

, (2.40a)

LBB =
λa2

ΩkBT
XVXBΓB

(

1 − 2XAΓB
Λ

)

, (2.40b)

LAB = LBA =
2λa2

ΩkBT
XV

XAXBΓAΓB
Λ

, (2.40c)

where λ is the geometric factor that depends on the structure of the lattice, a is the

atomic hop distance, Ω = 1/ρ is the atomic volume, Γi is the hop frequency of the

i-th diffusing species,

Λ =
1

2
(F + 2) (XAΓA +XBΓB) − ΓA − ΓB + 2 (XAΓB +XBΓA) +

√

[

1

2
(F + 2) (XAΓA +XBΓB) − ΓA − ΓB

]2

+ 2FΓAΓB,

(2.41)

and F = 2f0/ (1 − f0), where f0 is the geometric correlation factor. The factor

(λa2XVXiΓi)/ΩkBT , in Eq. (2.40) is the uncorrelated kinetic coefficient in a cubic

system. For a single component face-centered-cubic (fcc) crystal, λ = 1/6 and f0 =

0.7815.

In a thermodynamically non-ideal alloy where atoms may develop a short- or

long-range order, the kinetic transport coefficient needs to be statistically evaluated

by averaging the atomic hopping trajectories in a form analogous to the well-known
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Einstein equation [114]:

Lij =

〈(

∑

p ∆~Ri
p (t)

)

·
(

∑

q ∆~Rj
q (t)

)〉

2dtMΩkBT
, (2.42)

where ∆~Ri
p is the vector linking the end points of the trajectory of atom p of species

i after time t, d is the dimensionality of the lattice network, and M is the total

number of lattice sites. The angle brackets denote an ensemble average for the system

at equilibrium. For a thermodynamically ideal binary alloy, the kinetic transport

coefficients predicted by Eq. (2.42) have been shown to be in excellent agreement

[115, 106] with that predicted by analytical theory, Eq. (2.40). Figure 2.1 shows an

example of the kinetic transport coefficients for an ideal random binary alloy predicted

by kinetic Monte Carlo simulations and the analytical formulae in cases where the

fast-to-slow atomic hop frequency ratio varies from 1 to 100. The results from the

two different approaches match very well. When the two atomic diffusing species

have equal hop frequency (i.e., ΓA = ΓB), the kinetic transport coefficient matrix is

symmetric and their values are also symmetric across XB = 0.5. The diagonal terms

(LAA and LBB) are roughly one order of magnitude larger than the off-diagonal term

(LAB = LBA), in agreement with Ref. [107]. When the fast-to-slow atomic hop

frequency ratio increases, this symmetry is broken. Figure 2.1 clearly shows that the

kinetic transport coefficient of the fast diffuser increases as its hop frequency, ΓB, is

increased.

While the kinetic transport coefficients can describe diffusion when the chemical

driving force is known, a diffusivity that takes into account thermodynamic factors is

required when the fluxes are expressed in terms of the concentration gradients. In an

ideal, random alloy, only the configurational entropy is significant in the Gibbs free

energy. According to the ideal mixing condition, the free energy per lattice site of an
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Figure 2.1: The kinetic transport coefficients evaluated for a thermodynamically ideal binary random
alloy: (a) ΓB = ΓA, (b) ΓB = 10ΓA, and (c) ΓB = 100ΓA. The analytically evaluated values are
depicted in solid lines. The circular markers depict the values obtained by curve fitting results of
Kinetic Monte Carlo simulations provided by Prof. Anton Van der Ven (Ref. [106]). The vacancy
mole fraction used in the calculation is 0.002.
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A-B alloy containing vacancies is given by

G (XA, XB) = kBT [XA ln(XA) +XB ln(XB) +XV ln(XV )] . (2.43)

By substituting Eq. (2.43) into (2.6) and (2.10), the diffusion coefficients appearing

in Eqs. (2.8) and (2.11) can be obtained. Figure 2.2 shows the diffusion coefficients

in a perfect lattice region for a thermodynamically ideal, random alloy analytically

calculated using the above-mentioned procedure. The parameters used to calculate

the diffusion coefficients are listed in Table 3.1. As can be seen in Figs. 2.2(a) and

(c), the diffusion coefficients accompanying vacancy concentration gradients (DV V

and DBV ) are highly dependent upon the mole fraction XB, indicating that vacancies

are more mobile when they are more likely to have neighboring fast diffuser atoms.

On the other hand, for a dilute vacancy concentration (XV < 10−4), the dependence

of DV V and DBV on the vacancy mole fraction is negligible, showing that vacancies

rarely interact with each other at this limit. The diffusion coefficients associated with

the fast diffuser mole fraction, DV B and DV
BB, are almost linearly proportional to XV .

This result reflects the fact that the fast diffuser is more mobile when it has a higher

chance of exchanging with vacancies. Although DV B and DV
BB clearly increase as XB

increases, slow increases are observed in both the low and high XB regimes. This

phenomenon is more pronounced in Fig. 2.2(d). In the low XB region, vacancies can

only exchange with the slow diffuser; thus, DV
BB is low. The rapid increase of DV

BB

in the intermediate region of XB concentration reflects a percolation transition of the

lattice network as the concentration changes. Once the structure is percolated by B

atoms, DV
BB again increases relatively slowly.

2.5 Vacancy Sources and Sinks

It is well known that expansion and marker motion are larger in a polycrystalline

diffusion couple than they are in a single crystal diffusion couple made of the same
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(a) (b)

(c) (d)

Figure 2.2: Diffusion coefficients determined by self-consistent phenomenological kinetic coefficients
for a perfect binary crystal: (a) and (b) ΓB = 10ΓA; (c) and (d) ΓB = 100ΓA. The physical
parameters used for the calculation are listed in Table 3.1.
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material [116, 43, 14]. These increases are not believed to originate from grain bound-

ary diffusion because grain boundary diffusion was not significantly enhanced in these

systems. Moreover, a marked reduction in porosity was also reported for polycrys-

talline specimens during diffusion [43, 117], especially in regions within tens of mi-

crons of grain sizes. These results demonstrate that grain boundaries are important

sources and sinks of vacancies in diffusion involving the Kirkendall effect, as indicated

by Balluffi’s work [43].

It is commonly accepted that both grain boundaries and dislocations serve as

sources and sinks of vacancies that mediate substitutional diffusion. In pure metals

with a low stacking fault energy, such as pure gold, dislocations are highly efficient

vacancy sources/sinks due to the high dislocation density (∼ 2.5×107 cm−2) and the

relatively low energy barrier for dislocation climb [118]. However, the efficiency of

dislocations as vacancy sources/sinks decreases dramatically in alloys. For example,

experimental data have shown that the dislocation’s source/sink efficiency decreases

by a factor of thousands in a Au 0.1 at.% Ag alloy compared to pure gold, mainly

because of the large energy barrier for dislocation climb [119]. Moreover, in met-

als with a large stacking fault energy, such as aluminum, the dislocation density is

low (∼ 2.5 × 105 cm−2), which makes grain boundaries more important as vacancy

sources/sinks. Here, we perform a simple analysis to determine when grain boundaries

dominate dislocations as vacancy sources/sinks in aluminum alloys.

A void-free or staking fault-free zone usually forms in the vicinity of grain bound-

aries in quenched metals [120, 121, 122, 123], implying that grain boundaries are

usually more efficient than dislocations at generating and eliminating vacancies. In

spite of this observation, we assume dislocations and grain boundaries to be equally

efficient vacancy sources/sinks in this analysis. A parameter, ̟, is defined as the

number of vacancies accommodated by vacancy sources and sinks per unit area, such

that the total number of vacancies accommodated by a grain boundary in a charac-
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teristic time is given by

Qgb = ̟gbAgb
tc
τgb
, (2.44)

where the subscript ‘gb’ denotes quantities at grain boundaries, tc is a characteristic

time, and τgb is the average diffusion time of vacancies within a grain to a grain

boundary. If R is the radius of a representative grain, the grain boundary area is

Agb = 4πR2 when approximating the grain as a sphere. The diffusion time is related

to the effective diffusivity by τgb = R2/Deff . Analogously, we can describe the total

number of vacancies accommodated by dislocations in a characteristic time as

Qd = ζdld
tc
τd
, (2.45)

where the subscript ‘d’ denotes quantities at dislocations, ζd is the number of vacancies

accommodated by dislocations per unit length, ld is the total length of dislocations

in the volume considered, and τd is the vacancy diffusion time over a typical distance

between a vacancy and a dislocation. The product of the dislocation length and the

Burger’s vector can be considered to be the effective area of the dislocations. Thus,

Eq. (2.45) can be rewritten to resemble Eq. (2.44):

Qd =
ζd
b
ldb
tc
τd

= ̟dldb
tc
τd
, (2.46)

where b is the Burger’s vector. For a spherical grain, ld = (4πR3/3)ρd, where ρd is

the dislocation density. The typical distance between a vacancy and a dislocation is

approximated by rd =
√

1/πρd. Therefore, the typical diffusion time for vacancies

to diffuse to a dislocation is obtained by τd = r2
d/Deff = 1/πρdDeff . Dividing Eq.

(2.44) by (2.46) and substituting these quantities, we obtain

Qgb

Qd
=

3̟gb

π̟dR3ρ2
db
. (2.47)

Since we assume that grain boundaries and dislocations have equal efficiencies (̟gb =

̟d), using ρd = 2.5 × 105 cm−2 and b = 2.9 × 10−8 cm typical for aluminum alloys,
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Eq. (2.47) gives the ratio of the number of vacancies accommodated by the grain

boundary to that accommodated by dislocations:

Qgb

Qd
=

5.3 × 10−4 cm3

R3
. (2.48)

Therefore, when R is smaller than 0.081 cm (810 µm), grain boundaries accommodate

more vacancies than dislocations. This relation also shows that, as the average grain

radius decreases, the ability of grain boundaries to accommodate vacancies increases

as the cube of the radius; thus, the importance of grain boundaries increases as the

size of the grain decreases. If the dislocation density is small or the ratio of grain

boundary efficiency to dislocation efficiency is large, the average grain size at which

more vacancies will be accommodated by grain boundaries is even larger. Moreover,

since dislocations are less efficient vacancy sources and sinks in alloys, the assumption

that grain boundaries are the dominant vacancy sources and sinks should be valid in

a wide range of metallic alloys with grain size on a micron scale. For metals having

1000 times higher dislocation density (ρd = 2.5 × 108 cm3), R is reduced to 8.1 µm,

which is still a realistic grain size, though much smaller than the prediction for a

typical alloy. This analysis also shows that a rigorous treatment of the Kirkendall

effect is essential for submicron-scale objects.
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CHAPTER III

ONE-DIMENSIONAL SHARP INTERFACE

SIMULATIONS

A model was examined on the continuum level for effectively one-dimensional (1D)

diffusion couples that consist of a slow diffuser (A), a fast diffuser (B), and vacancies

(V ). For the 1D planar case, the fast diffuser initially occupies the left half of the

diffusion couple, while the slow diffuser occupies the right half. For the cylindrical

case, the fast diffuser is initially located in the center region, while the slow diffuser is

located in the outer region. The vacancy concentration is initially assumed to be at

equilibrium value throughout the diffusion couple. We model a thermodynamically

ideal alloy with complete solubility for all diffusion species such that no inter-metallic

compound, precipitate, or void will form during diffusion. For perfect lattice regions,

the Gibbs free energy is given by Eq. (2.43). The physical parameters of this arbitrary

alloy used in the simulations are listed in Tables 3.1 and 3.2. These quantities are

used to evaluate the diffusion coefficients for the alloy, which are shown in Fig. 2.2.

The evolution of the concentration is simulated for cases with two different ratios

between hop frequencies of B and A: ΓB = 10ΓA and ΓB = 100ΓA. In an effective

1D calculation, the divergence operator is givens as

∇ ·D∇C =
1

rp
d

dr

(

rpD
dC

dr

)

, (3.1)

where r is the coordinate variable. In the planar case, r is the coordinate variable

along the x axis. In the cylindrical case, r is the coordinate variable along the radial
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direction. The exponent p is given by 0 and 1 for planar and cylindrical geometries,

respectively. (For spherical symmetry, p = 2.) In order to characterize the system

with respect to its final equilibrium state during the diffusion process, we define a

parameter

Ξ = 1 − θ = 1 −

√

∫ ro(t)

ri(t)
[CB(r, t) − Ceq

B ] rpdr
√

∫ ro(t)

ri(0)
[CB(r, 0) − Ceq

B ] rpdr
, (3.2)

where θ is the deviation parameter, ri is the left end of the domain, ro is the right end

of the domain, and Ceq
B is the average concentration over the entire diffusion couple

(which is the final equilibrium B concentration):

Ceq
B =

∫ ro(0)

ri(0)
CB(r, 0)rpdr
∫ ro(0)

ri(0)
rpdr

. (3.3)

In a cylindrical geometry, ri and ro will be the inner and outer radii, respectively.

Therefore, Ξ = 0 for the initial state, and Ξ = 1 for the final equilibrium state.

3.1 One-Dimensional Planar System

In the one-dimensional planar simulations, the fast diffuser initially occupies the left

half of the diffusion couple, while the slow diffuser occupies the right half. Equa-

tion (2.31) can be non-dimensionalized by scaling with a reference diffusion coefficient

D0 and the lattice density ρ, and defining a time scale τ for a given length scale l as

τ = l2/D0:

∂ρXV

∂τ t̂
=

∂

∂lx̂

(

D̂V VD0
∂ρXV

∂lx̂

)

+
∂

∂lx̂

(

D̂V BD0
∂ρXB

∂lx̂

)

=⇒ D0ρ

l2

(

∂XV

∂t̂

)

=
D0ρ

l2

[

∂

∂x̂

(

D̂V V
∂XV

∂x̂

)

+
∂

∂x̂

(

D̂V B
∂XB

∂x̂

)]

=⇒ ∂XV

∂t̂
=
∂

∂x̂

(

D̂V V
∂XV

∂x̂

)

+
∂

∂x̂

(

D̂V B
∂XB

∂x̂

)

,

(3.4a)
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∂ρXB

∂τ t̂
=

∂

∂lx̂

(

D̂BVD0
∂ρXV

∂lx̂

)

+
∂

∂lx̂

(

D̂V
BBD0

∂ρXB

∂lx̂

)

=⇒ D0ρ

l2

(

∂XB

∂t̂

)

=
D0ρ

l2

[

∂

∂x̂

(

D̂BV
∂XV

∂x̂

)

+
∂

∂x̂

(

D̂V
BB

∂XB

∂x̂

)]

=⇒ ∂XB

∂t̂
=
∂

∂x̂

(

D̂BV
∂XV

∂x̂

)

+
∂

∂x̂

(

D̂V
BB

∂XB

∂x̂

)

,

(3.4b)

where t̂ = t/τ , x̂ = x/l, Xi = Ci/ρ, and D̂ij = Dij/D0 are the non-dimensionalized

quantities for time, space, concentration, and diffusion coefficients, respectively. Here,

we choose l = 1 µm, D0 = 1.0 × 10−10 cm2s−1 and thus τ = 1.0 × 102 s to demon-

strate the concentration evolution on realistic length and time scales. The diffusion

coefficients are calculated using the physical parameters listed in Table 3.1. These

equations are numerically solved for the mole fraction evolution in the bulk regions

between vacancy sources and sinks by using the central finite difference scheme in

space and the explicit Euler scheme in time. At the locations of vacancy sources and

sinks, the B mole fraction is calculated semi-implicitly by

XB(t̂+ ∆t̂) =
(1 −Xeq

V )[XB(t) − ∂ĴB(t̂)/∂x̂∆t̂]

(1 −Xeq
V ) + ∂ĴV /∂x̂∆t̂

, (3.5)

where ĴV = −D̂V V ∂XV /∂x̂− D̂V B∂XB/∂x̂ and ĴB = −D̂BV ∂XV /∂x̂− D̂V
BB∂XB/∂x̂

are the non-dimensionalized fluxes. Equation (3.5) is obtained from Eq. (2.33) by

taking B concentration appearing on the right-hand side at t+ ∆t, while calculating

other quantities at t (to be consistent with the derivation in Appendix A). Vacancy

mole fraction is kept at its equilibrium value at the vacancy sources and sinks, which,

along with the B mole fraction calculated from Eq. (3.5), serves as the boundary

conditions for solving Eq. (3.4) in the bulk regions. During simulations, spacings of

grid points containing sources and sinks of vacancy evolve due to the creation and

elimination of vacancies. The grid spacing is updated in time according to Eq. (2.36):

û(t̂+ ∆t̂) = û(t̂)[1 + ĝ(t̂)∆t̂] = û(t̂)

[

1 +
∂ĴV (t̂)/∂x̂

1 −Xeq
V

∆t̂

]

, (3.6)
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where ĝ = g/(ρτ) is the non-dimensionalized vacancy generation rate. Since these

above equations are calculated in the local lattice frame, it is necessary to set a

global reference frame in order to describe the volume changes in the system. Be-

cause the choice of the reference frame only presents a rigid translation of the system

(not altering the physics), we set it at the center of the initial computation do-

main. The diffusion couple is assumed to be a completely incompressible material.

The displacement of each grid point is calculated by summing all displacements due

to local volume changes occurring between the grid point and the reference frame:

x̂(t̂+ ∆t̂) = x̂(t̂) +
∑

k ∆ûk(t̂), where the index k denotes the k-th vacancy source or

sink between the grid point and the reference point. To ensure accuracy, we insert

an additional grid point when the grid size becomes 1.5 times the initial grid spacing

and eliminate a grid point when the size becomes less than one half of the initial

grid spacing. The changes in grid spacing occur only at the points of the sources and

sinks; thus, the spacings of grid points without vacancy sources or sinks remain at

their initial size. Throughout the simulations, the elastic effects caused by volume

changes and interactions between defects are excluded for simplicity; we only consider

purely diffusional processes. Furthermore, since the equations are solved in a moving

coordinate system, explicit advection is not required.

Lattice Constant (al) 4.05 Å
Atomic Volume per Lattice Site (Ω) 1.661×10−23 cm3

Lattice Site Density (ρ) 6.021×1022 cm−3

Equilibrium Vacancy mole fraction (Xeq
V ) 4.6×10−6

Hopping Frequency of Slow diffuser (ΓA) 5.8×107 Hz

Table 3.1: Material properties used in the computer simulations. The lattice size is similar to that
of aluminum.

3.1.1 Isolated Single Crystal

In the first simulation, the crystalline alloy is assumed to contain no vacancy sources,

such as grain boundaries or dislocations. Therefore, no lattice sites are created or
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Figure 3.1: Mole fraction profiles, in an isolated single-crystal solid, of (a) B atoms and (b) vacancies
for ΓB = 10ΓA; (c) B atoms and (d) vacancies for ΓB = 100ΓA. The concentration profiles at various
times correspond to Ξ = 0, 0.01, 0.2, 0.4, 0.6, 0.8, and 0.999, which is defined in Eq. (3.2). For
the vacancy concentration profiles, the initial vacancy concentration profile coincides with the final
vacancy concentration profile.

40



eliminated during substitutional diffusion; thus, no volume changes are allowed. Fur-

thermore, the injection or ejection of vacancies at the free surfaces from the envi-

ronment is also precluded; that is, the crystal is assumed to be isolated from its

environment. Figure 3.1 shows the mole fraction evolution of the fast diffuser and

the vacancy for the thermodynamically ideal model alloys having ΓB = 10ΓA and

ΓB = 100ΓA. In the early stage, the vacancies diffuse from the A-rich region to the

B-rich region in the same direction as the slow diffuser (A). This is a manifestation

of the Kirkendall effect in the absence of local sources and sinks, which would allow

equilibration of the vacancy concentration. The vacancies are much more likely to ex-

change with the fast diffuser. Thus, vacancies accumulate in the B-rich region within

a short time, diffusing up a vacancy concentration gradient. Simultaneously, the fast

diffuser (B) diffuses in the opposite direction. When B atoms diffuse and reach the

A-rich region, the rapid accumulation of vacancies ends and is followed by a spreading

of vacancies over the entire crystal. The system eventually reaches equilibrium with

the concentrations of all three species uniformly distributed throughout the domain.

3.1.2 Single Crystal Solid

In the second simulation, the free surfaces are now assumed to be vacancy sources

and sinks at which the vacancy mole fraction is maintained at its equilibrium value,

Xeq
V . As before, we still assume that the crystal contains no vacancy sources inside

the solid. Figure 3.2 shows the mole fraction evolution in this case. Initially, the fast

diffuser, B, diffuses toward the A-rich region, reducing the vacancy concentration in

the A-rich region and enhancing it in the B-rich region. Nonetheless, vacancies are

injected at the free surface on the A-rich side in order to maintain Xeq
V at the free

surface. These newly created vacancies flow into the crystal and result in the creation

of lattice sites. As a result, the region near the A-side free surface undergoes an

expansion. On the other hand, the region near the B-side free surface contracts due
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Figure 3.2: Mole fraction profiles, in a single crystal solid with two free surfaces, of (a) B atoms and
(b) vacancies for ΓB = 10ΓA; (c) B atoms and (d) vacancies for ΓB = 100ΓA. The concentration
profiles at various times correspond to Ξ = 0, 0.2, 0.4, 0.6, 0.8, and 0.999. The circular markers
denote the vacancy sources.
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to lattice site annihilation by ejection of vacancies. Therefore, the center of mass of

the crystal shifts in space toward the A-rich side.

