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ABSTRACT 

 
 
 The wire-array Z-pinch has generated the world’s most intense X-ray pulses at 

Sandia National Laboratories.  This thesis addresses two contemporary issues on wire-

array Z-pinch: 1) Linear and nonlinear evolution of azimuthal clumping instabilities that 

exist in a discrete wire array, and 2) the problem of electrical contact resistance that 

strongly affects the current delivered to the Z-pinch load.  

Presented first is the analytic theory on the linear and nonlinear evolution of the 

most unstable azimuthal clumping mode, known as the pi-mode, in a discrete wire array.  

In the pi-mode, neighboring wires of the array pair-up as a result of the mutual attraction 

of the wires which carry current in the same direction.  The analytic solution displays 

two regimes, where the collective interactions of all wires dominate, versus where the 

interaction of the neighboring, single wire dominates.  This solution was corroborated by 

two vastly different numerical codes which were used to simulate arrays with both high 

wire numbers (up to 600) and low wire number (8). All solutions show that azimuthal 

clumping of discrete wires occurs before appreciable radial motion of the wires. Thus, 

absence of azimuthal clumping of wires in comparison with the wires’ radial motion may 

imply substantial lack of wire currents.   

 Another important recognition is that the complete account of the pi-mode, 

including the effects of corona may be expediently simulated by using only one single 

wire in an annular wedge with a reflection condition imposed on the wedge’s boundary. 

 

xv 



This thesis next presents a higher dimensional analytic theory on contact 

resistance.  The electrical contact resistance is computed for a local constriction of finite 

length and finite transverse dimension in a conducting current channel. Conformal 

mapping is used for a rectangular current channel, and an electrostatic code is used for a 

cylindrical current channel. The connecting bridge, which models a local electrical 

contact, is assumed to be made of the same conducting material as the main current 

channel.  Very simple analytic scaling laws for the contact resistance are constructed for 

a wide range of geometrical aspect ratios between the main current channel and its 

connecting bridge, which may assume rectangular shape (for Cartesian channel), and 

cylindrical or funnel shape (for cylindrical channel).  These scaling laws have been 

confirmed by spot-checks with numerical code results within 1 percent.  They are 

generalizations of the classical theory of Holm and Timsit on the contact resistance of 

the “a-spot”, defined as a small circular area of zero thickness through which current can 

flow.   
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CHAPTER 1 

INTRODUCTION 

  

The most intense X-ray pulses in the world, with X-ray yield in the MJ range and 

X-ray powers in the 100’s of TW with energy conversion efficiency exceeding 15 

percent, have been generated by wire Z-pinches and the Sandia Z-machine [Cun01, 

Cun05a, Cov01, Dee98, Mat05, Sin04, Spi98].  In virtually all Z-pinch experiments, 

ranging from low to high currents, and from low wire-number to high wire-number 

arrays, a host of hydromagnetic activities have been observed.   

In this thesis we will examine some contemporary issues of Z-pinch.  First, we 

will focus on the linear and nonlinear evolution of the azimuthal clumping instability in a 

wire array.  This instability originates from the mutual attractions among wire filaments 

which carry currents in the same direction. The potential severity of this instability in 

discrete wire arrays was noted by Felber and Rostoker [Fel81], Samokhin [Sam88], and 

Hammer and Ryutov [Ham99b].  This instability was revealed in Strickler’s simulations 

of a 300-wire array [Str03, Str05, Str06], where he randomly seeded perturbations in the 

wires’ azimuthal positions and discovered that these random azimuthal perturbations 

indeed led to rapid clumping in the wire array.  Strickler found that approximately after 

one e-fold time (the time interval in which the instability grow by a factor of e) these 

azimuthal perturbations grow essentially at the rate of the fastest growing mode, the π 

mode, in which two neighboring wires pair up (i.e., the azimuthal displacements of 

neighboring wires are 180 degrees out of phase with each). The azimuthal clumping 
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instability is the most violent and fastest growing instability in a discreet wire array.  To 

focus on the azimuthal clumping instability, therefore, we concentrate in this thesis only 

on the π mode, the most unstable clumping mode in a discrete wire array.  

This thesis will also address the important issue of electrical contact. This study is 

motivated by our ongoing studies of wire-array Z pinches [Gom08, Tan07, Zie08]. In the 

wire Z-pinch, the electrical contacts at the cathode end and the anode end of the wires 

affect the current delivered to the wire load [Dus07, Gom07, Gom08, San05, Zie08].  

This in turn affects the Z-pinch plasma dynamics and has a significant influence on the 

X-ray yield for the Sandia Z-machine.  In addition to wire-array Z pinches, electrical 

contact is also an important issue for wafer evaluation of manufactured integrated 

circuits [Car95], thin film resistors [Hall67], field emitters [Mil07], metal-insulator-

vacuum junctions [Jor07], and high power microwave sources [Haw07, Lau07].  In 

cathodes that use carbon fibers [Shi05, Par06], how the fibers are bonded to the substrate 

has received increasing attention.  Successful operation of high power microwave 

sources such as relativistic magnetrons depends crucially on good RF contacts [Haw07].  

The problem of contact resistance is also important to terahertz sources, due to small 

circuit size [Boo07, Ppe07].     

Section 1.1 gives the background and applications of Z-pinches.  Brief summary 

of the novel results and the scope of this thesis are given in Section 1.2. 

 

1.1 Introduction of Z-pinches 

 We will present a brief background and history of Z-pinch in Section 1.1.1.  

Section 1.1.2 will discuss a few scientific applications of Z-pinches.  
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1.1.1 Background and History of Z-pinch 

 A Z-pinch in its simplest form consists of a column of plasma with an electrical 

current running in the axial (z) direction.  The axial electrical current produces an 

azimuthally directed magnetic field that results in a J×B Lorentz force that “pinches” the 

plasma radially inward, and thereby confining the plasma.  Figure 1.1 illustrates one 

configuration of a Z-pinch. 

 

Fig. 1.1   A schematic of Z-pinch showing the plasma column, the axial current,      
                       the azimuthally directed magnetic field, and the resulting J×B    
                       Lorentz force. 
 

W. H. Bennett attempted the first theoretical analysis of Z-pinch configuration in 

1934 [Ben34].  Bennett considered a cylindrical column of fully ionized quasineutral 

plasma, with an axial current density, J, produced by an axial electric field, and 

associated azimuthal magnetic field, B. As the current flows through the plasma column, 

a magnetic field is created and the plasma column is pinched radially inward by the 

resulting J×B force.  In the steady state with forces balancing, 

                                                  ( )ie ppp +∇=∇ =J×B                                               (1.1) 
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where  is the magnetic pressure gradient, pe and pi are the electron and ion pressures 

respectively. Using Ampere’s Law 

p∇

×∇ B=μ0J and the ideal gas law , the 

resulting equation is the well known Bennett relation [Ben34], 

NkTp =

                                                  ( ) 2
08 ITTNk ie μπ =+                                                   (1.2) 

where N is the number of electrons per unit length along the axis, Te and Ti are the 

electron and ion temperatures, I is the total pinch current, and k is the Boltzmann 

constant.   

 Z-pinches may be divided into two classes, the highly dynamic z-pinches such as 

gas puff [Lev01, Lev02, Shi76] and cylindrical wire array [Cov01, Cun01, Cun02, 

Dee97, Dee98], and the other, includes the quasi-equilibrium self constricted plasma 

such as fiber pinches [Ham89].  For the fiber pinch [Ham89], Bennett-type pressure 

equilibrium [Ben34] was established by a deuterium plasma column at near solid density 

in a few nanoseconds, and to be maintained for a relatively long time.  For a gas puff z 

pinch [Shi76], a plasma shell is formed from an annular gas puff and is compressed by 

the magnetic pressure.  Bennett-type equilibrium is never reached.  For a wire array z 

pinch, the whole array implodes toward the axis due to the global magnetic field, 

however, each wire itself also explodes.   

 High current pinches were studied in the 1950s which involved exploding wire 

that generated soft x-ray [Bur90].  Tens of kilovolts passed through a wire of 10-100μm 

in diameter.  In the initial stage, the wire vaporizes, and the current decreases.  As the 

electric field increases, breakdown takes place, and a plasma column with low resistance 

is created that is capable of carrying large amount of current, and the plasma pinches by 
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the resulting J×B force as discussed previously.  The plasma electron density after 

pinching typically reaches , with plasma temperature reaching 10-100eV.   32110 −cm

Early thermonuclear fusion research utilizes deuterium Z-pinch with high current 

in micro-seconds time scale.  Equilibrium model of such Z-pinch plasmas suggested that 

fusion temperature and density can be reached with reasonable confinement time.  Z-

pinches of this type were greatly studied during 1952 to 1960 [Butt58, Tuc58].  

However, it was found that such configuration of Z-pinch was inheritedly unstable.  It 

was confirmed that the neutrons detected were not due to thermonuclear fusion but 

instead produced from violent instabilities [And58].  One of the first theoretical 

magnetohydrodynamic instabilities studies was done by Rosenbluth in 1956 [Ros56].  It 

was discovered that the instabilities could not be eliminated theoretically, or 

experimentally.  As a result the fusion community lost interest in further investigation of 

Z-pinches, and for many years, the advancement of Z-pinches has stagnated. [Tokamak, 

also known as the toroidal Z-pinch operates in a very different regime, and the classical 

kink and sausage instability are far less severe for Tokamak.]    

 Due to the advancement of pulsed-power system, interest in Z-pinches revived 

during the mid-1970s.  Very intense x-ray were observed by exploding a single wire in 

1969 at the Naval Research Laboratory [Mos73, Spi01, Ste72, Vit71].  It was noted that 

the primary factor impeding a higher x-ray yield from exploding a single wire was due to 

the high initial impedance of the wire itself.  This realization leads to the investigation 

and development of dynamic Z-pinch, and the result was the replacement of a single wire 

by a cylindrical array of wires, a cylindrical liner, or a cylindrical gas puff [Cov01, 

Cun05a, Dee97, Dee98, Lev02, San96, Shi76, Spi96, Spi98, Maz05, Meh03].  These 

configurations offer low initial impedance, and couple well with the low impedance, 
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high current generators, in experiments at Sandia National Laboratories [Spi89, Spi96, 

Spi97], Maxwell Laboratories [Mil81] and elsewhere, during the 1970s – 1980s.   

 Modern high density Z-pinch has been used as x-ray source in hohlraum, with x-

ray energy in the MJ range.  Recent experiments of cylindrical wire array using large  

number of wires (hundreds) have been performed at the Sandia National Laboratories 

[Dee97, Dee98, Maz05, San96, Spi 96, Spi98 ].  The experiments were performed on the 

Sandia’s Z machine.  Sandia has achieved dense, high temperature plasmas by firing fast, 

100 nanosecond current pulses exceeding 20 million Amps.  Studies by researchers at 

Sandia [Dee 97, San96, Spi89] suggest that modern cylindrical wire array Z-pinches with 

a large number of wires coupled with modern pulsed power technology are capable of 

much higher plasma compression, higher energy density, greater stability, higher plasma 

temperature and longer plasma confinement time as previously predicted.  The 

relationship between the x-ray power generated and the number of wires used in the 

cylindrical array was studied extensive by T.W.L Sanford in 1996 as shown in Fig. 1.2 

[San96], and more recently by M.G. Mazarakis [Maz05] as shown in Fig. 1.3. 
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Fig. 1.2  K-shell x-ray power versus time for different wire number (N) [from 
San96]. 

 

 

(a) (b) 

Fig. 1.3 (a) X-ray peak power as a function of Inter-Wire Gap.  (b) X-ray 
peak power as a function of wire number in the array [from Maz05]. 

 
In 1998, the Z machine produced a peak x-ray power of 280 TW in a 4ns (FWHM) pulse 

(x-ray energy of 1.8 MJ) by using a nested cylindrical wire array with 40mm outer array 

of 240 wires surrounding a 20mm inner array of 120 wires as shown in Fig. 1.4 [Dee98, 

Cun02].  The significant increase of x-ray power was thought to be due to the mitigation 
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of the Rayleigh- Taylor instability by the current switching from the outer to inner wire 

array, and the mass interpenetration between the outer and inner array [Bla03, Bra 96, 

Chi01, Cun05b, Cun06, Ter99].   

 

 

Fig. 1.4  A photograph shows a nested cylindrical wire array with 40mm outer 
array of 240 wires surrounding a 20mm inner array of 120 wires [from 
Dee98].  

 

In order to increase the Z-pinch x-ray yield, the Z-machine at the Sandia National 

Laboratories has undergone an upgrade.  The Z Refurbishment (ZR) project was 

completed in 2008 [Jon08, McD02, Wei07].  The new Z facility is capable of delivering 

26 MA of current to produce a peak x-ray power of 350 TW, and peak x-ray energy of 

2.7 MJ [Wei07, Jon08].  As a driver for the next generation of high power accelerator, 

Sandia National Laboratories is exploring the linear transformer driver (LTD) that was 

invented by researchers at the Institute of High Current Electronics in Tomsk, Russia; 

one such LTD was installed by R. Gilgenbach’s group at U of Michigan [Gil08].  A LTD 

consists of an annular parallel connection of switches and capacitors designed to deliver 

rapid high power pulses.  A photograph of LTD is shown in Fig. 1.5 [Gil08].  
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Fig. 1.5  A photography of UM 1-MA LTD with connection of switches and 
capacitors shown [from Gil08]. 

 

The LTD is capable of producing high current pulses, up to 1 MA, with a risetime of less 

than 100 ns. Traditional Marx generator requires pulse compression to achieve such fast 

risetimes.  LTD is being seriously considered as a driver for z-pinch based inertial 

confinement fusion.  A conceptual design by researchers at Sandia National Laboratories 

which employs a total of 210 LTD modules, is shown in Fig. 1.6 [Sty07]. 
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Fig. 1.6   A conceptual model of a 1 petawatt LTD-based z-pinch accelerator.  The 
accelerator is 104  m in diameter and delivers a current of 70 MA. [from 
Sty07].  

Currently, a 0.5MA LTD is being tested at Sandia at 10 Hz, and it has been fired 11, 000 

times without flaw, according to a Sandia news release [Sin07]; a 1-MA LTD is 

constructed and operating at the University of Michigan [Gil08].   

1.1.2 Applications of Z-pinch 

In this section we will survey a few of the applications using Z-pinch as an x-ray 

source.  This is not an exhaustive list. As the Z-pinch technologies advance, many more 

applications will become possible in the future [Mat97]. 

A. Controlled Thermonuclear Initial Confinement Fusion (ICF)  

 One application of Z-pinch is its use as an intense x-ray source for ICF 

application.  X-ray yield in the MJ range and x-ray powers in the 100’s of TW with 

energy conversion efficiency exceeding 15 percent, have been generated by wire Z-

pinches at the Sandia National Laboratories.  Two important concepts that use Z-pinch as 

an intense x-ray source to achieve fusion are the dynamic and double-ended hohlraum 

configuration. 
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Figure 1.7 Dynamic hohlraum for fusion experiment.  The figure shows a nested 
cylindrical wire array with a foam fusion target in the middle [from 
Meh03]. 

Figure 1.7 shows the configuration for a dynamic hohlraum fusion experiment.  

Two concentric wire arrays are used to form an imploding plasma shell.  The impact of 

the imploding plasma with the low density foam launches a shock wave that heats the 

low density foam material, which then generates x-rays.  The x-rays produced penetrate 

the low density material, and ablate the capsule within.  The low density foam and the 

ablated material isolate the capsule surface from the hydrodynamics of the imploding 

plasma.  As the wires ablate and implode, the resulting plasma shell also acts as a 

hohlraum that traps the x-ray generated.  Hohlraum temperature as high as 220 eV, and 

thermonuclear D-D neutron yields of  have been observed [Bai04, 

Meh03, San02b].  This design is considered high risk, since the capsule symmetry is 

affected by both radiation asymmetries and the hydrodynamic coupling that can occur 

between the imploding Z-pinch plasma and the imploding capsule [Mat97]. 

10103.16.2 ×±
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Figure 1.8 Configuration of a double-ended hohlraum for fusion experiment.  Z-
pinch wire arrays are located at the top and the bottom [from 
Meh03].   

Figure 1.8 shows the configuration for a double hohlraum fusion experiment.  In 

a double-ended hohlraum design, two Z-pinch loads are located at each end to provide x-

ray flux to the ICF capsule located at the center [Fig. 1.8].  The Z-pinch can be imploded 

onto the foam shells, foam cylinders, or internal nested wire arrays to provide the 

necessary radiation pulse shaping [Cun01].  X-rays are transported into the secondary 

hohlraum through a beryllium radial spoke electrode and shine shield [Fig. 1.8].  The 

advantage of the double-ended hohlraum design is that it isolates the capsule from the 

pinch plasma, magnetic field, and direct x-ray shine [Cun01].  Capsule implosion with a 

hohlraum temperature of  eV has been observed [Cun02].   Factors that limit the 

x-rays production include hydrodynamic Rayleigh-Taylor instabilities and cylindrical 

load asymmetry [Mat97], since even though the ICF capsule is isolated from the pinch 

plasma, the instabilities of the pinch plasma (e.g. Rayleigh-Taylor instabilities) can affect 

the system by preventing efficient radiation coupling into the ICF capsule hohlraum.    

