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Abstract

The Relative Roles of Dynamics and Control in Bglddbcomotion

by
Shawn Michael O'Connor

Chair: Art D. Kuo

The traditional view of motor control predicatestitihe central nervous system dictates the
motions of the body through muscle activation. Ateraative view suggests that movement may
be governed by body dynamics alone without neech&ural control. Both philosophies have
merits, but neither represents a complete soldtomobust and efficient behavior. We proposed
an integrated view of control and dynamics and stigated how the natural dynamics of the
limbs influence control strategies used to patserd stabilize walking. We explored how features
of human walking, traditionally absent in passivalking models, are gained by adding
compliance. This compliant behavior essentially eledvork performed by muscle and tendon
and predicts energetic costs measured in humaningalkVe also countered the notion that
walking and running can best be described by atitf compliant leg behavior, respectively. We
showed that the amount and proportion of mechamigalgy in the legs distinguishes between
gaits much more so than leg compliance or othepepties. However, some control is needed to
provide spring-like actuation and could be affordbgdreflex loops and neural oscillators located
in the spinal cord. We used a compliant walking etoib study how the feedforward and
feedback nature of central pattern generators (CR&s be optimally combined to produce

steady walking motions. Our findings suggest thRGE serve a primary role to filter sensory
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information rather than to simply generate motamo@nds. Finally, three-dimensional passive
walkers indicate that the fore-aft component of kiveg may be self stable, whereas lateral
motion remains unstable and requires control, asuth active foot placement. We tested
whether healthy humans exhibit such direction-ddpah control by applying low-frequency
perturbations to the visual field and measuringt fplacement during treadmill walking. We
found step variability to be nearly ten times meeasitive to lateral perturbations than fore-aft,
suggesting that the central nervous system ganesdib stability through uncontrolled behavior.
Our results may have implications for the developinaé novel prosthetics, more energy efficient
robots, and the rehabilitation of a broad set aframuscular and physical disorders that cause

locomotor impairment.



Chapter 1. Introduction

The goal of this thesis is investigate how the ratdynamics of the limbs influence control
strategies used by the human nervous system diadognotion. We will employ simple passive
dynamic models with actuation (Figure 1.1a) to gateetestable predictions regarding feedback
control and sensory processing strategies relateghit. We first explore how a simple model
with spring-like behavior can reproduce much of ti-dimensional dynamics of human
walking (Figure 1.1b). This compliant behavior ed&dly models the need for work done by
muscle and tendon to redirect the vertical motibthe body and speed up swing leg motion and
can be used to study energetic costs of locomo8ome control is needed to supply this spring-
like actuation and could be potentially providedrbflex loops and neural oscillators located in
the spinal cord (Figure 1.1c). We seek to undedstaow this rhythmic control of limb behavior
can be understood in terms of feedforward and f@eldbontrol and how disturbances affect this
tradeoff. Finally, three-dimensional passive waskéfigure 1.1d) must be actively stabilized in
the lateral direction. We explore how the dynaneeds for walking stability dictate how visual
sensory information is integrated for balance aantWhile topics of this work cover a broad
range of motor control issues, they are tied to dbmmon theme of passive dynamics. Our
results have implications for the development ofet@rosthetics, more energy efficient robots,

and the rehabilitation of a broad set of disordleas cause locomotor impairment.
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Figure 1.1. Simple models of locomotioa. A generic model of two-dimensional locomotion twit
linear actuators placed along the legs and a omialtiactuator between thern. Actuation can be
replaced with axial springs along the legs andsidaal spring between them to model compliant limb
behavior.c. Control is needed to provide spring-like actuatand could be potentially afforded by
reflex loops and neural oscillators located in gpénal cord.d. Three-dimensional passive walking
models are unstable in the lateral direction aidire active stabilization, as through foot placame



Motivations

Movement is the primary means by which humans ate @ express themselves and interact
with the outside world. The complex functions o tiuman neuromuscular system allow people
to execute a near infinite number of movements,dsatalso vulnerable to a diverse array of
diseases, birth defects, and injury. Impairmenty pecur at any of three levels: sensory input
(vision, vestibular, proprioceptive), neural pragiag, and motor output (muscle activation).
These impairments can lead to the partial or comptess of the ability to walk. These disorders
can greatly affect quality of life and may evenlifethreatening to some, especially the elderly,

by increasing the risk of falls.

Prosthetics

Over one million Americans have experienced limbsjoa majority of whom are lower limb
amputees that rely on a prosthetic foot for map{lRillingham et al. 2002). Transtibial amputees
minimally expend 15% more metabolic energy thandhpersons to walk at the same speed or
over the same distance (Barth et al. 1992; Gailey.1994; Herbert et al. 1994) and this cost is
much higher for bilateral or transfemoral amputeé.groups would greatly benefit from a
prosthetic limb that could improve their walkingoeomy. Walking prostheses must also be
designed to accommodate the practical needs of-e\aar life, which includes not only walking
but also sitting, standing, climbing stairs, etcaditional prosthetics appear to accommodate
these needs, as well as aesthetic appeal, witlatévedy rigid prosthetic surrounded by a rubber
skin-like material. Designs may then be modifiedriake them more comfortable for walking,
using compliance to absorb shocks at heel-strike. Most commonly prescribed foot prosthesis
in the U.S. is the Solid Ankle Cushioned Heel (SAGbbt, which is comprised of a wooden keel
with a rubber wedge included at the heel. More meqwosthetic designs (Dynamic Elastic
Response feet) have incorporated elasticity thrahghuse of carbon fiber composites, to not
only improve comfort but also store and return tidaenergy which in theory may reduce
necessary muscle work to walk. However, it is uaicleow elasticity can be best incorporated
into a prosthetic to improve energy economy. Tiistation is clear, since amputees still expend
significantly more energy than intact individual&e when walking on compliant feet. In fact, no
compliant prosthetic has significantly reducedehergy requirements of gait as compared to the
SACH foot (Torburn 1996, Schmalz 2002, Casillas5l3arth 1992). In contrast, the modeling
of running as a spring-mass system has providedfisignt insight into the design of running
prosthetics, with the result that Paralympic at#deare approaching competitive finishes with

their able-bodied counterparts. We sought to dgvel@reater understanding of how elasticity



can be beneficially used in walking gaits and a&gplore energetic trade-offs that exist with this
feature (Chapter 2). We also explore how the camplimodes of walking compare to those of
running gaits and suggest a common framework tenstand both gaits (Chapter 2). We believe
the successful implantation of compliance in a mgrprosthesis may be similarly applied to

walking.

Robotics

With proper design, adding elasticity to walkingoots could greatly improve their energy
economy and controllability. Many current approacte walking robots use actuators placed at
the joints to drive the limbs through prescribegjectories, creating a walking motion but at the
price of high energy and control costs (Hirai et1l®98). On a separate path, the field of passive
dynamics has produced a series of walking machihats are powered by gravity and are
remarkably efficient. Building on these concepteall amounts of actuation have been added to
passive machines so that they can walk on levelirgtoresulting in gaits with comparable
mechanical efficiency to humans (Collins et al. 200However, even these robots are at a
disadvantage given current limits on energy stocapacity. Adding elasticity to the legs could
potentially yield robots that have far superiorrgyeefficiency over humans. While a robot could
use a passive spring to perform positive and negatork with appropriate timing, a person must
always use a combination of muscle and tendon tfie this work, at a significant metabolic
cost. Theoretically, an elastic legged robot waelquire very little additional mechanical work
from an actuator such as a motor if friction istkemall and the springs are properly tuned for the
desired gait. We explore limits on the efficiendyam elastic walking machine and suggest

methods to improve energy economy (Chapter 2).

Elasticity in walking machines could also potemgiahllow for more robust robotic control
schemes. Rigid walkers inevitably suffer from albruplocity changes at the semi-impulsive
heel-strike events of the step-to-step transitidmese sudden changes in velocity and
corresponding changes in sensor signals (as froaceglerometer or gyroscope) tend to wreak
havoc on estimation control schemes that use sgfsetback to update an internal model of the
system states. These errors can be reduced whgnuging position sensors, but then valuable
velocity information may be lost. Gains on senstagdback can be increased to allow better
tracking of sudden changes in state, but this ambrds limited by sensor noise and inaccuracies.
By softening the impacts at heel-strike, an elastiking robot could potentially be more robust

to the tradeoffs between sudden changes in statsemsor noise. Furthermore, a machine with



compliant legs may provide terrain independenceesthe dynamic effects of changing terrain

stiffness may be filtered out when passed throbhgHdg spring.

Motor control

We also seek a basic understanding of the motaraoprinciples that underlie gait. We are
primarily concerned with identifying the feedbadkagegies used during gait and understanding
how sensory information is processed for use idldaek control. Feedback strategies determine
how motor commands are generated based on theiyesfcetates of the body. Sensory
processing refers to how information from sensemgeptors is processed to gain knowledge of

body movement.

We believe our work also has relevance for the ldgweent of detection protocols and
treatments for a broad set of neuromuscular dissrdeat cause locomotor impairment.
Identification of gait related feedback strategiesld be useful for designing assistive orthotics,
and locomotor and balance training regimens. Thmémwork of state estimation to be used in
this paper may explain on a systematic level home@sy information is processed for walking
control and may lead to improvements in our undeding of how to treat and assist patients
with sensory loss or deficits. For example, re@antlence suggests that augmentation strategies
directed at providing alternate forms of sensoffgrimation may offset losses of other sensory
inputs (Sienko et al. 2009). A better understandifichow sensory information is integrated
during walking is needed to further develop thessish strategies. Also, the walking models to
be developed in this proposal may be useful fordipting the outcomes, or expected
performance of individuals with varying levels @nsory or motor impairment. These models
could be used to detect early onset of a neurontarsdisease or even evaluate the effectiveness

of an ongoing treatment.

Balance and Falls

Humans use visual and other sensory informatiorpédorm active feedback corrections
necessary to maintain balance. Understanding afi¢heal and muscular mechanisms responsible
for this feedback has largely been gained throbghstudy of upright standing. In particular, the
sensory contributions of vision, proprioceptiongd arestibular sensation to standing balance have
been extensively investigated and applied in dihpcactice. In comparison, the sensory roles for
walking balance are not well understood, even thaugre than half of all falls in elderly groups
occur during some form of locomotion (Blake etl#8188; Gabell et al. 1985; Niino et al. 2000).

For walking, there have been very few analoguestanding balance tests, where senses are
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perturbed and the resultant balance correctionsra@sured (Oddsson et al. 2004; Wall et al.
2002). Furthermore, the dynamics of walking andditeg are different and therefore sensory
information may be used differently. Mechanical migdof walking indicate that lateral balance
is more difficult than fore-aft, likely the reversénormal standing. In Chapter 4 we examine the

visual contribution to dynamic balance during watkicontrasted to standing posture.
Background

From the inverted pendulum to passive dynamic walkig

Bipedal walking has traditionally been studied witthe inverted pendulum paradigm, where the
center of mass (COM) exchanges potential and kirertergy as the body rises and falls over a
rigid stance leg. Inverted pendulum walking modmie advantageous for their simplicity and
provide us with a conceptual understanding of hbe walking motion can be very efficient
(Cavagna and Margaria 1966). While these models® wiseful for conceptualizing efficient
stance limb behavior, they could not take a corepdttp. Tad McGeer was the first to bridge the
gap between the energy efficient inverted pendutomcept and powered robots that could
functionally walk. Inverted pendulum models did matve a swing leg and even so it was not
known what control or actuation had to be addegrtmuce a functional gait. In contrast, the
current approaches to walking robots used actuptaced at the joints to drive the limbs through
prescribed trajectories, creating a walking motiabhat the price of high energy and control costs
(Hirai et al. 1998). Taking his inspiration fromdgrs which maintain lift and fly under gravity
power alone, McGeer examined whether the simpleayn modes of coupled pendulums and
gravity power were enough to produce a passiveaacwalking motion. He demonstrated that the
natural pendulum motion of a stance and swing @gnected by a pin joint at the hip could
produce a motion remarkably similar to human legioms during gait. With the appropriate
dynamic parameters he found that impact of the gvigiot at heel-strike was sufficient to reset
the walking cycle and produce a stable gait (McG&90b) without the need for control and
little energy input. Garcia et al. simplified thmeodel further to an irreducible limit, such thag th
inertia of the legs converged to zero relativehiat of a point mass pelvis, and demonstrated that
this model retains passive stability even thoughdhly parameter is slope (Garcia et al. 1998).
Rigid legged passive walkers have not only sensdrgportant tools for studying the stability
and control of walking (Alexander 1995; McGeer 1pBait have also made powerful predictions
about the mechanical and metabolic cost of walkiBigch models have produced substantial
predictions validated by human walking experimestsch as the preferred speed-step length

relationship (Kuo 2001), which is largely comprisgfdthe cost of producing longer steps (Kuo
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2002a) and cost of swinging the leg faster (Dokal.e2005). These models have also predicted
the cost of taking wider steps (Donelan et al. 2G01d suggested why humans save energy by
creating a roll-over shape with their foot (Adanmkzy al. 2006).

However, even passive dynamic walking models laekability to reproduce basic features often
measured in human walking, including a significdouble support period and non-pendular
ground reaction forces. Passive walkers have ioacily relied on sequential impulsive

collisions, labeled push-off and heel-strike, tansfer momentum from the stance leg to the
swing leg. Double-support is then modeled as amitatimally small event. The stance leg of
these models are also rigid such that the COM maoes the stance foot as an inverted
pendulum, and the leg produces force normal todifection of movement. Consequently, the
COM trajectory follows an arc of constant radiidatte stance leg performs no work on the
COM during single support. Both of these featulask of double-support and pendulum kinetics

during single support, fail to resemble those ahho walking.

Passive dynamics and compliance in human gait

Compared to passive dynamic walking models, hunegs lappear remarkably compliant.
During normal walking, double-support compriseswaetn 10% and 30% of the gait cycle
(Murray et al. 1984) and the extension of theitigileg performing push-off and compression of
leading leg experiencing heel-strike experiencaii@ant overlap. Though pendular motion is
significant, the limbs also perform work on the C@Mring single support such that the ground
reaction forces and COM trajectory look differemtr those produced by an inverted pendulum.
Since the work performed on the COM during singlpp®rt cannot be explained entirely by
pendulum motion, it is reasonable to assume thatwiork on the COM may derive from the
extension and compression of legs. In fact, thecéffe leg length changes significantly during
walking (Lee and Farley 1998) by bending of theeiaed ankle joints, and compressing tissue
such as the pads of the feet or cartilage in theekSuch movement may have an associated
stiffness or elasticity from active and passive ceiproperties and compliance of the tendons
and ligaments. The movement would also likely havdegree of damping from joint friction,
padding of the foot, and motion of visceral andyfaissue. Limb compression is advantageous
because it extends the double-support period, wieduces peak impact forces during heel-
strike, and allows events such as push-off to o@gura time scale over which muscle can
generate force. Some of these components, espetdtions, serve as energy storage and

release devices, reducing the need for musclesaupe positive work and thereby metabolic



cost (Alexander 1990). Research has shown thatgmifisant portion of push-off work is
performed by tendon (Fukunaga et al. 2001; Ishikata. 2005) and it is the ankle extension in
push-off that appears to be responsible for thersébiump of the ground reaction force seen in

normal walking (Pandy and Berme 1988).

Human walking is controlled with feedback from an aray of sensory organs

Three groups of sensors are thought to have primesgonsibility in locomotion as well as
posture control: proprioceptors, vestibular organsl vision (Horak and Macpherson 1995).
Proprioception provides the perception of movemand spatial orientation of the body
segments. This sensory pathway is largely dominaiedanuscle spindles, which are located
within muscle and are sensitive to stretch, prawgdiirect information about muscle length and
the rate of length change. Two types of vestibwagans provide information regarding
movement of the head. Semicircular canals areddaatthe inner ear and detect angular velocity
of the head by sensing the viscous motion of fluithin the canals. The otolith organs contain
sets of hair cells coupled to crystal-like masgses @&t as linear accelerometers. Vision provides
information about rotational and translational raotof the visual field relative to the head. Other
visual cues such as optic flow and motion parailso provide information about heading and
orientation (Bardy et al. 1996, Warren et al. 20D4¢se three sensory pathways are thought to
contribute to the control of walking because a weaf studies have shown that stimulation or
inhibition of the proprioceptive (Mazzaro et al.020, vestibular (Fitzpatrick et al. 1999, Harris et
al. 2000), or visual system (Bardy et al. 1996, aet al. 1996, Harris et al. 2000, Warren et al.
2002) affect the stability of the walking motiondéor ability to follow a desired trajectory.

Sensory feedback is processed by a series of hierhical motor control loops in the
spinal cord, brainstem, and forebrain

More complex sensory information is used at eacleessive level to generate motor commands
that specify more complicated aspects of the lodcmmdask. The lowest level of control arises in
the spinal cord which is also the final pathway &tir motor control signals. The spinal cord
contains neuronal circuits that mediate a varidtjooal reflexes and rhythmic patterns which
make use of proprioceptive sensory feedback. Tdnghination of reflexive and rhythmic circuits
is thought to pattern the basic walking motiongaiglenced by the fact that spinalized cats can
produce stepping patterns that resemble normalingalovely et al. 1986). The next level of
the motor control hierarchy is in the brain sterheTrain stem partially acts as a relay center,
modulating the behavior of reflexive and other apicircuits through projections to the spinal

cord, and integrating inputs from the cerebralexarfhe brainstem also contributes to the control



of more complex but automatic movements such asctmrol of posture and balance by
integrating visual, vestibular, and proprioceptiméormation. The cortex is the highest level of
motor control and produces highly complex movememsstly of a voluntary nature, by
projecting directly to the spinal cord and reguigticircuits in the brainstem. This level is
primarily responsible for initiating locomotion andnticipatory control, such as obstacle

avoidance.

Sensory feedback is also weighted differently depdimg on task and context

Evidence suggests that humans weight propriocegaresory information differently during
walking and standing. During normal standing, Milora applied to the various muscles of the
lower leg, which activates stretch receptors, causesignificant tilt in whole body posture,
whereas this stimulation causes no significant geann the walking motion (Courtine et al.
2006). Evidence also suggests that sensory infavmamay experience phase dependent
modulation during locomotion. When galvanic ved@ioistimulation was applied to subjects at
either heel strike, mid-stance, or toe-off, resgtfoot placement was dependent on the time
when stimulation was delivered. Changes in footgmaent were significantly larger at heel
contact than when stimulation was delivered at stéthce (Bent et al. 2004). Reflexes driven by
proprioceptive signals also appear to be phasicatigulated during the gait cycle of walking

and during repetitive arm cycling (Zehr 2005).

Imperfect sensing and physical disturbances make ontrol more difficult

Individual sensors provide incomplete informatidooat the motion of local body segments and
are subject to noiseéSensor noise is present due to limits on sensory precision mss of
accuracy by transmission of sensory informationdgh multiple synapses and along axons (Kuo
2005). Sensory information is also incomplete inesal regards. The sensors act as filters
because they have dynamics: for example, the semlar canals act like high-pass filters and
information is lost when low frequency content eamoved. The sensors may also only be
sensitive to certain types of motion: for examghe otilith organs only provide information
about linear acceleration and not velocity or posit Information from the otoliths is also
ambiguous in the sense that they cannot distingbetiveen gravity and linear acceleration.
Individual sensor information can also be inconmliet a global sense since information about
joint movement and head movement must be combingddvide a sense of body orientation.
Physical disturbances are random external pertorisathat cannot be predicted or corrected for
ahead of time such as experience when walking mveven terrain. Motor output variability also

contributes to uncertainty and represents randoictuations in muscle force in response to a
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motor command. We collectively refer to random [tsis disturbances and motor output
variability asprocess noise. This sensor and process uncertainty is signifiearen for healthy
persons and often magnified due to locomotor inmpaints or aging (van Beers et al. 2002, Horak
et al. 1989). Control theory may offer insight inpmssible neural strategies used during
locomotion, especially given knowledge of theseantain conditions under which locomaotion is
achieved. For example, direct feedback can comperisa process noise but is not robust to
sensor error. Such a control strategy would mafectuse of sensory information and be highly

sensitive to sensor noise or sensor conflict amt emstable when these sensor errors are large.

Feedback control can be distinguished from sensomyrocessing

We define sensory processing as the act of contisinaping, or filtering raw sensory signals
received directly from sensory afferents with the @f improving their quality or translating
them into a more useful representation. Examplesidie removing noise or unwanted frequency
content from sensory signals or combining sensdigrination from many local joints to produce
some representation of whole body motion. We defeexback control as the act of using
sensory information to generate motor commandsdarao control the dynamic behavior of the

body and create an intende”
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Figure 1.2. A generalized motor control diagrdantorporating
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: . _muscles to contract which produces movement throtingh bod'

feedback. In  this part:'“:“gmdynamics. Motion is detected by body sensors. SgrsEgnals fror
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sensors, which are corrupted kcopies of the motor commands. The processed seirgorynation it
noise, are processed or fiIterethen translated into motor commands by a feedbanital strategy.

by some neural components, which may have accestetence copies of motor commands. The
processed sensory signals are then used for fdedbatrol, which translates processed sensory
information into motor commands. The particulardiegck control strategy and type of sensory

processing are selected by the nervous system loastitk task at hand, external variables, and



prior experience. In this diagram, it is possiliiattno sensory processing takes place, whereby

sensory signals are used directly to produce numtormands (direct feedback).

Rhythmic control of the limbs during locomotion

The presence of rhythmic pattern generating csclatated in the spinal cord has been well
established in vertebrates over the past centumgsd circuits are thought to contribute to the
basic walking motion, as evidenced by the fact fpatalized cats can produce stepping patterns
that resemble normal walking (Grillner and Walle@8%). However, over time, the role of
feedback in generating these rhythms has beema @iodebate. Charles Sherrington was one of
the first to demonstrate that decerebrate catsdcprdduce basic stepping motions and largely
attributed these motions to reflexes (Sherringt®hl). Sherrington proposed that simple reflexes
are the fundamental units of movement and that texrasks are produced by combining these
reflexes. Around the same time, Thomas Graham Bralem isolated the spinal contributions of
the stepping pattern (Brown 1914). However, he dbdhat spinalized cats could produce
stepping motions even when the afferents fiberewet, suggesting that sensory feedback was
not necessary to produce rhythmic motor behavibes€ two competing ideas, central versus

peripheral generation of rhythmic behavior, co-®dshrough much of the 9@entury.

By the mid-1980’s research emerged that demondtrabéuntary movements and even more
stereotyped movements such as walking could be letadp following de-affererentation
(sensory feedback channels blocked or severed)piiKret al. 1963, Rothwell et al. 1982,
Marsden et al. 1984). From these findings emergedcbncept of the motor program, a set of
pre-constructed motor commands that contain theecomuscle activation sequence to complete
a movement in the absence of sensory feedbackadtsuggested that motor programs, and not
reflexes, are the fundamental component of movenistacKay-Lyons 2002). Today, the
presence of spinal neural networks that productéhnhig motor commands even when isolated
from afferent feedback is well established for egdanumber of vertebrates (MacKay-Lyons
2002). For example, isolated spinal cords from a&®mats are still able to produce fictive
locomotor signals even when afferent fibers areseatited (Grillner and Wallén 1985). These
neural networks are generally referred to as “edrattern generators” though this naming is
largely the product of studies in invertebrates ighbe specific pattern generating neurons can
be isolated. In humans, the existence of centrdéagenerators is still under speculation and
most of our understanding of how they apply to hosnég drawn as extensions from other

vertebrate models.
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With the discovery of central pattern generatorapleasis shifted toward feedforward motor
pattern generation and away from patterns creabélysthrough reflexive sensory feedback
pathways. However, sensory feedback is known tg plaimportant role in normal behavior
(Cohen 1992), and feedforward control alone is kmdw perform poorly in the presence of
disturbances. Furthermore, when limb dynamics hadetabolic cost of a motion is significant,

movements are also likely to be more efficient whawen by sensory feedback.

Despite our evolving comprehension of the neurahmanents of movement, we still lack a
framework to understand how sensory feedback shibellgrocessed and combined with more
feedforward components to produce efficient andiste movements. We are left with two ideas
about CPGs that are seemingly at odds: 1) CPGseaduce feedforward rhythmic bursting

activity even when sensory feedback is remove@ P} oscillation can be entrained or modified
with sensory feedback and this feedback is imporfiannormal movement. However, modern

control systems have long used an approach caliée estimation to make use of feedforward

and feedback behavior for processing sensory irdtiom and responding to disturbances.

State Estimation

State estimation is a method for processing serisfwymation whereby states of the system to
be controlled are estimated by filtering sensosdfmck and copies of motor command signals
through an internal representation of the systemadhjcs (Figure 1.3). Optimal state estimation
control is known to make ideal use of sensory mi&tion in the presence of both sensory and
process noise. A state estimation controller is prised of an internal, forward model that
estimates system statds,and the associated sensory outfuiestimates are denoted by the hat
symbol). The internal, forward model predicts tlextnstate of a system given the current state
and an efference copy of the motor commandihe estimated states are then used to time and
scale a control inpuy, for feedback control. Errors in sensory predittig are used to update
the internal model through an estimator feedbadh, ga In the terms of human locomotion, the
system states would be represented by a set of btatgs that describe joint motion and
movement of the head, the sensory output woulcepeesented by a set of firing patterns of the
sensory organs (vision, vestibular, and proprideeptind the control input would be represented
by a set of motor command signals sent to muschedeU this interpretation, the estimator
feedback gainl., would represent the weighting of sensory infoiaratThis control scheme can
be described by a linear set of differential equej (1)-(4), which model the dynamics of the

body, the sensors, and the estimator or interndleindlso modeled within these equations is the
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effect of sensory noise, represented as random unexpected errors addbd 8ensory inputs,
and process noisey, represented as unexpected forces applied to dbg. bf x represents a
vector of body states aryda vector of sensory inputis,will be manifested as a matrix of sensory
weightings. The major task when developing a stsmation controller is determining the
estimator feedback gaih, which determines how strongly estimation errqudaie the internal
model of the body states. There are many contrategjies for choosinl, but the optimal state
estimator, or Kalman filter, design approach intipafar has been shown to minimize the
variance of the estimation error (Simon 2001). Riaman filter was originally developed for

spacecraft navigation but today is used in a graaéty of controls applications.
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Figure 1.3. Diagram of a state estimation contrctiesne. A state

estimation controller is comprised of an interrfatward model that

estimates system state$, and the associated sensory outpjit,

(estimates are denoted by the hat symbol). Thenateforward model

predicts the next state of a system given the ntrsgate and an
efference copy of the motor command, u. The eséithatates are then
used to time and scale a control input, u, for fee# control. Errors in

sensory prediction, e, are used to update thenaltenodel through an
estimator feedback gain, L.

In this design approach, the major determinanth@fsensory weightings are the stability of the
system to be controlled, the level of process nase the level of sensor noise. Optimal state
estimation control predicts that sensory weightings larger for sensory information
corresponding to unstable modes and smaller f@osgrinformation that is noisy. Essentially the
estimator feedback gaih, scales the controller between feedback and feedafd control. For
very large entries in the matrix, the internal model will nearly exactly liml the sensed body
state and the control would mimic the direct fe@ttbeontroller mentioned previously. If the
entries ofL are zeros, sensory feedback would be cut off hactcontroller would mimic a pure

feed forward controller. Intermediate choiced giroduce a controller somewhere between these
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two types of control, whereby sensory informatidee@iback) is filtered through an internal

model of the body dynamics (feed forward).

Most importantly, state estimation control desail®ow sensory information from multiple
sensors is processed and combined to provide iafosm about the states of the body. State
estimation does not imply how this processed sgnsdormation is used to generate motor
commands (feedback control strategy) nor what Istdies are used by the nervous system. It is
our basic hypothesis that sensory processing fenpeed during locomotion in a manner akin to
state estimation, where sensory information i®r@d through an internal representation of the

body dynamics.

Standing and Walking Balance

Scientific understanding of standing balance isemsive and guides clinical assessment of
balance disorders. The unstable orientation ofghpristance is known to be balanced by
corrective joint torques that are generated throfegdback control (Horak and Macpherson
1996; Johansson and Magnusson 1991; Peterka 208Rayessful control must ultimately
maintain the center of pressure (COP) within theebaf support or else risk a fall. While a
portion of this control presumably involves spinallexes (Allum 1983; Carpenter et al. 1999),
active control must also be performed by highettersnsuch as the brain stem and cerebellum,
where vision, vestibular sensing, and proprioceptce integrated and processed for controlling
the body center of mass (COM) motion relative te slupport surface. These sensory channels
are all known to contribute to this feedback beeaheir stimulation elicits body sway and COP
movement (see review by Peterka 2002a). The evadalso suggests that the sensory channels
are weighted differently depending on the task @@and Nashner 1982; Fitzpatrick et al. 1994),
quality of the sensory channels (Mahboobin et @052 Oie et al. 2002; Peterka and Loughlin
2004; Speers et al. 2002) and age (Peterka anét B&80). Sensory weightings are quantified in
postural experiments by perturbing the sensorytsypauch as through movement of a support
platform, visual field, and galvanic stimulatiomdameasuring resultant balance corrections, such
as changes in COP, kinematics, or muscle actiBiych research has contributed to the
development of quantitative clinical measuremeptsassessing sensory and balance deficits.
Perhaps the best known is computerized dynamicupmgiaphy, which selectively removes or
renders inaccurate vision and ankle propriocepéind quantifies postural responses. The test
data can be used to objectively identify and digtish a variety of sensory and motor

impairments that affect balance control. This taoluseful for the diagnosis of vestibular
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disorders, since these patients are generally amablveight visual sensory channels (Peterka
2002a; Peterka and Benolken 1995). Not only afergifiit sensors weighted differently, but even
a single modality such as vision can contain midtgitributes that may themselves be weighted
differentially (Streepey et al. 2007a). Vision isnsitive to multiple directions of visual field
motion (Movshon et al. 1985), and the importancethadse directions may depend on the
dynamics of the task or the degree of feedbacklig@ion that must be provided by the central

nervous system.