In the early stage, the evolution is more rapid in the B-rich side; thus, the volume

contraction near the vacancy sink (negative source) is greater than the expansion near

the source on the A-rich side. Consequently, the crystal initially shrinks. The rate of

expansion at the vacancy source on the A-rich side increases as the region becomes

enriched by B. Eventually, the vacancy mole fraction becomes uniform, attaining its

equilibrium value; thus, the crystal recovers its original length, as it should, since the

initial vacancy concentration and final vacancy concentration are the same.

The results also show segregation of B near the free surfaces on the A-rich side

and depletion of B on the B-rich free surface. The effect is more pronounced in

the ΓB = 100ΓA case in Fig. 3.2(c). The segregation on the right-hand side can be

explained as follows. Since substitutional diffusion occurs by exchange of sites between

atoms and vacancies, it results in compensating fluxes; i.e., JB + JA = −JV . Since

A atoms are the slow diffuser, JA < JB. Near and at the free surface, JV is negative

and nonzero. Thus, JB is positive near the surface, except for at the surface, where

JB is zero, since B atoms cannot leave the solid. This results in an accumulation of

B atoms. The uphill diffusion of B is due to the large vacancy flux that must be

predominantly compensated by the B flux. The depletion of B on the left-hand-side

boundary is understood in a similar manner, where the vacancy flux is due to the

presence of a vacancy sink. Depletion of the fast diffuser implies enhancement of

the slow diffuser at the dilute vacancy limit. This phenomenon is also observed in

irradiated materials, where segregation of a slow diffuser at grain boundaries occurs

due to the so-called inverse Kirkendall effect [51, 52, 53].
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Figure 3.3: Mole fraction profiles, in a bicrystal solid with two free surfaces, of (a) B atoms and
(b) vacancies for ΓB = 10ΓA; (c) B atoms and (d) vacancies for ΓB = 100ΓA. The concentration
profiles at various times correspond to Ξ = 0, 0.2, 0.4, 0.6, 0.8, and 0.999. The circular markers
denote the vacancy sources.
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3.1.3 Bicrystal Solid

In the next simulation, one grain boundary is placed in the middle of the solid with

two free surfaces; that is, the solid is a bicrystal. Figure 3.3 shows the concentration

evolution for this case. During the initial stage of diffusion, the grain boundary

immediately provides vacancies required for the diffusion of the fast diffuser, B, near

the grain boundary. As a result, segregation of B near the central grain boundary

occurs in a similar manner to that observed in the single crystal case on the free

surface. At the internal source, a “kink” in the concentration profile of B forms. This

phenomenon is more apparent in the ΓB = 100ΓA case [see XB profile for ΓB = 100ΓA

case at t̂ = 0.2682 in Fig 3.3(c)]. In the middle to late stage of diffusion (Ξ ≥ 0.4), the

fluxes abate as the concentration distributions become more uniform. The kinks in

the concentration profiles also disappear. The vacancies created at the central grain

boundary and the A-side free surface pass through the left grain and are ejected at the

left free surface. Since more vacancies are annihilated at the left free surface than are

produced at the central grain boundary, the originally B-rich left grain shrinks. On

the other hand, the originally A-rich grain elongates due to the injection of vacancies

at the right free surface and at the central grain boundary. Therefore, the imbalance

in vacancy exchange rates between the fast and slow diffusers causes an effective grain

coarsening even in the absence of the Gibbs-Thomson effect. This is a manifestation

of a Kirkendall-effect-induced grain coarsening.

3.1.4 Tricrystal Solid

We also simulated a tricrystal solid that initially contains three equal-sized grains.

Figure 3.4 shows the concentration evolution when two grain boundaries and two free

surfaces act as vacancy sources and sinks. The grain boundary between the right

and central grains acts as a strong vacancy source; this causes segregation of B and

a kink in the B concentration profile in the early to middle stage of diffusion [see
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Figure 3.4: Mole fraction profiles, in a tricrystal solid with two free surfaces, of (a) B atoms and
(b) vacancies for ΓB = 10ΓA; (c) B atoms and (d) vacancies for ΓB = 100ΓA. The concentration
profiles at various times correspond to Ξ = 0, 0.2, 0.4, 0.6, 0.8, and 0.999. The circular markers
denote the vacancy sources.
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Figure 3.5: Grain size vs. time in a tricrystal solid for (a) ΓB = 10ΓA, and (b) ΓB = 100ΓA.
Grain 1 is the leftmost and initially richest in B, thus rapidly decreasing in size. Grains 2 and 3
are initially the central and rightmost grains, respectively. The figures represent Kirkendall-effect-
induced coarsening.

Fig. 3.4(c)]. Due to the annihilation of vacancies at both sides (the left free surface

and the grain boundary between the left and central grains), the left grain shrinks.

On the other hand, the right grain grows due to the incorporation of vacancies into its

lattice from both ends. Figure 3.5 shows the size of each grain as a function of time.

Due to the combination of contraction and expansion, the center of mass of the entire

crystal shifts to the right. It is evident that the size change of each grain is dictated

by the vacancy creation and annihilation at the nearest sources. This implies that

each grain has a different amount of Kirkendall shift. In the ΓB = 100ΓA case, the

left grain disappears in the late stage, and the initial tricrystal reduces to a bicrystal,

which provides clear evidence of grain coarsening induced by Kirkendall diffusion.
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3.1.5 Case with High Vacancy Source Density

We also compare our model with the conventional treatment of substitutional diffusion

by assuming that every grid point in the domain is a vacancy source. This reflects

the case in which the separations between vacancy sources are sufficiently small in

comparison to the vacancy diffusion length and also gives the condition that the

vacancy mole fraction remains at its equilibrium value at every grid point. The mole

fraction of the fast diffuser, B, is thus calculated by Eq. (3.5) at every grid point. In

this case, all grid spacings change with time according to Eq. (3.6). To reduce errors

caused by varying grid spacing, a higher resolution of 1001 grid points initially evenly

distributed in the 1D calculation domain is used for this case. In Fig. 3.6, the mole

fraction evolution is compared with that obtained from Eq. (2.21b), which was derived

by the conventional treatment of substitutional diffusion within the uniform-vacancy-

source approximation. The creation or elimination of extra lattice planes occurs to

maintain the equilibrium value at every grid point and results in local volume changes

and a global domain shift. Figure 3.6 shows that the results for the concentration

distributions from our model and the conventional uniform-vacancy-source treatment

are identical within numerical error after translation along the x direction. The main

difference is in the choice of coordinate reference frame. The shift caused by the

volume change in our model represents the Kirkendall shift of the lattice frame, while

the conventional treatment is solved within the laboratory frame. In addition, there is

a small difference in the dynamics between the conventional treatment and our model

with sources at every grid point, which appears in the second term of Eq. (2.29).

The local fractional-length-change rates at different times are plotted in Fig. 3.7,

which reflects the local vacancy generation rate and is expressed by ε̇x = ĝ according

to Eq. (2.36). The results show that the vacancy generation occurs in the A-rich

region and that absorption occurs in the B-rich region. A high vacancy generation

rate appears at the location where the divergence of vacancy flux has maximum in
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Figure 3.6: Mole fraction profiles of a solid with high vacancy source density for: (a) ΓB = 10ΓA

in the rigorous model; (b) ΓB = 10ΓA in the conventional model; (c) ΓB = 100ΓA in the rigorous
model; (d) ΓB = 100ΓA in the conventional model. The diamond markers in (b) and (d) are the
results from the rigorous model after translating along x axis. The concentration profiles are taken
at times when Ξ =0, 0.2, 0.4, 0.6, 0.8, 0.999.
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the A-rich region. On the other hand, a high vacancy annihilation rate is observed

at the location where the divergence of vacancy flux has its minimum. This region

occurs where the second derivative of XB has a large magnitude if the diffusivities are

constant, but it may shift away from these points due to the concentration dependence

of diffusivities. As diffusion proceeds, the mole fraction gradient of B decreases.

Therefore, the magnitude of vacancy generation and annihilation rate decreases, and

the location at the maximum rate gradually moves toward the two ends of the solid.
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Figure 3.7: Local fractional length change rate for: (a) ΓB = 10ΓA; (b) ΓB = 100ΓA. The quantity is
proportional to the local vacancy generation/elimination rate and is strongly dependent on time and
position. Note the strong asymmetry in this quantity stemming from the asymmetry in diffusion-
coefficient matrix.

The asymmetry of the vacancy generation rate due to composition-dependent

diffusion coefficients is evident from the results in Fig. 3.7. In both ΓB = 10ΓA and

ΓB = 100ΓA cases, the asymmetry of vacancy generation rates is qualitatively similar.

The results show that vacancies are generated more uniformly in a wider region in

the A-rich region but eliminated in a narrow region at a high rate in the B-rich

region. This is most evident in the ΓB = 100ΓA case, Fig. 3.7(b), where a sharper

valley and a wider plateau of vacancy generation rate are observed. The vacancy

50



generation rate (or fractional-volume-change rate) can be related to the probability

of Kirkendall void formation. A negative value of vacancy generation rate, equivalent

to local volume shrinkage, indicates how fast the vacancies are eliminated at a sink

in order to locally maintain the equilibrium vacancy fraction. Physically, there can

be a situation when the sinks are not strong enough to annihilate vacancies at a

sufficient rate. Hence, supersaturation of vacancies can occur in the regions where

vacancies must be eliminated at a rapid rate, which may result in void nucleation. A

consideration of void nucleation mechanism is beyond the scope of this paper and is

thus ignored in our current model.

3.1.6 Conclusion for One-Dimensional Planar Simulations

In this section, we have investigated substitutional diffusion, explicitly accounting

for vacancy sources and sinks. Regions between sources and sinks were treated as

perfect crystals containing A atoms, B atoms, and a dilute concentration of vacancies.

Diffusion within the perfect crystalline regions was described at a continuum level with

realistic sets of analytically calculated diffusion coefficients for thermodynamically

ideal alloy systems. The grain boundaries were modeled as ideal vacancy sources and

sinks, which maintain the vacancy mole fraction at the equilibrium value.

The simulations of diffusion couples consisting of grain boundaries that act as

vacancy sources and sinks indicate the existence of a Kirkendall-effect-induced coars-

ening phenomenon even in the absence of curvature effect on grain boundaries. During

diffusion, the growth and shrinkage of perfect lattice regions between vacancy sources

and sinks are specifically dependent on the vacancy generation and annihilation rate

at grain boundaries. The inter-source-sink spacing decreases with time in the B-rich

(fast diffuser) side and increases in the A-rich (slow diffuser) side, since the grain

boundaries act as vacancy sinks in the B-rich side and as sources in the A-rich side.

The simulations also indicate that the shift of the crystal frame of reference due to
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the Kirkendall effect depends on the density of vacancy sources and sinks. From the

final states in Figs. 3.1, 3.2, 3.3, 3.4, and 3.6, the Kirkendall displacements increase

as the vacancy source and sink density increases. The Kirkendall displacements are

defined as the total shifts of the solid that have occurred when equilibrium has been

established, with the reference frame taken at the center of the initial solid. The

time required to reach equilibrium decreases as the vacancy source density increases.

The existence of vacancy sources and sinks apparently accelerates and magnifies the

Kirkendall shift by providing and eliminating vacancies that mediate the diffusion

process. Conversely, the Kirkendall effect is suppressed in regions of crystal devoid of

sources. The results clearly show how diffusion of vacancies as a ternary component

may result in qualitative and quantitative differences in both concentration evolution

and possible void formation when compared to the standard treatment of substitu-

tional diffusion, which assumes a dense and uniform distribution of vacancy sources

that allows vacancy concentration to maintain its equilibrium value throughout the

solid.

The results of this work provide insight into systems subjected to strong energy

input, e.g., radiation, where a significant number of Frenkel pairs are formed within

the crystals that need to be annihilated at grain boundaries to maintain a local

equilibrium vacancy fraction. The vacancies will diffuse toward grain boundaries

through the lattice by exchanging positions mainly with the fast diffusers. In this case,

depletion of the fast diffuser (or segregation of the slow diffuser) would be expected

near the grain boundaries. Such a phenomenon is referred to as radiation-induced

segregation. Our results suggest similar phenomena, whereby the fast diffusers are

depleted near free surfaces or grain boundaries that act as vacancy sinks, indicating

that the present treatment is capable of predicting inverse Kirkendall diffusion in

irradiated materials.
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3.2 One-Dimensional Cylindrical System

The Kirkendall void formation has recently drawn researchers’ attention as a new

fabrication method for nanoscale hollow objects such as nanotubes and nano hollow

spheres [61, 62, 63, 64, 65, 66] from a core-shell-type diffusion couple. During dif-

fusion, the fast diffuser diffuses to the outer regions by exchanging with vacancies.

Voids form from condensation of supersaturated vacancies in the core region and then

grow by consuming vacancies at the void surfaces, resulting in a hollow object. This

phenomenon is not only seen at the nanoscale; a similar method was also applied

to fabricate micron-size hollow alloy particles decades earlier [72]. However, void

nucleation cannot be modeled by Darken’s analysis, since vacancy concentration is

treated to be at equilibrium value everywhere within the diffusion couple. In addition,

when a void forms within a solid, the vacancy concentration on the void surface will

be enhanced due to the nonzero curvature according to the Gibbs-Thomson effect.

This will violate the assumption in the traditional model that vacancy concentration

remains at the equilibrium value uniformly in a solid, including the void surface.

Furthermore, since the motions of the lattice planes in the conventional treatment

are relative to the remote ends where no diffusion occurs, the lattice motion in the

laboratory frame cannot be evaluated in a solid having voids (discontinuity) where

the void surface motion is unknown.

In this section, we extend our one-dimensional model to a cylindrical diffusion

couple, where the fast diffuser initially occupies the core region, while the slow diffuser

occupies the outer region. Free surfaces and grain boundaries are assumed to be

ideal vacancy sources and sinks. On a free surface that separates the solid from its

environment, the equilibrium vacancy mole fraction is given by the Gibbs-Thomson

relationship:

Xeq
V (rsurf) = Xeq

V 0 exp

[−Ωγ(κ1 + κ2)

kBT

]

, (3.7)
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where rsurf is the radius of free surface, Xeq
V 0 is the equilibrium vacancy mole fraction

on a flat surface, and γ is the surface free energy. The two principal curvatures of

the free surfaces, κ1 and κ2, are given by κ1 = 1/r and κ2 = 0 for a cylinder (for a

sphere, κ1 = κ2 = 1/r). We assume the concentrations of vacancies and B atoms are

continuous across grain boundaries and that the equilibrium vacancy mole fraction

at grain boundaries is the same as that on a flat free surface. (In reality, the vacancy

concentration at a grain boundary is likely lower than that at a free surface.) The

fast diffuser concentration (CB) at the vacancy sources is obtained semi-implicitly,

similar to Eq. (3.5):

CB(rs, t+ ∆t) =
ρ [1 −Xeq

V (rs, t)] [CB(rs, t) −∇ · JB(rs, t)∆t]

ρ [1 −Xeq
V (rs, t)] + ∇ · JV (rs, t)∆t

, (3.8)

where rs is the location of the vacancy sources or sinks (including free surfaces and

grain boundaries). Due to the geometric symmetry, the fast diffusion path along the

free surfaces and grain boundaries vanishes; i.e., diffusion takes place only along the

radial direction. In addition, since our focus is to investigate the effect of vacancy

sources on the Kirkendall diffusion, the grain boundary migration due to the Gibbs-

Thomson effect is ignored.

This model distinguishes a solid into two different regions: the perfect lattice zone

within a grain and the free surfaces or grain boundaries that act as vacancy sources.

In the bulk region, the standard Fickian equations are solved to track the concen-

tration evolution. The diffusion coefficients are analytically calculated following the

procedure presented in Section 2.4 with the parameters listed in Table 3.2. For the

explicit Euler scheme used in section 3.1, the time step that stabilizes both the evo-

lutions of CB and CV is restricted by the maximum value of the four diffusivities

(usually DV V , see Fig. 2.2 for an example), which tends to be too small for examining

the evolution of the fast diffuser concentration (CB). We therefore implement an
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implicit time scheme to solve the coupled diffusion equations as follows.

C
(n+1)
V − C

(n)
V

∆t
− χD̄

(n)
V V∇2C

(n+1)
V −χD̄(n)

V B∇2C
(n+1)
B =

∇ ·
[(

D
(n)
V V − χD̄

(n)
V V

)

∇C(n)
V

]

+∇ ·
[(

D
(n)
V B − χD̄

(n)
V B

)

∇C(n)
B

]

,

(3.9a)

C
(n+1)
B − C

(n)
B

∆t
− χD̄

(n)
BV∇2C

(n+1)
V −χD̄V (n)

BB ∇2C
(n+1)
B =

∇ ·
[(

D
(n)
BV − χD̄

(n)
BV

)

∇C(n)
V

]

+∇ ·
[(

D
V (n)
BB − χD̄

V (n)
BB

)

∇C(n)
B

]

,

(3.9b)

where the superscript n denotes the n-th time step, D̄ij is the mean diffusivity,

and χ is a weighting factor that can be optimized to increase the numerical sta-

bility. The mean diffusivity is the average diffusivity over the diffusion couple:

D̄ij =
∫

r
Dij(r)dr/

∫

r
dr. The divergence operator is given by Eq. (3.1), which in

a central finite difference scheme is expressed by

1

rp
d

dr

(

rpD
dC

dr

)

m

= (p+ 1)
rpm+1/2Jm+1/2 − rpm−1/2Jm−1/2

rp+1
i+1/2 − rp+1

m−1/2

, (3.10)

where m is the index of the grid points, Jm+1/2 = Dm+1/2(Cm+1 − Cm)/(rm+1 − rm)

is the flux at the middle point between the m-th and (m + 1)-th grid points, and

Jm−1/2 = Dm−1/2(Cm − Cm−1)/(rm − rm−1) is the flux at the middle point between

the m-th and (m − 1)-th grid points. Equation (3.9) can be discretized to a matrix

equation with a sparse matrix. Specifically, Eq. (3.9b) is used to eliminate C
(n+1)
B

in Eq. (3.9a), which can then be solved using a sparse matrix solver. Again, local

volume changes due to vacancy generation and elimination at surfaces, and grain

boundaries are calculated by Eqs. (2.36) and (2.39). Because the local volume change

only provides the relative displacements of vacancy sources to their adjacent grains,

a reference frame is necessary for describing the overall shifts of the free surfaces, the

grain boundaries, and the bulk. In a cylindrical object, we take the reference point

to be at the center of the cylinder, which is also the origin of the coordinate system.

Under the assumption that the solid is incompressible (and conservation of volume),
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the overall shift at a point is then calculated by taking all the local volume changes

occurring due to the internal vacancy generation/annihilation between that point and

the reference point into account. The volume changes on the external surfaces do not

contribute to the shift since the volume changes simply move the surface without

deforming the bulk. Thus, the radial position of an arbitrary point is updated by

r(t+ ∆t) = r(t) +

∑

k ∆lk(t)r
p
k(t)

rp(t)
, (3.11)

where ∆lk = vk∆t is the local displacement resulting from vacancy injection or elim-

ination at internal vacancy sources (grain boundaries), vk is obtained by Eq. (2.39),

and the index k denotes the k-th grain boundary. The diffusion equations can be

non-dimensionalized by the same procedure as in the derivation of Eq. (3.4). The

initial outer radius of the cylinder is taken to be 1 µm. The radial domain is initially

discretized into 201 grid points. By solving Eq. (3.9) while updating boundary condi-

tions, Eqs. (3.7) and (3.8), and the locations of grid points, Eq. (3.11), we determine

the dynamics of the system until it reaches the state with nearly uniform distribution

of concentration. Since the equations are solved in the moving grid system, explicit

advection is not required.

Lattice Constant (al) 4.05 Å
Atomic Volume per Lattice Site (Ω) 1.661×10−23 cm3

Lattice Site Density (ρ) 6.021×1022 cm−3

Equilibrium Vacancy mole fraction (Xeq
V 0) 1.6×10−6

Hopping Frequency of Slow diffuser (ΓA) 9.125×107 Hz
Surface Energy (γ) 1.2 J/m2

Temperature (T ) 600 K

Table 3.2: Material properties used in the computer simulations. The material properties are similar
to those of Aluminum at 600 K.