570 ±
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B.  Materials’ Equation of State Study 

The intense thermal radiation generated in a dynamic Z-pinch hohlraum can be 

used to drive a shock wave through a sample.  One such configuration is shown in Figure 

1.9a,b. 

 

                             (a)                                           (b) 

Figure 1.9a,b Dynamic hohlraum configuration for Equation of State study.  The x-
rays of the hohlraum ablates the sample and sends a planar shock 
through the material.  (a) Plane and (b) wedge shaped samples are 
shown in the figure [from Ryu00]. 

The x-rays generated by the dynamic hohlraum ablate the materials and drive a planar 

shock through the sample.  A sample of ablator material is placed over a hole in the wall 

of a hohlraum [Fig. 1.9].  An x-ray flux inside the hohlraum is incident upon the sample.  

The ablator material will absorb most of the x-ray flux, and the resulting plasma will 

flow into the interior of the hohlraum [Ols97].  As a result, a strong shock will propagate 

in the opposite direction through the ablator material.  If the sample is a step shape [Fig. 

1.9a], the shock velocity can be determined by comparing the shock breakout times at 

the two step positions.  If the sample is in the shape of a wedge [Fig. 1.9b], a time-

resolved shock velocity can be obtained by measuring the shock breakout time as a 

function of position along the wedge. 
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The intense pressures built up by the shock wave in the sample can be used to 

study the equation of state of the sample material.  Typical hohlraum temperature is at 

100-150 eV, with shock pressure reaching as high as 10Mbar with 10 ns duration [Bai00, 

Ols97, Ryu00].   

C.  Production of Ultra High-Pulsed Magnetic Field 

 An external axial magnetic field can be compressed and entrained by radially 

imploding plasmas produced from gas-puff Z-pinches.  Ultrahigh magnetic fields up to 

the order of 100 MG created by gas-puff Z-pinches has been proposed [Fel85, Fel88, 

Rud03].  Much higher repetition rate of high magnetic field pulses can be achieved by 

the gas-puff Z-pinch than by traditional chemical explosive flux compression technique 

[Her85, Rud03].  The interval between shots is determined only by the recovery time of 

the pulsed power system that is used to drive the Z-pinch.  The production of ultrahigh 

magnetic fields of order of 100 MG or more could be important for studies of  

fundamental quantum electrodynamics effects that could not be observable otherwise.  

Other applications of ultrahigh magnetic fields include equation of state and material 

property studies, and conversion of high energy electrons to high energy gamma 

radiation [Fel85, Fel88, Rud03].    

   1.2 Novel Results and Scope of the Thesis 

This thesis presents an analytic theory on the linear and nonlinear evolution of the 

most unstable azimuthal clumping mode, known as the pi-mode, in a discrete wire array.  

In the pi-mode, neighboring wires of the array pair-up as a result of the mutual attraction 

of the wires which carry current in the same direction.  The analytic solution displays 

two regimes: (1) where the collective interaction involving all wires is important, and (2) 
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where the single wire interaction is dominant (i.e., one wire essentially experiences the 

attractive force due to its immediate neighbor). 

In Chapter 2, the detailed analysis of the linear and nonlinear evolution of the 

most unstable azimuthal clumping mode is carried out.  The theory is compared against 

the simulation results given by the ALEGRA code (for high wire number, e.g. 360 wires) 

that was developed by Sandia National Laboratories [Gar04].  In addition, the theory is 

also compared against the REIN code (for low wire number, e.g. 8 wires) developed by 

Strickler [Str03, Str05, Str06] for the impact time calculation.  Impact time is defined as 

the time it takes the two wires to collide with one another. All solutions show that 

azimuthal clumping of discrete wires occurs before appreciable radial motion of the 

wires. Thus, absence of azimuthal clumping of wires in comparison with the wires’ 

radial motion may imply substantial lack of wire currents [Str06].   

This thesis also presents an analytic theory on the higher dimensional electrical 

contact resistance.  The electrical contact resistance is computed for a local constriction 

of finite length and finite transverse dimension in a conducting current channel. 

Conformal mapping is used for the case of a rectangular channel.  An analytic scaling 

law is constructed for the contact resistance over a wide range of aspect ratios between 

the constriction and the main current channel.  The classical theory of Holm [Hol67] and 

Timsit [Tim99] is generalized for the first time in this thesis to include finite axial length 

effects of the “a-spot”, defined as a small circular area of zero thickness through which 

current can flow.   

In Chapter 3, we present the novel theory of higher dimensional (a small area of 

finite thickness through which current can flow between two contact members) electrical 

contact resistance. The detail of the conformal mapping, and the calculation for the zero-

bridge length (ZBL) limit (a small area of zero thickness through which current can flow 
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between two contact members) is presented.  When the bridge, or constriction, has a 

finite length, h, the analysis of contact resistance becomes significantly more 

complicated. The effect of finite h is found to increase the contact resistance linearly 

with h, by an amount that is expected from the increase in the current path length 

associated with finite h, and from the decrease in the cross-sectional area in the channel 

constriction.  Scaling laws for various geometries of finite axial length, such as a 

cylindrical geometry or funnel shape geometry, are developed and compared with 

numerical simulations.  A statistical theory of contact resistance, and a lumped element 

circuit model for electrical contact, are also presented. 

The conclusion and suggestions for future work are given in Chapter 4. 
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CHAPTER 2 

LINEAR AND NONLINEAR EVOLUTION OF AZIMUTHAL 
CLUMPING INSTABILITIES  

   

In this chapter, we focus on the linear and nonlinear evolution of the azimuthal 

clumping instability [Tan07], which is the most violent instability in a discrete wire 

array.  A cylindrical wire array is shown in Fig. 2.1.  

 

 

Fig. 2.1  A circular array of N wires.  Each wire in the array carries a current in 
the z-direction, out of the plane of paper. 

 

This instability originates from the mutual attractions among wire filaments which carry 

currents in the same direction.  The potential severity of this instability in discrete wire 

arrays was noted by Felber and Rostoker [Fel81], Samokhin [Sam88], and Hammer and 

Ryutov [Ham99b] who found that the most unstable clumping mode is the π mode, in 

 17



which two neighboring wires pair up (i.e., the azimuthal displacements of neighboring 

wires are 180 degrees out of phase with each other in the π mode [Fig. 2.2]).   

 

Fig.2 2. The one-sector wedge with reflection boundary condition (a), which 
replicates the π mode in an N-wire cylindrical array (b). Here, N=8. 

 
 

This strong tendency toward clumping is entirely analogous to the Jeans instability of 

self-gravitating systems [Too64], with the gravitational attraction between matter being 

replaced by the mutual attraction of neighboring wires that carry currents in the same 

direction. This instability was revealed in Strickler’s simulations of a 300-wire array 

[Str03, Str05, Str06], where random perturbations were seeded in the wires’ azimuthal 

positions and he discovered that these random azimuthal perturbations indeed led to 

rapid clumping in the wire array.  The analytic theory on the temporal evolution of the 

small signal growth in these randomly seeded perturbations was also presented [Str05].  

It was found that approximately after one e-fold, these azimuthal perturbations grow 

essentially at the rate of the fastest growing mode, the π mode. 

In contrast to the seeds of initial axial perturbations in wire arrays, there are 

natural candidates for the seeds of the initial azimuthal asymmetry.  First, the azimuthal 

positions of the wires may have random variations, standard deviations of 

mμ421±± have been reported [Cun01].  There is also azimuthal asymmetry caused by 
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the non-axisymmetric return current cans and viewing ports [San02].  Random azimuthal 

variations in the wire mass and in the current distribution among the wire currents have 

also been considered [Mos94].  These asymmetries may limit the compression ratio 

[Mos94], impose an optimal wire-number for x-ray yield [Cun05a, Gar04, Maz05, 

San01], and lead to the clumping instability that is the subject of this chapter [Fel81, 

Ham99b, Sam88, Str05]. 

To include random azimuthal perturbations in a 3-dimensional simulation of a 

high wire-number array is computationally prohibitive.  To focus on the azimuthal 

clumping instability, therefore, we concentrate in this research only on the π mode, the 

most unstable clumping mode in a discrete wire array.  The temporal evolution of the 

linear and nonlinear development of this mode is studied in detail analytically, and by 

simulation using two entirely different codes [Tan07].   

 

2.1 Analytic Theory of Linear and Nonlinear Evolution of the π Mode   

We shall construct the exact, closed form analytic solution for the linear and 

nonlinear development of the π mode up to the point where the wire pair coalesces for a 

Cartesian geometry.  Consider first a circular array of N wires, each carrying a current Iw 

in the z-direction, arranged in a circle of radius R [Fig. 2.1].  We assume that the wire 

radius, rw, is much smaller than the wire separation d = 2πR/N and that the mass per unit 

length of the wire is mL.  In addition to rw << d << R, we further assume that the 

backposts of the return current are sufficiently far away so that they have negligible 

effects on the dynamical evolution.  Without any perturbation, this cylindrical array 

undergoes a radially inward acceleration g (g > 0) as a result of the global self magnetic 

field.  For N >> 1,  
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where μ0 is the free space permeability, and mL is the mass per unit length on a wire.  In 

the Cartesian model, this array lies on the y-axis [Fig. 2.3].  (In the present analytic 

study, we prescribe the wire current, ignoring the changes due to the inductance effects.  

This assumption turns out to be adequate when compared with the results from the REIN 

code [Str03, Str05, Str06], which did include such inductive effects.  See Table 2.1 

below). 

Since we are only considering the azimuthal clumping, we may consider a 

Cartesian array [Fig. 2.3].  There is a static equilibrium in such an infinite array [Fig. 

2.3a].  

 

Fig. 2.3.  (a) The unperturbed wire positions in a linear array, and (b) the 
perturbed wire positions in the presence of the π mode. Here, ξn is the 
displacement of the n-th wire from its unperturbed position. 

 
 
In the unperturbed state, the wires have equal inter-wire separation.  In a linear 

eigenmode formulation of perturbation, the azimuthal displacement (or y-directed 

displacement in the Cartesian model [Fig. 2.3]) from equilibrium of the n-th wire, ξn(t), 

is related to that of the (n+1)th wire by the Floquet theorem, 
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Here, θ  is an arbitrary constant for an infinite linear array.  When πθ = , the mode is 

called the π mode, and a pair of neighboring wire is displaced 180o out of phase with 

each [Fig. 2.3].  We shall focus on the π mode henceforth.  We will show that the π 

mode is the most unstable mode in an infinite linear array in Appendix A.  From Eq. 

(A9), we have ⎟
⎠
⎞

⎜
⎝
⎛ −=

π
θ

π
θ

πγ
θγ

2
12

)(
)( , which is plotted in Fig. 2.4, where γ(θ) is the 

linear growth rate for the mode with a phase shift of θ between neighboring wires [c.f. 

Eq. (2.2)]. 

 

Fig. 2.4 Linear growth rate γ as a function of θ, normalized to that of 
the π-mode.  The maximum linear growth rate occurs at πθ = . 

 

 The linear and nonlinear evolution of the π mode is most conveniently carried out 

in an infinite linear array in which the y-direction represents the azimuthal direction [Fig. 

2.3].  For convenience, we assume that there is no axial (z) variation nor axial 

displacement of the wires.  Since in the Cartesian model, the x-directed (radial) motion is 

stable and is decoupled from the y-directed (azimuthal) motion, we assume that there is 

no radial (x) motion either.  (The radial motion will be considered later in this Section).  
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Thus, we concentrate only on the y-directed (azimuthal) displacement of the zeroth wire, 

ξ0(t), of the π mode.  The (x,y) coordinates of the n-th wire is (0, nd) in equilibrium, and 

is (0, nd+ξn) when the π mode is present [Fig. 2.3], where ξn is related to ξ0 according to 

Eq. (2.3), 

( ) 00 1 ξξξ π njn
n e −== −                                                    (2.3)                                                

 This equation implies pairing up of neighboring wires for the π-mode perturbation [Fig. 

2.3b]. 

 The force on the zeroth wire is the sum of the attractive forces from all other 

wires, each carrying a current in the same direction.  This resultant force leads to the 

following equation of motion for ξ0(t), 
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where the dot denotes a time derivative and γp is the linear growth rate of the π mode 

[Str05].  Equation (2.4) is exact and its derivation is given in Appendix B [cf. Eq. (B2)]. 

 Equation (2.4) displays the linear and nonlinear growth of the clumping 

instability.  When the azimuthal displacement is small, ξ0 approaches zero, and Eq. (2.4) 

may be approximated by 

                                                         ,                                        (2.6) )0(, 00
2

0 →≅ ξξγξ p

which is the governing equation for the small signal growth rate of the π mode [Ham99b, 

Sam88, Str05].  When ξ0 approaches d/2, that is, when a pair of neighboring wires is 

about to touch each other [Fig. 2.3b], the mutual attraction between this wire pair 

becomes arbitrarily large in this idealized model, and the RHS of Eq. (2.4) tends to 
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infinity.  In the latter limit, we may use the expression, 

( ) ( ) ( )xxxxxx −≅−−== 212sin2coscossintan πππ  as x approaches π/2, to 

approximate Eq. (2.4) as 
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which clearly shows strong mutual attraction between the two coalescing wires, to the 

exclusion of all others.  The transition from Eq. (2.6) to Eq. (2.7) is shown in Fig. 2.5, 

which plots the RHS of Eq. (2.4), the wire’s y-directed acceleration versus its 

displacement in the π mode. 

 

Fig. 2.5.  Acceleration vs. displacement of the zeroth wire in the π mode. 

 

Interestingly, the above idealized model of the π mode displays both the collective 

effects of many wires and the single wire effects [Fig. 2.5]. The collective effects are 

dominant when the azimuthal displacement is small, in which case the linear eigenmode 

equation [Eq. (2.6)] results from the collective interaction among all wires.  The single 
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wire effect is dominant when the wire pair is about to touch, as is evident from Eq. (2.7).  

Equation (2.7) may in fact be derived under the assumption of only 2 wires in the 

system.  Thus, the collective versus single wire effect may be studied by adjusting the 

wire displacements relative to the average wire separation.  Roughly speaking, the single 

wire effect becomes dominant when ξ0 moves beyond about 50% of the half wire-

spacing (d/2), when the tangent factor in Eq. (2.4) becomes unity.  For a cylindrical 

array, this may be studied by varying the wire number, which can be equivalently studied 

in the one-sector simulation by varying the wedge angle in Fig. 2.2a; and by varying the 

initial perturbation in the π mode.   

 The general initial conditions are imposed: where ξi and vi 

are respectively the zeroth wire’s initial azimuthal displacement and azimuthal velocity. 

The solution to Eq. (2.4) is then most conveniently represented in terms of the 

dimensionless variables, τ = γpt, f(τ) = πξ0/d.  In these normalized variables, the 

governing equation (2.4) and the associated initial conditions then read, 
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It is shown in Appendix B that the solution to Eqs. (2.8) and (2.9), f = f(τ), whose 

inverse, τ = τ(f), may be written as [cf. Eq. (B7)], 
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Equation (2.10) is the exact solution to Eq. (2.8).  It governs the linear and nonlinear 

evolution of the π mode in an infinite linear array of infinitesimally thin wires.  It 
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depends on the initial wire displacement (fi) in the π mode, as well as the initial velocity 

(ui), which may be taken to be zero in most cases.  It is also the approximate solution 

even if the wire current (Iw) is time-varying, in which case τ is given by Eq.(B4) of 

Appendix B.  

         The linear, collective regime corresponds to f approaching zero, in which case the 

solution Eq. (2.10) is approximately given by 

                                       )1(,sinhcosh)( <<+≅ fuff ii τττ .                              (2.11) 

Equation (2.11) is more readily deduced from Eq. (2.8), under the assumption f << 1, 

along with the initial condition Eq. (2.9).  The nonlinear, single wire regime corresponds 

to f approaching π/2.   

            Merging of a pair of wires occurs when f = π/2 from the RHS of Eq. (2.8), or 

equivalently, ξ0 = d/2 in Fig. 2.5.  Thus, from Eq. (2.10), the normalized time, τm, it takes 

for a pair of wire to merge in this π mode is simply 
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whose values depend only on the initial conditions, ui and fi.  Figure 2.6 shows τm as a 

function of fi for the usual case ui = 0.  Also shown in Fig. 2.6 are the asymptotic 

expansions for τm for the limiting case fi << 1 and fi ~ π/2, 

                                            ( ) 1,04.1/1 <<+≅ iim ffnτ  ,                                     (2.13) 
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Fig. 2.6.   Normalized impact time (τm) vs. initial azimuthal displacement (fi) of the 
zeroth wire in the π mode.  Also shown are the asymptotic formulas for 
fi << 1 [Eq. (2.13)] and fi approaching π/2 [Eq. (2.14)]. 

 

The derivation of Eqs. (2.13) and (2.14) is given in Appendix C [cf. Eqs. (C6), (C11)].  

Equation (2.13) shows that if the initial perturbation displacement is small (fi approaches 

zero), it takes a logarithmically long time for the wire pair to clump together.  Equation 

(2.14) gives quantitatively the short time scale for wire merging if the wire pair is 

already close to each other in the π mode [Fig. 2.2b].   

