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CHAPTER I

Introduction

In typical spiral galaxies, such as our Milky Way, the vast majority of star formation

occurs embedded deep within giant molecular clouds (GMCs). These stellar nurseries are

primarily composed of cold dense molecular hydrogen mixed with small amounts of dust

and other heavy elements. The volume averaged density of GMCs is roughly ∼ 103 cm−3,

but they are highly non-uniform, and in the densest regions young stars are born.

Infrared observations of GMCs over the last 30 years have provided strong evidence that

clustered star formation is a dominant mode of star formation. It is estimated that more

than 90% of all stars form within clusters of more than ∼ 100 members. At the earliest

ages, these young stellar clusters are deeply embedded in their parent molecular clouds

and, veiled by dust and dense gas, are unobservable at visible wavelengths. Stars form out

of the material in the cloud, and thus the process of star formation is by nature destructive

to embedding clouds. More importantly, young stellar objects are associated with powerful

winds and outflows and the most massive stars emit substantial amounts of UV radiation

throughout their short lifetimes. These strong winds and radiation fields disperse much

of the remaining embedding material and sculpt cavities into the surrounding clouds. A

combination of these processes transforms embedded clusters into exposed visible clusters

over a relatively short period of time. In fact, clusters with ages greater than ∼ 5 Myr are

rarely associated with molecular gas (Leisawitz et al. 1989; Lada & Lada 2003; Allen et al.
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2007). On average, 10% to 30% of the dense molecular cloud material is converted into

stars before gas dispersal halts star formation in the cluster.

As the smallest (non-trivial) scale on which star formation occurs, and because isolated

star formation comprises a small fraction of all star formation, young embedded clusters

represent fundamental units of star formation. Thus an understanding of their creation and

evolution provides deeper insight into many astrophysical processes. On the largest scales,

stellar evolution is responsible for recycling galactic material and so accurate descriptions

of star formation and evolution are necessary components of galactic evolution theories.

On the scale of individual stars, conservation of angular momentum requires that star

formation be accompanied by circumstellar disk formation. These disks are the progenitors

of planetary systems. Therefore, star and planet formation are intrinsically linked and the

star formation environment may have significant consequences for solar system formation,

stability, and habitability. Star formation theories should also provide insight into general

properties of the galactic stellar population, such as the apparent universality of the stellar

initial mass function (IMF), the distribution of binary companions, and the frequencies and

structure of planetary systems. The clustered environment in which most star formation

occurs places limits on the star formation efficiency, the size of planet-forming disks and the

timescale on which planet formation can occur. In addition to dispersing the embedding

molecular gas and thus limiting star formation efficiency, strong radiation fields produced

by young stellar objects can photoevaporate disks surrounding young stars and restrict

their planet-forming potential. Stellar clusters also provide dense environments in which

gravitational interactions between cluster members can affect circumstellar disks, limiting

planet formation and disrupting young solar systems.

In this thesis we study the dynamics of embedded stellar clusters from the protocluster

stage, through the embedded star-forming stages, and out to ages of ∼ 10 Myr when the
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embedding material has been removed from the cluster. Although stellar clusters continue

to evolve on longer timescales, this research focuses on the young cluster environment in

which planet formation is likely to occur. In Chapters II and III we present a study in

which the relevant dynamical properties of young stellar clusters are explored over a host of

possible star formation environments. We discuss the implications for planet formation and

solar system survivability within these clusters. In Chapter IV we present an observable

kinematic signature which may be used as a tracer of initial cluster dynamics. We discuss

this signature in light of recent observations of the nearby massive star-forming region the

Orion Nebula Cluster. In Chapter V we discuss the effect of large scale tidal interactions

on dense protocluster cores within GMCs and examine the implications these interactions

have for stellar cluster formation. A table summarizing all the simulations completed as a

part of this thesis work is included in Appendix A.

1.1 Observations of Young Embedded Clusters

Embedded clusters are distinguished from other types of stellar clusters by their asso-

ciation with significant amounts of molecular gas and dust. This interstellar material is

optically thick at visible wavelengths, with extinctions as high as AV ∼ 100 magnitudes

(Vrba et al. 1975; Strom et al. 1976; Chini et al. 1977; Wilking & Lada 1983). In contrast,

the extinction is much less severe in near-infrared bands J, H, and K (1.2, 1.6, and 2.2μm,

respectively): AK ∼ AV /10, allowing infrared observations to penetrate the embedding

gas and reveal very young stellar objects (Zinnecker et al. 1993, and references therein).

Observations in the near-infrared have the additional advantage that stars are significantly

brighter during their pre-main sequence phase in these bands than they are throughout

the remainder of their main sequence life cycles. This property allows for easier detection

of young stellar objects in embedded clusters over a wide range of masses through the use

of infrared photometry.
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To date, most embedded clusters have been identified through the use of two main

observational techniques: [1] systematic infrared surveys of molecular clouds (Lada et al.

1991; Carpenter et al. 2000), including the recent Spitzer Space Telescope c2d Survey of

Large, Nearby, Interstellar Clouds (see Evans et al. 2003, and associated papers), and [2]

infrared surveys of regions containing signposts of recent star formation such as outflows,

bright IRAS sources, Herbig AeBe stars, and bright rimmed clouds (Hodapp 1994; Car-

penter et al. 1993; Minier et al. 2005; Testi et al. 1998; Sugitani et al. 1995). Regions of

interest are targeted by these techniques and clusters are then identified by an enhanced

surface density of stars relative to the background. These methods of cluster identification

result in some inherent ambiguity in the spatial sizes of clusters, i.e., the measured cluster

radii. In nearby clusters, the radius is often identified with that of a circle center on and

encompassing all cluster members in the field. For more distant clusters, the half-light

radius is sometime quoted as the cluster radius. Therefore, the term cluster radius is not

always well defined observationally, and the measured cluster radii may vary from the true

value by a factor of ∼ 2.

Identifying individual stars as cluster members is more difficult and requires additional

information such as proper motions, multi-band photometry, and/or observations of spec-

tral features indicative of stellar youth such as infrared excess or Hα emission. In early

cluster studies total cluster membership was often determined on a statistical basis only,

by comparing the cluster population to the expected number of background contamination

sources. More recently multi-fiber spectrometers, space-based infrared telescopes such as

the Spitzer Space Telescope, and advances in our understanding of the photometric colors

of young stars have allowed for cluster membership to be established on an individual basis

for stars within the vicinity of a young embedded cluster. Allen et al. (2007) provides

a more complete review of recent developments in the techniques used to identify young
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stellar objects.

The kinematics of young embedded clusters may be investigated by employing appro-

priate Doppler shift techniques as well as conducting proper motion studies of individual

cluster members. The bulk line-of-sight motions of moderately low density interstellar

gas is most often measured using the spectral lines produced by the (1-0) transition of

13CO or the (1-0) transition of C18O (Bally et al. 1987; Wilson et al. 2005; Kirk et al.

2007). These lines trace gas at column densities of roughly NH ∼ 1.1 × 1026 cm−2 and

NH ∼ 8.5 × 1026 cm−2, respectively (Binney & Merrifield 1998). Higher density molecular

cloud cores are also observed in young embedded clusters. The mass distributions of these

cores is similar to (though not identical to) the initial mass function of field stars (Motte

et al. 1998; Johnstone et al. 2000; Walsh et al. 2007; Alves et al. 2007). This similarity,

combined with the frequent association of these cores with the youngest stellar objects

(class 0 sources), is a relatively strong indication that the starless dense cores may rep-

resent the earliest stages of star formation. The motions of these dense cores are most

commonly probed using Doppler shift of the (1-0) emission line in N2H+ which traces gas

at densities up to nH ∼ 106 cm−3 (Tafalla et al. 2002; Walsh et al. 2004; 2007; Kirk et al.

2007).

Another way to investigate the internal kinematics of young clusters is through proper

motion surveys of clusters or individual pre-main sequence stars (Jones & Walker 1988;

Ducourant et al. 2005). While these surveys provide two-dimensional information regarding

the motion of the stars in the plane of the sky, they require detailed astrometry and long

baselines. Doppler techniques such as those used to study the motions of dense gas may

also be applied to individual stellar spectra. The advent of multi-fiber spectrometers such

as MIKE and Hectoschelle (Szentgyorgyi et al. 1998; Walker et al. 2007) has made radial

velocity studies of large samples of stars much easier to complete. Cluster members are first
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identified by color-magnitude selection, Hα emission, or other signposts of stellar youth.

Then spectra are taken near the Hα line (λ ∼ 6560 Å) and velocities are determined by

fitting the stellar spectra with models that include Doppler shift effects (Fűrész et al. 2006;

2008; Tobin et al. 2009). This technique, however, does require that the stars be observable

at visible wavelengths as so is most applicable in partially or fully exposed clusters where

the extinction in the visible bands is relatively low.

1.2 Properties of Young Embedded Clusters

Giant molecular clouds located in the arms of spiral galaxies serve as the primary site

of star formation within most late-type galaxies. Inside these large (d ∼ 10 − 50 pc), cold

(T ∼ 10 K), dense (n � 103 cm−3) clouds, the majority of star formation is concentrated

in relatively small, high density regions approximately a parsec (1 pc = 3 × 1018 cm) in

extent and containing on the order of a few hundred solar masses of gas and stars. Some of

the earliest studies of star formation within molecular clouds indicated that almost all of

the youngest stellar objects were actually associated with dense young clusters rather than

distributed throughout the cloud. The survey of the Orion Molecular Cloud completed

by Lada et al. (1991) suggested that as much as ∼ 96% of all star formation within the

cloud was occurring within 4 young clusters. Recent observations continue to indicate that

clustered star formation is a dominant mode within molecular cloud complexes, though

some distributed star formation is still observed. Surveys of molecular cloud complexes

recently completed with the Spitzer Space Telescope have produced estimates of the total

fraction of star formation occurring in clustered environments that range from ∼ 70− 90%

(Megeath et al. 2005; Padgett et al. 2008). Outside of our own galaxy, Whitney et al.

(2008) found that young stellar objects in the Large Magellanic Cloud are highly clustered

on the smallest scales resolvable with the Spitzer Space Telescope (∼ 3 pc).

Nearby embedded cluster catalogs which are complete down to the smallest clusters (∼

6



30 members) have been presented by Lada & Lada (2003) and Porras et al. (2003). (Groups

of stars withN � 35 have relaxation times that are comparable to or less than their crossing

times and thus are not usually considered to be “clusters,” but rather loose associations

of stars.) A more recent survey of many of the nearest clusters contained in these catalogs

has been completed as a part of the Spitzer Young Cluster Survey. Preliminary results of

this cluster survey have been presented by Megeath et al. (2004) and Allen et al. (2007),

and additional results are in preparation. In light of these published catalogs, we discuss

the general characteristics of embedded clusters in the solar neighborhood.

Embedded clusters within the nearest 2 kpc of the Sun have (total stellar) masses

ranging over almost 3 orders of magnitude from ∼ 20 M� to more than 1000 M�. The

embedded cluster mass distribution function is roughly flat over the range from 50 −

1000 M� (Lada & Lada 2003), which implies that the total mass of cluster members is

equally distributed over logarithmically spaced mass bins. Additionally ∼ 90% of clustered

star formation in the solar neighborhood occurs in embedded clusters with more than ∼ 100

members.

Defining a typical cluster size is a difficult task which is further complicated by the

nonspherical geometry of many clusters (Gutermuth et al. 2005; Schmeja & Klessen 2006),

and the threshold limits inherent to cluster identification via surface density enhancements

(Allen et al. 2007). However, in general, embedded clusters have radii Rc ranging from

a tenth of a parsec to a few parsecs, and roughly constant surface densities. Figure 1.1

presents the cluster radii Rc and memberships N for clusters contained in the Carpenter

(2000) (triangles) and Lada & Lada (2003) catalogs (diamonds). There is considerable

scatter in the embedded cluster membership-size relation but it may be roughly fit by the

function:

7



Rc = Rsc

√
N

300
(1.1)

where N is the cluster membership and Rsc is a scaling radius in parsecs. Values of Rsc

may range from ∼ 1 to 3 pc.

In starburst galaxies where star formation rates are much higher and star formation

occurs in much larger clusters (N ∼ 105 − 106), the cluster membership-size relation

may be somewhat different from that observed in the solar neighborhood. Mengel et al.

(2008) present masses (both photometric and dynamical) and half-light radii for 12 mas-

sive clusters in the interacting Antennae galaxies. The masses of these clusters range from

0.2 × 106 M� to 3 × 106 M� and the cluster radii range from 1 − 8 pc. Figure 1.1 also

displays the data from this study of the Antennae galaxies, indicated by the pluses and

x’s. The solid line indicates the Rc ∼ N1/2 relationship found in nearby embedded clusters

(Carpenter 2000; Lada & Lada 2003). This cluster membership-size relation (equation

[1.1]) deviates from the observations at the largest cluster sizes. The dotted line denotes

a cluster membership-radius relation with a power law index of 1/4 which more nearly

approaches the values observed in extremely massive star-forming clusters in interacting

galaxies.

Young embedded clusters display two general morphologies: [1] centrally concentrated

and [2] hierarchical. Clusters such as the ONC (Hillenbrand & Hartmann 1998), IC 348

(Muench et al. 2003), and NGC 7129 (Muzerolle et al. 2004; Allen et al. 2007) are just a

few examples of centrally concentrated clusters which are often accompanied by a lower

density halo of young stellar objects surrounding the high density peak. On the other hand,

clusters such as NGC 1333 (Lada et al. 1996), and NGC 2264 (Lada et al. 1993) exhibit

multiple high density peaks and structure over a large range of spatial scales, and are thus

classified as hierarchical (Lada & Lada 2003).
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Figure 1.1: Observed cluster radii Rc in the solar neighborhood and in the interacting Antennae
galaxies displayed as a function of cluster membership N . Diamonds correspond to clusters included
in the Lada & Lada (2003) catalog, and triangles represent data from the Carpenter (2000) catalog
of young clusters in the solar neighborhood. The solid line corresponds to the cluster membership-
size relation with power law index equal to 1/2 as found in nearby embedded clusters. The pluses
and x’s in this plot are taken from the Antennae galaxy survey of Mengel et al. (2008), where
the masses have been converted to stellar memberships N by assuming an average stellar mass of
0.5 M�. Pluses indicate the membership derived from the dynamical masses of the clusters whereas
x’s indicate memberships derived from the photometric masses. The dashed line indicates a cluster
membership-size relation with power law index equal to 1/4 and more nearly approaches the values
observed in the extremely massive star-forming clusters observed in these interacting galaxies.

Average aspect ratios for clusters range between 1 and 4 (Hillenbrand & Hartmann 1998;

Carpenter et al. 1997; Gutermuth et al. 2005, Gutermuth et al. 2009, in preparation).

In cases where elongation is apparent, the cluster is often aligned with the larger scale

geometry of the molecular cloud in which it is embedded. These observations suggest that

forming clusters maintain an imprint of the molecular cloud environment in which they are

born. In addition, in a number of embedded clusters, the youngest stars (class 0/I sources)

appear to trace the densest gas, whereas the slightly more evolved stars (class II sources)

are more dispersed throughout the cluster. Examples of young clusters with distinctly

different distributions of class 0/I sources and class II sources include the Serpens region

(Winston et al. 2007; Gutermuth et al. 2008a), the ONC (Lada et al. 2000), and NGC 2264

(Teixeira et al. 2006).

Although the most massive stars are preferentially found near the center of open clus-

ters, varying amounts of mass segregation are observed in young embedded clusters. The
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Trapezium is a well known example of a cluster that has significant mass segregation but

is possibly too young for the segregation to be the result of dynamics (Hillenbrand &

Hartmann 1998; Bonnell & Davies 1998). NGC 2071 and NGC 2024 (Lada et al. 1991)

also exhibit evidence of mass segregation, with the most massive stars residing near the

clusters’ centers. However, this is not always the case. Many young embedded clusters,

including Mon R2, display no strong evidence of mass segregation or any variation of the

mass distribution over different regions of the cluster (Carpenter et al. 1997).

Giant molecular clouds are highly non-uniform, and the densest portions of GMCs are

the sites of embedded cluster formation (Ballesteros-Paredes et al. 2007). These high den-

sity regions are 1−10 pc in size and contain ∼ 102−105 M� of stars and gas (Kramer et al.

1998; Heyer & Terebey 1998). Observations of deeply embedded clusters indicate that the

gas density profiles are often centrally concentrated and may be reasonably approximated

by the density profile ρ ∼ r−1 (Larson 1985; Myers & Fuller 1993; Jijina et al. 1999).

In some less embedded clusters, regions of triggered star formation, or regions containing

young massive stars whose radiation is sculpting the surrounding cloud, the embedding

gas often displays more structure, and may appear to be flattened, layered, or filamentary

(Deharveng et al. 2005; Churchwell et al. 2006). Orion B is an example of a cluster-forming

cloud which is believed to have been compressed by the nearby OB1 association (Wilson

et al. 2005), as is the DR 21 ridge near the Cyg OB2 association (Schneider et al. 2006;

Kumar et al. 2007).

The onset of massive star formation within an embedded cluster often marks the be-

ginning of the end of star formation within that cluster. Ionizing radiation produced by

massive O stars and non-ionizing far-ultraviolet (FUV) radiation produced by B stars heat

the surrounding embedding material, increasing the pressure and resulting in rapid expan-

sion of the gas. This mechanism may remove embedding gas from the cluster on timescales
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as short at ∼ 104 years (Whitworth 1979) and is observed to be occurring in many nearby

star-forming regions including Mon R2, NGC 7129, IC 5146, and IC 348 (Beckwith et al.

1976; Hillenbrand 1995; Luhman et al. 2003; Herbig & Dahm 2002). In smaller clusters

which lack massive star formation, winds from low mass stars are likely responsible for

dispersing the interstellar material, albeit on longer timescales (Matzner & McKee 2000).

Examples of regions where stellar winds appear to be removing the embedding material

include IRAS 20050 (Chen et al. 1997) and NGC 1333 (Quillen et al. 2005).

In addition to setting the final star formation efficiency (SFE) of a cluster, the mecha-

nisms and timescale of interstellar gas dispersal are major factors in determining whether

or not a young embedded cluster is destined to evolve into a bound open cluster. As gas is

removed from the cluster, the higher velocity stars become gravitationally unbound. If the

SFE of the cluster is sufficiently low and the gas removal timescale relatively short, the en-

tire cluster may become unbound as gas is expelled from the cluster. This phenomenon of

embedded cluster ‘infant mortality’ provides one explanation for the discrepancy between

the embedded cluster formation rate and the bound open cluster formation rate, which is

an order of magnitude lower (Lada & Lada 2003, and references therein).

