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CHAPTER I

Introduction

Many researchers collect a wealth of information on subjects without knowing

a-priori which information will be most relevant. Broad data collection can help

compensate for unanticipated problems in scientific trials due to imbalances in ran-

domization, dropout or noncompliance. Extensive data collection also allows for

researchers to explore new ideas and discover unknown relationships. As the num-

ber of variables increases, however, sample size needs increase and it becomes more

difficult to decipher true relationships from noise - a problem often referred to as the

curse of dimensionality

Constant advancements in computing power and data storage capabilities ensure

the amount of information collected will likely continue to grow with time. Due

to these advances in data collection and storage, variable selection has become a

popular topic of research in the field of machine learning.

Eliminating variables that either fail to contribute relevant information or con-

tribute redundant information to the task of learning can be very beneficial. Variable

selection can save money and time used to collect unessential information, reduce

computation time and improve efficiency and stability. Also, models that use fewer

variables are often easier to understand and interpret. Many techniques have been

1



2

developed for doing variable selection, ranging from simple to sophisticated. Most

of these techniques, however, were designed for applications focusing on prediction

or classification.

Applications that focus on decision making must also deal with variable selection.

Decision making applications occur in many fields and are becoming more prevalent

as the demand for evidence based decision making grows. In these applications the

final goal is to choose actions that result in the best future outcome. Prediction

of the response represents a first step in finding optimal decisions, but is not the

underlying goal.

While variable selection techniques developed for prediction can and are used in

applications focused on decisions making, they have important drawbacks. They

often leave behind small but important interaction variables that are critical when

the ultimate goal is optimal decision making rather than optimal prediction. These

variables are important because they play a role in determining which action is best

for different subsets of the population. The variables qualitatively interact with the

action.

In this thesis we propose new methods for variable selection that are geared toward

decision making applications. These methods seek to find the variables which play a

role in determining the best action and improve the overall outcome resulting from

the chosen actions. The new methods are tested against recommended tests for

qualitative interactions and popular variable selection techniques for prediction.

The thesis is outlined as follows. In Chapters II and III we give a background and

framework for decision making applications and detail the current state of variable

selection for machine learning. In Chapters IV and V we present the new methods

for variable selection in a single time point decision making problem and demonstrate
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their ability on real and simulated data. We conclude the thesis with a discussion

on how to expand these ideas to do variable selection for sequential decision making

applications.



CHAPTER II

Decision Making Applications

Decision making applications occur in many fields of research. They are applied

in various areas such as medical decision making and artificial intelligence. Much of

this research has been done outside the field of statistics. This chapter introduces the

common components and many important aspects of decision making applications.

The chapter briefly discusses methods for estimating optimal decisions and concludes

with a short discussion on the need for variable selection in these applications.

The goal in decision making applications is to make decisions that result in the

most desirable final outcome. The components of a decision making application

are observations, actions and responses. At each decision time point t, we obtain

observations about a subject, Xt. This information is used to select an action,

At. We then receive a response, Rt. The response variable is an unknown (possibly

random) function of any prior actions, observations and patient outcomes subsequent

to At. For example, an application with two decision time points would consist of

trajectories of the form (X1, A1, R1, X2, A2, R2). The observations and actions may

be categorical or continuous, while the responses are assumed to be continuous. The

observations, Xt, may be multi-dimensional and affected by previous actions. A

policy or strategy, π, is a set of stochastic or deterministic decision rules mapping

4
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the space of past observations and actions to the current action space. In other

words, at time t, πt defines the probability for choosing action, At, given the history

at time t, Ht = (X1, A1, X2, A2, ..., Xt−1, At−1, Xt). The responses, Rt, give us some

indication of the desirability of the current action and/or strategy and are often

referred to as rewards. Thus, the goal is to find the policy π∗, which optimizes the

sum of the responses.

A simple example of a decision making application with one time point is a clinical

trial to test two alternative treatments. In this case the observation vector consists

of baseline variables, such as the patient’s background, medical history and cur-

rent symptoms. The action is the treatment assigned to the patient and a possible

response could be the patient’s health status after receiving treatment. A more com-

plicated example of a decision making application is a robot learning how to function

in its environment. As the robot observes the characteristics of its environment and

takes actions, the consequences of those actions (the response) help the robot learn

how to interact with its environment and accomplish desired tasks.

Given the goal in decision making, the measure used for comparing alternate

policies is called the Value of a policy [53]. The Value of a policy π is the expected sum

of responses when following the policy π. Let the distribution of Xt given (Ht−1, At−1)

be a fixed distribution with density function ft. Also let the distribution of Rt given

(Ht, At) have density function gt. Then, when actions are chosen according to the

policy π = (π1, ..., πT ) the trajectory (X1, A1, R1, ..., XT , AT , RT ) has distribution

(2.1) f1(x1)π1(a1|h1)g1(r1|h1, a1)
T∏

t=2

ft(xt|ht−1, at−1)πt(at|ht)gt(rt|ht, at).

If Eπ[ ] denotes the expectation with respect to the above distribution, then the
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Value of π is then

(2.2) Vπ = Eπ

[
T∑

t=1

Rt

]

The optimal policy, π∗, is then defined as

(2.3) π∗ = arg max
π

Vπ = arg max
π

Eπ

[
T∑

t=1

Rt

]

Data from sequential decision making applications can come in all shapes and

sizes. However, the methods in this thesis were developed for data consisting of a

single training set of finite horizon trajectories collected using a known stochastic

policy. This policy gives non-zero probability to all possible at for any ht. The

methods detailed in this thesis were developed and tested using one time decision

problems, however, variable selection for decision making is more critical for problems

where the number of time points, T ≥ 0. Some modifications may be necessary to

apply these methods to multiple time point problems; we discuss this in Chapter VI.

For the most part we will also assume that the number of trajectories is less than

1000 and the size of the vector ht is large.

2.1 Characteristics of Decision Making Applications

It is important to understand some basic characteristics that are present in single

time point and sequential decision making problems. These characteristics demon-

strate how decision making differs from prediction and why finding optimal policies

can be difficult.

In a decision making problem, only the response to the chosen action can be ob-

served for each subject. The responses that would have occurred for other actions

are unobserved counterfactual outcomes. Without knowing these counterfactual out-

comes, the best action for a subject is never really known. We can only infer what
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the best action would have been by combining data from many subjects and com-

paring responses for subjects with similar observations but different actions. In this

respect, decision making is different from prediction. Also, the focus of prediction is

to find the predictive model with the lowest prediction error. This is different from

decision making applications where the focus is choosing the actions that optimize

the response. Predictive models may aid in this process but are not the main focus.

In decision making applications with multiple decision time points, T > 1, delayed

effects may be present. Delayed effects occur when the desirability of a particular

action is not manifested in the response immediately following that action. For ex-

ample, delayed effects occur when the immediate response for a particular action is

comparable or worse than alternate actions, but the action leads to better responses

in future actions. A real world illustration of delayed effects is the decision to obtain

higher education with the result of greater lifetime earning potential. High school

graduates who choose to work full time without seeking higher education often ini-

tially earn more money than those who choose to go to college. However, those with

a college education are likely to earn much more over their lifetime than those who

do not. Since the goal in decision making applications is to maximize the sum of re-

sponses, it is important to pay attention to delayed effects. Maximizing the response

at each time point will not necessarily result in a maximal sum of responses.

Along with delayed effects, in many decision making applications certain actions

lead to outcomes that limit or expand the field of possible future actions. In other

words, the space of future actions may depend on which actions were taken in the

past. Thus, at any given time point in a decision making process, the choice of future

optimal decisions may change according to the past actions taken.
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2.2 Algorithms for Finding Optimal Policies

Many algorithms exist for finding optimal decisions. This topic has been studied

extensively in the field of computer science under the name of reinforcement learning

[53, 26] and in the fields of operations research and engineering under the names

control theory and dynamic programming [4, 56]. Some research exists in other

fields such as statistics under the names adaptive treatment strategies and dynamic

treatment regimes [37, 46]. Since the topic of this thesis focuses on variable selection

techniques rather than algorithms for finding optimal policies, this section is not

meant to be an exhaustive summary of the current available techniques. Rather, it

will touch on a few methods that can be used to test variable selection techniques.

For more information on algorithms for finding optimal decisions, see [53].

Many methods for finding optimal decisions try to estimate a probability model

for the decision making process using maximum likelihood. These models esti-

mate the probability distribution of Xt+1 and Rt+1, given action At and history,

Ht = (X1, A1, ..., Xt−1, At−1, Xt). With an estimated probability model a variety of

methods, such as dynamic programming, can be used to solve for the optimal policy

[35].

On the other end of the spectrum, there are algorithms that assume little or no

knowledge about the probability distribution of the decision making process. Instead,

these algorithms search for the best policy among a set of policies, Π, by comparing

the estimated values for those policies. This search is most often carried out over a

parameterized class of policies, Π, using optimization techniques such as a gradient

search [41].

In between the two former groups falls a popular group of reinforcement learn-
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ing methods called temporal difference methods [53]. Temporal difference methods

work by building models based on temporally successive predictions of the sum of

responses. The most popular temporal difference method is called Q-learning and

was originally suggested by Watkins [57]. The optimal Q-function at time t is defined

as

(2.4) Q∗
t (Ht, At) = Eπ∗

[
T∑

i=t

Ri

∣∣∣∣∣Ht, At

]
,

Q∗
t is the expected sum of responses if at time t, action At is chosen and the optimal

policy is used to choose all subsequent actions. Q∗
t specifies how the future responses

depend on (Ht, At). Since

E

[
max

at

Q∗
t (Ht, at)

]
= E

[
max

at

Eπ∗

[
T∑

i=t

Ri

∣∣∣∣∣Ht, at

]]
= Eπ∗

[
T∑

i=t

Ri

]
,

Q∗
t reveals the optimal action at time t for a given Ht, π∗t = maxat Q∗

t (Ht, at).

The Q-learning algorithm is used to estimate the optimal Q-function. The algo-

rithm is based on the following equations, called the Bellman equations [3]:

Q∗
t (Ht, At) = Eπ∗

[
T∑

i=t

Ri

∣∣∣∣∣Ht, At

]
= E

[
Rt + max

at+1

Q∗
t+1(Ht+1, at+1)

∣∣∣∣∣Ht, At

]
.

The Bellman equations show a direct relationship between the optimal Q-function

at time t, Q∗
t , and future optimal Q-functions. The Q-learning algorithm takes

advantage of this by building a model for Q∗
t based on predictions of the optimal

Q-functions in future time points. The Q-learning algorithm is then:

Basic Q-learning Algorithm:

1. Set Q∗
T+1(HT+1, AT+1) := 0

2. Repeat for each time t = T, ..., 1

(a) Estimate Q∗
t using some predictive model Q̂t with (Ht, At) as the predictor

variables and Rt + maxat+1 Q̂t+1(Ht+1, at+1) as the output variable [15]
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3. The optimal strategy is any strategy which satisfies

π̂∗t (Ht) = arg max
at

Q̂t(Ht, at), ∀t.

The policy π̂∗ = (π̂∗1, ..., π̂
∗
T ) estimates the optimal policy within the set of policies, Π,

parameterized by the chosen predictive model Q̂t and the set of predictors in (Ht, At),

t = 1, ..., T . While Q-learning does not necessarily provide the global optimal policy,

π∗ ( 2.3), it does search for a local optimal policy over the chosen model space.

Q-learning, or a close variant of it will be the main learning algorithm used in this

thesis to find optimal policies when testing variable selection algorithms.

2.3 Variable Selection for Decision Making

There are multiple reasons why variable selection might be necessary in a decision

making application. A few key reasons are, first, inclusion of unimportant variables

adds unnecessary noise to the task of learning the optimal policy and inclusion of

spurious interactions can lead to bad policies. Thus, careful variable selection could

lead to better policies. Second, due to limited resources, many applications can only

collect a small number of variables when enacting a policy in a real world setting.

For example, when patients go to the doctor for an illness they do not want to be

subjected to multiple tests or fill out many questionnaires before the doctor can offer

them a treatment. Furthermore, it is often unclear which variables would be most

useful and cost-effective to collect. Variable selection techniques could help identify

these variables. A third important reason is that the number of possible variables can

grow at an alarmingly fast rate with the number of time points. For each time point

t, the observation vector may be a large vector. Past observation vectors and actions

might also be useful in selecting the action at time t. When we combine these two
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groups of variables, along with the possibility of interactions between them, there

are numerous possibilities.

It is helpful to categorize variables into one of two different subsets. Some vari-

ables in Xt may be highly correlated with the response, Rt. We call these variables

predictive. Predictive variables help reduce the variability in the estimation of Q∗
t

( 2.4). Occasionally, there will be a small number of variables in Xt that will help

pinpoint which actions are optimal. These variables are called prescriptive variables

[24]. These two categories are not mutually exclusive. We expect most prescriptive

variables to also be predictive, but not vice versa. Both variables are important

when trying to find optimal policies, but only prescriptive variables are used in the

definition of an optimal policy.

For a variable to be prescriptive, it must have a qualitative interaction with the

best choice of action [42]. In a decision making process with one time point, a

variable Xj is said to qualitatively interact with the action, A, if there exists at least

two distinct, non-empty sets within the space of Xj for which the optimal action is

different. In other words, there exists disjoint, non empty sets S1, S2 ⊂ space(Xj)

for which

arg max
a

E[R|Xj = xj1, A = a] 6= arg max
a

E[R|Xj = xj2, A = a],

for all xj1 ∈ S1, and xj2 ∈ S2. Thus, there is a qualitative interaction when the best

choice of action changes as the variable Xj changes. In Chapter IV we give more

discussion and plots demonstrating qualitative interactions.