            In the cylindrical geometry [Fig. 2.1], the wires would move radially inward as 

they clump azimuthally, as a result of the global magnetic field of the array.  The radial 

displacement of the zeroth wire from its initial radius, denoted by Δr, is related to its 

azimuthal displacement on the wire trajectory.  In terms of the normalized azimuthal and 

radial displacements, df 0πξ=  and Δρ = πΔr/d, this trajectory takes the simple form, 

                                                                 .                                             (2.15) )(2 fτρ −=Δ
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where τ(f) is given by Eq. (2.10). The negative sign in Eq. (2.15) accounts for the wire’s  

inward radial motion.  The derivation of Eqs. (2.15) is given in Appendix C [cf. Eq. 

(C3)].  The total normalized inward radial displacement, from the initial position up to 

the time (τm) when the wire pair merges, is then given by Δρm = -τm
2 according to Eqs. 

(2.15) and (2.12).  Note that this expression, and Eq. (2.15) in general, is independent of 

the current, and the current pulse shape.   

      The analytic theory, Eqs. (2.10), (2.12), and (2.15), will be compared with the 

ALEGRA simulations [Gar04] and with the REIN circuit model simulations [Str03, 

Str06] in the next section. 

 

2.2 Simulations 

The analytic solution given in Section 2.1 was corroborated by the two vastly 

different simulation codes, ALEGRA, developed at the Sandia National Laboratories 

[Gar04], and the resistive-inductive wire circuit code (REIN), developed at the 

University of Michigan [Str03, Str06].  These two codes were respectively used to 

analyze both the high wire-number (up to N = 600) and the low wire-number arrays (N = 

8) where N is the number of wires in the array.  In this section, we show simulation 

results using the ALEGRA code [Gar04] for high wire-number arrays (N in the 

hundreds), and using the REIN code for a low wire-number array (N = 8).  Both codes 

treat a cylindrical array.  We find good agreement between both code results and the 

analytic theory developed in the previous section.   
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2.2.1.  ALEGRA Simulation Results 

ALEGRA-HEDP is a multi-physics simulations code developed at the Sandia 

National Laboratories [Gar04].  It uses an Arbitrary-Lagrangian-Eulerian (ALE) operator 

split algorithm to solve the resistive magneto-hydrodynamic equations, as well as 

radiation and thermal transport.  Material motions can be tracked through a Lagrangian 

or an Eulerian mesh.  For the simulations of the π mode clumping instability, we use an 

Eulerian mesh.  A Lagrangian tracer particle is used to track the wire position as a 

function of time.  A wedge shape domain is used with reflective boundary conditions in 

the azimuthal direction [Fig. 2.2a].  The reflective boundary condition automatically 

filters out all other modes except the π mode.  Changing the angle of the wedge is 

equivalent to changing the number of wires in the array.  We run a 2D-xy simulation, 

without coronal plasmas, ignoring joule heating, radiation transport, and thermal 

conduction for a fair comparison with the theory.  Aluminum wires of 10 μm radius in a 

1 cm radius cylindrical array are simulated with an initial perturbation of 30 μm off the 

bisector of the wedge, i.e., ξ0(0) = ξi = 30 μm [Fig. 2.7].   

 

Fig. 2.7.  ALEGRA simulation geometry. 
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The simulations are run with different sector angle θ, (1.8o, 1o, 0.6o) which 

represents different wire numbers in the wire arrays (200 wires, 360 wires, and 600 

wires).  The total line mass is 1.69 mg/cm for the 200-wire array, 3.05 mg/cm for the 

360-wire array, and 5.09 mg/cm for the 600-wire array.  The total current is 3.8 MA (200 

wires), 6.84 MA (360 wires) and 11.4 MA (600 wires), which corresponds to 19 kA of 

current per wire for all three cases, the rise time for the current pulse is 1ns.  The 

material models used for this study are as follows: equations of state - SESAME 3700 

[Ker87]; conductivities - Lee-Moore-Desjarlias Model [Des01, Lee84] for Aluminum; 

material strength - Elastic Plastic.  The input decks for the simulations are given in 

Appendix D.   

In Fig. 2.8, we show the amplitude gain versus time (in e-folding time of the π 

mode small-signal growth) for 200, 360, and 600 wire arrays.    
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Fig. 2.8.  Amplitude gain as a function of time for the π mode, with (a) N = 200, 
(b) N=360, and (C) N = 600. 
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The time intervals of simulation are ~45 ns for the 200-wire array, ~17 ns for the 360-

wire array, and ~5 ns for the 600-wire array.  The simulations were stopped when the 

wire touches the boundary of the wedge. The theoretical impact time, when the theory 

data terminate in Fig. 2.8, was calculated by using Eq. (2.12).  It is evident from Fig. 2.8 

that the ALEGRA simulations closely match the theory even though the theory model 

was an infinite linear wire array with vanishingly small wire diameter, while the 

simulation model was a cylindrical wire array whose wire diameter is finite.      

 In Fig. 2.9, we show the r-θ trajectory (radial position vs azimuthal displacement 

of the zeroth wire) for the π mode clumping in 200, 360, and 600 wires, ξ0 is the 

displacement of the 0-th wire from its unperturbed position. The simulations were 

stopped when the wire touches the boundary of the wedge.  Once more, these figures 

show good agreement between ALEGRA simulation results and the analytic theory, Eq. 

(2.15), in these high wire-number arrays.  
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Fig. 2.9.  r-θ trajectory for the π mode, with (a) N = 200, (b) N=360, and (c) N 
= 600. 
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2.2.2 Wire Impact Time Calculations (REIN simulation vs. Theory) 

The resistive and inductive circuit code (REIN) developed by Strickler [Str03, 

Str06] is an extension, and a computationally more efficient version, of the model 

originally presented in Davis et al.[Dav97].  Temperature-dependent wire resistivity, 

arbitrary time-dependent voltage and current source terms have also been added to the 

model [Str06].  In this section, we compare the impact time of two wires from the 

simulation using the REIN code [Str03, Str06] with our theoretical model developed in 

Section 2.1, impact time is defined as the time it takes the two wires to collide with each 

other.  The simulation geometry is shown in Fig. 2.10.  The simulation was set up to 

increase the understanding of the experiments [Str06] that were conducted on the 

COBRA Z-pinch (1 MA, 100ns rise time [Kny97]) machine at Cornell University to 

study the dynamics of closely spaced pairs of parallel wires with center-to-center spacing 

of 244 μm and 456 μm in a cylindrical z-pinch array with a diameter of 16mm [Fig. 

2.10].   

 

Fig.  2.10.  Geometry used for the simulations of the Cornell paired wire 
experiments [from Str06]. 
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First, simulations were set up by Strickler such that all the current (1 MA with 100 ns 

risetime) was assumed to flow in the wire cores.  The results of these simulations and the 

resulting impact time are shown in Figs. 2.11(a) (236 μm spacing) and Fig. 2.11(b) (447 

μm spacing) [Str06].   The simulations predicted that the wire cores would collide at 38 

ns and 48 ns.  The theoretical impact time can be calculated using Eq. 2.1, Eq. 2.5, and 

Eq. 2.12 in Section 2.1, by assuming a sinusoidal time-dependent current profile (dashed 

lines in Fig. 2.11a,b), the calculation was carried out with Mathematica [Appendix F].  

The theoretical impact times are calculated to be 35.5 ns for the 236 μm case, and 44.46 

ns for the 447 μm case, which reasonably matches the results given by the REIN 

simulations, 38 ns and 48 ns, respectively [see Table 2.1 below]. 
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Fig. 2.11.  Results of REIN simulations of the Cornell experiments, assuming all 
current flows in wire cores from t=0 ns. (a) shows the results of the wire 
colliding at 38ns for the 236 μm case, and (b) shows results of the wire 
colliding at 48ns for the 447 μm case [from Str06]. 

 

 It is believed in the Z-pinch community that some or most of the current will be 

shunted by the ablation plasma for at least some part of the current pulse [Cun05a, 

Leb04, Sin05].  To simulate this effect, a set of simulations was performed by Strickler 

in which it was assumed that the current pulse (1 MA, 100 ns risetime) is "switched" to 
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the wire cores at some late time (t=60 ns) [Str06].  The results of these simulations and 

the corresponding impact time are shown in Figs. 2.12(a) and 2.12(b).  

 For both the 236 and 447 μm wire cases, the REIN simulations show the wires 

colliding rapidly after the current is switched to the cores, at 65 ns for the 236 μm case 

and at 69 ns for the 447 μm case.  Again, the theoretical impact time can be calculated 

using Eq. 2.1, Eq. 2.5, and Eq. 2.12 in Section 2.1, by assuming that a constant current of 

magnitude 0.7 MA is present to the wire array at the time of “switched on” [Fig. 2.12], 

the calculation was carried out with Mathematica [Appendix G].  The theoretical impact 

times are calculated to be 64.94 ns for the 236 μm case, and 69.3 ns for the 447 μm case.  

The theoretical impact time again compares well with the results given by the REIN 

simulations, 65 ns and 69 ns, respectively [see Table 2.1 below]. 
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Fig. 2.12.  Results of the REIN simulations of the Cornell Experiments, assuming 
current is “switched on” in the wires at t=60 ns into the current pulse. 
(a) shows the results of the wire colliding at 65ns for the 236 μm 
simulation, and (b) shows the results of the wire colliding at 69ns for the 
447 μm simulation [from Str06].  
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Table 2.1:  Impact time calculations: Non-linear theory in comparison with REIN 
simulation. (Collision time = Time of wire collides – Time of current 
starts) 

 

 

 

2.2.3 Simulation Remarks 

It is computationally difficult to resolve the azimuthal dependence in simulations 

if the number of wires, N, in the array runs into hundreds [Fig. 2.1].  For the azimuthal 

clumping instability, the most unstable mode is the π mode, which has the unique 

property that the azimuthal displacements of neighboring wires are exactly 180 degrees 

out of phase with each other [Fig. 2.2b].  From Fig. 2.2a, one sees that the π mode in a 

cylindrical array of N wires may be generated by just one wire, over a wedge of angle 

2π/N radians that contains that wire, with a reflection condition applied to the boundaries 

of this wedge. We call this reduced, but equivalent, simulation of one wire over one 

wedge the “1-sector simulation”. With a reflection condition on the boundary of this 

sector [See Fig. 2.2], it is clear that this 1-sector simulation exactly replicates the π mode 

in an N-wire cylindrical array.  The 1-sector simulation automatically filters out all other 

azimuthal modes, so that it exclusively simulates the linear and nonlinear evolution of 
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the pure π mode, for all time.  This 1-sector simulation, therefore, offers substantial 

saving in the simulation time to exclusively study the most unstable clumping mode, 

especially when N is in the hundreds.  Note also the significant flexibility in this 1-sector 

simulation: changing the sector angle is equivalent to changing the number N in the 

array; thereby allowing a convenient study of the scaling with wire number against 

nonaxisymmetric perturbations. 

 We should stress that the 1-sector simulation applies even if the coronal plasma is 

present.  This results in very significant flexibility in addition to substantial reduction in 

computational time.  The linear and nonlinear theory for the pure π mode may readily be 

compared with the 1-sector simulation.  Such a comparison may be considered as a 

benchmark for both theory and codes.  The pure π mode, as represented by the 1-sector 

simulation, may also be subjected to experimental studies [Str06] by judiciously 

arranging the initial positions of the wires so that only the π mode is seeded [Figs. 2.2b 

and 2.10].     

2.3 Conclusions 

 While the analytic theory was developed for a linear array of infinitesimally thin 

wire, it turns out that the theory provides a fairly accurate description when it is 

compared with ALEGRA simulations of a circular array of wires of finite wire radius.  

The theory also compares well (for the impact time calculations) with few-wire array in a 

circuit simulation model, REIN.  The REIN code takes into account the inductance 

changes among the wires in the wire array as the wires azimuthally clump, the excellent 

agreement between the REIN simulation and theory developed implied that the 

inductance change is a negligible effect, as far as the azimuthal clumping instability is 

concerned. The general conclusion is that the π mode of discrete wires may undergo 

significant clumping before appreciable radial motion sets in.  This trend should scale for 
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all current amplitudes and pulse timescales [Str06, Tan07].  Previously, the lack of radial 

motion of the wire core in experiments was used to infer that little current flows through 

the cores.  Here, our theory and simulations show that azimuthal clumping of wires 

occurs on a faster time scale than the wires’ radial motion, for most cases of 

experimental interest.  Thus, azimuthal motion might serve as a more sensitive 

“diagnostic” to detect current in the cores than the radial motion.  The lack of azimuthal 

clumping of the wires implies lack of current in the wire core.  Indeed, Sinars [Sin05] 

already attributed the absence of azimuthal clumping mode, which was predicted by 

Hammer and Ryutov [Ham99b], to the shunting of the core current to the coronal 

plasma. 

If the azimuthal clumping of wires is not observed in experiments, it admits a few 

possibilities: The majority of the current is not carried by the discrete wires, as already 

indicated, or much of the original wires lose their discrete properties.  Unfortunately, 

these scenarios are difficult to quantify in experiments, and the analytic theory and 

simulation presented here have not included them either.   

 There is a general consensus that the plasma ablated from the wires could shunt 

the current from the wire cores at times throughout a wire array implosion. In the wire Z-

pinch experiments, the axial current, at some stage, may be shared or even 

predominantly carried by the plasma corona surrounding the wires [Leb04]. When this 

happens, the metallic wires may be detached from the plasma corona as far as the Jeans 

(clumping) instability is concerned, and the cores would probably not move.  Attention 

should then be shifted to the plasma corona.  For instance, it may be possible to observe 

the merging of plasma “streams” coming off of the individual wires, rather than the 

merging of neighboring discrete wire cores.  In Sanford’s study of scaling with wire 

number [San01], a decisive criterion centered on the distinction between “plasma-wire” 
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(in which the plasma coronas from neighboring wires do not coalesce) and “plasma-

shell” (in which the plasma coronas from neighboring wires coalesce).  Interestingly, this 

idea may be re-examined critically with 1-sector simulation with reflection boundary 

condition [Fig. 2.2a], and such a simulation will have taken full consideration of the 

collective interaction of all discrete wires, “plasma-wires”, and “plasma-shell”, 

regardless of the wire number.  

An attempt was made by the present author to investigate the clumping instability 

when the discrete wire is replaced by plasma.  Two different ALEGRA simulation 

geometries were set up: (a) the plasma is circular in shape centered about the original 

wire, and (b) the plasma is radially elongated in shape, [the simulations were set up using 

similar parameters as given in Section 2.2.1, with discrete wire being replaced by 

plasma].  The simulation setup geometry, ALEGRA input deck, and preliminary results 

with a plasma circular in shape are given in Appendix E.  Since the force between two 

infinitely long current planes is independent of the distance between them, we expect the 

elongated (radially spread-out) plasma geometry will be less susceptible to the azimuthal 

clumping instability compares to the circular plasma.  In both cases, preliminary results 

show mitigation of clumping instability with the replacement of discrete wire with 

plasma.  However, more simulations and studies need to be conducted in order to 

solidify such a claim.   
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CHAPTER 3 

A HIGHER DIMENSIONAL THEORY OF ELECTRICAL CONTACT 
RESISTANCE  

 
 

In this chapter, we focus on the higher dimensional theory of electrical contact 

resistance.  In a wire-array Z-pinch, the contact between the wires with the anode and 

with the cathode has a strong influence on the energy deposition in the wire [Gom07, 

Gom08, Zie08].  The problem of contact resistance is also important to terahertz sources, 

due to small circuit size [Boo07, Ppe07].  

Because of the surface roughness on a microscopic scale, true contact between 

two pieces of metal occurs only on the asperities of the two contacting surfaces. Current 

flows only through these asperities, which occupy a small fraction of the area of the 

nominal contacting surfaces.  This gives rise to contact resistance [Hol67, Jan03, Nak93, 

Ros81, Tim99], as shown in Fig. 3.1.  

 

 

Fig. 3.1 True points of contact occur only at the asperities of the contacting 
surface, leading to high contact resistance. 
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It is clear that contact resistance is highly random, depending on the surface 

roughness, on the applied pressure, on the hardness of the materials, and perhaps most 

importantly, on the residing oxides and contaminants at the contact [Car95, Hol67, 

Tim99].  The basic model of electrical contact remains that of Holm [Hol67], who more 

than forty years ago considered two semi-infinite cylinders of radius b placed together.  

Current can flow through them only via a “bridge” in the form of a circular disk of radius 

a << b [Fig. 3.2].  This disk has a zero thickness, and has been known as the “a-spot” in 

the literature; we called this configuration the zero-bridge length (ZBL) limit.   

 

 

Fig. 3.2 Holm-Timsit model of a straight cylinder current channel of radius b 
joint by a zero thickness circular hole of radius a (a-spot). 

 
 
While there are statistical treatments [Jan03] and extensions of the a-spot theory to other 

disk shapes [Nak93, Tim99], Holm’s zero-thickness assumption is almost always used.  

Although it was not noted in Holm [Hol67] or Timsit [Tim99], Hall [Hal67] used 

conformal mapping for varieties of complex Cartesian geometries.  The analog of the “a-

spot” in Cartesian geometry is shown in Fig. 3.3, in which the connecting bridge also has 

a zero length in the direction of current flow.   
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Fig. 3.3 A rectangular current channel with a constriction of zero bridge   
length. 

 

In this chapter, we generalize the Holm-Timsit theory of a-spot [Hol67, Tim99] 

to include a finite axial length (2h) in the connecting bridge, i.e., the a-spot has a finite 

thickness in the direction of current flow.  This is shown in Fig. 3.4 for a Cartesian 

geometry.   