3.2.1 Single-Crystal Cylinder Without an Initial Void

In the first set of simulations, we assume that the cylinder contains no initial void and

that no void nucleation occurs during the diffusion process. In this case, the inner
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Figure 3.8: Normalized concentration profiles of (a) B atoms and (b) vacancies for ΓB = 10ΓA; (c)
B atoms and (d) vacancies for ΓB = 100ΓA in a cylindrical diffusion couple without an internal
void. The curves are taken at various times (sec), corresponding to Ξ = 0, 0.05, 0.2, 0.5, 0.85, and
0.995. The circular markers denote free surfaces, and the time unit is sec.
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boundary is fixed at r = ǫ, to which a no-gradient boundary condition is applied.

A very small numerical parameter, ǫ = 6.8 × 10−4 is used to avoid a singularity

at r = 0. The volume fraction of the fast diffuser, φB, is taken to be 0.5 (in this

work, φB = XB because the three diffusers’ radii are assumed to be identical). The

atomic hop frequency of the fast diffuser is assumed to be 10 and 100 times of that

of the slow diffuser (ΓB = 10ΓA and ΓB = 100ΓA). Figure 3.8 shows the evolution

of the normalized concentrations of the fast diffuser and vacancies, XB and XV ,

respectively. The evolution of the vacancy concentration at the very early stage is

also shown in Fig. 3.9. During the diffusion process, the fast diffuser, B, diffuses

from the initially B-rich core to the initially A-rich outer region. The interdiffusion

mechanism can be distinguished into two different modes. One is the intermixing

diffusion mode. The other involves a nonzero net vacancy flux due to the difference

in the hop frequencies of A and B, which we refer to as the unbalanced diffusion

mode. In the very early stage (Ξ < 10−3), the unbalanced diffusion mode dominates,

and the outward B flux results in a compensating inward vacancy flux. Since there is

no vacancy sink capable of eliminating excess vacancies in the cylinder, these inward-

diffusing vacancies accumulate, diffusing up the vacancy concentration gradient, and

form a plateau with nearly uniform, high vacancy concentration in the B-rich core

[Figs. 3.9(a) and 3.9(b)]. During this period, the B atoms mainly exchange positions

with vacancies, while the majority of the A atoms remain at their initial lattice

positions: JB ≈ −JV and JA ≈ 0. After the vacancy concentration in the core

region reaches the maximum value for the process, the vacancies begin to diffuse back

to the A-rich outer region [Fig. 3.8(b) and 3.8(d)]. This phase is dominated by the

intermixing diffusion mode; thus, the net vacancy flux is small (JV ≈ 0). The A flux is

nearly equal but opposite to the B flux (JB ≈ −JA) during this period. At the atomic

scale, this process arises from the stochastic migration of vacancies, which through

a succession of hops mediates the net exchange of A and B atoms. By comparing
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Figure 3.9: Normalized concentration profiles of vacancies at an early stage for (a) ΓB = 10ΓA; (b)
ΓB = 100ΓA in a single-crystal cylindrical diffusion couple without an internal void. The circular
markers denote free surfaces, and the time unit is sec.

Fig. 3.8(a) with 3.8(c), one can observe that the time scale of evolution is nearly the

same (to a factor of a few, rather than a factor of 10 as expected from the ratio of hop

frequency differences) because of the general lack of vacancy sources in the diffusion

couple, indicating that the Kirkendall effect is very limited in this phase and in the

overall evolution of such diffusion couples. (Here, we use the term, the Kirkendall

effect, in a broad sense to include nonreciprocal diffusion and all phenomena resulting

from nonreciprocal diffusion.) Furthermore, although the outer free surface serves as

a vacancy source during the unbalanced diffusion stage and as a vacancy sink during

the intermixing stage, the overall motion of the outer free surface is nearly zero due

to the lack of vacancy sink at the core of the cylinder. In addition, since this diffusion

couple has only one source, the evolution of the concentrations is essentially governed

by ternary substitutional diffusion in a nearly fixed frame (due to the fact that one

side must remain at a fixed location). This result demonstrates the importance of a

vacancy source-sink pair on activating the unbalanced diffusion mode that leads to

the Kirkendall effect [82].
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3.2.2 Void Growth in a Single-Crystal Cylinder

Dynamics of Concentration Evolution

Since we do not model nucleation of voids, we initially place a small hole at the

center of the cylinder to model the evolution of a diffusion couple with an internal

void. In reality, voids do not necessarily form at the center of the cylinder. However,

a concentric-void configuration is commonly employed to simulate Kikrendall-effect

diffusion in cylindrical objects [70, 71, 124, 125]. These models with simple geometries

can provide valuable insights into the dynamics and nearly stationary states resulting

from interdiffusion, and therefore we make the same assumption. At the radius of

the hole, the boundary conditions corresponding to those of free surface described

earlier are applied. The radius of the initial void is chosen to be 5 nm. We also

set a threshold radius (rth), below which a void is assumed to vanish, to be 6.85

Å (6.85 × 10−4 in dimensionless units), which is equivalent to a few atoms in the

diameter. Subsequently, the boundary condition at the inner surface is changed to

no-gradient. A series of simulations is performed to track the concentration evolution

and the void growth during the diffusion process. Figure 3.10 shows the normalized B

atom concentration and the normalized vacancy concentration for six different times.

During the diffusion process, the fast diffuser (B) diffuses to the A-rich outer region

mainly by exchanging with vacancies. This process reduces the vacancy concentration

in the A-rich outer region while enhancing it in the B-rich core. In order to maintain

the equilibrium vacancy mole fraction at the outer cylinder surface, vacancies are

injected into the cylinder at the outer surface, creating new lattice sites and enlarging

the outer radius of the cylinder. On the other hand, the accumulated vacancies in the

B-rich core are eliminated from the void surface to maintain the equilibrium vacancy

mole fraction there. This results in lattice site elimination at the void surface, and

the void grows. Through the combination of the outer radius expansion and the inner

radius growth, the original solid cylinder transforms into a hollow tube.
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Figure 3.10: Normalized concentration profiles of (a) B atoms and (b) vacancies for ΓB = 10ΓA; (c)
B atoms and (d) vacancies for ΓB = 100ΓA in a single-crystal cylindrical diffusion couple with an
initial central void having a 5-nm radius. The curves are taken at the same Ξ values as in Fig. 3.8.
The circular markers denote free surfaces, and the time unit is sec.
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An enhancement and a depletion of the B concentration (compared to their imme-

diate neighborhood) at the outer and inner surfaces, respectively, are observed in the

intermediate stage. This effect is more pronounced in the case where ΓB/ΓA = 100

[Fig. 3.10(c)]. When vacancies are injected at the outer surface to maintain the equi-

librium vacancy mole fraction, a large substitutional B flux toward the outer surface

occurs. Since B atoms cannot leave the solid, an accumulation of B atoms occurs at

the outer surface in the form of uphill diffusion even though the B concentration gra-

dient is positive there. Similarly, the vacancy elimination at the void surface gives rise

to a large substitutional B flux outward, leading to depletion of B at the void surface.

Fast diffuser depletion (or equivalently slow diffuser segregation) near vacancy sinks

stemming from the same mechanism has been observed in irradiated materials and

is referred to as the inverse Kirkendall effect [52]. The uphill diffusion near vacancy

sources/sinks indicates that ternary diffusion (involving atomic and vacancy species)

is essential to such phenomena because an uphill diffusion is impossible in a purely

binary diffusion process.

Figures 3.10(b) and 3.10(d) illustrate the vacancy concentration evolution. As B

atoms diffuse outward, vacancies diffuse inward and result in vacancy depletion and

enhancement in the A-rich outer region and the B-rich core, respectively. The vacancy

accumulation in the B-rich core for ΓB/ΓA = 100 is less than that for the ΓB/ΓA = 10

case, while the vacancy depletion in the A-rich outer region for ΓB/ΓA = 100 is greater

than that for the ΓB/ΓA = 10 case. This difference can be understood as follows. Due

to the enhanced mobility of B atoms (and thus of the vacancies exchanging with B

atoms) by the higher ΓB/ΓA ratio, vacancy transport to the void surface is more rapid

in the B-rich core. Therefore, for a high ΓB/ΓA ratio, the vacancy concentration takes

a uniform, low concentration distribution in the core region. Meanwhile, the rapid

inward vacancy flow depletes the vacancy concentration in the outer region, where

the effective vacancy mobility is not enhanced. As a result, the outer-region vacancy
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depletion is greater, while the inner-region vacancy enhancement is diminished.

Early Dynamics of Void Growth

When the initial central void has a radius larger than the threshold value (rth = 6.85

Å), the void surface can serve as a vacancy source that injects or annihilates vacancies,

which results in void shrinkage/growth. We examine the initial velocity (vin) of the

void for different initial void radii (rin). The velocity and initial void radius are in

the units of nm/sec and nm, respectively. Figure 3.11(a) shows vin, measured at

Ξ = 10−5, as a function of rin for seven values of φB with ΓB = 10ΓA. As can be

seen, vin is in general negative, indicating that the void initially shrinks. For a given

φB value, the magnitudes of the initial velocity increase as the initial void radius

decreases. This is because the vacancy mole fraction at the surface of a small void

is high due to the Gibbs-Thomson effect, which causes a large outward vacancy flux

at the void surface and results in void shrinkage. For a given rin, the void shrinks

slower as φB decreases. This is because the Kirkendall effect that results in an inward

vacancy flux counteracts the Gibbs-Thomson effect when the diffusion front (where

the gradient of B concentration is large) is closer to the void.

Figure 3.11(b) shows the comparison of the initial velocity of the void surface as

a function of the initial void radius at φB = 0.625 for different ΓB/ΓA ratios. The

curves generally have the same appearance, which can be divided into two different

regions: a very steep region at smaller rin and a smooth asymptotic increase at the

larger rin. For a small rin, the void shrinks very rapidly due to the Gibbs-Thomson

effect before the inward vacancy flux due to the Kirkendall effect affects the vacancy

injection at the inner free surface. The magnitude of the velocity is greater when

the ΓB/ΓA ratio is large because the effective vacancy mobility is large. For a large

rin, the Gibbs-Thomson effect is weaker; thus, the velocity is small and can even be

positive if the Kirkendall effect becomes dominant. When the ΓB/ΓA ratio is large,

the void growth (with positive velocity) occurs faster because of the enhancement of
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Figure 3.11: The initial velocity of the central void surface as a function of the initial void radius in
a single-crystal cylindrical diffusion couple for (a) different B volume fractions at ΓB = 10ΓA and
(b) different ΓB/ΓA ratios with a B volume fraction of 0.5. (c) The vacancy mole fraction evolution
at early stage for ΓB = 10ΓA, φB = 0.6, and rin = 1.7 nm. (d) The central void radius as a function
of time corresponding to Fig. 3.11(c).
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the Kirkendall effect.

These observations can be understood in more detail by examining the vacancy

concentration evolution. Figure 3.11(c) shows the vacancy concentration evolution in

the very early stage of diffusion (Ξ ≤ 10−6) for φB = 0.6, ΓB/ΓA = 10 and rin = 1.7

nm. In this case, the void initially shrinks due to the Gibbs-Thomson effect, but it

grows when the Kirkendall effect becomes dominant. The vacancy flux at the void

surface in the absence of A species in the nearby region can be determined according

to the vacancy concentration gradient because XB +XV = 1. In the very early stage,

the vacancy concentration profile possesses a negative gradient at the void surface,

which causes vacancy injection and void shrinkage. As the diffusion process continues,

the inward vacancy flux due to the Kirkendall effect leads to a vacancy accumulation

in the core region, and the vacancy concentration forms a positive gradient at the

void surface. At this stage, the void grows. Figure 3.11(d) illustrates the void radius

as a function of time. The void shrinks until t = 0.32 sec and then begins to grow.

Depending on the simulation parameters, the void can either shrink then grow or

shrink until it collapses. The critical initial radius, rc, is defined as the initial radius

above which a void eventually grows. Figure 3.12(a) illustrates rc as a function of

φB for ΓB/ΓA = 10. This curve can be divided into two regions: at a lower φB,

rc increases with increasing φB, and at a higher φB, it decreases with φB. In the

first part, the increase is due to the larger distance between the void surface and the

diffusion front, which leads to a reduced vacancy flux due to the Kirkendall effect near

the void surface. In this case, the critical radius is the radius of the void at which the

vacancy flux due to the Kirkendall effect exactly cancels the vacancy flux due to the

Gibbs-Thomson effect. In contrast, at a higher φB, the diffusion front is sufficiently

far away from the void surface such that many vacancies do not diffuse rapidly enough

to reach and annihilate at the void surface. Vacancies therefore accumulate in the

B-rich core region and increase the chemical potential in the region between the void
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surface and the diffusion front. Since the vacancy concentration (and the chemical

potential) is fixed at equilibrium at the void surface, this gives rise to a sharp positive

gradient of the vacancy concentration. As a result, the void will grow, and rc decreases

as φB increases. In this case, rc is the radius at which the Kirkendall-effect-induced

vacancy chemical potential gradient nullifies that stemming from the Gibb-Thomson

effect.
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Figure 3.12: The critical initial radius of the central void in a single-crystal cylindrical diffusion
couple with a 1-µm outer radius for (a) ΓB/ΓA = 10 ; (b) ΓB/ΓA = 25, 50, and 100.

Figure 3.12(b) shows rc for different ΓB/ΓA ratios (ΓB/ΓA = 25, 50 and 100).

The critical initial radius behaves similarly to the ΓB/ΓA = 10 case in Fig. 3.12(a).

However, the peaks of rc shift to the right as the hop frequency ratio increases.

As mentioned previously, a higher ΓB/ΓA ratio results in a higher effective vacancy

mobility in the B-rich region, which leads to a larger inward net vacancy flux. The

enhanced inward vacancy flux will facilitate the void growth when φB is relatively low,

where the vacancy fluxes due to the Kirkendall effect and the Gibbs-Thomson effect

cancel directly. Thus the critical initial radius decreases with increasing ΓB/ΓA ratio.

On the other hand, at a higher φB, where the void grows due to the chemical potential

gradient caused by a vacancy accumulation in the B-rich core, the enhanced vacancy
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mobility alleviates the vacancy accumulation, which reduces the positive vacancy

concentration gradient. Hence, rc increases with increasing ΓB/ΓA ratio.

Fully-Grown Void Radius and Elapsed Time

During the stage in which rapid outward diffusion of the fast diffuser occurs, the

void and cylinder radii grow rapidly due to vacancy elimination and injection at the

void surface and cylinder surface, respectively. After the atomic species reach nearly

homogeneous distribution, the void starts to contract due to the Gibbs-Thomson

effect at a comparatively very slow rate. This slow contraction of a void is similar

to those observed from quasi-steady-state diffusion models [71, 124, 126]. Since our

focus is to study void growth dynamics, the void collapse process will not be discussed

in this thesis.

The fully-grown void radii before void shrinkage and the elapsed time to the fully-

grown void radii are recorded for different φB and different ΓB/ΓA ratios during the

simulations. Shown in Fig. 3.13(a) are the fully-grown void radii (rf). The fully-

grown void radius reflects the total number of vacancies injected at the outer surface,

then transported to and annihilated at the void surface during the diffusion process.

Since B atoms preferentially exchange with vacancies, the amount of B atoms in

the system determines how many vacancies are transported from the outer surface

to the void surface during the diffusion process. When φB is small, the B atoms are

quickly exhausted; thus, the total number of transported vacancies is small. Similarly,

when φB is large, the A atoms are quickly exhausted; thus, the total number of

transported vacancies is expected to be small; this is observed in the simulation for

low ΓB/ΓA ratios. At the intermediate values of φB, the supply of interdiffusing atoms

is balanced; thus, diffusion processes involve a larger number of vacancies transported

from the outer surface to the void surface, resulting in a maximum value of rf ; again,

this is observed at low ΓB/ΓA ratios.

The above explanation only describes the behavior of diffusion couples in which
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Figure 3.13: (a) The fully-grown radius of the central void in a single-crystal cylindrical diffusion
couple for different B volume fractions and different ΓB/ΓA ratios. (b) The elapsed time to reach
fully-grown void radius.

the ΓB/ΓA ratio is low (up to ∼ 25). At large ΓB/ΓA ratios, the strong preference

of vacancies to exchange with B atoms leads to more vacancies transported from the

outer surface to the void surface without much intermixing of A and B. Therefore,

more vacancies are transported per intermixing event, which leads to a larger rf .

The elapsed time to reach fully-grown void radius, tf , is related to how fast inter-

mixing over the system can take place. Two aspects play a role. First is the kinetics

of diffusion, which is faster when the ΓB/ΓA ratio is large (since B species can diffuse

faster). This effect is clearly seen as the decrease in tf with an increasing ΓB/ΓA ratio,

see Fig. 3.13(b). This also manifests as an increase in tf at smaller φB. The other

aspect is the geometrical effect. When φB is large, the slow diffuser A must diffuse a

larger distance before the equilibrium state is achieved; therefore, tf increases.

Furthermore, the simulation results show that the increase in rf and the decrease

in tf do not linearly scale with the ΓB/ΓA ratio. This is due to the fact that the

diffusivities vary only by a relatively small amount at XB . 0.2 regardless of ΓB/ΓA,

see Fig. 3.14. Even though diffusivities involving B atoms and vacancies in the B-
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Figure 3.14: Diffusion coefficients as functions of XB: (a) DV V and (b) DV
BB for ΓB/ΓA = 10 and

ΓB/ΓA = 100 at XV = 1.6 × 10−6.

rich region are large when ΓB/ΓA is large, the comparatively small diffusivities in the

A-rich region through which vacancies must diffuse limit the rate of concentration

evolution and vacancy transport. Therefore, the plots of rf and tf vs. φB approach

asymptotic limits for these quantities when the ΓB/ΓA ratio is very large.

3.2.3 Void Growth in a Multi-Crystal Cylinder

Grain boundaries can act as internal vacancy sources/sinks and their effect on the

Kirkendall-effect diffusion can be complicated due to their geometries. In this work,

we assume a simple geometry to demonstrate the importance of the consideration of

grain boundaries as vacancy sources/sinks in a quasi-1D cylindrical system. The grain

boundaries are placed such that each grain forms a concentric layer. While diffusion

along grain boundaries can be important in reality, it is not considered here because

we assume cylindrical symmetry, and only diffusion in radial direction is investigated.

The same set of equations is solved in this case, except for the fact that the divergence

appearing in the expression for the vacancy injection rate, g, in Eq. (2.32) is treated

as the jump in the flux, as discussed in Section 3.1.

69



Figure 3.15 illustrates the concentration evolution for a cylinder containing two

[(a) and (b)] and three [(c) and (d)] initially equal-volume grains, as well as a void

with an initial radius of 5 nm, for ΓB/ΓA = 100. Grain boundaries serve as sources

of vacancies in A-rich regions and as sinks in B-rich regions. In the A-rich region, B

atoms diffuse toward the grain boundary, and vacancies must be injected in order to

supply the vacancies that exchange preferentially with B atoms. Conversely, in the

B-rich region, B atoms diffuse away from the grain boundary toward the diffusion

front, and vacancies diffuse in the opposite direction toward the grain boundary.

Thus, the grain boundary becomes a vacancy sink. In Figs. 3.15(b) and 3.15(d),

the grain boundaries supplying vacancies can be distinguished from those eliminating

vacancies by examining the value of XV . When XV in the immediate neighborhood

is less (greater) than the equilibrium value, a grain boundary acts as a source (sink).

Due to the different numbers and locations of the grain boundaries, the two-

grain and three-grain cases evolve very differently. In the two-grain case, the grain

boundary acts as a vacancy source because of its location, while the void surface acts

as a sink; thus, they form a source-sink pair. The pair facilitates vacancy transport,

which is more efficient because of the proximity of the source and the sink than the

case without a grain boundary. Therefore, the fully-grown void radius is larger than

that of the single-crystal case. Due to vacancy injection from the grain boundaries

and the outer free surface, the volume of the outer-most grain grows as diffusion

takes place. On the other hand, the volume of the innermost grain decreases because

vacancies are eliminated at the void surface. This result clearly demonstrates that the

Kirkendall effect can lead to grain boundary migration and grain size change when

vacancy sources and sinks are explicitly discretely treated.

The evolution of the three-grain case exhibits similar growth of the outer-most

grain and shrinkage of the innermost grain. However, in this case, the void collapses

at a very early stage before the Kirkendall effect becomes important in the core region
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Figure 3.15: Normalized concentration profiles of (a) B atoms and (b) vacancies for ΓB = 10ΓA; (c)
B atoms and (d) vacancies for ΓB = 100ΓA in a concentric multi-crystal cylindrical diffusion couple
with an initial central void with a 5-nm radius. The curves are taken at the same Ξ values as in
Fig. 3.8. The circular markers denote free surfaces and grain boundaries.
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because the grain boundary is located in the pure B region and the Gibbs-Thomson

effect drives the diffusion of vacancies from the void surface outward. Therefore, hol-

low tubes are more difficult to form when many internal vacancy sources are present in

the fast-diffuser-rich core region. This is consistent with the fact that Kirkendall void

growth is impossible when the vacancy concentration is assumed to be at equilibrium

everywhere in the bulk (i.e., Darken’s approximation).