There is an abundance of literature discussing qualitative interactions [9, 17, 42,

30, 50, 64]. It is commonly assumed that qualitative interactions are rare in nature

and usually have small effects [10, 64]. Much of the biostatistics literature suggests

that the search for qualitative interactions should be severely limited and qualitative
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interactions that are found should be initially mistrusted [42, 30, 64]. This point of

view is fueled by a myriad of papers publishing claims of finding a qualitative in-

teraction through exploratory data analysis, followed by subsequent studies showing

contradictory results [20, 64]. We acknowledge this literature and want to discuss

why we feel, despite the negative views that have been expressed, that this topic is

not a lost cause.

Some of the skepticism concerning the validity of qualitative interactions is due

to the way many clinical trials are conducted. The entry criterion for many clinical

trials is very strict and the data only represents a small subset of the population

for which the treatment may be applied. This is done to minimize the amount of

variability in the response that is not directly related to the treatment itself. When

strict entry criterion is used, little variation exists in the X matrix and it is often

reasonable to assume there are no genuine qualitative interactions over the range of

X in the data. However, this does not imply that genuine qualitative interactions

do not exist over the range of X for the entire treatable population. For this reason,

the methods we present in this thesis are most useful when applied to data that is

representative of the entire treatable population (or at least a substantial proportion

of the population).

Problems also exist in the way data analyses on clinical trials are sometimes re-

ported. It is tempting in post hoc analyses to comb through the data looking for

anything that is significant and interesting partly due to the fact that journals tradi-

tionally only publish significant results. Many times this “data fishing” will include

looking for significant qualitative interactions. Rarely are the significant values cor-

rected for the number of tests being performed. Thus it is quite reasonable that

researchers will find at least one spurious but “significant” qualitative interaction.
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This leads to reports in journals claiming the finding of qualitative interactions which

do not replicate in subsequent trials. This problem would not occur as often if re-

searchers were more forthcoming about the number of tests they performed and the

significance levels they used [2]. However, it is important to note that genuine quali-

tative interactions with small effect sizes will not be detectable in every data set that

is collected, especially those of small size.

Researchers continue to look for qualitative interactions despite the skepticism

and warnings about the ills of post hoc analyses. They look for them because one

of the underlying goals of clinical research is to find the best treatment for each

individual patient. We believe there is a place for post hoc analyses that look for

treatment innovations as long as they are done in a more principled fashion. It is our

goal to find an approach that assists in finding new qualitative interactions, but is

less susceptible to finding spurious results. To address the concern that the methods

we create will be equivalent to testing large numbers of interactions with uncorrected

significance levels, we include measures taken to control for this in our methods.

It is also important to note that the idea of a qualitative interaction may become

more applicable when dealing with multiple time points. The observation vector

Xt+1 is an outcome of the action At. It may contain important information about

how the subject responds to a certain type of treatment and is more likely to be

measured better than the average baseline covariate since it will be less affected by

bad memory recall.

We feel it is also important to emphasize that the goal of variable selection tech-

niques is not necessarily to find the ‘correct’ underlying model. The driving force

for the variable selection techniques detailed in this thesis is to find variables which

facilitate and improve optimal decision making.
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2.3.1 Estimating The Value: A Tool For Assessment

Recall that the goal in decision making problems is to find a policy that optimizes

the Value ( 2.2). One way to decide whether the inclusion of a variable in a model

leads to a better policy is to compare the change in Value of the best policy before

and after the variable is added. Unfortunately, the underlying distribution of the

data ( 2.1) is usually unknown; so the Value must be estimated. When data is easily

collected or simulated, the Value of any particular policy can be simply estimated

by enacting the policy and taking the empirical mean of the sum of the responses.

However, in clinical studies, data is most often collected under some fixed policy π (

e.g. via randomization). Thus estimating the Value of a particular policy π′ requires

a more sophisticated estimation technique.

A common method for estimating the Value of a policy π′, when the policy used

to collect the data, π, is known, is an importance sample estimator [47].

(2.5) V̂π′ =
1

n

n∑
i=1

T∑
t=1

Rt,iWt(Ht,i, At,i)

where t denotes time and i denotes trajectory and the weights Wt,i are defined as

Wt(Ht, At) =
t∏

s=1

π′s(As|Hs)

πs(As|Hs)

When π′ is non-stochastic, this is just an inverse probability weighting estimator [25].

Assuming πt(at|ht) > 0 for all t, ht, and at, 2.5 is an unbiased estimator of Vπ′ .
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Eπ

[
Rt

t∏
s=1

π′s(At|Ht)

πs(As|Hs)

]
= Eπ

[
t−1∏
s=1

π′s(As|Hs)

πs(As|Hs)
Eπ

[
Rt

π′t(At|Ht)

πt(At|Ht)

∣∣∣∣∣Ht

]]
=

Eπ

[
t−1∏
s=1

π′s(As|Hs)

πs(As|Hs)

∫ ∫
rt

π′t(at|ht)

πt(at|ht)
πt(at|ht)gt(rt|ht, at)datdrt

]
=

Eπ

[
t−1∏
s=1

π′s(As|Hs)

πs(As|Hs)

∫ ∫
rtπ

′
t(at|ht)gt(rt|ht, at)datdrt

]
=

Eπ

[
t−1∏
s=1

π′s(As|Hs)

πs(As|Hs)
Eπ′ [Rt|Ht]

]
=

Eπ

[
t−2∏
s=1

π′s(As|Hs)

πs(As|Hs)
Eπ

[
Eπ′ [Rt|Ht]

π′t−1(At−1|Ht−1)

πt−1(At−1|Ht−1)

∣∣∣∣∣Ht−1

]]
=

Eπ

[
t−2∏
s=1

π′s(As|Hs)

πs(As|Hs)

∫ ∫
Eπ′ [Rt|Ht]

π′t−1(At−1|Ht−1)

πt−1(At−1|Ht−1)
πt−1(At−1|Ht−1)dat−1

]
=

Eπ

[
t−2∏
s=1

π′s(As|Hs)

πs(As|Hs)
Eπ′ [Eπ′ [Rt|Ht]|Ht−1]

]
= Eπ

[
t−2∏
s=1

π′s(As|Hs)

πs(As|Hs)
Eπ′ [Rt|Ht−1]

]
=

... =

Eπ′ [Eπ′ [Rt|H1]] = Eπ′ [Rt] =

Thus,

Eπ[V̂π′ ] = Eπ

[
1

n

n∑
i=1

T∑
t=1

Rt,iWt(Ht,i, At,i)

]
=

1

n

n∑
i=1

T∑
t=1

Eπ[RtWt(Ht, At)]

=
1

n

T∑
t=1

n∑
i=1

Eπ′ [Rt] =
1

n

n∑
i=1

Eπ′

[
T∑

t=1

Rt

]
= Eπ′

[
T∑

t=1

Rt

]
= Vπ′

When the policy used to collect the data, π, is unknown, this estimator must be

adjusted (see [37, 46]). However, for this thesis, we will assume the data comes from

a randomized trial, thus the policy used to collect the data is known.

It is important to note that if the assessed policy selects actions that are rare

according to the data generating policy, then the number of subjects in the data
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whose actions agree with the policy being assessed will be small and consequently

the variability of V̂π′ will be high. Thus, the usefulness of V̂π′ for variable selection

diminishes when either 1) the sample size is small, 2) T is very large, 3) the number

of possible actions at each time point is big with respect to the sample size, or 4)

the data generating policy is restrictive.

The next chapter reviews the methods currently being used for variable selection

in machine learning.



CHAPTER III

Variable Selection

The vast majority of variable selection research focuses on applications dealing

with prediction; few techniques, if any, have been developed directly for use in deci-

sion making applications. As discussed in the previous chapter, important differences

exist between prediction and decision making. Despite these important differences,

much insight is gained by studying variable selection techniques developed for pre-

diction. This chapter reviews the current state of variable selection for prediction

and highlights which ideas carry through into the decision making setting and which

ideas require more development. The chapter begins by defining variable selection

and then discusses key issues for successful variable selection. The three types of

techniques are presented that have been developed for variable selection in predic-

tion. The chapter concludes with a short discussion section.

Variable selection is the process of selecting the best subset of variables from

among a large number of variables. We are given a data set of n observations

each consisting of p input variables (features), X1, X2, ..., Xp ∈ Rn, and an outcome

variable Y ∈ Rn. The goal of prediction is to fit a statistical learning algorithm

H on this data such that it can be used to predict new Y ′ given new observation

vectors X ′ = (X ′
1, ..., X

′
p). When dealing with prediction, the phrase ‘best subset’ is

17
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typically interpreted as the smallest subset of variables X∗
1 , ..., X

∗
k ∈ X for which the

accuracy of a chosen learner H is optimized [28]. In other words, the best subset is

the smallest number of variables for which we get the best prediction. This definition

is general to allow the terms accuracy and optimize to be interpreted differently as

the characteristics of the data and the learner H vary. The techniques presented

in this chapter demonstrate the numerous ways these terms accuracy and optimize

are interpreted to discover the best subset. Note that this definition focuses on

improving prediction, not on finding the correct underlying model. Likewise, with

decision making, we will focus on maximizing the mean response rather that finding

the correct underlying model. We will also refrain from making assumptions about

the relative sizes of n to p and p to k, aside from the obvious constraint that p ≥ k.

The practice of finding the best subset of variables is a difficult task. Many fields

of study, such as psychology and medical research, must deal with a high degree of

subject to subject variation. This leads to the collection of a myriad of variables in

an attempt to cover every possible source of heterogeneity. In some instances, such

as genomics and medical image analysis, the number of variables can be much larger

than the sample size (p > n). The variable selection task grows in complexity with

each new variable collected. Trying every possible subset of variables may not be

feasible or would often be unwise since it may lead to overfitting [44, 28]. As such, this

requires a well-thought-out way to traverse the set of variable subsets to minimize

the number of subsets reviewed while still maximizing the probability of finding the

optimal subset. This process is approached in many ways. Some techniques create a

subset by looking at and selecting variables individually while others focus on adding

or eliminating variables from nested subsets of variables that work well together.

Measures that compare subsets must also be determined in order to decipher
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which is the optimal subset. Choosing a measure that is too similar to the underlying

outcome may also lead to overfitting the data, whereas a measure unrelated to the

outcome can lack overall efficiency [28]. Some current techniques take into account a

model between X and Y when comparing the subsets; others are model free. Many

take into account the chosen learner H, and nearly all use the output Y .

There are multiple reasons why, despite the difficulty, skillful variable selection is

advantageous. As with other dimension reduction techniques, it reduces noise and

improves the fit of the learning algorithm. Beyond the benefits of dimension reduction

in general, unlike feature construction, variable selection techniques approach the

task of dimension reduction by directly eliminating a portion of the variables used

by a statistical learner. Eliminating variables can reduce the amount of storage

required to house the data and the amount of measurement required to complete the

learning task. This is a very appealing aspect when the collection of information is

costly or time consuming. When fewer variables enter a model, the model is also

less complex which often leads to better understanding. It is important to note that

although variable selection can be considered a form of model selection, the practice

of selecting the optimal set of variables and selecting the optimal model usually

must be approached in very different ways. It is not unusual to see these terms used

interchangeably in the literature; however, we suggest differentiating them. The

variable selection process considers the entire space of variable subsets that could be

used given the space of variables collected, whereas the model selection process most

often consists of comparing a small number of candidate models selected by the user.

The former usually includes a much larger range of possible models and thus very

different techniques must be employed.

Variable selection is well developed when dealing with prediction. We follow
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the example of machine learning literature by classifying the majority of variable

selection techniques for prediction into three types of methods: filters, wrappers,

and embedded methods [21, 5, 44]. Keep in mind, as we review these techniques,

that the goal of decision making is not to predict well, but rather to optimize the sum

of responses by making good decisions. Just because a variable can predict whether

the sum of responses will be high or low does not guarantee that the variable will aid

in choosing the optimal decisions. These techniques are suited for a different goal.

They will, however, give us a framework to use when creating techniques designed

explicitly for decision making applications.

3.1 Filter Methods

A filter method for variable selection is any method designed to select variables

independently from the chosen statistical learning algorithm. Thus, filter methods

may use the outcome Y to select subsets among the different variables X1, X2, ..., Xp,

but not the learning algorithm H. These methods are also known as model free

methods and are built to pre-process the data by ‘filtering’ out variables that are

unlikely to be relevant to the chosen outcome or learning task [5]. This lack of

dependence on the learning algorithm allows them to be broadly used and makes

them less susceptible to the problem of overfitting. Filter methods tend to be faster

and less complex than other methods, but are often less accurate. The quickness of

these methods seems appealing when the amount of variables to consider is too large

for use with more complex integrated methods.

A large proportion of filter methods uses some criterion to rank the importance

of each of the variables individually, called variable ranking. These methods then

select the top set of ranked features. Some examples of popular ranking criteria are
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measures of correlation between the predictor and the outcome or mutual information

measures. The algorithm listed below demonstrates variable ranking using Pearson’s

correlation coefficient, which is equivalent to ranking by the standardized simple

linear regression coefficient.

Correlation Variable Ranking Algorithm:

1. For each variable Xi, calculate the Pearson’s correlation coefficient with the

outcome Y , ri = Cov(Xi,Y )√
V ar(Xi)V ar(Y )

2. Choose the top k ranked variables Xi based on the ranking Ri = rank(ri) or

choose all variables Xi such that |ri| > C for some chosen cutoff value 0 < C < 1.

Since these variable ranking methods look at variables individually, they are usu-

ally performed quickly and simply. However, they do not consider whether subsets

of variables work well together or whether certain variables are so highly correlated

that it is wiser to include only one of them.