The sensory contributions to walking balance hagenbless significantly explored and it is
unclear as to what outcomes should be measuredsiess this balance. As in standing, the
inverted pendulum motion of the head, arms, ansbt@HAT) must be stabilized (Winter 1995)
and oscillations of the visual field are known maluce upper body sway during walking (Bardy
et al. 1996; Warren et al. 1996). Posture contdikely coupled with gait frequency (Kay and
Warren 2001), however, it is unclear to what dedg#@d dynamics affects whole-body walking
balance. Foot placement may be more important sipocamic balance is minimally achieved by
redirecting the motion of the whole body COM asprpis transferred from one leg to another.
The location of the swing foot at heel-strike sfipaintly affects this redirection (Donelan et al.
2001; Kuo et al. 2005; McGeer 1990b). However, sgnaveightings for walking balance
measured from foot placement are difficult to iselbecause foot placement can be used to steer,
adjust speed, and balance the body. Galvanic sttioal (Bent et al. 2004; Jahn et al. 2000),
muscle vibration (Courtine et al. 2007), and shdtsthe visual field (Jahn et al. 2001) cause
subjects to veer away from an intended straighh.pbt these cases one cannot assign these
outcomes to balance corrections or the adjustmieheading or speed. To isolate the effect of
foot placement on walking balance, an experimergtrensure that subjects do not significantly
change heading or average speed over time. Typictdierapists must rely on functional
measures of walking performance, such as abilitwatk with narrow step widths, with eyes
closed, or while rotating the head back and fadhgualitatively assess walking balance. Other
functional tests such as a 5m timed-up-and-go (l8dG) and Dynamic Gait Index (DGI) are
useful for assigning a measureable score and gnéfisantly correlated with risk of falling in
elderly groups (Morris et al. 2007; Whitney et 2004). However, there has been no clinical
analogue to the dynamic posturography test to ga#imely assess the sensory contributions
related to walking balance. If the sensory requaets for walking are very different from
standing, diagnosing sensory balance impairmenthsdbased on standing tests may be

incomplete.
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Mechanical walking models and human walking studieew that dynamic stability may be
different from postural stability, and that implieisual and other sensory contributions may be
different. Two-dimensional passive walking mode#s avalk down an incline without active
control of foot placement. In these models, the ioation of pendulum limb behavior,
collisions, and gravity power are sufficient to ¢gwoe stable, periodic walking motions
resembling human gait. These models suggest thaiabsive properties of the limbs may largely
dictate and stabilize the basic stepping patterthénsagittal plane (McGeer 1990b) and that the
nervous system need only supply energy and sufijoaly weight. Three-dimensional passive
walking models (see Figure 1a) retain passive lgiabi the anterio-posterior (AP) direction but
are unstable in the medio-lateral (ML) directionu(K1999). Some degree of high level active
control would therefore necessary to balance lateranot sagittal motion. In the frontal plane,
active control of lateral balance would likely ihve visual and vestibular sensation and the
integration of these sensory inputs with propridicepin higher centers such as the brain stem
and cerebellum. Experiments in human subjects stigghat the lateral walking motion is
stabilized by lateral foot placement or adjustn@fratep width (Dean et al. 2007b; Donelan et al.
2004b) and that vision is used for guiding thistfpacement (Bauby and Kuo 2000a). In the
sagittal plane, passive stability of foot placemeotld be gained indirectly by reflexive and
rhythmic circuits in the spinal cord which make a$@roprioceptive sensory feedback to support

body weight and supply energy to the gait.

Such stability contrasts with normal standing, vahis unstable and requires high level neural
control in both the ML and AP directions. Howevempirical evidence indicates that standing is
more unstable in the AP direction (Anand et al.20@arigold and Eng 2006). Standing stability
may be altered with changes in foot placement gondition. The tandem or Sharpened Romberg
stance, where the feet are placed heel-to-toékely lto have reversed directional stability. Imsth
case, the AP direction, which now has a much laibgse of support is the more stable direction

compared to the ML direction, which has a reducasklof support.

15



Aims

This thesis will use passive dynamic principlestiady motor control schemes that pattern and
supply energy for the basic walking motion and itebwalking balance through corrective foot
placement. We will represent these specific aspefctbe walking task with reduced dynamic
walking models. These walking models are complitarough to produce specific features of
the walking task but simple enough that feedbatdsraan be generically represented. In the case
of generating the rhythmic walking motion, we ussimple model with legs that extend and
compress like linear springs to reproduce and sthdymajor features of sagittal plane walking
motions (Chapter 2). We then compare walking amthing gaits produced from the same model
and offer insight into how these dynamic modesdifferentially produced (Chapter 3). We also
show that a state estimation scheme can be usegptain sensory processing within control
loops responsible for generating this basic walkpagtern (Chapter 4). To represent the
balancing task of walking, we will use a simple BBssive walker which maintains balance
through active lateral foot placement. We demotsstitzat visual sensory information is weighted
based on predicted requirements of active stabizaby applying low frequency visual

perturbations to human subjects during treadmilking (Chapter 5).
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Chapter 2. Passive Dynamic Walking on Axial Compliat Legs

Abstract

Rigid legged walking models cannot reproduce btesatures observed in human gait, such as a
smooth COM trajectories and significant durationtloé step-to-step transition. These models
also cannot account for the timing and amount ofkwzerformed by the legs during gait. We
analyze a simple passive bipedal model that usiedlyarompliant legs to gain these features.
The addition of springs at the end of the legsltesn a smoother walking motion with a finite
double-support period where positive and negatieekwoccurs simultaneously. A variety of
walking and running gaits can be produced by varyrnwo stiffness parameters and adjusting
initial conditions. The total mechanical energytloé model is closely correlated with speed and
leg and hip spring stiffness parameters can be tsetine the stance and swing periods,
respectively. Analysis of model stability revedisittthere are three neutrally stable modes and
one critical mode that is unstable when gaits destnate symmetry. Dissipation and leg mass
stabilize non-symmetric walking gaits but requia@senergy source to replace dissipated energy.
Arcs added to the feet reduce this cost and aressacy to extend the speed range of walking
gaits beyond 1.4 m/s. For a model with arc feetlig® 30% leg length), moderate damping
(damping ratio = 0.1), and an anthropomorphic ntissibution of the legs, the cost of transport
is only 20% that of a human, suggesting that astielavalking robot could gain stability at low
energetic cost. Assuming that positive work donghgyleg springs is analogous to active work
performed by muscle, we show that the cost of periftg work on the center of mass over a step
is similar to measurements recorded in human walké#t normal walking speed, the model was
able to predict the work performed during the pafhand collision phases within 8% and 2%,
respectively. Push-off and heel-strike work cambeimized by 18% with choice of an optimal
overlap of the push-off and heel-strike phasesgasting that gait parameters such as duty factor

can be tuned for energetic economy.
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Introduction

Inverted pendulums and passive dynamics

Bipedal walking has traditionally been studied witthe inverted pendulum paradigm, where the
center of mass (COM) exchanges potential and kirertergy as the body rises and falls over a
rigid stance leg. Inverted pendulum walking modmie advantageous for their simplicity and
provide us with a conceptual understanding of hbe walking motion can be very efficient
(Cavagna and Margaria 1966). Passive dynamic walkiadels further expanded this concept by
adding a dynamic swing leg to the inverted penduldicGeer demonstrated that passive
pendular motion of a stance and swing leg and igipeilcollisions at heel-strike are sufficient to
reset the walking cycle and produce a stable ¢aitGeer 1990b). Passive models have also
proven to be useful for making testable predictiaheut the energetics and control of walking
(Kuo 2001).

Rigid legged models, however, fail to produce aificant double support period or account for
the timing and amount of work performed by the lelysing a step. Passive walkers have
traditionally relied on sequential impulsive calhiss, labeled push-off and heel-strike, to transfer
momentum from one rigid leg to another. Double-supps then modeled as an infinitesimally
short event. Given a rigid stance leg the COM mowesr the stance foot as an inverted
pendulum, and the leg produces force normal todirection of movement. Consequently, the
COM trajectory follows an arc of constant radiidaite stance leg performs no work on the
COM during single support. Both of these featulask of double-support and pendulum kinetics
during single support, fail to resemble those ofmhno walking. Adding degrees of freedom
(DOF) to these models seems to be the obvious apiprim order to achieve these features but
may obscure conceptual understanding if the moeebtnes too complex. The question remains:
Can we add features to rigid legged models and lgaiman-like kinematics and kinetics and still

retain a conceptual understanding of how the mpreluces these features?

Leg dynamics of human gait

Compared to passive dynamic walking models, hunes lappear remarkably compliant.
During normal walking, double-support compriseswasn 10% and 30% of the gait cycle
(Murray et al. 1984) and the positive work produdeding push-off and negative work during
heel-strike experience significant overlap (Kuo at 2005). Though pendular motion is
significant, the limbs also perform work on the C@Mring single support such that the ground

reaction forces and COM trajectory look differemirh those produced by an inverted pendulum.
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Since the work performed on the COM
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during single support cannot b -0.05 0 0.05

explained entirely by pendulun
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the feet or cartilage in the knee. | Figure 2.1. Elastic behavior of the leg can be

terms of developing a more human-lik  approximated by viewing the vertical ground reactio
) . force in comparison to leg extension/compression
walking model, this knowledge (representative subject data for 10 steps at 1.29. m

suggests that it makes sense to inclu The slope of this curve at a time point represelnnts
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step (MS), and toe-off (TO) are marked on subjetad

be reasonable to approximate le and cartoon inset of vertical force w.r.t time ower
behavior with a single leg stiffnes period of ground contact.
parameter. Rather than modeliny
individual stiffness or muscle force at each joitsingle global leg stiffness can be used to
characterize the interaction of the force produsgdhe legs and the movement of the center of
mass (Holt et al. 2003). This global leg stiffnessomes apparent upon viewing the relationship
between vertical ground reaction force and vertdiaplacement of the center of mass (Figure
2.1) during normal walking. A linear relationshipttveen these variables was originally used to
justify modeling running as a spring-mass systeraNidhon and Cheng 1990). In walking there
appear to be two regions that demonstrate a liretationship between force and displacement,
which coincide with the double and single suppdrages. The double support phase appears
roughly twice as “stiff” as the single support phashich is reasonable for two leg springs
approximately in parallel. Perhaps the best justtion for using a single leg spring to model leg
actuation is knowledge that a model with lineasitity along the leg already works well for

running (McMahon and Cheng 1990). Since the samehamécal system (the leg) is used by
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humans for both walking and running, it seems nealle to also model walking with compliant

legs.

We propose that adding leg extension/compressiaturfies with an associated stiffness to
previous rigid legged walkers will produce gaittfgas that more closely resemble those of
human walking. While real legs are made up of battive (muscle) and passive (tendon,
ligament, etc.) components, we will approximate tfe@bal behavior of the legs as that of a
passive linear spring. Indeed, several attemptsoakeling parts of the walking cycle indicate that
human-like movements and forces are produced bygddasticity to the legs (Alexander 1992;
Geyer et al. 2006; Siegler et al. 1982). Howevhesé models all prescribed aspects of the
walking motion in some way. For example, Alexanderiodel of compliant walking prescribed
the force profile under feet. The axial legs irstimodel then only acted to filter the interactidén o
the force profile and center of mass. The modeleler et al., produces a robust space of
walking and running gaits by modifying only threarpmeters. However, this model does not
incorporate swing leg dynamics and sets the anfjlattack of the leading leg at heel-strike.
Incorporating this type of control in a walking mibwould require high-gain feedback to
accurately target the angle of attack at each $te&k. Humans do not appear to use end point
control to fix the angle of attack, as will be latghown in Chapter 4. We believe that
incorporating swing leg dynamics are beneficial édaploring what minimal level of control is
necessary to achieve a walking gait. Actuation lsarsimply added to the hip in the form of a
passive torsional spring which speeds up the Hation of the legs (Kuo 2002a). By
modeling the motion of the swing leg and treatimg torsional stiffness as a model parameter we
can create a mechanical cost function for forcegyl deving (Kuo 2001) and examine how

speeding up the oscillation of the swing leg aBegdit parameters.

We seek to determine whether the walking motion loarcompletely determined through the
interaction of elasticity and passive dynamics. I§sia of this model will incorporate parameter
studies, stability analysis, and work principletatiag to energetics in order to gain a better
understanding of the principles governing biped kivgl. Foremost, we are interested in
understanding how the addition of elasticity witkie passive dynamic walking framework will

allow a more faithful representation and understamdf human walking.
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Methods

Model

We present a compliant walking model that is capalblclosely approximating a variety of gaits
by varying a small number of model parameters aitéhi conditions. The compliant dynamic
biped walking model (Figure 2.2) is comprised gfoint mass at the hip, two legs with mass and
rotational inertia and mass-less arc feet. Axialngis are located between the legs and feet and a
torsional hip spring connects the two legs. Alltleé mass in the model is assumed to be above
the legs' axial springs. As should be expected fotimer compliant walking models (Alexander
1992; Geyer et al. 2006), our model is capableroflycing a wide-variety of locomotion gaits,
including walking and running, simply by varyingetimitial conditions and model parameters of
the gait. As will be demonstrated, the type of geaitl gait parameters, such as speed and step
length, determine the energetic and stability pridge of a movement cycle. Our analysis will
focus attention on the dynamics of the model wittals leg mass and point feet, but we will
consider parametric effects of adding inertia aisgdigation to the legs. We will further focus on
results from the analysis of walking-like motionsdawill refer to similar analysis for running

gaits. The following chapter will broaden our arsadyto an array of gaits including running and

skipping.

The generic model has 6 degrees of freedom, ameftine 6 position states and 6 velocity states,
as well as 7 physical parameters to be varied.pbséion states ang the horizontal location of
the pelvis,y, the vertical location of the pelvigyg, the angle of the stance leg with respect to
vertical, 0y, the angle of the swing leg with respect to vaitidy, the extension of the stance leg,
and dg,, the extension of the swing leg. At minimum, thed®l requires only two physical
parameters; the stiffness of the leg sprikgy, and the stiffness of the hip spring,. This
simplification results when the inertia of the ldgsassumed to be very small compared to the
inertia at the hip. In a human, the leg stiffnesysresents the average stiffness of the stance limb
during ground contact. The hip stiffness is repnestéve of the average effort about the hip to
force leg swing. Other physical parameters alscidened includeM,, the mass of the pelvis;
M, the mass of the leghk; the rotational inertia of the legs;the distance along the leg between
the foot and leg mass center; anthe radius of the foot. Finally, to consider tmmsequences of
dissipation, we also added damping to the leg gpriwith damping ratig. To balance energy
lost to dissipation, we added two sources of energyt: potential energy in the form of a slope

y, and a thrust coefficient;, that pumps energy into the leg springs in thesédalf of the
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Figure 2.2. The compliant passive walking model siaslegrees of freedom (middle): the angle of the
stance and swing leg8y and 6, the displacement of the axial leg spring; and ds,, and the
horizontal and vertical location of the pelvisandy. The model also has seven physical parameters
(left): axial leg stiffnesse, torsional hip stiffness,, (right): mass of the pelvis/,, mass of the leg,
M,, rotational inertia of the legs, the distance along the leg between the hip agdnass center,
and the radius of the foot, When the leg inertia and radius of the foot asenirreducibly small

(left), the model is greatly simplified and onlyshavo physical parameteis,; andK,

contact period. All parameters and states are moestsionalized by total mass, leg length),,

and the gravitational constangt,

Our model combines the features of previous rigithepomorphic passive walkers (McGeer
1990b) with the added feature of elastic leg extanand compression. It should also be noted
that our model is very similar to the model usedMmpGeer to describe passive dynamic running
(McGeer 1990b), with the added capability of sintinka simultaneous contact of both feet
(double support) and generic transitioning betwaantact phases. If the mass and rotation inertia
of the legs are made irreducibly small (for limstmass approaches zero), the model converges to

a compliant version of the simplest walking modeaicia et al. 1998).

We found that gaits are not unique for a giveno$etiffness parameters. If speed is fixed, there
are a finite number of different walking and rurgigaits. Allowing speed to vary, there are an
infinite number of fixed point solutions, acrossrange of speeds. In previous rigid legged
models, the gait speed was determined by an erigynce between that lost during the heel-
strike collision and energy added by a slope oruisige push-off. With small leg mass and

conservative leg spring behavior, this energy ldaa implicitly achieved and thus elastic gaits

exists over a range of speeds. Energy is consdrgeduse the heel-strike collision axial to the
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leg transfers energy safely to the leading legngpaind negligible energy is lost from the impact
of the small leg mass in a direction normal toldge To narrow our analysis and find unique gait
solutions, we chose to add an additional paramtterpverall mechanical energy of the model,
E, which will be shown to closely correlate withespl. This parameter sets a bound on the
available initial conditions for a set of stiffnessues, with the result that only two walking gait
exist for a given set of parameters, a symmetri¢ @am asymmetric walking gait. As will be
explained later, these gaits have very similariahitonditions but very different stability
properties. Symmetry simply implies that the motafrthe gait looks the same whether viewed
forwards or backwards in time. Since a stance fi@gsttions to swing by smoothly leaving the
ground (toe-off), symmetry requires that the traosifrom swing back to stance mirror toe-off
and also be smooth (non-impulsive). As was foumdafpassive bipedal runner (McGeer 1990a),
symmetric gaits conserve energy, even with sigaifideg mass. When adding dissipation to the

model, symmetric gaits disappear, but asymmetiis géll exist.

A reduced model is used when simulating singledoubles support phases. The 12 model states
(6 position, 6 velocity) reduce to 8 and then Zeipehdent states as ground contact constraints are
applied when one and two feet are on the grourspheively. The number of independent states
is reduced further by the condition that a legrapris locked when that leg is off the ground.
Therefore, there are 6 independent states durimgiessupport and 4 independent states during
double support. The initial conditions of a stefjak occurs at the beginning of double-support,
are therefore fully described by the four stafés, 6,,, x y]. These states are similar to those
used to describe the initial conditions of a spmmgss runner, with the added statg, to
describe the position of the swing leg (McMahon &iteng 1990). While these initial state
variables are useful for visualizing the rectiline@aovement of the COM, we found that another
set of initial conditions, [Bst Oy Ot Sst] are more useful for interpreting the resultant
eigenvectors from stability analysis and comparihg relative amounts of spring-mass and

inverted pendulum-like behavior.

Simulation
Differential equations describing the motion of #tmmpliant legged model were created using
the Dynamics Workbench, an equation of motion gatoerdeveloped by Art Kuo. The state

vector,x, is comprised of the position statgsand velocity states,

e=[1 g
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whereu = ¢g. The differential equation describing the motidnhe system is simply

. u

= [u] @
whereu is given by

[M] - [u] = [F] (3)

In Equation 3M is a mass matrix that represents the spatial loigton of the mass of the model
andF represents conservative force components suchaggygand spring forces. The equations
of motion are listed in the Matlab code in Appengi®. While these differential equations as a
whole may appear complex, they simply describe rn@/ement of a system of coupled
pendulums bouncing on a spring. The portion ofEV associated with the force produced by
the spring was modified to add damping. The dampmefficient,B, will be determined based

on the damping ratid, of the mass spring system and the leg stiffnEgadtion 4).

{= B/\/4Kleg (4)

The presence of leg springs also introduces a mé&rhaby which to perform some level of
active control, whether by feedback, feedforward,aocombination of the two, and thereby
maintain a steady walking pattern and speed whempuotg and large physical disturbances are
present. By controlling the set point of the legrags, energy can be added to or removed from
the system, thereby compensating for energy fltictus: from disturbances and damping. The set
point may be adjusted to add energy by increasingproportion to the stance leg angle in the
second half of the gait cycle (Equation 5). Thepprtional constant;, will be labeled the ratio
of thrust, as in (McGeer 1990a).

e {0 5 ®
Real-time control of the leg spring stiffness coalsio serve as a means of active control but will
not be explored here. With combined damping andcstahrust, the new stance leg spring force
will be calculated by Equation 6 with the trailihkgg spring force calculated similarly during

double support.

Fy = _Kleg (85t —6p) — B - Sst (6)

24



Walking simulations were developed to integrateafeations of motion, handle discrete events
such as heel-strike and toe-off, and apply a smootmpulsive transition to the next continuous
phase. For example, when the force produced bytr#tiéing leg falls to zero during double-
support, the model recognizes a toe-off event amabghly transitions to single support, applying
a ground contact constraint for the stance leglaoking the swing leg spring in place. It is
important to note that we do not prescribe an ofderwhich the gait events must occur, a
method typically used t constrain possible gaitedpced by a model. During single support, the
stance leg force may fall to zero, initiating a stotransition to a flight phase or the swing leg
may contact the ground, in which case the simutatvdl solve for an impulsive collision with

the ground, and then transition to double support.

Repeatable gaits or limit cycles were found usifgst-order Newton shooting method, which
linearizes the step-to-step functidfx), about an initial guess for the fixed point. Thepsto-step
function calculates the model states at the eral siEp, %1, given the initial condition states at
the start of a step,XEquation 7). This function is

determined by simulating the model dynamics Xsg = F(xk) (7)
(integrating the equations of motion) through an

. . o xX'=F(x) (8
entire step (from heel-strike to heel-strike). idit

cycle is achieved if there is an initial conditiof, Xepy = F(XD) + oF (x)
¥ ox

XJ(Xk _XD) (9

such that Equation 8 is satisfied, in which cefsés

labeled a fixed point. The step-to-step transition DX, = oF (x)

o A% = AlAX,  (10)

function is linearized around the fixed point
(Equation 9) through a first order Taylor expansiBy substituting Equation 7 into 9, we can
solve for matrix A (Equation 10), which is the Jaiem of the step-to-step function. This
Jacobian is then directly used in a shooting metioockduce the error betweep and x.; to
zero. To find a fixed point solution, the Jacobiancomputed iteratively until convergence.
Similar root finding methods were used to adjustitodel parameters to find gaits with specific
speed, step length, and duty factor parametersomyereport gaits for which a limit cycle could
be found but did not exclude gaits based on anpilgyarequirement. Unstable gaits were
previously excluded from the gait analysis of aikimcompliant walking model (Geyer et al.

2006). We believe this restriction likely limitssanificant parameter space of viable gaits.

Typically, these search methods are rather seagitithe initial guess condition, and a bad guess

can prevent a solution from ever being found. Eigpere has given us the following rule of
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thumb to find an initial estimate. It is usuallyeapiate to step ahead to the time period at the
middle of double support and assume a rough symymétren,x can be set to the desired
forward gait speedy to zero. The leg angle$,, and 6, can be of equal and opposite
magnitude and set by the desired step lergythuch thakin 65, = s/1.9. From there, one can
forward simulate the rest of the step to recovenaasible set of initial conditions after heel-

strike. The initial conditions can then be useduiite Newton shooting method.

The dimensionality of the system can be furtheuced by choice of energy and symmetry
constraints. Though 4 initial states are necesgadefine the conditions at the beginning of a
step, we need only search through three statésdméw gaits when energy, E, is assumed to be
fixed. Given the initial state®;, 8,,, andy, the gravitational and elastic potential energgl an
vertical kinetic energy may be calculated. Withatanechanical energy fixed, we need only
assume the remaining energy to be horizontal kirextergy to solve fat. The search space is
further limited to two states when searching fameyetric gaits, in which casgeis known to be

zero at the middle of double support.

The eigenvalues of the Jacobian matrix can alsadeel to assess the local stability of a limit
cycle. In relation to walking balance, the mosteayahdefinition of stability describes the ability
to “not fall down” when moving through an environmieof disturbances. This stability is
presumably obtained by actively rejecting distudemnand imbalances through neuromuscular
control. However, this definition allows no quaative description of stability and is only
assessed after failure has already occurred. Wejuahtitatively describe stability by calculating
the local asymptotic stability of the passive dyimamalking models used in this paper. Local
stability refers to the ability to reject small widbances, or disturbances that don’t move the
model very far from the state about which the é$itgbivas calculated. The eigenvalues of the
Jacobian matrix are used to describe this locdlilgtaof a gait about the fixed point. The
eigenvalues provide information about the factomiyych a perturbation grows or decays at the
next step. An eigenvalue with magnitude less thaty suggests that a perturbation shrinks over
successive steps and indicates stability. An eiglelev greater than one suggests that the
perturbation will grow with each step and will euasdly cause the model to fall down if it is not
attracted to a nearby stable gait. This stabilityasure is useful for suggesting where active

control would be needed to stabilize unstable mag@gnst small disturbances.
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Results

Axial leg compliance makes model dynamics more humdike
We found that the addition of springs at the entheflegs results in a smoother walking motion
with a finite double-support period and characteriground reaction. We first searched for a

walking gait that had typical gait parameters foatdhormal walking speeds (speed = 1.25 m/s

(0.4), step length = 0.69 m (0.69), duty

0.60; nominal units

(dimensionless units)) and found

factor =

symmetric and non-symmetric gait fc
these parameters. These gaits will fro
now on be referred to as the ‘nomina
gaits. We used known initial condition
from the simplest walking model o
Garcia et al. at the same speed and s
length as a starting point. Details of tF
model parameters and initial conditior
of these gaits are provided (Table 2.
along with a depiction of the motion o
the model while walking over a complet
stride (Figure 2.3). Without directly
comparing these motions with actui
human data, at first glance we note th
several features appear that a
gualitatively similar to observed huma
walking gaits: 1) The COM motion is
smooth and continuous, 2) The stan
not leg does not remain rigid while
supporting body weight during singl
support, 3) Support is transferred froi
one leg to another over a significal

portion of the gait cycle, i.e. doublt
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Figure 2.3. Model kinematics and ground reaction
forces for a nominal walking gait at 1.25 m/s. A®s
from the cartoon (top), the COM motion smoothly
oscillates up and down as the limbs continuouslyngw
back and forth. The model states (middle) reveal a
similar story, where the legs switch between ireert
pendulum and pendulum behavior in the stance and
swing phases, respectively. The COM also exhibits
spring-mass behavior along the direction of the. leg
Ground reaction forces (bottom) exhibit a charastier
M-shape in the vertical direction and Z-shape ia th
horizontal direction. Inset are similar force trace
produced from a rigid legged walking model for
comparison.

support does not occur instantaneousuy,

4) The vertical ground reaction forces are charestieally double peaked.
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Table 2.1. Model Parameters of Nominal Gaits

E Kieg Kp r

Symmetric Model Parameters 1.05 22 3.96 0

Non-symmetric Model Parameters 1.05 22 4.54 0

Speed Step Length Duty Factor
(Double Support)

Model Gait Parameters 0.40 0.69 0.60 (0.20)

Dimensional Gait Parameters 1.25 m/s 0.69m 0.6m§0

We define the start of the walking cycle as theetippint immediately after the leading foot
touches the ground and becomes the new stancendging the beginning of double-support.
During double-support, the velocity of the COM isedted upward as the trailing leg spring
extends, performing positive work, while the leaglag spring contracts and performs negative
work. Double-support ends and single support begsmghe trailing leg leaves the ground,
determined by the conditions that take-off occuremthe trailing leg force vanishes. During
single support, the trailing leg swings from th@ lais a pendulum. During this time, the hip
moves over the stance foot as an inverted pendwhiie also bouncing on top of the stance
spring. Since the legs are relatively close toiearduring normal walking, the bouncing motion
or displacement of the leg spring largely resemtilescharacteristic double-humped shape of the
vertical ground reaction forces seen in normal humvalking. Both single support and the step
end when the swing leg makes contact with the gtoaimead of the stance foot. A stride is
complete after one more step where the model retorthe original configuration at the first heel
strike. It should be noted that we neglect the flaat the swing leg moves through the ground at
the middle of single support. This is an acceptabllewance considering that adding knees

would eliminate this problem without the need fddiional control (McGeer 1990c).

Compliant walking gaits are defined by speed, stelength, and duty factor

While gaits of previous rigid legged models haverb&illy defined by speed and step length, the
compliant model also requires some descriptionhef amount double support to sufficiently
describe a unique gait. We define the double suppemiod as the fraction of a step for which
both legs are in contact with the ground. In thaper, we use duty factor to describe the amount

of leg contact because it will be later useful &80 describing running gaits. Duty factor is
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defined as the fraction of a stride over which ¢tence leg contacts the ground and is related to

the fraction of double support (Equation 11).

Tas =2 Tgr— 1 (11)

A duty factor greater than 0.5 implies a periodiofe exists when both legs are in contact with
the ground. A duty factor less than 0.5 implies thg@eriod of flight occurs between successive
leg contacts. Increasing duty factor past 0.5 galyeresults in a greater percentage of positive

work from push-off and negative work from heeldgtrthat are performed simultaneously.

Compliant walking model reproduces timing and shapeof human kinetic traces
over a step but over-exaggerates amplitudes

While modeling the legs with elastic compliance eally produces features resembling a
walking gait, it remains to be seen how well thedei@mpproximates the actual kinetics measured
during human walking. More specifically, we ask wWier adding a spring in series with a rigid
leg will produce accurate ground reaction forcesit@ning well with human data) and if not,
what additional model features are necessary toawepthe approximation. Correlation between
kinematics measured from human data and those mesh&om the model is a simple way to
evaluate the power of our simplification that glbbey behavior during walking can be well

approximated by a simple linear spring.

We compared the ground reaction force and indititiod COM work rate curves (Figure 2.4)
produced by the compliant walking model with puislid averaged human walking data (Donelan
et al. 2002a). Both curves reflect the effort prshl from an individual leg over a stride. We
measured the rate of work performed on the modeVi®® each leg using the individual limbs
method (Donelan et al. 2002b), defined as the veddd product of each leg’s ground reaction
force against the COM velocity. We used the nomgzat with a speed of 1.25 m/s, step length
of 0.69 m, and duty factor of 0.6, to compare witiman walking data at 1.25 m/s, step length of
0.70+0.03 m, and approximate duty factor of 0.6e Tdround reaction forces produced in
simulation appear to match the qualitative featofele human forces, most notable producing a
double-humped pattern on the vertical ground ford@ée vertical forces of the springy walker
show a much larger difference between the maximertical force and the vertical force at mid-
stance than the human data, resulting in largeursians of the center of mass, as also observed
in Geyer et al. Comparing the horizontal forces, itiodel again qualitatively matches the human
shape profile with negative force in the first halfstance and positive force in the second half

but again over-exaggerates amplitude.
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We also discovered that compliant legs individugrform work on the COM similarly to
humans during normal walking. The model, like humamroduces the four distinct phases of
COM work: collision, preload, rebound, and push-dfhe collision phase begins after heel-
strike, when the leading leg accepts the weighthefbody while compressing, thus performing
negative work on the COM. In the first half of dmgsupport the leg extends under load,
producing positive work in rebound. In the secoralf tof single support, the leg again
compresses under load, performing negative wokr@oad. Finally, just before heel-strike and
throughout double support, the trailing leg lengthas it releases the load of the body, producing

positive work in push-off. The COM work performed

in each of these phases can be found by calcula Time (\//g)
the area under the instantaneous COM work r 0 I 2
. . . 1.5
curves over the time period of each phase. In pusvi 800
rigid legged models, the total negative wo % 600 1.0 §‘
g a
performed on the COM was equal to the negat g 400 ?( f\lr 05 @
- [=4
work performed during the collision. For th % 20(:) ou"?
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compliant model, and human walking, the tot < 05 e
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negative work is the sum of the negative wo 3 200 S
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performed during collision and preload. Likewidee t © 200
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in rebound and push-off. Accounting for th ‘:":9 Human '
o
additional work performed during rebound ar § 200 01 ¢
on o
preload may be important when using the model ?g’ 0 0%
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predict how metabolic cost might change acrc %‘ g
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different gaits. However, like the ground reactic ; z
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much greater excursions about zero than does '
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human data. These excursions, basically the bogm,:igure 2.4. Comparison of ground reac

up and down of the COM on the stance spring, woforce and individual limb COM work re
curves fromaveraged human subject dat:

likely match the human data better if the springd [1.25 m/s (Donelan et al. 2002a) withose

. R produced from two elastic modeds the sarr
damping and other features such as significant gait parameters. Comparede reduced elas

inertia added to the model. However, we first exgldnodels with point feet and arc feet of ra
0.3.Model curves show strong correlation v

the simple solution of increasing the arc radiushef human data but adding an arc foot gre
improves the correlation of the model

foot from zero (point foot). human data
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Arc feet increases the comparison with human kinets

Simple passive dynamic walking models predict tieatirection of the COM velocity during
double support requires step-to-step transition kwarhich decreases quadratically with
increasing arc radius of the foot. Work requirerseggcrease with increasing radius because the
distance between the points of contact of the hepdind trailing leg during double support
decreases with radius, reducing the angle througichathe COM velocity must be redirected.
An extreme example occurs when the radius of tbedquals leg length. In this theoretical case,
no work is required to redirect the body at heskstbecause the body transitions between
continuous modes of rolling. Experimental work iar dab tested this hypothesis by attaching
rigid arc shapes of various radii to the bottoms@ifi boots worn by human subjects (Adamczyk
et al. 2006). They found that mechanical work penfed on the COM did decrease by a
guadratic power law for increasing arc radius. Tiee metabolic work rate also decreased with
increased arc radius to a minimum of 0.30 (express®e a fraction of leg length) and then
increased for larger radii. This metabolically athzgeous radius of 0.3 was also previously
found to be produced as an effective ‘roll-over maof the knee-ankle-foot in human gait
(Hansen et al. 2004).