Recent kinematic observations of the protostellar cores (N2H+ cores) in embedded clus-

ters reveal that the velocities of these objects are significantly lower than would be expected

in virial equilibrium. Typical embedded clusters with Rc = 1 pc and N = 300 stars re-

quire core-to-core velocity dispersions of roughly 1 km s−1 to remain supported against

global gravitational collapse. However, in embedded regions such as NGC 1333, ρ Oph,

and clusters within the Perseus Molecular Cloud, the velocity dispersions are much lower:

∼ 0.45 km s−1, 0.64 km s−1, and 0.09 − 0.55 km s−1, respectively (Walsh et al. 2004;

André 2002; Kirk et al. 2006). In NGC 2264, the expected velocity dispersion for virial

equilibrium is ∼ 3−4 km s−1; however, Peretto et al. (2006) find that the cores are moving
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with dispersions roughly 2 − 3 times smaller than this virial velocity. If these cores are

indeed the earliest stage of star formation, this finding implies that stars in clusters are

born with substantially subvirial velocities.

The initial configuration (spatial and kinematic) of young embedded clusters has sig-

nificant consequences for the later evolution of the clusters and the formation of planetary

systems around stars in those clusters. This thesis focuses on the dynamics of young em-

bedded clusters and studies how the initial embedded cluster environment affects cluster

evolution and subsequent planet formation. Cluster evolution from the earliest embedded

phases, though the gas removal phase, out to ages of 10 Myr is studied using N -body simu-

lation techniques and employing initial conditions appropriate for young embedded clusters.

These initial conditions are motivated by the wealth of observational data that has become

available over the last 30 years (and especially in the last 5 years with the Spitzer Space

Telescope) regarding the young embedded clusters in our solar neighborhood.

This work focuses on the evolution of intermediate-sized clusters which have initial

conditions that are subvirial and somewhat less concentrated than those considered in

previous theoretical studies. Many previous studies of cluster dynamics have focused on

either small groups with N ≤ 100 stars (Lada et al. 1984) or on large stellar clusters

with N > 10, 000 members (Portegies Zwart et al. 1998; Boily & Kroupa 2003b). Some

studies have concentrated on intermediate-sized clusters withN ∼ 100−1000 stars (Kroupa

1995a) but consider densities as high as 105 cm−3 and focus on the long term evolution

of the clusters ∼ 100 Myr −1 Gyr. In contrast, our simulations remain targeted on the

short term evolution (t � 10 Myr) of clusters with maximum average densities on the

order of n ∼ 103 pc−3. These conditions reflect the environments in which most stars

form. This research centers on one particular aspect of the star formation process, namely

circumstellar disk and solar system disruption. Specifically, we consider how radiation
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fields and close encounters in a clustered environment can limit or disrupt the formation

of planetary systems. Because the planetary formation processes occur relatively early in

a star’s lifetime (∼ 10 Myr), our simulations target the early evolution of young stellar

clusters.

This research is also distinctive in that it is statistical in nature. Our initial cluster

survey indicates that ∼ 100 realizations (simulations) of each set of cluster parameters

are required in order to produce a robust statistical description of the output measures

describing the evolution of a cluster (see Chapters II and III, and also Adams et al. 2006).

Specifically, the results of multiple realizations are combined to produce distributions of

stellar positions within the cluster and distributions of close encounters between cluster

members. In addition, we determine the distribution of parameters that describe the

temporal evolution of the cluster, i.e., the bound fraction, virial ratio, velocity isotropy

parameter, etc. With these statistical descriptions of cluster evolution in hand, we discuss

the implications of specific cluster initial conditions on the observed kinematics of cluster

members and the formation of planetary systems within young stellar clusters. As shown

in subsequent chapters, we find that the cluster environment has a moderate influence on

forming solar systems. In other words, the effects are large enough that they must be

included to provide a working understanding of star and planet formation, but not so large

as to dominate the process. In keeping with this intermediate level of efficacy, the effects

of clusters must be described in terms of probability distributions. These results, including

the relevant probability distributions, are presented in this thesis.
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CHAPTER II

Early Evolution of Stellar Groups and Clusters:
Environmental Effects on Forming Planetary Systems

2.1 Introduction

Current data indicate that a significant fraction of the stellar population is born in

groups and clusters embedded within the densest regions of giant molecular clouds (GMCs).

Advances in infrared astronomy during the past two decades have afforded astronomers

with an unprecedented view of these stellar nurseries. These clouds form relatively rapidly

(1− 10 Myr) out of intergalactic gas and dust as a result of the complex interplay of spiral

density waves, supernova explosions, phase transitions, and instabilities (e.g., Elmegreen

1991; Heitsch et al. 2006, and references therein). Once formed, GMCs obtain a highly

clumpy structure, possibly due to collisions in supersonic turbulent flows (e.g., Klessen et al.

2000). This highly nonuniform structure contains numerous cores with masses ranging

from a few to a few thousand solar masses. These dense cores (which have been mapped in

NH3; see the compilation of Jijina et al. 1999) are the sites of star formation. Specifically,

fragmentation within the more massive cores (M > 50 M�), possibly resulting from Jeans

instability, decoupling of fluid and MHD waves (Myers 1998), and/or from the decay of

turbulence (Klessen & Burkert 2001; 2000), form gravitationally unstable substructures

whose subsequent collapse leads to the formation of protostars (e.g., Shu 1977; Fatuzzo

et al. 2004). At the end of this complex process, young embedded groups/clusters appear
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to be basic units of star formation, accounting for a significant fraction (perhaps as high

as 90%) of the stars that populate our Galactic disk. The evolution of these young clusters

and their resulting effects on stellar and planetary formation represents a fundamental set

of astrophysical problems.

The typical size of star formation aggregates remains poorly defined. Lada & Lada

(2003) and Porras et al. (2003) presented catalogs of nearby embedded clusters, the former

including systems with N ≥ 30 out to 2 kpc, and the latter including systems with N ≥ 10

out to 1 kpc. The cumulative distributions for the number of stars born in units of size N ,

as a function of N , are presented in Figure 2.1 for both catalogs. The squares represent

the 2 kpc sample, and the triangles represent the 1 kpc sample; the dashed curve shows

the 1 kpc sample subjected to the same criteria as the 2 kpc sample (N ≥ 30). The

two samples provide a consistent estimate for the probability distribution of group/cluster

sizes. One should keep in mind that these samples are not complete. Some of the distant

groups/clusters in the sample may have larger stellar membership (than reported) because

the faint (low-mass) end of the stellar initial mass function (IMF) is not fully observed.

On the other hand, small groups with N ∼ 30 − 100 may well exist and not be included

in the samples at all. As a result, the true distribution of cluster sizes N could be skewed

toward either higher or lower N than shown in Figure 2.1. For the sake of definiteness,

however, in this chapter we take this sample to be representative.

Large clusters such as the Trapezium in Orion (with N > 1000) are known to be

disruptive to the star formation process (e.g., Störzer & Hollenbach 1999). In contrast,

small groups with N ≤ 100 often have relatively little impact (e.g., Adams & Myers 2001).

As shown in Figure 2.1, however, the majority of stars observed in embedded clusters

are found in systems that contain between 100 and 1000 members (at least for these

observational samples). The evolution of these intermediate-sized systems and their effects
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Figure 2.1: Cumulative distribution of group/cluster sizes as a function of system size N . The
quantity f(N) is the fraction of the total number of stars in the sample that live in groups/clusters
of system size N or smaller. The curve marked by squares corresponds to the 2 kpc sample, which is
complete down to N = 30 (Lada & Lada 2003); the curve marked by triangles is the 1 kpc sample,
which is complete down to N = 10 (Porras et al. 2003). The dashed curve shows the 1 kpc sample
subjected to the same selection criteria as the 2 kpc sample.

on star and planetary formation are thus of fundamental importance. These systems

can influence star and planet formation through dynamical interactions among kernels,

competitive accretion, scattering interactions among star-disk systems and/or or early

planetary systems, and by disruptive radiation from other stars (especially the larger ones

that live near cluster centers).

This chapter considers the dynamics of intermediate-sized stellar systems with N =

100 − 1000. In the two data sets described above (Lada & Lada 2003; Porras et al. 2003),

the fraction of stars that are found in systems with N < 100 is 19% and 20%, respectively,

whereas the fraction of stars found in systems with N > 1000 is 24% and 20%. The ma-

jority of stars (about 60%) are found in systems within our range of study. A large body

of previous work on the dynamical evolution of N -body systems exists. The evolution of
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Figure 2.2: Observed group/cluster radii Rc as a function of system size N . The squares represent
data taken from the compilation of Lada & Lada (2003); the stars represent data from the work
of Carpenter (2000). The solid curve is a rough fit to the data with the form Rc = Rsc(N/300)1/2

with Rsc =
√

3 pc; the two dashed curves have the same functional dependence with the length
scale Rsc larger or smaller by a factor of

√
3. For most of this work we use the lower curve, with

Rc = 1 pc (N/300)1/2 in order to determine the greatest possible effects of the cluster environment.

stellar clusters has been investigated for both small N ≤ 100 (Lada et al. 1984) and large

N > 10, 000 (e.g., Portegies Zwart et al. 1998; Boily & Kroupa 2003b). The dynamical

effects of binaries has also been explored both in the context of globular clusters (Hut &

Bahcall 1983) and young clusters (Kroupa et al. 1999; Kroupa & Bouvier 2003). Some

work on intermediate-sized systems has been performed (see Kroupa 1995a, and references

therein). On a smaller system scale, planetary disruption has been explored by numerous

authors (e.g., de La Fuente Marcos & de La Fuente Marcos 1997; 1999; Adams & Laughlin

2001; Smith & Bonnell 2001; Hurley & Shara 2002; David et al. 2003; Fregeau et al. 2006),

and the few-body problem has been investigated by Sterzik & Durisen (1998). Although

these works have greatly advanced our understanding of the dynamics of many-body sys-

tems, a great deal of work remains to be done. This chapter concentrates on the range of

parameter space populated by most young stellar clusters, N in the range 100 ≤ N ≤ 1000,
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and seeks to determine the effect of the cluster environment on forming stars and planetary

systems.

In addition to its focus on intermediate-sized clusters, this work differs from previous

studies in the starting conditions. Most previous N -body simulations of stellar groups

have invoked virial arguments to set the initial velocities of the system members. A distin-

guishing aspect of this study is the adoption of subvirial starting conditions. This initial

condition is motivated by clump dispersion measurements obtained from recent observa-

tions of four systems in which the stars are (apparently) born with speeds substantially

lower than virial (assuming that observed clumps are progenitors of individual protostars

or stars). Specifically, in the NGC 1333 cluster, the observed clump-to-clump rms velocity

is only ∼ 0.45 km s−1, somewhat less than that expected if the clumps were in virialized

orbits (v ∼ 1 km s−1); furthermore, the clump-to-clump rms velocity is much lower for

subgroups within the larger complex (Walsh et al. 2004). Similarly, the velocity dispersion

for 45 clumps (condensations) in ρ Oph was estimated to be ∼ 0.64 km s−1, with similar

results obtained for 25 clumps in the NGC 2068 protocluster (see André 2002, and refer-

ences therein). As another example, the clump to clump velocities in the NGC 2264 region

are estimated to be about 3 times smaller than that expected in virial equilibrium (Peretto

et al. 2006).

This chapter undertakes a statistically comprehensive study of the dynamical evolution

of young stellar clusters with populations in the range 100 ≤ N ≤ 1000 and uses N -body

simulations to follow these systems from their nascent, embedded stages out to ages of

10 Myr. One goal of this study is to explore how early evolution depends on the number

N of system members. The systems begin with a gaseous component that is subsequently

removed (e.g., at time 5 Myr). Multiple realizations of equivalent initial conditions are

performed in order to build up robust distributions of the output measures. We find that
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100 realizations (simulations) of each set of initial conditions are required to provide good

statistics for the output measures. These measures include closest approaches of cluster

members, their radial locations and mass profiles (which largely determine the radiation

exposure), as well as the time evolution of the bound cluster fraction, the virial ratio, the

velocity isotropy parameter, and the half-mass radius. Because of the large number of

simulations required for each set of initial conditions, we limit this preliminary study to

six cluster types: N = 100, 300, and 1000, with both subvirial and virial initial conditions.

The output measures are used to determine the impact of the cluster environment on star

and planet formation. Toward that end, we determine the distribution of FUV luminosities

for groups and clusters as a function of system size N . This ultraviolet radiation acts to

destroy circumstellar disks and to inhibit planet formation. This work provides a measure

of its efficacy as a function of group/cluster size N (Section 2.3). We also calculate the

cross sections for newborn planetary systems to be disrupted by passing stars (binaries).

These cross sections (Section 2.4) are used in conjunction with the distributions of closest

approaches from the N -body simulations to provide a measure of solar system disruption as

a function of system size N . Armed with a robust statistical description of the evolution of

young clusters, we undertake a detailed analysis of the particular system NGC 1333 (Section

2.5). Recent observations of this young cluster (Walsh et al. 2007) provide position and

velocity information on the N = 93 N2H+ clumps found within the system. Since the

observations specify only three of the six components of phase-space, we must reconstruct

the cluster conditions through multiple realizations, thereby producing an ensemble of

calculations that can then be compared with the results of our theoretical study. Our

results and conclusions are summarized in Section 2.6.
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2.2 Numerical Simulations of Young Embedded Clusters

For the first part of this study we perform a suite ofN -body simulations for intermediate-

sized clusters as they evolve from their embedded stage out to ages of ∼ 10 Myr. Cluster

evolution depends on the cluster size N , the initial stellar profile, the initial gas profile,

the star formation history, the stellar IMF, and the gas disruption history. Given the large

number of parameters needed to adequately describe young clusters (see also below), this

initial study does not consider every combination of parameters that these systems could

attain. Instead, we identify a baseline set of parameters that represent a typical cluster

and perform many realizations of this benchmark model. We find that for every set of

cluster parameters, one must perform many realizations of the initial conditions in order

to fully sample the output measures. This study explores the variation of the cluster size

N and the effects of subvirial versus virial starting conditions. A wider exploration of

parameter space is presented in Chapter III. For each set of input parameters, we perform

100 equivalent realizations in order to build up a statistical representation of the output

measures. The input parameters and output measures are described below.

The N -body integrations are performed using NBODY2 (Aarseth 1999; 2001). This

version of the integration package is relatively fast and allows for many realizations of each

set of initial conditions to be run, as required to obtain good statistics. In this initial study,

however, we do not include the binarity of the stellar systems. In sufficiently dense and

long-lived clusters, binaries can absorb and store enough energy to affect the evolution of

the cluster system. This chapter focuses on the dynamics of systems with N = 100−1000,

where we expect interactions to be sufficiently rare and sufficiently distant that binarity

has only a small effect on overall energy budget of the cluster (see also Kroupa 1995b;

Kroupa et al. 2003). This approximation is checked for consistency in two ways. First, we

perform a set of test simulations including binaries (using NBODY6; Aarseth 1999) and
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find that the results are the same. As a second check, we use the distributions of closest

approaches found from our ensemble of simulations and find that binary interactions are

not energetically important in these systems (see below).

2.2.1 Parameter Space

Cluster membership, N . Figure 2.1 indicates that most stars form in clusters with

stellar membership N in the range 100 ≤ N ≤ 1000, with roughly half of stars belonging

to clusters with size N < 300 (and half with N > 300). We thus consider the value

N = 300 as the center of our parameter space, and explore the evolution of clusters with

N = 100, 300, and 1000.

Initial cluster radius, Rc. Young clusters are found to have radii Rc within the range

0.1 − 2 pc. An observationally determined relation between Rc and N is shown in Figure

2.2, where squares represent data taken from the compilation of Lada & Lada (2003) and

stars represent data from Carpenter (2000). A correlation between Rc and N is clearly

evident, although significant scatter exists. The data can be fit by the relation of the form

Rc = Rsc

√
N

300
, (2.1)

where Rsc ≈ 1 − 2 pc. This relation corresponds to a nearly constant surface density of

stars N/R2 ≈ constant. The solid curve shown in Figure 2.2 uses Rsc = 1.7 pc; the dashed

curves have the same functional dependence but are scaled (up or down) by a factor of

√
3 and quantify the spread in this correlation. For this study we adopt this functional

dependence to specify the initial radius of the stellar component and use Rsc = 1.0 pc.

This value is near the lower end of the observed range and thus maximizes the density,

which in turn leads to dynamical interactions near the upper end of the range expected in

these cluster systems.

Initial stellar profile. Embedded clusters display structure that can be characterized

as centrally condensed or hierarchical (Lada & Lada 2003). In a complete treatment, one
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should explore both spherical and nonspherical stellar distributions. In this initial study,

however, we focus on the spherical case, where stars are randomly placed within a sphere of

radius Rc. For the sake of definiteness, the initial density of stars is taken to have the form

ρ∗ ∼ r−1 so that the initial stellar mass component is distributed according to M∗(r) ∼ r2

(out to the boundary at Rc). This form is consistent with the expected density profiles for

gas in cluster-forming cores (see below).

Although there is evidence for a nearly universal initial mass function (IMF) for stars

in young clusters, it remains unclear how stellar mass correlates with the initial position

within a cluster. Massive stars are preferentially found near the centers of open clusters

(e.g., Elmegreen et al. 2000), but the same trend need not be universally true for embedded

clusters. Some clusters show evidence for mass segregation (Testi et al. 1998; Hillenbrand

& Hartmann 1998; Jiang et al. 2002) and theoretical considerations suggest that mass

segregation has a primordial origin in some systems (Bonnell & Davies 1998; Hillenbrand

& Hartmann 1998; Carpenter et al. 1997). However, the relative importance of dynamical

versus primordial mass segregation in clusters with 100 < N < 1000 remains uncertain.

Given the evidence for some primordial mass segregation, we adopt a simple algorithm

consistent with observed groups: for a given system, we sample the stellar masses from

a standard IMF and then relocate the most massive member to the cluster center. The

remaining stars are then placed randomly so that the initial stellar component has density

ρ∗ ∼ r−1 within the radial range 0 ≤ r ≤ Rc. This approach thus provides a minimal

treatment of primordial mass segregation. A more detailed treatment should be considered

in follow-up studies. The issue of mass segregation is important because massive stars can

produce powerful winds, outflows, and radiation fields that, if centralized, can more readily

disrupt the gaseous component of a cluster (as well as planet-forming disks around other

stars).
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Initial speeds. As discussed above, stars often appear to be born in young embedded

clusters with initial speeds substantially less than the virial values (André 2002; Walsh

et al. 2004; Peretto et al. 2006). To set the initial stellar velocities, we sample from

an isotropic distribution that is characterized by a given expectation value for the virial

ratio Q ≡ |K/W | (Aarseth 2003), i.e., the ratio of kinetic to potential energy, where

Q = 0.5 for virialized systems. One goal of this study is to explore the effects of subvirial

starting conditions. For the sake of definiteness, we adopt a baseline value of Qi = 0.04

for our subvirial simulations (i.e., starting speeds about 30% of the value needed for virial

equilibrium). For comparison, we also study the virialized initial condition Qi = 0.5 for

(otherwise) the same starting conditions.