Figure 3.16(a) illustrates the fully-grown radius of the inner void for a cylindrical

diffusion couple with different numbers of grain boundaries and ΓB/ΓA ratios. The

cylinder initially contains 1, 2, 3, 4, and 5 grains of equal volume in a concentric

structure and a 5-nm-radius void. The voids grow only in the one- and two-grain

cases. As ΓB/ΓA ratio increases, rf increases in the one- and two-grain cases. In the

three-, four-, and five-grain cases, the void collapses because of the Gibbs-Thomson

effect acting on the void surface in the pure B region, as described before.

The time to equilibrium, tf , is plotted in Fig. 3.16(b). In addition to the cases

where the cylinder has an initial void, the results of 1- and 2-grain cylinders without

initial central voids are also plotted for comparison. In the cases of diffusion in a solid

cylinder (1- and 2-grain cylinders without initial central voids and 3-, 4-, and 5-grain

cylinders with collapsed voids), tf decreases as the number of grains increases. This

decrease indicates that vacancy injection and elimination by the internal vacancy

sources and sinks accelerate the diffusion process. It can be noted for the multigrain

cases with no initial void or with a collapsed void that the outer part of the cylinder

evolves much more rapidly than the innermost grain [see, for example, Figs. 3.15(c)

and 3.15(d)]. This is because the innermost grain in this case has only one source/sink,

while other grains have one each at inner and outer boundaries, making a source-sink

pair.
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Figure 3.16: (a) The fully-grown void radius of a concentric multi-crystal cylindrical diffusion couple
for different number of grains and different ΓB/ΓA ratios. (b) The elapsed time for voids to reach
fully-grown size. For cylinders with collapsed voids, the elapsed times are taken at the state with
nearly homogeneous concentration distribution.

3.2.4 Conclusion for Cylindrical Simulations

The simulations demonstrate that the inward vacancy flux caused by the preferential

exchange with the outward-diffusing fast diffuser results in void growth. In the case

where there are no internal vacancy sinks within the diffusion couples, the Kirkendall

effect (nonreciprocal diffusion) is limited even if the hop frequency ratio between the

fast and slow diffusers is large. When the vacancy supply/elimination is efficient, the

unbalanced diffusion mode, in which net vacancy flux is large, is dominant. On the

other hand, without sufficient vacancy supply and elimination, the intermixing mode

of diffusion, where the net vacancy flux is small, dominates. The latter phenomena

cannot be examined by the conventional Kirkendall diffusion model, which assumes

vacancy sources to be uniformly distributed in a diffusion couple. Furthermore, based

on the simulations for the polycrystalline cylindrical diffusion couples, the number of

concentric grain boundaries in general accelerates the diffusion process. However,

grain boundaries can also hinder void growth, depending on their locations. When
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grain boundaries close to a void surface serve as vacancy sinks to eliminate vacancies

diffusing from the void surface, the void shrinks. This result is consistent with the

fact that void growth (the Frenkel effect) is impossible in the conventional model

where the solid region surrounding a void can serve as a vacancy sink. (Note that our

model converges to the Darken’s model as the density of vacancy source increases.)

Therefore, the results demonstrate that explicitly considering discretely distributed

vacancy sources is important in predicting diffusion process and void growth dynam-

ics when vacancy diffusion length is small compared to the typical spacing between

sources.

The simulation results also reveal that the Kirkendall void formation involves

two competing factors: the Kirkendall effect and the Gibbs-Thomson effect. The

unbalanced diffusion caused by the different atomic hop frequencies between the fast

and slow diffusers leads to a net inward vacancy flux that enlarges the void by injecting

vacancies into the void, while the Gibbs-Thomson effect due to the curvature of the

void surface favors the reduction of void radius by driving vacancies from the void

to the solid. When the diffusion front is close to the void, the critical initial void

radius is small because the net inward vacancy flux can easily access the void surface.

This explains why Kirkendall voids are mostly observed near the diffusion interface

on the fast-diffuser side in experiments. Moreover, due to the high vacancy mole

fraction on the void surface caused by the Gibbs-Thomson effect, a negative vacancy

concentration gradient is created, driving vacancies to diffuse outward. However, this

vacancy concentration gradient will be balanced by the fast diffuser concentration

gradient that tends to drive vacancies to diffuse inward. Thus, the void can exist

nearly stably for a certain period of time (more precisely, the void shrinks at a much

slower rate compared to rate of growth during the growth stage). Nonetheless, if the

Gibbs-Thomson effect is sufficiently large, a void eventually collapses as the diffusion

couple approaches equilibrium.
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We computed the quantities such as the fully-grown void radius and the elapsed

time as functions of the volume fraction of the fast diffuser for hollow cylinders forming

due to the Kirkendall effect. The maximum of fully-grown void radii occurs around

the intermediate volume fraction of the fast diffuser for low ΓB/ΓA ratios and shifts to

a higher volume fraction as ΓB/ΓA ratio increases. The minimum of the elapsed time

for a void to reach its fully-grown void size occurs around the intermediate volume

fraction. As the ΓB/ΓA ratio increases, the fully-grown void radius increases, and the

elapsed diffusion time decreases.

The present model provides a framework of studying hollow tube formation due

to the Kirkendall effect. The model can be applied to systems with stoichiometric

intermetallic compounds by incorporating the diffusivities of species in ordered phases

obtained by either analytical derivations or Monte Carlo simulations. The model

can also be extended further to simulate the process where solid-state reaction and

diffusion occurs simultaneously.
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CHAPTER IV

KIRKENDALL-EFFECT-INDUCED GRAIN

BOUNDARY DIFFUSION

4.1 Introduction

Grain boundary diffusion is an important phenomenon that affects material behav-

ior such as creep, sintering, precipitation at grain boundaries, and recrystallization

[127]. Grain boundaries contain atomic disorder and incomplete bonding, which can

lead to low migration barriers and high concentrations of diffusion-mediating defects.

Hence, atomic mobility along grain boundaries is usually larger than within grains.

In this chapter, we show that, in addition to potentially serving as a short-circuit

diffusion path as usually accepted, a grain boundary in a substitutional solid can

also substantially enhance diffusion in nearby crystalline regions by injecting or elim-

inating vacancies in adjacent grains through atomic mechanisms that give rise to the

Kirkendall effect.

As discussed in the earlier chapters, the Kirkendall effect results from differences

in the exchange rates between a vacancy and the various components of a substitu-

tional alloy. In the presence of concentration gradients among the components of an

alloy, vacancies preferentially exchange with the fast diffuser, producing a nonzero

net vacancy flux. As a result, a shift of the lattice frame relative to the laboratory

frame occurs in solids containing a high density of vacancy sources and sinks, giving

rise to the Kirkendall effect.

Grain boundaries can act as vacancy sources and sinks inside polycrystalline solids.
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During diffusion, vacancies are generated or eliminated at grain boundaries, which

compensate for vacancy supersaturation and depletion. This causes local volume ex-

pansion or contraction normal to the grain boundaries. This effect was observed from

the increased change in the sizes of diffusion couples, as well as larger marker shifts

along the direction normal to the grain boundaries when the grain boundary den-

sity increases [116, 43]. In addition to the volume changes near grain boundaries, an

enrichment of the fast diffusing species near the grain boundaries was observed experi-

mentally, which was attributed to enhanced grain boundary diffusion [76, 36, 128, 77].

The Kirkendall effect along grain boundaries is considered to be responsible for the

diffusion-induced grain boundary migration phenomenon [129, 130, 131, 132], in which

a larger number of the fast diffuser atoms diffuse along or near grain boundaries than

the slow counter-diffuser atoms, driving grain boundaries to migrate due to vacancy

generation or elimination. As the grain boundaries migrate, intermixed regions are

left behind. Furthermore, a phenomenon involving free surfaces analogous to the

Kirkendall effect has also been reported in experiments [73, 74]. During diffusion,

surface corrugation that initiates near the diffusion interfaces normal to the surfaces

is observed. This is attributed to vacancies and dislocations that are generated (elim-

inated) at the surface and that migrate to (from) the bulk regions. This shows that

free surfaces also act as vacancy sources and sinks for substitutional diffusion near

the surface, in addition to serving as fast diffusion paths.

4.2 Model

In this chapter, we follow the model proposed in Chapter III to study diffusion near

grain boundaries. We assume that grain boundaries are effective vacancy sources and

sinks, and ignore the effect of dislocations. In reality, dislocations can contribute to

the total vacancy generation and annihilation. As is discussed in Section 2.5, either

grain boundaries or dislocations can serve as the main vacancy sources, depending on
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the dislocation density and the average grain size in a polycrystalline material away

from surface. Here, we assume that the dislocation density is negligible so that the

bulk of a grain can be considered to have a perfect lattice structure. To isolate the

effect of vacancy generation and annihilation at grain boundaries on interdiffusion, we

neglect the contribution from short-circuit diffusion by assuming the atomic migration

barrier along grain boundaries to be identical to that of the bulk regions. Assuming

that grain boundaries serve as perfect vacancy sources and sinks, the vacancy mole

fraction remains at its thermal-equilibrium value Xeq
V at the grain boundaries. We

treat the grains as perfect binary crystals consisting of A and B atoms with a dilute

concentration of vacancy V . The fluxes of A and B are then related to the gradients in

concentrations according to Eq. (2.8). We restrict ourselves to a thermodynamically

ideal binary random alloy for which the Gibbs free energy of the system is described

by Eq. (2.43). The diffusion coefficients for this system are calculated following the

procedures in Section 2.4 with the physical parameters listed in Table 3.2. As in

the previous chapters, we solve Eq. (2.31) for V and B concentration evolution in

the perfect lattice bulk region of a grain. At the grain boundaries, the value of CB is

updated according to Eq. (2.33), and the vacancy concentration is fixed at CV = ρXeq
V ,

which serve as the boundary conditions for Eq. (2.31). To simplify the treatment, the

local volume change due to vacancy generation and annihilation at grain boundaries

is ignored. The diffusion equations can be non-dimensionalized in a similar manner

as in Section 3.1. To avoid repetition, we omit the derivation here.

4.3 Numerical Methods

We employ the standard central difference scheme in space. In the grid system, each

grid point is labeled with the indices xi and yj. The divergence of D∇C at grid point
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(xi, yj) is given by

∇ ·D∇C
∣

∣

∣

∣

xi,yj

=
Dxi−1/2,yj

(Cxi−1,yj
− Cxi,yj

) +Dxi+1/2,yj
(Cxi+1,yj

− Cxi,yj
)

∆x2

+
Dxi,yj−1/2

(Cxi,yj−1
− Cxi,yj

) +Dxi,yj+1/2
(Cxi,yj+1

− Cxi,yj
)

∆y2
,

(4.1)

where the diffusion coefficients appearing on the right-hand side are evaluated at the

half points between the grid point (xi, yj) and its four neighboring grid points, as

indicated by the subscripts containing ±1/2. The corresponding global matrix for

∇ · (D∇C) has a size of m ×m and takes a band form, where m is the number of

unknown concentration values to be solved for. In assembling the matrix, if a grid

point has a neighboring grid point (xi, yj−1) located at the grain boundary, the value

of Dxi,yj−1/2
Cxi,yj−1

/∆y2 is moved to the known side of the matrix equation to form

the vector containing boundary values. The same procedure will be performed for

the remaining three neighboring grid points.

Since the explicit Euler time scheme is very inefficient due to the large difference

in the diffusion coefficients for the vacancy diffusion (DV V ) and the B atom diffusion

(DV
BB), and the resulting vast difference between the numerically stable time step

and the characteristic evolution time, we adopt the implicit time scheme presented

in Eq. (3.9). The diffusion equations are discretized into a matrix equation having

sparse matrices:

(
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]

C
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(4.2b)

where the subscript n denotes the n-th time step, C
(n)
i is a column vector containing
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m values of (known) concentration of the i species at the n-th time step, C
(n+1)
i

contains m unknown values of the concentration at the (n+1)-th time step, ∆t is the

time step size, I is an m by m identity matrix, ∇
2 is the global matrix of a discretized

Laplacian operator, and ∇·D∇ is the global matrix for the divergence of ∇C times

the position-dependent diffusion coefficients. Equation (4.2) can be written in a short

form as

A11C
(n+1)
V − A12C

(n+1)
B = B11C

(n)
V + B12C

(n)
B = f

(n)
1 , (4.3a)

A21C
(n+1)
V − A22C

(n+1)
B = B21C

(n)
V + B22C

(n)
B = f

(n)
2 , (4.3b)

where A and B are m by m sparse matrices and f is a column vector of length m, all

of which can be obtained from Eq. (4.2). Equation (4.3b) can be rearranged to

C
(n+1)
B = A−1

22

(

A21C
(n+1)
V + f

(n)
2

)

, (4.4)

which can then be substituted into Eq. (4.3a) to yield

(

A11 −A12A
−1
22 A21

)

C
(n+1)
V = f

(n)
1 + A12A

−1
22 f

(n)
2 . (4.5)

Equation (4.5) is solved for vacancy concentration at (n+ 1)-th time step by using a

standard matrix solver. The B concentration at the (n+ 1)-th time step can then be

obtained using Eq. (4.4).

4.4 Simulation

The numerical simulations are performed for a two-dimensional domain containing

100 (horizontal) × 121 (vertical) grid points. The slow diffuser A is initially placed

in the left half of the diffusion couple, while the fast diffuser B initially occupies the

right half. To clearly demonstrate the enhanced diffusion along a grain boundary

(as compared to the bulk), one straight horizontal grain boundary is placed in the

middle of the domain, which is normal to the initial diffusion front where the atomic
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concentration gradient is large. The initial vacancy concentration is assumed to be

at the equilibrium value throughout the domain. No-flux boundary conditions are

assumed on the computational domain boundaries. The simulations are performed

for three cases where the ratio between the atomic hop frequencies varies from 1 to

100 (case I: ΓB = ΓA, case II: ΓB = 10ΓA, and case III: ΓB = 100ΓA).

4.5 Concentration Evolution

Figure 4.1 illustrates the profiles of normalized concentration C̃B = CB/ρ and C̃V =

CV /(ρX
eq
V ) taken at time t = 4.64 × 105 sec. The horizontal domain spans 100 µm.

Figures 4.1(a) and 4.1(b) show that a grain boundary that only serves to create and

annihilate vacancies does not affect diffusion in an alloy in which ΓA = ΓB. However,

for an alloy in which ΓB > ΓA, Figs. 4.1(c) and 4.1(e) clearly show enhanced diffusion

of B atoms along the grain boundary, as is evident from the high B concentration

in the A-rich region. The enhanced diffusion is asymmetric in that much fewer A

atoms have diffused toward the B-rich region. On the other hand, away from the

grain boundary, the diffusion front remains straight, normal to the grain boundary

and at its initial position, showing no signs of enhanced diffusion there even though

B atoms have much higher hop frequency than that of the A atoms.

The vacancy concentration also behaves differently depending on ΓB/ΓA. For an

alloy with ΓB = ΓA, since the two atomic species have equal chances to exchange with

vacancies, the net vacancy flux vanishes everywhere; therefore, C̃V is unaffected by the

presence of vacancy sources and sinks and remains uniform at its equilibrium value.

On the other hand, for the alloys with ΓB > ΓA, C̃V only remains at the equilibrium

value along the grain boundaries, where any excess or depletion of vacancies can be

instantaneously accommodated [see Figs. 4.1(d) and 4.1(f)]. Away from the grain

boundaries, however, C̃V is greatly depleted on the A-rich side and slightly enriched

on the B-rich side. As the ΓB/ΓA ratio increases, the vacancy depletion in the A-rich
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Figure 4.1: The profiles of normalized concentrations: C̃B = CB/ρ (left column) and C̃V =
CV / (ρXeq

V ) (right column). Case I: (a) and (b); Case II: (c) and (d); Case III: (e) and (f). The
figures are taken for the regions near grain boundaries: 80 µm (horizontal) × 50 µm (vertical).
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region is enhanced, while the vacancy enrichment in the B-rich region is diminished.

4.6 Eigenvalues of the Diffusivity Matrix and Slow

and Fast Modes of Diffusion

To understand the observed concentration evolution, it is useful to examine the eigen-

values of the diffusion coefficient matrix appearing in Eqs. (2.8) and (2.10) [133, 106].

The diffusion coefficients for a thermodynamically ideal substitutional binary alloy

are given by

DAA = LAA

(

1

XA
+

1

XV

)

+
LAB
XV

, (4.6a)

DAB =
LAA
XV

+ LAB

(

1

XB

+
1

XV

)

, (4.6b)

DBA = LAB

(

1

XA
+

1

XV

)

+
LBB
XV

, (4.6c)

DBB =
LAA
XA

+ LBB

(

1

XB
+

1

XV

)

. (4.6d)

The eigenvalues of the diffusion coefficient matrix can be calculated according to

[133, 106]

λ± =
DAA +DBB

2

(

1 ±
√

1 + 4
DABDBA −DAADBB

(DAA +DBB)2

)

. (4.7)

For a dilute vacancy concentration (XV ≪ XA or XB), one can obtain the following

relations:

DAA +DBB ≃ LAA + 2LAB + LBB
XV

, (4.8)

DABDBA −DAADBB ≃ −LAALBB − L2
AB

XV

(

1

XA
+

1

XB

)

. (4.9)

By applying a Taylor expansion on the square root in Eq. (4.7), the eigenvalues are

determined by

λ+ ≃ LAA + 2LAB + LBB
XV

, (4.10a)

λ− ≃ LAALBB − L2
AB

LAA + 2LAB + LBB

(

1

XA

+
1

XB

)

. (4.10b)
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By substituting the kinetic transport coefficients given in Eq. (2.40) into these equa-

tions, one finds that λ+ is independent of XV , while λ− is linearly proportional to

XV at this limit [106]. As shown below, for a perfect substitutional binary alloy

having a dilute vacancy concentration, the larger eigenvalue λ+ can be interpreted

as a vacancy diffusion coefficient, while the smaller eigenvalue λ− pertains to the in-

termixing diffusion mode in the absence of lattice frame shift [133], which should be

distinguished from the interdiffusion coefficient defined in the presence of abundant

vacancy sources and sinks to maintain an equilibrium vacancy concentration in the

bulk. The significances of the two eigenvalues can be easily illustrated as follows. By

using the Gibbs-Duhem relation, ∇µV = −(XA∇µA +XB∇µB)/XV , the generalized

flux equations, Eq. (2.5), can be rewritten as

JA = −LAAXV + LAAXA + LABXA

XV
∇µA − LAAXB + LABXV + LABXB

XV
∇µB,

(4.11a)

JB = −LABXV + LABXA + LBBXA

XV

∇µA − LABXB + LBBXV + LBBXB

XV

∇µB.

(4.11b)

In the dilute vacancy concentration limit, these equations are approximated to be

JA ∼= −LAAXA + LABXA

XV
∇µA − LAAXB + LABXB

XV
∇µB, (4.12a)

JB ∼= −LABXA + LBBXA

XV

∇µA − LABXB + LBBXB

XV

∇µB, (4.12b)

where XA∇µA = ∇CA and XB∇µB = ∇CB for an ideal random alloy. Thus, one can

obtain the vacancy flux expression for a perfect lattice region where JA+JB +JV = 0

and ∇CA + ∇CB + ∇CV = 0:

JV ≃ LAA + 2LAB + LBB
XV

(∇CA + ∇CB) = −λ+∇CV . (4.13)

The larger eigenvalue λ+, therefore, characterizes one diffusion mode that homoge-

nizes the fluctuation of the mass density (which equals the sum of the concentration
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of the atomic species) in a perfect lattice solid. On the other hand, in a perfect crys-

tal without vacancy sources and sinks, the vacancy concentration will deviate from

its equilibrium value due to the different exchange rates with the two atomic species

during diffusion. This results in a vacancy concentration gradient and thus a chemical

potential gradient that hinders further vacancy diffusion. In the limit where vacancy

diffusion finally freezes, JA + JB = 0, the driving force for vacancy diffusion can be

obtained by using Eq. (2.5):

∇µV = −LAA∇µA + LAB∇µB + LAB∇µA + LBB∇µB
LAA + 2LAB + LBB

. (4.14)

With the approximation that ∇CA ≃ −∇CB, the generalized flux equations for an

ideal substitutional binary alloy in the absence of vacancy flux can be reformulated

as

JA ∼= − LAALBB − L2
AB

LAA + 2LAB + LBB

(

1

XA

+
1

XB

)

∇CA = −λ−∇CA, (4.15a)

JB ∼= − LAALBB − L2
AB

LAA + 2LAB + LBB

(

1

XA
+

1

XB

)

∇CB = −λ−∇CB. (4.15b)

Therefore, the smaller eigenvalue λ− characterizes the homogenization of the con-

centration fluctuation of the atomic diffusing species in the absence of mass density

fluctuation. The significance of the smaller eigenvalue is analogous to the so-called

Nernst-Planck diffusion coefficient in an ionic diffusion system [134], the slow-mode

diffusion coefficient in an amorphous system [135], and the Nazarov-Gurov diffusion

coefficient [136] in simple binary alloys in which the correlating terms (LAB) can be

ignored.