With sufficient experimental justification, we adbl@n arc radius of 0.3 to the model and
searched for gaits that again matched the spesullesigth, and duty factor of the average human
data. Remarkably, adding a significant radius ® fdret was sufficient to drastically reduce the
excursions of the force and power traces (Figul). Zor example, the point-foot version
produced 75% more work during collision than therage human subject. By adding arcs to the
feet the collision worked dropped to within 2% bEethuman data, suggesting that an arc foot
compliant walking model can somewhat accuratelyiptethis mechanical cost of human gait.
The push-off work for the arc foot model is alsahii 9% of the human data. However, the arc
foot model exceeds the rebound work of the humaa loig 120%. The other measured amounts
of work performed by the models in each of the fgait phases are compared with the human
data in Table 2.2. The overshoot of rebound worklma explained by the undamped elasticity of
the leg springs. In the compliant model the wordoiced in the four phases are closely coupled.
For example, the amount of positive work perforrhgahe spring in rebound is dependent upon
the amount of energy that was stored in the spdagng the collision phase. A similar
correlation is found in human gait, whereby theoreid work increases with the collision work

(Kuo et al. 2005). Adding damping to the leading $pring could potentially leave the total work
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performed during collision relatively unmodified tbteduce the amount of available spring

energy to be returned in rebound.

We also calculated correlation coefficients betwdenmodel and human data traces (Table 2.3).
While the correlations with the point mass foot mlodiere quite high, adding arc foot to the
model improved all of the correlation coefficientsat least 0.93. Despite the large forces and
work rate produced by the point mass foot compliaodel, the force and work rate profiles
generally matched the shape of those producedeblguiman subjects, evidenced by the relatively
high correlation coefficients. This result suggebts the point mass model does at least account
for the timing of force and work production, thougbt the amplitude. It is worth it at this point
to note again that we did not ‘tweak’ or optimibe tmodel parameters to find gaits that closely
matched the human data or reduce the error bettheen We simply searched for model gaits
that matched the average speed, step length, agdfakior of the human subjects and used
whatever model parameters were required to achi@se gait parameters. The closeness of the
model and human data found by matching gait pamenséighlights the usefulness of this model

for comparing experimental human data and modeltses

Table 2.2. Comparison of individual limb COM wonk four phases of gait for two compliant walking
models and averaged human subject data at 1.25/allges are in non-dimensional units of work. Value
in parentheses indicate the percent differencedmtvthe model and corresponding human measurement.

Phase Collision Rebound Preload Pushoff
Human 0.0232 0.0067 0.0124 0.0250
Point Foot Model 0.0405 (75%) 0.0379 (465%)  09D3205%)  0.0405 (62%)
Arc Foot Model  0.0228 (2%) 0.0148 (120%)  0.01430%) 0.0228 (9%)

Table 2.3. Correlation coefficientR, between ground reaction force and individual li@®M work rate
curves produced from two compliant walking modeld average human subject data at 1.25 m/s.

Vertical Ground Horizontal Ground COM Work Rate

Reaction Force Reaction Force
Point Foot Model 0.93 0.99 0.85
Arc Foot Model 0.99 0.99 0.93
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Effect of Parameters

Three system parameters,, K4 and E were varied individually about those of tteminal
walking gait (Figure 2.3), while the other paramgtsere held constant. For each new parameter
combination, we found a fixed point or set of mliticonditions using a first-order Newton
shooting method. Results of varying these parametemait properties are shown and discussed
below. Walking gaits were found for a small rangeergy values E = [0.99, 1.10] and a large
range for the spring constantg ¥[1.1, 25.0], and K, = [2.2, 49.3].

The effects of the changes in model parametersitialiconditions are reported in Appendix 2.1
and summarized here. The amount of energy in teysignificantly influences the horizontal
velocity of the COMx, which grows with increasing energy and is closeated to forward
speed. The magnitude of the leg angles and therstep length also increases with E. The leg
spring stiffnessKie, predominately affects the vertical velocity oét6OM and the angle of the
stance leg at heel-strike. As the leg spring becost#fer, the vertical velocity of the COM
increases (decreases in magnitude) and the antiie sfance leg decreases. A shallow stance leg
angle is needed to balance the effect of incredsipgtiffness on overall vertical stiffness, such
that the vertical COM velaocity is re-directed wjitoper timing (McMahon and Cheng 1990).The
stiffness of the hip spring has the largest contper@ffect on the angle of the swing leg and to a
lesser degree the horizontal velocity of the COMe Whd that the angle of the swing leg

increases as the hip spring becomes stiffer.

Speed is determined by varying the energy parameter

Overall, our parameter study suggests that addireggy to the gait is the simplest way to
increase the speed of the model (Figure 2.5). Bnapgears to have a significant effect on the
walking speed, step length, and magnitude of tlbargt reaction forces. Since the stride period
remains relatively constant as speed increasesuggest that increasing the energy increases the
walking speed largely through an increase in seth. Besides increasing walking speed,
increasing the energy of the system also incretieegportion of energy associated with spring
compression. The increase in spring compressiaensonstrated by the fact that the maximum
vertical ground reaction force (Appendix 2.1) alstreases with energy. Since the leg stiffness is
held constant, we associate the increased growutioe forces with increased excursion of the
COM along the length of the spring. We can attebilte larger peak ground reaction forces to
longer steps which require larger push-off andigioth work, and thus more energy stored in the

springs and larger spring deflections. The diffeeebhetween the maximum and minimum ground
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reaction force increases with peak force simplyabse the average force over a stride must equal
body weight. The period of leg swing appears taléeoupled from the energy parameter while
the stance period shows some decrease over thgyersmnge. We can likely attribute the
decreased stance period to the increase in stgthleand thus the difference in leg angles during
double support. In running gaits, the verticalfsébs increases with leg angle for constant leg
stiffness (Farley et al. 1993; McMahon and Chen8§0)%nd leads to decreases in period of
stance contact. Walking then appears to show dasitnend, whereby the stance period and thus
step period decreases naturally for faster speeds.
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Figure 2.5. Gait parameters as a function of vast#thess and energy parametetsiding energy to tt
gait is the simplest way to increase the speedhefrhodel. The stance period and thus step ¢
decreases naturally for these faster speeds. Bkjipgaits naturally appear for large enemyysmal
stiffness values and can occur over a range ofdspékhe stiffness parameters show a lesser affa
speed for normal walking gaits. Leg stiffness pritgadetermines the frequency of the sprimgs:
oscillation (middle inset) and thus adjusite stance period. Leg stiffness provides littlatom over thi
swing period. Consequently the stride period alsorehses with increased stiffness. The hip sti€
parameter predominantly determines the period afig\wy adjusting the natural fregucy of the swin
leg (right inset), with this period closely corngld to oneaalf period of the oscillation. Hip stiffness shc
much less of an effect on stance period, and thereftride period also decreases for increase
stiffness. Nominal gait (E = 1.05, Kleg = 22, K{3:86) marked by ‘0’.
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Faster walking speeds lead to skipping

We also see that for increasing energy, the wallets end around a speed of 0.45.(4 m/s),
because at this point the stance leg begins te @/ ground at mid-stance (force at mid-stance
goes to zero) (Appendix 2.1). Inverted pendulum el®aan approach a theoretical maximum
speed of 1§ 3 m/s) before the required centripetal force apphhes gravity, lightening the
contact force at the foot, and causing the pendutuleave the ground at mid-step. The pendular
motion of the compliant model is also similarly sgelimited; however, in this case the
centripetal terms act on the undamped spring-masieniThese combined effects allow a large
portion of the stored energy from the collision gdéo be released during rebound for fast speeds
(centripetal), for large heel-strike collisions rigg-mass), or a combination of the two. The
amount of rebound can be sufficient for the modeleave the ground at mid-stance, even at
speeds below 0.2, for gaits that store sufficiertrgy in the stance spring during collision. In our
parameter study these slow speed gaits were famidw leg stiffness values (Figure 2.5). The
end of the walking gaits, where the stance legdsdke ground around mid-stance, is marked by
the beginning of the skipping regime. We found thatontinuing the simulations into the flight
phase after the stance leg leaves the ground #owlireg the stance phase to resume once the
stance foot returned to the ground, we could siteusan entire step of skipping. Limit cycles
were found for a range of skipping gaits. Generalkipping gaits are found by following some
increase in stance compression, usually accomglidghe increasing step length, during the

collision phase and continuing that change aftemtiodel leaves the ground during stance.

Arc feet and leg mass are necessary to extend theeed range of walking gaits

It would be useful for the model to walk at fastpeeds to study a larger range of bipedal gait.
The speed limit of 0.45 is well below the walk-tmrtransition speed of 0.7% .2 m/s) for a
typical human. Extending the speed range of th&inglgaits would be especially important for
robotics applications that exploit compliant leGese machines could adopt a skipping gait at
faster speeds, but we generally find this gait @éoebergetically costly and rather unstable. If
skipping were energetically advantageous at soreedsppetween modest walking and running
speeds, we would also expect this gait to be moewatent in nature (lively toddlers not
withstanding). It would likely be more energetigaihvorable to exploit the model parameters in
some way to extend the speed range for increasiegye. Entering the skipping regime is really
a matter of storing too much energy in the stapecig during collision. Increasing the stiffness
of the hip spring can reduce step length for reddyi constant speed and therefore cause collision

work to increase more slowly than if energy wereréased alone. However, we found that
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increasing the hip stiffness with energy providethimal improvement in the walk-to-skip
transition speed (0.47). Adding an arc foot to thedel may be a better choice since it was
already shown to drastically reduce the energyestan collision. For an arc foot radius of 0.3
increasing energy still leads to an increase irg@pleut skipping does not occur until an E of 1.13
and speed of 0.55¢(1.7 m/s). By adding leg mass to the arc foot maodigh approximate
anthropomorphic inertial parameters (c = 0.63%,=M.16), this speed range can be expanded
past 0.60. Centripetal effects of arm and leg naggear to similarly impact the speed range of
human walking (Kram et al. 1997). However, thisespés still below the walk-to-run transition

speed of 0.71, suggesting that damping may benestjfor even faster speeds.

Two stiffness parameters determine step frequencyna duty factor

The stiffness parameters are most useful for adgishe timing of the stance and swing periods.
Leg stiffness shows little effect on the speedhef gait within the walking regime. At very low
stiffness values, the model takes on a slow spkipgiag gait with large double support periods
that borders on forward hopping on both legs. Atitpgsleg stiffness appears to be more useful
for patterning the gait parameters at a particsjgged. We can best understand the effect of leg
stiffness by considering the spring mass motiothefCOM along the stance leg during a stride.
The spring mass motion is largely determined byntdterral frequency of the mass with respect to
the leg spring, especially for slow speeds, andIstep lengths (small angle approximation). As
speed increases, the oscillation of the leg spengso affected by the pendulum to which it is
coupled (ex: centripetal effects grow with speddte relationship between the natural frequency
of the spring-mass system and the actual frequesfcycompression/extension is further
complicated by the double support period, when l@gpsprings engage the COM motion, and
approximately double the apparent stiffness. Howeve can largely approximate the oscillation
of leg compression as being correlated with thHénsss of the leg spring and we might estimate
the overall frequency of oscillation to be betwéas natural frequency of a single leg spring and
the natural frequency of two springs in parall@r khcreasing leg stiffness, the frequency of the
axial leg motion increases (inset Figure 2.5) dmal geriod over which the leg completes two
compression extension cycles, the stance periottedses. In contrast, leg stiffness has little
effect on frequency of leg swing and thus the gnglipport period remains unchanged. For
decreasing stance period and relatively constairigsperiod, both the duty factor and stride
period decrease with leg stiffness. Thus step keigytalso reduced for increasing leg stiffness

with the relatively constant speed over the leffngtss range.
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As with leg stiffness, the hip stiffness parametey, provides little control over the walking
speed. The stiffness of the hip spring largelycffehe other gait parameters through the natural
frequency of swing leg oscillation. In contrask thther parameters showed very little control of
the swing leg motion. The swing period decreasesfeyuency of leg swing increases as hip
stiffness is increased (inset Figure 2.5). Howethax,frequency of leg spring oscillation remains
largely unchanged. Duty factor and the double stipjpaction then increase with hip stiffness
largely by decreasing the step period for relagivanstant stance period. Intuitively, larger hip
spring stiffness will speed up the motion of thergnleg, causing heel-strike to occur sooner and
earlier in the push-off phase. For a stiffer hipirsgp the step frequency increases while the

walking speed remains relatively constant.

We can compare the swing period of the model wids¢ of a freely swing inverted pendulum.
For an inverted pendulum with the same inertiapproes as the swing leg, the period of one half
cycle is inversely proportional to the natural fregcy of the pendulum (Equation 12). When

comparing this theoretical period with that prodlibg the model, we found that the

T
toy = w
Sw
Wn,sw

(12)

nsw= 1+Kp

swing period is almost entirely defined by the fwlfle period of the free motion of an inverted
pendulum. This finding was similarly found for aspeve running model (McGeer 1990a), and

implies that the spring-mass motion has very liffect on the swing leg dynamics.

In summary, we found that the overall speed ofgai is simply determined by the mechanical
energy in the system set by the initial conditiohs.increase speed, one need only temporarily
inject energy into the gait to achieve a new stestdye for the same stiffness parameters. The
stiffness parameters largely adjust the gait pat@rseat a given speed and this effect can be
understood by a relatively decoupled spring-massamalong the leg and pendulum motion
about the hip. We can think of the leg stiffnessadpisting the frequency of the spring-mass
mode or period of stance duration and the hipr&d$ as adjusting the frequency of the inverted
pendulum mode or swing period. The actual init@lditions are also just as important as energy,
which only sets a bound on the initial conditiogée have only considered walking gaits so far,
but as we will show later, choice of initial condits for constant energy adjusts the relative
amplitudes and phasing of the spring-mass and pemdmodes and largely explains the

differences between walking and running gaits.
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Humans may increase leg and hip stiffness for incesing walking speed to adjust
metabolic cost

How might humans adjust these parameters for fasédking speeds? We have shown that
simply increasing the energy of the gait is enot@increase speed and step length. However,
increasing energy by itself leads to a set of gaith excessive step length that fall far off the
known preferred speed-step length relationshipa(dat shown). Humans tend to walk faster by
increasing both their step length and step freqguenoerefore, the stiffness parameters must also
likely be adjusted for increased speed. The relahgp between model parameters is very
complex and we found no simple rule that falls @ydriori that would tell us specifically how to
adjust the stiffness parameters with energy to thxdollow the preferred speed-step length
relationship. However, we do have a general idea these parameters individually affect the
gait parameters. To follow the preferred relatiopsBtep frequency must increase with speed
and therefore leg or hip stiffness must also inseeaEither parameter could be used to increase
the step frequency, but increasing them togethemwal the duty factor to remain within an
allowable window. Recall, & and K, have opposite effects on duty factor. We did fthelt
increasing Ky and K, by a rule of thumb 4:1 ratio generally maintairgkdy factor within a
narrow window. However, further adjusting thefatifss parameters relative to one another could
be used to advantageously adjust duty factor wited. Duty factor does decrease for faster
walking speeds in humans (Murray et al. 1984) andsdso more drastically than can be
explained by the model for increasing energy aldmeés result emphasizes that leg stiffness may
increase with walking speed since using leg stifénalone to increase step frequency would
result in increased duty factor. Increasing leffretss with speed may then distinguish walking
from running, which is thought to maintain relativeeonstant leg stiffness over a range of
running speeds. This hypothesis has yet to bedtesggerimentally in human subjects. However,
it is also important to emphasize that adjustmétegstiffness or hip stiffness is not required fo
walking at faster speeds but may be adjusted basesbme other criteria such as choosing a

preferred step length and duty factor to minimizgabolic cost at a particular speed.

Stability analysis reveals three neutrally stable mdes and one critical for stability
Stability analysis shows that the model is gengnadlutrally stable given conservative behavior,
but there is a critical mode that can lead to lnitg. Rigid passive walkers are locally stabbe f

a subset of parameter values and initial condititms$ are generally sensitive to large
disturbances. It would be beneficial for a comgdliamalker to also demonstrate some level of
passive stability to minimize the requirements &ative stabilization against disturbances.

Stability information is gained through a lineatiaa of the step-to-step function about a fixed
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point and calculating the eigenvalues and eigevedf the resultant Jacobian matrix. Analysis
of a gait associated with normal walking shows tttee model has three neutrally stable
eigenvalues and one eigenvalue that is eitherestatinstable based on the symmetry of the gait
(Table 2.4). We find that two gaits exist for tseame model parameters: an unstable symmetric
gait and a neutrally stable non-symmetric gait.sTdifference in stability is derived from the

manner in which the swing foot hits the groundesltstrike.

The non-symmetric gait has one stable mode thatsseciate with the pendulum motion of a leg
over a stride (indicated by the sméJ} component in the eigenvector). Each leg moves rhoo
from stance phase to swing phase as the force timalgleg falls to zero. However, the transition
back from swing to stance may be very discontinuzased on the symmetry of the gait (Figure
2.6). In the non-symmetric gait the swing foot Hit® ground with both axially and normal
velocity, meaning that the swing foot experiencesnapulsive force in a direction normal to the
leg axis, abruptly stopping this component of viyoand enforcing foot contact. The collision in
the axial direction occurs over significant timechese the leg spring cannot transmit an impulse
along its axis. The impulsive normal force scateshie normal velocity of the stance foot, and

Table 2.4. Step-to-step stability of the walkimygle for a symmetric ani
non-symmetric gaitwith parameters E = 1.05, Kleg = 22 Kp = 3.96

Mode Speed Spring Pendulum

Symmetric Gait

Magnitude = Phase

Eigenvalue 1.00 0.99  +2.69 1.48
5 Ot 0.45 0.33  +1.58 0.47
5 O 0.39 022  +2.23 0.71
G 0., 0.36 054  +0.61 0.53
k=y
i St 0.72 0.75  +0.00 0.05

Non-Symmetric Gait
Magnitude = Phase

Eigenvalue 1.00 0.99  +2.69 0.68
5 Ot 0.48 0.33  +1.59 0.52
5 O 0.44 022  +2.26 0.67
G 0., 0.39 054  +0.61 0.53
k=y
i St 0.65 0.75  +0.00 0.11
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therefore provides a method for the dynamics toledg the swing leg velocity, even though this
collision causes no noticeable loss in energy &y wmall leg mass. Whether a perturbed swing
leg approaches heel-strike with too little or twaiahn velocity compared to the nominal limit
cycle, the results is the same, the collision #srdge motion of the swing leg. The new angular
velocity of the leg is then dictated by the COMogity normal to the leg. It is interesting thatsthi
stability is gained without energy dissipation, owito the fact that the leg mass infinitesimally
small. Adding mass to the legs would not be expgktieechange this stability, though it would be
carried out for significant energy dissipation. Anrsymmetric gait with significant leg mass
would then require the model to walk on a shalltaps or use some form of energy input.

In comparison, the symmetric gait has an unstaledplum mode along a very similar
eigenvector direction. For symmetric gaits, th@drgon from swing phase to is smooth because
the velocity of the swing foot is parallel to theglaxis (Figure 2.6). However, if this gait is
perturbed, the dynamics do not act to restorefismetry. In fact, for small perturbations the
gait will be attracted to the corresponding non-setric gait with the same model parameters
(Figure 2.6) over many steps. Thus the instabdityhe symmetric gait is not catastrophic for

small perturbations, meaning the model does nbtéain.

Both gaits have three eigenvalues with a magniafdeity. These three neutrally stable modes

of both the symmetric and non-symmetric gaits aeeyvsimilar and are defined by the

Symmetric ﬁ Non-Symmetric ﬁ
Heel-strike : Heel-strike

-0.5 0 0.5 -0.5 0 0.5
Leg Angle Leg Angle

o
(&

o
(¥, ]

Leg Angular Velocity
o

Figure 2.6. For a given set of parameters, twosgaitst that differ in the symmetry of the penduiéay
motion. In the symmetric gait, the velocity of ot at heel-strike (model on left) is parallelth® axis

of the leg, resulting in a smooth contact transitiBlowever, if this gait is perturbed, the dynantics
not restore symmetry, resulting in instability.the non-symmetric gait, the velocity of the foos Heth
normal and tangential components (model on rightheel-strike and the swing leg experiences an
impulsive normal force to arrest the swing leg motiThis impulse scales to the normal velocityhef t
stance foot, stabilizing the leg motion over ad&ri For small perturbations, the symmetric gait
converges to the non-symmetric gait over many steps
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eigenvectors associated with each eigenvalue. @ode is associated with the speed of the
walker and the other two associated with the vibnadf leg spring compression. These neutrally
stable modes suggest that the walking gait is sthbt not speed stable; that is, the walker will
not fall over in the presence of small perturbaiamd will respond by adjusting its speed and
step length. The neutrally stable eigenvalues arst likely present because the walker conserves
energy, that is, there is no way to dissipate gnadgled by a perturbation or disturbance. Energy
dissipation, in the form of stance spring dampinwguld likely stabilize the neutrally stable
eigenvalues, including the speed mode, and mowva thehin the unit circle. Thus gaits with
dissipation will have a unique steady state spedurbing along neutrally stable eigenvectors

should just change where energy is located andapsralso change the step length and duty

factor.
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Figure 2.7. Gait properties of the compliant walker increased damping of the leg spring. As the
damping ratio increases, steeper slopes are netmlembmpensate for the energy lost in spring
compression. Slope requirements are reduced witsraeg added to the feet. The stance, swing, apd st
period appear to be relatively insensitive to iased damping and slope, while the walking speed
decreases slightly. Root locus analysis showsiticatased damping and slope stabilizes the eigeesal
of the system relative to the undamped gait, dehbyethe ‘0’ symbol. Eigenvalues within the unitabe

are considered stable. Increased damping stabilieethree neutrally stable eigenvalues and mdwes t
stable eigenvalue closer to zero
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Damping stabilizes gait at energetic cost

Model stability could certainly be gained by addpassive dissipation, which is an inevitable
feature of any mechanical or biological system tuériction and viscosity. However, passive
damping comes at the price of the metabolic cagi@ated with restoring energy back to the gait
through active positive work. We will explore howrdping in the leg springs affects stability
and the energy expenditure. We searched for gaés @ range of damping ratios [0, 0.1]. For
reference, a system with a damping ratio of 0.kdobkalf of its amplitude over one cycle.
Damped gaits were found by slowly increasing damgpatio from zero for the nominal walking
gait while using the Newton search method to fintbsequent fixed points. Since damping
dissipates energy, either the slope or the stdmostthad to be increased for increasing damping
ratio to maintain energy balance. The Newton seailgbrithm was modified to also vary a
system parameter such that for a given damping,rdti simultaneously found the initial
conditions and energy input parameter (slope arcstdhrust) that produced a repeatable walk
gait. The other gait parameters, energy and thagptiffness values, were held constant with
values of K = 22.0 K, = 3.9598E = 1.0499.

Adding damping provided significant stabilizationtiwlittle modification to the gait parameters
(Figure 2.7). The slope parameter had to be ineckadth damping ratio to find repeatable
walking gaits, compensating for increased energy dlwe to dissipation. The cost of transport,
which is equivalent to the slope, then appeargdavdinearly with damping ratio. This cost can
approximately be halved when an arc foot of ra@i3sis added to the model, across the range of
damping ratios. While walking speed decreases tfighith damping ratio, the other gait
parameters such as stance, swing, and step pgumehiato be relatively insensitive to these
changes. As the damping ratio is increased, theetheutrally stable eigenvalues decrease in
magnitude and move within the unit circle. The mMidten becomes speed stable, such that only
one gait speed exists for each slope-damping catitbination. The other eigenvalue, which was

stable for the non-symmetric nominal model, istfartstabilized as well.

Adding leg mass alters energetics and stability afon-symmetric gait

While the assumption of negligible leg mass is plogsically realizable, as with zero damping,
we found that adding a modest amount of mass redjuielatively small additional energy
expenditure and even stabilized the walking motide. searched for gaits with leg mass over a
range of (0, 0.2] with an approximate anthropomarplositioning along the leg (c = 0.635). For

reference, a leg mass of 0.16 represents an aothphic scaling. Both symmetric and non-
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symmetric walking gaits were found by slowly ingirg leg mass from zero for the nominal
walking gait while using the Newton search methmdind subsequent fixed points. Since heel-
strike collisions normal to the leg dissipate egeiay significant leg mass, the non-symmetric
walking gaits were found using the modified Newsaarch that simultaneously found the initial
conditions and slope that produced a repeatablie get. Model parameters were then varied to
find gaits with the gait parameters of the nomiwalking gait. Here we only report gaits for

these constant gait parameters.

As the leg mass increases for non-symmetric gaitseasingly steeper slopes are needed to
compensate for the energy lost in impulsive he#testmpacts normal to the leg (Figure 2.8).
Recall, that the non-symmetric walking gait gaiome stability of the pendulum motion from an
impulsive collision that resets the leg motion eelkstrike. These stabilizing collisions come at
an energetic cost as leg mass becomes substddiahn anthropomorphic leg mass (0.16), a
slope of 0.017 is necessary to provide energy lbelaHowever, slope requirements are once

again greatly reduced when arcs are added to étebfe an approximate factor of 14.

To maintain constant gait parameters of non-synimegit, the model parameters had to me
modified linearly with leg mass (Figure 2.8). Had Imass been varied while holding all other
parameters constant, we would see a strong affethe gait parameters, mostly due to a large
change in the forward speed and frequency of leiggswror fixed gait parameters, the total
mechanical energy had to be reduced, simply réfigdhat potential energy and the kinetic
energy must fall as mass is redistributed towahdslégs to maintain the same forward speed.
With less mass at the hip to support, the legr&#f§ decreases to maintain the same stance
period. Hip stiffness, which we found to closelegict the period swing, increases linearly with
leg mass. By fixing the gait parameters we havecéffely simultaneously adjusted hip stiffness
so that the ratio of hip stiffness to leg mass, g swing period remains constant. So the effect
of leg mass itself is less important for maintagnthe gait parameters than the natural frequency
of the spring modes and the velocity at the hipe $iimmetric gait required similar changes to

model parameters but without a change in slope.

Adding leg mass affects the stability of the nomsyetric and symmetric gaits very differently
(Figure 2.9). For the non-symmetric gait, leg massbilizes the eigenvalues of the system
relative to the negligible mass gait, whereas tmensetric gait is further destabilized. Root locus

analysis of the non-symmetric gait shows that iaseel leg mass not only modified the
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eigenvalue associated with the pendulum mode lmat thle three neutrally stable eigenvalues.
Adding leg mass stabilizes the two neutrally stagnvalues of the spring mode. The neutrally
stable speed mode and stable pendulum mode metigi@a Wie unit circle at a mass of 0.08 and
remain stable for increasing mass. For anthropohiorfeg inertia properties, the model is
stabilized by an amount comparable to the modéi significant damping (damping ratio of 0.1).
For the symmetric gait, increased leg mass furdleestabilizes the pendulum mode, while adding
some stability to the spring modes. The speed mamains unchanged. Thus, increased leg mass

does little to change the nature of the symmetitigstability.

The symmetric gait has no energy loss even withifstgnt leg mass because of the conservative
elastic collision. However, this gait may not beysibally relevant for walking robots or humans
because any disturbance will cause the gait to rteaestable non-symmetric gait. The important
point then is that stability of the pendulum moden cbe gained for fairly small energy

expenditure even with anthropomorphic leg mass. ddst of transport was only 0.0012 for a
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Figure 2.8. Model properties for increased leg naasbsconstant speed, step length, and duty faBtothe
leg mass increases for non-symmetric gaits, stedppes are needed to compensate for the ehesgyr
impulsive heel-strike impacts normal to the legop® requirements are greatigduced when arcs
added to the feeflo maintain constant gait parameters for increakggmass, energy has to be redu
simply refecting that potential energy and the kinetic egeryist fall as mass is redistributed toward:
legs. Likewise, the leg stiffness decreases, a® tisdess mass at the hip to support, to mairtensam
stance period. Hip stiffness increases, to mairitagmratio of stiffness to leg mass and swing pkrio
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Figure 2.9. Leg mass affects the non-symmetric @mdmetric gaits differentlyEigenvalues within tt
unit circle are considered stable. Root locus aiglyhows that increased leg masabisizes th
eigenvalues of the system relative to the neglgiblass gait, denoted by the ‘o0’ symbol. Incredsed
mass stabilizes the three neutrally stable eigegahndnaintains stability of the pendulum mode. Fol
symmetric gait, increased leg mass furthestddilizes the pendulum mode, while adding somiilgtato
the spring modes.

model with anthropomorphic leg mass and arc febich is approximately 2.5% the cost of
transport in humans. From the dynamic walking pecpe, we would then suggest designing a
walking robot with relatively light legs that usassimple energy input to maintain speed, as
opposed to adding control to the swing leg to esd@ smooth conservative heel-strike collision.
The energetic and computational cost for contrgllsymmetry would likely exceed the small

amount of energy lost due from the non-symmetabitizing collisions.

Energetic Cost of Locomotion

The energy expenditure required to compensatedmpthg and leg mass cannot account for the
cost of transport measured in humans. To stalitieevalking gait we added damping at the cost
of energy expenditure. By adding leg mass we foairgimilar tradeoff. The cost of transport,
equivalent to the slope down which the model walkas at most 0.017 for a moderate damping
ratio of 0.10. This cost of transport drops to G®Avhen arc feet of radius 0.3 are added to the
model for the same damping ratio. For anthropomorf@g mass and similar arc feet, the heel-
strike impacts that further stabilize the walkingtran, only increase the cost of transport by
approximately 0.0012. While we have confidence um anthropomorphic leg mass estimation,
we do not know what damping ratio is appropriateejaresent passive dissipation performed by
the body during walking. However, we find that thedel cost of transport for moderate
damping and leg mass is still well below the cddtransport value of 0.05 measured in human

walking. Other factors such as damping at the di@g, and impacts of foot mass with the ground
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could increase the requirements for adding eneagk nto the gait. However, analysis of these
costs for a passive runner suggest that they ajlayitbe for the speed range of walking (McGeer
1990a). Energetic analysis so far has left a gawdsn the cost of transport measured in the
model and humans. But we have not accounted fokedoperformed by the leg springs to
redirect the COM throughout gait. In fact, we hgveviously only discussed the leg springs in
terms of its energy conservative behavior. Howetleg, compliant legs are meant to globally
represent the positive and negative work perforimediuscle, tendon, and compliant structures
in the leg. We could therefore prescribe some atergost to the work performed by the
individual leg springs. We have already shown that model can predict the individual limb
mechanical work performed on the COM during humait gith reasonable accuracy. Therefore
it makes sense that by accounting for this workskeuld be able to approximate the total
mechanical work performed for a gait. However, withknowing the efficiency of the leg when
producing this work we cannot prescribe a metabmist to the leg function. The efficiency of
the leg would be approximately 25 % if muscle waeeforming all of the work (Margaria 1968)
and move towards 100% if the work was performedrelgtby elastic tendon. Assuming a
constant fraction of work performed by muscle amadbn, we will simply use the mechanical

work performed by the model as some indicator diatmalic work.