Spread in star formation times. A system of stars evolving from such an initially sub-

virial state would collapse into a dense core within a crossing time if all of the stars formed

(and hence began falling toward the center) at exactly the same time. The resulting traffic

jam at the cluster center would be unphysical, however, because the stars must have a

spread in formation time. In this study, we assume that forming stars are tied to their

kernels (the collapsing pockets of gas), which are moving subsonically, until the collapse

phase of an individual star formation event is completed. After their collapse phase, newly

formed stars are free to fall through the gravitational potential of the group/cluster system.

Here we assume that the star formation epoch lasts for a given span of time Δt = 1 Myr,

which is comparable to the crossing time. For comparison, the expected collapse time

for an individual protostar is much smaller, only about 0.1 Myr (see Shu 1977; Adams &

Fatuzzo 1996; Myers & Fuller 1993).

Initial gas potential. Observations of young embedded clusters indicate that the gas

density profiles may have (roughly) the form ρ ∼ r−1 (Larson 1985; Myers & Fuller 1993;

Jijina et al. 1999, see also the discussion of McKee & Tan 2003) on the radial scale of the
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cluster (∼ 1 pc). For these simulations we need to include the gravitational potential of

the gaseous component and eventually let it disappear with time. In order to smoothly

extend the initial gas potential out to large radii, we adopt a Hernquist profile so that the

initial gas distribution is characterized by the potential, density, and mass profiles of the

forms

Ψ =
2πGρ0r

2
s

1 + ξ
, ρ =

ρ0

ξ(1 + ξ)3
, and M =

M∞ ξ2

(1 + ξ)2
, (2.2)

where ξ ≡ r/rs and rs is a scale length (Hernquist 1990). Note that M∞ = 2πr3sρ0.

In practice we identify the scale rs with the cluster size (Figure 2.2), so that rs = Rc.

The density profile within the cluster itself thus has the form ρ ∼ r−1; the steeper den-

sity dependence ρ ∼ r−4 occurs only at large radii (effectively outside the cluster) and

allows the potential to smoothly join onto a force-free background. The mass enclosed

within ξ = 1, denoted here as Mgas, is the effective gas mass within the cluster region

itself (note that the density and mass profiles extend out to spatial infinity and that the

asymptotic mass M∞ = 4Mgas). The star formation efficiency (SFE) within the cluster

is thus given by εSF = MT∗/(MT∗ + Mgas), where MT∗ is the total stellar mass in the

cluster. Although observational determinations of SFE are subject to both uncertainties

and system-to-system variations, typical values for a sample of nearby embedded clusters

lie in the range εSF = 0.1 − 0.3 (Lada & Lada 2003). This study adopts a baseline value

Mgas = 2MT∗ (so that εSF = 0.33). Thus, the mass that will end up in stars over the

time interval Δt = 1 Myr is predetermined. Over the time Δt, the stellar masses become

dynamically active and begin to fall through the potential (thus, the total mass of the

cluster is kept constant over the time Δt when stars are being formed).

Gas removal history. Stellar aggregates are initially deeply embedded in dense gas,

but they quickly disrupt the gaseous component through the action of stellar winds and

outflows, radiative processes, and supernovae (e.g., Whitworth 1979; Matzner & McKee
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2000; Gutermuth et al. 2004). Although the details of the gas removal processes are not fully

understood, observations indicate that clusters older than about 5 Myr are rarely associated

with molecular gas, so that gas removal must occur in these systems on a comparable

timescale (Lada & Lada 2003). The fraction of stars that remain gravitationally bound

after gas removal has been explored both analytically (e.g., Adams 2000; Boily & Kroupa

2003a) and numerically (e.g., Lada et al. 1984; Geyer & Burkert 2001; Boily & Kroupa

2003b). Gas affects the dynamical evolution through its contribution to the gravitational

potential. As gas leaves the system, the gravitational well grows less deep and the stellar

system adjusts its structure. Stars filling the high-velocity part of the distribution will

thus leave the system, but a fraction of stars can remain bound after the gas has been

removed. The value of this fraction depends on the SFE, the geometries of the gaseous and

stellar components, the gas dispersal history, and the stellar distribution function. This

chapter uses a simple model for gas removal: the gas is removed instantaneously at a given

time t = 5 Myr (e.g., Leisawitz et al. 1989) after the star formation process begins (recall

that stars are randomly introduced over a time interval Δt, the beginning of which defines

the time t = 0). This choice of parameters allows the gas to remain in the system as

long as possible (according to the currently available observations; see Lada & Lada 2003).

These simulations thus represent an upper limit on the level of interactions expected in

astronomical clusters. Note also that the gas potential is considered fixed while gas remains

within the cluster. For clusters with subvirial starting conditions, the stars fall toward the

cluster center and the gas could become more concentrated as well. This effect is small in

the present case because gas dominates the potential, but could be considered in further

work.

Binary test. In order to test the validity of our approximation of ignoring binarity,

we performed a test simulation using both NBODY6 (which includes binaries; Aarseth
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1999) and NBODY2 (where the masses of the two binary companions are combined to

make a single star). The comparison runs are made for a cluster with N = 300 and

radius Rc = 1 pc, which defines the center of our parameter space (see above). We also

use a subvirial start, an initial Qi = 0.04, because the subvirial runs should have more

interactions and hence be more affected by binaries. In the test runs, gas is included as a

Plummer sphere (with scale radius rs = 1 pc) since the original N -body codes are written

with the Plummer potential. The Plummer potential and density profiles are given by

ΦP = − GM√
r2 + r2s

and ρP =
(

3M
4πr3s

)(
1 +

r2

r2s

)−5/2

, (2.3)

respectively. The gas mass is equal to the total stellar mass. Over a timescale of 10 Myr,

we find that the evolution of the fraction fb of bound stars, the virial parameter Q, and

the half-mass radius R1/2 are virtually identical for the two cases.

2.2.2 Output Measures

One goal of this work is to provide a statistical description of the systems under study.

Two systems with identical sets of cluster parameters (N , Rc, . . . ) will have stars located at

different starting locations and can evolve in different ways (for example, the history of close

encounters will change). To provide a more complete description of the evolution of young

clusters, we perform an ensemble of “effectively equivalent” simulations through multiple

realizations of the system, i.e., we use the same set of cluster parameters but different

choices for the random variables. In this manner, we can build up full distributions for

the output measures of the systems (see also Goodman et al. 1993; Giersz & Heggie 1994;

Baumgardt et al. 2002, and references therein).

2.2.2.1 Time Evolution

To characterize the time evolution, a variety of output measures are computed for

each simulation, including the cluster’s bound fraction, virial ratio, half-mass radius, and
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velocity isotropy parameter. These measures are calculated every 0.25 Myr throughout each

10 Myr simulation. For each system studied, the output measures of all the realizations

(effectively equivalent simulations) are combined and averaged. We can then investigate

the temporal evolution of each measure as well as use the measures to compare the different

systems studied.

One important quantity is the fraction fb of stars that remain gravitationally bound as a

function of time. For example, we would like to know how fb(t) depends on the cluster size

N and the starting conditions (virial vs. subvirial). The bound fraction fb of the cluster is

defined by fb ≡ Nbound/N , where N is the initial number of stars in the cluster and Nbound

is the number of stars that have negative total energy at a given time. The bound fraction

functions fb(t) are shown in Figure 2.3 for the six types of clusters considered here. Gas

is removed at time t = 5 Myr, so the fraction of bound stars decreases after that epoch.

Figure 2.3 shows that the subvirial clusters retain more of their stars for longer times.

In addition to fb, we track the evolution of three other cluster diagnostics. The half-

mass radius R1/2 is defined to be the radius that encloses half of the stellar mass that is

still gravitationally bound to the system. Over the long term, the half-mass radius R1/2 is

an increasing function of time, although it can decrease during the initial evolution of

subvirial clusters. Within groups/clusters, young stars are often born with speeds much

smaller than that required for virial equilibrium, but attain larger (virial) speeds as the

system evolves. We can monitor this approach to equilibrium by tracking the evolution of

the virial ratio Q (the ratio of kinetic to potential energy for the stellar population). We

also track the evolution of the isotropy parameter β ≡ 1 − v2
θ/v

2
r , where vθ and vr are the

(averaged) θ̂ and r̂ components of the velocity. The isotropy parameter provides a measure

of the degree to which the cluster members have radial orbits. An isotropy parameter of

β = 0 corresponds to an isotropic velocity distribution, whereas β = 1 corresponds to a
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cluster where the members are moving primarily in the radial direction.

The time evolution of the aforementioned cluster diagnostics are shown in Figure 2.3 for

cluster sizes N = 100, 300, and 1000, and for both subvirial and virial starting conditions.

As shown, the bound fraction is a slowly decreasing function of time, with a substantial

(unphysical looking) jump at t = 5 Myr when the gas is removed. The half-mass radius

R1/2 remains nearly constant until gas removal at t = 5 Myr, when it becomes an increasing

function of time. The isotropy parameter β is substantially radial (0 < β < 1) over the

entire evolution time for clusters with subvirial starting conditions but shows a slight

downward tendency at late times, indicating some evolution toward isotropy. For virial

clusters, the parameter β is close to zero (isotropic) for the first 5 Myr of evolution but

develops a definite radial characteristic (β ∼ 0.5) for the second half of the time interval

after the gas is removed. These same general trends are evident in the ensemble of results

summarized in Table 2.1. For each cluster size (N = 100, 300, and 1000) and each starting

condition (virial or subvirial) we have found the average values of the fraction fb of stars

that remain bound after 10 Myr. Similarly, we have found averages of the viral parameter

Q, the half-mass radius R1/2, and the isotropy parameter β for the first 5 Myr (while the

clusters retain gas) and the second 5 Myr of evolution (when the clusters are gas-free).

The final line of the table gives the output parameters for our simulations of NGC 1333

(see Section 2.5).

2.2.2.2 Radial Distributions

As a group/cluster system evolves, interactions between members result in a distribution

of stellar positions and velocities. As the gas is removed from the system, high-velocity

stars are more likely to become gravitationally unbound and leave the system, whereas

low-velocity stars tend to condense into a central bound core. Complicating this process,

dynamical mass segregation also takes place, albeit on somewhat longer timescales. As one
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Figure 2.3: Time evolution for output measures fb, Q, R1/2, and β for cluster simulations with N =
100, 300, and 1000. In each panel, the solid curves show the time evolution functions for subvirial
initial conditions and the dashed curves show the time evolution for virial starting conditions. The
boldness of the curves denotes the cluster size, with the darkest curves for N = 1000 and the lightest
curves for N = 100. The top left panel shows the fraction of stars that are bound as a function
of time fb, the top right panel shows the time evolution of the virial parameter Q, the bottom left
panel shows the time evolution of the half-mass radius R1/2, and the bottom right panel shows the
velocity isotropy parameter β. In all of these simulations, the gas is removed at time t = 5 Myr,
which leads to structure in all of the time evolution functions as shown here.

Table 2.1: Cluster Evolution Parameters

fb Q Q R1/2 [pc] R1/2 [pc] β β
Cluster Type 10 Myr 0-5 Myr 5-10 Myr 0-5 Myr 5-10 Myr 0-5 Myr 5-10 Myr
100 Subvirial 0.536 0.489 1.15 0.211 0.457 0.320 0.502
100 Virial 0.265 0.511 2.48 0.301 0.832 -0.0849 0.515
300 Subvirial 0.598 0.491 1.15 0.413 0.861 0.368 0.511
300 Virial 0.239 0.517 2.72 0.596 1.31 -0.0404 0.513
1000 Subvirial 0.569 0.497 1.04 0.780 1.44 0.410 0.500
1000 Virial 0.130 0.527 2.74 1.15 2.09 -0.0993 0.485
NGC 1333 0.689 0.525 0.690 0.117 0.238 0.230 0.339
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way to characterize the evolution of these systems, we produce mass profiles M(r) averaged

over the 10 Myr time interval of interest. Specifically, the radial position of every star is

recorded at intervals of 0.25 Myr throughout each simulation. The resulting data set is

used to create a mass profile M(r)/MT∗ at each time, where MT∗ is the total mass in stars

that remain bound. The profiles are then averaged over all time steps and averaged over

the 100 equivalent realizations of the system to produce the average radial mass profile

associated with each type of group/cluster. The integrated mass distribution M(r) can be

fit with a simple function of the form

M(ξ)
MT∗

=
(

ξa

1 + ξa

)p

, (2.4)

where ξ = r/r0, and the scale length r0 and the index p are free parameters that are fit to

the output of the simulations. The index a can also be varied: we find that the subvirial

clusters can be fit with a = 2, whereas the virial clusters require a = 3. The best-fit

parameters for the various simulations are given in Table 2.2. The table also shows the

fitting parameters for the mass profiles averaged over the first 5 Myr (before gas removal)

and over the second 5 Myr (after gas has left the system). The final line of the table gives

the fitting parameters for the simulations of NGC 1333 (see Section 2.5). Figure 2.4 shows

the radial mass profiles from both the simulations and the fitting functions. The simulation

profiles are time-averaged over the first 10 Myr of evolution (and over 100 realizations of

each starting condition).

We can also find profiles N(r) for the number of stars enclosed within the radius r.

These profiles are essentially the probability distributions for the radial positions of the

stellar members. These profiles N(ξ)/N can be fit with the same form as equation [2.4].

Although not shown here, the fitting parameters are nearly the same as those of the mass

profiles and are used (in Section 2.3) when we need to calculate the probability of finding a

star at radius r. The similarity between the integrated mass distributions M(r)/MT∗ and
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Table 2.2: Output Parameters for Mass Distributions

0 − 10 Myr 0 − 5 Myr 5 − 10 Myr
Cluster Type p r0 [pc] p r0 [pc] p r0 (pc) a
100 Subvirial 0.686 0.394 0.680 0.264 1.02 0.453 2
100 Virial 0.436 0.698 0.406 0.486 0.776 0.793 3
300 Subvirial 0.785 0.635 0.747 0.484 1.01 0.781 2
300 Virial 0.493 1.19 0.489 0.846 0.605 1.56 3
1000 Subvirial 0.820 1.11 0.769 0.899 0.970 1.34 2
1000 Virial 0.586 1.96 0.590 1.53 0.689 2.45 3
NGC 1333 0.552 0.300 0.436 0.241 0.924 0.299 2

the cumulative radial probability distributions N(r)/N further suggests that dynamical

mass segregation is not occurring in the clusters on this short (10 Myr) of a timescale.

One goal of this study is to characterize this class of groups and clusters. Toward this

end, recent observational studies have determined the central densities for clusters (e.g.,

Gutermuth et al. 2005). However, the mass profiles found here imply that the central

density of these clusters suffers from an ambiguity: if a mass profile has the form given by

equation [2.4], the density profile takes the form ρ ∝ apξap−3(1+ ξa)−(p+1), which diverges

in the limit ξ → 0. As a result, the central density for these mass profiles – and this class

of systems – is not well defined. In contrast, the total depth of the gravitational potential

is well-defined and can be written in the form

Ψ∗ =
GMT∗
r0

ψ0, where ψ0 ≡
∫ ∞

0

( 1
1 + ua

)p
du, (2.5)

where we assume that the mass profile has the form of equation [2.4], which defines the

indices a and p, as well as the scale length r0. The total mass of stars in the cluster is

MT∗, so that Ψ∗ represents the total depth of the stellar contribution to the potential. For

embedded clusters, the gas contribution to the potential (equation [2.2]) should be added

to obtain the total potential. Note that in the limit ap → 1, the integral in the definition

of ψ0 diverges and the central potential is no longer defined. However, all of the clusters

considered here display well-defined central potentials. For the indices listed in Table 2.2,
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the value of the dimensionless potential ψ0 lies in the range ψ0 = 1.5 − 5.4. The resulting

stellar potential can be written in terms of a velocity scale
√

Ψ∗, which falls in the range

√
Ψ∗ = 0.64 − 2.4 km s−1 for the clusters considered here.

2.2.2.3 Distribution of Closest Approaches

The cluster environment facilitates close stellar encounters that can disrupt solar sys-

tems. Within the ensemble of N -body simulations described above, we can find the distri-

butions of close encounters. These distributions, in conjunction with the cross sections for

disruptions of planetary systems (see Section 2.4; Adams & Laughlin 2001), binary-disk

systems (Ostriker 1994; Heller 1993; 1995; Kobayashi & Ida 2001), and binary-star inter-

actions (Heggie et al. 1996; McMillan & Hut 1996; Rasio et al. 1995), can then be used to

estimate the probability of physically important interactions as a function of system size

N (and other initial conditions).

Specifically, the close encounters for each star are tracked throughout each cluster sim-

ulation; the resulting data are labeled with both stellar mass and cluster age. The total

distribution of closest approaches for each simulation is calculated, and these distribu-

tions are then averaged over the 100 equivalent realizations of the system. The result is

an integrated distribution of closest approaches for each type of cluster. The results are

presented in terms of an interaction rate, i.e., the number of close encounters with r ≤ b

that the typical star experiences per million years (1 Myr is a convenient unit of time and

is approximately the cluster crossing time). This interaction rate is a function of closest

approach distance b and can be fit with an expression of the form

Γ = Γ0

(
b

1000 AU

)γ

. (2.6)

The rate Γ is thus the number of close encounters with r ≤ b per star per million years. For

each type of group/cluster, the parameters Γ0 and γ were varied to find the best fits using

the Levenberg-Marquardt procedure. The resulting parameter values are given in Table
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Figure 2.4: Time-averaged mass profiles M(r)/MT∗ for the six classes of starting conditions. The
averages are taken over the first 10 Myr and include only the stars that remain bound to the cluster
(at each time). The top panel shows the stellar mass distribution M(r) as a function of radius r for
clusters with N = 100 and both virial (bottom curve) and subvirial (top curve) starting conditions.
Each mass profile is compiled from the results of 100 simulations with different realizations of the
same starting conditions. Similarly, the middle panel shows the mass distributions for clusters with
N = 300 and the bottom panel shows the distributions for N = 1000.
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2.3 for the six classes of systems studied here (and best fit lines are indicated in Figure 2.5).