4.7 Behavior of λ+ and λ−

Figures 4.2(a) and 4.2(b) show the two analytically calculated eigenvalues for a con-

stant vacancy mole fraction, XV = 1.6×10−6, for different ΓB/ΓA ratios (similar plots

can be found in Ref. [106]). When ΓB > ΓA, the larger eigenvalue, λ+, increases lin-
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Figure 4.2: (a) The larger eigenvalues, (b) The smaller eigenvalues, and (c) the partition parameter
ϕ (as defined in Ref. [106]) as functions of XB for XV = 1.6 × 10−6, and different ΓB/ΓA ratios.
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early as XB increases in the region XB ≥ 0.25. The slopes above the percolation limit

(XB = 0.25) scale well with the fast-to-slow atomic hop frequency ratio, reflecting

that vacancies are more likely to exchange with the fast diffuser when more B atoms

are available. However, the smaller eigenvalue, λ−, decreases as XB increases when

XB ≥ 0.25. This shows that the intermixing between the two atomic species is more

difficult when vacancies tend to only exchange with B atoms. Furthermore, it is note-

worthy that the diffusivity associated with the intermixing process, λ−, only increases

by a factor of a few even when ΓB/ΓA increases by two orders of magnitude. This

implies that the diffusion process under slow-mode diffusion (and thus intermixing)

will also be enhanced by the increase in the fast-to-slow atomic hop frequency ratio,

but not as notably as the fast-mode diffusion process that mainly involves the fast

diffuser and vacancies.

The spatial variation of λ+ and λ− scaled with D0 = 7.48 × 10−8 cm2s−1 for the

concentration profiles of Fig. 4.1 is illustrated in Fig. 4.3. As shown in Figs. 4.3(c)

and 4.3(e), λ+ in the B-rich regions is much larger than that in the A-rich regions.

The vacancy diffusion coefficient in the B-rich regions is about ΓB/ΓA times larger

than that in the A-rich regions, reflecting the difference in exchange rates with the

two atomic diffusing species. Furthermore, there is an enhancement of λ+ along the

grain boundaries near the diffusion front on the initially A-rich side due to an increase

in the concentration of B atoms there. This variation in λ+ allows us to explain the

vacancy concentration profiles in Figs. 4.1(d) and 4.1(f). Diffusion taking place away

from the grain boundary near the diffusion front causes a vacancy depletion in the

A-rich region next to the interdiffusion zone and a vacancy accumulation in the B-

rich region because vacancies preferentially exchange with the more mobile B atoms.

This deviation from the equilibrium vacancy concentration is rapidly alleviated by

the grain boundary in the B-rich regions, where the vacancy diffusivity, λ+, is large.

However, the vacancy concentration is near equilibrium only very close to the grain
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Figure 4.3: The profiles of λ+ (left column) and λ− (right column) scaled with D0 = 1.497 × 10−7

cm2/sec. Case I: (a) and (b); Case II: (c) and (d); Case III: (e) and (f). The figures are taken for
the same regions as in Fig. 4.1.
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boundary in the A-rich region because λ+ is small in most of the A-rich region except

along the grain boundary. As a result, the enrichment and depletion of vacancy

concentration are asymmetric on the two sides of the diffusion couple. This effect is

more pronounced in Fig. 4.1(f), since λ+ in the B-rich region is about ΓB/ΓA times

larger than that in the A-rich region.

4.8 The Estimate of Kirkendall-Effect-Enhanced

Grain Boundary Diffusion

In this section, we make an estimate of the degree of enhancement of diffusion along

grain boundaries attributed to the Kirkendall effect. Since the vacancy concentration

gradient vanishes along grain boundaries, the chemical potential of the vacancies

becomes constant along grain boundaries: ∂µV /∂x|gb = 0, where the subscript ‘gb’

denotes quantities along grain boundaries. Thus, the driving forces for diffusion of A

and B atoms are related to each other by the Gibbs-Duhem relation: XA∂µA/∂x|gb+

XB∂µB/∂x|gb = 0. For thermodynamically ideal alloys under these conditions, it can

be shown analytically that the ratio of JB to −JA along grain boundaries equals the

ratio of ΓB to ΓA by substituting the Gibbs-Duhem relation and the expressions of

kinetic transport coefficients into Eq. (2.22):

JB
JA

∣

∣

∣

∣

gb

= −XALBB −XBLAB
XBLAA −XALAB

= −XVXAXBΓB(Λ − 2XAΓB − 2XBΓA)

XVXBXAΓA(Λ − 2XBΓA − 2XAΓB)
= −ΓB

ΓA
.

(4.16)

Thus, since JB represents the fast-mode diffusion flux while JA represents the inter-

mixing flux, the magnitude of the enhancement of grain boundary diffusion due to the

Kirkendall effect is given by the fast-to-slow ratio of the hop frequencies. This result

indicates that interdiffusion of the two atomic species along grain boundaries that act

as perfect vacancy sources and sinks follows the fast-mode diffusion that is equivalent

to the Darken’s type of interdiffusion. In contrast, far away from grain boundaries,

the vacancy flux is small, and interdiffusion follows the slow-mode of diffusion. Thus,
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the Kirkendall effect is weak even though the two atomic diffusing species have very

different hop frequencies. The results clearly show that interdiffusion shifts from the

fast-mode diffusion to the slow-mode diffusion as the distance from vacancy sources

and sinks increases. While the simulation results presented here pertain to the very

early stages of interdiffusion when local swelling or contraction at the grain boundary

is still negligible, the qualitative conclusions are expected to hold for long times as

well.

4.9 The Intermixing Flux and the Partition Pa-

rameter

While the two eigenvalues describe vacancy diffusion and the slow-mode intermixing

diffusion in the perfect lattice regions, it is useful to analyze the diffusional fluxes

using the parameter introduced by Van der Ven [106]:

ϕ =
DBA

DAB +DBA
, (4.17)

which can be interpreted as the fraction of vacancy flux exchanging with the fast

diffuser. Here, we term this parameter as the partition parameter, where partition

refers to that between the fast and slow modes. This interpretation is strictly true

only for thermodynamically ideal alloys at the dilute vacancy concentration limit, as

shown below. Since the flux of one atomic diffusing species consists of two parts, flux

exchanging with vacancies and intermixing flux, the intermixing flux is determined

by subtracting the fraction exchanging with vacancies from the atomic flux:

J̆A = JA + (1 − ϕ)JV = ϕJA − (1 − ϕ)JB, (4.18a)

J̆B = JB + ϕJV = −ϕJA + (1 − ϕ)JB, (4.18b)

where J̆A = −J̆B. By substituting Eq. (2.8) into (4.18) for flux expressions and

using Eq. (4.6) for diffusion coefficients, the intermixing fluxes in a dilute vacancy
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concentration are obtained by

J̆A = −J̆B ∼= − LAALBB − L2
AB

LAA + 2LAB + LBB

(

1

XA

+
1

XB

)

∇CA = −λ−∇CA. (4.19)

This equation is equivalent to Eq. (4.15) that indicates the intermixing flux when

JV = 0. This result clearly shows that the atomic flux subtracting the fraction

exchanging with vacancies is the intermixing flux and that ϕ is the fraction of vacancy

flux exchanging with the fast diffuser. Figure 4.2(c) shows ϕ as a function of XB for

different ΓB/ΓA ratios. When ΓB = ΓA, ϕ is a linear combination of the components.

Once the two atomic hop frequencies deviate from each other (ΓB > ΓA), ϕ increases

and has a more uniform distribution in the region XB > 0.25, above which vacancies

and B atoms frequently exchange back and forth.

Shown in Fig. 4.4 are the fluxes of A and B atoms and vacancies, corresponding

to Figs. 4.1(e) and 4.1(f), case III. Away from the diffusion interface, vacancy flux

is compensated by A flux on the A-rich side because almost no B atoms are there

[Fig. 4.4(b)]. It shows that no intermixing process takes place away from the diffusion

interface in the A-rich region during diffusion. This is consistent with J̆A = JA+(1−

ϕ)JV = 0 in the A-rich region outside the rapid diffusion zone, where ϕ ≈ 0 and

the vacancy flux is given by JV = −λ+∇CV . The flux JA compensated by JV in

the A-rich region will not contribute to the homogenization of the concentration of

atomic species. Instead, it only results in a shift of atoms without varying their

concentration. Similarly, vacancy flux only exchanges with B flux on the B-rich side

[Fig. 4.4(d)] away from the diffusion interface, and diffusion only leads to a shift of

B atoms without varying B concentration.

On the other hand, near the diffusion interface but away from the grain boundary,

vacancy flux vanishes [Fig. 4.4(e)], and the fluxes of A and B atoms are nearly equal

in magnitude but opposite in direction. It shows that diffusion in the rapid diffusion

zone (near the diffusion interface) away from vacancy sources and sinks takes place
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Figure 4.4: The diffusion fluxes corresponding to the concentration profiles of Figs. 4.1(e) and 4.1(f).
Figures (b), (c), (d) and (e) are the magnified regions in (a) as indicated by the boxes.
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via a complete intermixing process that well follows the slow-mode diffusion because

the vacancy concentration gradient suppresses the difference in the exchange rates

with the two atomic species. Since λ− does not vary much with different ΓB/ΓA

ratios, as illustrated in Fig. 4.2(b), diffusion of the atomic species in the diffusion

zone away from grain boundaries occurs via a similarly slow process in the cases

where ΓB/ΓA varies from 1 to 100 [Figs. 4.1(a), 4.1(c) and 4.1(e)]. These results

demonstrate that diffusion process in the perfect lattice region of a substitutional

crystalline solid consists of two modes characterized by the two eigenvalues of the

diffusion coefficient matrix.

When close to the grain boundary, the magnitude of JV increases [Fig. 4.4(c)],

showing a transition from the slow-mode diffusion behavior to the fast-mode diffusion

one. Eventually, interdiffusion shifts to a completely fast-mode diffusion that is similar

to the Darken’s type interdiffusion along the grain boundary. This is a manifestation

that the vacancy source efficiency that depends on the distance from sources and

sinks determines the diffusion mechanisms.

4.10 Summary

In this chapter, we demonstrated that vacancy-mediated diffusion in a substitutional

alloy is enhanced along grain boundaries due to the supply and removal of vacancies,

which change interdiffusion from slow-mode diffusion to fast-mode diffusion. This

process, which becomes more pronounced in alloys having a large Kirkendall effect,

will further enhance diffusion along grain boundaries in addition to any short-circuit

diffusion mechanisms due to lower activation barriers there. For the Kirkendall-

effect-assisted grain boundary diffusion mechanism described above, the role of grain

boundaries in enhancing diffusion will differ qualitatively and quantitatively for al-

loys that exhibit a strong Kirkendall effect from those that do not, and it provides

additional considerations when optimizing grain size distributions in heterostructures
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that are to resist degradation as a result of interdiffusion.

Another finding, which may possibly be more surprising, is the significant suppres-

sion of the fast-mode diffusion away from the grain boundary. This stems from the

fact that the vacancy gradient quickly responds to the diffusing species concentration

gradients to cancel the driving force for the fast-mode diffusion. In this case, the

slow-mode diffusion, or the intermixing mode, becomes dominant and carries the sys-

tem toward equilibrium at a longer time scale. Therefore, the enhancement of grain

boundary diffusion observed in experiments may in some cases be a manifestation of

the suppression of diffusion in the low grain-boundary-density case as compared to

the high-density case.
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CHAPTER V

DIFFUSE INTERFACE APPROACH FOR

CONVENTIONAL MODELING

5.1 Introduction

In Chapter III, we examined a rigorous model in which the diffusion of vacancies is

explicitly considered in a one-dimensional domain. The volume change caused by

vacancy injection and elimination was treated in this case by a planar lattice shift

for the planar geometry and by considering conservation of volume for the cylindrical

geometry. The motions of free surfaces, grain boundaries, and the mass center of the

diffusion couple due to vacancy generation and annihilation were observed in these

simulations. When the vacancy source density was high, the rigorous model converged

to the conventional treatment, namely Darken’s model (see Section 3.1.5). In Chap-

ter IV, we examined the effect of grain boundaries serving as vacancy sources and

sinks on interdiffusion in a substitutional binary alloy with a perfect lattice structure.

It was found that the interdiffusion process can be characterized as a combination of

the slow mode and the fast mode of interdiffusion. When vacancies are efficiently sup-

plied or removed to maintain their equilibrium mole fraction, the fast mode dominates

the interdiffusion process. In the absence of abundant sources and sinks of vacancies,

the number of vacancies must be conserved, just like the atomic species, and the slow

mode of interdiffusion is observed. We found that the fast-mode diffusion near the

grain boundary contributes to an enhancement of diffusion. However, arbitrary vol-

ume expansion and contraction due to vacancy injection and elimination, which are
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expected to occur in these systems, were not incorporated in these two-dimensional

simulations. In a more realistic situation, the deformation, caused by lattice creation

or destruction, occurs to maintain an equilibrium vacancy concentration. This phe-

nomenon is difficult to implement in multidimensional simulations. In this chapter,

we present a numerical method developed to circumvent this difficulty. The method

is applied to simultaneously simulate the plastic deformation and the concentration

evolution in a binary alloy during interdiffusion.

In Darken’s analysis, the lattice flow relative to an observer’s frame fixed out-

side of the diffusion zone is predicted to compensate for the unequal fluxes between

the two atomic diffusing species. Shortly after his analysis was published, it was

generally accepted that the marker motion observed experimentally was consistent

with a one-dimensional incompressible plastic flow stemming from different diffusiv-

ities of different species. However, because diffusion couples are often not fully one

dimensional, the plastic deformation is not necessarily confined to the diffusion di-

rection. Instead, bending of a diffusion couple, as well as bulging and grooving near

the diffusion interface induced by the Kirkendall effect, are commonly observed in

experiments. To model the structural deformation during interdiffusion, models were

proposed decades ago that account for vacancy generation and elimination and that

also incorporate plastic deformation due to local volumetric changes [137]. In these

models, plastic deformation is described by a Newtonian flow. These models have

only been employed to simulate concentration evolutions in one-dimensional or quasi

one-dimensional diffusion couples, due to the difficulties in numerical implementation

for tracking the structural deformation in directions other than the diffusion direc-

tion [45, 50, 80, 110]. For higher dimensions, analytical solutions only exist for a very

limited number of cases where the diffusion couples have very simple geometries [79].

For cases with a general geometry, only a two-dimensional simulation of Kirkendall

effect-induced deformation has appeared in the literature [81] to the best of our knowl-
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edge. That simulation was based on the traditional model of interdiffusion. In that

work, an adaptive meshing technique for the finite element method was necessary for

following the structural deformation.

A robust, flexible numerical method that allows the simulation of diffusion as

well as the resulting deformation in two and three dimensions based on a rigorous

model of the Kirkendall effect is needed to gain insights into interdiffusion phenomena

involving complex geometries. The main challenge here is associated with following

free boundaries internal to the computational domain, at which internal boundary

conditions must be imposed. Therefore, we developed a diffuse interface method

to circumvent the difficulty in explicitly tracking the boundaries (e.g., surfaces of

the diffusion couples or grain boundaries within the couples) and imposing internal

boundary conditions on these boundaries. In this chapter, the numerical method is

described and applied to the traditional model of interdiffusion. In the next chapter,

the method is applied to a few cases with the rigorous model of interdiffusion to

demonstrate that it is an efficient and powerful tool to examine Kirkendall effect-

induced deformation.

5.2 Model

5.2.1 Diffusion Under Advection

Our starting point is the generalized diffusion equation of vacancy concentration taken

in the lattice frame for a thermodynamically ideal substitutional binary alloy:

∂CV
∂t

= −∇ · JV +

(

1 − CV
ρ

)

g, [2.29]

where the fluxes are determined by Fick’s first law for a multi-component system:

JV = −DV V∇CV −DV B∇CB. [2.11a]

Note that these concentration rate and flux equation can also be expressed in mole-,

mass-, or volume-based quantities by incorporating molecular mass or volume into the
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equations [138, 139, 81, 80]. Although the atomic volumes of different species usually

differ and local lattice distortions commonly occur in reality, such considerations in

a substitutional lattice structure will only change the problem quantitatively. For

simplicity, we assume that the atomic volumes of all diffusing species are identical,

such that the lattice structure remains unaltered during diffusion process. In addition,

this solid is assumed to be completely incompressible (ρ = constant).

The conventional treatment of interdiffusion assumes that a solid contains a suf-

ficiently dense distribution of vacancy sources and sinks to constantly maintain the

vacancy mole fraction at its thermal equilibrium value everywhere in the solid: CV =

ρXeq
V . As a result, the time and spatial derivatives in Eqs. (2.29) and (2.11a) go to

zero, and one can calculate the vacancy generation rate that maintains the equilibrium

vacancy mole fraction according to

g = −∇ · (DV B∇CB)

1 −Xeq
V

. (5.1)

Since the lattice density and vacancy concentration are kept constant, the vacancy

generation rate is identical to the lattice site generation rate. The lattice site gener-

ation gives rise to a local volume change that, according to Eq. (2.35), can be viewed

as a local stress-free dilatational strain rate: ε̇Ω = g/ρ. For a plastically deformable

body, ε̇Ω contributes to a flow velocity, v, to relax the volume expansions or con-

tractions, where v is a vector quantity. The determination of the magnitudes and

directions of the plastic flow will be discussed later. At an arbitrary point in the solid,

the number of lattice sites is described by a simple conservation law of lattice flux:

∂ρ

∂t
= −∇ · Jρ + g, (5.2)

where Jρ = vρ is the flux of lattice sites. Similar to Eq. (2.26), the first term on the

right-hand side of Eq. (5.2) accounts for lattice site accumulation, and the second

term accounts for lattice site generation. Since ρ is constant, the time and spatial
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derivatives of ρ in Eq. (5.2) go to zero, providing the relation between the lattice

generation rate and the velocity field:

∇ · v = g/ρ. (5.3)

Equation (5.3) clearly indicates that the divergence of the velocity field of plastic

deformation equals the stress-free dilatational strain rate.

In the laboratory frame outside the solid, the fast diffuser flux needs to include

the advective effect due to deformation:

JLB = JB + vCB, (5.4)

where v is the plastic flow velocity relative to the laboratory frame, and the flux in

the lattice frame is expressed by:

JB = −DBV∇CV −DV
BB∇CB. [2.11b]

In the conventional treatment, the vacancy concentration gradient is zero; thus, the B

flux is related only to its own concentration gradient: JB = −DV
BB∇CB. Conservation

of the fast diffuser is found by taking the divergence of its flux, yielding the rate of

concentration change:

∂CB
∂t

= −∇ · JLB =⇒ ∂CB
∂t

+ v · ∇CB = −∇ · JB − CB∇ · v. (5.5)

By substituting Eq. (5.3) into the second term on the right-hand side of Eq. (5.5), we

obtain the diffusion equation for the fast diffuser in the laboratory frame:

∂CB
∂t

+ v · ∇CB = −∇ · JB − CB
ρ
g, (5.6)

where the terms on the right-hand side are identical to those in Eq. (2.30) obtained

for the lattice frame. The second term on the left-hand side has the usual form that

accounts for advection and, together with the partial time derivative, represents the

Lagrangian time derivative of CB. To compare with Darken’s analysis, we can simplify

99



the above formulation to a one-dimensional system, where Eq. (5.3) is written as

∂v

∂x
= − 1

ρ(1 −Xeq
V )

∂

∂x

(

DV B
∂CB
∂x

)

=⇒ v = − 1

ρ(1 −Xeq
V )

DV B
∂CB
∂x

. (5.7)

For a thermodynamically idea binary substitutional random alloy, the diffusion coef-

ficients are related by DV B = DAA − DAB + DBA − DBB = LAA/XA − LAB/XB −

LBB/XB + LAB/XA = DA − DB, where DA and DB are the intrinsic diffusion co-

efficients in Darken’s model, Eq. (2.23). Therefore, the velocity expression is iden-

tical to that predicted by Darken’s analysis, Eq. (2.20), except for the small factor

1/(1 −Xeq
V ) ≈ 1. In one dimension, Eq. (5.4) can be reorganized to give

JLB = −DV
BB

∂CB
∂x

− XB

1 −Xeq
V

DV B
∂CB
∂x

= −D̃∂CB
∂x

, (5.8)

where DV
BB + XBDV B = XADB + XBDA = D̃, if the small factor Xeq

V is neglected.

Again, this expression recovers the concentration evolution equation in Darken’s

model, Eq. (2.22). Therefore, our formulation derived from the rigorous model con-

verges to the conventional model at the limit where there are abundant vacancy

sources and sinks.

5.2.2 Formulation of Plastic Deformation

Let us consider the formulation of the plastic deformation caused by the stress-free

dilatational strain. The following derivation is similar to those in Refs. [79, 81].