Some filter methods use wrapper or embedded methods (see sections 3.2 and 3.3)

with very simple models for their learner and then use a more complicated model

for the actual learning task [21]. For example, a decision tree could be fit and the

variables used by the tree would be considered relevant for use with a more complex

learner. This idea is made more flexible by including products of the input variables

or higher order transformations for possible selection [21].

The general idea behind filter methods easily transfers over to the decision making

setting. Moreover, quick and simple methods that do not account for the chosen

learning algorithm are appealing in a setting where learning algorithms are difficult

to understand and even more difficult to explain. In this case, however, we should

consider more than just the relationship between input and outcome variables. We
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also must consider how the relationship between input and outcome variables changes

as different actions are taken.

3.2 Wrapper Methods

Wrapper methods for variable selection utilize the chosen learning algorithm when

selecting variables. In short, these model based methods try out subsets of variables

on the learning algorithm H, then choose the subset which optimizes the predictive

power of H. However, directly comparing optimization of the learning algorithm with

subsets of variables on a training set alone can lead to overfitting. This problem may

be avoided by either using an alternate criteria to judge predictive ability or by split-

ting the training data into a smaller training set and a validation set for independent

testing of the predictive power [28]. The process of training the learning algorithm

on different subsets of variables and possibly testing the results on a validation set

is computationally expensive. Therefore, strategies that determine the best way to

search through the space of variable combinations are crucial with these methods.

Many of these search strategies can be classified into three types: 1) forward selec-

tion, 2) backward elimination or 3) a combination of forward selection and backward

elimination called stepwise procedures. All three types of strategies focus on choosing

nested subsets of variables. Forward selection strategies start with an empty set and

proceed by adding variables of importance. Backward elimination strategies start

with all the possible variables and proceed by eliminating non-beneficial variables.

One well known set of wrapper methods is forward, backward and stepwise re-

gression. These methods, used with H as a linear regression model, add or eliminate

features based on p-values, information criterion, or variance measures. Below we

list the algorithm for forward selection linear regression using Akaike’s Information
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Criterion (AIC).

Forward Selection Regression Algorithm:

1. For each variable Xi, compute AICi = nlog(RSS
n

) + 2. Select the variable with

the highest AICi as the starting variable and set AIC = AICi and p = 2.

2. For each variable Xi, fit a multiple linear regression with the currently selected

variables and Xi, then calculate AICi = nlog(RSS
n

) + 2p

3. If AIC < AICi, ∀i, stop and use currently selected variables

4. Select the variable with the highest AICi , set AIC = AICi and p = p+1, then

go back to step 2

The above algorithm constitutes a wrapper method when H is multiple linear

regression. Each new subset of variables that is tested is nested within the previous

subset of variables selected. In each iteration H is run on the new subsets of variables

and the predictive powers are compared by using AIC. AIC measures the strength

of fit (nlog(RSS
n

)) versus the complexity of the model (2p). It attempts to chose the

simplest model that fits the data well. For more information on AIC see [1].

Wrapper methods are probably the easiest techniques to adjust for the setting

of decision making. They essentially treat the learning process as a black box [28];

thus it wouldn’t matter whether the goal of the model was optimal prediction or

optimal decision making as long as we had a good measure to assess the fit of the

model. The big drawback to these methods, as suggested earlier in this section, is

their computational cost. This becomes even more of an issue with decision making

algorithms. Learning algorithms for decision making often require multiple predictive

models in order to estimate the optimal policy. In addition, the Value of the policy

must be estimated for model assessment.
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3.3 Embedded Methods

Variable selection methods built into the learning algorithm H, are called embed-

ded methods. These methods simultaneously choose the optimal subset of variables

while fitting the learning model. They are designed to work with a specific type of

learning algorithm and are not as generalizable as wrapper or filter methods. How-

ever, these methods are typically much less computationally expensive than wrapper

methods, and tend to have better predictive ability than filter methods.

One area of embedded methods is the set of learning algorithms that optimize a

penalized loss function or a penalized likelihood function using a penalty function

that leads to sparse representations, such as the L0 or L1 norm [6, 16, 54]. A well

known example from this set is the Lasso model [54]. This model uses the sum of

squared errors of a linear model on the parameters as its loss function and the L1

norm of the parameter coefficients as its penalty function. See equation ( 3.1) below

for its numerical formulation.

(3.1) β̂ = min
β

n∑
i=1

(Y − β0 +

p∑
j=1

Xijβj)
2 + λ

p∑
j=1

|βi|

The L1 norm penalty causes the coefficient vector, β̂, to be sparse. In other words,

many β̂i are exactly zero, so that the predictive model, Ŷ ′
i = β̂0 +

∑p
j=1 X ′

ijβ̂j, will

only depend on a portion of the predictors. The variable λ in the formulation above

is called a tuning parameter. This tuning parameter determines the sparseness of

the β̂ vector. Equation (3.1) can be solved using quadratic programming. For more

information on the Lasso see [23].

Another example of a popular embedded method is classification and regression

trees [7]. Classification and regression tree algorithms recursively partition the obser-
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vation space to create subsets of similar observations based on important predictors

and responses. At each node the optimization criteria chooses the best variable to

partition the data. Typically only a subset of the candidate variables will be chosen

as partitioning variables. Only the variables that are used in a partition are needed

and the remaining variables can be left behind. Thus, tree algorithms perform vari-

able selection while fitting a model.

Developing embedded methods designed specifically for decision making applica-

tions will probably take more thought and consideration than the previous two types

of methods. Since most algorithms for calculating optimal decisions include steps

that estimate a predictive model, embedded methods for prediction can be incorpo-

rated at these steps. More research is needed, though, to determine how this might

effect other steps in the algorithm and the overall performance of the model.

3.4 Hybrid Methods

Each of the three prior methods work best in different situations. Filter methods

tend to be quick and easy, working best when the number of variables is extremely

large. Wrapper methods are employable with most learning algorithms when the

number of variables is not excessive. Embedded methods are an elegant alternative

when the other two types are unappealing. Research exists on combining techniques

to gain the advantages of both [11, 60]. For example, we might use a filter method

first to trim the number of variables, then use a wrapper method on the trimmed set

to maximize predictive power with minimal computational expense. These combined

methods are often referred to as ‘hybrid’ methods.
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3.5 Bayesian Variable Selection

Bayesian variable selection methods also exist. While we will not discuss them

thoroughly in this thesis, we want to make the reader aware of their existence. Most of

these techniques can be considered a type of embedded or wrapper method, and many

of the non-Bayesian embedded and wrapper methods can be equivalently expressed

using a Bayesian formulation. As suggested in the section on filter methods, one

could also use Bayesian methods as a pre-processing step to choose the variables

and then separately fit a different model on the chosen variables. While Bayesian

methods are potentially useful in variable selection for decision making, we leave

research in this area for future work. For more information on Bayesian variable

selection techniques we recommend [8, 12, 18, 19].

3.6 Discussion

In this chapter we discussed variable selection techniques for prediction. Cur-

rently, the techniques used for variable selection in sequential decision making are

primarily guided by expert opinion. However, some areas lack sufficient domain

knowledge and expertise to determine which variables are best. There are also a

few cases where predictive variable selection techniques were used, such as Lasso

and decision trees [15, 34]. In medical decision making applications such as clinical

trials, predictive methods are commonly used for variable selection. There are a few

qualitative interaction tests that can be used to test a small number of expert deter-

mined pre-specified interactions [50, 17, 39, 51, 38, 29, 61, 62, 45]. These tests are

too conservative to be used on a large set of interactions when controlling the error

rate for multiple testing [17, 43, 62]. Also, many of the tests were designed for testing

only qualitative interactions between categorical variables and the treatment action.
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The topic of variable selection designed for sequential decision making has received

little attention. We believe all three types of methods discussed in this chapter show

good potential for use in decision making problems with adjustments made to the

final goal. The next chapter presents two hybrid type methods that are similar to

methods for prediction, but are designed to find variables that are important for

decision making.



CHAPTER IV

Variable Selection for Qualitative Interactions

This chapter describes two new methods to select variables useful for decision

making. Applications that deal with decision making occur in many different fields

such as computer science, engineering, economics and medicine. In medicine, de-

ciding when a patient needs treatment and which treatment is best are critical de-

cisions. Clinical trials, particularly those involving heterogenous patients, collect a

large amount of potentially useful information that can aid in making these decisions.

However, in clinical practice much of this information is expensive, time-consuming,

and/or burdensome to collect. Thus variable selection is needed to help inform the

clinicians which variables are most important.

Variable selection techniques have been developed to enhance prediction, but their

use in decision making has not been well tested. In our research we have found these

techniques often miss or down play the importance of certain interaction variables

that are key to making decisions. The variable selection techniques we propose focus

on finding these important interactions.

This work is motivated in part by the the Nefazodone CBASP trial data. The

Nefazodone CBASP trial [27] was a randomized controlled trial conducted to compare

the efficacy of three alternate treatments for patients with chronic depression. The

28
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study randomized 681 patients with non-psychotic chronic major depressive disorder

(MDD) to either Nefazodone, cognitive behavioral-analysis system of psychotherapy

(CBASP) or the combination of the two treatments. Analysis of the trial data showed

the combination treatment to be superior to the two singleton treatments overall. We

wanted know whether this relationship held true for all subsets of patients, and if not,

to discover which patient characteristics help to determine the optimal depression

treatment for an individual patient.

The remainder of this chapter is organized as follows: Sections 2 and 3 give

background material on optimal decision making and discuss what makes a variable

important for decision making. Section 4 provides two ranking techniques designed

to find variables useful for decision making followed by an algorithm for using these

techniques. Section 5 presents some simulation experiments, and Section 6 illustrates

the methods using data from the Nefazodone CBASP study. Concluding remarks

are given in Section 7.

4.1 Optimal Decision Making

We consider variable selection in the simplest decision making setting in which

one must decide between two actions. The idea is to use observations about a subject

X = (X1, X2, ..., Xp), to choose a treatment action A. Following the action a response

occurs. The response, R, gives us some indication of the desirability of the chosen

action. The goal is to choose actions that maximize the response. A policy, π, is

a stochastic or deterministic decision rule mapping the space of observations, X, to

the space of the action, A. In other words, π defines the probability for choosing

action A = a given the observations X = x. So the goal can be restated as finding

a policy π∗, that maximizes the response.
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A simple example of a decision making problem is a clinical trial to test two

alternative drug treatments. The observation vector, X, would consist of baseline

variables, such as the patient’s background, medical history and current symptoms.

The action would be the treatment assigned to the patient and the response could

be the patient’s condition or symptoms after receiving treatment. The goal is to

determine which treatment is optimal for any given future patient, using the data

obtained in the trial.

Alternate policies can be compared via the expected mean response, called the

Value of a policy [53]. Let the distribution of X be a fixed distribution f , and let

the distribution of R given (X,A) be a fixed distribution g. Then when actions are

chosen according to a policy π, the trajectory (X, A,R) has distribution

(4.1) f(x)π(a|x)g(r|x, a),

If Eπ[ ] denotes the expectation over the above distribution, then the Value of π is

Vπ = Eπ [R]

The optimal policy, π∗, is then defined as

π∗ = arg max
π

Vπ = arg max
π

Eπ [R] ,

or equivalently

π∗(x) = arg max
a

E [R|X = x,A = a].

If we knew the multivariate distribution of (X,A,R), the best treatment for future

use could be found by calculating E [R|X = x,A = a] for every possible (x, a) com-

bination and then selecting the action leading to the highest conditional expectation

of R for each x. In practice, however, we do not know this distribution. So we must

use data to estimate the optimal future treatment. We do this by first estimating
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E [R|X = x, A = a] for each (x, a) using a predictive model and learner, such as

a multiple linear regression. We then use the estimated regression function to ‘es-

timate’ the best future treatment for each x. For example, if we used the data to

estimate E [R|X = x, A = a] by

Ê [R|X = x,A = a] = β̂0 + xβ̂1 + aβ̂2 + xaβ̂3,

for a ∈ {0, 1}, our estimated optimal future treatment actions would be

π̂∗(x) = I(β̂2 + xβ̂3 > 0).

4.2 Variable Selection

There are multiple reasons why variable selection might be necessary in a decision

making application. One reason is that finding the optimal policy becomes more

difficult as the number of spurious variables included in the model increases. Thus,

careful variable selection could lead to better policies. Also, due to limited resources,

only a small number of variables may be possible to collect when enacting a policy

in a real world setting. Researchers are often unsure which variables would be most

important to collect. Variable selection techniques could help identify these variables.

In addition, policies with fewer variables are often easier to understand, so variable

selection can improve interpretability.

Currently, variable selection for decision making in many fields is predominantly

guided by expert opinion. Expert opinion can be a good starting place when there is

sufficient domain knowledge and expertise. Some predictive variable selection tech-

niques, such as Lasso [54], have been suggested [34]. In clinical trials, a combination

of predictive variable selection techniques and statistical testing of a small num-

ber of interaction variables suggested by expert opinion are most commonly used
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[38, 29, 45]. Little research has been carried out to evaluate these techniques in

decision making or suggest how they might be improved.

When selecting variables for decision making, a distinction should be made be-

tween variables that are included merely to facilitate estimation as opposed to vari-

ables involved in the decision rules. Predictive variables are variables used to reduce

the variability and increase the accuracy of the estimator. Variables that help pre-

scribe the optimal action for a given patient are prescriptive variables [24]. For

optimal estimation results, it is best to select both types of variables. However, only

prescriptive variables need to be collected when implementing the policy.