The table also lists the fitting parameters for the closest approach distributions taken over

the first 5 Myr of the simulations (when gas is still present) and the second 5 Myr time

interval (after gas removal). These results are consistent with those obtained previously

(e.g., Scally & Clarke 2001 found similar interaction rates for the Orion Nebula Cluster,

which is somewhat larger with N = 4000 stars). Note that the interaction rates are higher

for the first 5 Myr interval than the second 5 Myr, by a factor of ∼ 5, consistent with the

spreading out of the cluster with time, especially after gas is removed at the 5 Myr mark.

Note also that the total interaction rate over 10 Myr is the average of the values over the

two separate time intervals. The interaction rates are higher for the clusters with subvirial

starting conditions. In these systems, the orbits are more radial than in the case of virial

initial conditions (where the velocity distributions are more isotropic; see Table 2.1), and

more of the stars pass near the cluster center where the density is higher.

The fitting functions (given by equation [2.6] and Table 2.3) provide a good working

description of the distribution of closest approaches for each ensemble of simulations with

given starting conditions. In order to interpret the meaning of these results, it is useful to

compare with analytic estimates (Binney & Tremaine 1987, hereafter BT87). For a cluster

of size N and radius Rc, the surface density of stars is roughly N/(πRc
2). For each crossing

time τc of the cluster, a given star will thus experience close encounters at the rate

δΓ ≈ N

πRc
2 2πbδbτ−1

c , (2.7)

with impact parameter (the closest approach distance in this approximation) between b

and b + δb (BT87), where the time unit is the crossing time. The total rate Γb of close

approaches (at distance ≤ b) per crossing time is thus approximately given by

Γb ≈ Nb2

Rc
2 τ

−1
c ≈ 0.007

(
b

1000 AU

)2

τ−1
c , (2.8)
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where we have used the observed scaling of cluster radius with N (Figure 2.2 and equation

[2.1]) to obtain the second approximate equality. Since the cluster crossing times τc are of

order 1 Myr, this calculation produces an interaction rate with the same form as the fitting

formula with Γ0 ≈ 0.007 and γ = 2. As shown in Table 2.3, the fitting parameters for

close approaches are in rough agreement with these estimated values, at the crudest level

of comparison. The detailed forms are somewhat different – the numerically determined

interaction rates are less steep (as a function of b) and somewhat larger than the analytic

estimate.

The differences between the numerical interaction rates and the analytic estimate arise

for several reasons. The crossing time is somewhat shorter than 1 Myr, so the rate increases

accordingly. In addition, clusters have enhanced density in their centers and support more

interactions there. Suppose that a cluster has a core, a long-lived central region of enhanced

stellar density. If the core contains N/10 stars at a given time and has radius Rc/10, the

effective surface density, and hence the interaction rate per crossing time, would be 10 times

higher than the estimate given above. Note that the local crossing time would be smaller

by a factor of ∼ 10, but that stars would (on average) spend only 10% of their time in

the core, so these latter two effects tend to cancel. The shallower slope of the distribution

(γ < 2) is expected for sufficiently close encounters where the interaction energy 2Gm/b

is comparable to the typical velocity 〈v〉 of a cluster star. In this case, the stars no longer

travel on straight-line trajectories during the encounter (as implicitly assumed above) so

that the impact parameter is larger than the distance of closest approach (BT87). Since

〈v〉 ∼ 1 km s−1, this effect comes into play when b ∼ 2Gm/ 〈v〉2 ∼ 900 AU, i.e., just

inside the regime of interest. In the extreme limit of small b, the interaction rate becomes

linear Γb ∝ b(2Gm/ 〈v〉2) so that γ → 1. Note that the slopes found from the numerical

simulations lie in the range 1 ≤ γ ≤ 2.
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Figure 2.5: Distribution of closest approaches for the six classes of starting conditions. The top
panel shows the distributions of closest approaches, plotted as a function of impact parameter, for
clusters with N = 100 and both virial (bottom curve) and subvirial (top curve) starting conditions.
Each distribution is compiled from the results of 100 simulations, i.e., 100 realizations of the same
starting conditions. Similarly, the middle panel shows the distributions of closest approaches for
clusters with N = 300 and the bottom panel shows the distributions for N = 1000. The error bars
shown represent the standard deviation over the compilations.
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Table 2.3: Output Parameters for Distributions of Closest Approach

0 − 10 Myr 0 − 5 Myr 5 − 10 Myr
Cluster Type Γ0 γ Γ0 γ Γ0 γ bC [AU]
100 Subvirial 0.166 1.50 0.266 1.54 0.0672 1.42 713
100 Virial 0.0598 1.43 0.0870 1.46 0.0333 1.37 1430
300 Subvirial 0.0957 1.71 0.168 1.73 0.0240 1.59 1030
300 Virial 0.0256 1.63 0.0440 1.64 0.00700 1.53 2310
1000 Subvirial 0.0724 1.88 0.133 1.89 0.0112 1.83 1190
1000 Virial 0.0101 1.77 0.0181 1.79 0.00210 1.74 3650
NGC 1333 0.941 1.56 1.39 1.62 0.490 1.42 238

These simulations were performed using an N -body code that does not consider the

binarity of the interacting units (NBODY2; Aarseth 1999). Given the distribution of

closest approaches calculated here, we can check this approximation for self-consistency.

For an interaction rate of the form of equation [2.6], and for a 10 Myr time span, the typical

star will experience (on average) one encounter with the characteristic impact parameter

bC given by

bC ≡ 1000 AU
(
10Γ0

)−1/γ
. (2.9)

For the six classes of clusters considered here, the characteristic impact parameter lies

in the range bC = 700 − 4000 AU (as listed in Table 2.3). For comparison, the peak of

the binary period distribution is at P ≈ 105 days (Duquennoy & Mayor 1991), which

corresponds to a separation of ∼ 42 AU 
 bC . These results indicate that for the majority

of binary systems, the separation is much less than the typically expected close approach

bC (over the 10 Myr time span considered here). Furthermore, the orbital energy at the

typical flyby radius of a couple thousand astronomical units corresponds to a velocity scale

of ∼ 0.5 km s−1, i.e., a typical star is expected to receive only a single velocity perturbation

of this magnitude. Although this velocity kick is comparable to the mean velocity scale of

the cluster given by vm ∼ √
GN〈m〉/R, most of the interactions take place near the center

of the cluster potential where v ∼ √
Ψ0 ∼ 3.5vm, so the expected velocity perturbations are
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not devastating (one ∼ 15% kick in velocity, a ∼ 2% kick in energy) . These results, taken

together, imply that our approximation of ignoring binarity is justified. For completeness

we note that some binary systems can be produced via three-body interactions during the

evolution of a cluster. Care must be taken to identify these systems once formed, and to

exclude the binary orbits from the determination of the closest approach distribution.

2.2.2.4 Comparison of Virial and Subvirial Initial Conditions

One issue of interest is the differences between the clusters with initial conditions where

members are in virial equilibrium, Qi = 0.5 (virial clusters), and those where the members

are started with subvirial velocities, Qi = 0.04 (subvirial clusters). The initial conditions

lead to some important differences, as illustrated in Table 2.4, which lists the ratios of the

parameters for the subvirial simulations to those from the virial simulations. The subvirial

clusters have higher bound fractions, with 50% − 60% of their members remaining bound

at t = 10 Myr. For comparison, the virial clusters have only 13% − 27% of the initial

cluster membership bound at t = 10 Myr. In the subvirial clusters, stars fall toward the

center after they form and thus spend more of their time inside the cluster gas (which

is assumed to be static, i.e., not in a state of collapse). The removal of gas thus has

less effect on the subvirial clusters, and more stars remain bound. For both virial and

subvirial clusters, the initial velocity distribution of the cluster members is isotropic. Since

stars in the subvirial clusters are started with small velocities, however, they tend to fall

toward the cluster center and rapidly develop relatively larger radial velocities. As a result,

the isotropy parameter β for subvirial clusters is larger (more radial with β ≈ 0.3 − 0.4)

than that of the virial clusters, which have β ≈ 0 (and slightly negative) for the first

5 Myr of evolution. After the gas is removed, both the virial and subvirial clusters have

larger isotropy parameters, indicating increased radial motion as the cluster expands in the

absence of the gas potential.
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Table 2.4: Ratio of Parameters for Subvirial and Virial Initial Conditions

N fb Q R1/2 R1/2 Γ0

(t = 0) 0 − 10 Myr 5 − 10 Myr 0 − 5 Myr 5 − 10 Myr 0 − 10 Myr
100 Stars 2.02 0.464 0.701 0.549 2.78
300 Stars 2.50 0.423 0.693 0.657 3.74
1000 Stars 4.38 0.380 0.678 0.689 7.17

The mass distributions (Figure 2.4) and distributions of closest approaches (Figure

2.5) also depend on the starting conditions. The subvirial clusters have more centrally

condensed radial profiles throughout the 10 Myr evolution time. Before gas expulsion, the

half-mass radii for the subvirial clusters are about 70% of the half-mass radii of the virial

clusters. This result can be understood if the subvirial clusters act as if they have zero

temperature starting states, so they collapse to a radial scale roughly
√

2 times smaller

than their initial size. In comparison, virial clusters tend to retain their starting radial size

(before gas removal). After gas expulsion, the subvirial clusters continue to have half-mass

radii about 70% of those of the virial clusters, although the subvirial clusters with N = 100

are somewhat more concentrated. The mass distributions show that the scale radii of the

subvirial clusters are 55% − 65% of those of the virial clusters, and the central potentials

are deeper by a factor of 1.2 − 2. The distributions of closest approach for clusters with

virial and subvirial starting conditions are similar and can be fit with a single power-law

form over the radial range of interest (100− 1000 AU). The power-law indices are roughly

the same, but the subvirial clusters show a higher interaction rate by a factor of 3 − 7.

2.3 Effects of Cluster Radiation on Forming Solar Systems

Given the characterization of cluster dynamics found in the previous section, we now

estimate the effects of ultraviolet radiation from the background cluster on nascent solar

systems. The radiation from the parent star can drive mass loss from its planet-forming disk

and thereby affect planet formation (Shu et al. 1993), but this effect is often dominated
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by radiation from the background star cluster (Johnstone et al. 1998; Adams & Myers

2001). In this chapter we focus on the effects of FUV radiation (Adams et al. 2004), which

tends to dominate the effects of EUV radiation (Armitage 2000). We first calculate the

distributions of FUV luminosity (Section 2.3.1) and then determine the extent to which

the radiation compromises planet formation (Section 2.3.2). Throughout this section, we

present results as a function of cluster size N . In this context, we consider the cluster to

have a stellar membership of N primaries, and we ignore binarity. Although some fraction

of the cluster members will have binary companions, the vast majority of the companions

will have low mass and will not contribute appreciably to the FUV luminosity. Note that

in the early stages of cluster evolution, the system will contain a substantial amount of gas

and dust, and this dust can attenuate the FUV radiation. The gas (and dust) is removed

from the cluster relatively early so that the FUV radiation eventually has a clear line-of-

sight to affect forming planetary systems. Nonetheless, since we do not model the dust

attenuation, the results of this section represent an upper limit to the effects of radiation.

2.3.1 Probability Distributions for FUV Luminosity

In this subsection, we calculate probability distributions for the FUV radiation emitted

by stellar aggregates with varying size N (the number of cluster members). The total FUV

luminosity from a cluster or group of stars is given by the sum

LFUV (N) =
N∑

j=1

LFUV j , (2.10)

where LFUV j is the FUV luminosity from the jth member. In this approximation, we

assume that the FUV luminosity for a given star is determined solely by the stellar mass.

We further assume that the stellar mass is drawn from a known probability distribution,

i.e., a known stellar IMF.

In this problem, low-mass stars have a negligible contribution to the total UV flux. To

a good approximation, we can ignore the contribution of all stars smaller than 1 M�. To
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specify the IMF, we are thus not concerned with the detailed shape at low stellar masses;

we only need to correctly account for the fraction of stars with M∗ > 1 M� and the slope

at high stellar masses. For the sake of definiteness, we assume that the stellar IMF has a

power-law form for mass M∗ > 1 M� with index Γ, i.e.,

dN

dm
= Am−Γ = F1(Γ − 1)m−Γ, (2.11)

where m is the mass in units of solar masses and the slope Γ = 2.35 for the classic form first

suggested by Salpeter (1955); this slope remains valid today for a wide variety of regions

(Massey 2003, and references therein). In the second equality, we have normalized the

distribution according to the convention

∫ ∞

1

dN

dm
dm = F1, (2.12)

where F1 is the fraction of the stellar population with mass larger than 1 M�. For a

typical stellar mass function (such as that advocated by Adams & Fatuzzo 1996), the

fraction F1 ≈ 0.12. For completeness, note that in practice we cut off the IMF at m = 100

(see below); taking the integral out to ∞ here results in an inaccuracy of ∼ 0.2% (which

is much smaller than the accuracy to which we know F1).

To specify the FUV luminosity as a function of stellar mass, LFUV (m), we use the models

of Maeder and collaborators (Maeder & Meynet 1987; Schaller et al. 1992). Specifically,

these papers provide a grid of stellar models as a function of both mass and age. We use

the zero-age models to specify the stellar luminosity and effective temperature. The FUV

radiation is dominated by the largest stars, which reach the main sequence rapidly. Since

the model grids do not extend to arbitrarily high masses, we enforce a cutoff of 100 M�.

Using a blackbody form for the atmosphere, we then calculate the fraction of the luminosity

that is emitted in the FUV regime (6 eV < hν < 13.6 eV). The result is shown in Figure

2.6.
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The expectation value 〈LFUV 〉∗ of the FUV luminosity is thus given by the integral

〈LFUV 〉∗ =
∫ ∞

1
LFUV (m)

dN

dm
dm ≈ 8.20 × 1035 erg/s . (2.13)

This expectation value is normalized so that it is the expected FUV luminosity per star.

Due to the wide range of possible stellar masses and the sensitive dependence of FUV

emission on stellar mass, this expectation value is much larger than the FUV radiation

emitted by the majority of stars. We thus only expect the FUV radiation from a given

cluster to converge to that implied by the expectation value in the limit of larger numbersN

of stellar members, where large N is determined below. Small clusters will often experience

large departures from the expectation value.

We want to calculate both the expectation value and its variance for the FUV lumi-

nosities of the entire cluster. The sum given by equation [2.10] is thus the sum of random

variables, where the variables (individual contributions to the FUV power) are drawn from

a known distribution (determined by the stellar IMF and the luminosity-mass relation).

In the limit of large N , the expectation value of the FUV power is thus given by

LFUV (N) = N〈LFUV 〉∗ . (2.14)

Furthermore, the distribution of possible values for LFUV (N) must approach a Gaussian

form as N → ∞ because of the central limit theorem (e.g., Richtmyer 1978), although

convergence is slow. This Gaussian form is (as usual) independent of the form of the initial

distributions, i.e., it is independent of the stellar IMF and the mass-luminosity relation.

The width of the distribution also converges to a known value and is given by

〈σ〉2FUV =
1
N

N∑
j=1

σ2
j ⇒ 〈σ〉FUV =

√
Nσ0 , (2.15)

where σ0 is the width of the individual distribution, i.e.,

σ2
0 ≡ 〈L2

FUV 〉 − 〈LFUV 〉2∗ . (2.16)
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For our usual choice of stellar properties, the dimensionless width σ̃0 = σ0/〈LFUV 〉∗ ≈ 26.4,

i.e., the variation in the possible values for the FUV luminosity is much greater than

the expectation value. The effective signal-to-noise ratio (S/N) for variations in FUV

luminosity is thus given by

S/N ≡ 〈σ〉FUV

LFUV (N)
=

σ0√
N〈LFUV 〉∗

≈ 26.4√
N
. (2.17)

This definition thus defines a critical value of cluster members NC , i.e., the number re-

quired for the variations in FUV luminosity to become sufficiently well defined so that the

variations are smaller than the expectation value. This critical value of NC ≡ σ̃2 ∼ 700.

For N < NC , the FUV radiation experienced by a solar system living in the cluster is

essentially determined by the largest star in the aggregate; this largest member is, in

turn, drawn from the probability distribution implied by the stellar IMF. For clusters with

N > NC , it makes sense to consider expectation values for the FUV radiation provided

by the aggregate. However, the boundary is not sharp. Even for N > NC , the total FUV

luminosity LFUV (N) will be subject to substantial fluctuations from system to system.

We have performed a set of numerical sampling experiments to show that the mean

and variance of the distribution agree with the analytic predictions derived above. The

results are in good agreement. The mean and variance are shown as a function of cluster

size N in Figure 2.6. These numerical experiments show that the convergence to a purely

Gaussian distribution is rather slow. The central value and variance of the actual distri-

bution approach the values predicted by the central limit theorem much faster than the

distribution itself approaches a normal form. As a result, the median of the distribution

can be significantly different from the mean or expectation value, especially for cluster with

small stellar membership N . Figure 2.6 also shows the median expected FUV flux as a

function of cluster size N . The median is only about 8% of the mean for small clusters

with N ≈ 100 and approaches 80% of the mean for larger systems (N = 1000− 2000). We
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Figure 2.6: Mean, variance, and median of the distribution of total FUV luminosity for clusters of
size N as a function of N . The squares connected by the solid line depict the mean FUV luminosity
averaged over many realizations of a cluster of size N . The error bars represent the variance about
the mean. As shown in the text, the mean 〈LFUV 〉 ∝ N and the variance σ ∝ N1/2. The median
is shown by the dashed curve and is much smaller than the mean for small clusters and slowly
converges to the mean as N → ∞.

note that the median value provides a better description of the typical FUV luminosity

produced by a cluster of size N . However, the distribution of possibilities is wide, and

caution must be taken in characterizing the probability distribution by only one number.

Figure 2.7 shows the probability distributions for FUV luminosity for three choices of

stellar size, namely, N = 100, 300, and 1000. The plot shows the cumulative probabil-

ity distributions for the normalized FUV luminosity of the clusters, i.e., the total FUV

luminosity divided by the number of cluster members N . In this representation, the dis-

tribution with N = 100 (dashed curve) is the widest, and the distributions grow narrower

with increasing N . In the limiting case N → ∞, the distribution becomes a step func-

tion at the mean value 〈LFUV 〉∗ (where log10〈LFUV 〉∗ ≈ 35.9). For the three cluster

sizes shown here, the normalized probability distributions converge near P ≈ 0.85 and
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Figure 2.7: Cumulative probability distribution for the number of clusters that produce a given
normalized FUV luminosity, where the normalized FUV luminosity is the total FUV luminosity of
the cluster divided by the number N of cluster members. The three curves shown correspond to
clusters of size N = 100 (dashed curve), N = 300 (solid curve), and N = 1000 (dot-dashed curve).

log[LFUV /N ] ≈ 36.2. This convergence defines a benchmark for the high end of the distri-

bution; namely, 15% of the clusters are expected to have FUV luminosity greater than the

limit LFUV ≥ N(1.6 × 1036) erg s−1 ≈ 2N〈LFUV 〉∗.