According to the theory of continuum mechanics the strain is the spatial derivative

of the displacement. Thus, the strain rate is given by taking the time derivative of

the total strain. Assuming the deformation is small, one obtains the strain rate in

index notation as

ε̇ij =
1

2

(

∂vi
∂xj

+
∂vj
∂xi

)

, (5.9)

where the subscript i denotes the directional component, and repeated indices imply

summation over the index. The strain rate can be decomposed into a stress-free
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dilatational strain rate and a shear strain rate:

ε̇ij =
1

d
ε̇Ωδij + γ̇ij, (5.10)

where ε̇Ω is proportional to the vacancy generation rate according to Eq. (2.35), δij

is the Kronecker delta (δ = 1 for i = j; otherwise δ = 0), and d is the dimensionality

of the coordinate system. The first term accounts for the change in the number of

the lattice sites, and the second term accounts for the strain relaxation. Note that

the factor 1/d is adopted under the assumption that the deformation is small, and

any volume change due to lattice generation is isotropic. While both the lattice

structure and grain boundary orientations can lead to anisotropy, we do not consider

crystallographic orientations in a macroscopic model, since the entire solid is assumed

to contain vacancy sources and sinks.

We employ a linear constitutive relation for a viscous Newtonian fluid to model the

plastic deformation process. The shear strain rate is related to the stress components

by

γ̇ij =
1

2η

(

σij −
1

d
σkkδij

)

, (5.11)

where σij is the stress component and η is the viscosity of the material. The quantity

in parenthesis in Eq. (5.11) is the so-called deviatoric stress tensor. By substituting

Eqs. (5.9), (2.35) and (5.11) into (5.10) and rearranging terms, we arrive at

σij =
σkkδij
d

+ η

(

∂vi
∂xj

+
∂vj
∂xi

)

− η
2g

dρ
δij . (5.12)

We assume that the deformation induced by diffusion is a slow process, such that

the inertial force can be neglected. Therefore, the stress state of the solid body is

governed by the mechanical equilibrium equation: ∂σij/∂xj = 0. This assumption

means that the solid material is always in an instantaneous quasi-static state. Taking
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the divergence of Eq. (5.12), one obtains

− ∂P

∂xj
+

∂

∂xj
η

(

∂vi
∂xj

+
∂vj
∂xi

)

− ∂

∂xj

(

2
ηg

dρ

)

= 0, (5.13)

where P = −σkk/d is defined as an effective pressure. The first two terms in Eq. (5.13)

correspond to the conventional Navier-Stokes equation for a slow flow, and the third

term represents the dilatational strain caused by the unequal atomic fluxes in the

system. The same slow-flow viscous fluid expressions are commonly applied to model

Nabarro-Herring creep [140].

Up to this point, we have obtained three governing equations for the conventional

model, including one for the concentration evolution and two for diffusion-induced

plastic deformation:

∂CB
∂t

+ v · ∇CB = ∇ ·DV
BB∇CB +

CB
ρe

∇ ·DV B∇CB, (5.14)

−∇P + ∇ · (η∇v) + ∇
(

2η

dρe
∇ ·DV B∇CB

)

= 0, (5.15)

∇ · v = − 1

ρe
∇ ·DV B∇CB, (5.16)

where ρe = ρ(1 −Xeq
V ) is a constant scalar quantity, and ∇v = (∂vi/∂xj + ∂vj/∂xi)

is a tensor of second rank. Equations (5.14) and (5.16) are scalar equations, while

Eq. (5.15) is a vector equation. In a multi-dimensional domain, Eq. (5.15) consists of

force balance equations in all the directions of the coordinate system. Note that these

three equations only govern the physics within the solid domain. These equations can

be solved using a standard finite element method in a sharp interface description, as

has been done in Ref. [81]. However, since the solid domain of the diffusion couple

involves time evolution of deformation during diffusion, a remeshing technique is re-

quired for tracking the deformation. In cases with severe deformations, the remeshing

process may be computationally too expensive.

102



5.2.3 Phase Field Approach

We propose a flexible and efficient approach to solve the same set of equations using

a diffuse interface description. In this model, an order parameter is employed to

distinguish the solid medium from its environment (air), as the entire computational

domain contains two phases: solid and air. Within each phase, the order parameter

is kept at a constant value: e.g., ψ = 1 in the solid phase and ψ = 0 in the vapor

phase. The order parameter value transitions continuously between these two phases

in the narrow interfacial region. Thus, the region where 0 < ψ < 1 is the interfacial

region between solid and air, with ψ = 0.5 corresponding to the nominal interfacial

position. Note that diffusion is confined to occur only in the solid phase.

A common example of a diffuse interface model for a conserved order parameter

such as density is the Cahn-Hilliard equation. Similar to a typical phenomenological

rate equation, the derivation of such an equation starts with the description of the

total free energy in the system:

Fψ =

∫

x

[

f(ψ) +
κ

2

2
(∇ψ)2

]

dx, (5.17)

where x is the position vector, f(ψ) is the free energy density functional in terms of

the order parameter, and κ is the gradient energy coefficient. The second term in the

integrand accounts for the penalty for a sharp change in the order parameter across

the interfacial region. The integration is carried out over the volume of the entire

domain. Similar to the typical phenomenological rate equation, the flux of the order

parameter is proportional to the driving force:

Jψ = −LM∇µψ, (5.18)

where LM is a mobility coefficient, and ∇µψ is the driving force, defined as the

gradient of the chemical potential. The potential µψ represents the rate of change

of the free energy in Eq. (5.17) with respect to the change in the order parameter
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within a characteristic volume. This potential is obtained by taking the variational

derivative of the total free energy with respect to the order parameter: µψ = δF/δψ.

Note that the chemical potential has units of energy per volume as a result of taking

the variational derivative. By taking the divergence of the order parameter flux, the

conservation law of the order parameter field gives the governing equation for the

evolution of ψ, the well-known Cahn-Hilliard equation:

∂ψ

∂t
= −∇ · Jψ = ∇ · LM∇

(

∂f

∂ψ
− κ

2∇2ψ

)

. (5.19)

If the free energy density functional in Eq. (5.17) is a double-well function, the

system tends to separate into two phases, where each phase takes one of the two bulk

values of the order parameter corresponding to the well minima in order to reduce

the bulk free energy. For example, a simple choice of a double-well function having

its minima at ψ = 0 and ψ = 1 would be

f(ψ) = Wψ2(1 − ψ)2, (5.20)

where W/16 is the barrier height between the two wells. Since the order parameter

ψ is a non-dimensional quantity, W has units of energy per unit volume, and the

gradient energy coefficient, κ, has units of the square root of energy per unit length

(
√

energy/length). Taking the derivative of Eq. (5.20) gives ∂f/∂ψ = 2W (ψ− 3ψ2 +

2ψ3). For a simple one-dimensional case with boundary conditions ψ = 1 at x = −∞

and ψ = 0 at x = ∞, one can solve

2W (ψ − 3ψ2 + 2ψ3) − κ
2∂ψ

∂x
= 0 (5.21)

to determine the steady-state order parameter profile. The non-trivial solution of this

equation is given by

ψ =
1

2

[

1 − tanh

(

1

2

√
2W

κ

x

)]

. (5.22)

Note that the quantity κ/
√

2W has units of length and can be considered the char-

104



acteristic length of the interface. The hyperbolic tangent solution indicates that the

order parameter is distributed uniformly away from the interface at x = 0. On the

other hand, the order parameter continuously transitions from ψ = 1 to ψ = 0 in a

narrow region near x = 0. The distance from ψ = 0.1 to ψ = 0.9 is approximately

4
√

2W/κ, which can then be considered the thickness of the interface (see Fig. 5.1).

The interfacial energy between the two phases can be written in terms of the gradient

energy coefficient and the gradient of the order parameter:

γψ =

∫ +∞

−∞

κ
2

(

dψ

dx

)2

dx. (5.23)

At steady state, the relation κdψ/dx = −
√

2f(ψ) can be used to change the variable

in Eq. (5.23), such that κ
2(dψ/dx)2 = −

√

2κ
2f(ψ)(dψ/dx). The interfacial energy

is therefore obtained as

γψ =

∫ 1

0

√

2κ
2f(ψ)dψ = κ

√
2W

6
, (5.24)

which balances the bulk free energy at steady state. By changing the well height of the

free energy density function, W , and the gradient energy coefficient, κ, the interfacial

thickness and the interfacial energy can be controlled in a phase field simulation.

When the interfacial thickness is taken to be zero, the diffuse interface description

converges to the sharp interface description. However, in practice, it is sufficient to

require that the thickness be much smaller than the characteristic lengths such as the

domain size or the radii of curvature in the system. Numerically, we require that at

least four to six grid points exist within the interfacial regions in order to accurately

describe the steep changes in the gradient of the order parameter.

Up to this point, the Cahn-Hilliard equation is derived in the absence of advection.

Equation (5.19) can be simply modified to include a general advective term describing

105



Figure 5.1: (a) Schematic plot of a double-well free energy functional with the minima at ψ = 0 and
ψ = 1. (b) Schematic plot of an order parameter profile in one dimension.

phase morphological evolution under an external or internal flow field:

∂ψ

∂t
+ v · ∇ψ = LM∇2

(

∂f

∂ψ
− κ

2∇2ψ

)

. (5.25)

Here, for simplicity, the mobility in Eq. (5.25) is assumed to be independent of the

order parameter. One should note that the velocity field is defined over the entire

computational domain, in both solid and vapor phases.

Now we consider conservation of momentum, which allows us to obtain the velocity

field. In a system containing two coexisting phases, Eq. (5.15) is modified to include

the capillary force exerted on the interfaces [90, 141]:

−∇P + ∇ · (η∇v) + ∇
(

2η

dρe
∇ ·DV B∇CB

)

+ µψ∇ψ = 0. (5.26)

This interfacial force term [90, 141] stems from the free energy change in time due to

advection, according to

∂F

∂t

∣

∣

∣

∣

advection

=

∫

x

δF

δψ

∂ψ

∂t

∣

∣

∣

∣

advection

dx, (5.27)

where δF/δψ = µψ and ∂ψ/∂t|advection = −∇ · (vψ). Performing integration by parts
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and using the divergence theorem on the right-hand side of Eq. (5.27), one obtains

−
∫

x

µψ∇ · (vψ)dx = −
∫

s

µψψn · vds−
∫

x

v · (µψ∇ψ)dx. (5.28)

Here, s is the boundary of this volume, n is the unit normal vector of the boundary,

ds is the area element on s, and the volume is taken to be large enough that the

boundary of the volume does not include any interfaces. Since the system is a closed

system, the integrand along boundary goes to zero, and the free energy change must

balance the kinetic energy change due to the interfacial force. As a result, we can

obtain
∫

x

v · (µψ∇ψ)dx =

∫

x

v · fsdx, (5.29)

where fs is the interfacial force appearing in Eq. (5.26). This type of modified equation

of momentum balance, along with the advective Cahn-Hilliard equation, form the

model-H phase field model, which has been widely used in modeling multi-phase fluid

flow [142, 143, 140, 144].

The momentum balance equation can be nondimensionalized in a procedure sim-

ilar to that used for Eq. (3.4). We define a reference diffusion coefficient, D0, a

reference concentration, ρ (the lattice density), a length scale, l, and a time scale,

τ = l2/D0, as in Eq. (3.4). We also scale the velocity with the quantity l/τ , the

effective pressure with a reference pressure, P0, and the viscosity coefficient with the

reference value P0τ in Eq. (5.26):

− 1

l
∇̂P0P̂ +

1

l
∇̂ ·
(

P0τ η̂
1

l
∇̂ l

τ
v̂

)

+
1

l
∇̂
(

2

d

P0τ η̂

ρe

1

l
∇̂ ·D0D̂V B

1

l
∇̂ρXB

)

+Wµ̂ψ
1

l
∇̂ψ = 0

=⇒ −∇̂P̂ + ∇̂ ·
(

η̂∇̂v̂
)

+ ∇̂
(

2η̂

d(1 −Xeq
V )

∇̂ · D̂V B∇̂XB

)

+
W

P0
µ̂ψ∇̂ψ = 0,

(5.30)

where the hats denote nondimensionalized quantities: P̂ = P/P0 , η̂ = η/(P0τ),

v̂ = v/(l/τ), and µ̂ψ = µψ/W . The nondimensionalized quantity W/P0 characterizes

the relative magnitude of the viscous force and the interface force. Similarly, we
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nondimensionalize Eq. (5.25) into

1

τ

∂ψ

∂t̂
+
l

τ
v̂ · 1

l
∇̂ψ =

D0

l2
L̂M∇̂2

(

∂f̂

∂ψ
− κ

2

Wl2
∇̂2ψ

)

=⇒ ∂ψ

∂t̂
+ v̂ · ∇̂ψ =L̂M∇̂2

(

∂f̂

∂ψ
− κ̂

2ψ

)

,

(5.31)

where L̂M = LMW/D0 is a dimensionless mobility coefficient. Furthermore, since we

only consider diffusion and lattice site generation within the solid phase, we multiply

the lattice generation rate by the order parameter, such that no lattice generation

occurs in the vapor phase while the lattice generation within the solid phase remains

unchanged. The equation relating the plastic flow velocity and the lattice generation

rate is nondimensionalized into

∇̂ · v̂ = − ψ

1 −Xeq
V

∇̂ · D̂V B∇̂XB = ĝψ. (5.32)

Similarly, Eq. (5.14) is modified and nondimensionalized into

∂XB

∂t̂
+ v̂ · ∇̂XB = ∇̂ · D̂V

BB∇̂XB −XB ĝψ. (5.33)

For convenience, the hats denoting dimensionless quantities will be omitted from the

equations in the following derivation.

The evolution of the order parameter and the concentration are simulated by

stepping in time, whereas the velocity field is solved in a quasi-steady-state manner

at each time step. In this plastic deformation model, we treat the solid phase as

a very viscous fluid, while the vapor phase is treated as a nearly inviscid fluid. A

simple way to implement this is to define the viscosity coefficient as η(ψ) = η̄ψ + ǫ,

where η̄ is a constant viscosity coefficient for the solid phase and ǫ ≪ η̄ is a small

value used to avoid numerical instability. To solve the velocity field with a variable

viscosity coefficient, we adopt the iterative method introduced in Refs. [143, 140]. The

divergence of the viscous stress tensor is decomposed to a linear part and a residual
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part, giving

∇ · (η∇v) = h∇ · (∇v) + rv, (5.34)

where h is a constant scalar numerical parameter for the scheme (normally taken

between 0.5η̄ and η̄), and rv is a vector quantity that is also iterated. Note the

identity that ∇ · (∇v) = ∇2v + ∇(∇ · v), where ∇2v = ∂2vi/∂xj∂xj is a vector

containing the Laplacian of each velocity component. Using Eqs. (5.32) and (5.34),

one can rewrite Eq. (5.30) as

−∇P + h∇2v + h∇gψ + rv +
2

d
∇(ηgψ) +

1

Ca
µψ∇ψ = 0, (5.35)

where Ca = P0/W . By taking the divergence of Eq. (5.35) and rearranging the terms,

one obtains a scalar equation:

−∇2P + h∇ · (∇2v)− h∇2gψ +∇ · rv +
2

d
∇2(η+ hd)gψ +

1

Ca
∇ · (µψ∇ψ) = 0, (5.36)

where h∇ · (∇2v) = h∇2(∇ · v) = h∇2gψ will cancel the third term. This gives one

of the two equations for the iterative scheme:

∇2P (n) = ∇ · r(n−1)
v +

2

d
∇2(η1gψ) +

1

Ca
∇ · (µψ∇ψ), (5.37)

where η1 = η+hd, and the superscript n denotes quantities at the n-th iterative step.

Equation (5.37) is Poisson’s equation for the pressure field. The second and third

terms on the right-hand side do not change during the iteration performed within a

time step.

To obtain the equation for the velocity field, we can reorganize Eq. (5.35) to

∇2v(n) =
1

h

[

∇P (n) − r(n−1)
v − 2

d
∇ (η2gψ) −

1

Ca
µψ∇ψ

]

, (5.38)

where η2 = η + (hd/2). This equation contains Poisson’s equation for the velocity

component along each coordinate direction. The vector rv is obtained from Eq. (5.34),
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and is updated during iteration:

r(n)
v = ∇ · (η∇v(n)) − h∇2v(n) − h∇gψ. (5.39)

Within each time step, the pressure field and velocity field are solved iteratively until

the pressure and the velocity components converge to stable values. The velocity field

is then substituted into the advective terms in the order parameter and concentration

evolution equations.

5.2.4 Smooth Boundary Method

Since diffusion only occurs within the solid phase, a no-flux boundary condition must

be applied to the solid-vapor interface in this model. Here, we adopt the smooth

boundary method to implement this condition at the diffuse interfaces. This method

has been successfully employed in simulating diffusion processes [145, 146] and wave

propagation [97, 98] constrained within geometries described by order parameters

with no-flux boundary conditions imposed on the diffuse interfaces. We show that this

method is applicable to general flux boundary conditions (Neumann boundary con-

ditions) in this chapter. Furthermore, we generalize this method to general boundary

conditions, including Dirichelet and mixed boundary conditions, in the next chapter.

Instead of directly solving the diffusion equation, we multiply both sides of Eq. (5.33)

by the order parameter that describes the domain of the solid phase:

ψ
∂XB

∂t
− ψv · ∇XB = ψ∇ · (DV

BB∇XB) − ψXBgψ, (5.40)

where the first term on the right-hand side can be replaced by the relation ψ∇ ·

(DV
BB∇XB) = ∇ · (ψDV

BB∇XB) − ∇ψ · (DV
BB∇XB). The normal flux across the

interface can be defined by Bf = n · (DV
BB∇XB), where DV

BB∇XB is the vector

flux. In a diffuse interface model, the unit normal vector of the interface is given by
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n = ∇ψ/|∇ψ|. Using these relations in Eq. (5.40), we obtain an auxiliary equation:

ψ
∂XB

∂t
− ψv · ∇XB = ∇ · (ψDV

BB∇XB) − |∇ψ|Bf − ψXBgψ. (5.41)

To demonstrate that this auxiliary equation satisfies the assigned Neumann bound-

ary condition (or specifying boundary flux), we use the one-dimensional version of

Eq. (5.41) without loss of generality. By reorganizing and integrating over the inter-

face region, we obtain

∫ ai+ξ/2

ai−ξ/2

ψ

(

∂XB

∂t
− v

∂XB

∂x
+XBgψ

)

dx = ψDV
BB

∂XB

∂x

∣

∣

∣

∣

ai+ξ/2

ai−ξ/2

−
∫ ai+ξ/2

ai−ξ/2

∣

∣

∣

∣

∂ψ

∂x

∣

∣

∣

∣

Bfdx,

(5.42)

where ai − ξ/2 < x < ai + ξ/2 is the region of the interface, and ξ is the thickness

of the interface. Following Refs. [145, 97, 98], we shall introduce the mean value

theorem of integrals, which states that, for a continuous function, f(x), there must

exist a constant value, h0, such that:

min f(x) <
1

q − p

∫ q

p

f(x)dx = h0 < max f(x), (5.43)

where p < x < q. By eliminating the second term on the right-hand side of Eq. (5.42),

the no-flux boundary condition can be imposed, as in Refs. [145, 97, 98]. However,

we retain the term in order to maintain the generality of the method. Therefore,

the analysis below is an extension of the original method that greatly expands the

applicability of the method.

Since the function on the left-hand side of Eq. (5.42) is continuous and finite within

the interfacial region, we can use the mean value theorem of integrals to obtain the

relation:
∫ ai+ξ/2

ai−ξ/2

ψ

(

∂XB

∂t
− v

∂XB

∂x
+XBgψ

)

dx = h0ξ. (5.44)

Using the conditions that ψ = 1 at x = ai + ξ/2 and ψ = 0 at x = ai − ξ/2, the first
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term in the right-hand side of Eq. (5.42) is written as:

1 ·DV
BB

∂XB

∂x

∣

∣

∣

∣

ai+ξ/2

− 0 ·DV
BB

∂XB

∂x

∣

∣

∣

∣

ai−ξ/2

= DV
BB

∂XB

∂x

∣

∣

∣

∣

ai+ξ/2

. (5.45)

Since |∂ψ/∂x| = 0 for x < ai−ξ/2 or x > ai+ξ/2, the second term on the right-hand

side of Eq. (5.42) can be replaced by:

∫ ai+ξ/2

ai−ξ/2

∣

∣

∣

∣

∂ψ

∂x

∣

∣

∣

∣

Bfdx =

∫ +∞

−∞

∣

∣

∣

∣

∂ψ

∂x

∣

∣

∣

∣

Bfdx. (5.46)

Substituting Eqs. (5.44), (5.45) and (5.46) into (5.42), we obtain:

h0ξ = DV
BB

∂XB

∂x

∣

∣

∣

∣

ai+ξ/2

−
∫ +∞

−∞

∣

∣

∣

∣

∂ψ

∂x

∣

∣

∣

∣

Bfdx. (5.47)

Taking the limit of Eq. (5.47) for ξ → 0:

0 = DV
BB

∂XB

∂x

∣

∣

∣

∣

ai

−
∫ +∞

−∞

lim
ξ→0

∣

∣

∣

∣

∂ψ

∂x

∣

∣

∣

∣

Bfdx

=⇒ DV
BB

∂XB

∂x

∣

∣

∣

∣

ai

=

∫ +∞

−∞

δ(x− ai)Bfdx

=⇒ DV
BB

∂XB

∂x

∣

∣

∣

∣

ai

= Bf

∣

∣

∣

∣

ai

,

(5.48)

where limξ→0 |∂ψ/∂x| = δ(x − ai) for when ψ has a form as in Eq. (5.22), and

δ(x − ai) is the Dirac delta function. The Dirac delta function has the property

that
∫ +∞

−∞
δ(x − ai)f(x)dx = f(ai). Therefore, Eq. (5.48) clearly shows that the

smooth boundary method recovers the Neumann boundary condition at the diffuse

interface when the interfacial thickness approaches zero. This convergence is satisfied

for stationary and moving boundaries [145].