Energetic cost of speed and step length similar wllision models

While the compliant walking model is meant to imggaipon existing rigid legged models, we
also seek to verify that it retains their saliestfires. Specifically, this model must make new
predictions while still verify the predictions mabg the rigid models. The previous rigid legged
models provided us with a framework to begin un@erting the competing energetic costs of
taking longer steps and forced leg swing. The sdinthese two costs produces an energetic
minimum at a certain step length, for a given spaed closely matches the preferred speed-step
length relationship in humans (Kuo 2001). We hdueaaly shown that, like the collision models,
the hip spring stiffness, largely affects the gtepod, and energy which is somewhat analogous
to push-off in the collision models, largely affe¢he step length. We will next show that the
compliant model makes similar predictions about &mergetic cost of taking longer steps,
assuming that the spring work is treated as cogdky.will not also verify the cost of leg swing
since adding an axial leg stiffness does not affieetswing leg dynamics from previous cost
models (Kuo 2001).
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Work-energy principles predict that the work rafegposh-off for the simplest walking model to

be proportional to step length to the fourth poased step frequency to the third power (Equation
12) (Kuo et al. 2005). Though this relationshipdierived under the assumption of impulsive
push-off and heel-strike, the same relationship hasn demonstrated in human walking

(Donelan et al. 2002a). We seek to verify the seataionship for our compliant walking model.

E o« MLAf3 (12)
E=al*+b (13)

An array of gaits for both the simplest walker @ptdingy walker were found over a range of step
lengths with a constant step frequency of 0.69. @liamt walking gaits were found by varying
Kieg » Ky and E, while duty factor was also held constar1.60. Two types of rigid gaits were
found, the first being a gait that applies an irspud push-off just before heel-strike, and second
a gait that uses gravity to supply the energy &gteel-strike. Rigid gaits were found by also
varying K, and the corresponding energy input parameter. Gantpvalking gaits were found
over a much smaller speed/step length range thanhé simplest walker, owing to elastic
rebound that results in skipping at higher spe€ls.relationship between step length and push-
off work rate is examined for both the simplest kealand the springy walker (Figure 2.10). As
predicted previously (Kuo 2002a), the gait powebsdgravity requires four times as much
energy as the gait that uses an impulsive pushFbfé result demonstrates that it is less efficient
to do positive work on the COM over the entire stéfhen modeled as impulsive forces, it is
then energetically advantageous to perform pushroffiediately before heel-strike. Since the
compliant walker produces a push-off over a fitimee before heel-strike, we would expect that
the work rate of push-off would lie between thattted two simplest models. Indeed this is the
case, for most of the step length range. The aloovees were fit to fourth order equations
(Equation 13), to evaluate how well they fit thesgetic equation above (Table 2.5) and to

compare the relationship between step length amld ke among them.
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The compliant model shows costs between the pusluod gravity powered models. For
increasing step length, a larger amount of pushaaffk (36%) is required for the compliant
walker than the impulsive push-off model, as evigehby the largea term. However, the
gravity powered model is still the most costly. Shésult is not unexpected, since the simplest
push-off walker theoretically uses the least amainvork to perform COM redirection during
the step-to-step transition. It achieves this munimby performing a short burst of push-off
immediately before heel-strike. We can attributenthattribute extra push-off work in the
compliant model to the fact that push-off occureroa period of time and substantially overlaps
the collision phase. Impulsive models of the stegtep transition indicated that it is more costly
to perform some amount of push-off after the sthfteel-strike, even if push-off is performed in
a short burst (Ruina et al. 2005). In fact, thet edgperforming two impulsive collisions doubles
when performing them simultaneously. By simply mgvisome overlap between push-off and
heel-strike, we would then expect the cost of pof§lin the compliant model to increase over the
simplest push-off model. Adding to the differencethe cost of performing push-off over

significant period of time and displacement,
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Table 2.5. Parameters of fourth order regressidnstap length and push-off phase work rate for the
simplest walking model powered by an impulsive pafhand gravity and an elastic walking model. All
models were compared at the same speeds and stghdeand constant duty factor (0.6) for the etasti
model.

E=al*+b R a b
Simplest Walker (Push-off) 0.994  0.0994 -0.005
Simplest Walker (Gravity)] 0.994  0.3975 -0.020

Springy Walker 0.999 0.1349 0.0092

O

=

at very slow speeds appears to be a charactasfstie model dynamics. Since the legs are not
rigid, the COM will always be moving back and foalong the stance leg to some degree, even
at zero speed. Even if one were to start the COlkerd vertical velocity for zero speed (legs
vertical), gravity would force the COM downwardspnipressing the spring, and requiring
positive work to raise the COM enough to allow tiext foot contact. This work can be reduced
for increasingly stiffer leg springs, though needéiminated. However, it is more likely that the
leg stiffness of an compliant walking robot woulel deesigned for faster speeds. Still, increasing
the rigidity of the leg would be advantageous aywow speeds and a method of locking out the
leg spring could be used to reduce the energy regeints. In this case a small amount of hip
torque could be used to replace the energy loshglahe collision phase. Hip torque powered
models have similar energetics as gravity poweraltevs (Kuo 2002a), and would appear to be

cheaper than an compliant model for very slow speed

Energetic costs depend on duty factor and are miniieed for nominal value

The compliant model also makes predictions aboetgnuse beyond those dependent on speed
and step length. We note that speed and step levagth sufficient gait parameters to uniquely
define a rigid walking gait. However, the compliavdlker is able to produce an array of gaits all
with the same speed and step length, over a rahgdety factors. We found that the duty factor
significantly affects the amount of work performieg the legs during the step-to-step transition
and over the entire stride. Undoubtedly, this neatdre is a result of compression/extension
capabilities of the springy walker, whereby the ement of the center of mass during double

support is less restricted by the location of #t,fwhich roughly sets step length.

We found an array of gaits associated with the nafrépeed of 0.4 and step length of 0.69, by

varying the model parameters (Figure 2.11). To pcedhese gaits with constant speed and step
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length, the overall system energy, E, and legr&#$, K, had to be increased while the hip
spring, K, was decreased. These trends follow those fourehwhe parameters were varied
individually. Recall that, increasingdg and decreasing fboth led to decreases in duty factor
but had opposite effects on step period (frequensid also find that the ground reaction forces
increase monotonically for decreasing duty facRecall that, increasing the system energy and
decreasing Kincreased the maximum vertical ground reactioedsr In rigid legged models,
the magnitude of the impulsive force applied athpo® is proportional to the amount of work
performed by that force. If this were true, we wbakpect that push-off work performed by the
leg would also monotonically increase with decnegsduty factor. However, both the push-off
work and total positive work calculated using thedividual limbs method demonstrate a
minimum in the middle of these gaits. The totalifpos work changes by up to 20% while the
push-off work changes by up to 17%. Since the miShvork calculated using the individual
limbs method was shown to be well correlated with $ame measures in humans, we suggest
that duty factor affects the energetic and metabmist of human gait. Duty factor may then be

optimized to reduce metabolic expenditure at argsmeed and step length.

Optimizing the amount of push-off work is equivalém a minimum amount of energy stored in
the stance leg spring just before the step-to{staysition, which is a function of leg stiffnessdan
leg compression (Equation 14). This quantity is $hene as the amount of energy stored in the
leading leg spring at the end of the collision ghdseg spring stiffness dominates the energy
equation at low duty factors and leg spring comgicgsdominates at high values, resulting in a

bowl shaped minimum in the energy stored in thangpr
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Eg = i : Kleg : 552t (14)

As duty factor increases above the optimal valess positive work from push-off is performed
on the COM before heel-strike begins and the abgteveen the leading leg and velocity of the
COM decreases. The decreasing angle results inegrisading leg spring compressions and
more negative work performed by the leading legrduthe collision phase. Push-off work then
also increases to balance the negative collisi@s@hvork and maintain steady walking speed. In
summary, we find that as duty factor increasesthod the simultaneous positive and negative

work performed during the step-to-step transitemgdoes the amount of spring compression.
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Figure 2.11. Duty factor can be independently aglgd by choice of model parameters but véttergeti
consequences. The array of gaits shown has fixegdspf 0.4 and step length of 0.69r increasing du
factor, energyE, and leg stiffness, i, must be decreased and hip stiffnesg, ikcreased to mainte
constant speed and step length (top). As duty faktoreases, the overlap between paffand collisior
phases decreases and the peak ground reactiors fals@ monotonicallyncreases (middle). Both t
push-off work and total positive work are minimiziedl some intermediate value of duty factor (boffom
These bowkhaped cost functions can be explained in termsopéased leg stiffness at low duty fac
and increased springpmpression at high duty factors, both of which datee the amount of ener
stored in the leg sprin.
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To decrease the duty factor and keep the stepcpenastant, it is necessary to decrease the
period of spring bounce, and thus increase thineti§ of the axial leg spring. The energy of the
system must also be increased to move the stiffassmpring system through the
compression/extension cycle at a higher frequeAtthough the maximum spring compression
during the collision decreases as the duty factmrehses, the increasing spring constant more
than compensates below a duty factor of 0.58 aedatverall energy stored in the springs
increases. This result also explains why the pedkihie vertical ground reaction forces also
increase for decreasing duty factor. Overall, wel fthat larger push-off forces and work is
required to move the COM through the faster congioegextension cycle needed to decrease

duty factor.

Active Energy Supply

A compliant walking robot must surely also walk tevel ground despite energy lost to
dissipation (we cannot always count on a downwhkne3. We explored an approach that pumps
energy into the leg spring during the second hdlfsmnce contact (McGeer 1990a), to
compensate for damping in the leg springs. Stameestt amounted to changing the set point of
the stance spring in proportion to stance leg aadfier the angle passed through zero (mid-
support). We searched again for gaits over a rahgamping ratios from 0 to 0.1. As previously,
damped gaits were found by slowly increasing dampatio from zero for the hominal walking
gait. We used a modified Newton search algorithrfirtdd the initial conditions and stance thrust
parameter that produced a repeatable walk gaitthée used similar root finding methods to
adjust the model parameters to find damped gaitls thie same speed, step length, and duty
factor parameters as the nominal undamped gait keronly report those gaits with constant
gait parameters. We also repeated our search figrtbat used slope to compensate for damping
for the same gait parameters. We then compareotisequences of using a slope or stance thrust

for increased damping and constant gait parameters.

52



Using stance thrust to compensate for damping exigimilar results for gravity powered gaits.
The ratio of thrust had to be increased ratheraliyeas the damping ratio was increased to
provide an energy balance against losses and pggdpeated gaits (Figure 2.11). We also found
increased damping and thrusting stabilizes theesystimilarly to the model with damping and
slope. As the damping ratio is increased, the thmgrally stable eigenvalues again decrease in
magnitude and move within the unit circle. A simpteategy of thrusting the leg spring is useful
for replacing energy lost to dissipation. Howewee, also see that the method for adding back in
energy lost to dissipation (gravity, thrusting)ass important than the damping itself for gaining

stability. These two strategies do have differer@rgetic consequences, though.

We calculated a cost of transport associated \wehenergy input parameters used to compensate
for damping (Figure 2.12). For the sloped walkéng, COT was equal to the slope and for the
stance thrust walkers; the COT was calculated ypeing the work performed by changing the
set point of the spring. Stance thrust work wasuated by integrating the stance spring force-
set point work loop. We found that using stancedting to compensate for a range of damping
ratios required approximately half the cost of szort as the slope powered model. We attribute
this energy savings to the benefit of adding pesitiork to the gait just before heel-strike as was

already shown from the energetics of the impulgiush-off and gravity powered rigid walking
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Figure 2.12. Model properties for increased dampatip and thrust coefficient for fixed speed, step
length, and duty factor. As the damping ratio ilases, larger thrust coefficients are needed to
compensate for the energy lost in spring compragidt). Root locus analysis shows that increased
damping and thrusting stabilizes the system redativthe undamped gait, denoted by the ‘0’ symbol
(middle). Similarly to the model with damping andpe, adding damping and compensating with
stance thrust stabilizes the three neutrally stalijenvalues. When comparing the cost of transport
for damped gaits with constant gait parametersisthrg the stance spring appears to be a cheaper
method for damping compensation than gravity power.
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models. Since gravity powered models have simit@rgetics to those powered by active torque
about the hips, we suggest that stance thrustésatively economical means to compensate for

dissipation while walking on level ground.

The use of leg springs and set point adjustmeradotes a mechanism to perform some level of
active control in addition to simply replacing egyefost to dissipation. Such control, whether by
feedback, feed-forward, or a combination of the,te@uld greatly increase the stability margins
over that which could be attained through passissightion alone, and would allow the model to
maintain a steady walk pattern and speed in the ddenuch larger disturbances. By controlling
the set point of the foot springs, energy can bdeddo or removed from the system, thereby
compensating for energy fluctuations due to thedereal disturbances. An added controller
would track the current system state and its cporeding energy, then choose a set point for the
leg springs accordingly to achieve desired systaergy and a corresponding gait. A discrete
controller could easily be implemented by adjustimg ratio of thrust from step to step. Finally,
adjustment of set point provides the model witheans to solve the foot clearance dilemma. A
compliant walking machine that uses set point @itr add energy and stability to the gait could
also use this functionality to retract the footidgrswing to achieve foot clearance around mid-
stance. If this retraction is spread out over that half of swing, the foot could clear the ground
with relatively small modification to the swing letynamics. Nevertheless, adjustments to hip

stiffness could easily be used to maintain swiripple

Other Behaviors

While this paper focuses on the typical walkingg@roduced by humans and other bipeds, it is
worth noting that a variety of other walking-likaits exist. Many of these gaits border the typical
walking gaits in parameter space and are easilpddoy extending the range of parameter
searches. We have already shown that skippingaituesults by searching for gaits with
increasing energy. However, a skipping gait cao bé&sproduced simply by allowing the nominal
gait to build up speed on a shallow slope over msteps. Thus we consider skipping to be a
walking-like gait because of its smooth connectidgth typical walking gaits and because the
COM velocity is similarly redirected during doubtipport. As speed slows for decreased
energy, the M-shape feature of the ground readticnes eventually flattens out to a single force
peak. This paper restricted analysis to the speeder between the single peaked gait and
skipping gaits. For even slower speeds, the forodilp adopts a three-peak shape and can

theoretically produce an infinite number of peakswalking speed converges to zero or as leg
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stiffness grows large (Geyer et al. 2006). Othétsgaay produce an asymmetric force profile,
where the first force peak can be three times tatigen the second. Of these additional gaits,
only skipping is ever seen in people, perhaps siggethat the model is not adequate for these
parameter extremes or that these gaits are extyeamglconomical. For example, producing a
multiple-peaked force profile for slow walking woulequire very significant limb work to cycle
the COM quickly along the length of the leg. Simfigking out the knee during single support

and mimicking an inverted pendulum would certaidymore economical.

Discussion

The compliant passive dynamic model better appratesithe measurable conditions of human
walking, including ground reaction forces and wpdtformed on the COM. The walking motion
can be largely explained by the interaction of cliamge and passive dynamic pendulum
behavior. With an emphasis on simplicity, only thngarameters were minimally required to
characterize these motions. Injecting energy ihtodait was found to be the easiest solution for
increasing speed and without restrictions on howmitst be accomplished. The stiffness
parameters can then be used to tune the othepaaimeters at a given speed. The periods of
stance and swing are largely explained in termthefnatural frequency of the spring-mass and
pendulum modes, respectively. The swing leg timim@articular is almost entirely determined
as one half-period at the swing leg natural fregye®verall, passive swing leg motion was
found to have an important effect on energetich witanges in gait parameters. Swing dynamics

also establish the behavior of the leading legeet-btrike which in turn influences gait stability.

When applied to passive dynamic walking machineg,dompliance appears to be a necessary
feature to achieve a cost of transport (COT) lottemn is measured in humans. The lowest
mechanical COT that has been achieved by a dynaalling robot was found to match human
values of 0.05 (Collins et al. 2005). Arc feet also fundamental to achieving human-like
kinetics at normal walking speeds and reducingctiresequences of dissipation. Leg mass and
damping are not necessarily bad features becaagesthbilize the walking motion for a small
energetic penalty (COT < 0.01) when anthropomorpdrt (r=0.3) are used. Finally, we propose
that modification of the leg spring set positiomves as a convenient method to supply energy to

the gait, achieve foot clearance, and further ktalthe gait through active control.

When studying human energetics, the model springg approximate work performed by
muscle. However, this need not be the case for tamprosthetics, which could tune passive

compliance to provide appropriately timed actuafienrelatively insignificant cost. This result
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sets an upper bound on the potential for elastistpetics to help amputees walk with improved
energy economy. Current compliant prosthetic fBghémic Elastic Response feet) require users
to walk with relatively high energy expenditure quamed to able bodied counterparts. This work

suggests that this compliance may not be optintatied for walking economy.

Of note is the fact that the compliant model loo&markably similar to carbon fiber running
prosthesis. These designs are highly tuned foringreconomy but suffer from instability at slow
speeds (it is impossible to stand still in themm).cbntrast, walking prosthetics are generally
designed for the multi-functional demands of d&fly, including standing still. It is worth asking
whether walking prosthetics would look more likeithrunning counterparts if they were first
optimized for walking economy. Our findings sudgtémt amputees would be benefited when
walking by having a more spring-like prosthetic leigh compliance tuned to body mass and leg
length and an anthropomorphic roll-over shapeolfisis possible that these legs could be made

reconfigurable to accommodate other needs suctaagisg.

This model demonstrates how axial compliance preslunany of measurable behaviors seen in
normal human walking. However, the model does rptagn what individual components of the
leg are responsible for this elasticity. Differemdmponents of the leg likely contribute to its
elasticity at different phases of a step. Duringltstrike, the leg spring mostly approximates the
behavior of the knee and pad of the heel. As tlw folls over the ground, the ankle joint
becomes more important so that by the end of #e gt push-off, the leg spring approximates
the combined behavior of the knee and ankle. Funtbiee, the model provides no insight into the
relative contribution of muscle and tendon to prdg the global stiffness of the leg, nor how
the work is distributed among joints. Finally, & important to recognize that changes in the
model leg stiffness do not necessarily predict geanin muscle activation or force since leg
stiffness can be modified through a change in joarifiguration. For example, a bent knee will

act more compliant for the same muscle activatigarga larger moment arm about the knee.

Though performed by a conservative spring, the diamge models work performed by muscle
and should be considered when calculating COT oresother metabolic function. Recall that
significant damping and leg mass could not alormwat for the measured COT in humans.
Given the reasonable accuracy with which the caamplmodel can reproduce the timing and
amount of individual limbs push-off work, the modeluld serve as a useful tool to predict the

energetic consequences of model and gait paramédens unpublished findings predict that
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humans should reduce duty factor for increased inglkpeed to minimize the positive work

performed on the COM. Leg stiffness would then Xgeeted to increase with walking speed.

The relative timing of the push-off and heel-strikbaracterized by the duty factor, appears to
have significant energetic consequences. Our mpaEluces an array of gaits with the same
speed and step length but with varying double stpperiods. At normal walking speed, the
push-off work varies by 18% suggesting that dugtdaand step length must be optimized at a
given speed. This model could serve a very impottiaol for investigate how push-off timing
affects the energetic behavior of prosthetic féetecdotal evidence from work in our lab

indicates that these prosthetic feet may suffenfdelayed push-off.

Energy saving mechanisms are thought to explain waywalk instead of run at low speeds.
These arguments have traditionally focused on #eemeasures like percent recovery to judge
energy economy. Percent recovery is a measure wfdfficiently pendular motion exchanges
between potential and kinetic energy during gdieréfore, work performed along the leg during
single support will decrease the measured percmuvery, even if that work is performed
elastically. Above preferred walking speeds, percestovery is known to decrease with
increased speed. Eventually the recovery becomesaothat people are thought to adopt a run

to save energy in elastic structures.

More recently, dynamic walking approaches have ssiggl that the cost of redirecting the COM
velocity at the step-to-step transition and thet afsleg swing dominant the energetics of
walking. Percent recovery and COM redirection mpyear to be at odds except when examined
in terms of the compliant walking model. In the gdimnt model, the details of the COM motion
during single support are entirely a function of ttonditions at the double support period. For
example, the amount of rebound at the middle aflsisupport is dependent on the compression
of the spring at the end of the collision phasethd¢ time point the energy in the leading leg
spring is also equal to the amount of work perfannpush-off and heel-strike. Thus there is a
direct equivalence between the cost of performimrg@OM redirection and the amount of non-
pendular energy exchange experienced during a Ktepay be possible then that the percent

recovery measure simply tracks the cost of thetegtep transition at higher speeds.
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Appendix 2.1 Effect of model parameters

ground reaction force profiles
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Chapter 3. The Role of Compliance in Walking and Raning
Gaits

Abstract

Bipeds tune the mechanical compliance of the legsdifferent locomotion gaits, controlling
them to act like pendulums for walking, and moie laxially-compliant springs for running.
Mechanical properties such as leg compliance dphwwever, always distinguish or determine
different gaits. For example, a rugby ball rolliegd over end can switch to a roll with a hop if
simply given more speed (rather than needing agghanits mechanical properties). Spring-like
and pendulum-like behaviors also poorly distinguiBpedal skipping, which seems to share
elements of both. Perhaps gaits are determineddiyries other than the mechanical properties of
the legs. Here we show that the amount and praporif energy in the legs distinguishes
between gaits much more so than leg compliancettoer anechanical properties. A simple
mathematical model demonstrates walking, runnikigppéng, and other bipedal gaits, all arising
naturally from the passive dynamics of legs witkefl mechanical properties. The model has
pendulum-like but axially-compliant legs, and snidptchanges from walking to skipping if
simply given more energy, not unlike the rugby bRllinning requires a redistribution of energy
into the axial compliance but not a change in céamgke or other properties. Still other gaits arise
naturally if the compliance is changed, such asawithout an aerial phase similar that observed
in some birds. All gaits may be determined from Wagious ways that three separate motions
may be coupled: the bouncing of a mass on a sphiegswinging of a simple pendulum, and the
swinging of an inverted pendulum. Bipeds may twegedompliance not to select gaits but to take

best advantage of the ones that arise from padgivamics.
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Introduction

Human gaits such as walking and running have teoaitly been treated as distinct paradigms
with different dynamics. In walking, the legs anewght to act as coupled pendulums, whereas in
running they compress and extend like springs (€idila,b). The passive dynamics of these
two modes may generate much of the leg motion aadilely critical to saving energy in both
gaits. Such ideas have led to the spring-mass mddelrunning and the inverted pendulum
models and passive walkers for walking. A discussib these locomotion models and their
usefulness for describing the energetics and méchah walking and running has already been
thoroughly treated (Alexander 1995; Farley and iBei®98; Kuo et al. 2005). However, inverted
pendulum models cannot produce the ground reafdimes or COM trajectories seen in normal
walking, suggesting that they do not completelycact for the timing and amount of work
performed on the COM during a step. Also, theseeatsodeglect a double support period, a gait
parameter which may be tuned in normal walking toimize metabolic cost (Alexander 1992).
Also, traditional spring-mass running models (exddpGeer 1990) neglect swing leg dynamics
during single support and leg dynamics entirelyirduflight phase. McGeer’'s analysis suggests
that the motion of the legs and their resultingfigumation at heel-strike is a critical aspect of
running stability and energetics. Humans can alalkand run with a single mechanical system,
and neither robots nor human studies have yieldeingle model that passively generates
multiple gaits. Here we show that walking, runniagd even skipping can be produced entirely

by the dynamic modes of a remarkably simple modetwcombines pendulum and spring-like

behavior.
a Rigd Sence and c Figure 3.1. Models of legged locomotion.
Es'""‘_“‘i _________ Siegler Inverted pendulum models approximate walking
' |9882 with rigid legs that perform no COM work during
single  support. b. Spring-mass models
approximate running with a compliant stance
7 % Al phase and ballistic aerial phaseSeveral models
exander . .
b i e 1992 have used axial leg compliance to produce more

Phase

Geyer et al.
2006

human-like walking features (Siegler et at. 1982)

and both walking and running gaits (Alexander

1992; Geyer et al. 2006). However, each of these
gaits either prescribes the ground reaction forces
under the feet or the swing leg motion.
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Several models have been developed that use legliemte to produce more human-like
walking features (Figure 3.1c), however, these risodk prescribe aspects of the walking motion
in some way (Alexander 1992; Geyer et al. 2006;dPaand Berme 1988; Siegler et al. 1982).
For example, Alexander’'s model of compliant walkimgescribes the force profile under feet.
The axial legs in this model then only acted ttefithe interaction of the force profile and center
of mass. The model of Geyer et al., produces astofjpace of walking and running gaits by
modifying only three parameters. However, this ni@ibes not incorporate swing leg dynamics
and sets the angle of attack of the leading ldwat-strike. Incorporating this type of controlan
locomoting robot would require high-gain feedbazlatcurately target the angle of attack at each
heel-strike. Humans do not appear to use end pomtrol to fix the angle of attack, as will be
later shown in Chapter 5. We believe that incorfiogaswing leg dynamics are beneficial for
exploring what minimal level of control is necegsty achieve a walking gait. Actuation can be
simply added to the hip in the form of a passiveitmal spring which speeds up the natural
motion of the legs (Kuo 2002a). By modeling the imtof the swing leg and treating the
torsional stiffness as a model parameter we camieeahow speeding up the oscillation of the

swing leg affects gait parameters.

Methods

The simple compliant locomotion model is comprigédh single point mass at the pelvis, two
axially-compliant legs with very light point masset, and a torsion spring acting between the
legs (Figure 3.2a). The model is a simplificatidnaopassive bipedal running model (McGeer
1990a) with the added capability of double suppafé developed locomotion simulations that
integrated the equations of motion for the moderdfie course of a step while handling discrete
events (transitions) such as heel-strike and tbefofstep was defined as the period between
successive heel-strikes of the opposite foot. Vém thearched for symmetric, periodic gaits by
varying the model parameters and initial conditiong Newton method search. For definitions

of symmetry and periodicity please see Chapter 2.

Since the model is passive, the details of the mewe: during a step are entirely a function of the
initial conditions and model parameters. After rdmensionalizing the governing variables, the
model has only two physical parameters: the toedibip stiffness, Kp, and axial leg stiffness,
Kleg. Gait parameters, such as duty factor and fstepiency, are set by tuning the two stiffness
parameters and by selecting appropriate initiad@émns for the simulation. The speed and type

of gait depend on physical parameters as well@sotial mechanical energy of the body center of
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mass and axial springsg, which is set by the initial conditions of the nebdtates. The model has
3 degrees of freedom during single support, and the model energy and movement can be

conceptually divided up into three modes: invegieddulum, pendulum, and spring-mass, which

Walking

£ %0 AR

Figure 3.2. The simple compliant locomotion modelThe model has three degrees of freedom d
single support: the angle of the stance and swegg,bs and 6s,, and the displacement tife stance le
spring, J. Only two degrees of freedom, the rata and swing leg angles are necessary to repréds
model during double support. The model only has headimensional physical parameters: axial
stiffness,Kie, and torsional hip stiffness,. A third parameterE, the total mechanical energy the
system, is also added to set bounds on gait spakdanstrain the initial conditions. The COM motiol
smoothly oscillates up and down as the limbs cowtisly swing back and forth, switching betw
inverted pendulum and pendulum behavior in thecgtaamd swing phases, respectivelyThe model als
produces a running gait with similar motions. Whil@ning, the model COM oscillates up and down &
the stance and swing legs oscillate back and forth.

correspond to three states: stance armigleswing angleds,, and stance leg compressién,

Results

After adding compliant legs to our simple model, fwand that the motion of both legs for an
entire walking and running step can be generatedptiely passively (Figure 3.2 b-c). A
variety of human-like gaits may be produced witle @mple model, without enforcing ground
reaction force patterns or prescribing motions {Fég 3.3). Vertical ground reaction force
produced under one leg by these gaits over a stnakeh well when directly compared with
corresponding sample human data. The model gaits fwand simply by searching for repeated
gaits (limit cycles) that matched the speed, stegth and duty factors of the sample human data
and was accomplished by tuning the stiffness paenhend initial conditions. To properly
match the human model gaits, arcs of non-dimenbi@atius 0.3 were added to the model feet.
This modification was necessary to match anthropphio features of the human foot-ankle-

complex during walking (Hansen et al. 2004) andicedcollisions at a given step length. Since
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no active control is used to generate these gadtsteeir associated force profiles, we see that the

motions for these gaits are produced simply bénttegaction of leg stiffness, inertia, and gravity.

The compliant model can reproduce gaits seen overrange of speeds

When walking, the model's compliant legs produaaugd reaction forces and perform work on
the body similar to humans. For very slow walkimpt(shown), the force measured under a
single leg rises, remains relatively constant, #reh falls. As walking speed is increased, the
force profile adopts a characteristic double-pea&iedpe with the beginning of the first peak
corresponding to leg loading during heel-strike anding of the second peak to leg unloading
during push-off. As the model walks faster and sakenger steps, more energy is stored in the
stance spring (as evidenced by the larger peakngreeaction forces) and the vertical motion of
the center of mass is increasingly affected byngpmass mechanics. With increasing speed, the
stance leg spring eventually stores enough enargly that the leg rebounds at mid-step and
leaves the ground, producing a skipping gait. Tdkigping appears to be a natural extension of
walking and the ultimate product of the increademrebound at mid-step for increasing walking
speeds. Unsurprisingly, the model also faithfultpnoduces the ground forces seen in running
gaits, which are characterized by a single peathefvertical ground reaction force. Since the
simple locomotion model accurately reproduces kbaltking and running gaits, we will use it to

better understand the differences between these gai
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Figure 3.3. Comparison of ground reaction forceormgnmodel and example human gaits. Model gaits
were found by matching human gait parameters adéhgdan arc of radius 0.3 to the foot. At a normal
walking speed, the force profile adopts a char@tierdouble-peaked shape with the beginning offitisé
peak corresponding to leg loading during heel-stekd ending of the second peak to leg unloadingglu
push-off. At faster walking speeds, the model poegdularger peak ground reaction forces and a more
noticeable dip in force at mid-support. With insiea speed, the stance leg spring eventually redah
mid-step, leaving the ground and producing a skippgait. Human-like running gaits can also be
produced and match results found from other spmiags running models.
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Several ideas distinguish walking and running gaits

Several definitions have been proposed to genedifljinguish walking and running gaits.
Alexander suggested that the varying shape of ibiengl reaction forces for walking and running
could be characterized by a shape factor whiclesdhlke relative affect of two cosine terms in a
force function (Alexander 1992). While it is cldahrat the force traces in these two gaits are very
different, more observable differences are ofteedu® distinguish them. The presence of an
aerial phase has also been used to characterining)mmelegating grounded gaits to walking.
However, this definition breaks down for some rungpiike gaits (termed grounded or groucho
running) seen in some birds (Rubenson et al. 28®#h may lack an aerial phase altogether and
poorly distinguishes skipping gaits, which also daan aerial phase. Perhaps the most
comprehensive distinction between walking and migniwas proposed by McMahon who
described these gaits in terms of COM motion (Mcbfatet al. 1987). He proposed that in
running gaits, the COM is lowest during the middfesingle support, whereas in walking gaits,
the COM is highest during the middle of single suppThis definition is based on both

empirical evidence and the theoretical models tsel@scribe walking and running (Figure 3.1).