The distributions described above apply to clusters of a given size N and show how the

results depend on N . However, since stars are born in groups/clusters with a distribution

of sizes N (Figure 2.1; Lada & Lada 2003; Porras et al. 2003), we also need to determine

the overall distribution of FUV luminosities that affects the entire ensemble of forming

solar systems. Toward that end, we assume that the distribution of stellar groups/clusters

is the same as that of the Lada & Lada (2003) sample (which is equivalent to that of

Porras et al. 2003). We then sample the distribution of cluster systems to find a system

size N , and for each such system we sample the IMF N times to find the FUV luminosity.

Using 10, 000 realizations of the cluster sample (corresponding to a total of 127 million
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Figure 2.8: Cumulative probability distribution for the number of stars that live in a cluster with
total FUV luminosity LFUV as a function of LFUV . This distribution is calculated under the
assumption that the cluster size distribution (the number of stars N) follows the data set of Lada
& Lada (2003). The size distribution of the data set is sampled 10,000 times to produce the
probability distribution shown here. The median FUV luminosity occurs at LFUV = 1038 erg s−1.
Note that the distribution has a long tail at low FUV luminosities.

stars), we find the cumulative probability distribution for the expected FUV luminosity.

The result is shown in Figure 2.8. This calculation shows that the median FUV luminosity

experienced by a forming solar system is 1038 ergs−1. This benchmark cluster luminosity

is 122 times the mean FUV luminosity per star given by equation [2.13]. If every star had

the mean FUV luminosity, this result would imply a typical cluster size N ≈ 122; since the

typical (median) star has FUV luminosity less than the mean, the implied typical cluster

size is somewhat larger (consistent with the distribution of Figure 2.1). Note also that

individual stellar orbits within the cluster also lead to different radiation exposure - this

issue is discussed below.

2.3.2 Effects of FUV Radiation

The physical quantity that affects forming solar systems is the FUV flux, which depends

on both the FUV luminosity (Section 2.3.1) and the radial position of the solar system
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within its birth aggregate (Section 2.2). For relatively “small” clusters of interest in this

study, we can assume that the FUV luminosity originates from the few largest stars, which

are generally observed to live near the cluster center (e.g., Testi et al. 1999). Here we

make the approximation that the FUV luminosity can be modeled as a point source at

the origin. Any given solar system in orbit within a given cluster will thus experience a

time-dependent flux FFUV = LFUV /4πr2, where the radial position r is specified by the

orbit.

Each cluster provides a distribution of FUV fluxes to its cluster members, and each

ensemble of clusters with a given size N provides a wider distribution of FUV fluxes to the

ensemble of members. Since clusters come in a distribution of sizes N , the collection of

all forming solar systems is thus exposed to a wide distribution of FUV fluxes. Figure 2.9

shows an estimate for the probability distribution of FUV flux experienced by the entire

ensemble of cluster stars as a function of flux. In this context, we express FUV flux in

units of G0, where G0 = 1 corresponds to a benchmark value of 1.6 × 10−3 erg s−1 cm−2

at FUV wavelengths (close to the value of the interstellar radiation field). This ensemble

distribution for the FUV flux was calculated assuming that the number of stars living in

groups/clusters of size N follows the distribution shown in Figure 2.1 (Lada & Lada 2003;

Porras et al. 2003), the radial size Rc of clusters follows the scaling relation shown in Figure

2.2, the distribution of FUV luminosity follows that calculated in Section 2.3.1, and the

density distribution within the cluster has the form ρ∗ ∝ r−1 for 0 ≤ r ≤ Rc. The dashed

curve in Figure 2.9 shows a Gaussian distribution with the same peak location and the

same FWHM; the true distribution has a substantial tail at low values and a much smaller

tail at high flux values.

In Figure 2.9, the vertical lines at G0 = 300, 3000, and 30, 000 are values for which the

photoevaporation of circumstellar disks due to FUV radiation has been calculated in detail
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(Adams et al. 2004). In that study, the value G0 = 3000 was chosen as a benchmark flux

value (which corresponds to a cumulative probability of ∼ 0.74 for the flux distribution

found here). This FUV flux will drive the evaporation of a circumstellar disk around a

1.0 M� star down to a radius of rd ≈ 36 AU in a time of 10 Myr. As a result, the region

of the disk where giant planets form (5 − 30 AU) is relatively safe for solar type stars.

For smaller stars, however, flux levels of G0 = 3000 can be significant. A disk orbiting a

0.5 M� (0.25 M�) star can be evaporated down to rd ≈ 18 AU (9 AU) within 10 Myr.

As a result, giant planet formation may be compromised around smaller stars (see also

Laughlin et al. 2004). The results of the detailed photoevaporation models (Adams et al.

2004) can be summarized by a rough scaling law: an FUV flux of G0 = 3000 truncates a

circumstellar disk down to a radius rd ≈ 36 AU (M∗/M�), over a time of 10 Myr.

The flux experienced by a typical star within a cluster can be characterized in a variety

of ways. As shown by Figure 2.9, however, the distribution of flux values is extremely wide

and cannot be fully described by a single number. If we consider the composite distribution

of Figure 2.9 as representative, then the median FUV flux experienced by a forming solar

system is G0 ≈ 900, the peak of the distribution is at G0 ≈ 1800, and the mean is at

G0 ≈ 16, 500 (note how the mean is much larger than the median).

We can also estimate the typical flux provided by a cluster of a given size N . This

determination requires an integration over both the distribution of radial positions and the

distribution of possible FUV luminosities. We can use either the mean or medians of these

distributions as the typical values, but they lead to markedly different results, as shown in

Table 2.5. For a given FUV luminosity, the mean radiation flux exposure is given by

〈FFUV 〉 =
LFUV

4π

〈 1
r2

〉
, (2.18)

where the average is taken over all stars and over all times. To evaluate 〈r−2〉, we use

the radial distributions N(r) calculated from our numerical simulations (analogous to the
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Figure 2.9: Probability distribution for FUV flux experienced by the ensemble of cluster stars as
a function of the FUV flux, expressed here in units of G0 (where G0 = 1 corresponds to a flux of
1.6×10−3 erg s−1 cm−2, which is close to the value of the interstellar radiation field). The ensemble
distribution was calculated assuming that the number of stars living in groups/clusters of size N
follows the distribution of Figure 2.1, the radial size Rc of clusters follows the distribution shown
in Figure 2.2, the distribution of FUV luminosity follows that calculated in Section 2.3.1, and the
density distribution within the cluster has the simple form ρ∗ ∝ r−1 for 0 ≤ r ≤ Rc. The dashed
curve shows a Gaussian distribution with the same peak location (at log10G0 = 3.25) and the
FWHM (1.575). The calculated distribution has a significant tail at low flux values. The vertical
lines at G0 = 300, 3000, and 30, 000 are benchmark values for which the effects of photoevaporation
on circumstellar disks have been calculated in detail (Adams et al. 2004).
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mass profiles M(r) given by equation [2.4] and Table 2.2). We can write this expectation

value in terms of an effective radius reff defined by

reff ≡
〈 1
r2

〉−1/2
. (2.19)

The effective radii for our six sets of simulations are given in Table 2.5. Using the mean

values of the FUV luminosity in conjunction with the quantity 〈r−2〉, we find a “mean” flux

value, as listed in the table. Although this value provides one characterization of the FUV

flux, the distributions are extremely wide, more than an order of magnitude wider than

the mean value. As a result, most of the exposure occurs for those (relatively few) stars

that wander close to the cluster center. The median thus provides a better measure of the

typical FUV flux. The median values for the radial position, coupled with the median value

of the FUV luminosity, provide an estimate for the “median” flux. The resulting values

are also listed in Table 2.5. Note that the flux levels calculated from the median values

of radial position and FUV luminosity are much smaller than those calculated from the

means (by factors of 17 − 190). The mean and median values of the FUV flux, calculated

from the composite distribution of Figure 2.9, are included as the final line in Table 2.5.

Note that the median flux of the composite (G0 = 900) is smaller than the median values

for N = 1000, larger than the values for N = 100, and roughly comparable to the values

for N = 300. This ordering is consistent with finding that the median (weighted) value of

cluster sizes occurs at N ≈ 300 (from Figure 2.1), i.e., half of the stars in the sample are

found in groups/clusters with N < 300, and half are found in systems with N > 300.

The distributions considered thus far describe the FUV flux experienced by forming solar

systems in a statistical sense. A related question is to find the radiation experienced by a

given solar system over the course of its orbit. Here we would like an analytic description

of the orbits in order to see how the results depend on the relevant physical quantities.
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Table 2.5: Expected FUV Flux Values

System reff G0 rmed G0

[pc] -mean- [pc] -median-
100 Subvirial 0.080 66500 0.323 359
100 Virial 0.112 34300 0.387 250
300 Subvirial 0.126 81000 0.549 1550
300 Virial 0.181 39000 0.687 992
1000 Subvirial 0.197 109600 0.944 3600
1000 Virial 0.348 35200 1.25 2060
Composite – 16500 – 900

Toward this end, the mean flux intercepted by a solar system can be written in the form

〈FFUV 〉 =
1
τ1/2

∫
LFUV

4πr2
dt , (2.20)

where τ1/2 is the time of a half-orbit (e.g., from the inner turning point to the outer turning

point) and the integral is taken over that same time interval. Here we can model the orbits

by assuming that the total cluster potential has the form of the Hernquist profile; orbits

in this general class of extended mass distributions have a similar form (for further details,

see Adams & Bloch 2005, hereafter AB05). The mean flux can then be written in the form

〈FFUV 〉 =
τ0
τ1/2

LFUV

4πr2s

∫ ξ2

ξ1

dt

ξ2
=

τ0
τ1/2

LFUV

4πr2s
(Δθ) , (2.21)

where τ0 ≡ rs(2Ψ0)−1/2, ξ = r/rs, rs is the scale length of the Hernquist profile, ξj are

the turning points, and Δθ ≤ π is the angle subtended by the half-orbit. The total depth

of the gravitational potential well Ψ0 is given by Ψ0 ≡ GMT /rs, where the mass scale

MT = 4M1, where M1 is the mass of the cluster (including both stars and gas) contained

within the boundary Rc. The orbit time and turning angle are known functions of the

dimensionless energy ε ≡ |E|/Ψ0 and angular momentum variable q ≡ j2/2Ψ0r
2
s (AB05).

To within an accuracy of a few percent, one can express the dimensionless orbit time and

the turning angle by the functions

τ1/2

τ0
= ε−3/2

(
cos−1 √ε+

√
ε
√

1 − ε
)
, (2.22)
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Δθ
π

=
1
2

+
[
(1 + 8ε)−1/4 − 1

2

][
1 +

ln(q/qmax)
ln 10

]3.6
, (2.23)

where qmax represents the maximum angular momentum for a given energy (that of a

circular orbit) and the fitting function is restricted to the range 10−6 ≤ q/qmax ≤ 1. The

maximum value of the angular momentum variable is also a known function of dimensionless

energy,

qmax =
1
8ε

(1 +
√

1 + 8ε− 4ε)3

(1 +
√

1 + 8ε)2
. (2.24)

Equations [2.21] – [2.24] thus specify the radiation exposure for a solar system on any orbit

with given dimensionless energy ε and angular momentum q. The angular momentum

dependence is relatively weak, much weaker than the dependence on energy. Since ε > 3/8

for orbits confined to the inner part of the Hernquist profile (ξ < 1), the turning angle is

confined to the narrow range (Δθ)/π = 1/2 −√
2/2. We can simplify the flux expression

to take the form

〈FFUV 〉 =
LFUV

8r2s

Aε3/2

cos−1
√
ε+

√
ε
√

1 − ε
, (2.25)

where the parameter A is slowly varying and encapsulates the angular momentum depen-

dence (with 1 ≤ A ≤ √
2). The leading coefficient sets the magnitude of the flux. The

numerator can be written as LFUV = fNN〈LFUV 〉∗, where fN is the fraction of the mean

FUV luminosity that the cluster produces. For example, the median flux corresponds to

fN = 0.088 for N = 100 and fN = 0.75 for N = 1000 (see Figure 2.6), whereas the mean

flux corresponds to fN = 1 by definition. In the denominator, the scale length rs ∼ Rc,

so that r2s ∼ (1 pc)2(N/300). The leading coefficient can thus be evaluated and written

in terms of the interstellar FUV radiation field, i.e., G ≈ 2000fN . The remaining dimen-

sionless function in equation [2.21] is of order unity and accounts for the orbital shape.

Deep orbits (close to the central part of the potential well) with ε>∼ 0.93 have values of

the dimensionless function greater than unity, whereas lower energy orbits have values less

52



than unity. In any case, we find G ∼ 1000, in agreement with the median values calculated

above (Table 2.5).

The dynamics of the cluster determine the distributions of energy and angular momen-

tum parameters (ε, q), and these distributions can be used in conjunction with equation

[2.25] to calculate the distribution of fluxes experienced by young solar systems. For ex-

ample, for an isotropic velocity distribution and a density profile ρ ∼ r−1, the differential

energy distribution (see BT87) has the form h(ε) = dm/dε ∝ (1 − ε). Note, however, that

the flux distribution calculated from the distribution of energy ε (and q) is narrower than

that calculated from the distribution of positions (that shown in Figure 2.9). The fluxes in

the former case are already averaged over the orbits, whereas those in the latter case are

not and therefore explore a greater range of values.

2.4 Scattering Interactions and the Disruption of Planetary Systems

The ultimate goal of this section is to calculate the probability that a solar system will

be disrupted as a result of being born within a group/cluster. In this case, disruption

occurs through scattering interactions with other cluster members and should thus depend

on the size N of the birth aggregate. In general, the rate of disruption for a solar system

can be written in the form

Γ = nσv , (2.26)

where σ is the disruption cross section, n is the mean density of other systems, and v is

the relative velocity (typically, v ∼ 1 km s−1). In this case, however, the results of N -body

simulations provide the rate at which solar system experience close encounters within a

closest approach distance b as a function of b. As a result, we only need to determine

how close such scattering encounters must be in order for disruption to take place. Here

we make the approximation that the cluster dynamics (which determines the rate f close

encounters) is independent of the scattering dynamics between a solar system and a passing
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star (which determines the cross sections).

Using our planet scattering code developed previously (Laughlin & Adams 2000; Adams

& Laughlin 2001), we can calculate the cross sections for the disruption of solar systems

with varying stellar masses (see also Heller 1993; 1995; de La Fuente Marcos & de La Fuente

Marcos 1997; 1999). Since most stars passing nearby with the potential for disrupting a

solar system are binaries, we want to find the effective cross section 〈σ〉 for a specified

change in orbital parameters resulting from scattering encounters with binaries. We define

this effective cross section 〈σ〉 through the relation

〈σ〉 ≡
∫ ∞

0
fD(a)(4πa2)p(a) da , (2.27)

where a is the semimajor axis of the binary orbit and p(a) specifies the probability of

encountering a binary system with a given value of a. Note that for a given value of a, this

integral only includes those scattering interactions that fall within the predetermined area

4πa2, where the numerical coefficient 4 is chosen to be large enough to include all relevant

interactions and small enough to allow for finite computing resources (in principle, one

should include all interactions, no matter how distant). In practice, we find that the area

4πa2 provides a good compromise between accuracy and computational expediency. The

function fD(a) specifies the fraction of the encounters that result in a particular outcome

(e.g., a given change in the orbital parameters of the solar system), and the determination

of fD is the main computational task. The distribution p(a) is determined by the observed

distribution of binary periods and by the normalization condition

∫ ∞

0
p(a)da = 1 , (2.28)

where we use observational results to specify the period distribution (Kroupa 1995b). The

observed distribution is extremely broad, with roughly equal numbers of systems in each

logarithmic interval in semimajor axis a and with a broad overall peak falling near P = 105
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days. Although the distribution includes binaries with periods longer than 107 days, this set

of scattering experiments only includes binaries with a < 1000 AU because wider binaries

do not contribute appreciably to the cross sections.

The set of possible encounters that can occur between a given solar system and a field

binary is described by 10 basic input parameters. These variables include the binary

semimajor axis a, the stellar masses, m∗1 and m∗2, of the binary pair, the eccentricity ebin

and the initial phase angle �bin of the binary orbit, the asymptotic incoming velocity vinf

of the solar system with respect to the center of mass of the binary, the angles θ, ψ, and φ

- which describe the impact direction and orientation - and finally the impact parameter

h of the collision. Additional (intrinsic) parameters are required to specify the angular

momentum vector and initial orbital phases of the planets within the solar system. In this

study, we consider a class of solar systems in which the central stellar mass varies, but the

planetary orbits are always taken to be those of our solar system. In other words, each

solar system has an analog of Jupiter, a planet with one Jupiter mass mJ in an initial orbit

of semimajor axis aJ = 5 AU; similarly, each solar system has an analog of Saturn, Uranus,

and Neptune. The planetary orbits are assumed to be circular (initially) so that we can

determine the change in orbital parameters from a known baseline. All of the planetary

properties are kept fixed so we can isolate the effects of changing the mass of the central

star.

In order to compute the fraction of disruptive encounters fD(a) and the corresponding

cross sections, we perform a large number of scattering experiments using a Monte Carlo

scheme to select the input parameters. This section reports on the results from more than

105 such scattering experiments. Individual encounters are treated as N -body problems in

which the equations of motion are integrated using a Bulirsch-Stoer scheme (Press et al.

1986). During each encounter, we require that overall energy conservation be maintained
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to an accuracy of at least one part in 108. For most experiments, energy and angular

momentum are conserved to one part in 1010. This high level of accuracy is needed because

we are interested in the resulting planetary orbits, which carry only a small fraction of the

total angular momentum and orbital energy of the system.

For each scattering experiment, the initial conditions are drawn from the appropriate

parameter distributions. More specifically, the binary eccentricities are sampled from the

observed distribution (Duquennoy & Mayor 1991). The masses of the two binary compo-

nents are drawn separately from a log normal IMF that is consistent with the observed

distribution of stellar masses (for completeness, we note that the IMF has a power-law tail

at high masses, although this departure will not affect the cross sections calculated here).

For both the primary and the secondary, we enforce a lower mass limit of 0.075 M� and

hence our computed scattering results do not include brown dwarfs. This cutoff has a

relatively small effect because our assumed IMF peaks in the stellar regime. The impact

velocities at infinite separation, vinf , are sampled from a Maxwellian distribution with

dispersion σv = 1 km s−1, which is a typical value for stellar clusters with the range of

parameters considered here (BT87). The initial impact parameters h are chosen randomly

within a circle of radius 2a centered on the binary center of mass (a circular target area of

4πa2 as in equation [2.27]).