 

 
Fig. 3.4 A rectangular current channel with a finite axial length of 2h in the 

direction of current flow. 
 

The mapping function for Fig. 3.4 is not displayed in, nor readily obtainable from Hall 

[Hal67].  We have obtained analytic result for a rectangular connecting bridge [Fig. 3.4], 

and we have used this result to propose the theory for cylindrical [Fig. 3.5] and funnel 

connecting bridge [Fig. 3.6]. 
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Fig. 3.5 A connecting bridge in the form of a striaght cylinder of radius a and 
a finite axial of 2h in the direction of current flow.   

 
 
 

 
 
 
Fig. 3.6 A funnel shape bridge with a finite axial length of 2h in the direction 

of current flow. 
 

We have verified that the proposed scaling laws are accurate to within one percent when 

compared with electrostatic code (MAXWELL 3D [Ans70]) results in spot checks.  In 

addition, a statistical analysis of electrical contact resistance is developed in this chapter 

to analyze the randomness on the connecting bridge geometry. Lump parameters and 

radio frequency (RF) properties of the electrical contact are also studied.  The final 

section gives a comparison of the theory with the UM Z-pinch experiments on contact 

resistance [Gom08]. 
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3.1 Analytic Theory of Electrical Contact Resistance 

The basic model of electrical contact resistance is due to Holm [Hol67].  In this 

section, we introduce the conformal mapping for a rectangular geometry, and analyze the 

ZBL theory for a rectangular [Fig. 3.3] and cylindrical channel [Fig. 3.2].  Higher 

dimensional theory for the rectangular [Fig. 3.4], cylindrical [Fig. 3.5] and funnel 

channel [Fig. 3.6] will follow.  In all of the higher dimensional cases, we find good 

agreement between the electrostatic code (MAXWELL 3D [Ans70]) results and the 

analytic theory developed. 

 

3.1.1 Conformal Mapping for Rectangular Geometry 

We first consider a 2-dimensional rectangular current channel Fig.3.7a with top 

boundary ABCDEF and mid-plane GH (y=0).  The main channel has half width b, and 

the bridge, or constriction, has half width a < b, and total length 2h (we will set h=0 to 

analyze the ZBL limit in the next section).  The width is L3 in the third, ignorable 

dimension.  The two boundaries, ABCDEF and GH, are streamlines. The Cartesian 

geometry allows us to solve the current flow by conformal mapping between the 

complex z- and w-plane where ),( yxiyxz ≡+= and ],[ vuivuw ≡+= . 

 

Fig. 3.7(a,b)  (a) The half rectangular current channel in the ),( yxz ≡  plane, and 
(b) its map onto the ],[ vuw ≡  plane. 
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This map is governed by the Schwarz-Christoffel transformation [Hil62].  The mapping 

function is given by Eq. (3.1), which maps ABCDEF and GH in the z-plane onto 

A’B’C’D’E’F’ and G’H’ of the w-plane, where f(w) is given by Eq. (3.2), and the aspect 

ratios h/b and a/b are given in terms of u3 and u4 [labeled in Fig. 3.7b] by Eqs. (3.3a,b).  

The detail of the mapping and the derivation of Eqs. (3.2) and (3.3a,b) will be given in 

Appendix H.   
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Note that  in Eq. (3.2). Thus, once h/b and a/b are specified, u3 and u4 (and 

therefore u5=u3u4) may be determined numerically from Eq. (3.3), and the entire 

mapping function of Eq. (3.2) is known.   

435 uuu =

To show that u5=u3u4, consider the complex electrostatic potential, 

 Φ(w) = ΚΕ0 log(w) = φ + iψ,  which represents the potential function and stream 

function of a source at the origin of the w-plane that produces a constant electric field (-

E0) far away from the constriction in the z-plane [Fig. 3.7].  The components 

 and x yE E of the electrostatic field in the (x,y) plane may be expressed as [Hil62] ,  
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Eq. (3.4) clearly shows a constant Ex at w = ∞  and at w = 0, e.g., at the downstream 

location F’(F) and the upstream location A’(A) in Fig. 3.7.  For F and A to assume this 
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same electric field, -E0, Eq. (3.4) yields u5 = u3u4.  In Appendix H, we show that the 

contact resistance of the 2-dimensional rectangular current channel is, 

                 ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++
++

−== ∫
∞

))(1(
))((

1,
2 43

43

03 uuuu
uuuu

u
duRR

L
R ccc π

ρ .                                (3.5) 

The contact resistance Rc is defined as the difference between R and Ru, where R is the 

resistance of the channel between points G and H in Fig. 3.7a (taking  and 

 at the last stage), and Ru is the resistance between the same points G and H of 

the un-constricted channel, i.e. a=b in Fig. 3.7a.  The contact resistance Rc depends only 

on the aspect ratios, h/a and b/a, the specification of which determines the mapping 

parameters u3 and u4 from Eqs. (3.3a,b). 

−∞→G

∞→H

 

3.1.2 Zero-Bridge Length Theory 

The contact resistance in the ZBL limit is presented in this subsection for the 

rectangular channel (Fig. 3.3) and cylindrical channel (Fig. 3.2). For the cylindrical 

channel, the ZBL theory is simply the Holm-Timsit theory of a-spot [Hol67, Tim99]. 

A. Rectangular Channel 

For the zero bridge length (ZBL) limit, we set u3= u4 in Eqs. (3.2), (3.3a,b), and 

(3.5) [Fig. 3.7a, h=0 for ZBL limit].  The channel width is L3 in the third, ignorable 

dimension.  The channel has a uniform electrical resistivity ρ. The contact resistance in 

this case reads, 
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where 0cR  is a function of u3, and u3 is related to b/a by Eq. (I2) of Appendix I.  

This normalized ZBL resistance 0cR  is shown in Fig. 3.8 together with its asymptotic 

expansion for b/a >> 1,                                                    
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                                       1/)],/(2log[40 >>≅ ababRc π  .                                       (3.7) 

Equation (3.7) is derived in Appendix I.  Given the aspect ratio b/a, u3=u4 needs to be 

solved numerically from Eq. (3.3b), and 0cR  is then obtained numerically from Eq. (3.6).  

The numerical data in Fig. 3.8 show that 0cR  is zero when b/a = 1, as expected for the 

rectangular channel without any restriction. The zero-bridge-length (ZBL) limit is shown 

in Fig. 3.8, together with the asymptotic formula [Eq. (3.7)]. Figure 3.8 shows its 

excellent agreement with the numerical values. The log(b/a) dependence in Eq. (3.7) for 

the rectangular channel for small a is very different from the 1/a dependence in the 

classical scaling of the a-spot theory for a cylindrical channel, to be discussed next. 

 

 

Fig. 3.8  The normalized contact resistance of a rectangular current channel 
with zero bridge length.  Also shown is the asymptotic formula for 

1>>ab   (dash curve). 
 

B. Cylindrical Channel – The Holm-Timsit a-spot Theory 

  Holm [Hol67], more than forty years ago considered two semi-infinite cylinders 

of radius b placed together (Fig. 3.2).  Current can flow through them only via a bridge 

in the form of a circular disk of radius a << b, where b is the main channel radius (Fig. 
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3.2).  This disk has a zero thickness (h = 0 in Fig. 3.5), and has been known as the “a-

spot” in the literature.  Holm derived the contact resistance in the limit , h=0, 

yielding his celebrated formula [Hol67],  

∞→b

                                    
a

HolmRc 2
)( ρ

= , (Holm’s a-spot theory)                                  (3.8) 

Timsit [Tim99] extended Holm’s a-spot theory to a finite value of main channel radius 

(b), 

                                               ,
2

0cc R
a

R ρ
=                                                                   (3.9) 
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Equation (3.9) was synthesized by Timsit from his numerical results into this useful, 

accurate formula [Tim99], Eq. (3.10).  Figure 3.9 displays 0cR  (normalized to )2( aρ ), 

showing that the contact resistance vanishes when a = b, as expected for the cylindrical 

channel without any constriction.  Equation (3.9) reduces to Eq. (3.8) in the limit of 

. ∞→b

 

Fig. 3.9 Timsit’s normalized contact resistance for a straight cylinder current 
channel with zero bridge length.  As ∞→ab , 10 =cR , the value of 
Holm’s a-spot theory.   

 

 50



3.1.3 Higher Dimensional Theory for Non-zero Bridge Length  
 

When the bridge, or constriction, has a finite length, h, the analysis of contact 

resistance becomes significantly more complicated. The contact resistance depends on 

two dimensionless parameters, b/a and h/a.  In this section, we consider three cases: (A) 

the rectangular channel with a rectangular bridge (Fig. 3.4), (B) the cylindrical channel 

in which the bridge is a cylinder of radius a < b (Fig. 3.5), and (C) the cylindrical 

channel in which the bridge is a funnel whose radius increases linearly from a to b from 

the narrowest point (Fig. 3.6).  In all three cases, the bridge has a total length of 2h.  The 

effect of finite h is found to increase the contact resistance linearly with h, by an amount 

that is expected from the increase in the current path length associated with finite h, and 

from the decrease in the cross-sectional area in the channel constriction.  This physical 

appealing result was first hinted from the data for the rectangular channel, which we 

solved by conformal mapping. Conformal mapping is inapplicable to the cylindrical 

cases, (B) and (C), but we find the above effect of finite h is also consistent with the 

numerical results that we obtain from a 2-dimensional electrostatic code in our study of 

cases (B) and (C).   

Specifically, we postulate that, as a result of finite h, 0cR  in Eq. (3.6) [for case 

(A)] and in Eq. (3.9) [for cases (B) and (C)] are replaced by   

                                           ( ).0 ahsRR cc +=                                                 (3.11) 

where s is a constant that depends only on b/a for the specific geometry.  In the 

following subsections, we provide a simple derivation of s for all three cases and 

compare the prediction according to Eq. (3.11) with numerical data.  

A. Rectangular Channel with Rectangular Constriction of Finite Length 
 

Let us focus at the connecting bridge region in Fig. 3.4: -h < x < h, -a < y < a.   
 
If there were no constriction, a = b, the electrical resistance in that region would be, 
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                                              ( ),2)2(' LbhR 3cu ×= ρ                                                   (3.12) 

where  is the width of the rectangular channel in the third dimension.  With the 

constriction, a < b, the resistance of that bridge becomes, 

3L

                                                 ( ),2)2(' 3LahR c ×= ρ                                                 (3.13) 

Thus, the effect of the finite bridge length (h > 0) gives rise to an additional resistance,  

                                          ( ) ( )31''' aLhbaRRR cuc ρ−=−= .                                     (3.14) 

Normalizing R’ to ρ/(2πL3) and calling this normalized additional resistance s(h/a), as 

suggested by Eqs. (3.5) and (3.11) we obtain the slope s for a rectangular connecting 

bridge channel, 

                                                          ( ),12 basR −= π                                                (3.15) 

The contact resistance for a rectangular current channel then reads, 

                                       [ ] cRcc R
L

ahsR
L

R
3

0

3 2
)/(

2 π
ρ

π
ρ

≡+= ,                                (3.16) 

where 0cR  is given in Fig. 3.8 and sR is given by Eq. (3.15).  The straight lines in Fig. 

3.10a represent the linear increase of the normalized contact resistance cR = 0cR  + 

sR(h/a) with h/a according to Eq. (3.15) for several values of b/a.  The squares in Fig. 

3.10a show the values of cR  according to Eq. (3.5), which is derived vigorously using 

conformal mapping as given in the last section.  The spot checks on the analytic results 

against conformal mapping are also shown in different forms in Fig 3.10b.  In Fig. 3.10b, 

we plot Eq. (3.16) as a function of b/a at various values of h/a, and check against the 

rigorous results using conformal mapping at a few random combinations of h/a and b/a.  

Furthermore, from the numerical data shown in Fig. 3.10 obtained from conformal 

mapping, we can infer what should be the value of s for each combination of b/a, and 

h/a.  These values of s are marked as “data” in Fig. 3.11 and compared against the simple 
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analytic formula, Eq. (3.15), that we constructed from a simple physical argument.  

[Actually, it is the data from conformal mapping that led to the simple construction of s 

given in Eq. (3.15).]  The curve for the h/a=0 case, labeled as 0cR  in Fig. 3.10b, 

corresponds to the zero-bridge length (ZBL) limit shown in Fig. 3.8. 

 
 

(a) 

(b) 
 

 
Fig. 3.10(a,b) The normalized contact resistance (a) as a function of h/a at various 

values of b/a, and (b) as a function of b/a at various values of h/a for a 
rectangular current channel.  The squares show values according to 
the exact analytic theory, Eq. (3.5), at some random combinations of 
h/a and b/a. 
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Fig. 3.11  The normalized rate of increase of the contact resistance with respect 
to the bridge length, extracted from numerical data for a rectangular 
current channel. Also shown is the analytic formula (dash curve). 

 

B. Cylindrical Channel with Cylindrical Constriction of Finite Length 

The great accuracy of the analytic theory displayed in Figs. 3.10 -3.11 prompted 

us to consider the cylindrical geometry next [Fig. 3.5].  The main cylindrical current 

channel has radius b, and the connecting bridge has radius a (<b), and total axial length 

2h.  Let us focus at the connecting bridge region for the cylindrical case.  This cylindrical 

geometry reduces to the circular a-spot of Holm in the h = 0 limit. Using similar 

argument as given in the rectangular bridge, if there were no constriction, a = b, the 

electrical resistance in the cylindrical bridge would be, 

( ) ( )22' bhR cu πρ= .                                                      (3.17)                        

With the constriction, a < b, the resistance of the cylindrical bridge becomes, 

( ) ( )22' ahR c πρ= .                                                        (3.18) 

Therefore, the effect of the finite bridge length (h > 0) gives rise to an additional 

resistance, 

                                   ( )[ ] ( )22 21''' ahbaRRR cuc πρ−=−= .                                      (3.19) 
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Normalizing 'R to )2( aρ  and calling this normalized additional resistance s(h/a), as 

suggested by Eqs. (3.9) and (3.11), we obtain the slope s for a cylindrical connecting 

bridge,  

                                             ( ) ( ) ]1[4 2bassc −= π .                                                   (3.20) 

The proposed contact resistance for the straight cylindrical bridge [Fig. 3.5] then reads, 

                                      ( ) csccc R
a

ahsRaR
2

][)]2([ 0
ρρ ≡+= ,                              (3.21a)  

 
         ( ) ( ) ( ) ( )432

0 19998.015261.006322.041581.11 babababaRc +++−= ,     (3.21b) 
 
where ssc is given by Eq. (3.20) and 0cR  is simply the classical a-spot contact resistance 

of Holm and Timsit, Eq. (3.10).  Equation (3.21a) is represented by the straight lines in 

Fig. 3.12 for several values of b/a. 

To test the proposed scaling, Eq. (3.21a), we set up simulations using 

electrostatic codes with DC conduction, as the analytic calculation becomes very 

complicated, and conformal mapping can no longer be used for the cylindrical geometry.  

We applied an excitation voltage of 100V, we also assume a tungsten channel with a 

resistivity ρ  = , constriction radius a = 1 mm, channel radius b ranging 

from 1.5 mm to 5 mm, finite axial length 2h ranging from 0 mm to 10 mm, and axial total 

length of the geometry ranging from 20 mm to 30 mm. We have verified that Eqs. (3.21a) 

is accurate to within one percent when compared with the electrostatic code results in 

spot checks with b/a = 1.5, 2, 3, 4 and 5, and h/a from 0 to 5, as shown in Fig. 3.12.  An 

example of the simulation setup using Maxwell 3D is shown in Fig. 3.13.  

8105.5 −× mΩ
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Fig. 3.12  The normalized contact resistance as a function of h/a at various 
values of b/a for a straight cylinder connecting bridge.  The squares 
show values according to spot checks with electrostatic code. 

 

 
 

Fig. 3.13  Maxwell 3D simulation geometry for a tungsten channel with b/a=5 
and h/a=2 for a straight cylinder connecting bridge. 

 
C. Cylindrical channel with funnel constriction of finite length 

Finally, we consider a cylindrical channel whose connecting bridge is in the 

shape of a funnel, as shown in Fig. 3.6.  The main channel has a radius b. The funnel-

shape constriction has a minimum radius a < b and a total length 2h.  We assume that the 

funnel radius increases linearly with distance z  from the narrowest point (Fig. 3.6). 
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This funnel geometry also reduces to the circular a-spot of Holm[Fig. 3.2] in the h = 0 

limit.   