When comparing single support phases of walking rmameing, the COM motion and energy
exchanges appear to very different (Figure 3.4)e Thstinguishing features are useful for
understanding possible energy saving mechanisnts insénese gaits (Farley and Ferris 1998).
During the support phase of running, kinetic antkptial energy vary together and can exchange
with spring energy, which in humans could be pHytiatored by passive elastic structures.
During the single support phase of walking, gréioteal potential energy and kinetic energy vary
opposite to each other since energy is exchanged dne form to the other. These energy saving
mechanisms are thought to explain why we walk at@ run at low speeds and why we walk at
a preferred speed (Farley and Ferris 1998). Meadike percent recovery, which attempt to
guantify the amount of conservative pendulum enesgshange during walking have suggested
that pendular energy exchange is less efficiemigtier speeds above normal walking and that
storing energy elastically in tendon may be mo@nemical (Cavagna et al. 1976). However, we
note that running also has a period where kinetiergy can be efficiently stored in a
gravitational potential field, the flight phase.oRr now on, we will refer to these periods of
efficient exchange as the gravity exchange phaseudh comparison of single support phases is
useful for discussing energy saving mechanismsalking and running, McMahon’s definition
may have lead to the false conclusion that the C@Mion is overall very different during

walking and running.
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Walking and running appear to obey similar principles when viewed over an entire
stride

When the COM motion of actual human data or thatipced by the simplest locomotion model
is viewed over a complete stride, we see a diftestary (Figure 3.4). Here we use data produced
from the compliant model based on nominal walkind aunning gaits (Table 3.1). In both gaits
the legs swing back and forth once per stride. Jdntical COM motion appears oscillatory in
both gaits and it no longer seems to make senasctibe walking to purely compass-like motion
and running to bouncing. In fact, both gaits loiik la bounce, albeit walking as a sudden bounce
during double support. In both cases, there is alswge total force peak which coincides with a
redirection of the COM and a period of low forcetlae middle of the gravity exchange phase.
Perhaps a better way to distinguish walking andhinmis to compare them separately during the
redirection phase (shaded gray) and the gravitiiage phase (shaded white).
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Figure 3.4. The COM motion of walking and runningjitg appear similar when redirection phases are
aligned and motion is viewed over a stride. Walkangd running have been traditionally compared
during the single support phase (SS) of each Baitvever, when the gaits are aligned as shown, two
new comparisons may be made. During the double stigghase of walking (DS) and SS phase of
running the COM is redirected upwards (shaded grhay)walking the redirection is accomplished
through sequenced collisions and running by a singllision. During the SS phase of walking angHti
phase of running (F), both models exchange potestia kinetic energy (shaded white). In running the
exchange is perfectly conservative and in walkimg éxchange is at best 70% efficient. Both ga#s al
demonstrate rhythmic leg swing where the legs cetepdne back and forth cycle every stride.
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Table 3.1. Model parameters and gait parametensdiminal walking and running gaits

E Kieg Kp Speed Stride Length  Duty Factor
Walking 1.05 20.0 4.00 0.40 1.42 0.61
Running 1.43 155 4.10 0.95 2.24 0.35

Walking redirects COM motion with sequenced collisons whereas running uses a
single collision

Walking makes use of sequenced force profilesdoeet the COM upwards. This sequencing of
push-off and heel-strike can be used to minimizeahergetic cost of redirecting the COM (Kuo
2002a; Ruina et al. 2005; Srinivasan and Ruina P0DGe double support period, where both
legs push upwards, functionally results in a largdical stiffness that is more than twice that of
running at the same speed (Rebula 2008). Thistactsickly redirect the COM motion such the
COM is moving upwards at the start of single supf®unning uses a single elastic-like collision
to redirect the COM, generally with shallow landiagd takeoff angles. Running produces a
comparatively lower vertical stiffness than walkiagd the COM is not redirected until the
middle of single support. The theoretical costhid redirection is less for walking at slow speeds
and less for running at fast speeds (Ruina et @52 The exchange of energy during the
redirection phase does appear to be significaiitfigrdnt. In running, significant elastic energy is
stored at mid-redirection and both kinetic and ptié¢ energy reach a minimum. In walking,
elastic energy storage changes little as loadaissterred from the trailing to leading leg, and

kinetic energy reaches a maximum at mid-redireatios to pre-emptive push-off.

Walking and running similarly exchange potential ard kinetic energy

Running conservatively exchanges kinetic energi watential energy during flight as the COM
moves in a parabolic arc. Walking can theoreticaikchange kinetic energy with potential
without loss, but estimates from human experimeshisw that at best this exchange is 70%
efficient (Cavagna et al. 1976). Therefore runnimglways cheaper in this phase. The COM

motion in this phase is closer to a circular, péadarc.

At steady speed, the most basic task of walkingioning gaits is to redirect the motion of the
COM upwards after a period where gravity acted riagbit downwards (Ruina et al. 2005).
Walking and running then appear to obey similangples regarding the need to periodically
redirect COM motion upwards after interaction wghavity. The only difference then is the
details of how the redirection and gravity excharaye accomplished. We ask how these

behaviors are differentially produced in the sisplecomotion model. We have already shown
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that it is possible to create human-like gaits $jnfyy tuning the spring stiffness parameters and
the initial conditions. With inverted pendulum asuting-mass models in mind, we might expect
to arrive at the sequenced redirections and pendulgport that distinguish walking by using a

stiff leg spring. Running gaits may then be fouadrtlatively low leg stiffness values

Walking and running gaits exist over a broad rangeof parameters

To understand how the model parameters and irubaditions affect gait parameters (speed,
stride length) as well as the type of gait (walkingnning) we swept the parameter space and
total energy (bound on initial conditions) and sead for the existence of limit cycles (Figure
3.5). Three system parameters,, K, and E were varied individually about those of the
nominal walking gait (Figure 3.4), while the ottparameters were held constant. For each new
parameter combination, we searched for fixed panid identified the resultant gaits. Walking
gaits were found for a small range of energy valdes [0.99, 1.10] and a large range for the
spring constants K= [1.1, 25.0], and K, = [2.2, 49.3]. Running gaits were found over adar
range of energy values E = [1.00, 1.10+], a smadlage of hip stiffness K= [2.3, 6.5], and for
Kieg = [13.5, 62.5].

We found that changes in model parameters (AppeddixFigure 3.5) had similar effects on the
stride parameters of walking and running gaits. k8finess was found to positively correlate
with stride frequency and negatively correlate wdtlty factor. Hip stiffness was found to be
positively correlated with both stride frequencydaduty factor. These trends follow from

modification of the spring-mass and pendulum modtunal frequencies, as explained earlier
(Chapter 2). The total mechanical energy was atssitipely correlated with speed and step

length.

Surprisingly, we also found that walking and rumnigaits could exist for the same total
mechanical energy and stiffness parameters. Thedads are in contrast with the model of
Geyer et al. which found an energy gap that dividetking and running gaits. Hence, walking
gaits were only found at slow speeds and runniiig g& faster speeds. To explore whether gaits
co-exist over a larger region of parameter spaee performed a two-dimensional parameter
sweep. Leg stiffness and hip stiffness were vabbea 4:1 ratio to maintain relatively constant
duty factor and were swept simultaneously withttital energy. The sweep amounts to exploring

an angled slice of the three-dimensional parametieime.
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Figure 3.5. Stride parameters and gait regionsfaasdaion of stiffness and total energy.Total energy
for fixed stiffness parameters positively corretateith speed and stride length for both walking and
running. Skipping gaits naturally appear as wallgadts end for large energy values. Walking gaits a
faster than the running gaits for energy valuesre/leth gaits exisb. Walking gaits exist over a large
range of parameter values. Skipping gaits bordentimning gaits at higher energy valuesRunning
gaits exist for most of the parameter space andxexi-with a majority of the walking and skipping
gaits. Parameters of the nominal walking gait ameotied by a star symbol.

We found that walking and running gaits co-existroa large region of parameter space. In fact,
running gaits overlapped with 85% of the walkirkgligaits. For almost this entire region,
walking is faster than running since the runningsgamount to hopping up and down with small
forward speed in the chosen energy range. The droemction forces are also much higher in
running in the overlap region and can be signifiiyareduced by walking (data not shown). We
also found that the region of walking gaits arermanied to an area of skipping gaits, meaning

that the model smoothly transitions from walkingwaning as energy is increased.

If humans truly walk with stiff legs and run witlermpliant legs we would have expected to find
walking and running in separate regions of stiffneaslues. If the existence of model gaits reflects
the fact that humans prefer to walk at slow speedsrun at fast speeds, we might have expected
to find a region of energy separating the two gattswever, we have found that walking and
running gaits can exist for the same total enengy stiffness over a broad parameter space.

Walking gaits then don’t necessarily emulate d Ed compared to running.

Initial conditions best distinguish between walkingand running gaits

For fixed model parameters, only the initial coiudis are left to distinguish the two gaits. These
define the model states at the start of a steputimdately determine how much energy is stored

in the spring as the center of mass is being redide upwards. Perhaps the gaits are best
distinguished not by the total energy in the systemstiffness but by how the energy is

distributed among the pendular and spring-mass mode
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To quantify the amount of energy stored in theaddht modes of the system, we define a metric
called the spring fraction, which is the amounepérgy stored in the springs at the middle of the
redirection phase divided by the total system gnefpis metric provides a basic quantification

of the amount of spring-mass behavior in a gaitc&iwe have previously found that total energy
is most closely correlated with speed, we used wgland running gaits over the previous range

of total energies with fixed stiffness parameterd ealculated their spring fraction.

The spring ratio categorization seems to sepalaegaits in to two regimes: a walking-like
regime and a running-like regime (Figure 3.6). Bdarge range of energies, there exists both a
walking gait and a running gait. At slow speeds(gw), the walking-like regime is comprised of
unique looking gaits that transition from a thresaked ground reaction force profile to the more
commonly recognized two-peak profile. At high spede@nergy) the walking-like regime
transitions from normal looking walking to a skipgigait, demonstrating again that skipping
naturally extends from walking as speed is incr@aker a different set of stiffness parameters,
we found that the model produces a grounded rurgritgseen in some bird species (Figure 3.7).
With the new stiffness parameters fixed, the maedabothly transitions from a grounded running
gait to a running gait with an aerial phase. Thiglihg is supported by metabolic studies in the
ostrich which shows that the gait parameters antoéic cost of grounded running smoothly

connects with aerial phase running (Rubenson €08K).
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Figure 3.6. Spring ratio distinguishes walking andning gaits by characterizing the amount of sprin

mass behavior in a gait. Walking and running gaxist for the same model parameters but have distin
spring ratio measurements. When energy is variediXed stiffness parameters, walking gaits smopothl
transition from a three-peaked force profile tooamon two-peak profile and then to a skipping regim

Over this range, running gaits exhibit more springss behavior than the walking-like gaits.
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Figure 3.7. Model smoothly transitions between gdmd and aerial running gaits. For a modified set
of stiffness parameters, the model may exhibitdgueofiles characteristic of grounded running gaits
As energy is increased the model smoothly tramstiiothe more common aerial running gaits and with
similar spring ratio.

In contrast to the smooth transitions between wglkand skipping or grounded running and
aerial running, a transition between running andkiwg involves a distinct change in the initial
conditions. This result follows from human expenmtse which show that both kinematic and
kinetic patterns abruptly change in the transitioom walking to running (Hreljac 1995).
McMahon and Cheng used a spring-mass model foringnio predict that humans maintain
constant leg stiffness independent of the speadrofing. Here we show that leg stiffness need
not be changed to transition from walking to ruignor speed up or slow down within these

regimes.

Tuning the stiffness parameters can still be ueeativantageously adjust gait parameters, and is
likely to minimize the energetic cost of locomoti@t a given speed. However, the most
significant difference between walking and runniggjts lies in the initial conditions, which
determine how the energy of the system is distedbldietween pendular and spring-like modes.
While compliant legs are needed to reproduce hulikanwalking motions, walking and running
engage this elasticity differently, leading to arexinverted pendulum like behavior in walking
and more spring-mass behavior in running. Walkiegsuthe sequenced collisions to store less
energy in the spring-mass motion and retain theoritgjof the energy in inverted pendulum

behavior. Running uses a single collision to stolerge amount of energy elastically.
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Appendix 3.1 Affect of stiffness parameters on stde features
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Chapter 4. Role of State Estimation in the Generabin of
Rhythmic Limb Behavior

Abstract

We use a simple walking model to study how the flamehrd and feedback nature of central
pattern generators (CPGs) can be optimally combtoegroduce steady walking motions. We
interpret combined feedforward and feedback behmawiaterms of a state estimation control
scheme, whereby the neural oscillator acts astemia model of limb dynamics that is updated
by sensory information. The theory of state estiomasuggests there is an optimal balance of
feedforward and feedback control for improved peri@ance given unexpected disturbances and
imperfect sensing. To demonstrate this interpm@bative applied a controller with state
estimation to a simple walking model under the @nes of noise. The control system used an
internal model of the limb dynamics to produce atingate of the system state used to drive hip
torque. The error signal, from model stretch ses)seas used to refine the state estimate via an
estimator feedback gaih, which scaled the relative influences of feedfadvand feedback on
the controller (i.e. smalL produces pure feedforward and larigeproduces pure feedback
control). Step-to-step variability was calculatednfi the standard deviation of leg angles and
velocities at the beginning of each double supperiod. We show that a purely feedforward
CPG is highly sensitive to unexpected disturbarares can take few steps before falling over.
Pure feedback control analogous to reflex pathweys compensate for disturbances but is
sensitive to sensory error. The model simulati@meahstrate that step-to-step variability induced
by the presence of noise is minimized when thetivelaoles of feedforward and feedback are
appropriately balanced. In the presence of noisgetis an optimal combination that produces
better performance over either feedforward or feeltalone. Errors increased as the L scaled
either toward pure FF or pure FB, reaching a maxinofi about 3.5 times the minimum position
error and 4.2 times the minimum velocity error. &ivthese findings we suggest that CPG
behavior is best understood when considering diatwres and imperfect sensing and that they

serve a primary role to filter sensory informatrather than to simply generate motor commands.
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Introduction

Rhythmic pattern generating circuits located in fpénal cord have been well established in
vertebrates over the past century. These circugsthought to contribute to the basic walking
motion, as evidenced by the fact that spinalized can produce stepping patterns that resemble
normal walking (Grillner and Wallen 1985). Charl&herrington was one of the first to
demonstrate that decerebrate cats could produde stepping motions and largely attributed
these motions to reflexes (Sherrington 1911). $tmon proposed that simple reflexes are the
fundamental units of movement and that complexstask produced by combining these simple
reflexes. Around the same time, Thomas Graham Bralem isolated the spinal contributions of
the stepping pattern (Brown 1914). However, he dbdhat spinalized cats could produce
stepping motions even when the afferents fiberewet, suggesting that sensory feedback was
not necessary to produce rhythmic motor behavibes€ two competing ideas, central versus

peripheral generation of rhythmic behavior, co-®dshrough much of the 9@entury.

By the mid-1980’s, the concept of motor programereed interest in central sources of motor
commands and studies of de-afferentation emergedatain demonstrated that sensory feedback
is not necessary to produce stereotyped rhythmiompatterns (Knapp et al. 1963; Marsden et
al. 1984; Rothwell et al. 1982). Today, the present spinal neural networks that produce
rhythmic motor commands even when isolated frorerafit feedback is well established for a
large number of vertebrates (MacKay-Lyons 2002) arador programs are thought shape the
motor output in walking (lvanenko et al. 2006). Esample, isolated spinal cords from neonate
rats are still able to produce fictive locomotogrsils even when afferent fibers are dissected
(Grillner and Wallen 1985). These neural networtes generally referred to as “central pattern
generators” though this naming is largely the pobdof studies in invertebrates where the
specific pattern generating neurons can be isaldteiumans, the existence of central pattern
generators is still under speculation and mostuofumderstanding of how they apply to humans

is drawn as extensions from other vertebrate models

With the discovery of central pattern generatorapleasis shifted toward feedforward motor
pattern generation and away from patterns creadéslysthrough reflexive sensory feedback
pathways. However, sensory feedback is known tg plaimportant role in normal behavior
(Cohen 1992), and feedforward control alone is kmdw perform poorly in the presence of
disturbances. Furthermore, when limb dynamics hadetabolic cost of a motion is significant,

movements are also likely to be more efficient whawen by sensory feedback.
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Despite our evolving comprehension of the neurahmanents of movement, we still lack a
framework to understand how sensory feedback shibelgrocessed and combined with more
feedforward components to produce efficient andigate movements. We are left with two ideas
about CPGs that are seemingly at odds: 1) CPGgaduce rhythmic bursting activity even

when sensory feedback is removed (feedforward)CRY5 oscillation can be entrained or
modified with sensory feedback and this feedbadkngortant for normal movement. We then

ask, what benefit would be gained by combining e&trand FB?

Control theory may offer insight into how to addrésese issues, especially given knowledge of
the uncertain conditions under which locomotiorachieved. For example, direct feedback is
known to perform best when controlling a systent ikafaced with unexpected disturbances.
Such a control strategy would make direct use ofseg/ information to generate motor
commands but would be highly sensitive to imperfeehsory information. In contrast, a
feedforward control strategy is robust to sensmresince motor commands are generated based
on an intrinsic pattern. Biology must contend vétimilar imperfect conditions. Sensor error may
take the form of noisy or inaccurate afferent sigifilmm muscle spindles that are also limited by
sensory precision. Disturbances may come from noisyaccurate force generation within the
muscles or from outside disturbances such as froeven terrain. Both types of uncertainty are
significant even for healthy persons and often rifaaghdue to locomotor impairments or aging
(Horak et al. 1989; van Beers et al. 2002). Condyatems have long used an approach called
state estimation to process sensory informationnviaeed with potentially noisy and inaccurate
sensors. The scheme essentially generates a jwadiétthe system states by filtering sensory
information through an internal representationhaf system dynamics. The predicted states can
then be used to generate motor commands througdd lias a feedback control strategy. We
explore how state estimation theory can explaindmbination of feedforward and feedback
behavior and make predictions about how to bestbamensensory feedback with intrinsic CPG

patterning through adjustment of sensory feedbazightings.

We interpret the combined feedforward and feedbzatkire of CPGs in terms of an internal
model that is updated by sensory information, ootimer words, state estimation. Kuo (2002b)
has previously proposed that neural oscillators lmannterpreted as an internal model of limb
dynamics. We are proposing that CPGs can be thoofghs state estimators during rhythmic

tasks such as walking. Under the state estimatitergretation, the internal model produces
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feedforward commands even when the feedback isvethaesembling fictive locomotion in
biology. The theory of state estimation suggestsetlis an optimal balance of feedforward and
feedback control for improved performance in thespnce of noise. In this sense, CPGs are not
seen to simply produce motor commands for musctvation but also to process sensory

information through an internal representationhef imb dynamics.

We will test whether a state estimation controf@plied to a compliant walking model can
mimic observed behavior of CPGs, including theiesoas sensory filters. We first show that
either feedforward or feedback control can be usgmtoduce identical limit cycles of leg motion
under ideal conditions. However the pure feedfodvaontroller is found to be extremely
sensitive to unexpected disturbances, and demeestsagnificant divergence from the nominal
limit cycle. We then show that the pure feedbackteay also suffers from poor performance
when sensory information is imperfect. We will derstvate how an optimal combination of
sensory feedback minimizes step-to-step variahititthe presence of noise and that the overall

behavior of the model mimics that of a CPG.
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Figure 4.1. The compliant passive walking model siasdegrees of freedom (left): the angle of the
stance and swing legéy and 6, the displacement of the axial leg spring® andds,, and the
horizontal and vertical location of the pelvisandy. The model also has three physical parameters:
axial leg stiffnessKe, damping ratio of the leg stiffness, and slopey. At a nominal walking gait of
1.25 m/s, the model exhibits a characteristic stapgpring-mass behavior along the direction of the
leg (middle) as the limbs continuously swing baol &rth (right). The legs switch between inverted
pendulum and pendulum behavior in the stance ambgwhases, respectively.
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Compliant Walking Model

As a simple model of limbs undergoing a rhythmidkivey motion, we employed a compliant
passive dynamic model of two-dimensional, bipedkimg. The model is comprised of a point
mass at the pelvis and two damped axially-compliegs with very light mass and point feet
(Figure 1). We have previously shown that the medmmpliant legs produce ground reaction

forces and perform work on the body in a manndrrsembles human walking (Chapter 1).

The model is further under the influence of actteeques applied to the legs and may be
generated from an intrinsic pattern (feedforward)based on the states of limbs (feedback).
These torques are meant to generally resemblectienaof a torsional spring of stiffnesk,
placed at the hip (see Chapter 1 and Equation d)nglike torques are a convenient way to
approximate the muscular effort necessary to ftiredegs to swing back and forth faster than the
natural frequency of pendulum-like leg motion (K2@02a). While forced leg swing requires
metabolic expenditure, this action can be ovemaatageous by limiting the need to take very

long steps at faster walking speeds.

u=K, f(6,¢1t) (1)

The model's dynamics contribute substantially sogait. The model produces a double support
phase of finite duration, a double-peaked vertiralind reaction forces as observed empirically,
and smooth COM trajectories. If the initial conaiits are chosen properly, this model can
maintain a steady, rhythmic limit cycle in the afus® of perturbations. We have also shown that
this limit cycle can be stabilized against smaditatibances by adding damping to the leg springs.
The model must then walk down a shallow slope tmvyer energy lost in dissipation, and this

choice of slope is unique for given damping andkingl speed.

Walking simulations were developed to integrateafeations of motion, handle discrete events
such as heel-strike and toe-off, and apply a smootmpulsive transition to the next continuous
state. For example, when the force produced bytriiéng leg falls to zero during double-
support, the model recognizes a toe-off event amabghly transitions to single support, applying
a ground contact constraint for the stance leg laoking the swing leg spring in place. The
generic model has 6 degrees of freedom, whgreis the angle of the stance leg as measured
from the counterclockwise verticdl,, is the angle of the swing leg as measured from the
counterclockwise verticalds; is the instantaneous compression of the stancedlegis the

instantaneous compression of the swing leg, xddtrizontal location of the center of mass, and
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y is the vertical location of the center of massoumd contact constraints further reduce the
independent degrees of freedom during single amthldcsupport. Reduced equations of motion
were then developed to simulate the single suppenibd (Equations 2-4) and double support
(Appendix 4.1),

X - (Kleg65t + D(S'“) sinfg; +siny =0 (2)
Y + (Kiegbse + Dé,) cos O — cosy =0 3)
gy + sin(Bs,, — ¥) + ¥ cos By, + J sin by, = u (4)

D ={-\/4Kig (5)

whereKy is the stiffness of the axially compliant leds,is the damping coefficieny; is the
slope, andu is the externally applied torque. Since the mdsthe legs is assumed to be very
small, the hip torque required to force leg swiagaiso small and has a neglible effect on the
stance leg dynamicsu(is absent from Equation 1 and 2). The damping fimberft, D, is
determined based on the damping rafip,of the of the axial leg motion and stiffne$§e

(Equation 5). All parameters and states are noredsionalized by total mass, uncompressed leg

length,L,, and the gravitational constagt, Time is thus in units o\t/m When inspecting the
equations for single support we see that the dycengisemble the actions of a system of coupled
pendulums bouncing on a spring. Simulations ofntieglel were implemented in Matlab and the
limit cycle behavior was computed using numericaegration with the ode45 function. The

relative integration error tolerance was 1e-8, tedabsolute tolerance was le-9.

If the model is to undergo steady a state-stat¢hnhig walking motion, the initial conditions
must be properly matched to the model parametév@nGyround contact constraints, the initial
conditions of a step, which occurs at the beginmihdouble-support, are fully described by the
four states{f,; 6s,, x y]. Limit cycles for each set of model parametersenfeund using a first-
order Newton shooting method, which simultaneot@siynd the initial conditions and slope that
produced a steady walking gait. By modifying thedeloparameters we can control the features
of the walking gait, such as speed and step lengthpreviously found that the overall speed of
the gait is simply determined by the mechanicatgn@ the system set by the initial conditions
(Chapter 2). The time of ground contact and steguency, can be largely adjusted at a given
speed by tuning the the leg stiffneldgy, and the spring-like active torques,applied to the legs.
The leg stiffness largely adjusts the frequencthefspring-mass mode along the length of the leg

and thus period of stance duration. The actuatjusts the frequency of the inverted pendulum
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mode or swing period. The damping rafialetermines how much speed is lost during one step
cycle, roughly modeling the energy loss due to ipiedsry effects, which can occur both

continuously, as with friction, and over short s, as during foot contact at heel-strike.

To restrict the number of free parameters, the madeditions will be restricted to those
corresponding to a moderate walking speed0.4 (1.25 m/s). This constraint make<d, and
the initial conditions functions of three free paetersK, Ky, and{. The following free
parameter values are chosen for the nominal liyatec(Figure 2¢):K, = 4.75 K,y = 22,{ = 0.1.
At a speed off = 0.4, this results in a slope pf= 2.05¢ , damping coefficienD = 0.94, and
initial conditions|[6y; 6,,, x y] = [0.434 -0.294 0.467 -0.114]. The parameter sethiosen to
roughly correspond to a normal walking gait witbpstengths = 0.696 (0.696 m) and duty factor
d = 60%.

Feedforward and Feedback Systems

In the ideal case in which unexpected disturbarzesabsent, identical limit cycles may be
produced using any combination of feedforward aseblback control to pattern the active hip
torque. A pure feedback control applies the actorgue as a function of state only (i.e., the
models’s position and velocity) and not explicitiiytime (see Figure 2b). In order for the model
to exhibit periodic behavior, it is necessary it torque actuator perform no net work over a

stride. One simple feedback law is
FB: u(f, 0sy) = Kp *(Os¢ — Osw) (6)

wherekK, is a control feedback gain that could be set lhygaer-level (descending) command.
Essentially this control mimics the actions ofraelr torsional spring, with stiffne&s, and acts

on both legs with a torque that is proportionathe angle between them. This direct feedback
strategy is analogous to reflex pathways activaigdmuscle stretch sensation through la
afferents. It may be verified that the FB contesilprovides neutral stability through application
of Poincare maps (Chapter 1). When applied to aemaith damping in the compliant leg

springs, the model gains local asymptotic stability

A pure feedforward control, however, applies thetrque as a function of time only, regardless
of the pendulum’s state (see Figure 2a). The tinaind amplitude of hip torque is prescribed to
be that which would result from a passive torsi@ping acting on two legs moving through the

nominal trajectory. In absence of an analyticalrdgdn, the control law is simply
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FEu(t) = Kp - (05¢:(t) — 5w (1)) @)

whereé;,(t) andé,, (t) are the time histories of the leg angles followihg nominal trajectory.

This feedforward strategy is analogous to the mbghavior recorded from spinal neurons in
fictive locomotion preparations, where motor comdsmmre generated by an intrinsically
generated rhythm in the absence of sensory feedhbutike the control of a pendulum model of
leg swing (Kuo 2002b), we will show that this feafard implementation is generally unstable

when applied to a passive walking model.

The pure feedforward and feedback control lawsediffi behavior only when unexpected
disturbances act on the system. We will consider tiypes of disturbances: process and sensor
noise. Individual sensors provide incomplete infation about the motion of local body
segments and are subject to sensor noise, which wtkpected errors, to the measurements
of state. Error of this type is present due totndin sensory precision and loss of accuracy by
transmission of sensory information through mudtiglynapses and along axons (Kuo 2005).
Physical disturbances are random external pertorisathat cannot be predicted or corrected for
ahead of time such as experience when walking mveven terrain. Motor output variability also
contributes to uncertainty and represents randoictuations in muscle force in response to a

motor command. We collectively refer to random pesss disturbances and motor output

a. Feedforward model b. Feedback model c. Phase Plane Limit Cycle
FAr S
w K \
@ . a 2
" "

Figure 4.2. Model of pure feedforward and feedbeiokuits that produce rhythmic hip torque.The
feedforward system is driven by two organizatiorisneuronal half-centers (enclosed by dashed
circles) which are coupled through reciprocal iitioh and produce alternating bursts of activity
driving motor neurons (MN). Muscles, activateddynotor signals, produce motion of the swing leg.
b. The feedback system also produces rhythmic legnbdeh but only through activation of muscle
stretch receptors (la afferents), which then gedrereflexive motor commands and contralateral
inhibition. If gainK, is properly tuned, system will exhibit limit cyckeehavior.c. Pure feedforward or
feedback control can generate identical limit cgckhown here in a phase plane plot of leg behavior
over a stride. Limit cycle shown is for parametéss 4.75 Kig = 22,{ = 0.1.
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variability as process nois#, which apply unexpected forces and torques tartheel.

Equations (2-4) are therefore replaced by

¥ — (Kieg0st + DSSt) sinfy + siny = w, (8)
V + (Kiegbse + DSSt) cos by — cosy = ws 9)
Oy + sin(fg, — ¥) + X cos B, + ¥ sin O, = u + Wy (20)

and the feedback law FB (Equation 6) is made atiomof measured states corrupted by noise

Xm =X+V, Ym=y+v,, 0, =0, +1; (12)

Xy =X+ Vg, Vg =y + Vs, 0, =0, + g (12)

rather than the actual states. Note that the medswing leg angle will now simply be referred
by 6,,. To characterize average behavior, these distadsamay be modeled as band limited

white noise, as described below.

Sensitivity to Disturbances and Measurement Noise

We will use the compliant walking model under rhwyth hip torque activation to demonstrate
two key principles related to motor control: pueedforward systems are highly sensitive to
process noise and pure feedback systems are genitisensor noise. We first apply a 1%
perturbation to the initial stance angle, whichufessin oscillatory behavior of the pendulum
under FF control, as shown in Figure 3. To descthis behavior, we compute errors in the
model position and velocity states from the nomiradles directly at the beginning of each step.
After completing 10 steps, the FF system divergeayafrom the nominal limit cycle and
produces an error of 4.2% &, and 9.0% ind,,, . The errors continued to grow and the model
falls by failing to achieve foot clearance befoeehstrike after 17 steps. On the previous step,
the model error had grown to 19.8%6g and 48.3% ird,,, . To demonstrate the sensitivity on
parameter values, the maximu#ly; errors after 10 steps were computed for a rangeloks for

K, and¢ (see Figure 3b). The parameter domain was fobedgains between 2 and 12, gnd
between 0 and 1.5. The maximum position errorégris most influenced by the level of
damping; however, the model was found to be radhtiless sensitive to the perturbations for low
feedback gains. Large errors, 10% and above, veeradffor values of less than approximately
0.75, and errors above 5% were generally foundvédues of K above 3. The FF system is

extremely unstable for low damping values and ardpsistently took 10 steps aboge= 0.4.
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This high sensitivity at low damping levels is egfal given the limited passive stability of
similar walking models (Chapter 1), which suggdiktd the passive dynamics of the limbs have
little tolerance for poorly timed hip torque. Thessults are in contrast to those found for the FF
control of a simple pendulum model, which is gldypatable and therefore more robust to
command errors. Sensitivity can be reduced forleaels of K, since the active control has a less
significant effect on the motion of the swing leg@mpared to the passive dynamics. However,
for all parameter values the model eventually fahsl higher values of damping only slow the
divergence away from the limit cycle. Overall, wadf that a walking model controlled with

feedforward hip actuation to be highly sensitivewen small disturbances (~1%).