For a variable to be prescriptive, it must have a qualitative interaction with the

action [42]. A variable Xj is said to qualitatively interact with the action, A, if there

exists at least two distinct, non-empty sets, S1, S2 ⊂ space(Xj) for which

arg max
a

E[R|Xj = xj1, A = a] 6= arg max
a

E[R|Xj = xj2, A = a],

for all xj1 ∈ S1, and xj2 ∈ S2. These variables are useful for decision making because

they help decipher which action is optimal for each individual patient.

To illustrate this idea, see the plots in Figure 5.1. These plots depict different

possible relationships between the conditional mean of R, A and a particular Xj,

when averaging over all other Xi, i 6= j. Figure 5.1(a), shows a variable, X1, which

does not interact with the action. Figure 5.1(b) shows a variable, X2, that interacts

with the action, A, but does not qualitatively interact with the action. In both

plots, the optimal action is A = 1. Knowledge of X1 or X2 is useful for predicting

the response for a given action, but should not affect which action should be chosen.

Figure 5.1(c), shows a variable, X3, which qualitatively interacts with the action.

We can see that the optimal action in this plot is A = 0, when X3 ≤ .5 and A = 1

when X3 > .5. Knowledge of X3 impacts the best choice of the action and likewise
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Figure 4.1: Plots demonstrating qualitative and non-qualitative interactions

the response, thus it is important for decision making.

The degree to which a prescriptive variable is useful depends on two factors:

1. Interaction: the magnitude of the interaction between the variable and the

action. For an action with two possible values, A ∈ {0, 1}, this is the degree to

which the following quantity varies as x varies

(4.2) E [R|X = x,A = 1]− E [R|X = x,A = 0]

2. Proportion: the proportion of patients whose optimal choice of action changes

given a knowledge of the variable. If a∗ = arg maxa E [R|A = a], this is the

proportion of patients for which the following holds:

(4.3) arg max
a

E [R|X = x,A = a] 6= a∗

Consider the plots in Figure 4.2. Figure 4.2(a) shows the relationship between

the conditional mean of R, A, and a variable X4, with an underlying plot giving

the distribution of X4. Figures 4.2(b), 4.2(c) are similar to Figure 4.2(a), but for

variables X5 and X6. Notice that X4 and X5 have the same distribution. However,

the interaction between X4 and A is much stronger than the interaction between X5



34

0.0 0.4 0.8

0.
0

0.
4

0.
8

X4

R A=0

A=1

(a) Large interaction large
proportion

0.0 0.4 0.8

0.
0

0.
4

0.
8

X5

R

A=0

A=1

(b) Small interaction, large
proportion

0.0 0.4 0.8

0.
0

0.
4

0.
8

X6

R A=0

A=1

(c) Large interaction, small
proportion

Figure 4.2: Plots demonstrating usefulness factors of qualitative interactions

and A. Therefore, the effect of choosing the optimal action is much greater given

X4 than it is given X5. Now notice that X4 and X6 have the same relationship with

the conditional mean of R and A but are distributed differently. The distribution of

X4 is centered at the point of intersection, so half of the subjects would do better

choosing A = 0 over A = 1. Whereas, the proportion of patients benefiting from

choosing A = 0 is much smaller with X6. Thus X4 would be more useful in decision

making than X5 or X6.

Since both of these factors also affect the predictive ability of a qualitative in-

teraction, it may not be readily apparent why current variable selection techniques

designed for prediction are not well equipped to find these prescriptive variables.

One reason current variable selection methods aimed at prediction may have prob-

lems detecting prescriptive variables may be due to the way prescriptive variables

occur in nature. In real world applications, individual variables, rather than inter-

actions between variables, tend to explain most of the variation in the outcome and

thus are most important for good prediction. This individual effect a variable has

on the response is often referred to as the ‘main effect’ of the variable and most
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variable selection techniques are good at finding main effects. Furthermore, while

non-qualitative treatment-covariate interactions do occur quite frequently in real

world applications, it is commonly assumed that qualitative interactions are rare in

nature [10, 64].

There is an abundance of literature discussing qualitative interactions (e.g. Byar

and Corle, 1977; Gail and Simon, 1985; Peto, 1982; Lagakos, 2001; Shuster and

Van Eys, 1983; Yusuf et al., 1991; Senn, 2001). Much of the statistical literature

suggests that the search for qualitative interactions should be severely limited and

qualitative interactions that are found should be initially mistrusted [42, 30, 64, 48].

This point of view is fueled by a myriad of papers publishing claims of finding a

qualitative interaction during exploratory data analysis of a controlled trial followed

by subsequent studies in which the interaction did not replicate [20, 64].

Skepticism concerning the validity of qualitative interactions is partially due to

the way many clinical trials are conducted. Entry criterion are restrictive for many

clinical trials. This results in data with minimal variation in the X variables, rep-

resenting only a small subset of the treatable population. In this case it is often

reasonable to assume there are no genuine qualitative interactions within the range

of the data. However, this does not imply that genuine qualitative interactions do

not exist over the range of X for the entire treatable population. For this reason,

the methods we present are most useful when applied to data representative of the

entire treatable population (or at least a substantial proportion of the population).

Skepticism also exists due to the way analyses of clinical trials are reported. Since

journals traditionally publish only significant results, it is tempting to comb through

the data in post hoc analysis looking for anything that is significant and interesting.

Many times this “data fishing” includes looking for significant qualitative interac-



36

tions. When significance levels are not corrected for the number of tests performed,

researchers can often find at least one significant qualitative interaction spuriously.

This problem would not occur as much if researchers were more forthcoming to jour-

nals about the number of tests they performed and the significance levels they used

[2]. However, it is important to note that genuine qualitative interactions with small

effect sizes will be undetectable in some data sets, especially those of small sample

size. Despite this skepticism, medical researchers continue to look for qualitative

interactions. They look for them because it is an underlying goal of clinical research

to find the best treatment for each individual patient

Our goal is to develop approaches that assist in finding qualitative interactions,

but are less susceptible to finding spurious results. To address the concern that the

proposed methods are equivalent to testing large numbers of interactions with un-

corrected significance levels, we thoroughly test them on simulated data generated

without qualitative interactions. Beyond this, we feel it is also important to em-

phasize that the goal of these methods is not to find the ‘correct’ underlying model.

Rather, the driving force for this variable selection is to facilitate and improve deci-

sion making by reducing the number of variables that need to be considered when

constructing a policy.

4.3 Qualitative Interaction Ranking

As we discussed in the previous section, variable selection in decision making

should focus on variables that qualitatively interact with the action. In this section

we will present two variable ranking techniques that rank the variables in X based

on their potential for a qualitative interaction with the action variable. We conclude

the section with a proposed complete algorithm for variable selection in a decision
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making application.

The first variable ranking method is based upon the two usefulness factors for a

qualitative variable discussed in the previous section (see quantities (4.2) and (4.3)).

Assume we have a data set of n subjects, with p baseline observations taken on each

subject, making up the n × p observation matrix X. Also assume that in the data

the action, A = {0, 1} is randomized. The response is denoted by R. Consider the

evaluation of the jth variable, Xj (the jth column of X). Then given an estimator

of E [R|Xj = xj, A = a] say Ê [R|Xj = xj, A = a], define the following quantities for

j = 1, ..., p:

Dj =

(
max
1≤i≤n

(
Ê [R|Xj = xij, A = a∗]− Ê [R|Xj = xij, A 6= a∗]

)
−

min
1≤i≤n

(
Ê [R|Xj = xij, A = a∗]− Ê [R|Xj = xij, A 6= a∗]

))
(4.4)

and

(4.5) Pj =
1

n

n∑
i=1

1{arg max
a

Ê [R|Xj = xij, A = a] 6= a∗}

where 1{.} is 1 if ‘.’ is true and 0 otherwise and a∗ = arg maxa Ê [R|A = a] is the

overall optimal action.

Dj is a measure of the magnitude of the interaction. Pj is a measure of the

proportion of subjects affected by a change in the optimal choice of action due to

the inclusion of an interaction involving Xj. These two quantities can be combined

to make a score, Uj, for ranking the variables:

Uj =

(
Dj −min1≤k≤p Dk

max1≤k≤p Dk −min1≤k≤p Dk

)(
Pj −min1≤k≤p Pk

max1≤k≤p Pk −min1≤k≤p Pk

)
(4.6)

The first term in parentheses provides the relative (as compared to the other variables

in X) magnitude of Xj’s interaction with the action; the second term in parentheses
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provides the relative proportion of affected subjects in Xj used to select the action.

Uj is a product because we want to select Xj only if both Dj and Pj are relatively

large. The first variable ranking procedure will rank variables in terms of their Uj.

The second ranking procedure looks directly at the expected increase in the es-

timated optimal Value due to the knowledge of the variable Xj. It estimates the

quantity described by [40] as the value of information. Define the score Sj as

(4.7) Sj =
n∑

i=1

[
max

a
Ê [R|Xj = xij, A = a]− Ê [R|Xj = xij, A = a∗]

]

Both of these scores, U and S can be used to rank the variables. They have

been defined generically to allow different models for E[R|X, A] . In the numerical

section that follows, we use a linear model to estimate the conditional expectation

and obtain Ê.

Although not explicitly shown in the notation, predictive variables may also be

used in the estimation of the conditional expectation. When testing for the interac-

tion between Xj and A, researchers often prefer to maintain a hierarchical ordering

[59] and thus the main effect of the variable Xj and the main effect of the action

should be included. This helps to avoid finding spurious interactions that may ap-

pear because the main effect is important but is not included in the estimation. It is

also wise to include other important main effects of the variables in X on R to help

reduce variability in the estimation.

4.3.1 Variable Selection Algorithm

The following is an overview of an algorithm for variable selection.

1. Select Important Predictors: Select important predictive variables of R

among (X, A∗X) using a Lasso with the penalty parameter chosen by Bayesian
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Information Criterion (BIC)

2. Rank Interactions Individually: Rank the variables in X using either U or

S. Use the main effect variables selected in step 1 to help decrease the variability

in the estimator Ê. Select the top H variables in rank, where H = the number

of variables having non-zero U or S scores.

3. Create Nested Subsets of Chosen Predictive and Prescriptive Vari-

ables:

(a) Collect the following K variables:

i. The predictive variables chosen in step 1 and

ii. The main effects of the top H ranked variables in step 2 and

iii. The interactions between A and the top H ranked variables in step 2

(b) Run a weighted Lasso using a weighting scheme that satisfies the following

properties

i. All main effect variables and all interaction variables chosen in step 1

only are given a weight w = 1

ii. All interaction variables chosen in step 2 are given a weight 0 < w ≤ 1

which is a non-increasing function of the U or S score

(c) Create K nested subsets based on the order of entry of the K variables in

the weighted Lasso in the previous step

4. Select Subset Using Adjusted Gain in Value Criterion:

(a) For each subset k = 1, ..., K, estimate the maximal Value, e.g.

i. Use the subset to estimate Ê

ii. Estimate the optimal policy, π̂∗k(x) = arg maxa Ê [R|X = x,A = a]
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iii. Estimate the Value of π̂∗k by:

V̂k =
1

n

n∑
i=1

Ê[R|X = xi, A = π̂∗k(xi)]

(b) Select the subset, k∗, that has the highest Adjusted Gain in Value (AGV)

criterion:

AGVk =
V̂k − V̂0

V̂m − V̂0

(m

k

)

where m = arg maxk V̂k and V̂0 is the estimated Value of the policy

π̂∗0 = arg maxa Ê [R|A = a]

In step 1 we use Lasso to find the variables among (X,A ∗X) that are important

predictors of R. We chose Bayesian Information Criterion to select the penalty

parameter (Zou, Hastie and Tibshirani, 2007) because of its conservative nature to

ensure only strong predictors enter the model. Predictive variables are important

for reducing variability in the estimations. However, predictive variables are only

part of the puzzle, so we add to step 1 a few more steps to help our algorithm

select both prescriptive and predictive variables. In step 2 we look for qualitative

interactions individually using an approach which rates each variable in X based on

its potential for a qualitative interaction with the action. We look at each of the

interaction variables individually to avoid problems with collinearity. In steps 3 and

4 we seek to further refine the set of variables collected in steps 1 and 2. In step 3

we seek a quick way to navigate through the space of all possible combinations of

the variables collected in steps 1 and 2. Thus we chose to create nested subsets from

the variables based on order of selection in a weighted Lasso. This ordering by the

weighted Lasso gives us a joint ranking of all the variables selected in steps 1 and

2. We use the weighting scheme in the weighted Lasso to balance the importance of

both predictive and prescriptive variables in the decision making process. Since Lasso
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favors variables that are predictive we offset this by down-weighting the prescriptive

variables. In step 4 we select between the different subsets using the AGV criterion,

a criterion that trades off between the complexity and the observed Value of each of

the models.

The AGV criterion selects the subset of variables with the maximum proportion

of increase in Value per variable. It is similar in idea to the adjusted R2 value.

The model with m = arg maxk V̂k variables is akin to a saturated model, because

the addition of more variables does not improve the Value of the model. Thus the

denominator is the observed maximum gain in value, among the different variable

subsets, divided by m, an estimate of the degrees of freedom used to achieve that

gain in Value. The numerator then measures the gain in Value of the intermediate

model, the model with k variables, divided by k, the estimated degrees of freedom

needed to achieve that gain in Value.