To evaluate the effect of finite axial length of the funnel analytically, we use 

similar arguments as given for cases (A) and (B) in this subsection.  If there were no 

constriction, a = b, the electrical resistance in the region –h < z < h would be the same 

as for the straight cylinder case, Eq. (3.17), 

( )2' 2cuR h bρ π= × .                                                    (3.22)                         

With the constriction, a < b, the incremental resistance over an axial length dz of the 

funnel is, [ ])(2 zrdz πρ .  The total resistance of the funnel connecting bridge becomes  

                                           2

2'
( )

h

c
h

hR dz
r z ab
ρ ρ

π π−

×
= =∫ ,                                             (3.23) 

where we have used the profile of the funnel radius, r(z) = a + z (b-a)/h, for –h < z < h, 

as shown in Fig. 3.6. Thus, the effect of the finite bridge length (h>0) gives rise to an 

additional resistance,  

                                          2' ' ' 1c cu
aR R R
b ab

ρ
π

h×⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

.                                        (3.24) 

Normalizing R’ to ρ/2a and calling this normalized additional resistance s(h/a), as 

suggested by Eqs. (3.9) and (3.11), we obtain the slope s for the funnel connecting 

bridge, 

                                                     
4 1F

a as
b bπ

⎛ ⎞ ⎡ ⎤= ⎜ ⎟ −⎢ ⎥⎝ ⎠ ⎣ ⎦
,                                               (3.25) 

The proposed contact resistance for the funnel shape constriction [Fig. 3.6] then reads,  

                                           ( )][)]2([ 0 ahsRaR Fcc += ρ ,                                       (3.26a) 

      ( ) ( ) ( ) ( )432
0 19998.015261.006322.041581.11 babababaRc +++−=          (3.26b) 
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where sF is given by Eq. (3.25) and 0cR  is simply the classical a-spot contact resistance 

of Holm and Timsit, Eq. (3.10).  Note that the slopes of these lines, measured SF, are 

maximuized when b/a=2 according to Eq. (3.25).  Thus, the straight lines for the b/a=3, 

4, 5 cases crossed in Fig. 3.14.  Eq. (3.25) shows that in the limit , .  This 

is expected since the geometry in the limit of infinite b (fixing h and a in Fig. 3.6) 

becomes the a-spot geometry of Holm, i.e., the effect of finite h vanishes.  Equation 

(3.26a) is represented by the straight lines in Fig. 3.14 for several values of b/a. 

∞→b 0→Fs

To test the proposed scaling, Eq. (3.26a), we again use the electrostatic codes for 

the funnel constriction. We have verified that Eq. (3.26a) and (3.26b)  are accurate to 

within one percent when compared with electrostatic code results in spot checks with b/a 

= 1.5, 2, 3, 4 and 5, and h/a from 0 to 5, as shown in Fig. 3.14. An example of the 

simulation setup using Maxwell 3D is shown in Fig. 3.15.  

 

 

Fig. 3.14  The normalized contact resistance as a function of h/a, at various 
values of b/a for a funnel shaped constriction.  The squares show 
values in spot checks using an electrostatic code. 
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Fig. 3.15 Maxwell 3D simulation geometry for a tungsten channel with b/a=5 

and h/a=2 for a funnel connecting bridge. 
 
 

3.2 Lumped Element of Electrical Contact  

 The theoretical model developed in Section 3.1 concentrated on the electrostatic 

behavior of a single contact with rectangular, cylindrical, and funnel connecting bridge.  

In this section, we develop an analytic theory for the circuit lumped element parameter 

(R, L, C) for a single and multiple contacts, each with a cylindrical connecting bridge.  In 

addition to the resistance, we will also consider the capacitance and the inductance 

generated by the contact.  In this case, the radio frequency (RF) property of the contact 

can also be analyzed. 

 

3.2.1 Theoretical Model (Single Contact Point) 

 To determine the lumped element circuit parameters of an electrical contact, we 

consider a contact with a cylindrical connecting bridge as depicted in Fig. 3.5.   Due to 

the current, a magnetic field is generated around the contact.  The resulting magnetic 

field produces magnetic flux, thereby generates an inductance across the contact.   

According to Ampere’s Law [Gri99], ∫ =• IdB 0μ ,where I is the current enclosed by 
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the amperian loop, and 0μ  is the permeability of free space.  The resulting magnetic field 

surrounding the contact is, 

                                                         
r
I

B
π

μ
θ 2

0= .                                                          (3.27) 

The magnetic flux produces is, 

                              ∫∫ B ∫∫ ⎟
⎠
⎞

⎜
⎝
⎛==•=

− a
bn

I
hdzdrBAd

h

h

b

a π
μ

θ
0Φ .                                 (3.28) 

The ratio of the magnetic flux to the current give rise to an inductance ( ILc Φ= ) across 

the connecting bridge, 

                                                        ⎟
⎠
⎞

⎜
⎝
⎛=

a
bnhLc π

μ0 .                                                (3.29) 

In addition to the resistance and inductance, a capacitance also exists across the contact.  

The capacitance is C  where, vc C+bC=

                                                         
h

aCb 2

2πε= ,                                                      (3.30a) 

                                                     
h

abCv 2
)( 22 −

=
πε .                                              (3.30b) 

Cb is the capacitance of the bridge, and Cv is the capacitance in the non-contact region 

[Fig. 3.16].  ε  is the permittivity of the material in consideration, in our case, we 

take 0εε = , which represents the permittivity of free space, and a non-dielectric bridge.   

 

 

 60



 

                                                (a)                   (b) 

Fig. 3.16 Model of the capacitance of contact. (a) Cylindrical connecting bridge 
with channel radius b, constriction radius a, and finite axial length 2h.  
(b) Circuit diagram showing the capacitance (Cb and Cv) of the 
electrical contact. 

 
 

The resistance, inductance and capacitance components of the contact forms a 

microscopic resonant parallel RLC circuit [Fig. 3.17], with a resonant frequency ( 0ω ), 

characteristic impedance ( ), and quality factor (Q ) given by cZ
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c

c
cc Z

R
CRQ == 0ω ,                                           (3.33) 

where  are given by Eqs. (3.21a,b), (3.29), and (3.30a,b) respectively.  For the 

case of tungsten conducting surfaces assuming a single connecting bridge, the resulting 

ccc CLR ,,
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resistance, inductance, capacitance along with its resonant frequency, characteristic 

impedance, and the quality factor are given in Table 3.1. 

Table 3.1:  Example values of resistance, inductance, capacitance, characteristic 
impedance, and the quality factor of a single connecting bridge. 

 
Tungsten resistivity  mΩ× −8106.5  

Constriction radius (a) m6101 −×  

Channel radius (b) m61010 −×  

Constriction half-axial length (h) m61010 −×  

Resistance (Rc) Ω377.0  

Inductance (Lc) H121021.9 −×  

Capacitance (Cc) F161039.1 −×  

Resonant frequency ( 0ω ) sradian /1079.2 13+×  

Impedance (Zc) Ω× 21057.2  

Quality factor (Q) 31046.1 −×  

 

Such low value of quality factor (Q) represents a non-resonant structure.  The resonant 

frequency is in the terahertz regime [Table 3.1], therefore these asperities are extremely 

important for terahertz source development [Boo07]. 

 

 3.2.2 Theoretical Model (Multiple Contact Points) 

 The theoretical model developed in the previous section represents a single 

contact bridge connecting two conducting channels. In this section, we develop a simple 

RLC circuit model for analyzing the RF contact resistance for multiple contact points.  
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Fig. 3.17  RLC circuit model of RF contact resistance for a single connecting 
bridge.  

 
 
For multiple contacting points [Fig. 3.1], we connect Fig. 3.17 in parallel as shown in 

Fig. 3.18,    

                                                             

 

Fig. 3.18  RLC circuit model of RF contact resistance for multiple connecting 
bridges.   

 
 
The circled region of Fig. 3.18 corresponds to the RLC circuit model of a single contact 

point.  Therefore, the total resistance ( ), capacitance ( ), and inductance (

fo ltiple contact points is given by, 

TotalR TotalC TotalL ) 

r mu

                                   
N

R

RRR

R c

cNcc

Total
1

21

111
1

≈
+⋅⋅⋅++

= ,                                      (3.34) 

                                  121 ccNccTotal NCCCCC ≈+⋅⋅⋅++= ,                                       (3.35)  
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where  are given by Eqs. (3.21a,b), (3.29), and (3.30) respectively.  Equations 

(3.34) to (3.36) implies and 

ccc CLR ,,

TotalQ
Total0ω are independent of N, where as is 

proportional to 

TotalcZ

N1 .   

 

3.2.3 RF Contact Resistance Remarks 

The RF contact resistance for a single and multiple contact points has been 

modeled by RLC circuit.  In general, the resistance, capacitance, and the inductance of 

the contacting points depend only on the radius of the constriction (a), radius of the 

channel (b), and the half-axial length of the constriction (h).  In reality the exact 

dimensions of a, b, and h cannot be readily obtained experimentally, since the contact 

points are randomly distributed with a microscale.  The resulting resistance, capacitance, 

and inductance are small values, and compared to experiments will be challenging.  

Nevertheless, the model developed allows us to determine lump parameters and the RF 

behavior of a single and multiple contacts with a cylindrical connecting bridge of the 

same material.  The RF behavior of different shaped connecting bridge (for example, 

rectangular or funnel) can be analyzed using the procedures outlined in this section.    

 

3.3 Statistical Analysis of Electrical Contact Resistance 

 The theoretical model developed in Section 3.1 represents a single contact point 

between two conducting surfaces.  In this section, we develop a statistical analysis of 

electrical contact resistance with random aspect ratios of a connecting bridge. 
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3.3.1 Theoretical Model 

  We only consider contacts with cylindrical connecting bridges as shown in Fig. 

3.5.  The analysis assumed that the normalized distribution function for the radius of the 

constrictions (a), the radius of the conducting channels (b), and the half-axial length of 

the constrictions (h) is given by Eqs. (3.37), (3.38) and (3.39) respectively,  
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where a  is the most likely radius of the constriction, b  is the most likely radius of the 

channel, and h  is the most likely half-axial length of the constriction, and 

, , and .  The distribution function for a is shown 

in Fig. 3.19.  
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Fig. 3.19 Normalized distribution function for constriction radius (a). 
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The distribution functions are chosen arbitrarily, to assure convergence of the integrals as 

a, b approach zero [c.f. Eq. (3.25), (3.26a)].  With these distribution functions, the 

expectation values for resistance, inductance, and capacitance become,   

                                     [ ]∫ ∫ ∫
∞ ∞

=
0 0 0

)()()(
b

cc afbfhfRdadbdhR ,                                  (3.40) 

                                      [∫ ∫ ∫
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cc afbfhfLdadbdhL ],                                  (3.41)  
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=
0 0 0

)()()(
b

cc afbfhfCdadbdhC ] ,                                  (3.42) 

where , , and are the resistance, inductance and capacitance for a single contact 

point as derived in the previous sections. Note that the integration limit for a is from 0 to 

b, since by definition,  a (the radius of the constriction) 

cR cL cC

≤ b (the radius of the channel).  

Figure 3.20 shows the expected value of resistance, cR , as a function of a , assuming 

the conducting surface is tungsten with a resistivity , a most likely 

conducting channel radius 

mΩ×= −8106.5ρ

mb 61010 −×= , and the most likely half-axial length of the 

constriction mh 610 −= 10× .  Figure 3.21 shows cR  as a function of b , assuming a 

most likely constriction radius ma 6101 −×= , with the same ρ  and h .   
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Fig. 3.20 Expected values of contact resistance ( cR ) with different values of 

the most likely constriction radius ( a ). Here mh μ10= , mb μ10= . 
 

 

Fig. 3.21  Expected values of contact resistance ( cR ) with different values of 

the most likely channel radius (b ).  Here mh μ10= , ma μ1= . 
 
 
The expected value of inductance cL , and capacitance cC  for the corresponding 

cases are shown in Fig. 3.22 and 3.23 and Fig. 3.24 and 3.25 .  
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Fig. 3.22 Expected value of inductance ( cL ) with different values of the most 

likely constriction radius ( a ).  Here mh μ10= , mb μ10= . 
 

 

Fig. 3.23 Expected value of inductance ( cL ) with different values of the most 

likely channel radius (b ). Here mh μ10= , ma μ1= . 
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Fig. 3.24 Expected values of capacitance ( cC ) with different values of the 

most likely constriction radius ( a ).  Here mh μ10= , mb μ10= . 
 
 

        

Fig. 3.25 Expected values of capacitance ( cC ) with different values of the 

most likely channel radius (b ).  Here mh μ10= , ma μ1= . 
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3.4 Comparison with UM Z-pinch Experiment 

 An experiment was performed by Gomez, Zier, and French [Gom08] from the 

University of Michigan Plasma, Pulsed Power, and Microwave Laboratory to investigate 

the effect of contact resistance on the energy deposition, and plasma expansion profile in 

a wire array Z pinch.  The experimental configuration is shown in Fig. 3.26. 

 

 

Fig. 3.26 Wire holder for the Z-pinch experiment.  Wire material is aluminum. 
FN is the normal force pressing the wire against the electrode.  The 
angle θ (theta) is 4.2o for the anode and 11.2o for the cathode [from 
Gom08]. 

 

The wire material is Aluminum (Al) 5056 of 13 μm in diameter.  The same weight is 

used on the anode and cathode end to maintain the wire tension and the contact between 

the wire and the electrodes.  However, due to the difference in θ, the normal force at the 

cathode is approximately three times that at the anode.  The electrode contact area was 

sanded with 1500 grit sandpaper and cleaned with acetone.  Electrical tape was used to 

insulate all points of contact, except at the intended contact region [Gom08].   

 The calculated resistance of the Al 5056 wire is 6.5 Ω based on the resistivity, 

length, and diameter of the wire.   The contact resistance was found by subtracting the 
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wire resistance from each of the measured load resistance.  The average contact 

resistance depends on the weight used.  For the 0.4 g and the 0.89 g wire weight case, the 

average contact resistance is found to be 3420 Ω and 896 Ω respectively.   Increasing the 

wire weight mass to 1.34 g reduced the contact resistance to 86 Ω [Gom08].  Therefore, 

on average the contact resistance from experiment was found to be in the range of 10s to 

1000s ohms.   

 In order to compare the theory with the experiment, we assume the contact point 

between the wire and electrode has cylindrical geometry.  We first calculate the contact 

resistance assuming a single contact point.  Thus, we can apply Eqs. 3.20 and 3.21 to 

estimate the theoretical value of the contact resistance.  Typically value of b/a = 10 to 

100, and value of h/a also has similar range.  The typical value of constriction dimension 

is in the range of microns [Rin99].  In this case, we assume the constriction dimension 

ma μ1= , and the resistivity of aluminum is .  The resulting contact 

resistance of a single contact point is calculated to be in the range of 0.377 Ω to 3.6 Ω 

according to Eqs. 3.20 and 3.21, which is substantially lower than the experimental 

measured values of 10s to 1000s ohms.  In order to obtain the range of measured contact 

resistance, we have to assume the constriction dimension a in the nanometer scale.  By 

assuming  (which is substantially smaller than what we expect), with a 

typically value of b/a =10 to 100, and h/a with similar range. The resulting contact 

resistance is calculated to be in the range of 37 Ω to 360 Ω, which falls in the range of 

the measured values.  But then there is only one contact point to give rise to this large 

resistance.  The theory developed thus fails to explain the measured values of contact 

resistance.  The high values of contact resistance measured experimentally are likely due 

to the oxide effect that exists in the real contact, which our theory ignored.   

mΩ×= −8108.2ρ

nma 10=
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3.5 Conclusion 

In this chapter, we extended Holm’s contact resistance theory to include a finite 

axial length in the direction of current flow.  We derive the analytic result of contact 

resistance in a rectangular connecting bridge, and extend our theory to include a straight 

cylinder and funnel shape connecting bridge.  Our results for the latter cases are accurate 

to within one percent when compared with electrostatic code.  Effects of finite bridge 

length for other geometries, e.g., non-circular and ring a-spot [Nak93, Tim99], may 

similarly be constructed following our procedures as discussed in Section 3.1.  In 

addition, we have developed a theoretical model to determine the lumped element, and to 

analyze the RF effect on the electrical contact.  The RF contact resistance of single 

contact point can be modeled as a RLC circuit [Fig. 3.17].  In reality, the exact 

dimensions (for example a, b, and h) of a single contacting site cannot be easily 

determined experimentally.  The statistical treatment gives an educated estimate of the 

resulting contact resistance, inductance and capacitance.  The UM Z-pinch experiment 

conducted by Gomez, Zier and French concluded that the contact resistance is in the 

range of 10s to 1000s of ohms [Gom08].  Oxide effect (which our theory ignores) may 

be playing an important role in the experiment that increases the contact resistance to 

much higher values than the theory predicted.    
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CHAPTER 4 

CONCLUSIONS  

 

 In this thesis, we investigate two contemporary issues of Z-pinches.  These issues 

are motivated by both simulations and on-going experiments.  They concern the 

azimuthal clumping instability in a discrete wire array, and the electrical contact 

resistance.  In the following sections, we will summarize our novel results.  Suggestions 

for future works will also be given.    

 

4.1 On the Linear and Nonlinear Evolution of the Azimuthal Clumping Instability 

4.1.1 Novel Results 

We concentrate on the linear and nonlinear evolution of the most unstable 

azimuthal clumping mode, the π mode, in an array of N discrete wires.  It is recognized 

that the simulation of this mode may be achieved by simulation of only one wire, over a 

wedge with reflection conditions imposed on the wedge boundaries. In Chapter 2, the 

linear and nonlinear growth was analytically computed, displaying the regimes where 

collective interactions and single wire interactions become dominant.  While the analytic 

theory was developed for a linear array of infinitesimally thin wire, it turns out that the 

theory provides a fairly accurate description when it is compared with ALEGRA 

simulations of a circular array of wires of finite wire radius.  The theory also compares 

well (impact time calculation) with few-wire array in a circuit simulation model, REIN.  