The performance of the FB system is far superialeuthe same conditions. Assuming accurate
measurements of the state (ive.s = 0) and usingdl, = 4.78, the control law supplies a corrective
hip torque based on the actual perturbed angledsgtvthe legs, so that the maximum error is
0.45% infy; and 0.60% ird,,, . For an initial perturbation of 10% to the initgthnce angle, the
maximum error is 5.2% i, and 7.4% ind,,, . Settling time, defined as the number of steps
required for error to go below 2%, is 5 stepségr and 7 steps fd,,,, . Similar results are found
over a range of feedback gains (2 to 12). Howetes,behavior is not invariant to the choice of
the damping ratio. For a model wifh= 0, the perturbation causes the model to converge to

new limit cycle at a faster speed for a positivetypbation. Models with intermediate damping

a. Feedforward Disturbance Response b. Maximum Position Error (%)
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Figure 4.3. Feedforward systems are sensitive ysipal disturbances. When the feedforward system
of Fig. 2a is started with an initial stance angléh 1% error, model can exhibit unstable behasiod

fast divergence away from limit cycle. Applied topassive walking model, this control is highly
sensitive to the presence of disturbances and tdehfalls over after 16 stepls. Maximum stance
angle position error after 10 steps due to 1% ahiitance angle perturbation, as a function of
parameter, (feedback gain) angl (damping ratio). Domain is restricted to parametdues that yield
limit cycle behavior and for which the model takasleast 10 steps. Note that all parameter values
result in greater than 1% position error, demotisigehigh sensitivity to perturbations.
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values do converge to their original limit cyclet lwith increasing settling time for decreasing
damping ratio. Still, the pure FB system robustigyents perturbations from growing indefinitly

over many steps and averts model failure fromla fal

However, the FB system does not perform as wellnwheasurements are imperfect and subject
to noise. To assess sensitivity to measuremeng nais evaluated steady-state behavior, defined
as root-mean-square (rms) errors of the modelsst&f@riability is used as a performance metric
because it generally reflects the ability of thetoaller to filter sensor noise and reject process
disturbances, both of which tend to increase trezallvariability of the legs states and adversely
affect stability. Performance was measured over €@@s, with simulated white noise, using
noise parameters determined as follows. First, nahdisturbance noise,_g with zero mean
and arbitrarily chosen covariance (Equation 13-aBg no measurement noise, was applied to

the FB system,

w, = (c * KiegOsw, sin HSWO)Z (13)

W = (c * KiegOsw, COS GSWO)Z (14)
2

We = (C Ky - (esto - eswo)) (15)

where c is a weighting factor that scales noisee&lThe covariance values were calculated from
the initial spring-like force at each of the degreé freedom multiplied by the weighting facter (

= 1/500). These noise values produced steady-statemean-square errors on the measured
states (Table 4.1). Root-mean-square error was at@upat discrete instances, based on the
deviations of the model states from the fixed pdinectly at the beginning of each step for 200
steps. These errors were used to determine nomeasurement noise characteristigs; had
zero mean and variances equal to 16 times theysgtatk disturbance noise response. In other

words, vq andv, had rms values of 2.41% and 0.48%, respectivehe Tactor of 16 was

arbitrarily chosen so as to produce large steadye serrors under pure FB control. For
computations, band-limited white noise was simulatih normally distributed random numbers
applied in discrete time with a zero-order hold anstep size 10 times smaller than the nominal

step period.

Table 4.1. Root mean square error of model statasominal disturbance noise applied to FB system.
State x y O X y O

RMS error 0.60 % 0.12 % 1.01 % 1.01 % 3.40 9 1.09 %
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Figure 4.4. Feedback systems are sensitive to mevasuat errorsa. When the pure feedback
system of Fig. 2b is subject to noise-like errarssiate measurements, the error in state output
persists while fluctuating about the nominal liycle.b. Steady-state stance angle position error,
shown as percentage rms (root-mean-square), agtdi of{ (damping ratio). Steady state error
is halved at higher damping ratios, while the mddks$ below a value of 0.015.

When the FB system operates with no disturbancgenmit with nominal measurement noise as
described above, the model states fluctuate abeuixed point (see Figure 4a). The steady-state
rms errors are 1.13% i, and 2.29% ird,,, . Performing the same calculations for a range of
parameter values fd@r (Figure 4b) but with identical noise attributes find that the FB system
grows increasingly sensitive to measurement naigersely proportional to damping ratio. The
steady-state error can be reduced by more thaoter faf 2 at high levels of damping but never

eliminated. Below a value @f= 0.015, the model fails to take the total 200 steps.

In contrast, the FF system is completely inserssitoy measurement noise, because hip torque is

applied according to an internally timed rhythrmheatthan noisy sensory measurements.

Hybrid Feedforward/Feedback Control

We have found that FF and FB are both sensitive rabdst to different types of noise. FF
control is extremely sensitive to unexpected distuces and is even unstable when applied to the
compliant walking model. Yet FF is entirely robtstsensor imperfections. A FB control scheme
was able to stabilize the compliant model agaiisttithances but performed poorly when faced
with sensor error. Given these opposite strengthlsweeaknesses of the two control schemes, we
investigate whether combining them in some manneuldv be advantageous. To study the
interaction of FF and FB, we require a system wilitrespond with pure FF and FB behavior at

the extremes and with a relative mixture of the tvesed on some choice of parameters. Upon
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developing the control scheme, we will simulatetoanof the compliant model with both types

of noise and evaluate behavior for varying relativeounts of FF and FB.

The hybrid model adds sensory elements from theysBem to the intrinsic CPG behavior of the
FF system. Fundamental to the hybrid model is gsimption that the neural oscillators model
the dynamics of the compliant walking model, suedt the bursting behaviors of the oscillators
encode information about limb states. The predictetion is then used to drive the FB system
through control feedback gaif,. The oscillator output drives the hip torque tirathe FB
system would be driven directly from the sensedeamhgtween the legs. We also assume the
behavioral equivalent ta-y co-activation such that muscle stretch receptdjasa sensitivity
during movement, effectively signaling deviatiomenh the expected movement. The sensors
then signal unexpected disturbances and the negwtror signalsg, feed back to the oscillators
through the CPG feedback gain or synaptic weightingvhich updates the FF component based
on the perceived movement. Essentially the CPGbieeldgain scales the controller between FF
and FB behavior. Whehis 0, error information is ignored and the systgnerates autonomous
rhythms. Hip torque is then applied based on thainal leg angle trajectory, just as in the FF
system. Ad. approaches infinity, the half-center oscillatoms mnmediately entrained to the error

signals, meaning the internal model will nearly aiafollow the sensed body state. This system

Hybrid FF/FB model Figure 4.5. Hybrid system combines feedforward (BRY
feedback (FB) behavior. Half-centers (enclosed hbghed
circles) produce bursts ofy co-activation with control gain
K,, simultaneously activating motor neurons respoasior
sending motor commands, u, to muscle groups thadyse
movement about the joint and to muscles connectestrétch
receptors. Co-activation causes these stretch t@sepo
adjust sensitivity during movement so that affesent
effectively provide error informatiore, signaling unexpected
disturbances. Sensory feedback, which then contdiase
error signals, entrains half-center oscillators hwiEPG
feedback gain or synaptic weighting, When L is zero
(afferents removed), error information is ignoredd athe
system generates autonomous rhythms (feedforwafdgnL
is very large, half-centers are immediately entdito error
signals and the system behaves essentially likeflaxive
network (direct feedback). For any value lof the hybrid
system produces identical limit cycles, though witirying
degrees of sensitivity to unexpected physical distnces and
measurement errors.
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behaves essentially like the reflexive pathwayghefpure FB control. Intermediate values of
produce a controller between the two extremes, @lhesensory error information is filtered

through the internal dynamics of the neural oscita

Mathematical implementation of the hybrid modellwie expressed in state space notation.

Defining the vectors and system matrices and adgpti, as simply@,

0 0 0 1 0O
X Xm Wy vy 0 0 0 0 1 O0 0
[y] [}’m } [WZ ] [vz | 0 0 0 0 0 1 I[O]l
0 [2) | | ax dx az E
X=i.], Y= 'm,WEW3 , V= Vs , A=jdx dy 0 dx dy O,BEO,
X [ %m | Wy Uy - 0
. | y | a 4y 0 a@ 4y 0
[YJ |_me Wsg Us dx dy dx dy 0
d Om e Vs ab ab ab ab ab 1
ldx dy do dx dy
[' = Igy6
the state-space equivalents to (8-12) are
X=AX+Bu+TW (16)
Y=X+V (17)

There is one difference with the former system ipooating noise: the disturbance vedtérhas
been expanded to include additional componewtsthat affectx,y, and @ throughT. The
Jacobian matri¥d was found by linearing the equation of motion (§-&bout a time point at the
middle of single support. A separate matrix is gkdted to estimate dynamics during double

support and was found by linearizing the equat@fmaotion for double support about the middle
of that phase.

Since the CPG oscillators are assumed to moddddhavior of the compliant walking model, the

CPG's intrinsic state will be referred to as thatestestimate, with dynamics described by
X =A% +Bu—Le (18)

e=X-Y (19)
Reflected in the equations is the fact that the @®R& access to the motor commamdand the
sensory errorg, but not the values for the noise parameters. Mferete that L is manifested as
a 6x6 matrix of sensory weighting in this equatidinally, a hybrid controh = f(X) is
constructed by applying the FB control law to theinsic state of the CPG, which now applies a

torgue in proportion to the estimate angle betwhberiegs:
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HFB: u(By, 0s) = Ky - (Bse — Os) (20)

The estimator model described by (18) and (19)raartwusly generates expected limb motion,
and only requires feedback of sensory empto correct that expectation. The hybrid modehthe

demonstrates the ability to intrinsically generatetor activity even in the absence of sensory
feedback. Sensory feedback can be eliminated dithér=0 or by removinge, equivalent to the

fictive locomotion experiments where the afferditisrs are severed or blocked.

Optimal State Estimation Theory

We now discuss how the CPG feedback gainwill be chosen within the state estimation
framework and implement a method for scaling tlisameter between the FF and FB extremes.
The main features of a state estimator are the sanoeir hybrid controller: an internal, forward
model that uses a copy of the motor commands &aféer copy) to estimate or predict system
states and weighted sensory information which edus correct the state estimate. The major
task when developing a state estimation contraedeterminingL, which influences how
strongly estimation errors update the internal rhoflkere are many strategies for choosing L,
but the optimal state estimation, or Kalman filtepproach is known to make optimal use of

sensory information in the presence of both ndlsedisturbances and measurement errors

Our hybrid system will use a single parameter,@ feedback index (CFl), to set the relative
contributions of FF vs. FB (Kuo 2002b). The CFL&ed in the design equations for the optimal

state estimator as follows:

AP + PAT — PV71P + 10¢FITWTT = 0 (21)
L=pyt! (22)
where the vector®V and V are the covariance estimates for the process andos noise,
respectively. The estimator gdindepends on the relative magnitudesAbandV, and the CFI
inflates the influence oW over V. The estimator is theoretically optimal at CFl = tut
simulations are needed to evaluate the overallopednce because the walking model and
control system are nonlinear. For increasing pasitialues of CFl, the entries of L grow large
and the system approaches the pure FB extremeddayeasing negative values of CFI, the

entries of L approach 0 and the system behaves likerthe pure FF system.
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Performance of Hybrid Feedforward/Feedback System

We will consider performance as a function of teQCfeedback index (CFl) for nominal values
of free parameters. Performance will be evaluateteims of % rms error of the model states
after each heelstrike. When designing the hybridtesy model, we introduced noise-like

disturbancesv _ acting on the velocity states. To ensure #atremain the dominating influence

as in the previous example, we set egw 0.1cow;, covw, = 0.1cow,, and cowvs; = 0.1cows.

Using the nominal parameter settings, we calcul@ie@ feedback gains for integer values of the
CPG feedback index ranging from -5 to 5. Simulaiarere performed for 200 steps, and rms
errors relative to the fixed point were calcula@sl described above. Simulations were also

performed using pure FF and FB control under tiieeseonditions to serve as limiting cases.

Results show that there is a hybrid combinationFBf and FB that is least sensitive to the
disturbance/measurement noise combination (seerd-igL6). For the noise levels chosen,
minimum steady-state errors were 1.87% rm#jpand 3.24% rms iry. This minimum was
achieved with a CPG feedback index of 0, thoughdifference in error was negligibly small
between feedback indices of -2 to 2. Errors in@das the CPG feedback index was increased in
positive and negative directions, reaching a marinafi about 3.5 times the minimuéy,, error

and 4.2 times the minimum error at a feedback index of -5. In the limitingse of pure FF
control, the model was unable to take 15 stephe@tnbminal noise parameters before falling
down. In contrast, the pure FB controller, thougit ieal, was robust to falls for the noise

parameters chosen.

Discussion

We found that for systems subject to both distuckanand imperfect sensing, there is an
optimum balance of feedforward and feedback behahiat results in better performance than
either FF or FB alone. Our results provide a cani@xinderstand two competing theories, which
contend whether direct feedback, analogous toxesleor more hard-wired, motor programs are
responsible for producing motor commands. Theswsridiffer on the role sensory feedback
plays in generating motor commands: reflexive thexrggests that sensory information can be
used directly to produce motor commands while mptogram theory suggests that this sensory
information can be largely ignored in lieu of imtat representations of the body motions.
Ignoring sensory information may be a useful sgwat&vhen sensory channels are noisy or

inaccurate. However, sensory feedback is knowray gn important role in normal behavior and
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a feedforward control in the form of rhythmic mofwograms was found to perform poorly in the
presence of disturbances. State estimation thequigias that there is an advantage to combining
a more hard-wired, top-down approach with a venyagyic feedback based approach even when
sensory information is available and that this ciovation is best understood when considering
disturbances and sensor noise. In this sense, Gir&sot seen to simply produce motor
commands for muscle activation but also to prosesssory information through an internal

representation of the limb dynamics.

There were a few anomalies in which the resultsmid conform to expectations. Estimation
theory predicts that errors should increase moncatiy towards the feedforward and feedback
extremes as the CPG feedback gains decrease easagmespectively, from their optimal values.
However, we found a relatively shallow change incpat root mean square error for CFl values
between -2 and 2. This result may be partially @xjld by the presence of collisions which
instantaneously change the angular velocity of l#aeling leg at heel-strike. These collisions
effectively act as unexpected disturbances sineedmtinuous time integration of sensory error

within the internal model has no knowledge of th&iven these heel-strike disturbances, we
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Figure 4.6. Steady-state position and velocityrsrfor hybrid system subject to noise-like perttidozs

and measurement errors, as functionC#IG feedback gain index (CFIl), which sets value of CPG
feedback gain. Negative index values of increasmagnitude correspond to decreasin@pproaching
pure FF system. Positive index values of increasiagnitude correspond to increasingapproaching
pure FB system. In the limiting case of pure FFtanthe model was unable to take 15 steps at the
nominal noise parameters before falling doanPosition errors, in terms of % rms, are minimifed
feedback gain index of O but are relatively insewsibetween feedback indices of -2 to 2. Errors
increase by a factor of 3.5 over minimal valuegare FF and FB systems. Velocity errors, in terms

of % rms, are also minimized for index 0, with esroncreasing by a factor of 4.2 over minimum.
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found overall that pure FF was the least desirai@¢hod to control the passive walking model
and was the only condition for the hybrid controlieat could not take a significant number of
steps before falling. However, these disturbanéfestathe model at all levels of feedback and

may have washed out a distinctive optimum at adZBl

We were also generally limited by the amount ofsaothat could be applied to the passive
walking model. Unlike, a swinging pendulum (Kuo 28) the passive model does not benefit
from a global stability. With the pendulum, we cgenerally be confident that on average the
pendulum will oscillate about an angle of zero. Ugio the passive model incorporates pendular
motion, a limit cycle is attained by sequentialpste-step transitions that reset the pendular
motion. The model falls down if the swing leg faitsclear the ground as it swings forward or if
the hip on the stance leg fails to move over thppett foot. Therefore there is a relatively narrow
range of possible perturbations (compared to th®lsi swing pendulum) that can be applied
while still achieving sequential steps. Furthermooer calculation ofL was based on a
linearization of the equations of motion (matrix Bquation 16) at points along the nominal limit
cycle. For large levels of noise and significarpattures from the limit cycle, the CPG feedback

gain may have been improperly tuned for stabilizimgjinternal estimate of model states.

The model studied here was designed to mimic te& faatures of normal walking kinematics.
Though we modeled the propulsive properties ofléigs with a passive spring, we expect that
this actuation is also advantageously generatedughr feedback. Again, the advantage of
feedback is that the timing is adjusted based eratttual state of the limb, and the disadvantage
is sensitivity to sensory errors. Just as with ghesent model, a state estimator could optimally
combine the advantages of feedback and a feedfdriméernal model to control the rhythmic

compression and extension of the legs.

Applying the state estimation hypothesis to motontml (including posture and rhythmic
movment) leads to interesting predictions. As setgkein Kuo 2002b, artificial corruption of a
sensory channel should result in a decrease imeight, assuming plastic adaptation of synaptic
weighting is possible. In particular, an estimatistheme provides a convenient means to
calculate and optimally respond to this sensorgreifhe magnitude of a feedback response to
subsequent sensory perturbation would then begieetlio decrease with decreased weighting on
that sensory channel. However, this result canmotdistinguished from a more hardwired

reflexive strategy or other feasible motor consitohtegies with decreased feedback gains. A state
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estimation filtering strategy can be distinguisHfiein a more hardwired reflexive use of sensory
information based on two criteria: 1) Temporalefilhg of sensory information 2) Differential
processing of sensory information during activef (geluced) and passive (externally induced)

movements.

For healthy persons with access to reliable sensofgrmation, these two schemes are
indistinguishable from one another and both predidast response to external perturbations.
Under normal conditions (when all sensory informatiis providing similar and reliable
information) the estimation tracking is expectedb® fast, so that temporal response to a
perturbation would likely be dominated by the feadbstrategy. However, a neural realization of
state estimation would show signs of temporal ritig of sensory signals (Kuo 2005). This
temporal filtering can be witnessed when erronisoiduced on a single sensory channel such that
the error updates the internal model states manl\sl The time scale of this sensory filtering
will be dependent on the weighting of that sensomannel. When these sensory systems
experience perturbations on all sensory channeth, sirategies show fast responses of the body
states that are limited by body dynamics and delageneration of the motor commands. When
these sensory systems experience perturbationssimgle sensory channel, they show different
rates of output response. The direct feedbackegtyawill still show a fast response because the
sensory information is not processed before besagl dior feedback control. The state estimation
strategy will show a slowed response as the peatianb introduced on a single sensory channel
updates the internal model states more slowlyhttukl be noted that both of these control
strategies predict that the magnitude of a feedlaskonse to sensory perturbation increases
with weighting on that sensory channel. Howevestade estimation strategy can be differentiated
from a direct feedback strategy based on the rétehe feedback response to sensory
perturbations. State estimation predicts that thae rof the feedback response to sensory
perturbation increases with weightings on that sgnshannel whereas the rate of the feedback

response is insensitive to this weighting when useddirect feedback strategy.

By utilizing a forward model that makes use of edfee copy, it is possible to cancel out the
sensory effects of self motion, and thereby distisig between intended motions (either produced
by muscle work or expected interaction with theiemment) and unintended motions. The state
estimation hypothesis predicts that sensory inféilonavould be differentially processed for self
or externally produced movements. Experimentalence indicates that some sensory systems in

insects and even primates use efference copiesotdrncommands to adjust their sensitivity
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(Bellebaum et al. 2005; Poulet and Hedwig 2002; Rog Cullen 2004; 2001). This sensory
processing scheme therefore filters sensory infoboman a manner that emphasizes sensory
signals generated by external unintended motions. ekample, it has been shown that the
vestibular nuclei in squirrel monkeys, which reesivafferent signals from the vestibular
semicircular canals, differentially processes sgdnerated and externally produced head

movements, suggesting the use of efference copy éRd Cullen 2001).

Internal models explain how sensory processinge®mplished but also give us insight into a
possible method for motor learning, where errorsensory prediction are used refine motor
commands. For example, a forward model could peothe proper signals for motor learning by
translating errors between the desired and aceméosy outcomes of a movement into the
subsequent errors in the motor command. This legrid not possible under reflexive control
because motor commands are generated by the mowésathand therefore there is not central

motor command to correct.

Internal models have become an accepted paradigmmdtor planning and learning for goal-
directed, upper extremity movements (Hwang and Sledd 2005; Kawato 1999; Scott 2004;
Wolpert et al. 1995). State estimation models dftyie control have also successfully predicted
the properties of human sway during sensory orgéioiz tests, where visual or proprioceptive
information is rendered inaccurate by sway refdren(kuo 2005). We suggest that the concept
of internal models are not just relevant to uppdresnity tasks, but that these principles are
relevant at many levels of motor control, eventfar most stereotyped of movements, such as
walking. In humans, the existence of central pattgmerators is still under speculation and most
of our understanding of how they apply to humandravn as extensions from other vertebrate
models. However, evidence for their existence i flumans is supported by several studies
(Duysens and Van de Crommert 1998b; MacKay-Lyor@20ncluding those that demonstrate
phasic modulation of proprioceptive reflex gainginlg rhythmic tasks such as walking and arm
cycling (Zehr 2005).

Finally, the hybrid model studied here was meantaaxonceptual exercise rather than
physiological model of human gait. It is our basigpothesis that sensory processing is
performed during locomotion in a manner akin tdeststimation, where sensory information is
filtered through an internal representation of loely dynamics. This hypothesis does then does

not specify the details of feedback control stregused or the details of how this is
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accomplished in the nervous system (motor primtivetc). The compliant walking model is

complicated enough to produce specific featureshefwalking task but simple enough that
feedback back rules can be generically represeritedhe case of generating the rhythmic
walking motion, a simple feedback rule wherebyldgs extend and compress like linear springs

reproduces the major features of sagittal plane G@ion in human walking.
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Chapter 5. Direction dependent control of balance aring

walking and standing

Abstract

Human walking has previously been described asraided “falling.” Other evidence, however,
suggests gait may also have self-stabilizing aspeduiring little control. Computational models
suggest that the fore-aft component of walking reagn be passively stable from step to step,
whereas lateral motion remains unstable and resjeatrol, as through active foot placement.
Walking humans might then rely less on integrasigasory feedback, such as vision, for anterio-
posterior (AP) balance than medio-lateral (ML). Wésted whether healthy humans (N = 10)
exhibit such direction-dependent control by apaylaw-frequency perturbations to the visual
field (a projected virtual hallway) and measurirgtf placement during treadmill walking. We
found step variability to be nearly ten times meeasitive to ML perturbations than AP. Root-
mean-square ML step variability increased approtéiygalinearly with ML perturbation
amplitude R = 0.81, P = 5.7e-4), with the slope defining thie $&nsitivity, which was 9.4 times
the AP sensitivity (P = 0.0005). For comparisomikir perturbations were applied during quiet
standing, which was expected to be actively coletrioin all directions, but less so in directions
with large base of support (BOS). We measured b#itiaof center of pressure as an indicator of
active control, and found normal standing to havewersed direction dependence compared to
walking. The AP sensitivity was 2.3 times greateart ML (P = 0.039), suggesting that the low
AP sensitivity of walking was not simply due to giglogical limitations of visual processing.
Tandem (heel-to-toe) standing yielded ML sensitigtO times greater than ARP (= 0.005),
suggesting that the BOS indeed influences the degfeinstability. The direction-dependent
sensitivity of walking suggests that the centralvoas system may gain stability in the AP

direction through an uncontrolled series of falls.
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Introduction

The central nervous system (CNS) uses sensory dekdfor active control, particularly to
compensate for instabilities. The upright humanybdor example, is unstable and its balance is
continuously stabilized through the integrationvigual, vestibular, proprioceptive, and other
sensory inputs. Other tasks may use sensory infamman a discrete rather than continuous
manner. In particular, walking has periodic dynaniwhere the discrete step-by-step stability
may be quite different from posture. This may thae dictate differences in active control, as
well as how sensory information is integrated arsddufor step-by-step stabilization. An
implication of these differences is that clinicabtis of standing balance may not capture some
aspects of gait stability. Here we present an éxpartal study of the role of vision in the control
of balance during walking, contrasted with its rateupright standing. We propose that the
dynamics of walking may provide a degree of passitep-by-step stability that is not present in

standing.

The inverted pendulum dynamics of the upright botke posture unstable without control. The
CNS actively balances the head, trunk, and legdherground with corrective torques based on
sensory feedback (Horak and Macpherson 1996; Jsbarand Magnusson 1991). Although
local spinal reflexes certainly contribute to tlwsntrol (Allum 1983; Carpenter et al. 1999),
higher level integration of visual, vestibular, astther inputs is also important for stability (e.g.
Nashner et al. 1982). Reduction of sensory infoionatypically degrades posture control, and
the combined loss of both visual and vestibulauiapmakes posture considerably less stable
despite the remaining presence of proprioceptipats (Black et al. 1983). Integrative feedback
control is demonstrated even more directly by &cbedy sway, which can be induced simply
from experimental perturbations of the sensory ispEor example, vision can be driven by an
artificial visual field (e.g., Keshner and Kenyof(B; Mahboobin et al. 2005; Peterka 2002b),
and vestibular inputs can be manipulated by gatvatimulation (e. g., Fitzpatrick et al. 1994;
Inglis et al. 1995). The instability induced by tgnsory loss demonstrates the necessity of
integrative feedback, and the sensitivity of pastiardriven inputs quantifies the contributions of

sensory inputs to that integration.

Walking is potentially subject to similar instabjlias posture. This has led to the interpretatfon o
walking as “controlled falling” (Perry 1992). Nonly must walking be stabilized from step to
step, but the head and trunk must also be contstydialanced as with posture (Keshner et al.

1988). The continuous balance component would thenexpected to incorporate similar
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integrative feedback, as evidenced by the senyiti postural sway to visual perturbations
during gait (Keshner and Kenyon 2000; Warren e1296). But unlike posture, it is also possible
that walking exhibits some degree of step-to-stapility, as demonstrated by dynamic walking
machines that can walk stably with no feedback robnivhatsoever (McGeer, 1990). The
difference between continuous and step-to-steflisfals demonstrated by a passive dynamic
walking toy that is unable to stand up but can wailbly down a ramp (Coleman and Ruina
1998). Incorporating roughly human-like geometryd athree-dimensional dynamics in a
computational model of dynamic walking (Kuo, 199@F found the fore-aft motion to exhibit
passive dynamic stability, and the lateral motiorhigh degree of instability. The lateral
instability is easily controlled through active astiment of lateral foot placement with each step,
driven by sensory feedback. But no feedback isssarg for the model’s step-to-step stability in

the fore-aft direction.

Applied to human walking, only the lateral companehactive, step-to-step control would be
expected to require higher level integrative feelbahis control would require sensation of
body motion, similar to that used for continuousdicontrol of posture. But there would be little
need for integrative feedback for the fore-aft motibecause lower level (e.g. spinal) feedback
may be sufficient for the legs to support body weignd behave like pendulums. Indirect
evidence for direction-dependent stability is gii®nprevious observations that human subjects
walking without vision have greater lateral stepriaility but no change in fore-aft step
variability (Bauby and Kuo 2000b). The increase lateral variability is analogous to the
degradation of posture that results from removalisfon. If step-to-step stability is indeed
different from postural stability, the differencégmt help explain why clinical tests of posture do
not always predict gait ability (Shimada et al. 200isser et al. 2008). The contribution of vision
to step-by-step walking stability has yet to bemified, but could be assessed by perturbing the

visual field along multiple directions, as has bdemonstrated in posture (Streepey et al. 2007b).

The purpose of the present study was to evaluatsehsitivity of step-to-step foot placement to
perturbations of the visual field. We hypothesitteat walking is passively unstable in the medio-
lateral (ML) direction and therefore actively statsd through integrative feedback control but
passively stable (or rather, actively stabilizetbater levels of the CNS) in the anterior-posterior
(AP) direction. We expected that ML foot placemembuld be highly sensitive to ML

perturbations to the visual field, but that AP fptdcement would be relatively insensitive to AP

perturbations. To control for the possibility tltserved sensitivities are simply due to direction-
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dependencies in visual processing rather tharagiedynamics, we also compared walking to an
analogous set of continuous balance tasks. Dutamglag, we expected the degree of instability,
and hence sensitivity to visual perturbations, @épahd on the base of support and therefore the
type of stance. For both step-to-step balance duialking and continuous balance during
standing, we hypothesized that the visual contidinuto active control increases with the degree

of passive instability.
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Figure 5.1. Predictions of sensitivity to visuattpebations, for walking, normal standing, and tamd
standing. Previous computational models (Kuo 1988¥ict that walking may have passive dynamic
stability in the AP direction but instability inehmedio-lateral (ML) direction, controlled with aat

foot placement. An indicator of active control i®s variability, measured through the center of
pressure (COP) under each foot. Models predict bagtsitivity of ML (step width) variability to ML
visual perturbations (“ML/ML sensitivity”). Ellipse denote covariance of step variability, computed
from root-mean-square step deviations. The stalolitstanding is expected to depend on the base of
support, with greater instability in the AP directifor normal standing, and the ML direction for
tandem (heel-to-toe) standing. Variability of canibus COP, as opposed to step-to-step COP in
walking, quantifies posture control. High AP/AP siirity to visual perturbations is expected during
normal standing, and high ML/ML sensitivity duritendem standing.

Tandem
Standing

Methods

We measured the effect of visual perturbations @ @ariability, as an indicator of the degree
of integrative control during both walking and stang (Figure 5.1). For walking, we used COP
variability as a measure of discrete, step-to-$tep placement contributions to active control
(Bauby and Kuo 2000b). For standing, we used COfahitity as a measure of continuous
application of torque against the ground. Giveraid®nsors and no disturbances, both types of

COP would be expected to exhibit no variability.t Buternal and external perturbations, along
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with imperfect sensors, contribute to variabilifydiscrete (foot placement) COP during walking,
and continuous COP during standing. We inducedavisensory perturbations with a virtual
reality environment, and quantified both types afiability with covariances, which describe the
root-mean-square (RMS) variability in the ML and Aftrections. During walking, these

correspond to RMS variability in step width andpstength, respectively. These variabilities
were recorded as a function of visual field peratidns, yielding direction-dependent sensitivity
measures. We applied oscillatory perturbationdeovisual field during walking and two types of
standing, with the feet placed side-by-side (“ndijnar heel-to-toe (“tandem”). Sensitivities to

perturbations were quantified as the change in Risi&bility per unit change in perturbation
amplitude, using step-to-step COP variability faalking, and continuous COP variability for

standing.

From our computational models of walking, we expdcgreater instability in the lateral
direction. This would be manifested as a high s$eityi of ML variability to ML perturbations,
referred to as “ML/ML sensitivity,” and a lower ARP sensitivity (Figure 5.1, right column). In
contrast, we expected standing to be generallyabfest perhaps with the degree of instability
depending on direction. Empirical observations gest) that normal stance is more unstable in
the AP direction (Marigold and Eng 2006; Paulusaket1984), and tandem stance in the ML

direction (Hong et al. 2007), perhaps
M /

due to differences in the base of

support (Day et al. 1993; Henry et al.