Using the Monte Carlo technique outlined above, we have performed Nexp ≈ 20,000

scattering experiments for collisions between binary star systems and solar systems of

each stellar mass (i.e., a total of ∼ 105 simulations). We use logarithmically spaced mass

values: M∗/M�= 2, 1, 1
2 ,

1
4 , and 1

8 . As described above, all solar systems are taken to

have the architecture of our outer solar system. From the results of these seven-body

scattering experiments, we compute the cross sections for orbital disruption of each outer

planet (according to equation [2.27]). Note that the procedure described thus far implicitly
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assumes that all passing stars are binary. Although the majority of solar-type stars have

binary companions, smaller stars (e.g., M stars) have a lower binary fraction. The true

cross sections should thus be written as 〈σ〉T = Fb〈σ〉bin + (1 − Fb)〈σ〉ss, where Fb is the

binary fraction and 〈σ〉ss is the cross section of interactions between single stars and solar

systems (and is not calculated here). However, 〈σ〉ss 
 〈σ〉bin (Adams & Laughlin 2001)

so that to a good working approximation one can use 〈σ〉T ≈ Fb〈σ〉bin.

The cross sections for the planets to increase their orbital eccentricities are shown in

Tables 2.6 – 2.10 for varying stellar mass (see also Figure 2.10). For each given value of

eccentricity e, the table entries give the cross sections [in units of (AU)2] for the eccentricity

to increase to any value greater than the given e; these cross sections include events leading

to either ejection of the planet or capture by another star. The listings for e = 1 thus give

the total cross sections for planetary escape and capture (taken together). The last two

lines of the tables present the cross sections for planetary escapes and captures separately.

For each cross section listed, the tables also provide the 1 standard deviation error estimate

[also in (AU)2] for the Monte Carlo integral; this quantity provides a rough indication of

the errors due to the statistical sampling process (Press et al. 1986). Figure 2.10 shows the

cross sections plotted as a function of the eccentricity increase for each of the four planets

and for the four largest stellar mass values.

Another way for solar systems to be disrupted is by changing the planes of the plane-

tary orbits. One can use the results of the Monte Carlo scattering calculations to compute

the cross sections for the inclination angles of the planetary orbits to increase by varying

amounts. These results are shown as a function of angle in Table 2.11 for the five stellar

mass values used here. More specifically, we define the inclination angle increase Δi to be

the maximum angle between the orbital plane of the perturbed (post-encounter) planets

and the original orbital plane. In Table 2.11, the Monte Carlo uncertainties are not listed,
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Figure 2.10: Scattering cross sections for solar systems to increase the eccentricity e of planetary
orbits as a function of eccentricity. All cross sections are given in units of (AU)2. The four panels
shown here correspond to the four largest stellar mass values of our computational survey, i.e.,
M∗ = 2.0 M� (top left) 1.0 M� (top right), 0.5 M� (bottom left), and 0.25 M� (bottom right). In
each panel, the four curves shown correspond to four giant planets orbiting the central star, where
the planets have the same masses and starting semimajor axes as the giant planets in our solar
system. The top curve in each panel corresponds to an analog of Neptune, and the bottom curve
corresponds to an analog of Jupiter. The cross section for increasing the eccentricity beyond unity
(right end points of the curves) corresponds to ejection of the planet. The error bars correspond to
the uncertainties incurred due to the (incomplete) Monte Carlo sampling of the parameter space.
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Table 2.6: Scattering Cross Sections for M∗ = 2.0 M� Stars

e/Outcome 〈σ〉 (Jupiter) 〈σ〉 (Saturn) 〈σ〉 (Uranus) 〈σ〉 (Neptune)
0.10 34200 ± 632 48600 ± 738 96000 ± 1030 133700 ± 1180
0.20 22300 ± 513 34900 ± 631 68400 ± 881 97200 ± 1040
0.30 16300 ± 436 27300 ± 563 52800 ± 782 75900 ± 926
0.40 13000 ± 389 22400 ± 511 43500 ± 714 62400 ± 846
0.50 10300 ± 343 18900 ± 471 36100 ± 653 52300 ± 780
0.60 8560 ± 314 16100 ± 439 31100 ± 609 44600 ± 725
0.70 7300 ± 291 13900 ± 410 26800 ± 569 38300 ± 677
0.80 6240 ± 269 11900 ± 380 22900 ± 526 33300 ± 635
0.90 5470 ± 253 10100 ± 351 19400 ± 486 28700 ± 595
1.00 4550 ± 231 8350 ± 321 16000 ± 446 24200 ± 555
Escape 4010 ± 216 7590 ± 306 13900 ± 413 20600 ± 504
Capture 539 ± 83 764 ± 99 2100 ± 168 3640 ± 232

Table 2.7: Scattering Cross Sections for M∗ = 1.0 M� Stars

e/Outcome 〈σ〉 (Jupiter) 〈σ〉 (Saturn) 〈σ〉 (Uranus) 〈σ〉 (Neptune)
0.10 40700 ± 1190 56300 ± 1380 104900 ± 1860 142400 ± 2110
0.20 28100 ± 996 42500 ± 1200 81300 ± 1650 113200 ± 1910
0.30 22600 ± 895 36100 ± 1110 67400 ± 1510 95400 ± 1780
0.40 18500 ± 801 31500 ± 1040 57700 ± 1400 82900 ± 1670
0.50 15500 ± 731 27500 ± 974 51200 ± 1330 73100 ± 1580
0.60 13700 ± 692 24500 ± 924 45200 ± 1250 64300 ± 1480
0.70 11900 ± 640 21300 ± 865 40300 ± 1190 58000 ± 1420
0.80 10800 ± 606 18600 ± 812 36100 ± 1130 52200 ± 1360
0.90 9270 ± 564 16000 ± 754 31800 ± 1060 46200 ± 1280
1.00 8040 ± 529 14400 ± 728 28000 ± 1010 40300 ± 1220
Escape 7060 ± 488 13100 ± 688 24900 ± 952 33900 ± 1100
Capture 973 ± 203 1350 ± 238 3010 ± 347 6390 ± 517

Table 2.8: Scattering Cross Sections for M∗ = 0.5 M� Stars

e/Outcome 〈σ〉 (Jupiter) 〈σ〉 (Saturn) 〈σ〉 (Uranus) 〈σ〉 (Neptune)
0.10 44400 ± 1010 57700 ± 1140 110900 ± 1560 143200 ± 1730
0.20 32700 ± 870 48200 ± 1050 89100 ± 1400 120600 ± 1610
0.30 26000 ± 775 42800 ± 993 76600 ± 1310 105900 ± 1520
0.40 21800 ± 708 39100 ± 952 68600 ± 1250 95500 ± 1460
0.50 19200 ± 664 35800 ± 914 62200 ± 1190 86200 ± 1390
0.60 16600 ± 618 31700 ± 860 57300 ± 1150 78900 ± 1340
0.70 14800 ± 585 29200 ± 828 52900 ± 1110 72900 ± 1290
0.80 13500 ± 557 26000 ± 782 48600 ± 1070 68200 ± 1260
0.90 12200 ± 531 23000 ± 732 44400 ± 1020 63500 ± 1220
1.00 11100 ± 510 20500 ± 693 40400 ± 982 57900 ± 1190
Escape 10400 ± 496 18900 ± 665 36200 ± 922 50600 ± 1090
Capture 701 ± 119 1560 ± 194 4150 ± 338 7300 ± 458
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Table 2.9: Scattering Cross Sections for M∗ = 0.25 M� Stars

e/Outcome 〈σ〉 (Jupiter) 〈σ〉 (Saturn) 〈σ〉 (Uranus) 〈σ〉 (Neptune)
0.10 51900 ± 1140 63900 ± 1250 124800 ± 1720 151100 ± 1850
0.20 38400 ± 979 53800 ± 1150 100500 ± 1560 126700 ± 1710
0.30 30900 ± 875 49700 ± 1110 86900 ± 1460 115400 ± 1650
0.40 26900 ± 810 46700 ± 1080 78300 ± 1390 106800 ± 1600
0.50 23900 ± 761 43800 ± 1050 74000 ± 1350 99700 ± 1550
0.60 21300 ± 717 41100 ± 1020 69700 ± 1320 93900 ± 1510
0.70 19400 ± 683 38300 ± 988 66500 ± 1290 89300 ± 1480
0.80 17700 ± 655 35600 ± 959 62800 ± 1260 84900 ± 1450
0.90 16300 ± 630 33200 ± 929 58600 ± 1220 80200 ± 1410
1.00 15300 ± 614 29900 ± 880 54100 ± 1190 74800 ± 1400
Escape 14500 ± 597 27800 ± 842 49300 ± 1120 65300 ± 1290
Capture 741 ± 140 2040 ± 257 4880 ± 394 9440 ± 546

Table 2.10: Scattering Cross Sections for M∗ = 0.125 M� Stars

e/Outcome 〈σ〉 (Jupiter) 〈σ〉 (Saturn) 〈σ〉 (Uranus) 〈σ〉 (Neptune)
0.10 65100 ± 1170 77700 ± 1260 147500 ± 1690 208200 ± 1940
0.20 50200 ± 1030 67800 ± 1190 111600 ± 1480 134700 ± 1590
0.30 37600 ± 888 63800 ± 1160 99400 ± 1410 121400 ± 1530
0.40 30800 ± 796 61500 ± 1140 92400 ± 1370 113600 ± 1490
0.50 26700 ± 734 58900 ± 1120 87200 ± 1340 107200 ± 1450
0.60 24000 ± 694 56000 ± 1100 83100 ± 1310 101800 ± 1420
0.70 21800 ± 664 52700 ± 1070 79100 ± 1280 97800 ± 1400
0.80 20000 ± 637 49300 ± 1040 75100 ± 1250 93800 ± 1380
0.90 18600 ± 612 45200 ± 1000 72100 ± 1230 90100 ± 1350
1.00 17200 ± 588 40100 ± 948 65900 ± 1190 84700 ± 1340
Escape 16100 ± 564 38000 ± 920 60100 ± 1130 74500 ± 1240
Capture 1060 ± 167 2160 ± 231 5750 ± 386 10200 ± 524

Table 2.11: Scattering Cross Sections for Angular Increase

Δi 〈σ〉 〈σ〉 〈σ〉 〈σ〉 〈σ〉
(deg) 0.125 M� 0.25 M� 0.5 M� 1.0 M� 2.0 M�
10.0 108800 104400 97400 89600 75500
20.0 91100 85600 78000 65800 50700
30.0 83200 77300 68000 55100 40400
40.0 77600 71900 61600 48800 34400
50.0 72800 67600 55900 43700 30200
60.0 68000 62500 51900 40100 26500
70.0 63000 57400 47900 36500 24000
80.0 58300 53000 43600 33700 21800
90.0 54100 48600 40300 30700 19400
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Figure 2.11: Scatter plot showing the correlation of changes in eccentricity with changes in the
orbital inclination angle (in radians). Each symbol shows the result of one scattering simulation
(not all cases are shown). The inclination angle is defined to be the maximum angle between the
perturbed orbital planes of the planets and the original orbital plane. The eccentricity considered
here is the (final) eccentricity of the Neptune analog. This plot shows results from the scattering
experiments using stellar mass M∗ = 1.0 M�; the results are similar for all five stellar masses
considered herein.

but the sampling statistics are good, and the effective errors are approximately 2%. In ad-

dition, we find that the increases in inclination angle are well correlated with the predicted

increases in eccentricity, as shown in Figure 2.11. For the five stellar masses considered

here, the linear correlation coefficient between the inclination angle increase and the (final)

eccentricity of the Neptune-analog planet lies in the range R = 0.70 − 0.75.

The cross sections scale roughly with the inverse square root of the stellar mass. For

example, the total ejection cross section is one of the more useful quantities considered here.

We find that the mass dependence of the cross section for a given planet to be ejected can

be written in the form

〈σ〉ej
(
M∗
M�

)1/2

≈ CP ≈ constant, (2.29)
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where the constant CP depends on which planet is being ejected. For Jupiter, Saturn,

Uranus, and Neptune, respectively, we find CJ = 7200 ± 800, CS = 14, 000 ± 1100, CU =

25, 900 ± 2440, and CN = 36, 600 ± 4070 AU2. When we scale the cross sections by the

mass of the central star, the scaling law is not perfect, but rather retains some variation

that is quantified by the quoted “error bars” given here. Next we note that these cross

sections almost scale linearly with the semimajor axes of the planet. If we perform such a

scaling, the ejection cross section can be written in the form

〈σ〉ej ≈ C0

( ap

AU

) (
M∗
M�

)−1/2

, (2.30)

where C0 = 1350 ± 160 AU2 and ap is the semimajor axis of the planetary orbit.

Now we can put the pieces together and apply these results to clusters. The output

measures from the numerical simulations show that the rates of close encounters have the

form Γ = Γ0(r/r0)γ , where the parameters Γ0 and γ depend on the starting conditions

in the cluster. The length scale r0 = 1000 AU defines the units. The rate of ejection of

planets is thus given by

Γej = Γ0

[C0(ap/AU)
πr20

]γ/2 (
M∗
M�

)−γ/4

. (2.31)

This expression gives the ejection rate per star for a given M∗. To find the total ejection

rate for the cluster, one must integrate over the IMF, normalized to the cluster size N ,

i.e.,
∫
dm(dN/dm)m−γ/4, where

∫
(dN/dm)dm = N . For example, the rate of ejection of

planetary analogs of Jupiter in a cluster of N = 300 stars with a subvirial starting condition

can be readily found: the numerical simulations provide Γ0 = 0.096 (interactions per star

per megayear) and γ = 1.7 (see Table 2.3). The ejection rate of Jupiters is thus ΓJ ≈ 0.15

ejections per cluster per megayear. Over the 10 Myr lifetime spanned by the simulations,

only one or two Jupiter ejections are expected per cluster (these results are consistent with

those obtained by Smith & Bonnell 2001 and de La Fuente Marcos & de La Fuente Marcos
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Figure 2.12: Distribution of ejection speeds for scattering interactions with central stellar mass
M∗ = 0.50 M�. The histograms show the distributions of ejection speeds found in the numerical
simulations for the analogs of Jupiter (solid), Saturn (dashed), Uranus (dotted), and Neptune (dot-
dashed). The four smooth solid curves show the expected distribution from the simple theory
outlined in the text.

1997). The number of ejected planets is not only small, but it is also much smaller than the

number of ejections expected from internal (planet-planet) scattering events (Moorhead &

Adams 2005). Even for the larger cross section for the ejection of Neptunes, the number

of expected events is only about seven. For solar systems orbiting smaller stars, e.g., with

mass M∗ = 0.25 M�, the ejection cross sections, and hence the expected number of ejected

planets, are larger by a factor of ∼ 2. Of course, smaller stars may have trouble forming

planets due to increased efficacy of disk evaporation (Section 2.3; Adams et al. 2004) and

other difficulties (Laughlin et al. 2004).

Another result from our ensemble of scattering experiments is the distribution of ejection

speeds for planets that are removed from their solar systems during the interaction. The

resulting distributions are shown for each of the four giant planets in Figure 2.12 (for stellar

mass M∗ = 0.50 M�) and Figure 2.13 (M∗ = 0.25 M�). Also shown are the theoretically
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Figure 2.13: Distribution of ejection speeds for scattering interactions with central stellar mass
M∗ = 0.25 M�. The histograms show the distributions of ejection speeds found in the numerical
simulations for the analogs of Jupiter (solid), Saturn (dashed), Uranus (dotted), and Neptune (dot-
dashed). The four smooth solid curves show the expected distribution from the simple theory
outlined in the text.

expected distributions based on the idea that ejections involve sufficiently close encounters

that the gravitational potential of the perturber (the passing star) dominates that of the

central star. This type of interaction implies a distribution of ejection speeds of the basic

form

dp

du
=

4u
(1 + u2)3

, (2.32)

where u = v/v0 and the velocity scale is given by v2
0 = GM∗/a (Moorhead & Adams 2005).

Note that the impact speed of the binary vinf does not enter into this formula because

v0 � vinf . As shown in Figures 2.12 and 2.13, this type of distribution provides a good fit

to that found in the simulation data. Note that the numerical and analytic distributions

are given the same normalization for all four planets. The overall number of ejections will

vary with the planet’s semimajor axes, as given by the cross sections in Tables 2.6 – 2.10.
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2.5 NGC 1333 – A Case Study

The recent identification of 93 N2H+ (1 − 0) clumps in the young cluster NGC 1333

by Walsh et al. (2004) provides an excellent opportunity to apply the theoretical program

developed in this investigation toward the understanding of an observed cluster. More

specifically, the data provide two-dimensional (2D) position measurements (in the plane

of the sky) and one-dimensional (1D) velocity measurements (along the line-of-sight) for

each of the 93 clumps. As a result, we need to reconstruct the remaining three phase-space

variables in order to make full three-dimensional (3D) simulations of the cluster. Because

the reconstruction process contains a random element (see below), we have to perform

multiple realizations of the simulations in order to describe the dynamics. In addition,

because the data do not completely specify the starting conditions (without reconstruction),

this set of simulations represents a “theoretical model inspired by observations of NGC

1333” rather than a faithful model of the NGC 1333 cluster itself.

The starting conditions for the simulations are determined as follows. For a given 2D

radius r2D (as measured by Walsh et al. 2004), we use the fact that r2D = sin θr3D and

assume that μ = cos θ is distributed randomly over the interval [−1, 1]. This procedure

allows us to reconstruct the missing spatial coordinate. The resulting radial mass profiles

of the cluster are illustrated in Figure 2.14. The resulting mass profile is intermediate

between that of an isothermal sphere with M(r) ∝ r and a less centrally dense profile with

M(r) ∝ r2 (which corresponds to ρ∗ ∼ r−1 as used in Section 2.2). This particular cluster

is thus somewhat more centrally concentrated than the theoretical models. In a similar

manner, we assume that the (small) measured line-of-sight velocities are one component

of an isotropic (small) 3D velocity vector and reconstruct the missing velocity components

accordingly. Since the observed speeds are small compared to the virial speeds, the starting

conditions are much like the subvirial starting states of Section 2.2.
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Figure 2.14: Reconstructed radial mass profile of the young embedded cluster NGC 1333, where
M(r) is given in M�. To obtain this profile, the 2D observational map (Walsh et al. 2004) is
converted into 105 different realizations of the 3D cluster structure (and averaged) according to the
procedure outlined in the text. The two dotted lines, included for reference, have power-law slopes
p = 1 and 2, i.e., M(r) ∝ r (which corresponds to ρ∗ ∼ r−2), and M(r) ∝ r2 (which corresponds
to ρ∗ ∼ r−1).