When the smooth boundary method is numerically implemented, the specified

value of the boundary condition can vary in both space and time. It is possible to

impose boundary conditions that are functions of the composition, order parameters,

or other fields that evolve in time. Therefore, the smooth boundary method is a very

powerful method for solving time-dependent boundary value problems and can be
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used to describe the evolution of many physical systems.

To solve the diffusion equation of the traditional model of the Kirkendall effect

in isolated solid objects, we apply the above method to impose a no-flux boundary

condition (Bf = 0) at the solid-vapor interfaces to formulate the following governing

equation:

∂XB

∂t
− v · ∇XB =

1

ψ
∇ · (ψDV

BB∇XB) −XBgψ. (5.49)

This equation is solved along with the model-H phase-field equations described above.

5.3 Results

5.3.1 One-dimensional Simulations

We start by verifying our model in one dimension, for which we have sharp-interface

results. In a one-dimensional system, the deviatoric stress vanishes: σij − σkkδij/d =

σ11 − σ11/1 = 0; thus, the momentum balance, Eq. (5.15), becomes

∂

∂x
2η
∂v

∂x
− ∂

∂x

(

2η
g

ρ

)

= 0 =⇒ ∂v

∂x
=
g

ρ
= − 1

ρe

∂

∂x

(

DV B
∂CB
∂x

)

, (5.50)

which is identical to the lattice-site conservation equation obtained for a one-dimensional

system, Eq. (5.7). Note that, in one dimension, this equation is also identical to

Eq. (5.16). The velocity field can be directly calculated according to the vacancy flux

described by the B concentration gradient. Thus, the iterative method introduced in

Eqs. (5.37) − (5.39)for solving the plastic-flow (lattice-flow) velocity is unnecessary.

When the velocity obtained by Eq. (5.50) is substituted into Eq. (5.49), this formu-

lation recovers the conventional treatment of interdiffusion (Darken’s model) in the

solid phase.

The physical parameters in Table 3.2 are used in the numerical simulation. The

fast-to-slow atomic hop frequency ratio is selected to be 4, i.e., ΓB = 4ΓA. The

fast diffuser (B) and the slow diffuser (A) are initially on the left half and the right

half the domain, respectively. The computational domain is discretized into 256 grid
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points. We initialize an order parameter profile that distinguishes the solid and vapor

phases, where the interfaces are approximately at the 27th and 233rd grid points. We

select the length scale to be 1 µm, such that the solid domain spans approximately

216 µm. The reference diffusion coefficient is chosen to be D0 = a2ΓA = 7.48 × 10−8

cm2/s, which gives the time scale τ = 1.34 × 10−1 s. The advective Navier-Stokes

equation, Eq. (5.30), only requires suitable parameters to maintain numerical stability

while exhibiting a strong viscous flow behavior. Therefore, we select the dimensionless

quantities Ca = 1×108 and η̄ = 1×105 for Eq. (5.30), and κ̂ = 1 and L̂M = 1.25×10−8

for the advective Cahn-Hilliard equation, Eq.(5.31). Here, we select a smaller value

for the fast-to-slow atomic hop frequency ratio of 4, than the value used in Chapter

III, which is closer to the experimental values for common metals [9]. Therefore,

these results are quantitatively different from the results in Section 3.1.5. However,

the two sets of results remain qualitatively similar. It should be noted that the

two sets of results have different reference frames. The results presented below take

the laboratory reference frame. Therefore, no rigid shift of the diffusion couple is

observed. In Section 3.1.5, the reference frame is taken to be the lattice frame, and,

therefore, a rigid shift of the diffusion couple is observed. However, the two results

are equivalent when the results are transformed to have a consistent frame.

Figure 5.2(a) shows the nondimensionalized concentration evolution of the fast

diffuser using the new diffuse interface method. The results are in excellent agree-

ment with the results obtained by directly solving the conventional Darken’s equation,

Eq. (2.21b) (also shown in Fig. 5.2(a), with circles). This again shows that our rigor-

ous formulation is identical to the conventional model when the vacancy concentration

is kept constant everywhere in the solid, as in Section 3.1.5, except for the difference

in choice of the reference frame. The excellent agreement also demonstrates that the

smooth boundary method can accurately impose the no-flux boundary condition at

the solid-vapor interfaces described by a smoothly varying order parameter. It is
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Figure 5.2: One dimensional smooth-boundary-method simulation results of the (a) XB evolution,
(b) dilatational strain, and (c) plastic flow velocity. The unit of time is second.
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noted that the concentration in the vapor phase evolves as well, since we perform

calculations in the entire domain, containing both solid and vapor phases. However,

diffusion in the vapor phase is irrelevant and does not affect the evolution of the

interface or the concentration within the solid, as pointed out in Ref. [97].

Figure 5.2(b) shows the dilatational strain calculated at various times. The di-

latational strain is proportional to the lattice generation rate, which regulates the

vacancy concentration at it equilibrium value. The result behaves similarly to the

plot shown in Fig. 3.7(a), having a wide region of comparatively smaller vacancy

generation on the A-rich side and a narrow region of larger vacancy elimination on

the B-rich side. The large difference in the magnitudes of the dilatational strain

between these two examples is a result of the large difference in the length and time

scales. Figure 5.2(c) shows the plastic flow velocity calculated according to the lattice

generation rate. During diffusion, lattice planes are created in the A-rich region and

are eliminated in the B-rich region, as illustrated in Fig. 5.2(b). The lattice planes

then move toward the B-rich region to maintain a constant lattice density at the

velocity shown in Fig. 5.2(c). Due to the no-flux boundary conditions at the two

ends of the solid phase, lattice generation does not occur at the two ends; thus, the

internal velocity goes to zero at these points. As a result, the overall size of the solid

remains invariant. This result can also be understood from the conservation of the

lattice site within the solid phase. Based on the excellent agreement between the

plastic deformation model and the conventional model, these results prove that the

rigid shift between the lattice frame and the laboratory frame in Darken’s model is a

direct outcome of an incompressible plastic flow [137, 80, 79, 81].

5.3.2 Diffusion-Induced Lateral Deformation

In a two-dimensional domain, an iterative scheme, Eqs. (5.37) − (5.39), is neces-

sary for solving the plastic flow velocity. The iterative method involves solving one
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Poisson’s equation for the effective pressure field and two Poisson’s equations for the

velocity field along the x and y directions. Among several possible matrix solvers

that can be applied, we employ the alternative direction implicit (ADI) method for

numerical implementation. In the first two-dimensional simulation, we select a 192

µm × 64 µm solid phase described by a continuous order parameter profile in the

middle of a 256 µm × 128 µm computational box. The inter-grid spacing is taken

to be 1 µm. We apply zero-pressure and zero-velocity boundary conditions on the

computational box boundaries. The fast diffuser and the slow diffuser initially occupy

the right and left halves of the solid, respectively. Figure 5.3 shows snapshots of the

nondimensionalized B concentration (XB) profiles and the order parameter profiles

(ψ) during interdiffusion. Here, we only show the XB value within the solid phase,

and omit the trivial values in the vapor phase. During diffusion, B atoms diffuse

toward the left-hand side, alleviating the concentration gradient in the diffusion zone.

As diffusion proceeds, the original A-rich side expands due to lattice-site generation.

On the other hand, the original B-rich side contracts due to lattice-site destruction.

This process results in lateral deformations normal to the main diffusion direction.

A bulge on the A-rich side and a groove on the B-rich side initially form near the

diffusion front. The bulge then extends toward the B-rich side, as it increases the

lateral size of the A-rich region. On the other hand, the groove continues to move

toward the B-rich side. The deformation eventually stops when the B concentration

(and thus the A concentration) reaches a uniform distribution within the solid phase.

The shape of the diffusion couple changes from an initially rectangular block to a

bottle shape with a larger width on the initially A-rich side and a narrower neck on

the initially B-rich side.

Snapshots of the dilatational strain rate at three different times are shown in

Fig. 5.4. Similar to the one-dimensional case, lattice sites are generated in a larger

region on the A-rich side, and are eliminated in a narrower region on the B-rich side.
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Figure 5.3: Snapshots of XB evolution (left column) and order parameter ψ (right column) in a 192
µm × 64 µm slab diffusion couple, taken at t = 0, t = 3.96× 107, t = 5.09× 108, and t = 4.32× 109

sec (from the top row to the bottom row).
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As diffusion proceeds, the regions where lattice-site generation and destruction occur

shift to the left and to the right, respectively, as they broaden. In a two-dimensional

case, the lattice site generation results in deformation along the primary diffusion

direction (perpendicular to the diffusion front) and the secondary lateral direction.

The plastic flow velocity is illustrated in Fig. 5.5, where the black and gray arrows

denote the velocity within the solid and vapor phases, respectively. The velocity

vectors start from regions where lattice sites are generated and end in regions where

lattice sites are eliminated. In the early stage [Fig. 5.5(a)], the plastic flow is confined

to a small region near the diffusion front. As lattice generation and elimination spread

through the diffusion couple, the plastic flow also spreads along the main diffusion

direction [Figs. 5.5(b) and 5.5(c)].

During simulations, the positions of artificial markers are updated and recorded for

tracking the transport of materials under deformation. These markers are initially

evenly distributed in the solid. In the early stage, the markers initially near the

diffusion front move to the right [Fig. 5.6(b)]. The locations of the markers initially

at the diffusion front are noted by line segments outside the solid, and show a clear

shift to the right. As diffusion continues, the diffusion zone expands, as does the

motion of the markers [Fig. 5.6(c)]. Nevertheless, all markers move to the B-rich

region on the right. These marker motions are accompanied by a lateral contraction

on the B-rich side and a lateral expansion on the A-rich side, as observed by changes

in the density of markers in the lateral direction. When the concentration reaches

its final homogeneous distribution, the inter-marker spacing becomes nearly uniform

in each of the originally B-rich and A-rich regions divided by the markers located

initially at the diffusion front [Fig. 5.6(d)] . This result indicates that the B-rich and

A-rich sides of the diffusion couple undergo an overall uniform volume contraction

and expansion, respectively, since their original diffuser concentration is uniformly

distributed on either side. Bending deformation near the initial diffusion front can be
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Figure 5.4: Dilatational strain rate ε̇ (proportional to the lattice site generation rate) taken at (a)
t = 3.96 × 107, (b) t = 5.09 × 108, and (c) t = 4.32 × 109 sec. The white contour lines indicate the
solid-vapor interfaces.
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Figure 5.5: The plastic flow velocity calculated according to the dilatational strain shown in Fig. 5.4.
The black arrows denote velocity within the solid phase, and the gray arrows denote velocity within
the vapor phase.
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Figure 5.6: Snapshots of the marker positions corresponding to Fig. 5.3. The markers initially
located at the diffusion front are indicated by the short line segments outside the solid.
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observed from the curved arrangement of markers. However, this bending deformation

diminishes toward the ends of the diffusion couple.

5.3.3 Diffusion-Induced Bending Deformation

We next perform simulations of interdiffusion in a thin plate diffusion couple. The

solid phase spans a 192 µm × 48 µm domain within a 384 µm × 116 µm computational

box. The fast diffuser and the slow diffuser initially occupy the top and bottom halves

of the solid, respectively, as shown in Fig. 5.7(a). Thus, diffusion is mainly along the

direction of the shorter dimension of the couple. Figure 5.7 shows snapshots of the

XB profile during diffusion. The original rectangular slab evolves to an arc-shaped

object. During diffusion, vacancies diffuse to the B-rich region and annihilate there,

resulting in volume contractions. On the other hand, vacancy generation in the A-

rich region leads to volume expansions. The combination of contraction on the inner

side and expansion on the outer side results in a bending of the slab into an arc.

This result demonstrates the Kirkendall-effect-induced bending deformation that has

been observed experimentally [45, 46, 50], see Fig. 1.1(d). The deformation of the

left and right boundaries of the solid, which is similar to the lateral deformation

in the previous case, is also observed in this simulation. Therefore, the bending

of the plate can be understood as a linear network of smaller sections of narrow

diffusion couples, similar to the case studied in the previous section, Section 5.3.2.

Consequently, the extent of bending depends on the ratio of the sample dimensions

parallel and perpendicular to the diffusion front. Figure 5.8 illustrates how the marker

positions change over time. We observe the volume contraction on the inner side and

the volume expansion on the outer side by noting changes in the marker density.

The inter-marker spacing decreases along both the radial and lateral directions in the

initially B-rich region, whereas it increases in the initially A-rich region, although to

a lesser degree [Fig. 5.8(d)].
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Figure 5.7: Snapshots of XB evolution in a 192 µm × 48 µm plate diffusion couple taken at (a)
t = 0, (b) t = 5.98 × 106, (c) t = 3.95 × 107, and (d) t = 1.40 × 108 sec. The white contour lines
indicate the solid-vapor interfaces.
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Figure 5.8: Snapshots of the marker positions corresponding to Fig. 5.7.
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Figure 5.9: Snapshots of XB evolution in a 256 µm × 48 µm plate diffusion couple taken at (a)
t = 0, (b) t = 5.14 × 106, (c) t = 3.60 × 107, and (d) t = 9.81 × 107 sec. The white contour lines
indicate the solid-vapor interfaces.
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Figure 5.10: Snapshots of the marker positions corresponding to Fig. 5.9.
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We also simulate interdiffusion in a plate-shaped diffusion couple with a larger

aspect ratio, 256 µm × 48 µm. Snapshots of the XB profile are shown in Fig. 5.9.

As in the previous case, we observe bending deformation induced by diffusion in the

simulation. However, one may notice that the bending deformation initiates from the

left and right ends of the diffusion couple [Figs. 5.9(b) and 5.9(c)]. In the middle of

the solid, lateral deformation is constrained along the horizontal direction. Thus, this

geometry is locally equivalent to a one-dimensional diffusion couple along the vertical

direction. At the two horizontal free ends, lateral deformation is less constrained and

is able to relieve the local volume changes. Therefore, bending deformation initiates

at the two ends. As the bending deformation propagates toward the middle of the

solid, diffusion is no longer constrained in the vertical direction, leading to bending

deformation. The above argument can also be supported by the marker movements

shown in Fig. 5.10. As can be seen in Fig. 5.10(c), the inter-marker spacing remains

comparatively uniform along the horizontal direction, even as the two ends undergo

bending deformation. In the later stage [Fig. 5.10(d)], most markers near the center

are still aligned in a relatively straight line along the vertical direction. The dynamics

of bending-deformation propagation have not been simulated before, since Kirkendall-

effect-induced bending deformation has only been solved in a quasi-1D cylindrical

geometry that implicitly incorporated a pre-existing radial curvature [45, 50].

5.3.4 Deformation in a General Geometry

We also provide an example of a diffusion couple with a more complex geometry to

demonstrate the capability of this method to handle such cases. We consider the lap

joint shown in Fig. 5.11(a). Two 167 µm × 44 µm slabs are partially connected on

their lateral sides. The contacting region is around 1/3 of the slab length. One slab

is made of pure B material, and the other slab is made of pure A material. This

diffusion couple is located in the middle of a 348 µm × 160 µm computational box.
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All material properties and boundary conditions on the computational box boundary

are similar to those used in the previous sections in this chapter.

Figure 5.11 shows snapshots of the XB concentration profile and the shape of the

diffusion couple during diffusion. As expected, diffusion initiates at the contacting

region. As the B atoms diffuse from the bottom slab to the top slab through the

contacting region, we observe a pronounced lateral contraction at the left end of the

bottom slab, whereas we observe a lateral expansion at the right end of top slab

[Fig. 5.11(b)]. The contraction on the fast diffuser side and the expansion on the slow

diffuser side in the diffusion zone continue as diffusion proceeds. The combination of

contraction and expansion leads to a bending deformation in the joint region, which

is indicated by the tilting of the two slabs from the horizontal axis, as shown in

Fig. 5.11(c). Away from the joint region, diffusion is constrained along the axes of

the longer dimensions of the slabs. Thus, a comparatively uniform contraction and

a uniform expansion occur in the bottom slab and the top slab, respectively. This

conclusion is evident when comparing Fig. 5.11(d) and 5.11(a). Away from the joint,

the bottom slab remains nearly rectangular in shape but smaller in size. The top slab

increases its size but also remains rectangular away from the joint.

By examining the marker movements, we also observe a contraction in the bottom

slab and an expansion in the top slab near the joint region [Fig. 5.12(c)], which results

in a bending deformation. In Fig. 5.12(d), nearly straight alignment of the markers

away from the joint region is evident. We observe a similar uniform distribution of

markers in Fig. 5.6(d) for the wire-like diffusion couple. These observations indicate

that bending deformation occurs near the contacting region where contraction takes

place on one side and expansion takes place on the other side. Away from the initial

diffusion front, free expansions and contractions can occur, and, thus, the deformation

is dominated by dilatation. However, near the regions where the fast diffusers and

slow diffusers were initially in contact, the difference in the volume change causes
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Figure 5.11: Snapshots of XB evolution in a lap-joint diffusion couple taken at (a) t = 0, (b)
t = 2.94 × 107, (c) t = 2.37 × 108, and (d) t = 1.54 × 109 sec. The white contour lines indicate the
solid-vapor interfaces.
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Figure 5.12: Snapshots of the marker positions corresponding to Fig. 5.11.
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more complex types of deformation, including bending.

5.4 Conclusions Regarding the Plastic Deforma-

tion Model

In this chapter, we develop and demonstrate a numerical method for solving par-

tial differential equations with internal boundary conditions in order to simulate

Kirkendall-effect-induced deformation phenomena. Our governing equations are equiv-

alent to the traditional model of the Kirkendall effect, based on Darken’s analysis.

This model is valid when sufficiently dense vacancy sources constantly maintain the

vacancy concentration at the equilibrium value throughout the solid and when the

solid is assumed to be completely incompressible and to plastically deform in response

to lattice site generation and elimination. To solve the diffusion equations within the

solid body that deforms during interdiffusion, we develop a smooth boundary for-

mulation that permits generalized Neumann boundary conditions to be imposed on

the internal boundaries within the computational domain. The 1D simulation re-

sults prove that the assumption of plastic deformation is consistent with Darken’s

model. We also demonstrate the accuracy of the smooth boundary method. Lateral

deformations and bending deformations induced by interdiffusion are simulated in

two dimensions. The simulation results are qualitatively consistent with experimen-

tal observations [47, 45, 46, 50]. The generality of the model is also demonstrated by

simulating a lap joint geometry, where bending deformation, volume shrinkage, and

volume expansion are observed in different parts of the diffusion couple.

At the macroscopic scale, vacancy diffusion between sources and sinks is neglected

because the typical distance between vacancy sources and sinks is very small compared

to the size of the diffusion zone. In this case, Darken’s model provides an excellent

prediction. Therefore, this proposed method is expected to be a useful and powerful

tool for studying Kirkendall-effect-induced deformation at this limit.

132



CHAPTER VI

DIFFUSE INTERFACE APPROACH FOR

RIGOROUS MODELING

6.1 Introduction

When the typical average distance between vacancy sources and sinks is comparable

to the size of the diffusion zone, the assumption of constant vacancy concentration

is no longer valid, and diffusion of vacancies as one of the diffusing species must be

considered explicitly. In Chapter III, we presented simulation results based on the

rigorous model with quasi-one-dimensional geometries, accounting for vacancy diffu-

sion. The motion of free surfaces and grain boundaries was observed, resulting from

local volume changes in the immediate vicinity of free surfaces and grain boundaries

that act as explicit vacancy sources and sinks. These results provided a glimpse into

the different dynamics and equilibrium states that may result from vacancy diffusion

when the vacancy concentration is not in equilibrium. However, these simulations

were performed for one-dimensional systems to avoid the challenges associated with

tracking multi-dimensional deformation of a diffusion couple. In this chapter, we will

extend the rigorous model to a multi-dimensional system. To this end, we will extend

the smooth boundary method to include a capability of imposing Dirichlet boundary

conditions (i.e., specifying the boundary value of the field variable rather than its

gradient) at diffuse interfaces. This new method enables us to specify the vacancy

concentration at the boundaries that act as vacancy sources and sinks, as dictated

in the rigorous model of interdiffusion, and to solve for the concentration evolution
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within a solid that changes its shape as interdiffusion proceeds.