2001; Horak et al. 2005). This leads toprojection
expectations of greater AP/AP Screen
sensitivity during normal stance, and

greater ML/ML sensitivity during

tandem stance.

Instantaneous

Experiment coP /
Volunteer human subjects performed

. . . . ' Treadmill
walking or standing with visual field readm

perturbations applied through a VlrtuaIFigure 5.2. Experimental Setup: Virtual realityugetises
reality display (see Figure 5.2). Tena single projector and curved rear projection stree
] provide wide viewing angle and immersive feeling of
subjects (6 male, 4 female, aged 24.3 #noving within a tiled hallway. Force plates mounted
4.1 years: body mass 73.1 + 15.4 k underneath a split belt treadmill were used to nédbe
' ’ T tenter of pressure (dashed line).
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leg length 0.92+0.08 m; mean + s.d.) provided imfed consent and participated in this study.
All were healthy adults with no known visual comalits or impairments affecting daily walking
function; including dizziness, vestibular condignsomatosensory loss, or neurological
disorders. Both walking and standing were performed split-belt instrumented treadmill used
to record COP during each trial. The virtual rgalitisplay used a single video projector
producing an image on a wide-view screen. The sonees 3 m high and 3 m wide, curved into a
roughly semi-circular shape to provide about 1B6rizontal and 145vertical viewing angles,
with subjects placed about 0.75 m away from thentfraf the screen. The image was rear-
projected, with geometry distorted to compensatestween curvature. We did not apply head
tracking compensation, but to increase sense ofeirsion, subjects wore eyewear designed to
block the field of view below the screen, includitigeir feet and the stationary ground
surrounding the treadmill. The visual field constsof a virtual dark hallway tiled with randomly

placed white rectangles (Warren et al. 1996).

Subjects were presented with oscillatory pertudoati of the visual field in the form of
translational sinusoids at 0.25 Hz in the horizbptane. This low frequency was selected based
on reports that perturbation frequencies betwe2f-0.25 Hz significantly affect balance while
avoiding visual discomfort (Jeka et al. 2006; Spast al. 2006; Warren et al. 1996) and that
vision is most sensitive below 1Hz (Yoneda and Toksu 1986). Lateral perturbations were
applied as rotations about a vertical axis locatethe vanishing point at the end of the virtual
hallway. This was to ensure that the forward dicectvas always directed toward the center of
the end of the hallway, so that any perceived melfion induced only a balance correction but
not a heading correction. Subjects were instrutdigdaintain a forward gaze by looking towards
the end of the hallway and to use the visual infdrom as naturally as possible as they walked
down the hallway. Subjects were also informed thatvisual stimuli might cause them to walk

differently than usual and were instructed notgbtfor consciously anticipate what they saw.

During the walking conditions, subjects walked atoastant speed of 1.25 m/s on the treadmill
while viewing a virtual hallway, where the walls weal past them at the same speed as the
treadmill belt. Prior to the study, subjects wereeg a 5 minute training trial to acclimate
themselves to the virtual environment. They wesntexposed to continuous perturbations of the
visual flow in two sets of walking trials. The firset tested the effect of perturbation amplitude
on step variability. Subjects were exposed to itz perturbations of the visual flow at
amplitudes of 0, 0.05, 0.15, 0.25, and 0.35 m it boe M-L and A-P directions. The second set
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tested the effect of perturbation direction, withnslations in directions uniformly distributed at
0, 30, 60, 90, 120, and 150 degrees relative to dir&ction, all at the single amplitude of 0.25
m. Three additional trials were performed on fifeh® subjects to test the interaction of hallway
speed and perturbation direction, in which the @nd 0.25 m perturbation amplitude conditions
were repeated in both the ML and AP directions wlith hallway nominally stationary and the
walls not moving past the subjects (referred td'Ns Flow” condition). This was similar to

normal treadmill walking, where the visual fieldsaldoes not translate relative to the body,
except that perturbations were still superimposedtlee otherwise stationary hallway. All

walking trials were 5 minutes long and presentechimdom order, with a short break given after

every third trial.

During the normal standing conditions, subjectodtmn the treadmill with feet placed at
shoulder width while viewing a stationary hallw#&or the tandem standing conditions, subjects
stood on the treadmill with one foot in front oktbther in a heel to toe configuration. Subjects
were allowed to choose which foot was placed fodnaard maintained the chosen configuration
for all tandem trials. For all standing trials, pdis were additionally instructed to maintain an
even weight distribution between the legs. All giag trials consisted only of two amplitudes
and two directions. Sinusoidal perturbations imegitthe M-L or A-P direction were applied at

amplitudes of 0 and 0.05 m in randomized trial$ thsted 2 minutes.

We recorded instantaneous COP from continuous grogaction force and moment signals for
all trials. Ground reaction forces and moments wareasured from force plates mounted
underneath each treadmill belt. The forces and mteneere sampled at 1200 Hz and low pass

filtered with a 25 Hz cut-off frequency using a ftfuorder, zero-phase-shift Butterworth filter.

Analysis

Variability for walking and standing was quantifieding COP as follows. In the walking trials,
we measured RMS variability in step length and stejth recorded from the instantaneous COP,
which was estimated at mid-step over at least 3&0ss Mid-step was determined as the time
point during a step when the vertical ground reacforce was at a minimum and below body
weight. Step length was defined as the AP disteteeen the centers of pressure at mid-step of
two consecutive steps plus the distance of treadrailel during the step. The distance of travel
was calculated as the product of treadmill belesgpand the time between consecutive mid-step

events. Step width was defined as the lateralmtistdbetween the consecutive centers of pressure.
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The step length and width measurements for lefitramnd right-left steps were then individually
high-pass filtered at a cutoff of 15 steps befalewdating RMS measures for all steps. The filter
was used to remove low frequency components of @aement associated with slow changes
in walking speed and heading. All length measurdemerre also normalized by the subject’s leg
length before computing statistics and group awsad@enter of pressure estimates of foot
placement during treadmill walking (Donelan et 2004) are less precise than kinematic
measures (Bauby and Kuo 2000), especially for lgtlegth variability, because the foot remains
relatively stationary with respect to the groundrimy the support phase while the COP
progresses forward from the heel to the toe. Impi@t in mid-step event timing then adds to AP
COP variability. We therefore concentrated not bacdute variability in step length and width,
but in the changes in step variability acrossdridlverage step length and step width were also
calculated to determine whether adding visual nafsects systematic control of foot placement.
These checks ensure that the overall variabilitasueed from foot placement is a result of the
applied visual noise and not a change in contrategy. For the standing trials, the effect of the
visual perturbations was assessed directly by miegsBMS COP displacement in both the M-L
and A-P directions over a two minute interval. Befeomputing RMS measures, the COP data
was first high-pass filtered at a cutoff frequerafy0.1 Hz to remove low frequency shifts in

posture and weight bearing (Carpenter et al. 2001).

We defined the sensitivity metrics to quantify pepation amplitude dependent changes in
walking and standing variability. These were dedires the slope of the COP variability vs
perturbation amplitude trends and labeled as fadlowhe ML/ML sensitivity for the walking
trials corresponds to the slope of step width \mlits vs. ML perturbation amplitude. Similarly,
AP/ML sensitivity for the standing trials correspisnto the slope of AP RMS COP displacement

vs. ML perturbation amplitude.

We summarized changes in step width and step levaytlability with perturbation direction

using subject-specific ellipses. Each ellipse wagemnined through a least squares circular
regression of the RMS variability as a functionpefturbation direction. Direction dependence
was characterized by the elliptical eccentricitgfided as the ratio of the distance between the
foci to the length of the major axis. (A circle heero eccentricity, and a line segment has unit

eccentricity).
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We tested our hypotheses with the following sta@$tests. To determine effects on average step
length and width, we performed repeated measuregysis of variance (ANOVA) with
perturbation amplitude and direction as factors.dBtermine effects on step variabilities, we
performed repeated measures analysis of covar{@id€OVA), with perturbation amplitude as
one factor and direction as the other. This testdgid estimates of perturbation sensitivities,
which were used to indicate whether visual infoioratabout side-to-side movement is more
heavily weighted than that of fore-aft movement tmmtrolling step-to-step balance during
walking. For the standing conditions, we again usgegated measures ANCOVA to test whether
AP/AP sensitivity was significantly greater than ML sensitivity. Also calculated were
ML/AP and AP/ML sensitivities for both walking arsfanding. Finally, we tested whether the
directional eccentricity of the elliptical fits wasgnificant for both step length and width
variability, using a paired t-test. All statistidakts were performed with a maximum Type | error

ratea of 0.05.

Results

Perturbations of the visual scene induced increa@segariability during both walking and
standing. The sensitivity to perturbation amplitudkpended upon both the task (walking vs.
standing) and the direction of perturbation (ML #&). For all tasks, subjects showed greatest
sensitivity in the direction of predicted instatyili ML/ML sensitivity was greatest for walking
and tandem standing and AP/AP sensitivity was getdbr normal standing. Details of these
results and additional within-task comparisons r@gorted below, beginning with results for

control conditions to facilitate comparisons.

During the walking control condition, subjects wadkat 1.25 m/s with an average step length
0.683 m (+ 0.033 SD, standard deviation) and stejphvof 0.159 m (+ 0.041 SD). Step length (or
AP) variability was 0.019 m (+ 0.008 SD) and steigttv (or ML) variability was 0.025 m (x
0.007 SD), both expressed as root-mean-square (RENSations of discrete, step-to-step COP.
Step width variability was 31% greater than stepgtk variability @ = 0.024, paired t-test).
During the normal standing condition, AP varialilivas 0.0025 m (x 0.0009 SD) and ML
variability was 0.0011 m (£ 0.0004 SD), both expegbas RMS deviations of continuous COP.
AP variability was 2.3 times greater than ML vaiiiép (P = 8.7e-5) in this case. During the
tandem standing condition, subjects exhibited ARatdity of 0.0050 m (x 0.0034 SD) and ML
variability of 0.0043 m(x 0.0014 SD). Compared to normal standing, AP alality was 2.0
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times greaterR = 0.060) and ML variability was 3.9 times greafer= 6.6e-5) during tandem

standing.

ML Variabilities

AP Variabilities

RMS Step Width (m)

RMS Step Length (m)

ML Perturbations

Walking

AP Perturbations

0.101

0.05-

0.101

0.05-

o
T

b

*

Sensitivity

F———F

0

0.2
Amplitude (m)

0.4

o.lor

0.05F

0.101

005

® Data

= Linear Fit

5

F——+

0 0.2

0.4

Amplitude (m)

102

Figure 5.3. Variability of walking as a
function of AP and ML visual perturbations.
Step variability data (filled circles), defined
as root-mean-square (RMS) deviations of
step width and length, are plotted against
perturbation amplitude. Linear regression
fits (solid lines) to data vyield slopes
quantifying sensitivity to perturbations.
Results show that step width generally
exhibited greater variability than step length.
Only ML perturbations produced significant
changes in step \variability;, ML/ML
sensitivity was 0.12 { = 5.7e-4), and
AP/ML sensitivity was 0.017R = 0.0047).
Error bars denote standard deviation.
Asterisks (*) denote significant sensitivity
(P < 0.05).
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Figure 5.4. Variability of normal and tandem stamdias a function of AP and ML visual
perturbations. Center of pressure (COP) variabdigya (filled circles), defined as root-mean-square
(RMS) deviations in the AP and ML directions, afetigd against perturbation amplitude. Linear
regression fits (solid lines) to data yield slopesntifying sensitivity to perturbations. Duringrnal
standing (left), AP variability was generally greathan ML variability, and more sensitive to visua
perturbations in both directions; AP/AP sensitivitgs 0.040R = 0.0044), and AP/ML sensitivity was
0.024 P = 0.0005). During tandem standing, there was greariability than normal standing. Only
the ML/ML sensitivity was significant, with a value 0.032 P = 4.2e-5). Error bars denote standard
deviation. Asterisks (*) denote significant senii (P < 0.05).
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Figure 5.5. Summary of mean perturbation sensewifor walking, normal standing, and tandem
standing. Two sensitivities are compared: ML/MLe(j. sensitivity of ML variability to ML
perturbations) and AP/AP (see Figures 3 and 4).inguwalking and tandem standing, ML/ML
sensitivity was significantly greater than AP/APnsiivity (asterisks denotd® < 0.05). The
sensitivities were reversed for normal standinge @ifferential sensitivity remained in effect digin
walking with a nominally stationary visual fieldNo Flow”), indicating that the contrast with normal
standing is not due to differences in visual fiehdtion. Walking sensitivities are consistent with
model predictions of passive dynamic stability fretep to step, and standing results are consistent
with static stability expected from the base ofsanp.

Visual perturbations had little effect on mean giapameters. Mean step length varied by at most
1.2% across perturbation directioi® £ 0.0014, repeated measures ANOVA) and 2.6% across
perturbation amplitudesP(= 0.010). Mean step width varied by insignificamhounts, 0.8%
across directionR = 0.63) and 7.4% across amplitude £ 0.51). There was no evidence of

significant amplitude-direction interactioR € 0.057).

Visual perturbations had much greater effect op stariabilities, which varied approximately
linearly with perturbation amplitude depending oartprbation direction (Figure 5.3). For
example, the slope of ML variability due to ML pettations (i.e., the ML/ML sensitivity) was
0.123 (+ 0.075 SD), with a significant amplitudepdadenceR = 5.7e-4), withR* = 0.81. Not
only did ML perturbations affect step width variléyj but they also caused an increase in step
length variability, with AP/ML sensitivity of 0.01¢ 0.014 SDP = 0.0047) withR? = 0.82. In
contrast, AP perturbations had little effect af #le sensitivities were much smaller—no greater
than 0.013—and not significantly different from agP = 0.34 for ML/AP sensitivityP = 0.12

for AP/AP sensitivity).

Variability during both types of standing also ieased with perturbation amplitude (Figure 5.4),
depending on the direction of perturbation. In nalrstanding, AP COP variability increased
with both perturbation directions: AP/AP sensivitas 0.040% 0.031 SDP = 0.0044) withR?
= 0.83, and the AP/ML sensitivity was a small bigingicant 0.024 £ 0.013 SD,P = 0.0005)
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with R? = 0.94. In contrast, ML variability was relativelysensitive; the ML/ML sensitivityR =
0.20) and ML/AP sensitivityR = 0.30) were not significantly different from ze@uring tandem
standing, the ML/ML sensitivity was 0.032 (0.014 SDP = 4.2e-5), withR? = 0.95. The other
sensitivities were not significantly different fromero (AP/ML sensitivity,P = 0.87; AP/AP
sensitivityP = 0.26; ML/AP,P = 0.20).

Perturbation sensitivities followed the trends i by task dynamics (Figure 5.5). During
walking, the ML/ML sensitivity was about 9.4 timgseater than the AP/AP sensitivity &
0.0005, repeated measures ANCOVA). But variabditteiring normal standing exhibited an
opposite trend, with an AP/AP sensitivity about BiBes greater than ML/ML sensitivityP (=
0.039, repeated measures ANCOVA). During tandemdstg, the main sensitivity was ML/ML,
which was 3.0 times greater than the AP/AP seiitsitfp = 0.0051). Even though variability was
measured in different ways for walking and standiogntinuous COP vs. discrete steps), the
sensitivities to visual perturbations were of raygthe same order of magnitude. The most
important comparison is therefore between sentiss/ifor each task, showing walking to be
relatively far more sensitive in the ML directiohah AP, and standing to have the converse

effect, to a somewhat lesser degree.

Step variabilities also varied with perturbationedtion intermediate to AP and ML (Figure 5.6).
Perturbations in 30° increments resulted in valitgds that changed relatively smoothly between
the two extremes. These increments also demonstaateML perturbations affected both step
width and length variabilities, through the eccigity of ellipses fit to polar plots of variabilitsts

a function of perturbation direction. Step widthrighility exhibited a significant eccentricity of
0.78+ 0.08 CI P = 9.5e-9), and step length variability an ecceittriof 0.60+ 0.14 CI P =
8.9e-6), both in the ML direction.

The effect of visual perturbations on walking wamikr even with the nominally stationary
visual field (see Figure 5.5, No Flow conditionh fact, the visual field condition had no
significant effect on the primary sensitivities (mal flow vs. no flow: ML/MLP = 0.18; AP/AP
P = 0.50). More importantly, ML/ML sensitivity wasgsificantly greater than AP/AP sensitivity
(by a factor of 3.58P = 0.0079), even when the average speed of thalvfmld was zero

relative to the subject.
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Figure 5.6. Step width and length variability asuaction of visual perturbation directiolata point
show mean and standard deviation of RMS variabitityperturbaitbns with amplitude 0.25m, along w
ellipses fit to these data (solid lines). VaridaEk in the control conditions with no perturbagoart
shown for comparison (dashed circles). Both valiteds were greatest for perturbations in the
direction, as demonstrated by significant ecceityrief subject-specific ellipse®(= 9.5e9 for step widtt
P = 8.9e-6 for step length).

Discussion
This study was designed to determine whether huwehing has passive stability in the AP

direction, and instability in the ML direction. Wegerturbed the visual field in a variety of
directions and amplitudes and measured the effe@at placement variability. For comparison,
we also tested the effect of visual perturbationsnormal and tandem standing, hypothesizing
that the base of support would determine directadrgreatest instability. Our results revealed an
amplitude and direction dependence of visual peations on step length and width variability
during walking. During standing, COP variability svalso sensitive to visual perturbations. The
direction dependencies were consistent with ounthgses: low sensitivity of step length to AP
perturbations, high sensitivity of the AP componehnormal standing, and high sensitivity in
the ML direction during tandem standing. Theseifigd have a number of implications for the
control of walking and standing, and the role ¢#égrative feedback in motor control in general.
Our results suggest that integrative visual feeklfimecised more for controlling lateral than fore-
aft balance during walking. Direction-dependentss#ténity was predicted from the unstable
lateral balance of dynamic walking models, whichjuiee active feedback only in the lateral
direction (Kuo 1999). The observed high sensitivitiy ML foot placement to ML visual
perturbations suggests that vision is used to datexal foot placement. In contrast, there was no
significant sensitivity of foot placement to AP pebations, indicating little use of vision in that
direction. In dynamic walking models and machinpassive stability is afforded by the

pendulum-like motion of the legs and the step-gpdtansition. These cause heelstrike collisions
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to dissipate more or less energy when perturbatiespectively add or subtract energy (Kuo
2002a; Wisse et al. 2005). This results in a motiat is stable over discrete steps (also referred
to as “limit cycle” stability), despite having inted pendulum instability in continuous time.
Interestingly, we found ML perturbations to alsdeaf step length variability, as indicated by
significant AP/ML sensitivity. This may be due tgndmical coupling between step width and
step length, as observed in our computational nso@duby and Kuo 2000b). Passive dynamics
may afford walking a degree of limit cycle stalyilin the AP direction without need for
integrative control. But stability in the ML diresh appears to depend on the integration of

sensory feedback regarding ML motion of the body adjusting lateral foot placement.

We also observed direction dependence in the agmisttime control of standing. The higher
sensitivity to AP than ML visual perturbations sagty that AP balance may be actively
stabilized to a greater extent than ML balancesTdirection dependence may be due to the
configuration of the lower extremity, which in tleagittal plane resembles a multi-segment
inverted pendulum. But in the frontal plane (MLetition) the two legs, pelvis, and ground form
a four-bar linkage, which might be passively leasstable than an inverted pendulum. This may
explain why subjects were quite insensitive to Meual perturbations during normal standing.
Others have also observed that increased standh alidws subjects to respond with smaller
active postural responses, when perturbed eithesigddly (Henry et al. 2001) or visually (Day et
al. 1993; Hong et al. 2007) in the ML direction.eTbonfiguration is quite different in tandem
standing, where the base of support is much redircdde ML direction. Subjects weighted
vision differently in that condition, consistent ttvihow stability is expected to vary with

configuration.

A potential concern regarding these results is divaction-dependent visual sensitivity might be
an artifact of physiological limitations in visuptocessing. The low AP/AP sensitivity during
walking might then be explained by poor abilitydetect motion in that direction. This however
appears unlikely, because subjects had high AP/ARsisvity during standing. Another
alternative explanation is that bulk flow of theswal field during walking somehow reduces
visual sensitivity in the AP direction. But the A sensitivity was not significantly different
even with a subjectively stationary hallway (segufeé 5.5, No Flow condition), and ML/ML
sensitivity remained much greater, even thoughnttrainal visual field was identical to that of
standing. Other evidence suggests that the CN$daed sense perturbations to a moving visual

field, because AP visual motion is still sensed asdd for continuous-time stabilization of the
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head and trunk during walking (Keshner and Keny@®03, and bulk flow has little effect on this
control (Warren 1996)it therefore appears that the CNS does detect espbnd to AP visual
information during walking, but uses it selectivéty continuous-time postural stabilization and

very little for step-to-step, limit-cycle stabilidan.

Our findings are subject to several limitations.eThisual perturbations only produced an
imperfect illusion of self-motion, due to the limit resolution and fidelity of the computer
projected display, such as lack of stereoscopid hesecking in the virtual reality system. These
limitations may have reduced the ability to detghificant sensitivities. Perturbations were also
restricted to relatively low frequencies, wheret®gar organs have low sensitivity, to avoid
large conflicts between visual and vestibular inpligher perturbation frequencies (and perhaps
amplitudes) may induce greater conflict, which miginoduce different effects, as has been
observed with sensory perturbations to posturee(Ret2002b). Our estimates of COP during
treadmill walking were also of limited precisiontime AP direction, due to imperfect estimation
of AP COP from a moving treadmill belt (Donelara&t2004a). This likely inflated estimates of
AP step variability, but in a uniform manner haviite effect on sensitivity measures. Finally,
our measures of perturbation sensitivity were basedggregate step variability rather than a
correlation between individual perturbations andcseding steps. We consider aggregate
sensitivity to perturbations to provide better evide of active control than previous studies using
removal of vision (Bauby and Kuo 2000b). It woulolwever be more direct to detect active foot

placement control on a step-by-step basis.

A general theme of this study is that sensory faektshould be weighted based on stability
requirements. Inherently unstable motor tasks recactive feedback control for stability. Tasks
or task directions with the greatest instabilitguige more feedback, while others may require
little feedback. Moreover, such feedback requiremeshould not be specific to vision. For
example, proprioceptive perturbations have beetieappsing vibration of lower limb muscles,
resulting in large effects on standing posturehi@ AP direction but small effects on walking
(Courtine et al. 2007), consistent with the hypethed direction of passive stability. Another
example is aging, which has been associated wahtgr increases in ML than AP step variability
(Dean et al. 2007a; Owings and Grabiner 2004aTh)s may be due to age-related deficits
affecting not just vision but also a variety of @ttmodalities. Another approach to the same

theme is to perturb stability rather than sensopui. Accordingly, we have previously applied
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external lateral stabilizers to artificially impmvateral stability of human subjects, with theuies

of reduced ML step variability (Donelan et al. 2ap4

Another theme is that discrete, step-to-step staloilay be quite different from continuous-time
stability. Our three-dimensional model of walkirsguinstable in the ML direction but stable in the
AP direction (Kuo 1999). That same model, placethennormal standing posture, is stable in the
ML direction but unstable in the AP direction.dt in fact, typical for dynamic walking robots to
be designed solely for step-by-step, limit cyclabsity, with little or no regard for standing
stability (Coleman and Ruina 1998; Collins et @02). Standing posture is characterized by
continuous feedback control, much of it homonymdtmr. example, perturbations to the ankle
trigger to feedback torques at the ankle (Park let2804). There are also significant
heteronymous contributions, but even these may tséwed directly to keeping the body
upright. In contrast, step-by-step control of watki appears much more indirect and
heteronymous. The hip torque that adjusts latexal placement is apparently triggered not by
hip proprioceptors but by integrative informatiamrh the preceding step. The effect of that
adjustment is to change body orientation, not tliydmt through the dynamics of the subsequent

step-to-step transition.

Our findings may also have implications for the nawcontrol of walking. Multiple levels of
hierarchical feedback contribute to control, anel @upled through shared muscle groups, body
dynamics, and interaction with environment. Neutaauits within the spinal cord produce a
variety of short-latency reflexes and behaviorseahiby proprioceptive and other local sensory
feedback. These circuits are sufficient to prodweatking in spinalized cats (Grillner and Wallen
1985), by supporting body weight and producingliasic stepping pattern. It is unclear whether
humans have a similar degree of spinal control,doutresults are consistent with other indirect
observations that suggest this possibility (Duysams Van de Crommert 1998a; MacKay-Lyons
2002). Dynamic walking models indicate that penduldynamics can account for much (if not
all) of the stepping pattern, and interaction veitep-to-step transitions can passively produce AP
adjustment of foot placement with no need for &tientrol. Humans may use spinal reflexes to
produce low-level behaviors similar to the passiymamics of models, making little use of
integrative (e.g., visual and vestibular) feedbsichply because it is not necessary. Higher level
feedback may, however, be necessary for laterhilisga Even though spinalized cats can walk,
they also tend to have poor lateral stability (eBelanger et al. 1996; Brustein and Rossignol

1998), evidently lacking active, step-to-step fplatcement control. These components rely more
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heavily on visual, vestibular, and other feedbaotegrated at the level of the brain stem and
cerebellum. Hierarchical organization would allogiral control to regulate most of the fore-aft

walking motion, and higher levels of the CNS teegrate multisensory feedback for balance.

We have thus far assumed that vision is used iatiegly for walking balance, as it is for
posture. An alternative possibility is that CNSfpans directional weighting of vision separate
from other inputs. Extrastriate areas, particuléinly V5-MT region, are responsive to patterns of
movement across many directions and are organigedcolumns that are sensitive to specific
directions of motion. The anatomical arrangementhef MT and MST regions of the visual
cortex, in direction-specific columns, providescmeenient means to weight particular directions
of sensed motion. It is conceivable that task- dimdction-dependent weighting is performed
through selection and gating of these columns, gprtcontributing to cortical control of foot
placement. Our preferred hypothesis, however, as lditeral foot placement control is a more
automatic (and less cortical) response, sharinglasireensory integration circuitry to posture.
Visual information might then contribute continuus sensory integration in the brain stem
and cerebellum (which also receive input from V5IMThis could yield a single, model-based
estimate of body state used to drive continuous-fdmsture control during standing and walking
(e.g., Kuo 2005; Maurer et al. 2006), and also dadthgtep-to-step for driving discrete foot
placement. This estimate might then be selectivedyghted more for ML than AP control,
without necessarily adjusting visual weighting &k tcortical level. Although the present
experiment uses vision for perturbations, a moreegd hypothesis is that multiple other sensors
also contribute to state estimation and balancéraiorsimilarly weighted as a function of task
dynamics. Just as we have assumed that the palysiaenics of our computational model can be
realized by local reflexes in the human, thesemaeee working hypotheses that remain to be

tested experimentally.

A potential application of this work is a new meats quantify balance during walking.
Quantitative clinical assessments of posture sushc@mputerized dynamic posturography
(NeuroCom International, Clackamas, OR) typicalbplgt sagittal plane perturbations, either by
translating the body directly or by perturbing \@bwr somatosensory inputs during quiet
standing. Although some tests appear related toigk| many do not assess non-sagittal motions,
which are also considered clinically relevant tdabae during walking (e.g., Marchetti and
Whitney 2006; Schrager et al. 2008), and also ptddil risk well (Maki et al. 1994; Piirtola and
Era 2006). Lateral COP variability during tanderanse and lateral step variability during
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walking may be useful indicators of balance, andréd perturbations to vision appear to reveal
how visual information is integrated for this cantrThe influence of other inputs might be
emphasized by artificially removing normal visuales, akin to the “visual sway-referencing”
used in dynamic posturography (Nashner et al. 198%2tual reality environments have
previously proven useful for assessment of postardgrol (Keshner and Kenyon 2000; Streepey
et al. 2007b). They could potentially also be usedelectively render ML or other visual cues
inaccurate, and perhaps reveal poor integratioresfibular and other sensory information. Such
perturbations or sway-referencing could then bdieghio both walking and tandem stance, to

provide data complementary to normal dynamic posgfaphy.

Walking and tandem balance both appear to haveenhastabilities in the lateral direction. We
have shown that visual perturbations induce subatatateral variability in discrete foot
placement during walking, and continuous COP vdiglaluring standing. These two measures
serve as indicators of active balance control, thed sensitivity to perturbations quantifies the
degree to which an input such as vision contribtdethat control. In contrast to lateral balance,
the fore-aft component of walking has little depemek on vision. The dynamics of the legs may
afford passive, step-by-step stability to this comgnt, so that the central nervous system has
little need to control it with integrative feedbackhe importance of dynamics is further
highlighted by the visual dependence of standingickv can be reversed by changing the
configuration of the legs and thereby the baseuppert. The CNS can selectively and flexibly
weight sensory information for feedback controlthbfor continuous-time control of balance and
step-by-step control of walking. It may also haméke self-stabilizing aspects of dynamic

walking, where a series of uncontrolled falls canatheless be stable on a step-by-step basis.
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Appendix 5.1 Supplementary Visual Perturbation Data

Summary statistics for control conditions and meansitivities for walking and standing
conditions. Units are in meters.

Walking

(no flow)

Walking Normal standing Tandem standing

Step length (control) 0.683 £ 0.033 0.657 £0.025 - - --
Step width (control) 0.159 £ 0.041 0.152 £ 0.021 -- --

0.015+ 040 0.0025+0.0009 0.0050 +0.0034
0.016 + 040 0.0011 +£0.0004 0.0043 +0.0014

AP variability (control)  0.019 + 0.008
ML variability (control)  0.025 + 0.007

AP/AP sensitivity 0.013+£0.024 0.052 £ 0.052 0.640.031*  -0.011 +0.037
ML/ML sensitivity 0.123+0.075* 0.187+0.090* .@7 +0.037 0.032 £0.013 *

AP/ML sensitivity 0.017 +0.014* 0.026 +0.033 PH+0.013*  -0.008 +0.032
ML/AP sensitivity -0.004 +0.011  0.014 +£0.011 03000.009 0.011 +0.014

Values are meah SD. Asterisks (*) denote statistically significan(ANCOVA, P < 0.05).
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Chapter 6. Conclusion

We sought to address several individual motor cbrissues related to gait while building a
hierarchical representation of how dynamics andtrobrinteract to pattern and stabilize the
walking motion. We had proposed that adding comgka within the passive dynamics
framework would provide a better representationwhan-like walking features. To explore this
hypothesis we developed simulations of a springgéel biped. Overall, we found that compliant
and pendular dynamics explain much of the sagitahe behavior of the limbs across a variety
of gaits. While compliant legs produce more humke-valking motions, we found that they
also retain significant pendular dynamics. We gdsaposed that spring-like limb behavior may
be produced through muscle activation generateiphpally via reflex pathways (feedback) or
centrally from neural oscillators (feedforward). \Weveloped a model to demonstrate that these
strategies may be optimally combined to produceadstestate motor behavior when faced with
unexpected disturbances and imperfect sensing. inberaction of this musculoskeletal
compliance, dissipation, and passive pendulum matgsult in walking gaits that are stable in
the sagittal plane. Aside from sagittal dynamics,also valued the issue of whole body balance,
since lateral dynamics remains unstable and regoimé&rol to stay upright, as through active foot
placement. We established that humans rely lesssoml sensory feedback for anterio-posterior
(AP) balance than medio-lateral (ML) given thisedtional instability in walking. The results of
this thesis demonstrate how integrated models oftrab and dynamics may be useful for

generating and testing a variety of hypothesestaintman movement.