The observations also provide mass estimates for the clumps. For the sake of definite-

ness, we assume that each clump forms a star and that the mass of the star is given by

the mass of the clump. In actuality, the mass of the clump is not exactly given by the

mass estimated from N2H+, as there is no hard boundary at the radius where the molecule

becomes too faint to be seen; this effect makes the true clump masses larger than reported.

On the other hand, we expect some inefficiency in the star formation process (e.g., Adams

& Fatuzzo 1996), which would make the stellar masses smaller than the clump masses. We

are thus implicitly assuming that these two effects cancel out. The observations indicate

that the clump masses in NGC 1333 are somewhat segregated, with the more massive

clumps found near the cluster center. This trend is illustrated in Figure 2.15: within the

central 0.1 pc radius, 50% of the clumps have masses greater than 1 M�, compared to

18% in the region as a whole. In this regard, the simulations of NGC 1333 differ from the
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Figure 2.15: MassMc of observed clumps (in M�) as a function of 2D radius for the young embedded
cluster NGC 1333. The data are taken from Walsh et al. (2004). Note that the primordial mass
segregation in this system is somewhat greater than the minimal segregation used in the purely
theoretical models (Section 2.2).

purely theoretical models of Section 2.2, where only minimal primordial mass segregation

was included (the most massive star was placed at the cluster center). In addition to the

mass in clumps, we include a smooth background potential of gas analogous to the gas

component used in Section 2.2.

The results of the simulations for NGC 1333 are listed as the final entries in Tables

2.1, 2.2, and 2.3. As expected, the output parameters for this cluster are most like the

theoretical clusters with N = 100 and subvirial starting conditions. However, the NGC

1333 simulations produce clusters that are somewhat more concentrated and interactive.

All of the indicators point in the same direction: compared to N = 100 simulations with

subvirial starting states, the NGC 1333 simulations have half-mass radii that are smaller

by a factor of ∼ 1.8, a somewhat larger fraction of stars that remain bound (69% vs. 54%),

and a smaller isotropy parameter β (see Table 2.1). The mass profiles have roughly the
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same scale length r0 ≈ 0.3 − 0.4 pc (Table 2.2) and a somewhat smaller index (p = 0.55

compared to 0.69), indicating a more centrally concentrated cluster.

The largest difference between the NGC 1333 simulations and the others is reflected

in the interaction rates, where the fiducial rate Γ0 for NGC 1333 is larger by a factor of

5 − 6 (Table 2.3). This higher interaction rate is a direct result of the smaller half-mass

radius (a simple analytic approximation suggests that Γ0 ∼ R
−7/2
1/2 ). The characteristic

interaction distance bC ≈ 238 AU, which implies that the NGC 1333 cluster facilitates

disk truncation down to radii rd ∼ 80 AU (still well outside the realm of the giant planets

in our solar system). Planetary analogs of Neptune can be stripped from the smaller

stars with M∗ = 0.25 M� and can experience large eccentricity enhancements (e ∼ 0.7)

when orbiting solar-type stars (see Tables 2.6 – 2.11). Planetary analogs of Jupiter remain

largely unperturbed around all stars. This level of disruption is somewhat higher than

found earlier for the purely theoretical clusters but still remains modest.

One important lesson resulting from this case study of NGC 1333 is the extent to

which initial conditions can affect forming planetary systems. Compared to the starting

conditions used for the simulations in Section 2.2 (where these starting conditions were

motivated by observational surveys of cluster conditions, e.g., Figures 2.1 and 2.2), the

NGC 1333 starts with a higher degree of central concentration and a greater amount of

primordial mass segregation. The result is a more compact cluster (smaller R1/2) and

hence a higher interaction rate. In addition, the subvirial starting condition allows stars

to fall inside much of the original gas and this geometry enhances cluster survival after

gas removal (cf. Adams 2000 with Geyer & Burkert 2001). In order to fully determine

the effects of the cluster environment on forming solar systems, we need to determine the

range of starting density profiles and mass segregation.

68



2.6 Conclusion

This chapter has explored the early dynamical evolution of embedded stellar groups

and clusters with stellar membership in the range N = 100 − 1000. This work includes

N -body simulations of the dynamics, compilations of the distributions of FUV luminosities

and fluxes, the calculation of scattering cross sections for young planetary systems, and

an application to the observed embedded cluster NGC 1333. Our main conclusion is that

clusters (with the range of properties considered here) have relatively modest effects on

star and planet formation. The interaction rates and radiation levels are low, so that

forming stars and their accompanying planetary systems are largely unperturbed by their

environment. This finding, in turn, implies that cluster structure is due primarily to the

initial conditions, rather than interactions. These results can be summarized in greater

detail as follows.

• In order to obtain good statistics for our output measures, we have performed 100

realizations of each set of initial conditions for groups/clusters with N = 100, 300, and

1000. In addition to considering different cluster sizes N , we consider both virial and

subvirial initial conditions. These simulations show a significant difference between

the two types of starting conditions. Compared with virial initial conditions, subvirial

clusters are more centrally concentrated, retain more of their stars for longer times,

and exhibit more radial velocity distributions (Tables 2.1 and 2.4). As expected, all

clusters lose stars and gradually spread out with time. This behavior is quantified by

finding the average time evolution of each group/cluster type using 100 realizations of

each set of initial conditions (Figure 2.3 and Table 2.1). We also provide quantitative

descriptions of these systems by finding the mass profiles of the clusters (Figure 2.4,

equation [2.4], and Table 2.2) and the distributions of close encounters (Figure 2.5,

equation [2.6], and Table 2.3). All of these quantities can be used in a variety of other
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contexts to test further the effects of the cluster environment on the processes of star

and planet formation.

• We have calculated the FUV radiation expected from this class of groups and clusters.

This issue involves (at least) three separate distributions: clusters of a given size N

display a wide distribution of FUV luminosities due to incomplete sampling of the

stellar IMF; we have determined this distribution P (LFUV ) as a function ofN (Figures

2.6 and 2.7). Clusters themselves come in a distribution of sizes P (N) (Figure 2.1) and

we have found the distribution of FUV luminosities sampled over all clusters (Figure

2.8) using the observed range of cluster radii Rc (Figure 2.2). Finally, the stars within

a cluster explore a range of radial positions, which in turn specify the distribution

of radial positions P (r) in the cluster. These three probability distributions [P (N),

P (LFUV ), and P (r)] jointly determine the composite distribution of FUV fluxes that

impinge on the composite ensemble of forming solar systems (shown in Figure 2.9).

The median FUV flux for the composite distribution is only G0 ≈ 900, which is not

intense enough to evaporate disks orbiting solar-type stars (over 10 Myr) for the range

of radii of interest for planet formation (r ≤ 30 AU). We have also found the fluxes

averaged over individual orbits within the clusters as a function of orbital energy and

angular momentum (equations [2.21] - [2.25]). The results of this section imply that

FUV radiation in clusters does not generally inhibit planet formation. In addition, the

distributions found here can be used to determine the radiation exposure for forming

solar systems in a variety of other contexts.

• We have calculated the cross sections for the interaction of newly formed solar systems

with passing binaries (Tables 2.6 – 2.11) using an ensemble of ∼ 105 Monte Carlo

scattering experiments. These cross sections, in conjunction with the interaction

rates determined via the N -body simulations, show that the typical solar system
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is not greatly affected by scattering interactions within its birth aggregate. The

typical star within a cluster of size N = 100 − 1000 will experience approximately

one close encounter within a distance bC over a 10 Myr window of time. We find that

bC = 700−4000 AU for the systems considered here. This passage is not close enough

to appreciably enhance the eccentricity of Neptune in our solar system. The mildest

disruption event considered here is the increase in eccentricity of a Neptune-analog

planet orbiting a 0.125 M� star; the cross section for this event is 〈σ〉 ∼ 2× 105 AU2

(Table 2.10), requiring a closest approach distance of ∼ 250 AU. Similarly, disks are

truncated by passing stars down to radii of ∼ 1
3 of the closest approach distance

(Kobayashi & Ida 2001), so the disks in these clusters are expected to be limited

to 230 − 1300 AU, much larger than the regimes of interest for planet formation.

Our main conclusion is that planet-forming disks and newly formed solar systems

generally survive their birth aggregates with little disruption. In addition, the cross

sections calculated herein can be used to study solar system disruption in a wider

range of contexts and environments. For example, planet formation can potentially be

induced by weak scattering encounters which can generate gravitational instabilities

in the protoplanetary disks (Thies et al. 2005). As another application, we note

that some star-forming regions are reported to have higher binary fractions than the

field. As a result, one issue is whether or not the cluster environment can disrupt

binaries (e.g., Kroupa et al. 2003, and references therein). Our results imply that

the clusters considered here do not facilitate the disruption of binaries, except for

those that begin with separations greater than ∼ 1000 AU. If the primordial period

distribution is similar to that measured in the field, only ∼ 1
7 of binaries would be

affected by scattering interactions (of course, more binary disruption would occur if

these clusters did not suffer an early demise due to gas expulsion at t = 5 Myr).
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• We have performed an ensemble of 100 simulations of the observed young embedded

cluster NGC 1333, where we start with observed positions in the plane of the sky and

line-of-sight velocity components, and then reconstruct the remaining phase-space

coordinates. This set of simulations is used to construct the output measures for

clusters of this type, and we use the results to assess the impact of the background

environment on star and planetary systems forming within this type of group/cluster.

This cluster is most like the N = 100 subvirial simulations performed in Section 2.2.

Compared to the purely theoretical simulations, NGC 133 has more primordial mass

segregation and a smaller half-mass radius R1/2. This property leads to a somewhat

larger bound fraction fb and a higher interaction rate Γ compared to the N = 100

simulations with subvirial starts. Nonetheless, the overall amount of disruption is

small (e.g., circumstellar disks are truncated down to ∼ 80 AU, well outside the

region where giant planets form) so that the cluster environment has only a modest

effect on star and planet formation.

This chapter represents an assessment of dynamical effects in six classes of young em-

bedded clusters. The treatment is extensive in that we run 100 N -body simulations for each

type of cluster in order to obtain robust statistical descriptions, and we assess the effects of

FUV radiation and solar system scattering on forming solar systems. On the other hand,

the parameter space available to such clusters is enormous and a great deal of additional

work remains to be done. For example, the simulations in this study were started with

cluster sizes Rc near the low end of the observed range (Figure 2.2, lower dashed curve)

and gas removal times (5 Myr) near the high end of the observed range (Lada & Lada

2003). These choices tend to make the clusters denser and long-lived, which makes the

effects of interactions and radiation more important. Since we find that interactions and

radiation have only modest effects on planet-forming disks, we can consider this conclu-
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sion as conservative. However, a more detailed treatment of gas removal, including shorter

lifetimes and more realistic time dependence (not a step function in time), is warranted.

A number of additional processes may also affect cluster evolution and should be stud-

ied; these include the role played by additional primordial mass segregation (beyond the

minimal treatment used here), nonspherical starting conditions for both the stars and gas,

and the effects of primordial binaries. Mass segregation – both primordial and evolutionary

– may be particularly interesting, as suggested by our simulations motivated by NGC 1333.

Our work to date indicates that the disruption of planetary systems is a sensitive function

of the mass M∗ of the central star (e.g., scattering cross sections scale approximately as

〈σ〉 ∼ M
−1/2
∗ , and FUV radiation truncates disks approximately at rd ∼ M∗) and a sen-

sitive function of location within the cluster (both the FUV flux and interaction rates are

much greater near the cluster center). If substantial mass segregation is present during

the ∼ 10 Myr while the clusters remain intact, the larger stars will be closer to the center

where they are exposed to greater probability of disruption, and the smaller stars will be

farther out and relatively safer. The degree to which this effect occurs should be quantified

in future studies.

Finally, this work emphasizes the fact that cluster environments display a distribution

of properties, and the full distributions must be considered in order to assess their effects

on forming stars and planets. Some previous studies (e.g., Bonnell & Bate 2002) have

focused on the densest regions of large clusters where the interaction rates are high and

the background environment has an important effect on star formation. Although most

clusters have a central zone of high interaction, for the clusters considered here most stars do

not live in the highly interactive zone. It is thus crucial to determine the full distribution of

environmental properties that forming stars are exposed to, including how often the various

environments arise. Clusters are sampled from a distribution of sizes P (N). For a given
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size N , clusters have a range of radial sizes P (Rc), a range of starting speeds and hence

a distribution of virial parameters P (Qi), and display a distribution of FUV luminosities

P (LFUV ). For given sizes Rc and N , and a given starting condition Qi, stellar members

explore a distribution of radial positions P (r) within the cluster. The methods developed

in this chapter show that we can find the distributions of luminosities (Figure 2.8), radial

positions (analogous to Figure 2.4), closest approaches (Figure 2.5), and other quantities of

interest from a given set of starting conditions. Perhaps the most important goal of future

studies is thus to make a better observational determination of the distributions P (N),

P (Qi), and P (Rc), which would allow for more complete predictions of the effects of the

cluster environment on star and planet formation.
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CHAPTER III

Early Evolution of Stellar Groups and Clusters:
Parameter Space Study

In this chapter we continue the exploration from Chapter II and complete a parame-

ter space study of the dynamics of young embedded clusters over a wide range of initial

conditions. As outlined previously, this study is motivated by recent observations of a

large number of young embedded clusters that have provided a broad survey of the star

formation conditions found in the solar neighborhood (see Lada & Lada 2003; Megeath

et al. 2004; Allen et al. 2007, and references therein).

3.1 Simulation Overview

A modified version of the NBODY2 code developed by Aarseth (2001) is employed to

numerically calculate the dynamics in young stellar clusters from the embedded stage out to

ages of 10 Myr. The modifications made to this code allow for the cluster’s initial conditions

to be more like those observed in young stellar clusters. These modifications allow us to

specify the form and time evolution of the embedding gas, provide differing amounts of

initial mass segregation, and define the geometry and velocity structure of the stellar

distribution. Additional modifications are designed to produce the output parameters

of interest in this study, i.e. closest approach distributions, velocity distributions, mass

profiles, etc.
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In addition to focusing on clusters with initial conditions similar to those found in nearby

young clusters, this work is distinguished by its statistical character. The N -body problem

is by nature chaotic and thus even clusters with the similar initial configurations may have

dissimilar results. Therefore, in order to produce robust statistical descriptions of cluster

evolution, for each initial condition configuration considered within this study a total of 100

cluster simulation realizations are completed. Specifically, for a given set of initial cluster

conditions (i.e., cluster membership, radius, velocity distribution, etc.), 100 simulations

are completed using a different random number seed to sample the relevant distributions.

The resulting output parameters are then averaged over the set of realizations to provide

a statistical understanding of how a similar cluster is likely to evolve.

In this section we outline the standard initial conditions assumed in the simulated

clusters. Specifically, we discuss the qualities most commonly observed in nearby young

embedded clusters and identify these qualities as the center of our parameter space sur-

vey. These initial conditions define the typical cluster, and the parameter space survey is

conducted by varying one or more of the initial conditions at a time. . In Section 3.2 we

motivate the particular range of parameter space investigated in this survey. Finally, we

present the results of the cluster simulations in Section 3.3 and discuss implications for

planet formation within these clusters.

Cluster Membership, N . In this study we consider intermediate-sized clusters with

stellar memberships ranging from N = 100 to 3000. The shape of the initial mass function

(IMF) observed in young stellar clusters is fairly universal for clusters with more than ∼ 100

members (Lada & Lada 2003). Therefore in our simulations, stellar masses are sampled

from the log-normal analytic fit to the standard IMF of Miller & Scalo (1979) presented

by Adams & Fatuzzo (1996). The average stellar mass in a cluster is 0.5 M� (the average

stellar mass is somewhat higher than the median stellar mass which is roughly ∼ 0.3 M�),
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consistent with observations of young stellar clusters (Muench et al. 2002; Luhman et al.

2003).

Cluster Radius, Rc. Stars are distributed within the cluster radius Rc according to the

density profiles described below. We define cluster radius Rc as a function of the cluster

membership N , the scaling radius Rsc, and the power law index α.

Rc = Rsc

(
N

300

)α

. (3.1)

This membership-radius relationship is observed in young clusters in the solar neighborhood

(Lada & Lada 2003; Porras et al. 2003, see also Figure 2.2), and typical values of the

parameters Rsc and α are 1 pc and 1
2 , respectively. Therefore a cluster with N = 300 stars

has a radius of 1 pc.

Initial Stellar Profile. Many young embedded clusters display degrees of central con-

centration (Lada & Lada 2003, and references therein). The simulated clusters are corre-

spondingly centrally condensed and have stellar density distributions of the form ρ∗ ∼ r−1.

Density profiles of this form are consistent with the observed density profiles embedding

gas in cluster-forming cores (see below).

Mass Segregation. Young stellar clusters exhibit various amounts of mass segregation

even though the clusters themselves are not old enough to have undergone dynamical mass

segregation (i.e. they are less than a relaxation time old). The simulated clusters contain

minimal mass segregation implemented by a straightforward algorithm. At initialization,

the most massive star in the cluster is relocated to the center of the cluster.

Initial Stellar Velocities. Kinematic observations of youngest stellar objects and of

starless dense cores indicate that in many young clusters, these objects are moving at

speeds that are a fraction of the virial speed (Walsh et al. 2004; André 2002; Peretto et al.

2006; Kirk et al. 2006). In the cluster simulations, initial stellar velocities are sampled from

a spatially isotropic distribution and then scaled by the initial virial ratio of the cluster
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Qi. The virial ratio is defined as Q ≡ |K/W |, where K is the total kinetic energy and W

is the total potential energy of the cluster. A cluster that is in virial equilibrium has a

virial ratio Q = 0.5. Most simulations considered in this study are initialized with a virial

ratio Qi = 0.04 which results in stellar velocities that are approximately one-third of the

virial velocity of the cluster and is consistent with the kinematic observations of young

embedded clusters.

Star Formation History. The stars in the simulated clusters have a spread in forma-

tion times of Δt = 1 Myr. The formation time of each star is sampled from a uniform

distribution over the range from 0 to 1 Myr, independent of position within the cluster or

stellar mass. We then assume that the forming stars are tied to their formation site until

the collapse phase is complete, i.e., until the star is formed. The stars are included in the

simulations as static point masses until their formation time after which they are allowed

to move through the gravitational potential of the cluster with an initial velocity sampled

from the distribution described above.