An alternate way to look at the AGV criterion is that the quotient (V̂k−V̂0)/(V̂m−

V̂0) compares the gain in value for the current subset of variables against the max-

imum gain in value over all the subsets of variables. Ideally this term stays fairly

stationary whenever a main effect variable is added to the model and increases when

a qualitative interaction is added to the model. Thus this quotient is expected to be

approximately monotone increasing with k. The quotient, m/k, acts as a penalty on

the inclusion of variables that do not substantially increase the Value. We include

main effect variables in the counts m and k because each main effect variable that is

included decreases the degrees of freedom. Also, the inclusion of main effects in the

counts quickly deflates the quotient as k increases leading to a less severe penalty

on larger models. This is helpful since there is often many more useful predictive

variables than prescriptive variables.
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In the next section we test this algorithm on simulated data. We reference the

algorithm as Method U or Method S depending on the scoring function U or S that

was used in step 2. For the weighting scheme in step 3(b) we tried multiple different

schemes (inverse, exponential, etc.). In practice the weighting scheme that worked

best is listed below:

1. All predictive variables are given a weight w = 1

2. All prescriptive variables are given a weight w = 1− U
max(U)+ε

or w = 1− S
max(S)+ε

respectively

The ε term in the weight is needed to ensure w 6= 0. So ε can be thought of as

a stabilizing factor, but it can also be thought of as the balancing factor between

prescriptive and predictive variables (i.e. large ε favors predictive variables, small ε

favors prescriptive variables). In experimentation we found ε = H/n to be a good

value.

4.4 Simulations

To test the performance of the new techniques, we ran them on realistically de-

signed simulation data and compared the results to using Lasso [54]. Lasso was

used to select from the set of main effects of X, and the interactions between A and

each variable in X. The main effect of A was not subject to selection, that is the

coefficient of A was unconstrained by the L1 penalty function. We tested 2 different

methods for choosing the penalty parameter. The first method we used was the

Bayesian Information Criterion (BIC) as defined in Zou, Hastie and Tibshirani [67].

We reference this method as BIC Lasso. Zou et al. [67] recommend this method

when using Lasso primarily for variable selection. The second method we used for

choosing the penalty parameter was 5-fold cross-validation on the prediction error of
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the Lasso model [54]. This is a standard method for choosing the penalty parameter

and we reference this method as CV Lasso. Note that our method uses Lasso as well,

but only to select predictive variables in step 1 and to order variables in step 3(a).

To generate realistic simulation data, we randomly selected rows, with replace-

ment from X, the observation matrix from the Nefazodone CBASP trial data. We

generated new actions, A, and new responses, R, that covered a wide variety of

models. We report results for the following generative models:

1. Main effects of X only, no treatment effect and no interactions with treatment

2. Main effects of X, moderate treatment effect and no interactions with treatment

3. Main effects of X, moderate treatment effect, multiple medium to small non-

qualitative interactions with treatment, no qualitative interaction with treat-

ment

4. Main effects of X, small treatment effect, small qualitative interaction with a

binary variable, no non-qualitative interactions

5. Main effects of X, small treatment effect, small qualitative interaction with a

continuous variable, no non-qualitative interactions

6. Main effects of X, small treatment effect, multiple moderate to small non-

qualitative interactions with treatment, small to moderate qualitative interac-

tion with a binary variable and treatment

7. Main effects of X, small treatment effect, multiple small non-qualitative inter-

actions with treatment, small qualitative interaction with a continuous variable

and treatment
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For each generative model, we used main effect coefficients for the variables X,

estimated in an analysis of the real data set. In generative models 3-7 we randomly

selected variables from the Nefazodone CBASP data for each treatment covariate

interaction and used these same variables for each repetition. The treatment, quali-

tative interaction and non-qualitative interaction coefficients were set using a variant

of Cohen’s D effect size measure [10] shown below:

(4.8) D =
β
√

V ar(R)√
V ar(Xj)

We altered this formula by replacing the marginal variance, V ar(R), with the condi-

tional variance of the response V ar(R|X, A). However, we maintained the definitions

of ‘small’ and ‘moderate’ effect sizes suggested by Cohen [10] as D = 0.2 and D = 0.5

respectively. Thus the effects are slightly smaller than the traditional definition.

For each generative model, we ran CV Lasso, BIC Lasso, Method U and Method

S to see which interaction variables were selected by each method. We repeated this

1000 times and recorded the percentage of time each variable was selected for each

method and the sign of the coefficient of each interaction selected.

For each repetition, we also calculated the following statistic for each method

T =
Vπ̂∗ − Vπ

Vπ∗ − Vπ

where Vπ∗ is the Value of the true optimal policy, π∗, Vπ is the Value of an ‘agnostic’

policy π which gives equal probability to each action and Vπ̂∗ is the Value of the

estimated optimal policy given the selected variables. We estimated the policy π̂∗ by

first fitting a linear model of the selected variables on the response using the training

set and then optimizing the fitted model with respect to the action.

The statistic T gives the percentage of gain in Value when using the estimated

optimal policy as opposed to an ‘agnostic’ policy relative to the percentage of gain
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Table 4.1: Simulation results: BL stands for BIC Lasso, U for method U and S for method S. The first

two columns summarize the difference in percentage statistics T between BIC Lasso and the

two new methods; values denoted with a * are significantly different from zero using a two-sided

t-test with α = .05. Note: model 1 has no treatment effect or interactions with treatment, thus

all policies return the same Value. The next three columns give the average number of spurious

interactions selected by the three methods over the 1000 repetitions. The last three columns

give the selection percentage of the qualitative interaction (when one existed) for each method.

Ave # of Selection
Generative Ave Spur. Interact. Percentage

Model TU − TBL TS − TBL BL U S BL U S
1 NA NA 0.04 1.9 1.3 - NA -
2 −0.027∗ −0.025∗ 0.03 0.6 0.5 - NA -
3 0.000 0.000 0.4 0.6 0.5 - NA -
4 0.212∗ 0.322∗ 0.1 1.7 1.0 6 24 27
5 0.280∗ 0.226∗ 0.1 1.2 1.2 6 35 27
6 0.219∗ 0.387∗ 0.1 1.0 0.3 25 53 74
7 0.128∗ 0.103∗ 0.1 0.9 0.8 12 60 49

in Value when using the true optimal policy as opposed to an agnostic policy. We

compared the new methods with both of the Lasso competitors by looking at the

difference in their T statistics. The results are listed in Tables 4.1 and 4.2. Differences

denoted with a * are significantly different from zero using a two sided t-test with α =

.05. Note that since generative model 1 has no treatment effect and no interactions

with treatment, all policies will have the same Value resulting in an undefined T

statistic. The tables also list the average number of spurious interactions selected

by each method and the selection percentage of the qualitative interaction (if one

existed) over the 1000 repetitions.

Looking over Table 4.1 we see that BIC Lasso tends to include a slightly smaller

number of spurious interactions, as expected, due to its conservative nature [67].

It’s conservative nature is also a bonus in terms of the average Value in the rare

situation when no interactions exist in the generative model (generative model 2).

However, the use of this method results in a dramatic loss in the average Value when

a qualitative interaction does exist because the qualitative interaction is often left



46

Table 4.2: Simulation results: CL stands for Cross-validated Lasso, U for method U and S for method S.

The first two columns summarize the difference in percentage statistics T between CV Lasso

and the two new methods; values denoted with a * are significantly different from zero using

a two-sided t-test with α = .05. Note: model 1 has no treatment effect or interactions with

treatment, thus all policies return the same Value. The next three columns give the average

number of spurious interactions selected by the three methods over the 1000 repetitions. The

last three columns give the selection percentage of the qualitative interaction (when one existed)

for each method.
Ave # of Ave Selection

Generative Ave Spur. Interact. Percentage

Model TU − TCL TS − TCL CL U S CL U S
1 NA NA 4.9 1.9 1.3 - NA -
2 0.021∗ 0.022∗ 4.8 0.6 0.5 - NA -
3 0.009∗ 0.009∗ 8.4 0.6 0.5 - NA -
4 0.031∗ 0.140∗ 5.2 1.7 1.0 40 24 27
5 0.113∗ 0.059∗ 4.6 1.2 1.2 37 35 27
6 0.095∗ 0.263∗ 5.0 1.0 0.3 69 53 74
7 0.097∗ 0.072∗ 5.6 0.9 0.8 57 60 49

out.

Table 4.2 shows that while CV Lasso is good at selecting the qualitative interac-

tion, it tends to include several more spurious interactions than the new methods.

This leads to a significant loss in the average Value due to policies with bad decisions

based on the spurious variables selected when using this method.

Overall, we found that the two new methods perform well. While, the competing

Lasso methods each have their appeals in terms of selection, both are less appealing

than the new methods when considering the average Value returns and the purpose

of the variable selection.

4.5 Application: Nefazodone CBASP Trial

To apply this method to a real data set we suggest augmenting this algorithm in

two ways. First we use bootstrap sampling [14] of the original data to give a measure

of reliability on the results. That is, take 1000 bootstrap samples of the data, run the

algorithm and record the interaction variables that are selected along with the sign
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of the interaction coefficient for each bootstrap sample. This will give a percentage of

time each interaction variable is selected by the method. Define the adjusted selection

percentage to be the absolute value of the number of times an interaction is selected

with a positive coefficient minus the number of times an interaction is selected with a

negative coefficient. This adjustment eliminates variables that, across the bootstrap

samples, do not consistently interact in one direction with the action.

Second we construct a threshold to determine which interaction variables to in-

clude in the final model. The threshold estimates the selection percentages we would

expect to see if the data contained no interactions. To compute the threshold, we first

remove the interaction effects within the data by randomly reassigning the observed

values for the interaction variables to different subjects. In other words, permute the

X values of the X ∗A interactions in the (X,A, X ∗A) model matrix. After obtaining

100 permuted data sets, on each permuted data set we run the same analysis of taking

1000 bootstrap samples, running the algorithm and recording the selection percent-

age of each interaction variable over the 1000 bootstrap samples. We then calculate

the maximum adjusted selection percentage over the p interaction variables for each

permuted data set. The threshold is then set to be the (1 − α)th percentile over

the 100 maximum selection percentages. We found in simulations that the threshold

effectively controlled the family-wise error rate to be approximately α giving us in

any given experiment (1−α)% confidence that a variable with a selection percentage

above this threshold interacts with the action.

This augmentation by bootstrap resampling and thresholding helps to stabilize

the results and it is possible to apply it to other variable selection algorithms, not

just the new methods suggested in this paper. In simulations we found the bootstrap

resampling and thresholding also effectively controlled the family-wise error for BIC



48

Lasso. The bootstrap resampling can also be done with CV Lasso, however, this

threshold ended up far too conservative to control the family-wise error rate for the

CV Lasso.

To demonstrate these new methods along with this augmentation we applied them

to a real data set dealing with depression. As introduced previously, the Nefazodone

CBASP trial [27] was conducted to compare the efficacy of three alternate treatments

for patients with chronic depression. We applied the methods to pinpoint if any of

the patient characteristics might help to determine the optimal depression treatment

for each patient.

The study randomized 681 patients with non-psychotic chronic major depressive

disorder (MDD) to either Nefazodone, cognitive behavioral-analysis system of psy-

chotherapy (CBASP) or the combination of the two treatments. For detailed study

design and primary analysis see Keller et al. [27]. We considered p = 61 baseline

covariates for our observation matrix X; these variables are listed in Table 4.3. The

outcome, R, was the 24-item Hamilton Rating Scale for Depression score [22], ob-

served post treatment. For simplicity, we only allowed the action to vary between

two treatments at a time. Since the primary analysis of the data showed the com-

bination treatment to be superior to either individual treatment alone, we ran the

variable selection techniques twice: the first time with the action varying between the

combination treatment and Nefazodone alone, and the second time with the action

varying between the combination treatment and CBASP alone.

The results of our first analysis comparing the combination treatment to Nefa-

zodone alone are shown in Table 4.3 and Figure 4.3. The adjusted selection per-

centages for each variable are listed in Table 4.3 along with 80% and 90% thresholds

at the bottom (i.e. alpha equal to 0.2 and 0.1). Figure 4.3 shows plots of these



49

adjusted selection percentages and thresholds. The x-axis in each plot corresponds

to the variable numbers listed in Table 4.3. The horizontal dashed lines are 80%

thresholds and the horizontal solid lines are 90% thresholds.

Only the adjusted selection percentages from the bootstrap resampling of CV

Lasso are plotted in the first plot. Absent a working threshold, it is not very clear

which variables should be selected for further analysis. The next three plots are for

BIC Lasso, method U and method S. All three of these methods had one variable

with an adjusted selection percentage exceeding the 80% threshold. For BIC Lasso,

this variable was variable 34, Obsessive Compulsive Disorder, whereas, for both of

the new methods the variable was variable 38, past history of Alcohol Dependence.

Further analysis of the two variables confirmed that the interaction with Obsessive

Compulsive Disorder and the action was non-qualitative in the data, whereas the

interaction between past Alcohol Dependence and the action had good potential for

being qualitative. More study should be done to determine the usefulness of past his-

tory of Alcohol Dependence for selecting treatments. Also, in this study around 20%

of subjects in each group left the study early. Here R is the last observed Hamilton

Rating, which is a worst case scenario under the assumption that depressed subjects

who drop out of the study do not improve. Although we included all available good

predictors of R in the model of E[R|X,A], it may be the case that unobserved de-

terminants of dropout provide an alternate explanation for the apparent qualitative

interaction with past Alcohol Dependence.