The general conclusion is that the π mode of discrete wires may undergo significant 
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clumping before appreciable radial motion sets in.  Thus, absence of azimuthal clumping 

of wires in comparison with the wires’ radial motion may imply substantial lack of wire 

currents.  While the present theory and simulations have ignored the plasma corona and 

axial variations, it is argued that their effects, and the complete account of the three-

dimensional feature of the pi-mode, together with a scaling study of the wire number, 

may be expediently simulated by using only one single wire in an annular wedge with a 

reflection condition imposed on the wedge’s boundary [Fig. 2.2].   

4.1.2 Suggestions for Future Work 

Interesting areas of future work include investigation of whether the plasma 

corona is subject to the clumping instability.  Intuitively, a plasma corona may be 

considered as a collection of minute current-carrying filaments lumped together in some 

continuum limit, and this scenario suggests that tendency toward clumping should 

prevail.  This intuition is partially supported by Hu’s recent experiments at Cornell 

University [Hu05], where few-wire (typically four) linear arrays were studied in great 

detail.  She found that the plasma coronas from the four wires did converge, in spite of 

the action of a single return current post, whose magnetic field would push the plasma 

coronas from each wire further apart.  (The return current post was located behind the 

wire array).  This may then be taken as evidence that the plasma coronas were carrying 

substantial current and their mutual attractions led to their convergence.  However, the 

situation is more complicated.  For example, there also exists experimental evidence 

[Str06] that the pressure of coronal plasmas from two neighboring wires may force the 

two coronal plasmas apart, in spite of the mutual attraction of the currents which these 

two coronal plasmas presumably carry.  These effects may be assessed with the 1-sector 

simulation of the π mode as illustrated in Fig. 2.2, by including the effects of the coronal 
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plasma, as such a 1-sector simulation also covers the single-wire interaction when the 

wires in a pair are close to each other.  

The clumping (Jeans) instability may acquire rather different characteristics in the 

flowing coronal plasma.  For example, the substantial thickness of the plasma corona 

(compared with the original wire size) is expected to have a stabilizing influence 

according to the concept of “plasma reduction factor” in the dynamics of electron sheets 

[Cho64] and of self-gravitating disks [Shu68].  Without an explicit specification of the 

current profile in the plasma corona, one can no longer identify the azimuthal mode 

number (and possibly the radial mode number) of the most unstable mode. The radial 

Rayleigh-Taylor instability, which is absent in the metallic wire array, but which might 

occur in the radially imploding plasma corona, may also mask or couple to the azimuthal 

instability that is studied in this paper.  Once more, the state of the core material, how 

much current is returned to the cores, and when the current returns, is much in debate.  If 

there are discrete, current-carrying elements to be found in the original core positions at 

some late time, and if the current in these elements is high enough to move the mass onto 

the array axis, then some azimuthal clumping motion should be detectable.  However, 

even in this case, observing the clumping may be very difficult, as there is usually much 

dense plasma present late in wire array implosions that tends to obscure individual wires 

in radiograph images [Sin05]), and the wire cores themselves are usually significantly 

expanded [Leb05, Sin05], in addition to the various dynamical roles that the plasma 

corona would have played.  Nevertheless, the simulation of all of these features may still 

be analyzed using the 1-sector simulation of a single wire with reflection boundary 

condition, even if the corona plasmas and axial perturbations are present.   

The present author has attempted a 1-section simulation using ALEGRA trying to 

sort out the effect of the clumping instability on plasma.  Two different ALEGRA 
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simulation geometries were set up: (a) the plasma is circular in shape, and (b) the plasma 

is elongated in shape.  In both cases, preliminary results show mitigation of clumping 

instability with the replacement of discrete wire with plasma.  However, more 

simulations and studies need to be conducted in order to solidify such a claim, as a 

simulation which includes plasma becomes more complicated, for example, the inclusion 

of radiation hydrodynamics become necessary for the simulation to be meaningful.   

 

4.2 On A Higher Dimensional Theory of Electrical Contact Resistance 

4.2.1 Novel Results 

In Chapter 3 of this thesis, we extended Holm’s classical contact resistance 

theory to include a finite axial length in the direction of current flow.  The contact 

resistance depends on two dimensionless geometric parameters, b/a and h/a, measuring 

the cross-sectional size of the connecting bridge and its axial length.  We derive the 

analytic result of contact resistance in a rectangular connecting bridge, and extend our 

theory to include a straight cylinder and funnel shape connecting bridge.  In all three 

cases, the bridge has a total length of 2h.  The effect of finite h is found to increase the 

contact resistance linearly with h, by an amount that is expected from the increase in the 

current path length associated with finite h, and from the decrease in the cross-sectional 

area in the channel constriction. Our results for the latter cases are accurate to within one 

percent when compared with electrostatic code.   

 One of the main advantages of our work is that we have decoupled the problem 

of change of the contact resistance in response to an applied pressure.  Once we know 

how the geometrical dimension changes with pressure, e.g.,  how h/a and b/a changes 

with a given pressure, the resulting contact resistance can easily be determined using the 

results that we have obtained. 
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 A statistical theory accounting for distributions of size and axial length of the 

connecting bridges have been developed.  The equivalent circuit elements (R, L, C) 

characterizing the electrical contact have also been computed.   

 The present theory, while appealing, fails to explain the high values of contact 

resistance measured at the U of M Z-pinch experiments [Gom08].   

4.2.2 Suggestions for Future Work 

Interesting areas of future work include extensions of the theory to include: (a) 

channels and bridges of dissimilar materials, especially to account for the role of oxide, 

(b) ohmic heating at such contacts, and (c) contact resistance in terms of the 

deformations in response to pressure.  In addition, it is interesting to note that the results 

obtained in this thesis may be applied to many different areas, one such area include 

using the theory developed to assess the additional pressure required to maintain a 

laminar fluid flow that encounters a local constriction of various geometries, e.g., blood 

flow in a partially blocked artery. 
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Appendix A 

Most Unstable Clumping Mode in an Infinite Linear Wire Array 

 In this Appendix, we outline the proof to show that the most unstable clumping 

mode in an infinite linear wire array is also the π mode, where neighboring wires are 180 

degrees out of phase with each other.  Consider an infinite linear wire array [Fig. 2.3a].  

In the Cartesian model, since the x-directed (radial) motion is stable and is decoupled 

from the y-directed (azimuthal) motion, we concentrate only on the y-directed 

(azimuthal) displacement of the zeroth wire, ξ0(t) [Fig. 2.3b]. The (x,y) coordinates of 

the n-th wire is (0, nd) in equilibrium, and is (0, nd+ ξn) with perturbation from its 

equilibrium position.  In a periodic structure,  according to the Floquet 

theorem, where θ is an arbitrary constant.  Therefore ξn is related to ξ0  as follows,  

θξ j
ne−=ξn+1

                                             ,θξξ jn
on e−= ⋅⋅⋅⋅±±= .2,1n                                              (A1) 

The distance from the n-th wire to the 0-th wire is, 

                                                   0ξξ −+= nnddn .                                                     (A2) 

The force per unit length on the zeroth wire, by the parallel current on the n-th wire at a 

distance dn [Fig. 2.3b], is easily shown to be ( )nw dI πμ 22
0  in magnitude by the Biot-
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Savart law, where dn is given by Eq. (A2).  The force on the zeroth wire is the sum of the 

attractive forces from all other wires, each carrying a current in the same direction.  This 

resultant force leads to the following equation of motion for ξ0(t), 
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where ξn is given by Eq. (A1) and a dot (• )denotes d/dt.  Iw is the wire current, and mL is 

the mass per unite length of each wire.  The first (second) infinite sum represents the 

force due to the n > 0 (n < 0) wires. Linearize to first order in ξ0, Eq. (A3) becomes, 

upon using Eq. (A1),  
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whereγ  represents the linear growth rate of the azimuthal clumping instability in an 

infinite linear array: 
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where we have used the following identities [Gra00]. 
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It is easy to show from Eq. (A5) that γ  is maximized at πθ = , at which
2

)( ππγ C= , and  
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⎠
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Appendix B 

Derivation of the Governing Eqs. (2.4) and (2.8) 

       This Appendi nd shows that its 

normalized form, Eq. (2.8), is approximately valid even if the wire current (I ) is time-

varying. 

 force per unit length on the zeroth wire, by the parallel current on the n-th wire 

at a distance d  [Fig. 2.3b], is easily shown to be μ I 2/(2πd ) in magnitude by the Biot-

x outlines the derivation of the governing Eq. (2.4), a

w

         The

n 0 w n

Savart law, where dn =   0ξξ −+ nnd .  The force law Eq. (A3) for the zeroth wire then 

reads, for the π-mode, 
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where the first (second) infinite sum represents the force due to the n > 0 (n < 0) wires 

and we have used Eq. (2.3).  From Eq. (B1), it is clear that the even terms of n do not 

contribute.  Retaining only the odd terms in n, Eq. (B1) becomes, 
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ay be written as 

 

  ) 

which is Eq. (2.4).  The last equality in Eq. (B2) is easily established. 

            If the wire current is time-varying, so is γp in Eq. (2.4), which m
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 ft
dt

fd tan)(2
2

γ=  ,     (B3) p2

f = πξ0/d.  If we make the transformation from t to , 

   ,    (B4) 

and assume that γp changes slowly over the time scale of 1/ γp, then under the eikonal 

where τ

)(
0

tdt p∫= γτ
t

approximation, Eq. (B3) reads 

 f
d

fd tan2

2

=
τ

 ,     (B5) 

hich is Eq. (2.8) of the main text.  To see this, consider the f << 1 limit, where tan(f) ~ 

τ −τ

tegrate from τ = 0.  This readily yields 

 

w

f. The independent solutions to Eq. (B5) are e  and e ,  which are indeed the eikonal  

solution to Eq. (B3) in this f << 1 limit. 

           Multiply Eq. (B5) by df/dτ, and in
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⎞⎛ fdf cos2
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−=
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i f
nu

d cos
2

τ
 ,     (B7) 

where the constant of integration is adjusted so that at τ = 0, f = fi and df/dτ = ui.  

 exact Integration of Eq. (B7) immediately yields Eq. (2.10) of the main text, which is the

solution to Eq. (2.8) subject to the initial condition Eq. (2.9). 
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Appendix C 

 Approximate solution of the wire trajectory in the π mode 

           In this appendix, we derive the approximate trajectory of the zeroth wire in the π 

mode, together with the approximate impact time for a wire pair to coalesce from the 

initial position.  

            Let Δr be the change in the zeroth wire’s radius from its initial position in a 

cylindrical array.  Since the radial motion is stable, the radial force law is simply,  

                                               )(2 2
2

2

tdg
dt

rd
pγ

π
−=−=

Δ  ,                                 (C1) 

where we have used Eqs. (2.1) and (2.5).  In terms of the normalized radial displacement, 

Δρ = πΔr/d and the normalized time τ defined by Eq. (B4), Eq. (C1) may be rewritten in 

the eikonal approximation, 

                                                      22

2

−=
Δ
τ

ρ
d

d  ,                                            (C2) 

whose solution is simply Δρ = -τ2 for zero initial radial displacement and zero initial 

radial velocity.  Since τ is related to the normalized azimuthal displacement, df 0πξ= , 

by Eq. (2.10), the r−θ trajectory of the zeroth wire then reads, 

                                                       ,                                          (C3) )(2 fτρ −=Δ

which is Eq. (2.15). 
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          The wire pair merges when f = π/2, at the normalized time τm = τ(π/2), and at the 

normalized radial displacement Δρm = -τm
2, where from Eq. (2.12), 
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 now set ui = 0 and change the variable, x = cosy/cosfi, to write Eq. (C4) as, 
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            As 0)2/(cos,2/ →−≈→ iii fff ππ  and we may set the factor x2cos2fi in 

Eq. (C5) equ duced integral in (C5) may then be 

easily evaluated with a change of variable 

al to zero to first order in cosfi.  The re

)(2 xnz −= , and that reduced integral in z

has the value (π/2)1/2.  Thus, we arrive at the asymptotic formula,  
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which is Eq. (2.14) of the main text. 

 , and the integral (C5) diverges at the upper limit 

on, x = 1.  To see this, we m

           As 1cos,0 2fff −≈→ 2/iii

of integrati ay use the following formulas in Eq. (C5), 

                                                 1,1)( →−≈− xxxn   ,                                            (C7) 

shows divergence at the upper limit, x = 1, if fi vanishes.  

ntegral converges at the lower limit, x = 0, however.  Therefore, to find the rate at 

                      0,1,222 →→ .            (C8) )1(21cos1 222 +−≈+−≈− iiii fxfxfxxfx

The integral (C5) then readily 

This i

which the integral (C5) diverges for fi << 1, we focus on the upper limit.  Upon 

substituting (C7) and (C8) into (C5), we approximate (C5) as, 
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Let z = (1-x)/ε, where ε = f 2/2.  Equation (C9) reads, upon expanding its integrand for 

large z, 
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 is the constant arising from the lower limit of integration in (C

shall determine by matching Eq. (C10) with the numerical integration of Eq. (C5).  Using 

is constant, and the definition of ε, Eq. (C10) becomes 
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which is Eq. (2.13) of the main text. 
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Appendix D 

Input deck for ALEGRA simulation 

Input deck for 200 wires 

$ Aprepro ($Revision: 1.71 $) Mon Apr 14 11:33:03 2003 
$$$$$$$$$$$$$$$$$$$$$$$$$$$  PROBLEM COMMENTS  
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
$ NAME:      Wire c
$ 

RODYNAMICS 

$ BOUND. COND: PERIODIC BOUNDARIES FOR WEDGE FACES 

n Oliver (MRC) 

niti
ns 

__ ___ 
16

et 3.0e
R VARIABLES__________________ 

em 

-6 

$$$$$$$$$$$$$$  physics options  
$$$$$ 

 

s 

lumping instability (eulerian) 

$ PHYSICS: MAGNETOHYD
$ 

$ 
) & Brya$ AUTHORS: E. Yu, Christopher Garasi (SNL; 9231

$  modified by W.W. Tang 
DATE:  3/4/2006 $ 

$ 
APREPRO defi ons: $ 

$ units are assumed to be in micro
$ 
$ ______________ _constants _________________________
{ one_ev} = 1. e4} $ 

$ { unit_conv = 1.0e-6} 
 
$ { tmax = 55.0e-9} 
{ yoffs = -5} $ 

$ ___________________USE
 
tle: 2D XY periodic-wire sweep problti

 
units, si 
$start time = 2.368e-6 
ouble precision exodus d
 
$termination time 2.65e
termination time {tmax} 
termination cycle 2 $
$read restart dump, -1 
 
$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$
$ 
          MHD parameters$
$ 
 

 magnetohydrodynamics 
 
  detailed energy tallie

 87



$  max vol change 0.05 

mit,  0.6, power 1.0 

transient magnetics 

for 60 kA per wire, total current should be 21.6 MA 
lot bc, sideset 300, function 1, scale 1.0, 

ductivity 1.0e-4 

LE HEAT, NOHEAT 
 MAGNETIC FORCE, TENSOR 

ER 
Y MAX, 1.0e6 

hydrodynamics 
00 NORMAL, X -1.570731731e-2 Y  

eset 200 NORMAL, X -1.570731731e-2 Y -

t 400, X 
, Y 

gradual startup factor, 0.3 
, 0.9 

RTION COMMANDS 

_mat’ 

perature 300. 
Numsub = 10 

t} 
   radius 10.0e-06 

ge 

containing wire 

etween square and innermost block 
sh 

innermost block 
  eulerian mesh 

 
  dynamics 

 material fraction force li   
  end 
  
  
$ outer boundary 
$ 
    xy cylindrical radial s
    X 0.0, Y 0.0 
 
    void con
    ztec set, 1 
    JOU
   
    A REZONE, CT VAN LE
    ALFVEN VELOCIT
    include “3_8MA.dat” 
  end 
 
  
    no displacement, nodeset 1
9.998766325e-1 
    no displacement, nod
9.998766325e-1 
    no displacement, nodese
    no displacement, nodeset 400
  end 
   
  
  time step scale
 
  $$ DIATOM INSE
  diatoms 
   package ‘wire
    material =  11 
    density 2700.0 
    tem
    
    insert circle 
     center 0.01 {yoffse
  
    endinsert 
   endpacka
 
  enddiatoms 
 
$$ BLOCK INPUT 

are   block 1   $ squ
   eulerian mesh 
   add diom input 
  end 
  block 2   $ b
    eulerian me
end   

  block 3   $ 
  
  end 
  block 4   $ outer void 
    eulerian mesh 
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end 
 
 
$$ TRACERS 
  tracer points 
   lag tracer 1, x = 0.01, y = {yoffset}         $ core center 

$$$$$$$$$$$$$$$$$$$$$$$  execution control  
$$$$$$$$$$$$$$$$$$$$$$$$$ 

lot: time interval   = 1.0e-10, from 0. to 2.372e-6 
mit plot: time interval   = 1.0e-9, from 2.372e-6 to 2.7e-6 

plot: time interval = 1.0e-9 
it screen: cycle  = 50 
mit hisplt: time interval 1.0e-9 

 1.0e-9 

ot variable 

velocity 

 
ific_heat_vol, avg 
rgy, avg 

$$$$$  algorithm control  
$$$$$$$$$$$ 

    $ mag control 
r,    cg          $ default = cg 

$ default = sym_diag 
hs         $ default = r0 

l,       1.e-13       $ default = 1.e-5 
utput, none 

IDEL 

  end 
 
end 
 
 
$$
$$
 
 
emit output: time  = 1.0E-9, from 0. to 1. 
$emit p
$e
emit 
em
$e
emit hisplt: cycle interval = 5 
emit restart: time interval =
 
Pl
  AZ 
  JZ 
  B 

alculations $ avg is needed for multimaterial c
  density, avg 
  temperature, avg 
  pressure, avg 
  sound speed, avg 
  
  econ 
  ZBAR
  spec
  ene
end 
 
$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$
 
$$ ML setup 
ztec 1 
   solve
   scaling,   sym_diag    
   conv norm, r
   to
 o  

   multilevel 
     fine sweeps = 5 
   fine smoother = GAUSS SE  

     coarse sweeps = 1 
     coarse smoother = lu 
     multigrid levels = 10 
     interpolation algorithm = AGGREGATION 
   end 
end 
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$$$$$$$$$$$$$$$$$$$$$$$$$  material models  

                            (KERLEY ANEOS) 
vity        (EC/TC LMD) 

----------------- Al models ------------------------------- 

 al eos data 

OS 

odel 12 lmd                  $ al electrical/thermal conductivity 

z = 13.00 

3         $ kg/m**3 

toff = 10.0          $ temperature in Kelvin 

) 
 73.00 +13     $ pascals (1 pascal = 10 dyne/cm**2) 

tio = 0.3225 
s   = 2.76e+08     $ pascals 

 
   = 1. 