Compliant vs rigid legged dynamics

Human-like walking features include a smooth COR&jdctory, a double-peaked vertical ground
reaction force, and a significant duration of thepgo-step transition. Rigid legged models
cannot reproduce these features at all, sugge#taigthey do not completely account for the
work performed by the legs during gait. The complimodel excels compared to the rigid legged
models in predicting the timing and actual quandtywork performed by the legs on the COM

over a stride. The model is also ideal for explgrthe costs of performing the step-to-step
transition over significant time, and suggests thatrelative timing of the push-off and collision

phases, as determined by duty factor, have sigmifienergetic consequences.
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However, we do not mean to propose that compliegtbehavior replace pendulum behavior as
the governing principle of walking dynamics, as te®n previously suggested (Geyer et al.
2006). We cannot neglect the fact that rigid leggedking models have already served as
powerful tools for predicting mechanical and metbaosts of walking. Perhaps most
remarkable is not how well the compliant model naisnactual walking but how successful

predictions have been without compliance.

We also note that pendulum dynamics still signifibaaffect gait behaviors even with axial leg
compliance. By parameterizing energy distributiathve spring ratio parameter, we found that
all gaits incorporate some amount of pendular gmohg-mass behavior, the relative amounts of
which determine properties of the gait, such a® @gpd speed. In this continuum of behaviors,
walking acts more like an inverted pendulum reltie running and running acts more like a
spring-mass system relative to walking. The model then switch from a walk to a run by
simply redistributing this energy from inverted gdatum dynamics to spring-mass for the same
compliance. We also found that additional speedlmgained by simply injecting energy into
the gait without having to modify properties of t@mpliance. However, these properties can be
tuned to modify gait features, such as step leagthduty factor, at a particular speed to improve
energy economy. More work is nheeded to test whdtbharans actually adjust their leg stiffness

to change these gait features.

This compliant behavior essentially models the wadoke by muscle and tendon to redirect the
vertical motion of the body and speed up swingrfegion. Some control is needed to provide
spring-like actuation from muscles though and cdédpotentially afforded by reflex loops and
neural oscillators located in the spinal cord. §ssig a relative weighting of spring-like and
pendular behaviors is really an evaluation of thlative impact of neuromuscular control and
passive dynamics in generating gait. We find tlwahgliant leg behavior (actuation) and passive

dynamics are equally important in determining mégatures of walking and running behavior.

FF vs FB control

Contentious in the field of motor control has bdée relative importance of central and
peripheral generation of motor behavior for paitegnrhythmic movements (Brown 1914;
Grillner and Wallen 1985; Sherrington 1910). In trast, upper body, volitional motor control

theory has recognized the benefit of combiningdhes forms of control for producing robust
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movements and learning from movement errors (Hwaindg Shadmehr 2005; Kawato 1999;
Wolpert et al. 1995). Perhaps the difference liethe allowance of the motor cortex to flexibly
make use of sensory information and the assumtiainthe spinal cord is relatively hard-wired
and obeys fixed principles. We designed a walkiragleh with hip actuation to demonstrate our
interpretation of feedforward and feedback motatesys in terms of an internal model updated
by sensory information for producing stereotypddjttmic movements. Applied to the neural
oscillators presumed to locate in the spinal ctind, state estimation hypothesis suggests that
CPGs serve a primary role to filter sensory infdiorarather than to simply generate motor

commands.

While this work was intended as a conceptual egerto challenge the feedforward CPG
interpretation, these ideas could be further tegtesligh in vivo spinal preparations (Cazalets et
al. 1992; Smith and Feldman 1987). If the motor sedsory pathways are left intact, electrical
stimulation of the afferents could be used to iaréfly corrupt the feedback signal. The temporal
filtering hypothesis discussed earlier could beesssd by corrupting the feedback pathway with
varying levels of noise and the measuring the shtbe motor response to actual perturbations of

limb position.

Active vs passive balance

We sought to distinguish walking balance and itssseguent utilization of sensory resources from
standing balance, which is accepted to be unst@lbdeblesome are comparisons of both walking
and standing stability in the static sense andpné¢ations of walking as “controlled falling”.
However, passive dynamics recognizes the selflgtialgi properties of fore-aft balance and the
need to actively balance against lateral instgbilife used these concepts to show that humans
rely less on integrative visual feedback for awtgrosterior (AP) balance than medio-lateral
(ML). Standing balance was also found to have aensad direction dependent sensitivity

compared to walking.

Evidence that visual sensory information is proedsslifferently for walking and standing
balance may suggest that proper assessment ofcbalissorders or sensory impairments should
involve several tasks, covering dynamic instaleditin all directions. Tasks that challenge only
static balance in the AP direction may be bestragdligting risk for standing falls and neglect
potential loss of balance during walking or othesvements. This idea is implicitly used in

clinical practices, such as the Berg Balance Twhkich use a variety of functional static and
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dynamic tasks, including tandem stance, to assigguramary balance score. This score is
significantly correlated with falls in the elder{iBogle Thorbahn and Newton 1996). However,
these functional assessment techniques do havatiionis in their ability to specifically quantify
and diagnose the cause of balance impairment. Dgngwsturography tests are able to
distinguish sensory and motor impairments thatcafé¢atic balance but do not have a dynamic
walking balance equivalent (Allum and Shepard 1998shner and Peters 1990; Peterka and
Benolken 1995). Our results also question whethesd tests conducted with a normal standing
posture would diagnose lateral sensory deficitsh&®es a dynamic posturography test for
walking would be necessary to fully diagnose sgngmpairments related to walking balance.
Such a test could not only test lateral sensatignalso stepping corrections related to walking
balance. A simpler method might involve completig dynamic posturography test with a
tandem stance and measuring lateral motion, sircéound this stance to have similar direction
dependence as walking. This test would require tiatvisual surround be equipped to rotate
laterally. The results of our study and othersaaté that a virtual reality visual surround could
instead be used to significantly perturb visioralhdirections and significantly induce postural

sway (Keshner et al. 2007).

Our findings demonstrate that a virtual reality ieowment is beneficial for studying how visual
information is used to make foot placement decisi@mbated to walking balance. Specifically, we
have shown that visual errors in the form of oatiiihs can induce variability in foot placement
and serve as a probe of the weighting or sensitigitvisual information. A similar paradigm may
be useful for detecting or diagnosing gait balainggairment analogous to sensory organization
tests that have been used for detecting standistuad imbalance. While the results directly
indicate the influences of visual feedback on wagkbalance, these results should generalize to
all sensory feedback channels and could possiblyatidated through galvanic stimulation or

tendon vibration experiments.

The applicability of our results to pathologicaltgehould also be tested. Results were predicted
based on a passive walking model and tested intHyealubjects. Predictions rely on the
assumption that the sagittal plane motions of thkkiwg subjects make use of passive principles.
We have provided evidence for this in healthy selsj®ut the same may not be true for persons
with sensory or motor pathologies. Therefore thaicdl relevance of these findings for the

diagnosis and treatment of such pathologies waldrfairther validation in patient populations.

116



References

Adamczyk PG, Collins SH, and Kuo AD The advantages of a rolling foot in human walkihg
Exp Biol 209: 3953-3963, 2006.

Alexander RM. 3 Uses for Springs in Legged Locomotibmt.J Robotics Res 9: 53-61, 1990.
Alexander RM. A model of bipedal locomotion on compliant leg$ilos Trans R Soc Lond B
338: 189-198, 1992.

Alexander RM. Simple models of human movemefyppl Mech Rev 48: 461-470, 1995.

Allum JH. Organization of stabilizing reflex responses ibiatis anterior muscles following
ankle flexion perturbations of standing m8nain Res 264: 297-301, 1983.

Allum JH, and Shepard NT. An overview of the clinical use of dynamic postyiraphy in the
differential diagnosis of balance disorder¥estib Res9: 223-252, 1999.

Anand V, Buckley JG, Scally A, and Elliott DB Postural Stability in the Elderly during
Sensory Perturbations and Dual Tasking: The Infleesf Refractive Blurlnvest Ophthalmol Vis

Sci 44: 2885-2891, 2003.

Bardy BG, Warren WH, Jr., and Kay BA. Motion parallax is used to control postural sway
during walking.Exp Brain Res 111: 271-282, 1996.

Barth DG, Schumacher L, and Thomas SSGait Analysis and Energy Cost of Below- Knee
Amputees Wearing Six Different Prosthetic Feleurnal of Prosthetics & Orthotics 4: 63-75,
1992.

Bauby CE, and Kuo AD. Active control of lateral balance in human watkid Biomech 33:
1433-1440., 2000a.

Bauby CE, and Kuo AD. Active control of lateral balance in human watkid Biomech 33:
1433-1440, 2000b.

Belanger M, Drew T, Provencher J, and Rossignol.& comparison of treadmill locomotion in
adult cats before and after spinal transectidseurophysiol 76: 471-491, 1996.

Bellebaum C, Daum I, Koch B, Schwarz M, and Hoffman KP. The role of the human
thalamus in processing corollary discharfgeain 128: 1139-1154, 2005.

Bent LR, Inglis JT, and McFadyen BJ When is vestibular information important during
walking?J Neurophysiol 92: 1269-1275, 2004.

Black FO, Wall C, 3rd, and Nashner LM. Effects of visual and support surface orientation
references upon postural control in vestibularaiefit subjectsActa Otolaryngol 95: 199-201,
1983.

Blake AJ, Morgan K, Bendall MJ, Dallosso H, Ebrahim SB, Arie TH, Fentem PH, and
Bassey EJ Falls by elderly people at home: prevalence assbaated factorshge Ageing 17:
365-372, 1988.

Bogle Thorbahn LD, and Newton RA Use of the Berg Balance Test to predict fallglierly
personsPhys Ther 76: 576-583; discussion 584-575, 1996.

Brown TG. On the nature of the fundamental activity of tevous centres; together with an
analysis of the conditioning of rhythmic activity progression, and a theory of the evolution of
function in the nervous systethPhysiol (Lond) 48: 18-46, 1914.

Brustein E, and Rossignol SRecovery of locomotion after ventral and ventiedal spinal
lesions in the cat. |. Deficits and adaptive med$ran.J Neurophysiol 80: 1245-1267, 1998.
Carpenter MG, Allum JH, and Honegger F. Directional sensitivity of stretch reflexes and
balance corrections for normal subjects in the aalll pitch plane€xp Brain Res 129: 93-113,
1999.

Carpenter MG, Frank JS, Silcher CP, and Peysar GWThe influence of postural threat on the
control of upright stancéexp Brain Res 138: 210-218, 2001.

Cavagna GA, and Margaria R Mechanics of walking Appl Physiol 21: 271-278, 1966.
Cavagna GA, Thys H, and Zamboni A The sources of external work in level walking and
running.J Physiol 262: 639-657, 1976.

117



Cazalets JR, Sqalli-Houssaini Y, and Clarac FActivation of the central pattern generators for
locomotion by serotonin and excitatory amino acidseonatal ratJ Physiol (Lond) 455: 187-
204, 1992.

Cohen AH. The Role of Heterarchical Control in the Evolatiof Central Pattern Generators.
Brain Behavior and Evolution 40: 112-124, 1992.

Coleman MJ, and Ruina A An uncontrolled walking toy that cannot stand.sBhys Rev Lett
80: 3658 - 3661, 1998.

Collins S, Ruina A, Tedrake R, and Wisse M Efficient bipedal robots based on passive-
dynamic walkersScience 307: 1082-1085, 2005.

Cordo PJ, and Nashner LM Properties of postural adjustments associatetl vepid arm
movementsJ Neurophysiol 47: 287-302, 1982.

Courtine G, De Nunzio AM, Schmid M, Beretta MV, and Schieppati M. Stance- and
locomotion-dependent processing of vibration-indugeoprioceptive inflow from multiple
muscles in humangd.Neurophysiol 97: 772-779, 2007.

Day BL, Steiger MJ, Thompson PD, and Marsden CDEffect of vision and stance width on
human body motion when standing: implications ftier@nt control of lateral swayl Physiol
469: 479-499, 1993.

Dean JC, Alexander NB, and Kuo AD The effect of lateral stabilization on walkingyoung
and old adultslEEE Trans Biomed Eng 54: 1919 - 1926, 2007a.

Dean JC, Alexander NB, and Kuo AD The effect of lateral stabilization on walkingyoung
and old adultslEEE Trans Biomed Eng 54: 1919-1926, 2007b.

Dilingham TR, Pezzin LE, and MacKenzie EJ Limb amputation and limb deficiency:
epidemiology and recent trends in the United St&mgh Med J 95: 875-883, 2002.

Doke J, Donelan JM, and Kuo AD Mechanics and energetics of swinging the humgnlIgxp
Biol 208: 439-445, 2005.

Donelan JM, Kram R, and Kuo AD. Mechanical and metabolic determinants of theepretl
step width in human walking?roc R Soc Lond Ser B-Biol Sci 268: 1985-1992., 2001.

Donelan JM, Kram R, and Kuo AD. Mechanical work for step-to-step transitions imajor
determinant of the metabolic cost of human walkingxp Biol 205: 3717-3727, 2002a.

Donelan JM, Kram R, and Kuo AD. Simultaneous positive and negative external nachh
work in human walkingJ Biomech 35: 117-124., 2002b.

Donelan JM, Shipman DW, Kram R, and Kuo AD Mechanical and metabolic requirements
for active lateral stabilization in human walkirdgBiomech 37: 827-835, 2004a.

Donelan JM, Shipman DW, Kram R, and Kuo AD Mechanical and metabolic requirements
for active lateral stabilization in human walkirdgBiomech 37: 827-835, 2004b.

Duysens J, and Van de Crommert HW Neural control of locomotion; The central pattern
generator from cats to humaait Posture 7: 131-141, 1998a.

Duysens J, and Van de Crommert HW Neural control of locomotion; The central pattern
generator from cats to humaait Posture 7: 131-141., 1998b.

Farley CT, and Ferris DP. Biomechanics of walking and running: from centdr mass
movement to muscle actioBxerc Sport Sci Rev 26: 253-285, 1998.

Farley CT, Glasheen J, and McMahon TA Running springs: speed and animal siZexp Biol
185: 71-86, 1993.

Fitzpatrick R, Burke D, and Gandevia SC Task-dependent reflex responses and movement
illusions evoked by galvanic vestibular stimulationstanding humansl Physiol 478 ( Pt 2):
363-372, 1994.

Fukunaga T, Kubo K, Kawakami Y, Fukashiro S, Kanehsa H, and Maganaris CN In vivo
behaviour of human muscle tendon during walkifigpc R Soc Lond B Biol Sci 268: 229-233,
2001.

Gabell A, Simons MA, and Nayak US Falls in the healthy elderly: predisposing causes
Ergonom 28: 965-975, 1985.

118



Gailey RS, Wenger MA, Raya M, Kirk N, Erbs K, Spyropoulos P, and Nash MSEnergy
expenditure of trans-tibial amputees during amlotaat self-selected pacBrosthet Orthot Int
18: 84-91, 1994.

Garcia M, Chatterjee A, Ruina A, and Coleman M The simplest walking model: stability,
complexity, and scalingl Biomech Eng 120: 281-288, 1998.

Geyer H, Seyfarth A, and Blickhan R Compliant leg behaviour explains basic dynamits o
walking and runningProceedings of the Royal Society B-Biological Sciences 273: 2861-2867,
2006.

Grillner S, and Wallen P. Central pattern generators for locomotion, wipeaal reference to
vertebratesAnnu Rev Neurosci 8: 233-261, 1985.

Hansen AH, Childress DS, and Knox EH Roll-over shapes of human locomotor systems:
effects of walking speedlin Biomech (Bristol, Avon) 19: 407-414, 2004.

Henry SM, Fung J, and Horak FB. Effect of Stance Width on Multidirectional Postur
Responsesl Neurophysiol 85: 559-570, 2001.

Herbert LM, Engsberg JR, Tedford KG, and Grimston SK. A comparison of oxygen
consumption during walking between children wittd amthout below-knee amputationBhys
Ther 74: 943-950, 1994.

Hirai K, Hirose M, Haikawa Y, and Takenaka T. The development of Honda humanoid robot.
In: Robotics and Automation, 1998 Proceedings 1998 | EEE International Conference on1998, p.
1321-1326 vol.1322.

Holt KG, Wagenaar RC, LaFiandra ME, Kubo M, and Obusek JP Increased
musculoskeletal stiffness during load carriagenatdasing walking speeds maintains constant
vertical excursion of the body center of masBiomech 36: 465-471., 2003.

Hong SL, Manor B, and Li L. Stance and sensory feedback influence on postiyremics.
Neurosci Lett 423: 104-108, 2007.

Horak FB, Dimitrova D, and Nutt JG. Direction-specific postural instability in subjeawith
Parkinson's diseasexp Neurol 193: 504-521, 2005.

Horak FB, and Macpherson JM. Postural orientation and equilibrium. Iiandbook of
Physiology, Section 12: Exercise: Regulation and Integration of Multiple Systems, edited by
Rowell LB, and Shepherd JT. New York: Oxford Unsigr Press, 1996, p. 255-292.

Horak FB, Shupert CL, and Mirka A. Components of postural dyscontrol in the eldeay:
review.Neurobiol Aging 10: 727-738, 1989.

Hreljac A. Determinants of the gait transition speed duhiagan locomotion: kinematic factors.
J Biomech 28: 669-677, 1995.

Hwang EJ, and Shadmehr R Internal models of limb dynamics and the encodifitimb state.
J Neural Eng 2: S266-278, 2005.

Inglis JT, Shupert CL, Hlavacka F, and Horak FB. Effect of galvanic vestibular stimulation
on human postural responses during support sutfaocslations.J Neurophysiol 73: 896-901,
1995.

Ishikawa M, Komi PV, Grey MJ, Lepola V, and Bruggenmann GP. Muscle-tendon interaction
and elastic energy usage in human walkingppl Physiol 99: 603-608, 2005.

Ivanenko YP, Poppele RE, and Lacquaniti F Motor control programs and walking.
Neuroscientist 12: 339-348, 2006.

Jahn K, Strupp M, Schneider E, Dieterich M, and Brandt T. Differential effects of vestibular
stimulation on walking and runninbleuroreport 11: 1745-1748, 2000.

Jahn K, Strupp M, Schneider E, Dieterich M, and Brandt T. Visually induced gait deviations
during different locomotion speedsxp Brain Res 141: 370-374, 2001.

Jeka J, Allison L, Saffer M, Zhang Y, Carver S, andKiemel T. Sensory reweighting with
translational visual stimuli in young and elderlgults: the role of state-dependent noiEep
Brain Res174: 517-527, 2006.

119



Johansson R, and Magnusson MHuman postural dynamic€rit Rev Biomed Eng 18: 413-437,
1991.

Kawato M. Internal models for motor control and trajectptgnning.Curr Opin Neurobiol 9:
718-727, 1999.

Kay BA, and Warren WH, Jr. Coupling of posture and gait: mode locking andapaatric
excitation.Biol Cyber 85: 89-106, 2001.

Keshner EA, and Kenyon RV. The influence of an immersive virtual environmemt the
segmental organization of postural stabilizing oesesJ Vestib Res 10: 207-219, 2000.

Keshner EA, Streepey J, Dhaher Y, and Hain T Pairing virtual reality with dynamic
posturography serves to differentiate between pistiexperiencing visual vertigd. Neuroeng
Rehabil 4: 24, 2007.

Keshner EA, Woollacott MH, and Debu B Neck, trunk and limb muscle responses during
postural perturbations in humaiip Brain Res 71: 455-466, 1988.

Knapp HD, Taub E, and Berman AJ Movements in monkeys with deafferented forelintbg
Neurol 7: 305-315, 1963.

Kram R, Domingo A, and Ferris DP. Effect of reduced gravity on the preferred walk-r
transition speedl Exp Biol 200: 821-826, 1997.

Kuo AD. Energetics of actively powered locomotion usifg tsimplest walking modell
Biomech Eng 124: 113-120, 2002a.

Kuo AD. An optimal state estimation model of sensorygra@on in human postural balande.
Neural Eng 2: S235-249, 2005.

Kuo AD. The relative roles of feedforward and feedbackhim control of rhythmic movements.
Motor Control 6: 129-145, 2002b.

Kuo AD. A simple model of bipedal walking predicts theeferred speed-step length
relationship.J Biomech Eng 123: 264-269., 2001.

Kuo AD. Stabilization of Lateral Motion in Passive DynanWalking. Int J Robotics Res 18:
917-930, 1999.

Kuo AD, Donelan JM, and Ruina A Energetic consequences of walking like an inerte
pendulum: step-to-step transitioiserc Sport Sci Rev 33: 88-97, 2005.

Lee CR, and Farley CT Determinants of the center of mass trajectorjiuman walking and
running.J Exp Biol 201: 2935-2944, 1998.

Lovely RG, Gregor RJ, Roy RR, and Edgerton VR Effects of training on the recovery of full-
weight-bearing stepping in the adult spinal &p Neurol 92: 421-435, 1986.

MacKay-Lyons M. Central pattern generation of locomotion: a revigf the evidencePhys
Ther 82: 69-83, 2002.

Mahboobin A, Loughlin PJ, Redfern MS, and Sparto PJ Sensory re-weighting in human
postural control during moving-scene perturbati@xp.Brain Res 167: 260-267, 2005.

Maki BE, Holliday PJ, and Topper AK. A prospective study of postural balance and ok
falling in an ambulatory and independent elderlpydation.J Gerontol 49: M72-84, 1994.
Marchetti GF, and Whitney SL. Construction and validation of the 4-item dynampédt index.
Phys Ther 86: 1651-1660, 2006.

Margaria R. Positive and negative work performances and tledficiencies in human
locomotion.Int Z Angew Physiol 25: 339-351, 1968.

Marigold DS, and Eng JJ The relationship of asymmetric weight-bearinghwpostural sway
and visual reliance in strok&ait Posture 23: 249-255, 2006.

Marsden CD, Rothwell JC, and Day BL The use of peripheral feedback in the control of
movement.Trends Neurosci 7: 253-257, 1984.

Maurer C, Mergner T, and Peterka RJ. Multisensory control of human upright stanésp
Brain Res171: 231-250, 2006.

McGeer T. Passive bipedal runningroceedings of the Royal Society of London: B Biological
Sciences B240: 107-134, 1990a.

120



McGeer T. Passive Dynamic Biped Catalogue. [fhe 2nd International Symposium on
Experimental Robotics I Springer-Verlag, 1991, p. 465-490.

McGeer T. Passive dynamic walkingnt J Robotics Res 9: 62-82, 1990b.

McGeer T. Passive walking with kneeRobotics and Automation, 1990 Proceedings, 1990 IEEE
International Conference on 3: 1640-1645, 1990c.

McMahon TA, and Cheng GC The mechanics of running: how does stiffness lowygth
speed? Biomech 23 (suppl. 1): 65-78, 1990.

McMahon TA, Valiant G, and Frederick EC. Groucho runningJ Appl Physiol 62: 2326-2337,
1987.

Morris R, Harwood RH, Baker R, Sahota O, Armstrong S, and Masud T A comparison of
different balance tests in the prediction of fatisolder women with vertebral fractures: a cohort
study.Age Ageing 36: 78-83, 2007.

Movshon JA, Adelson EH, Gizzi MS, and Newsome WHThe analysis of moving visual
patterns. InPattern Recognition Mechanisms, edited by Chagas C, Gatass R, and Gross C. New
York: Springer Verlag, 1985, p. 117-151.

Murray MP, Mollinger LA, Gardner GM, and Sepic SB. Kinematic and EMG patterns during
slow, free, and fast walking.Orthop Res 2: 272-280., 1984.

Nashner LM, Black FO, and Wall C, 3rd. Adaptation to altered support and visual condgio
during stance: patients with vestibular deficitdleurosci 2: 536-544, 1982.

Nashner LM, and Peters JE Dynamic posturography in the diagnosis and mamagé of
dizziness and balance disordé¥surol Clin 8: 331-349, 1990.

Niino N, Tsuzuku S, Ando F, and Shimokata HFrequencies and circumstances of falls in the
National Institute for Longevity Sciences, Longitua Study of Aging (NILS-LSA)J Epidemiol
10: S90-94, 2000.

Oddsson LI, Wall C, McPartland MD, Krebs DE, and Tucker CA. Recovery from
perturbations during paced walkir@ait Posture 19: 24-34, 2004.

Oie KS, Kiemel T, and Jeka JJ Multisensory fusion: simultaneous re-weightingvefion and
touch for the control of human postuBzain Res Cogn Brain Res 14: 164-176, 2002.

Owings TM, and Grabiner MD. Step width variability, but not step length véilay or step
time variability, discriminates gait of healthy yayand older adults during treadmill locomotion.
J Biomech 37: 935-938, 2004a.

Owings TM, and Grabiner MD. Variability of step kinematics in young and oldeatults.Gait
Posture 20: 26-29, 2004b.

Pandy MG, and Berme N Synthesis of human walking: a planar model fogk support.J
Biomech 21: 1053-1060, 1988.

Park S, Horak FB, and Kuo AD. Postural feedback responses scale with biomecdani
constraints in human standirigxp Brain Res 154: 417-427, 2004.

Paulus WM, Straube A, and Brandt T. Visual stabilization of posture. Physiologicahsilus
characteristics and clinical aspedsain 107 ( Pt 4): 1143-1163, 1984.

Perry J. Gait Analysis: Normal and Pathological Function. Thorofare, NJ: Slack, Inc., 1992.
Peterka RJ. Sensorimotor integration in human postural cdnfrdleurophysiol 88: 1097-1118,
2002a.

Peterka RJ. Sensorimotor integration in human postural cdnréleurophysiol 88: 1097-1118,
2002b.

Peterka RJ, and Benolken MS Role of somatosensory and vestibular cues imuaditing
visually induced human postural sw&xp Brain Res 105: 101-110, 1995.

Peterka RJ, and Black FQ Age-related changes in human posture controk@grorganization
tests.J Vestib Res 1: 73-85, 1990.

Peterka RJ, and Loughlin PJ Dynamic regulation of sensorimotor integration homan
postural controld Neurophysiol 91: 410-423, 2004.

121



Piirtola M, and Era P. Force platform measurements as predictors of éatlong older people -
a review.Gerontology 52: 1-16, 2006.

Poulet JF, and Hedwig B A corollary discharge maintains auditory sengiinduring sound
production.Nature 418: 872-876, 2002.

Rothwell JC, Traub MM, Day BL, Obeso JA, Thomas PK,and Marsden CD. Manual motor
performance in a deafferented mBnain 105 (Pt 3): 515-542, 1982.

Roy JE, and Cullen KE Dissociating self-generated from passively appliead motion: neural
mechanisms in the vestibular nucl&Neurosci 24: 2102-2111, 2004.

Roy JE, and Cullen KE Selective processing of vestibular reafferencenduself-generated
head motionJ Neurosci 21: 2131-2142, 2001.

Rubenson J, Heliams DB, Lloyd DG, and Fournier PA Gait selection in the ostrich:
mechanical and metabolic characteristics of walkamgl running with and without an aerial
phaseProc Biol i 271: 1091-1099, 2004.

Ruina A, Bertram JE, and Srinivasan M. A collisional model of the energetic cost of safp
work qualitatively explains leg sequencing in watkiand galloping, pseudo-elastic leg behavior
in running and the walk-to-run transitiahTheor Biol 237: 170-192, 2005.

Schrager MA, Kelly VE, Price R, Ferrucci L, and Shunway-Cook A. The effects of age on
medio-lateral stability during normal and narrovebavalking Gait Posture 28: 466-471, 2008.
Scott SH Optimal feedback control and the neural basisaditional motor control.Nat Rev
Neurosci 5: 532-546, 2004.

Sherrington C. The integrative action of the nervous system. New Haven,: 1911.

Sherrington CS. Flexion reflex of the limb, crossed extensioneef and reflex stepping and
standing.J Physiol (Lond) 40: 28-121, 1910.

Shimada H, Obuchi S, Kamide N, Shiba Y, Okamoto Mand Kakurai S. Relationship with
dynamic balance function during standing and walki#tim J Phys Med Rehabil 82: 511-516,
2003.

Siegler S, Seliktar R, and Hyman W Simulation of human gait with the aid of a simple
mechanical model Biomech 15: 415-425, 1982.

Sienko KH, Balkwill MD, Oddsson LIE, and Wall C. Effects of multi-directional vibrotactile
feedback on vestibular-deficient postural performearduring continuous multi-directional
support surface perturbatiordeurnal of Vestibular Research In Press: 2009.

Simon D. Kalman Filtering Embedded Systems Programming 14: 72-79, 2001.

Smith JC, and Feldman JL In vitro brainstem-spinal cord preparations feudy of motor
systems for mammalian respiration and locomotiddeurosci Methods 21: 321-333, 1987.
Sparto PJ, Redfern MS, Jasko JG, Casselbrant ML, Madel EM, and Furman JM. The
influence of dynamic visual cues for postural cohin children aged 7-12 yearSxp Brain Res
168: 505-516, 2006.

Speers RA, Kuo AD, and Horak FB Contributions of altered sensation and feedbashanses
to changes in coordination of postural control thuaging.Gait Posture 16: 20-30, 2002.
Srinivasan M, and Ruina A Computer optimization of a minimal biped modesativers
walking and runningNature 439: 72-75, 2006.

Streepey JW, Kenyon RV, and Keshner EAField of view and base of support width influence
postural responses to visual stimuli during quiahse Gait Posture 25: 49-55, 2007a.

Streepey JW, Kenyon RV, and Keshner EAVisual motion combined with base of support
width reveals variable field dependency in healpyng adultsExp Brain Res 176: 182-187,
2007b.

van Beers RJ, Baraduc P, and Wolpert DM Role of uncertainty in sensorimotor control.
Philos Trans R Soc Lond B Biol Sci 357: 1137-1145, 2002.

Visser JE, Carpenter MG, van der Kooij H, and Bloem BR. The clinical utility of
posturographyClin Neurophysiol 119: 2424-2436, 2008.

122



Wall C, 3rd, Oddsson LI, Patronik N, Sienko K, andKentala E. Recovery trajectories of
vestibulopathic subjects after perturbations dulbepmotion.J Vestib Res 12: 239-253, 2002.
Warren WH, Kay BA, and Yilmaz EH. Visual control of posture during walking: functa
specificity.J Exp Psychol Hum Percept Perform 22: 818-838, 1996.

Whitney SL, Marchetti GF, Schade A, and Wrisley DM The sensitivity and specificity of the
Timed "Up & Go" and the Dynamic Gait Index for sedported falls in persons with vestibular
disordersJ Vestib Res 14: 397-409, 2004.

Winter DA . Human balance and posture control during standimwalking.Gait & Posture 3:
193-214, 1995.

Wisse M, Schwab AL, van der Linde RQ, and van der Elm FCT. How to keep from falling
forward; elementary swing leg action for passiveaiyic walkers|EEE Trans on Robotics 21:
393-401, 2005.

Wolpert DM, Ghahramani Z, and Jordan MI . An internal model for sensorimotor integration.
Science 269: 1880-1882., 1995.

Yoneda S, and Tokumasu KFrequency analysis of body sway in the uprigtstpe. Statistical
study in cases of peripheral vestibular diseas& Otolaryngol 102: 87-92, 1986.

Zehr EP. Neural control of rhythmic human movement: thenomn core hypothesigExerc
Foort i Rev 33: 54-60, 2005.

123