The results of our second analysis comparing the combination treatment to CBASP

alone are shown in Figure 4.4. The figure shows plots of the adjusted selection per-

centages for each method along with 80% thresholds. The x-axis in each plot corre-

sponds to the variable numbers listed in Table 4.3. The horizontal dashed lines are
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Table 4.3: Results from variable selection techniques on the Nefazodone CBASP trial data comparing the
combination treatment against Nefazodone alone

Adjusted Selection Percentages

Variable CV Lasso BIC Lasso Method U Method S
1 Gender 43.1 8.3 4.0 3.4
2 Racial Category 6.2 1.5 0.4 0.9
3-4 Marital Status 12.3,12.4 0.3,1.6 0.1,0.3 0,0.6
5 Body Mass Index 2.2 1.2 1.0 0.8
6 Age in Years at Screening 20.8 2.6 1.8 1.1
7 Family/Friend Support System 2.3 0.7 0.3 0.1
8 Treated Current Depression 5.4 0.6 0.1 0.2
9 Psychotherapy Current Depression 28.5 2.9 1.3 1.2
10 Medication Current Depression 31.8 4.1 0.4 0.8
11 Treated Past Depression 35.1 18.7 3.5 3.8
12 Psychotherapy Past Depression 53.7 33.1 5.2 6.0
13 Medication Past Depression 21.7 13.5 1.8 2.0
14 Age of MDD Onset 12.8 3.5 2.2 2.0
15-17 Depressive Episodes Count 23.6,37.7,14.6 4.3,2.4,2.7 0.4,1.6,1.5 1.0,0.7,0.9
18 Length Current episode 38.0 3.6 1.5 0.4
19-20 MDD Current Episode Type 29.3,35.5 2.5,3.7 5.4,5.5 5.2,6.3
21-22 MDD Current Severity 20.5,9.3 1.1,0.6 2.9,1.8 3.6,1.3
23 Dysthymia Onset 27.6 1.3 0.1 0.1
24 Length Current Dysthymia 15.7 1.9 0.2 0.1
25-26 Generalized Anxiety 34.8,13.8 10.6,0.9 2.8,1.5 4.2,2.7
27 Anxiety Disorder NOS 49.3 18.9 1.1 0.5
28-29 Panic Disorder 35.2,38.8 5.4,18.3 1.3,3.7 0.4,3.5
30-31 Social Phobia 5.1,41.3 1.1,7.0 1.4,2.3 0.4,1.8
32-33 Specific Phobia 6.0,36.1 0.1,10.6 0.8,7.3 0.2,11.6
34 Obsessive Compulsive 59.8 47.3 12.6 12.6
35 Body Dysmorphic Current 23.9 2.1 2.2 3.6
36 Anorexia or Bulimia Nervosa 12.9 0.0 0.7 0.3
37-38 Alcohol Abuse/Dependence 48.3,62.0 19.0,35.4 25.4,45.7 24.1,44.9
39 Drug Abuse 1.9 3.1 1.1 1.1
40-41 Post Traumatic Stress 2.7,16.4 2.1,2.9 0.7,0 0.1,0.1
42 Other Psychological Problems 21.9 5.7 2.6 2.7
43 Global Assessment of Function 9.5 2.6 2.0 1.2
44-45 Main Study Diagnosis 3.8,36.9 0.3,6.0 0.7,2.3 0.2,2.8
46 Severity of Illness 9.8 0.7 0.1 0.2
47 Total HAMA Score 22.9 8.0 9.7 5.4
48 HAMA Sleep Disturbance 10.8 0.7 0.1 0.2
49 HAMA Psychic Anxiety Score 6.4 0.4 1.0 0.4
50 HAMA Somatic Anxiety Score 57.1 26.9 30.3 23.0
51 Total HAMD-24 Score 3.0 0.6 0.3 0.0
52 Total HAMD-17 Score 20.3 0.6 0 0
53 HAMD Cognitive Disturbance 2.0 0 0.7 0.1
54 HAMD Retardation Score 2.7 0.2 0.1 0.2
55 HAMD Anxiety/Somatic 2.1 0.3 0.3 0.1
56 IDSSR Total Score 8.8 0.3 0.2 0
57 IDSSR Anxious Depression Type 6.7 0.3 0 0
58 IDSSR General/Mood Cognition 23.4 6.3 4.4 2.7
59 IDSSR Anxiety/Arousal Score 4.3 0.1 0.1 0.1
60-61 IDSSR Sleep Scores 22.8,9.1 2.5,0.7 1.4,0.5 0.9,0.2
Thresholds: 80%, 90% NA 39.8, 50.3 42.4, 45.6 41.2, 46.5
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Figure 4.3: Plots of interaction variables selected from Nefazodone CBASP trial data comparing the com-
bination treatment to Nefazodone alone. In each plot x-axis is the variable number given in
Table 4.3, and y-axis is adjusted percent of time the variables were selected by the method.
Dashed horizontal line is the 80% threshold and solid horizontal line is the 90% threshold. In
the second plot the red + identifies the Obsessive Compulsive Disorder variable, whereas the
red + in the third and fourth plots denotes Alcohol Dependence
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Figure 4.4: Plots of interaction variables selected from Nefazodone CBASP trial data comparing the com-
bination treatment to CBASP alone. In each plot x-axis is the variable number given in Table
4.3, and y-axis is adjusted percent of time the variables were selected by the method. The
dashed horizontal lines are 80% thresholds.

80% thresholds. As shown in the plot, no variables were selected by either of the new

methods or BIC Lasso. For brevity we forgo listing the individual selection percent-

ages. This analysis suggests there are no true qualitative interactions between the

baseline covariates and the two treatment options. Many researchers believe this is

the most likely scenario in medical decision making applications. We conclude that

the combination treatment is better than CBASP alone for all patient subsets tested.
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4.6 Discussion

In this chapter, we discussed when a variable is important in decision making and

why variable selection techniques designed for prediction may not perform well in

a decision making setting. We presented two new techniques explicitly designed to

select variables for decision making. These techniques focus on interaction variables

that are good candidates for playing a role in the actual decision rules.

It should be noted that Lasso treats the indicator variables used to model a

categorical variable as separate variables. It is well known that this can lead to over

selection of categorical variables with many categories. Consequently, the proposed

method is subject to this problem. Therefore we recommend using Group Lasso

[63, 65] or something similar in step 3 of the algorithm when applying it to a data

set with many multi-category variables.

The entire algorithm including bootstrap sampling and thresholding takes ap-

proximately 30 hours to run in Matlab on a 3 Ghz Intel Xeon X5355 processor for

a data set of p = 60 baseline covariates and n = 400 subjects. The algorithm would

require far less computation time if a more theoretical justified threshold could be

determined, rather than using a permutation based threshold. This is an area for

future work.

More research is needed to determine the oracle consistency properties of this

algorithm and its performance on problems where p > n. Adjusting these methods

to deal with dropout is also an open issue. Our long term goal is to extend these

methods to settings with multiple decision time points.



CHAPTER V

Variable Selection for Qualitative Interactions While
Controlling the Family-wise Error Rate

5.1 Introduction

While the main goal of most clinical studies is to determine an overall optimal

treatment, a critical question often asked is whether this overall optimal treatment is

the best treatment to prescribe across different patient subsets. Many studies have

pre-specified patient subsets they plan to test for differences in treatment effect.

Others lack the expertise to know which patient characteristics play a critical role in

the effectiveness of different treatments.

The topic of patient subset analysis has seen a good deal of attention throughout

the last 30 years [9, 42, 50, 17, 64, 2, 48, 62, 30], a large amount of it seemingly

controversial. The way clinical trials are designed and the nature of the topic makes

the task difficult. Nevertheless, many clinicians feel these types of analysis are worth

while and continue to seek out better ways to determine which treatments are best

for individual patients.

In this chapter we focus on a specific type of subgroup analysis that indicates

there should be a change in the choice of optimal treatment for certain subgroups.

This occurs when a qualitative interaction exists between treatment and at least one

patient characteristic. We propose a method for finding these qualitative interactions

53
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in situations when prior intuition is lacking. We ensure the method also maintains

small susceptibility to finding spurious results.

5.2 Qualitative Interactions

We consider subset analysis in the simplest setting where one must decide between

two treatments. Let X = (X1, X2, ..., Xp) be covariate observations about a subject

and let A represent the treatment action. If the response to the treatment is labeled

R, then the goal in most clinical studies is to find the treatment a∗ for which

(5.1) a∗ = arg max
a

E[R|A = a].

Treatment effect varies across different subgroups of patients when the the treat-

ment interacts with a covariate. Some types of interactions are more important than

others when determining optimal treatments. Peto describes these types of interac-

tions as qualitative interactions [42]. A variable Xj qualitatively interacts with the

treatment, A, if there exists at least two distinct, non-empty sets, S1, S2 ⊂ space(Xj)

for which

arg max
a

E[R|Xj = xj1, A = a] 6= arg max
a

E[R|Xj = xj2, A = a],

for all xj1 ∈ S1, and xj2 ∈ S2. These variables are useful for prescribing treatment

since they help decipher which treatment is optimal for different subsets of patients.

To illustrate this idea, see the plots in Figure 5.1. These plots depict different

possible relationships between the conditional mean of R, A and a particular Xj,

when averaging over all other Xi, i 6= j. Figure 5.1(a), shows a variable, X1, which

does not interact with the action. Figure 5.1(b) shows a variable, X2, that interacts

with the action, A, but does not qualitatively interact with the action. In both plots,

the optimal action is A = 1. Figure 5.1(c), shows a variable, X3, which qualitatively
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Figure 5.1: Plots demonstrating qualitative and non-qualitative interactions

interacts with the action. This type of interaction is more important since it impacts

the best choice of treatment.

Much of the statistical literature suggests that the search for qualitative interac-

tions should be limited to only pre-specified covariates and qualitative interactions

that are found should be initially mistrusted [42, 30, 64, 48]. This point of view is

understandable given the large number clinical trials claiming discovery of new qual-

itative interactions which are later refuted. However, it severely limits the ability of

clinicians to make new scientific discoveries that may be critical to the practice of

medicine. A better approach is to develop methods which increase the power to find

qualitative interactions yet minimize the finding of spurious results.

There are currently a few qualitative interaction tests that can be used to test a

small number of pre-specified interactions [50, 17, 39, 51, 38, 29, 61, 62, 45]. When

controlling the error rate for multiple testing, these tests are quite conservative if

the set of interactions being tested is large [17, 43, 62]. Also, many tests were

designed to test for only qualitative interactions between categorical variables and

the treatment action. In the next section we present a new method for finding

qualitative interactions that demonstrates better power than current methods yet
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also limits the false discovery rate.

5.3 AGV Lasso

The search for qualitative interactions involves the comparison of multiple strate-

gies for choosing treatment. These strategies for choosing treatments are often re-

ferred to as policies or treatment regimes. A policy, π, is just a stochastic or de-

terministic decision rule mapping the space of observations, X, to the space of the

treatment action, A. In other words, π defines the probability for choosing treatment

action A = a given the observations X = x.

We compare policies via the expected mean response, called the Value of a policy

[53]. Let the distribution of X be a fixed distribution f , and let the distribution of

R given (X,A) be a fixed distribution g. Then when actions are chosen according to

a policy π, the trajectory (X,A, R) has distribution

f(x)π(a|x)g(r|x, a),

If Eπ[] denotes the expectation over the above distribution, then the Value of π is

Vπ = Eπ [R]

The optimal policy, π∗, is defined as

π∗ = arg max
π

Vπ = arg max
π

Eπ [R] ,

or equivalently

π∗(x) = arg max
a

E [R|X = x,A = a].

Our variable selection algorithm focuses on the change in Value of the estimated

optimal policy when a variable is added to the model:

(5.2) max
a

Ê [R|Xj = xj, A = a]− Ê [R|A = a∗]
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where a∗ = arg maxa E [R|A = a]. Parmigiani refers to this quantity as the value of

information [40].

The following is an overview of the algorithm.

Variable Selection Algorithm

1. Rank the variables: Rank the variables in (X,A∗X) using a Lasso. Define the

variable rank to be the order in which the Lasso coefficients become non-zero.

2. Create nested subsets of variables: Create 2p nested subsets of the variables

based on the rank order of the 2p variables in the previous step. Be sure to

include the main effect variables of all interactions in the subset to satisfy the

hierarchical ordering principle.

3. Select between subsets using Adjusted Gain in Value Criterion:

(a) For each subset k = 1, ..., 2p, estimate the maximal Value, e.g.

i. Use the subset to estimate Ê

ii. Estimate the optimal policy, π̂∗k(x) = arg maxa Ê [R|X = x,A = a]

iii. Estimate the Value of π̂∗k by:

V̂k =
1

n

n∑
i=1

Ê[R|X = xi, A = π̂∗k(xi)]

(b) Select the subset, k∗, that has the highest Adjusted Gain in Value (AGV)

criterion:

AGVk =
V̂k − V̂0

V̂m − V̂0

(m

k

)

where m = arg maxk V̂k and V̂0 is the estimated Value of the policy

π̂∗0 = arg maxa Ê [R|A = a].

In the first two steps we seek a quick way to navigate through the space of all

possible combinations of the variables (X,A∗X). First we use Lasso [54] to rank the
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variables. Lasso is a penalized regression procedure which returns a sparse, piecewise

linear coefficient vector. It utilizes the L1-norm of the coefficient vector, |β|1, as its

penalty function. The L1-norm causes some of the coefficients to be set exactly to

zero. We fit the Lasso on (X,A∗X, A), but leave the coefficient of A unconstrained by

the L1 penalty function. The rankings for the variables in (X, A∗X) are determined

based on the order the variables enter the Lasso model. These rankings are then

used to create nested subsets of the variables.

We rank all of the variables in the (X,A ∗ X), including the main effects, X,

because they may be strongly predictive of the response variable, R, and will help

reduce variability in the estimations. Also, when testing for the interaction between

Xj and A, researchers often prefer to maintain a hierarchical ordering [59] and thus

the main effect of the variable Xj are included. This helps to avoid finding spurious

interactions that may appear because the main effect is important but is not included

in the estimation.