$) Mon Apr 14 11:33:03 2003 
$$$$$$$$$$$$$$$$$$$$$  PROBLEM COMMENTS  

$$$$$$$$$$$$$$$$$$$$$$$$$$$ 

:      Wire clumping instability (eulerian) 

PHYSICS: MAGNETOHYDRODYNAMICS 

$ BOUND. COND: PERIODIC BOUNDARIES FOR WEDGE FACES 
$ 

n Oliver (MRC) 

nits are assumed to be in microns 

________________constants ____________________________ 

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
material 11       WIRE 
  model = 11          $ EOS
  model = 12          $ electrical conducti
  model = 13          $ elastic plastic 
end 
 
 
$ 
  
 model 11 keos sesame          $
   feos  = ‘sesame’ 
   neos  = 3700 
   clip = 200.0                  $ temperature cutoff T+/- clip at E
boundary 
 end 
  
 m
   tuned aluminum 
   
   a = 26.98 
   rho solid = 2.70e+
   ec mult = 1.0 
   tc mult = 1.0 
   temp cu
 end 
  
 model 13 elastic plastic        $ elastic plastic parameters (manual

e   youngs modulus =
   poissons ra
   yield stres
   hardening modulus = 1.24e+08  $ pascals
   beta           
 End 
 
 

t exi
 
 
Input deck for 360 wires 

$ Aprepro ($Revision: 1.71 
$$$$$$
$$
$ 
$ NAME
$ 
$ 
$ 

$ AUTHORS: E. Yu, Christopher Garasi (SNL; 9231) & Brya
$  modified by W.W. Tang 
$ DATE:  3/4/2006 
$ 
$ APREPRO definitions: 
$ u
$ 
$ _
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$ { one_ev} = 1.16e4} 
$ { unit_co v = 1.0e-6} 
 

n

__________________USER VARIABLES__________________ 

em 

e-6 
 

$$$$$$$$$$$$$$$$$$$$$$$  physics options  
$$$$$$ 

 

s 

ynamics 
 limit,  0.6, power 1.0 

nd 

outer boundary 
 current should be 21.6 MA 
slot bc, sideset 300, function 1, scale 1.0, 

ductivity 1.0e-4 

LE HEAT, NOHEAT 
GNETIC FORCE, TENSOR 

ER 
Y MAX, 1.0e6 

00 NORMAL, X -8.726535e-3 Y  9.999619e-1 
t, nodeset 200 NORMAL, X -8.726535e-3 Y -9.999619e-1 

eset 400, X 
 400, Y 

r, 0.3 
step scale, 0.9 

$ { tmax = 40.0e-9} 
$ { yoffset = 3.0e-5} 
$ _
 
title: 2D XY periodic-wire sweep probl
 
units, si 
$start time = 2.368e-6 
double precision exodus 
 
$termination time 2.65
termination time {tmax}
$termination cycle 2 
$read restart dump, -1 
 
$$
$$$$$$$$$$$$$$$$$$$$$$$
$ 
$          MHD parameters
$ 
 
magnetohydrodynamics  
 
  detailed energy tallie
 
$  max vol change 0.05 
 
  d
    material fraction force
  e
  
  transient magnetics 
$ 
$ for 60 kA per wire, total
  xy cylindrical radial   

    X 0.0, Y 0.0 
 
    void con
    aztec set, 1 
    JOU

 MA   
    A REZONE, CT VAN LE
    ALFVEN VELOCIT
    include "7MA.dat" 
  end 
 
hydrodynamics   

    no displacement, nodeset 1
    no displacemen
    no displacement, nod
    no displacement, nodeset
  end 
   
  gradual startup facto
  time 
 
  $$ DIATOM INSERTION COMMANDS 
  diatoms 
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   package 'wire_mat' 
    material =  11 
    density 2700.0 

perature 300.     tem
    numsub = 10 
    insert circle 
     center 0.01 {yoffset} 

ge 

are containing wire 

etween square and innermost block 
sh 

end 
innermost block 
sh 

r points 
{yoffset}         $ core center 

$$$$$$$$$$$$$$$$$$$  execution control  
$$$$$$$$$$$$$$$$$$$$$$$$$ 

lot: time interval   = 1.0e-10, from 0. to 2.372e-6 
plot: time interval   = 1.0e-9, from 2.372e-6 to 2.7e-6 
plot: time interval = 1.0e-9 

it screen: cycle  = 50 
mit hisplt: time interval 1.0e-9 

 1.0e-9 

ot variable 

alculations 

     radius 10.0e-06 
    endinsert 
   endpacka
 
  enddiatoms 
 
$$ BLOCK INPUT 
  block 1   $ squ
   eulerian mesh 
   add diom input 
  end 
  block 2   $ b
    eulerian me
  
  block 3   $ 
    eulerian me
  end 
  block 4   $ outer void 
    eulerian mesh 
  end 
 
 
$$ TRACERS 
  trace
   lag tracer 1, x = 0.01, y = 
  end 
 
end 
 
 
$$$$$$

$$
 
 
emit output: time  = 1.0E-9, from 0. to 1. 
$emit p
mit $e

emit 
em
$e
emit hisplt: cycle interval = 5 
emit restart: time interval =
 
Pl
  AZ 
  JZ 
  B 
$ avg is needed for multimaterial c
  density, avg 
  temperature, avg 
  pressure, avg 
  sound speed, avg 
  velocity 
  econ 
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  ZBAR 
ific_heat_vol, avg 
rgy, avg 

$$$$$  algorithm control  
$$$$$$$$$$$ 

    $ mag control 
 $ default = cg 
$ default = sym_diag 

hs         $ default = r0 
l,       1.e-13       $ default = 1.e-5 

 output, none 

   fine smoother = GAUSS SEIDEL 
weeps = 1 

$$$  material models  

                            (KERLEY ANEOS) 
trical conductivity        (EC/TC LMD) 

----------------- Al models ------------------------------- 

 

 

odel 12 lmd                  $ al electrical/thermal conductivity 

3         $ kg/m**3 

toff = 10.0          $ temperature in Kelvin 

) 
2) 

tio = 0.3225 
s   = 2.76e+08     $ pascals 

 
   = 1. 

  spec
  ene
end 
 
$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$
 
$$ ML setup 
aztec 1 
   solver,    cg         
   scaling,   sym_diag    
   conv norm, r
   to
  
   multilevel 
     fine sweeps = 5 
  
     coarse s
     coarse smoother = lu 
     multigrid levels = 10 
     interpolation algorithm = AGGREGATION 
   end 
end 
 
 
$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
material 11       WIRE 
  model = 11          $ EOS
  model = 12          $ elec
  model = 13          $ elastic plastic 
end 
 
 
$ 
  
 model 11 keos sesame          $ al eos data
   feos  = 'sesame' 
   neos  = 3700 

OS   clip = 200.0                  $ temperature cutoff T+/- clip at E
boundary 
 end 
  
 m
   tuned aluminum 

z = 13.00    
   a = 26.98 
   rho solid = 2.70e+
   ec mult = 1.0 
   tc mult = 1.0 
   temp cu
 end 
  
 model 13 elastic plastic        $ elastic plastic parameters (manual

 73.00e+13     $ pascals (1 pascal = 10 dyne/cm**   youngs modulus =
   poissons ra
   yield stres
   hardening modulus = 1.24e+08  $ pascals
   beta           
 end 
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exit 
 
Input deck for 600 wires 

) Mon Apr 14 11:33:03 2003 
S  

:      Wire clumping instability (eulerian) 

PHYSICS: MAGNETOHYDRODYNAMICS 

$ BOUND. COND: PERIODIC BOUNDARIES FOR WEDGE FACES 
$ 

n Oliver (MRC) 

ssume

________________constants ____________________________ 

 unit_conv = 1.0e-6} 

__________________USER VARIABLES__________________ 

em 

e-6 
 

$$$$$$$$$$$$$$$$$$$$$$$  physics options  
$$$$$$ 

 

s 

ynamics 
 limit,  0.6, power 1.0 

nd 

outer boundary 
 current should be 21.6 MA 

  xy cylindrical radial slot bc, sideset 300, function 1, scale 1.0, 

$ Aprepro ($Revision: 1.71 $
$$$$$$$$$$$$$$$$$$$$$$$$$$$  PROBLEM COMMENT
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
$ NAME
$ 
$ 
$ 

$ AUTHORS: E. Yu, Christopher Garasi (SNL; 9231) & Brya
$  modified by W.W. Tang 
$ DATE:  3/4/2006 
$ 
$ APREPRO definitions: 

nits are a d to be in microns $ u
$ 
$ _
$ { one_ev} = 1.16e4} 
$ {
 
$ { tmax = 40.0e-9} 
$ { yoffset = 3.0e-5} 
$ _
 
title: 2D XY periodic-wire sweep probl
 
units, si 
$start time = 2.368e-6 
double precision exodus 
 
$termination time 2.65
termination time {tmax}
$termination cycle 2 
$read restart dump, -1 
 
$$
$$$$$$$$$$$$$$$$$$$$$$$
$ 
$          MHD parameters
$ 
 
magnetohydrodynamics  
 
  detailed energy tallie
 
$  max vol change 0.05 
 
  d
    material fraction force
  e
  
  transient magnetics 
$ 
$ for 60 kA per wire, total
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    X 0.0, Y 0.0 
 
    void conductivity 1.0e-4 

LE HEAT, NOHEAT 
 MAGNETIC FORCE, TENSOR 

ER 

hydrodynamics 
00 NORMAL, X -5.235963831e-3 Y  

eset 200 NORMAL, X -5.235963831e-3 Y -

0, X 
, Y 

gradual startup factor, 0.3 
, 0.9 

RTION COMMANDS 

numsub = 10 

   radius 10.0e-06 

are containing wire 

 square and innermost block 
sh 

end 
innermost block 

  eulerian mesh 

{yoffset}         $ core center 

    aztec set, 1 
    JOU
   
    A REZONE, CT VAN LE
    ALFVEN VELOCITY MAX, 1.0e6 
    include "11MA.dat" 
  end 
 
  
    no displacement, nodeset 1
9.999862922e-1 
    no displacement, nod
9.999862922e-1 
    no displacement, nodeset 40
    no displacement, nodeset 400
  end 
   
  
  time step scale
 
  $$ DIATOM INSE
  diatoms 
   package 'wire_mat' 
    material =  11 
    density 2700.0 

perature 300.     tem
    
    insert circle 

t}      center 0.01 {yoffse
  
    endinsert 

ge    endpacka
 
  enddiatoms 
 
$$ BLOCK INPUT 
  block 1   $ squ
   eulerian mesh 
   add diom input 
  end 

etween  block 2   $ b
    eulerian me
  
  block 3   $ 
  
  end 
  block 4   $ outer void 
    eulerian mesh 
  end 
 
 
$$ TRACERS 

r points   trace
   lag tracer 1, x = 0.01, y = 
  end 
 
end 
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$$$$$$$$$$$$$$$$$$$$$$$$$  execution control  
$$$$$$$$$$$$$$$$$$$$$$$$$ 

lot: time interval   = 1.0e-9, from 2.372e-6 to 2.7e-6 
 plot: time interval = 1.0e-9 
screen: cycle  = 50 

mit hisplt: time interval 1.0e-9 

 1.0e-9 

alculations 

 
ific_heat_vol, avg 
rgy, avg 

$$$$$  algorithm control  
$$$$$$$$$$$ 

    $ mag control 
r,    cg          $ default = cg 

$ default = sym_diag 
hs         $ default = r0 
1.e-13       $ default = 1.e-5 

 output, none 

   fine smoother = GAUSS SEIDEL 
weeps = 1 

$$$  material models  

                            (KERLEY ANEOS) 
trical conductivity        (EC/TC LMD) 

----------------- Al models ------------------------------- 
  

$$
 
 
emit output: time  = 1.0E-9, from 0. to 1. 
$emit plot: time interval   = 1.0e-10, from 0. to 2.372e-6 
$emit p
emit
emit 
$e
emit hisplt: cycle interval = 5 
emit restart: time interval =
 
Plot variable 
  AZ 
  JZ 
  B 
$ avg is needed for multimaterial c
  density, avg 
  temperature, avg 
  pressure, avg 
  sound speed, avg 
  velocity 
  econ 
  ZBAR
  spec
  ene
end 
 
$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$
 
$$ ML setup 
aztec 1 
   solve
   scaling,   sym_diag    
   conv norm, r

l,          to
  
   multilevel 
     fine sweeps = 5 
  
     coarse s
     coarse smoother = lu 
     multigrid levels = 10 
     interpolation algorithm = AGGREGATION 
   end 
end 
 
 
$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
material 11       WIRE 
  model = 11          $ EOS
  model = 12          $ elec
  model = 13          $ elastic plastic 
end 
 
 
$ 
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 model 11 keos sesame          $ al eos data 
   feos  = 'sesame' 
   neos  = 3700 
   clip = 200.0                  $ temperature cutoff T+/- clip at EOS 
boundary 
 end 
  
 model 12 lmd                  $ al electrical/thermal conductivity 
 tuned aluminum 

del 13 elastic plastic        $ elastic plastic parameters (manual) 
) 

 0.3225 
s   = 2.76e+08     $ pascals 
odulus = 1.24e+08  $ pascals 

  
   z = 13.00 
   a = 26.98 
   rho solid = 2.70e+3         $ kg/m**3 
   ec mult = 1.0 
   tc mult = 1.0 
   temp cutoff = 10.0          $ temperature in Kelvin 
 end 
  
 mo
   youngs modulus = 73.00e+13     $ pascals (1 pascal = 10 dyne/cm**2
   poissons ratio =
   yield stres
   hardening m
   beta              = 1. 
 end 
 
 
exit 
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Appendix E 

Preliminary study of the effect of coronal plasma 

 In this preliminary study, the effect of coronal plasma was investigated by using 

ALEGRA [Gra04].  For the simulations of the π mode clumping instability, an Eulerian 

mesh is used.  A wedge shape domain is used with reflective boundary condition in the 

azimuth [Fig. 2.2a].  The reflective boundary condition automatically filters out all other 

modes except the π mode.  Changing the angle of the wedge is equivalent to changing 

the number of wire in the array.  A 2D-xy simulation, with coronal plasmas, including 

joule heating, radiation transport and thermal conduction is set up [Fig. E1].  Aluminum 

plasma circular in shape with a diameter of 50 µm centered about the original wire with a 

diameter of 20 µm in a 1 cm radius cylindrical array are simulated with an initial 

perturbation of 30 µm off the bisector of the wedge.  The aluminum plasma has a 

temperature of approximately 1.16x105 K (approximately 10 eV).  The ALEGRA 

simulation geometry with coronal plasma is shown in Fig. E1. 
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Fig. E1  ALEGRA simulation geometry with aluminum plasma. 

 

In order to study the effect of the coronal plasma, we reduce the conductivity of the wire 

core by a factor of 100 for 15 ns to force the current to run in the coronal plasma.  This is 

a practice that was employed in [Sin04, Yu07].  After 15 ns, the wire core conductivity is 

returned to its normal value to investigate how much current is returned back to the wire 

core.  The preliminary results are presented in Fig. E2, which shows the fraction of the 

total current in the wire (top figure).  Figure E2 (middle) shows the total current profile, 

and Fig. E2 (bottom) shows the current in the wire, in units of amp. 

 99



  

Fig. E2 ALEGRA simulation result with aluminum coronal plasma.  The core 
conductivity is reduced by a factor of 100 for 15 ns.   

 
 
These simulation results show that at most 5 – 10% of the current is switched back to the 

wire core after 15 ns, which implies the π mode clumping instability growth rate will be 

reduced by a factor of 10 (in the best case), since the π mode growth rate is linearily 

proportional to the amount of current presence in the wire [c.f. Eq. (2.1) and (2.5)]. 

These preliminary results show mitigation of clumping instability by the presence of a 

plasma corona that shunts the currents in the wires [Cun05a, Leb04, Sin05].  

 

ALEGRA simulation input deck with aluminum coronal plasma for 360 wires.    