As in Chapter V, a phase field approach that distinguishes solid phase from vapor

phase with a continuous order parameter will be employed in this work. For simplic-

ity, only deformation of a single crystal solid will be considered. On a free surface,

vacancy injection and annihilation change the surface shape by lattice reconstruction,

which will not result in dilatational strains or internal stresses within the solid body.

Therefore, we will not incorporate the plastic deformation model into this work.

6.2 Model

6.2.1 Smooth Boundary Method for Dirichlet Boundary Con-
ditions

Let us first consider Fick’s Second Law of diffusion in a solid object: ∂C/∂t = ∇ ·

D∇C, where C is the concentration and D is the diffusion coefficient. A phase-field-

type order parameter distinguishes the solid domain from its environment, such that

ψ = 1 denotes the solid phase and ψ = 0 denotes the vapor phase. To solve for the

concentration evolution in the region where ψ = 1, we multiply the diffusion equation

with the square of the order parameter profile:

ψ2∂C

∂t
= ψψ∇ ·D∇C = ψ∇ · (ψD∇C) − ψ∇ψ ·D∇C. (6.1)

Here, we can use the identity ψ∇ψ ·D∇C = ∇ψ ·D∇(ψC)−DC∇ψ · ∇ψ to obtain

ψ2∂C

∂t
= ψ∇ · (ψD∇C) −∇ψ ·D∇(ψC) +DC|∇ψ|2. (6.2)

To impose the boundary condition, the boundary value Bv is substituted for C in the

third term on the right-hand side of Eq. (6.2); thus, we solve the following equation

for the case:

∂C

∂t
=

1

ψ
∇ · (ψD∇C) − 1

ψ2
∇ψ ·D∇(ψC) +

|∇ψ|2
ψ2

DBv. (6.3)

134



To prove the convergence of the solution at the boundaries to the specified boundary

value, we start with a one-dimensional version of the smooth boundary formulation.

Integrating Eq. (6.2) over the interface region and reorganizing the equation give

∫ ai+ξ/2

ai−ξ/2

[

ψ2∂C

∂t
− ψ

∂

∂x

(

ψD
∂C

∂x

)]

dx =

∫ ai+ξ/2

ai−ξ/2

∂ψ

∂x
·
[

D
∂ψC

∂x
−DBv

∂ψ

∂x

]

dx, (6.4)

where ai is the location of the interface and ξ is the interface thickness. Similar to the

derivation of Eq. (5.44), the left-hand side of Eq. (6.4) is proportional to the interface

thickness, and it approaches zero in the limit of ξ → 0. On the right-hand side of

Eq. (6.4), the gradient of ψ approaches the Dirac delta function, δ(x − ai), as the

interface thickness approaches zero. Therefore, we can reformulate Eq. (6.4) to

0 = D
∂ψC

∂x
−DBv

∂ψ

∂x
=⇒ ∂ψC

∂x
= Bv

∂ψ

∂x
(6.5)

in the limit ξ → 0. By taking integration over the interface region of Eq. (6.5) again,

we obtain

1 · C|ai+ξ/2
− 0 · C|ai−ξ/2

=

∫ ai+ξ/2

ai−ξ/2

Bv
∂ψ

∂x
dx, (6.6)

which, in the limit ξ → 0, recovers the specified Dirichlet boundary condition:

C|ai
= Bv|ai

. Note that the boundary value Bv does not required to be a con-

stant value. It can vary spatially or temporally or be a function of C. Therefore, the

smooth boundary method is applicable to generalized boundary conditions. In addi-

tion, by incorporating the method described in Chapter V, one can impose Neumann

boundary conditions simultaneously to yield mixed (or Robin) boundary conditions.

The equation then becomes

∂C

∂t
=

1

ψ
∇ · (ψD∇C) − 1

ψ2
∇ψ ·D∇(ψC) +

|∇ψ|2
ψ2

DBv − |∇ψ|Bf . (6.7)
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6.2.2 Smooth Boundary Method Applied to the Rigorous
Model

The starting point is the formulation for diffusion in a single crystal solid in which no

internal lattice site creation or destruction that result in plastic deformation. Thus,

no advection is considered below. In a prefect lattice region of a binary substitutional

alloy, diffusion of vacancies is governed by the standard Fick’s Second Law, which, in

a nondimensional form, reads

∂XV

∂t
= −∇ · JV = ∇ · (DV V∇XV +DV B∇XB), (6.8)

where all quantities are dimensionless and were defined in previous chapters. By

applying the smooth boundary method given in Eq. (6.3) to Eq. (6.8), we obtain

∂XV

∂t
=

1

ψ
∇ · ψ(DV V∇XV +DV B∇XB) − 1

ψ2
[∇ψ ·DV V∇(ψXV ) − |∇ψ|2DV VX

eq
V ]

=
1

ψ
∇ · ψ(DV V∇XV +DV B∇XB) −K,

(6.9)

where K = [∇ψ · DV V∇(ψXV ) − |∇ψ|2DV VX
eq
V ]/ψ2, and Xeq

V is the equilibrium

vacancy concentration that serves as the boundary condition at the solid-vapor inter-

faces. Within the solid phase, ψ uniformly equals one, and ∇ψ equals zero. There-

fore, Eq. (6.9) reduces back to Eq. (6.8) within the solid phase. Note that the terms

absorbed in K are only important at the boundaries, while the first two terms in

Eq. (6.9) act within the bulk. Therefore, the terms in K specify the boundary con-

dition XV = Xeq
V . K is thus related to the vacancy generation rate at the boundary

appearing in the corresponding equation for the rigorous model, Eq. (2.29).

To derive the governing equation for the B concentration in the smooth boundary

formulation, we note that the vacancy generation rate appears in both Eq. (2.29) and

Eq. (2.30). By comparing these equations and the equation above, we conclude that

the vacancy generation rate g is equivalent to K/(1−XV ). Substituting this into the
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smoothed boundary formulation, we obtain

∂XB

∂t
=

1

ψ
∇ · ψ(DBV∇XV +DV

BB∇XB) +
XB

1 −Xeq
V

K. (6.10)

Equations (6.9) and (6.10) serve as the governing equations describing interdiffusion

in the solid phase where only surfaces act as vacancy sources and sinks.

According to Eq. (2.37), the magnitude of the normal velocity of a solid surface

is determined by vn = n · JV /(1 − Xeq
V ), where n is the unit normal vector of the

solid surface. In a phase-field-type diffuse interface model, n = ∇ψ/|∇ψ| gives the

unit normal vector of the interface. The interface positions are indirectly evolved by

changing the order parameter values. Therefore, the quantity n · JV /(1−Xeq
V ) serves

as a source of the order parameter so that the Cahn-Hilliard equation becomes

∂ψ

∂t
= LM∇2µψ +

∇ψ
|∇ψ| ·

JV
1 −Xeq

V

. (6.11)

Note that the source term is only nonzero at solid-vapor interfaces and is uniformly

zero in the bulk phases. The source term relates the jump of vacancy flux across the

solid-vapor interface to the volume change, as discussed in Section 2.3. Therefore,

the evolution of the order parameter field is coupled with the concentration evolution

through the source term. This is similar to the “latent heat” terms for solidification

that couples the order parameter and the temperature fields.

6.3 Results

We provide examples of simulations to demonstrate the smooth boundary formulation

of the rigorous model in a single crystal diffusion couple in a two-dimensional domain.

The first example is a cylindrical diffusion couple with a void located at the center

of the cylinder. A cylindrical diffusion couple with an outer radius of 0.64 µm and a

void radius of 0.05 µm is placed in a 1.92 µm × 1.92 µm computational box as shown

in Figs. 6.1(a), 6.1(b) and 6.3(a). The void is concentric with the cylinder. The fast
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diffuser initially occupies the central region with a radius smaller than 0.46 µm. All

physical parameters are similar to those in Chapter V. The governing equation for

the vacancy concentration, Eq. (6.9), is constrained by a very small time step because

of the large diffusivity, DV V . Thus, we use a semi-implicit time scheme to solve the

equation and significantly enhance numerical efficiency. In the time-discretized form,

the scheme is given by

X
(n+1)
V −X

(n)
V

∆t
−χD̄

(n)
V V

ψ(n)
∇ · ψ(n)∇X(n+1)

V =

1

ψ(n)
∇ · ψ(n)[(D

(n)
V V − χD̄

(n)
V V )∇X(n)

V +D
V (n)
BB ∇X(n)

B ] −K(n),

(6.12)

where the superscript n denotes the n-th time step and χ is a weight factor that

can be optimized to increase numerical stability. The diffusion equation for B atoms

[Eq. (6.10)] and the Cahn-Hilliard equation [Eq. (6.11)] are solved using the explicit

Euler time scheme.

Figure 6.1 shows snapshots of the dimensionless B concentration (C̃B = CB/ρ =

XB) and dimensionless scaled vacancy concentration (C̃V = CV /(ρX
eq
V ) = XV /X

eq
V ).

During diffusion, B atoms diffuse outward mainly by exchange with vacancies, thus

reducing vacancy concentration in the A-rich region and enhancing vacancy concen-

tration in the B-rich region. In order to maintain equilibrium vacancy concentration

at the solid surface, vacancies are injected at the outer solid surface and are elimi-

nated at the void surface. As can be seen in the figure, the smooth boundary method

regulates the vacancy concentration at its equilibrium value at both the outer surface

and the void surface. When vacancies are injected into the solid, the source term

of the order parameter induces the outer surface to move outward by increasing the

order parameter value at the solid-vapor interface. On the other hand, the source

term induces the void surface to move into the solid by reducing the order parameter

value at the void surface where vacancies are annihilated. As both the void radius

and the outer radius increase, the cylinder with an initially small hole transforms
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Figure 6.1: Snapshots of the dimensionless concentration of B atoms (C̃B = CB/ρ) (in the left
column), and the dimensionless scaled concentration of vacancies (C̃V = CV /(ρX

eq
V )) (in the right

column) taken at t = 0, t = 2.88 × 102, t = 2.57 × 103 and t = 3.28 × 104 sec (from the top row to
the bottom row). The white lines indicate the solid-vapor interfaces.
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into a tube with a homogeneous-concentration solid region surrounding a larger hole.

This resulting growth dynamics is consistent with the prediction in Chapter III, al-

though quantitatively matching the results will require precise parameterization of

the Cahn-Hilliard equation employed in the simulation.

To gain further insight into the dynamics of hollow cylinder formation, we perform

a simulation in which the initial void is not located at the center of the cylinder. This

case cannot be simulated with the simplified one-dimensional cylindrical symmetry

that was used in Chapter III. The cylinder radius and the initial void radius are

taken to be 0.64 µm and 0.05 µm, respectively, as in the previous case. The center of

the void is offset from the center of the cylinder by 0.38 µm, as shown in Figs. 6.2(a)

and 6.3(a). The result is shown in Fig. 6.2. The diffusion process behaves similarly to

the concentric case. The fast diffuser diffuses outward by exchanging with vacancies.

Vacancy injection at the outer surface and vacancy elimination at the void surface

lead to the tube formation. Therefore, the outer surface and void surface are the

vacancy source and sink, respectively.

The final void radius and the final cylinder radius are both slightly smaller than

those in the concentric case, see Fig. 6.3(b). Since the distance between the outer

surface and the void surface in the bottom region of the cylinder is smaller than that

in the concentric case, the diffusion process terminates quicker at that location. After

the concentration reaches equilibrium in the bottom region, diffusion only occurs in

the top region, where the average vacancy source-sink distance is larger. As a result,

in comparison to the concentric case, the fast mode of interdiffusion decreases, and

the slow mode becomes more important overall. Since slow mode diffusion homoge-

nizes the atomic concentrations without causing a net vacancy flux while fast-mode

diffusion results in net mass transport via a nonzero net vacancy flux, the final void

size is reduced compared to the concentric void case. In addition, since diffusion ter-

minates in the bottom region earlier, the Gibbs-Thomson effect may also contribute
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Figure 6.2: Snapshots of the dimensionless concentration of B atoms (C̃B = CB/ρ) (in the left
column), and the dimensionless scaled concentration of vacancies (C̃V = CV /(ρX

eq
V )) (in the right

column) taken at t = 0, t = 2.79 × 102, t = 2.62 × 103 and t = 3.74 × 104 sec (from the top row to
the bottom row). The white lines indicate the solid-vapor interfaces.
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to void radius reduction. Nevertheless, the dynamics of tube formation is qualita-

tively unchanged by the location of the initial void, supporting the validity of the

quasi-one-dimensional results presented in Chapter III.

Figure 6.3: (a) The initial contour of cylinders: the blue lines for the concentric case and the red
lines for the non-concentric case. The two outer radii of the concentric and non-concentric cases
overlap. (b) The final contour of the tubes in the two cases

6.4 Conclusion

In this chapter, we proposed a new smooth boundary method that can properly

impose the Dirichlet boundary condition at the diffuse interface. Along with the

smooth boundary method for the Neumann boundary condition presented in Chapter

V, the new numerical technique is expected to become widely employed as a flexible

and powerful tool for solving various differential equations within static or dynamic

complex geometries. We applied this method to hollow cylinder formation via the

Kirkendall effect, and observed the effect of the distance between the source and the

sink on formation dynamics. These results supported the validity of the quasi-one-

dimensional simulations presented in Chapter III.
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CHAPTER VII

SUMMARY, CONCLUSIONS, AND FUTURE

WORK

In this dissertation, we proposed a new, more rigorous model of the Kirkendall

effect. We considered explicit and localized sources and sinks of vacancies, where

vacancies can be supplied or eliminated. We assumed that free surfaces and grain

boundaries are more efficient vacancy sources and sinks than dislocations are, and

therefore the role of dislocations as a vacancy source or sink within the bulk of a

grain was ignored. This assumption is different from the current standard model

based on Darken’s analysis, where vacancy sources and sinks are assumed to exist

everywhere within a solid. As with Darken’s model, we assumed that sources and

sinks act ideally; i.e., any supersaturation or depletion is immediately accommodated

at these locations. At the macro scale, in which the typical vacancy-source-sink

distance is negligible compared to the characteristic length of the diffusion zone, the

rigorous model recovers the conventional model (i.e., Darken’s model).

A set of rigorous diffusion equations for both the atomic diffusing species and va-

cancies was derived using the flux expressions for a substitutional binary alloy with ex-

plicit consideration of vacancy diffusion. These diffusion equations include a vacancy

generation rate that maintains the vacancy concentration at vacancy sources and sinks

at the equilibrium value, which results in local volume expansion or shrinkage. This

model was first applied to one-dimensional planar systems and quasi-one-dimensional

cylindrical geometries. The former showed a Kirkendall shift that is qualitatively and
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quantitatively different from the predictions of Darken’s model. The latter was used

to simulate tube formation dynamics and to estimate the fully-grown tube sizes and

elapsed time under different initial conditions. Motion of surfaces and grain bound-

aries was observed when vacancies were injected or eliminated at these locations in

both of these cases. These results demonstrated that explicit consideration of vacancy

diffusion leads to different dynamics and final states (after the concentrations achieve

equilibrium or near equilibrium) compared with what Darken’s model would predict.

Two-dimensional simulations of the concentration evolution in a solid containing a

grain boundary demonstrated that the interdiffusion process changes from fast-mode

diffusion to slow-mode diffusion as the region, where interdiffusion occurs, becomes

farther away from a grain boundary. Without a sufficient density of sources and sinks,

vacancy concentration deviates from its equilibrium value. The resulting concentra-

tion gradient suppresses further rapid vacancy diffusion; thus, interdiffusion proceeds

by slow-mode diffusion. Conversely, near a grain boundary, fast-mode diffusion dom-

inates because vacancy supply and elimination are efficient.

We also extended the smooth boundary method to impose generalized bound-

ary conditions, namely Neumann, Dirichlet, and mixed types, at internal boundaries

of arbitrary shapes. This numerical approach was applied to the traditional inter-

diffusion model coupled with a linear visco-plastic deformation model that governs

the Kirkendall-effect-induced deformation. Expansion and contraction of a simple

diffusion couple occurred due to vacancy generation and elimination taking place

throughout the volume. For a sheet-like diffusion couple, significant bending was also

observed. In a diffusion couple resembling a lap joint, we observed a complex combi-

nation of deformations. Furthermore, using the smooth boundary method to impose

the equilibrium vacancy concentration at the solid surface (a Dirichlet boundary con-

dition), tube formation based on our rigorous model, similar to that examined using

a quasi-one-dimensional sharp interface model mentioned earlier, was simulated; the
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results were consistent with the quasi-one-dimensional results. The two-dimensional

effect was examined by displacing the initial void toward the diffusion front. The

results remained qualitatively similar, and thus this formed the basis for the validity

of the quasi-one-dimensional model of tube formation. We also performed a simple

analysis to show that the consideration of vacancy diffusion between sources and sinks

is important at the micron or nanometer scale in alloys.

Our model that includes plastic deformation is capable of solving the interdif-

fusion process accompanied by resultant deformation of the solid. We expect that

this new smooth boundary method will become widely adapted as a flexible nu-

merical method for solving various differential equations. Currently, the coupled

diffusion/visco-plastic-deformation model based on the smooth boundary method is

being extended so that polycrystalline materials can be simulated. This model in-

volves implementation of Dirichlet boundary conditions associated with the equilib-

rium vacancy concentration at the grain boundaries (as well as on surfaces if applica-

ble) and a modification to include diffusion flux across and along the grain boundaries.

An example of the preliminary results is shown in Fig. 7.1. Bulge formation near the

intersection between surfaces and grain boundaries was observed on the surface near

a grain boundary, which is consistent with experimental results [43, 147], an example

of which is shown in Fig. 7.2. This polycrystalline model possesses the potential to

theoretically explain the whisker growth phenomenon that plagues lead-free solder

joints. In addition, we plan to develop an adaptive grid system that allows us to use

finer grid spacing at diffuse interfaces while keeping coarser grid spacing in the bulk

regions to enhance the accuracy and the efficiency of the proposed smooth boundary

method.
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Figure 7.1: (a) The dimensionless concentration of B atoms (C̃B = CB/ρ), and (b) the dimensionless
scaled concentration of vacancies (C̃V = CV /(ρX

eq
V )) near an intersection between a surface and a

grain boundary. (c) The plastic flow velocity induced by the lattice generation at the grain boundary.

Figure 7.2: (a) The step forming (due to Kirkendall effect) at the intersection between a surface and
a grain boundary, from Ref. [43]. (b) The surface rumpling near grain boundaries, from Ref. [147].
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APPENDIX A

AN ALTERNATIVE DERIVATION OF EQS (2.29)

AND (2.30)

In a Cartesian coordinate system, the center of mass of an infinitesimal cubic-

shaped control volumes is located at x(x, y, z), and the control volume has dimensions

∆x, ∆y and ∆z. The size of a control volume can vary in time. Inside the control

volume, the concentrations of diffusers are assumed to be uniformly distributed. If a

control volume contains a vacancy source or sink, such as a grain boundary, it will

have a nonzero vacancy generation rate, g (x, t) per unit volume per unit time. The

vacancy concentration within the control volume containing vacancy sources at time

t+ ∆t is described by

CV (t+ ∆t) =
NV (t+ ∆t)

U (t+ ∆t)
=
NV + ∆NV

U + ∆U
, (A.1)

where NV is the number of vacancies within the control volume and U = ∆x∆y∆z

is the size of the control volume. Here, ∆NV and ∆U are the change in NV and U

over a small time step ∆t. For given JxV , JyV and JzV on the boundaries of the control

volume, Eq. (A.1) can be written as

CV (t+ ∆t) =
1

U + ∆U

{

UCV (t) +
[(

JxV |x−∆x
2

− JxV |x+∆x
2

)

∆y∆z

+
(

JyV |y−∆y
2

− JyV |y+∆y
2

)

∆z∆x

+
(

JzV |z−∆z
2

− JzV |z+∆z
2

)

∆x∆y + Ug
]

∆t
}

.

(A.2)
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The volume change of the control volume in a time step ∆t is expressed by

∆U =
U

ρ
(−∇ · JV + g −∇ · JB −∇ · JB) ∆t, (A.3)

where ρ is the lattice site density.

By substituting Eq. (A.3) to Eq. (A.2) and taking limit of ∆x → 0, ∆y → 0,

∆z → 0 and ∆t→ 0, we can derive

∂CV
∂t

= −∇ · JV + g

(

1 − CV
ρ

)

+
CV
ρ

∇ · (JV + JA + JB) . (A.4)

By following the same procedure as in derivation of Eq. (A.4), the concentration

change rate of B atoms is obtained as

∂CB
∂t

= −∇ · JB − g
CB
ρ

+
CB
ρ

∇ · (JV + JA + JB) . (A.5)

Due to conservation of lattice site, the divergence of total fluxes across the control

volume faces vanishes, ∇ · (JV + JA + JB) = 0, in Eqs. (A.4) and (A.5).
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