However, Lasso favors variables that are predictive, so we offset this by using the

Adjusted Gain in Value (AGV) criterion to select the optimal subset. The AGV

criterion trades off between the complexity and the observed Value of each of the

models. The criterion selects the subset of variables with the maximum proportionate

increase in Value per variable. It is similar in idea to the adjusted R2 value. The

model with m = arg maxk V̂k variables is akin to a saturated model, because the

addition of more variables does not improve the Value of the model. Thus the

denominator is the observed maximum gain in value, among the different variable

subsets, divided by m, an estimate of the degrees of freedom used to achieve that

gain in Value. The numerator then measures the gain in Value of the intermediate

model, the model with k variables, divided by k, the estimated degrees of freedom
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needed to achieve that gain in Value.

5.4 Controlling the familywise error rate

The familywise error rate (FWER) is the probability of making at least one false

discovery among all hypothesis when performing multiple testing procedures [58, 49].

In this case the FWER is then the probability of selecting at least one spurious qual-

itative interaction among all interaction variables being considered in our variable

selection procedure.

It may be acceptable in some instances to disregard the FWER when testing

for a qualitative interaction between treatment and a small number of pre-specified

variables. Controlling just the per test error rate may be sufficient for the desired

analysis. When performing a large number of hypothesis tests, however, it becomes

a necessity to employ some method which adjusts for the multiplicity of testing to

control the FWER. This is the case with variable selection, and in particular, variable

selection for qualitative interactions. Naturally these multiplicity correction methods

decrease the power to find qualitative interactions. The failure to incorporate these

method in the variable selection process, however, may result in wasted resources

and weakened credibility. We illustrate this issue in the next section.

We suggest a combination of bootstrap sampling and permutation thresholding

to help control the FWER when using the algorithm proposed in Section 5.3. First

we use bootstrap sampling [14] of the original data to give a measure of reliability

on the variables selected. The bootstrap samples allow us to determine the per-

centage of time each interaction variable is selected by the method. These selection

percentages, with a slight adjustment, can be thought of as pseudo test statistics for

each interaction variable. We compute the adjusted selection percentages for each
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variable as follows.

1. Take 1000 bootstrap samples of the original data

2. Run variable selection algorithm and record the interaction variables that are

selected along with the sign of the interaction coefficient for each bootstrap

sample

3. Calculate the adjusted selection percentage across the 1000 bootstrap samples

for each interaction variable: the absolute value of the number of times the

interaction is selected with a positive coefficient minus the number of times an

interaction is selected with a negative coefficient

This adjustment used in step 3 helps eliminate variables that, across the bootstrap

samples, do not consistently interact in one direction with the action.

Second, we construct a permutation threshold to control for the number of false

discoveries and determine which interaction variables to include in the final model.

The threshold estimates the selection percentages we would expect to see if the data

contained no interactions. To compute the permutation threshold:

1. Permute the X values of the X ∗ A interactions in the (X, A,X ∗ A) model

matrix 100 times

2. On each permuted data set

(a) Take 1000 bootstrap samples of the permuted data

(b) Run variable selection algorithm and record the interaction variables that

are selected along with the sign of the interaction coefficient for each boot-

strap sample
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(c) Calculate the adjusted selection percentage across the 1000 bootstrap sam-

ples for each interaction variable: the absolute value of the number of times

the interaction is selected with a positive coefficient minus the number of

times an interaction is selected with a negative coefficient

(d) Record the maximum selection percentage observed across the p interaction

variables

3. Define the permutation threshold to be the (1 − α)th percentile over the 100

maximum selection percentages for each permuted data set

We chose all interaction variables whose adjusted selection percentage from the orig-

inal data is greater than the permutation threshold.

Permutation-based multiplicity correction procedures are discussed in detail by

Westfall and Young [58]. They have seen widespread use and success in many scien-

tific applications such as microarray analysis and medicine and even variable selection

for prediction [33, 13, 52, 55].

In the next section we show simulation results testing the proposed variable se-

lection algorithm with permutation threshold. We reference this method as AGV

Lasso.

5.5 Size and Power Comparisons

We ran AGV Lasso on realistically designed simulation data to test its perfor-

mance and compared the results to two different methods suggested for formally

testing for qualitative interactions.

In order to generate realistic simulation data, we randomly selected rows, with

replacement from X, the observation matrix from the Nefazodone CBASP trial data.

We generated new actions, A, and new responses, R, that covered a wide variety of
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models. We report results for the following generative models:

1. Main effects of X only, no treatment effect and no interactions with treatment

2. Main effects of X, moderate treatment effect and no interactions with treatment

3. Main effects of X, moderate treatment effect, multiple small non-qualitative

interactions with treatment, no qualitative interaction with treatment

4. Main effects of X, moderate treatment effect, multiple moderate non-qualitative

interactions with treatment, no qualitative interaction with treatment

5. Main effects of X, small treatment effect, small qualitative interaction with a

binary variable, no non-qualitative interactions

6. Main effects of X, small treatment effect, small qualitative interaction with a

continuous variable, no non-qualitative interactions

7. Main effects of X, small treatment effect, multiple small non-qualitative inter-

actions with treatment, small to moderate qualitative interaction with a binary

variable and treatment

8. Main effects of X, small treatment effect, multiple small to moderate non-

qualitative interactions with treatment, small qualitative interaction with a

continuous variable and treatment

For each generative model, we used main effect coefficients for the variables X,

estimated in an analysis of the real data set. In generative models 3-7 we randomly

selected variables from the Nefazodone CBASP data for each treatment covariate

interaction and used these same variables for each repetition. The treatment, quali-

tative interaction and non-qualitative interaction coefficients were set using a variant
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of Cohen’s D effect size measure [10] shown below:

(5.3) D =
β
√

V ar(R)√
V ar(Xj)

We altered this formula by replacing the marginal variance, V ar(R), with the condi-

tional variance of the response V ar(R|X, A). However, we maintained the definitions

of ‘small’ and ‘moderate’ effect sizes suggested by [10] as D = 0.2 and D = 0.5 re-

spectively. Thus the effects are slightly smaller than the traditional definition.

We compared AGV Lasso to the likelihood ratio test (LRT) proposed by Gail

and Simon [17]. The LRT is designed to test for a qualitative interaction between

a binary treatment and a single categorical variable or a combination of categorical

variables. Let δi, i = 1, ..., I be the true treatment effects for each of the I categories

of subjects and let Di, i = 1, ..., I be independent normal estimates of those effects

with variances σ2
i . Define

(5.4) Q+ =
I∑

i=1

D2
i

σ2
i

I(Di > 0)

and

(5.5) Q− =
I∑

i=1

D2
i

σ2
i

I(Di < 0)

The LRT for testing the null hypothesis that δi ≥ 0 for all i or δi ≤ 0 for all i is then

(5.6) TQ = min(Q+, Q−) > c

where the constant c is chosen to ensure a significance level α. Gail and Simon [17]

give several values of c for different I and α. The σ2
i in Equations 5.4 and 5.5 above

can be replaced by a consistent estimate in large samples. Also, continuous variables

must be dichotomized when using this test.

We also compared AGV Lasso to the qualitative interaction test proposed by

Shuster and Van Eys [50]. This test is based on joint confidence intervals and can be
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used to test for a qualitative interaction between a binary treatment and any type

of covariate(s). Assume our response R is a linear function of the treatment and the

covariates. For example it might be

(5.7) R = β0 + Xjβ1 + Aβ2 + AXjβ3 + ε,

where ε is an error term. The treatment difference for subjects with Xj = xj would

be D(xj) = β2 + xiβ3. The parameter −β2/β3, is the value of Xj for which the

treatments are equal. A asymptotic (1−α)% confidence interval for −β2/β3 contains

all values, xj for which

(5.8) (β̂2 + xjβ̂3)
2 < Z2

α/2(V22 + 2xjV23 + x2
jV33)

where Zα is the upper (100α) percent point of the standard normal curve and

(5.9) V =




V11 V12 V13

V12 V22 V23

V13 V23 V33




is the asymptotic covariance matrix of β̂. All values falling in this confidence inter-

val are values of Xj for which no significant treatment difference exists. The null

hypothesis of no qualitative interaction is then rejected if the confidence interval for

−β2/β3 is strictly contained in the range of Xj within the data. In other words the

null hypothesis is rejected if there exists at least one xij in the range of Xj within

the data for which there is a significant positive treatment effect and at least one xkj

in the range of Xj within the data for which there is a significant negative treatment

effect. We can express this formally as

(5.10) TV = min(V +, V −) > Z2
α/2
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where

(5.11) V + = max
i=1,..,n

(β̂2 + xijβ̂3)
2I(xij > −β̂2/β̂3)

(V22 + 2xijV23 + x2
ijV33)

and

(5.12) V − = max
i=1,..,n

(β̂2 + xijβ̂3)
2I(xij < −β̂2/β̂3)

(V22 + 2xijV23 + x2
ijV33)

The test can also be modified to deal with multiple covariates (see [50]).

For each generative model, we ran AGV Lasso and the two qualitative interaction

tests with and without corrections for multiplicity. We tried two multiplicity correc-

tions for each qualitative interaction test. The first multiplicity correction method we

tried was a Bonferroni correction due to its easy application with non-standard tests

such as the LRT ([49]). This correction method tends to be conservative, however,

so we also tried a permutation threshold similar to what we used in the new method.

The permutation threshold was calculated in the same way except we replaced the

selection percentages with the individual T-statistics (Equations 5.6 and 5.10) for

each variable. We then selected all interaction variables whose T-statistic from the

original data was greater than the permutation threshold.

We ran the analysis 200 times. We recorded the percentage of time each method

selected one or more spurious interactions and the qualitative interaction (if one

existed) to estimate the size and power of each method. The results are listed

in Tables 5.1 and 5.2. The percentage of time one or more spurious qualitative

interactions was selected by each method over the 200 repetitions is listed in Table

5.1. The percentage of time the true qualitative interaction was selected by each

method over the 200 repetitions is listed in Table 5.2. Note that since generative

models 1-4 have no qualitative interactions with treatment, power results are not

applicable to these models.
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Table 5.1: Size Estimations: The first two columns list the desired significance level and the method.

AGVL stands for AGV Lasso, LRT stands for the Gail-Simon likelihood ratio test and SVE

for the Shuster-Van Eys test, Bonferroni stands for a Bonferroni correction and permutation

stands for the permutation based multiplicity correction. The last eight columns give give

the percentage of time one or more spurious qualitative interactions was selected over the

200 repetitions for each generative model. Stared percentages fall outside the 95% confidence

interval for the desired significance level

Sig. Generative Model

Level Method 1 2 3 4 5 6 7 8
α = .05 LRT uncorrected 13.0∗ 7.5 5.5 0.0 22.5∗ 17.0∗ 20.0∗ 14.5∗

SVE uncorrected 29.0∗ 9.5∗ 8.0 0.0 32.0∗ 35.5∗ 58.0∗ 31.0∗

LRT Bonferroni 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0
SVE Bonferroni 1.0 0.0 0.0 0.0 0.0 0.5 4.0 0.0

LRT permutation 6.0 4.5 3.0 0.0 8.5 7.5 11.0∗ 9.5∗

SVE permutation 3.5 6.0 6.5 0.0 6.0 8.0 21.5∗ 6.0
AGVL 7.0 5.5 8.0 23.5∗ 7.5 7.0 3.5 6.0

α = .1 LRT uncorrected 34.5∗ 15.0∗ 8.5 0.0 46.0∗ 38.5∗ 45.5∗ 31.0∗

SVE uncorrected 54.5∗ 29.5∗ 29.5∗ 1.0 65.5∗ 62.0∗ 74.0∗ 56.0∗

LRT Bonferroni 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0
SVE Bonferroni 1.5 0.5 0.0 0.0 0.0 1.5 7.5 0.5

LRT permutation 7.0 8.5 7.0 0.0 11.5 10.0 15.0∗ 11.5
SVE permutation 6.5 7.5 9.0 0.0 8.5 11.5 26.5∗ 8.0

AGVL 11.0 9.0 14.0 32.0∗ 10.5 11.5 5.5 10.5

Looking over Table 5.1 we see that without the multiplicity correction, the two test

methods have large Type I error rates. The Bonferroni correction method is far more

conservative than the permutation based multiplicity correction. AGV Lasso appears

to maintain the desired FWER in all settings but one. Under generative model 4

AGV Lasso fails to maintain the desired significance level. Upon closer examination

we discovered the failure was due to over selection of true non-qualitative interactions.

This may be due to the fact that the permutation threshold targets all interactions

as opposed to only targeting qualitative interactions.

Table 5.2 shows that the LRT is better suited to find qualitative interactions with

a categorical covariate, as would be expected. Whereas, the Shuster-Van Eys test is

much better at finding qualitative interactions with a continuous covariate. The new

method seems to have good comparative power against the methods which control

for the FWER.
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Table 5.2: Power Estimations: The first two columns list the desired significance level and the method.

AGVL stands for AGV Lasso, LRT stands for the Gail-Simon likelihood ratio test and SVE for

the Shuster-Van Eys test, Bonferroni stands for a Bonferroni correction and permutation stands

for the permutation based multiplicity correction. The last 4 columns give the percentage of

time the true qualitative interaction was selected over the 200 repetitions for each generative

model. Bolded percentages correlate with settings where the desired significance level was

maintained.
Sig. Generative Model

Level Method 5 6 7 8
α = .05 LRT uncorrected 12.0 8.5 52.0 12.5

SVE uncorrected 9.0 24.0 45.5 55.0
LRT Bonferroni 0.5 0.5 8.5 0.0
SVE Bonferroni 0.0 1.0 4.5 8.5

LRT permutation 6.5 5.0 34.0 7.5
SVE permutation 0.5 3.0 15.0 24.0

AGVL 14.0 13.0 44.0 20.5
α = .1 LRT uncorrected 21.5 13.0 59.0 20.5

SVE uncorrected 18.0 33.0 58.0 66.5
LRT Bonferroni 0.5 0.5 8.5 0.0
SVE Bonferroni 0.5 2.5 8.5 12.5

LRT permutation 7.5 7.0 41.0 8.0
SVE permutation 1.0 3.5 19.0 30.0

AGVL 17.5 16.5 49.0 26.5

Overall, we found that the new method performs better than the other two tests

when controlling for the FWER. While, the competing methods each have there

individual strengths, they seem to lack consistent performance to merit use as a

generalized variable selection method for qualitative interactions.