$ Aprepro ($Revision: 1.71 $) Mon Apr 14 11:33:03 2003 
$$$$$$$$$$$$$$$$$$$$$$$$$$$  PROBLEM COMMENTS  
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
$ NAME:      Wire clumping instability (eulerian) 
$ 
$ PHYSICS: MAGNETOHYDRODYNAMICS 
$ 
$ BOUND. COND: PERIODIC BOUNDARIES FOR WEDGE FACES 
$ 
$ AUTHORS: E. Yu, Christopher Garasi (SNL; 9231) & Bryan Oliver (MRC) 
$  modified by W.W. Tang 
$ DATE:  3/4/2006 
$ 
$ APREPRO definitions: 
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$ units are assumed to be in microns 
$ 
$ _________________constants ____________________________ 
$ { one_ev} = 1.16e4} 
$ { unit_conv = 1.0e-6} 
 
$ { tmax = 70.0e-9} 
$ { yoffset = 3.0e-5} 
$ ___________________USER VARIABLES__________________ 
 
title: 2D XY periodic-wire sweep problem 
 
$ to start off, set tmax=5ns and 'econ mult=0.01' and comment out  
$ 'read restart dump, -1' 
$ let the simulation run to completion, then change tmax to desired 
value, 
$ change 'econ mult=1.0', and put back in 'read restart dump, -1' 
 
units, si 
$start time = 2.368e-6 
double precision exodus 
 
termination time {tmax} 
$termination cycle 2 
read restart dump, -1 
 
$$$$$$$$$$$$$$$$$$$$$$$$$  physics options  
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
$          MHD parameters 
$ 
 
radiation magnetohydrodynamics conduction  
 
  detailed energy tallies 
 
  max vol change 0.1 
 
  dynamics 
    material fraction force limit,  0.8, power 3.0 
  end 
  
  transient magnetics 
$ outer boundary 
$ for 60 kA per wire, total current should be 21.6 MA 
    xy cylindrical radial slot bc, sideset 300, function 1, scale 1.0, 
    X 0.0, Y 0.0 
 
    void conductivity 1.0e-4 
    aztec set, 1 
$    JOULE HEAT, NOHEAT 
    MAGNETIC FORCE, TENSOR 
    A REZONE, CT VAN LEER 
    ALFVEN VELOCITY MAX, 1.0e6 
    ALFVEN DENSITY FLOOR, 0.001 
    include "7MA.dat" 
  end 
 
  hydrodynamics 
    no displacement, nodeset 100 NORMAL, X -8.726535e-3 Y  9.999619e-1 
    no displacement, nodeset 200 NORMAL, X -8.726535e-3 Y -9.999619e-1 
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    no displacement, nodeset 400, X 
    no displacement, nodeset 400, Y 
 
  end 
 
  thermal conduction 
    aztec set, 2 
    scale, 1.0e20 
    minimum temperature, 1.e20 
  end 
 
  cell doctor 
   discard 1 
   time range, min 0.0 max {tmax} 
   minimum position, x=-1.0 y=-1.0 
   maximum position, x=1.0 y=1.0 
   trigger, temperature, minimum 1.0e6 maximum 1.0e10 
   frequency 1 
   end 
  end 
  gradual startup factor, 1.0 
  time step scale, 1.0 
 
  radiation 
  
    linearized diffusion 
  
     group bounds   $ keV 
       log 0.001 [eV] to 10. [keV] by 1 
     end 
  
     vacuum boundary, sideset 300   $outer boundary 
     reflective boundary, sideset 100 
     reflective boundary, sideset 200 
     reflective boundary, sideset 400 
  
     flux limiter = simplified levermore pomraning 
  
     steady state initialization 
     aztec set, 3 
  
     maximum energy density change = 0.15 
    end 
  end 
 
  $$ DIATOM INSERTION COMMANDS 
  diatoms 
   package 'wire_mat' 
    material =  1 
    density 19300.0 
    temperature 300. 
    numsub = 10 
    insert circle 
     center 0.01 {yoffset} 
     radius 10.0e-06 
    endinsert 
   
   endpackage 
 
   package 'corona_mat' 
    material =  1 
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    numsub = 10 
    density 1.9 
    temperature 1.16e5. 
    insert circle 
     center 0.01 {yoffset} 
     radius 25.0e-06 
    endinsert 
   endpackage    
 
  enddiatoms 
 
$$ BLOCK INPUT 
  block 1   $ square containing wire 
   eulerian mesh 
   add diom input 
  end 
  block 2   $ between square and innermost block 
    eulerian mesh 
  end 
  block 3   $ innermost block 
    eulerian mesh 
  end 
  block 4   $ outer void 
    eulerian mesh 
  end 
 
 
$$ TRACERS 
  tracer points 
   lag tracer 1, x = 0.01, y = {yoffset}         $ core center 
  end 
 
end 
 
 
$$$$$$$$$$$$$$$$$$$$$$$$$  execution control  
$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
 
emit output: time  = 1.0E-9, from 0. to 1. 
$emit plot: time interval   = 1.0e-10, from 0. to 2.372e-6 
$emit plot: time interval   = 1.0e-9, from 2.372e-6 to 2.7e-6 
emit plot: time interval = 1.0e-9 
emit screen: cycle  = 50 
$emit hisplt: time interval 1.0e-9 
emit hisplt: cycle interval = 5 
emit restart: time interval = 1.0e-9 
 
Plot variable 
  AZ 
  JZ 
  B 
$ avg is needed for multimaterial calculations 
  density, avg 
  temperature, avg 
  pressure, avg 
  sound speed, avg 
  velocity 
  econ 
  opacity_a 
  opacity_r 
  thermal_con 
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  rad temperature, as "RAD_T" 
  rad energy density, as "RAD_E" 
  ZBAR 
  specific_heat_vol, avg 
  energy, avg 
end 
 
$$$$$$$$$$$$$$$$$$$$$$$$$  algorithm control  
$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
 
$$ ML setup 
aztec 1     $ mag control 
   solver,    cg          $ default = cg 
   scaling,   sym_diag    $ default = sym_diag 
   conv norm, rhs         $ default = r0 
   tol,       1.e-13       $ default = 1.e-5 
   output, none 
   multilevel 
     fine sweeps = 5 
     fine smoother = GAUSS SEIDEL 
     coarse sweeps = 1 
     coarse smoother = lu 
     multigrid levels = 10 
     interpolation algorithm = AGGREGATION 
   end 
end 
 
aztec 2     $ thermal con  control 
  solver,   cg 
  scaling,  sym_diag 
  conv norm, rhs 
  precond,  none 
  output,  none 
  tol,      1.e-14 
  max iter = 10000 
end 
  
aztec 3     $ radiation diffusion control 
   solver,        cg 
   scaling,   sym_row_sum 
   conv norm, r0 
   tol,           1.e-14 
   max iter, 10000 
   output, none 
   multilevel 
      fine sweeps = 5 
      fine smoother = GAUSS SEIDEL 
      coarse sweeps = 1 
      coarse smoother = lu 
      multigrid levels = 15 
      interpolation algorithm = AGGREGATION 
   end 
end 
 
 
$$$$$$$$$$$$$$$$$$$$$$$$$  material models  
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
material 1       WIRE 
  model = 100          $ EOS                            (KERLEY ANEOS) 
  model = 105          $ electrical conductivity        (EC/TC LMD) 
  model = 14           $ opacity 

 104



  number of elements 1 
     element 74, mass 183.85, fraction 1.0 
  end 
end 
 
$ ----------------- Al models ------------------------------- 
  
 model 100 lanl sesame          $ W eos data 
   nmat = 3544 
   table = 301 
   clip = 300.0                 $ temperature cutoff T+/- clip at EOS 
boundary 
   $primary interp, 'linear' 
   feos = 'W3544.ses' 
 end 
  
 model 105 lmd                  $ W electrical/thermal conductivity 
   $tuned aluminum 
   z = 74.00 
   a = 183.85 
   rho solid = 19300.0         $ kg/m**3 
   temp cutoff = 10.0 
$  this defines the (rho, T) box in which you want to change the 
conductivity 
   t0 = 0.0 
   tf = 1.5e4 
   r0 = 0.0 
   rf = 30.0e3 
$  this has to be set to 0.01 or 0.1 to begin with, to reduce 
conductivity 
$  in the core 
   econ mult = 1.0 
 end 
  
  model 14 tabular opacity         $ W opacity 
   dynamic integration            $ not valid for multi-group rad 
   $minimum temperature = 300.0 
  end 
 
exit 
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Appendix F 

Impact time calculation assuming all current flows in wire cores from t=0ns 

Mathematica Input of Impact time for 236 μm center-to-center spacing 
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Mathematica Input of Impact time for 447 μm center-to-center spacing 
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Appendix G 

Impact time calculation assuming current is “switched on” in the wires at 
t=60ns 

 
 
Mathematica Input of Impact time for 236 μm center-to-center spacing 
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Mathematica Input of Impact time for 447 μm center-to-center spacing 
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Appendix H 
 
 

Details of the mapping function and derivation of Eqs. (3.3a,b) and (3.5) 
 

As stated in the main text, we consider a 2-dimensional rectangular current 

channel Fig.3.7a,b with top boundary ABCDEF and mid-plane GH (y=0).  The main 

channel has half width b, and the bridge, or constriction, has half width a < b, and total 

length 2h.  The width is L3 in the third, ignorable dimension.  The two boundaries, 

ABCDEF and GH, are streamlines. We solve the current flow of this Cartesian geometry 

by conformal mapping between the complex z- and w-plane where 

( ),z x iy x y= + = , [ ],w u iv u v= + = .  In the notation of Lau [Mil07], this is denoted as 

.  The maps of AB…GH in Figs. 3.7a and  3.7b  are, sequentially, ( ,b) 

 [0+, 0], (h, b) 

],[),( vuyx ↔

↔

∞

↔  [1, 0], (h, a) ↔[u3, 0], (-h, a) ↔  [u4, 0],  (-h, b)  [u5, 0],  

( ,b)  [ ∞ , 0], ( ,0)  [

↔

∞− ↔ ∞− ↔ ∞− , 0], and ( ∞ ,0) ↔  [0-, 0].  In the maps A’ and H’, 

0+ and 0- denote values slightly greater and less than zero, respectively.  This map is 

governed by the Schwarz-Christoffel transformation [Hil62],  

435
5

43

1

;
))(1(
))((1)();()()( uuu

uww
uwuw

w
wfibhwdwfKwzz

w

=
−−
−−

=++== ∫ ,  (H1a,b) 

where πbK −= .  The constants u3, u4 and u5 are real and positive with 1 < u3 < u4 < u5 

[Fig. 3.7b].  We showed that u5 = u3u4.  Branch cuts shown in Fig. H1 extending 

downwards from the four branch points, w = 1, u3, u4 and u5, render ( )f w  single-valued 
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in the upper half w-plane.  Evaluating z(w) at the corners C and D, and subtracting, we 

obtain Eq. (3.3a).   

 

 

Fig. H1 Appropriate branch cuts extending downwards from the four branch 
points, w = 1, u3, u4 and u5, which render ( )f w  single-valued in the 
upper half w-plane [Fig. 3.7a,b].   

 
 
Evaluating z(w) at corner C, we obtain Eq. (3.3b). Once u3 and u4 are specified (and 

therefore u5 = u3u4 is also known), all aspect ratios h/b, a/b and therefore h/a = 

(h/b)/(a/b) may readily be computed.   

To derive Eq. (3.5), let’s consider the total current flowing through the channel.  

The total current flowing through the channel is ( )30 2 LbEI ×= σ , where σ is the 

electrical conductivity of the channel.  For the time being, let us consider points G and H 

to be finite in the z-plane [Fig. 3.7a], with the respective maps for G: zG = (xG, 0) ↔  [uG, 

0], and for H: zH = (xH, 0)  [uH, 0].  The voltage drop from H to G is V = -

KE0log(uG/uH) from the real part of the complex potential, 

↔

wlog0KE=Φ , as stated in 

the main text.  The total electrical resistance between G and H is then 

( )[ ] ( )HG uuLIVR log2 3ρ π== , where σρ 1=  is the electrical resistivity of the 

channel.  We may next express this total resistance as R = Ru + Rc, where Ru is the 

resistance between G and H in a uniform channel (i.e., as if a = b) and Rc is the 

remainder that is solely due to the constriction of the channel.  From this definition, 
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( ) ( )32 LbzzR GHu ×−= ρ , where zH and zG are given in terms of the integral in Eq. 

(H1), evaluated respectively at w = [uH, 0] and at w = [uG, 0].  Upon taking the limit 

uG  and uH , we obtain the real integral for contact resistance Rc = R - Ru, 

which is Eq. (3.5). 

−∞→ −→ 0
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Appendix I 
 
 

Derivation of the asymptotic formula for zero-bridge-length (ZBL) limit, Eq. (3.7) 
 

 This Appendix outlines the derivation of the asymptotic ZBL contact resistance 

formula, Eq. (3.7).  Start with Eqs. (3.2) and (3.3b) and, set 43 uu =  (since we are 

considering the ZBL limit), Eq. (3.2) becomes, 

                                             
( )

( )( )2
3

3

1

1)(
uww

uw
w

wf
−−

−
=                                              (I1) 

Substitute Eq. (I1) into Eq. (3.3b) gives, 

                                       
( )

( )( )

1

1
2

3

3
3

1

11

−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−−

−
−= ∫

u

uwww

uw
dw

a
b

π
                                 (I2) 

Evaluating Eq. (I2) by assuming  yields (a detail proof of Eq. (I3) is given in 

Appendix J), 

13 >>u

                                                            
4

3u
a
b π

≅                                                          (I3) 

 

Again, setting 43 uu =  (>1) for the ZBL limit, Eq. (3.5) becomes, 

                             
( )

( )( ) ∫∫
∞∞

≡
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
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dwRc                              (I4a) 
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A careful examination of Eq. (I4b) shows that the only singularities of p(w) are the two 

branch points at  and .  Contour integral is used to evaluate Eq. (I4a).  

By carefully choosing the branch cut as shown in Fig. I1, Eq. (I4a) can be written as, 

1−=w 2
3u−=w
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Fig. I1 Appropriate branch cuts for evaluating Eq. (I4). 

Let us work on , the first term on the R.H.S. of Eq. (I5), 1C
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The parenthesis is clearly on the order of 31 u .  Under the assumption , Eq. (I6) 

can be written as, 

13 >>u
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Next, let us work on , the second term on the R.H.S. of Eq. (I5), 2C
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The second integral on the R.H.S. of Eq. (I8) evaluates to zero. To see this, we recognize 

first that for the contour CA and CR in Fig. I2, the integral 0)()( == ∫∫
RA CC

dwwpdwwp , 
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since p(w) is analytic between CA and CR, by noting that  as , and 2)( wwp ∝ 0→w

21)( wwp ∝ as .   ∞→w

 

Fig. I2 Chosen contours for evaluation of the second integral on the R.H.S. of 
Eq. (I8). 

 

 

Fig. I3  The contour  , separated into contour  and .  Ac 2c 4c

The contour  can be separated into contour  and  [Fig. I3].   Ac 2c 4c
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It can easily be seen that Term 1 on the R.H.S. of Eq. (I9) evaluate to zero, which 

implies, 
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Because w lies on opposite sides of the branch cut [Fig. I3] on the two integrals of (I10), 

the arguments of these integrals are of opposite sign.  Also, the direction of integration 

along C2 and C4 are opposite.  Thus, Eq. (I10) can be true if and only if, 
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Therefore, the second term on the R.H.S. of Eq. (I8) evaluates to zero and, 
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Lastly, let us work on  [Fig. I1], the third term on the R.H.S. of Eq. (I5), 3C
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after expanding [ ] 3uw >⋅⋅⋅++=+ )2(1 33 wuwuw  for , and 

[ ⋅⋅⋅+−=+ )2(111 www ].  Examining Eq. (I13) carefully, we can see that the last 

integral on the R.H.S. of Eq. (I13) is also on the order of 31 u .  Evaluating Eq. (I13) 

yields, 
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Combine Eqs. (I7), (I12) and (I14) yields the final result for Eq. (I4), 
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Substitute Eq. (I3) into Eq. (I15) yields the asymptotic formula of Eq. (3.7).   
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Appendix J 
 

Proof of Equation (I3) 
 
 
 

To prove Eq. (I3), we set u4 = u3 in the zero-bridge-length limit to write Eq. (3.2) 

as 
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Equation (J1) is next used in the integral that appears in Eq. (3.3b), designated as g(u3), 
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For u3 >> 1, we expand the factor 1/(u3
2 – w)1/2 = 1/u3 + O(w/u3

3) in Eq. (J1) and write 

Eq. (J2) as 
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To obtain Eq. (J5), we have made a change of variable, w - 1 = y2, in the integral, and 

used the asymptotic expansion of tan-1(x) for large values of x.  Upon using Eqs. (J5) and 

(J6) into Eq. (J4), we write Eq. (J3) as 

                                 [ ] 1,)/1(14)( 33
3

3 >>+−= uuO
u

ug π .                          (J7) 

Equation (3.3b) is simply, a/b = 1 – g(u3)/π, which yields upon using Eq. (J7), 
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which is Eq. (I3) of Appendix I.  Equation (J8) implies that u3 >> 1 if b/a >> 1, therefore 

justifying a’posteriori all asymptotic expansions for large u3 in the regime b/a >> 1.  
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