5.6 Example

We applied AGV Lasso along with the LRT test and the Shuster-Van Eys test

to the Nefazodone CBASP trial [27] data introduced in Chapter IV. This trial was

conducted to compare the efficacy of three alternate treatments for patients with

chronic depression. The study randomized 681 patients with non-psychotic chronic

major depressive disorder (MDD) to either Nefazodone, cognitive behavioral-analysis

system of psychotherapy (CBASP) or the combination of the two treatments. We

considered the same p = 61 baseline covariates for our observation matrix X listed in
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Table 4.3. The outcome, R, was the 24-item Hamilton Rating Scale for Depression

score [22], observed post treatment. In this analysis we only look at a subset of

the study consisting of the n = 440 patients who were randomized to either the

combination treatment or Nefazodone alone.

Using a 90% permutation threshold, AGV Lasso selected two variables. Both

variables had the same selection percentage of 21.9%, which was slightly higher than

the 90% threshold of 21.1%. These variables were Obsessive Compulsive Disorder

and past history of Alcohol Dependence. No variables were selected by the qualitative

interaction tests using either multiplicity correction at α = 0.1.

5.7 Discussion

Although multiple tests exist for evaluating qualitative interactions, they are de-

signed to be used on a small number of covariates, often of a particular form. We have

proposed a new technique that can be used to find qualitative interactions among a

large number of covariates. We have included measures to ensure the FWE error rate

is controlled for, an important characteristic for methods used in post-hoc analysis.

The methods proposed here can be used with multiple different types of covariates

without predetermining the best division into subsets.

In the future we hope to modify the way we permute the data in the permutation

threshold so that it targets just the qualitative interactions instead of all interactions.

We believe this would eliminate the over selection of non-qualitative interactions in

data similar to generative model 4. We also think it would be useful to try replacing

the Lasso in the algorithm with other types of penalized regression models to allow for

different types of response variables such as binary or survival. Our ultimate goal,

however, it to develop a variable selection method for sequential decision making
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applications like SMART trials [36].



CHAPTER VI

Suggestions for Further Research

Chapters II and III gave a background on decision making applications and current

techniques used for variable selection. Chapters IV and V presented ideas for variable

selection in single time point decision applications. This chapter will discuss ideas

for improving the methods presented in Chapters IV and V. It will outline key issues

for expanding these methods to sequential decision making problems and give ideas

for addressing these issues in future research.

6.1 Value Based Rankings

All of the methods presented in this thesis rely on variable selection techniques

designed for prediction. Predictive variables are important for estimating models

in a decision making process. Predictive variables also help reduce the variability

of estimates used to find qualitative interactions. We may see improvements in our

method, however, by minimizing or eliminating its dependence on predictive variable

selection methods.

In particular, the variable selection algorithm presented and tested in Chapter V

used a predictive variable selection method, Lasso, to rank the variables in the first

step. We may see an increase in power to select the qualitative interaction if the

Lasso ranking is replaced with a ranking procedure which ranks variables according

70
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to their ability to affect the Value function.

We have attempted this in our research, but have not yet been successful at

increasing the power. We outline our attempt below.

6.1.1 Classification Formulation for One Time Point Decision Making

Computer science researchers proposed a group of techniques for finding optimal

policies by formulating decision making problems as classification problems [31, 32].

Formulating the decision making problem as a classification problem allows the use of

a large number of sophisticated techniques developed to solve classification problems.

We briefly describe this formulation.

In decision making we wish to find a non-stochastic decision rule d : X → A such

that the expected reward, R, when using that decision rule is maximized over the

population of possible X, A and R values. In other words, if the distribution of X is

g(x), the distribution of A given X is p(a|x) and the distribution of R given X and

A is h(r|x, a), we want to find d such that

(6.1) max
d(X)

E
[

1(d(X)=A)
p(A|X)

R
]

= max
d(x)

∫
r1{d(x) = a}g(x)h(r|x, a).

This optimization problem is equivalent to a weighted classification problem where

we classify patients by their actions, A, based on X, with the importance of each

sample observation i is given by ri

p(ai|xi)
.

In this formulation, we are only modeling the interactions between the action and

the covariate observations X, so we lose some information about the decision making

process. However, the methods have been used successfully on a few problems. We

decided to test this formulation out in our variable selection problem since there are

several good techniques for variable selection in classification. We tested a weighted

L1-norm penalized support vector machine using this formulation.
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6.1.2 Interaction Ranking by L1-Norm Penalized Support Vector Machine

In a classification setting where the outcome variable is binary Y ∈ {−1, 1} and

we use a model f(x) = β0 + xβ to estimate y by ŷ = sign(f(x)), the classical linear

support vector machine (SVM) classifier solves the following regularization problem:

(6.2) min
β0,β

1
2
||β||22 + C

n∑
i=1

H1(yi(βo + xiβ))

where C is a tuning parameter and H1(v) = (1− v)+ is the hinge loss with (v)+ = v

if v > 0 and 0 otherwise. The SVM tries to classify the data by finding the (p− 1)

dimensional hyperplane which maximizes the margin between the two classes.

Observation weights can be easily incorporated into the optimization by replacing

C in the above equation with Cwi. If we replace the L2-norm in Equation 6.2 with

the L1-norm we get the L1-norm penalized linear SVM [66]. The weighted L1-norm

penalized linear SVM is then

(6.3) min
β0,β

||β||1 + C

n∑
i=1

wiH1(yi(βo + xiβ))

This optimization problem can be solved using linear programming.

Using the classification formulation for decision making, with binary A, we get

the following for equation 6.3:

(6.4) min
β0,β

||β||1 + C

n∑
i=1

ri

p(ai|xi)
H1(ai(βo + xiβ))

and â(xi) = sign(f(xi).

We used the weighted L1-norm linear SVM to rank the variables based on their

importance in classifying subjects by their optimal action. The weighted classifiers

attempt to model the interaction relationships between X,A and R. When a variable

appears important to the classifier, it can be interpreted that the interaction between

X and A is important to the maximization of R.
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Like the Lasso used in the algorithms in Chapters IV and V, the L1-norm penal-

ization of the linear SVM causes the solution vectors for β to be sparse when C is

small. This allowed us to replace the Lasso in AGV Lasso in a similar fashion with

the weighted L1-norm SVM.

We tried the following algorithm:

1. Rank the interaction variables in X using the weighted L1-norm linear SVM

2. Create p nested subsets of the interaction variables based on the order of entry of

the p variables in the weighted L1-norm penalized classifier used in the previous

step; include main effect variables as needed to satisfy the hierarchical ordering

principle

3. Select the best subset using AGV criterion

We tested the algorithm on simulated data and unfortunately found the classifiers

had a difficult time highly ranking the true qualitative interaction. We suspect this

occurs because we are only modeling the interactions in the classification formulation

and this can lead to high variability in the estimation.

6.1.3 Alternate Ideas

Another idea for value based rankings is to use something similar to the S-score

presented in Section 4.3. Predictive variables should be incorporated in some way

into the estimation portion of the algorithm. Care is needed when using the S-score

in conjunction with the AGV criterion to avoid over fitting, given the similarities

between the two.
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6.2 Improving the Permutation Thresholds

In Chapter IV we introduced permutation thresholds for controlling the family-

wise error rate. We tested the permutation thresholds in Chapter V and found that

they effectively control the family-wise error rate in all settings except for models

with moderate to large non-qualitative interactions but no qualitative interactions.

We find the thresholds by permuting the X values of the X ∗ A interactions in

the (X,A, X ∗ A) data matrix. This permutation of the data removes the effects

of all interactions, not just the qualitative interactions. We might see better size

results in settings with only large non-qualitative interactions if we adjust the way we

permute the data so that it targets qualitative interactions more than all other types

of interactions. One possible approach is to only permute variables with moderate

or high selection percentages across the bootstrap samples of the original data.

We also may observe an increase in power if we calculate a separate threshold

for each individual interaction. Instead of permuting all the X values of the X ∗ A

interactions at once, we would permute one variable in X at a time and re-run

the analyses. This would require a far greater computational cost, especially when

testing for size and power.

6.3 Performance With Non-binary Actions

Most of the methods presented in this thesis are easily generalized for use on

problems with non-binary action spaces. Some minor adjustments may need to be

made. The methods have not been tested in this setting and it would be useful to

know how well they perform as the number of possible actions increases.
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6.4 Dealing With Multiple Decision Time Points

Since the setting most likely to benefit from variable selection is the sequential

decision making problem, this section will highlight some of the issues that arise in

variable selection when there are multiple time points. This section also explains how

the current single time point methods may be adjusted to deal with these issues.

6.4.1 Adjusting Variables that are Outcomes to Prior Actions

The variables observed after actions are taken, X2, ..., XT can be considered out-

comes to prior actions and may be affected by those prior actions. Thus, policies

that differ from the policy used to collect the data, may change how X2, ..., XT are

distributed.

The distribution of a variable is important in determining the usefulness of the

variable and the methods we have proposed. Recall Figure 4.2, plots 4.2(a) and 4.2(b)

showed variables X4 and X5 which had similar relationships to the response variable

and the action but their distributions were centered differently. Based on this in-

formation, X4 appears more beneficial than X5. So if the prior actions affect the

distribution of X2, ..., XT , the variable selection methods may omit variables that

are only useful when optimal prior actions are taken or include variables that are no

longer useful when optimal prior actions are taken.

For example, suppose the Nefazodone CBASP trial introduced in Chapter IV was

expanded to include a second treatment for patients who did not do well on their

initial treatment. Before the second treatment is assigned, clinicians would collect

data about the patient’s condition after their initial treatment. One variable they

might collect is a general measure of treatment burden. If a certain subset of patients

found CBASP to be rather burdensome, the distribution of this variable would be
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different for patients assigned the combination treatment than for patients assigned

Nefazodone alone. If the optimal policy always chose the combination treatment for

the initial treatment of future patients, this variable may need adjusted in order to

determine its usefulness for prescribing the next treatment.

Thus, it is important to consider the distribution of X2, ..., XT in sequential deci-

sion making problems and when necessary develop a way to adjust the distribution.

A simple solution is to do a separate variable selection for each prior action. This

approach is less appealing, however, with small sample sizes. A better approach

may be to adjust the location and variance of the variables X2, ..., XT for patients

who were given suboptimal actions. Another way may be to up-weight subjects who

received optimal actions and down-weight subjects who received suboptimal actions.

6.4.2 Adjusting the Outcome Variable

As discussed in Chapter II, at each decision time point we receive a response, Rt.

Since actions may appear optimal under the current response despite being subop-

timal under the sum of the responses, we must also consider future responses when

modeling the current observation variables and actions. In the Q-learning algorithm

(Section 2.2), the outcome used for modeling decision time points t = 1, ..., T − 1

is the present response plus an estimate of the expected sum of future responses

when following the optimal policy thereafter. This adjusted response helps deter-

mine which action is best over the sum of the responses. This adjusted response

may more accurately represent the relationships in the decision making process con-

cerning the optimal action, however, it may greatly increase the variability in the

estimation. Research is needed to determine whether Rt + Rt+1 + .. + RT or the

adjusted response would work better for variable selection.
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6.4.3 Order of Variable Selection

In Section 6.4.1 we discussed the possible need to adjust the distribution of pre-

dictors observed in time points t = 2, ..., T based upon actions taken in the prior

time points. This suggests doing variable selection moving forward through time.

However, in Section 6.4.2, the outcome variable to use for variable selection in time

points t = 1, ..., T − 1, may need adjustment by the estimated sum of optimal future

responses. This would suggest doing variable selection moving backward through

time starting with time t = T and ending with time t = 1. In essence, we want to

do variable selection on variables obtained using optimal past actions and responses

obtained using optimal future actions. Variable selection may need to be performed

in an iterative fashion to satisfy both of these demands, iterating between adjust-

ing the distribution of the observation variables and adjusting the estimates of the

responses.

6.4.4 Troubles With Estimating the Value

The variable selection algorithms presented in Chapters IV and V depended upon

estimates of the Value for derived optimal policies. We noted in Section 2.3.1, that

as the policy being evaluated diverged from the policy used to collect the data, the

variability in the estimated Value increased. This may limit our ability to use the

estimated Value as a parameter selection criterion when T is large.

6.5 Conclusion

While there are many variable selection techniques designed for optimal prediction

problems, this topic has had little attention in settings focused on optimal decision

making. Techniques designed to find variables for decision making are rapidly be-

coming a necessity as the desire for evidence based decision making grows and the
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ability to collect and store ever larger amounts of data increases.

In this thesis we highlighted some of the differences between prediction and deci-

sion making. We discussed the idea of qualitative interactions with the action and

demonstrated why this characteristic delineates variables used for prediction versus

variables used to make decisions.

We proposed multiple methods which capitalize on changes in the Value of optimal

policies when interactions are added to the model. These new methods performed

better in testing against competitive variable selection methods for prediction and

commonly used tests for qualitative interactions.

In the future we hope to improve upon the methods and ideas expressed in this

thesis. We also hope this work will spark other researchers to explore the topic and

make advances in finding variables useful for sequential decision making.
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