Embedding Gas Profile. Extremely young (� 3 Myr) stellar clusters are almost always

associated with a molecular cloud core (Leisawitz et al. 1989). These cores are often

centrally concentrated (Larson 1985; Myers & Fuller 1993; Jijina et al. 1999). In the

simulated clusters the embedding gas is represented as a static gravitational potential with

a Hernquist profile with potential, density, and mass profiles of the form

Ψ =
2πGρ0r

2
s

1 + ξ
, ρ =

ρ0

ξ(1 + ξ)3
, and M =

M∞ξ2

(1 + ξ)2
, (3.2)

where ξ ≡ r/rs and rs is a scale length, which is chosen to be equal to the cluster radius,

i.e., rs = Rc (Hernquist 1990). In the inner limit this profile has the form of ρ ∼ r−1 and

outside of the cluster the density profile matches onto the force-free background. We are

thus neglecting external forces on the cluster.

Star Formation Efficiency. Estimates of the star formation efficiency εSF in young star-
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forming regions vary from ∼ 10% to 50% (Lada & Lada 2003). In our simulated clusters,

a standard star formation efficiency of εSF = 33% is assumed. This corresponds to a total

stellar mass MT∗ in the cluster that is one half of the mass of the embedding gas Mgas

(from equation [3.2], Mgas = M∞/4 is the effective gas mass within the cluster radius Rc).

Gas Removal History. Although very young stellar clusters are associated with em-

bedding molecular gas, the gas is quickly dispersed from the cluster by stellar winds from

young stars, ionizing radiation from massive stars, or nearby supernova explosions. Clus-

ters with ages greater than ∼ 3 Myr are rarely associated with molecular gas. In the

cluster simulations the depth of the potential well associated with the embedding gas is

reset to zero instantaneously at time tgas, and thus the gas removal mechanism is assumed

to rapidly disperse gas from the vicinity of the cluster.

3.2 Parameter Space Overview

As evidenced by the list in Section 3.1, the number of initial parameters which must be

specified in a cluster simulation is quite high. As a result, the parameter space available in

which to study of the evolution of stellar clusters is extremely large. In our current work,

we target our parameter space survey on embedded cluster environments similar to those

observed in our solar neighborhood (Lada & Lada 2003; Allen et al. 2007; Megeath et al.

2004, Gutermuth et al. 2009, in preparation), with an extrapolation to somewhat larger

clusters. In this section we identify the range of parameter space in which our survey is

conducted. It is important to note that this range, while motivated by observations of

nearby clusters, does not necessarily encompass all of the initial conditions observed in

these clusters. The range of parameter space surveyed and the initial conditions assumed

in the clusters are summarized in Table 3.1
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3.2.1 Cluster Membership, N

We perform a series of simulations to study the effect that stellar membership has on

the dynamics of young embedded clusters. We consider spherical clusters embedded in

centrally concentrated gas potentials with a star formation efficiency εSF = 0.33. The

stellar membership in the simulated clusters ranges from N = 100 to 3000. Clusters of this

size roughly span the range of young clusters observed in the solar neighborhood (Lada

& Lada 2003; Porras et al. 2003). Motivated by observations of young stellar objects

with subvirial velocities, this study considers embedded clusters with both subvirial and

virial initial velocity distributions. The subvirial and virial clusters have Qi = 0.04 and

0.5 respectively. Therefore, the subvirial clusters have initial stellar velocities that are

approximately 1
3 of the virial velocity.

It is possible that the index α appearing in the membership-radius relation (equation

[3.1]) varies over different clusters of different sizes N . For example, the value α = 1
2 is a

reasonable fit to the observed data within approximately 2 kpc of the sun (Lada & Lada

2003; Porras et al. 2003, see also Figure 2.2), which contains clusters with memberships

N � 2000. In environments with star formation rates much higher than that of the solar

neighborhood, a significant amount of star formation occurs in clusters much more massive

than those found in our solar neighborhood. These extremely massive young clusters,

some which are thought to be progenitors of globular clusters, contain as many as N ∼ 106

stars, have sizes on the order of Rc ∼ 10 pc (Mengel et al. 2008). If we extend the cluster

membership-radius relation out to stellar memberships as high as N ∼ 106, the choice of

α = 1
2 overestimates the cluster radius by a factor of ∼ 5. A power law index of α = 1

4

more closely approaches the observed data points (over the full range of N). In this study,

we investigate the evolution of intermediate-sized clusters for both α = 1
2 and α = 1

4 power

law indices in the cluster membership-radius relation. In both cases, we chose Rsc = 1.0 pc
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so that the power law passes through the point N = 300, Rc = 1.0 pc. The different choices

of cluster membership-radius functions are depicted in Figure 1.1.

These two choices of α result in clusters whose average number density varies differ-

ently as a function of cluster membership. Specifically, substituting the membership-radius

relation into the equation for average number density n0 gives:

n0 ∼ N

Rc
3 ∼ N

N3α
= N1−3α. (3.3)

Therefore, for the choice α = 1
2 the average stellar density decreases as a function of

N , whereas for α = 1
4 the stellar density is an increasing function of N . In the results

summarized in Section 3.3, many of the trends observed as a function of cluster membership,

N are in actuality traced to the trends in average stellar density as a function of N .

Note that an intermediate value of the index, α = 1
3 , implies a constant stellar density.

This benchmark value is n0 ∼ 100 stars pc−3. Figure 3.1 displays the average number

densities found in clusters in the solar neighborhood. The data are taken from the cluster

catalogs of Lada & Lada (2003) (diamonds) and Carpenter (2000) (triangles). Number

densities are calculated assuming spherical symmetry in the stellar clusters. Nearby young

clusters may have higher densities in the cluster cores (Hillenbrand & Hartmann 1998;

Gutermuth et al. 2005; Teixeira et al. 2006), but their average stellar densities are relatively

constant.

3.2.2 Initial Virial Parameter, Qi

As discussed in Section 3.1 (and in Chapters I and II), recent observations of young

embedded clusters indicate that stars may be formed with velocities lower than the virial

velocity of the cluster. During the early evolution of a subvirial cluster, the average stellar

velocities increase as individual stars fall through the global potential well of the cluster.

Stars with initially subvirial velocities thus trade potential energy for kinetic energy as
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Figure 3.1: Average number density (in stars per cubic parsec) of clusters in the solar neighborhood
plotted as a function of cluster membership N . Diamonds indicate data from the catalogs presented
by Lada & Lada (2003) and triangles indicate data from the catalog of Carpenter (2000).

the cluster approaches virial equilibrium. We complete a series of experiments designed to

investigate the effect that the initial virial ratio Qi has on the evolution of clusters. While

the simulations completed as a part of the cluster membership parameter study make a

gross comparison between subvirial and virial clusters, this set of simulations samples a

wide range of virial ratios 0.025 ≤ Qi ≤ 0.5 with much higher resolution. Simulations

are completed for clusters with initial membership N = 300, 1000, and 2000 that have a

membership-radius relation characterized by α = 1
2 , similar to that observed in the solar

neighborhood.

One question that this study attempts to address is: how subvirial must stellar velocities

be for the cluster evolution to differ significantly from that of a cluster in virial equilib-

rium? Our results indicate that even moderately subvirial clusters display characteristics

significantly different from virial clusters (Section 3.3). For instance, the bound fraction

in a cluster with initial virial parameter Qi = 0.35 is almost 50% larger than in a virial
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cluster Qi = 0.5. A value of Qi = 0.35 corresponds to an average stellar velocity which is

approximately 84% of the virial velocity of the cluster. Therefore, stars need not have very

subvirial velocities for the effects to be significant.

3.2.3 Cluster Scaling Radius, Rsc

The cluster membership-radius relation presented in equation [3.1] depends on both the

power law index α and the fiducial scaling radius Rsc which sets the radius of a cluster with

N = 300 members. From Figure 2.2 it is evident that although this scaling relationship

is reasonable, there is considerable scatter in the radius of observed clusters. Some of this

scatter is due to the observational difficulty in determining the outer radius of a cluster

as the surface density approaches that of the background sky. In addition, it is difficult

to determine cluster radii for nonspherical clusters and clusters with small memberships

(Gutermuth et al. 2005; Allen et al. 2007).

A series of simulations are completed to investigate how cluster evolution varies un-

der different assumptions regarding the scaling radii. Specifically cluster simulations are

completed for scaling radii in the range 1
3 pc ≤ Rsc ≤ 3 pc with power law index α = 1

2

in the membership-radius relation. The clusters are assumed to have stellar memberships

N = 300, 1000, and 2000 members and subvirial initial velocities, i.e., Qi = 0.04. Changing

the scaling radius Rsc effectively changes the average stellar density in a cluster, and many

of the trends observed in the cluster evolution as a function of scaling radius Rsc are linked

to this change in density.

3.2.4 Star Formation Efficiency, εSF

The star formation efficiency (SFE) of a region is defined as εSF = MT∗/(MT∗ +Mgas)

where MT∗ and Mgas are the total stellar and gaseous mass contained in the region, re-

spectively. Estimates of the young embedded cluster SFE within the solar neighborhood

range between 0.1 and 0.3 (Lada & Lada 2003; Allen et al. 2007). These efficiencies are
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significantly higher than the SFEs of entire giant molecular clouds which are typically less

than ∼ 5% (Duerr et al. 1982; Evans & Lada 1991). As a part of this parameter space study

we complete a suite of cluster simulations in which the SFE is varied from 0.1 ≤ εSF ≤ 0.5.

The clusters are assumed to be in an initially subvirial state, and have memberships of

N = 300 and 1000. A particular value of the efficiency parameter εSF is attained by vary-

ing the mass of the gas in the simulated cluster. The SFE of a cluster is a major factor

in determining the probability that a cluster will remain bound after the embedding gas

is dispersed due to outflows from young stars or ionizing radiation from the most massive

star (see Section 3.3).

3.2.5 Gas Removal Timescale, tgas

While the youngest star-forming clusters are deeply embedded in their natal molecular

clouds, clusters with ages greater than a few Myr are rarely associated with molecular

interstellar material (Leisawitz et al. 1989). In this series of simulations, we consider the

evolution of young clusters with rapid gas removal at time tgas ranging from 1 Myr to 7 Myr.

The study considers subvirial clusters with memberships of N = 300, 1000, and 2000. A

significant fraction of the stars in a given cluster become gravitationally unbound at the

time of gas dispersal and the cluster begins to expand radially outward. As the cluster

expands, the average density decreases and close interactions between stellar members

become less frequent. Therefore, in addition to affecting how much of the cluster remains

gravitationally bound, the gas removal time tgas places limits on the close encounter rates

in young clusters.

3.2.6 Mass Segregation, Fseg

Observations indicate that massive stars are preferentially found near the center of

evolved open clusters. Mass segregation in these evolved clusters can be well explained by

kinetic theory: high mass stars lose energy to low mass stars through two-body interactions
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and subsequently sink toward the cluster’s center. This process takes place on timescales

comparable to a cluster’s relaxation time:

trelax ≈ N

8 ln N
tcross ≈ NRc

8 ln N 〈v〉 , (3.4)

where tcross is the cluster crossing time and 〈v〉 is the average stellar velocity (Binney

& Tremaine 1987). Open clusters have ages of a few tens to hundreds of Myr and thus

are old enough for dynamical mass segregation to have occurred. However, observations

of mass segregation in young embedded clusters are more difficult to explain (Bonnell &

Davies 1998). A (logarithmically) average embedded cluster in the solar neighborhood has

N ∼ 300, Rc ∼ 1 pc, 〈v〉 ∼ 1 km s−1, and a corresponding relaxation time of roughly

6.5 Myr. Therefore, dynamical evolution is unlikely to be responsible for the mass seg-

regation observed in young clusters such as the Trapezium, NGC 2071, or NGC 2074

(Hillenbrand & Hartmann 1998; Lada et al. 1991; Bonnell & Davies 1998), which suggests

that the mass segregation is due to a primordial tendency to form massive stars near the

center of clusters. In addition, primordial mass segregation is naturally produced in em-

bedded clusters through some proposed massive star formation scenarios. For instance,

competitive accretion preferentially forms massive stars in the deepest part of the cluster

potential well, near the center of the cluster (Bonnell et al. 2001; Beuther et al. 2007).

One experiment in the parameter space survey explores the evolution of clusters with

various amounts of primordial mass segregation. We define the primordial mass segregation

parameter Fseg as the fraction of the cluster membership which has been ordered by mass

at the center of the cluster, Fseg = Nseg/N . Specifically, at simulation initialization the

stellar masses are sampled from a standard IMF and stellar positions are sampled from a

ρ∗ ∼ r−1 density profile (regardless of mass). Then the most massive star in the cluster

is moved from its initial randomly assigned position to the center of the cluster. This

state represents a cluster with minimal mass segregation. For values of Fseg > 1/N ,
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Table 3.1: Parameter Space Survey Initial Conditions

Experiment Parameter Varied Parameter Range Variations # Sims
Cluster Membership N 100 − 3000 Q = 0.04, 0.5 6,200

Rc = (N/300)1/2 pc

Cluster Membership N 100 − 3000 Q = 0.04, 0.5 6,200
Rc = (N/300)1/4 pc

Virial Ratio Qi 0.025 − 0.5 N = 300, 1000, 2000 6,000
Rc = (N/300)1/2 pc

Radius Scaling Rsc 0.33 − 3.0 pc N = 300, 1000, 2000 2,700
Factor Q = 0.04

Star Formation εSF 0.1 − 0.5 N = 300, 1000 1,600
Efficiency Q = 0.04

Mass Segregation Fseg
1
N − 0.99 N = 300, 1000, 2000 2,100

Q = 0.04

additional mass segregation is implemented by rearranging the stellar positions so that

the Nseg most massive stars are located at the inner Nseg radial positions. The mass

segregation parameter is varied over the range 1/N ≤ Fseg ≤ 0.99 in subvirial clusters with

N = 300, 1000, and 2000 members.

3.3 Summary of Results

3.3.1 Bound Fraction, fb

Observational studies which compared the formation rates of embedded clusters and

open clusters found that the embedded cluster formation rate was significantly higher than

that of open clusters (Elmegreen & Clemens 1985; Battinelli & Capuzzo-Dolcetta 1991;

Piskunov et al. 2006). This discrepancy in the formation rates leads to the interesting

conclusion that although most star formation occurs in clusters, only a fraction (about 10%)

of main sequence stars remain bound in open clusters for ∼ 100 Myr, which suggests that

very few embedded clusters remain gravitationally bound after the interstellar molecular

gas has been removed from them. The process by which the removal of molecular gas leads

to the unbinding of a cluster has been dubbed embedded cluster “infant mortality” and

has been addressed via both analytical (Hills 1980; Elmegreen 1983; Verschueren & David
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1989; Adams 2000) and numerical methods (Lada et al. 1984; Geyer & Burkert 2001; Boily

& Kroupa 2003a;b), and evidence that this process is occurring in extragalactic young

massive clusters has been presented by Bastian & Goodwin (2006).

An important output parameter explored in our simulations is the fraction fb of stars

that remain gravitationally bound as a function of time. The bound fraction is defined as

fb ≡ Nbound/N where N is the initial stellar membership, and Nbound is the number of stars

which have total energy (kinetic plus potential) less than zero. Throughout the embedded

phase of cluster evolution, the bound fraction remains equal to 1. The embedding gas

potential is removed from the simulated clusters instantaneously at tgas which significantly

reduces the depth of the potential well in which the cluster members reside. Rapid gas

removal is an appropriate approximation to gas expulsion due to high mass star formation

(Whitworth 1979), which removes the embedding gas over timescales as short as ∼ 104

years.

As the gravitational potential of the gas is removed, the high-velocity stars become

gravitationally unbound while the low-velocity stars remain bound to the cluster’s gravita-

tional potential. Therefore, the bound fraction fb decreases significantly over a very short

period of time (by as much as 50%) and, then levels off approaching its determined value at

t = 10 Myr. (Note that 10 Myr is our chosen temporal cutoff, but the clusters will continue

to evolve and fb will continue to decrease, albeit on longer timescales.) Figure 3.2 displays

fb as a function of time for the range of initial condition parameter space surveyed in this

study. Each panel illustrates the temporal evolution of fb for a specific cluster parameter

where the individual curves correspond to different values of the cluster parameter. For

instance, in Figure 3.2 panel (a) the evolution of fb is plotted for clusters with different star

formation efficiencies εSF . The top curve corresponds to a cluster with εSF = 0.75 and

the bottom curve corresponds to a cluster which has εSF = 0.05. For each of the curves
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in Figure 3.2 the other initial conditions (i.e., cluster membership N , initial cluster radius

Rc, amount of mass segregation Fseg, etc.) are held constant. The rapid decrease in fb at

t = 5 Myr in each panel (except for panel (e), which presents data from the gas removal

timescale tgas parameter study) corresponds to the time at which the gas is removed from

the cluster.

The value of the bound fraction at t = 10 Myr provides some measure of how tightly

bound a cluster remains after the embedding gas is removed. Figure 3.3 displays the value

of the bound fraction at t = 10 Myr as a function of the initial cluster parameter values for

the range of parameters considered in this survey. Previous theoretical and numerical work

has identified a cluster’s star formation efficiency εSF as the most important parameter

in determining whether or not a cluster will remain gravitationally bound (Hills 1980;

Elmegreen 1983; Lada et al. 1984). In clusters with high SFEs, a large proportion of

the total cluster mass remains behind (in the form of stars) after the embedding gas is

removed. Therefore, clusters with high SFEs remain more tightly bound after gas dispersal

than clusters with low SFEs. In our cluster parameter survey we too find that the bound

fraction fb at t = 10 Myr depends most sensitively on the star formation efficiency εSF of

the cluster. Figure 3.3 panel (a) displays the cluster bound fraction fb as a function of star

formation efficiency, εSF . The data is well fit by a power law in εSF :

fb = 2.22 (εSF )1.2 , for εSF ≤ 0.5. (3.5)

In the suite of simulations completed to investigate the effects of star formation effi-

ciency, the clusters are initially subvirial. After gas removal, subvirial clusters are more

tightly bound than virial clusters (Adams et al. 2006). Therefore, for even relatively high

star formation efficiencies, εSF = 0.3 and small velocities, which produce the most tightly

bound clusters, the clusters are significantly disrupted by gas removal, losing ∼ 40% of

their stars. Star formation efficiencies larger than ∼ 30% are rarely observed (Lada &
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Figure 3.2: Fraction of stars that are bound to the cluster’s gravitational potential fb as a function
of time, for all clusters included in the parameter space survey. Each panel corresponds to a different
cluster parameter that is varied: (a) Star formation efficiency εSF , (b) Initial virial ratio Qi, (c)
Stellar Membership N for scaling relationship Rc ∼ N1/2, (d) Stellar Membership N for scaling
relationship Rc ∼ N1/4, (e) Gas removal time tgas, (f) Cluster scaling radius Rscand (g) Amount
of primordial mass segregation Fseg. The individual curves correspond to clusters with different
initial values of the cluster parameter of interest. In all simulations (except those in panel (e)), the
gas expulsion takes place at tgas = 5 Myr. Immediately after gas removal, a significant fraction
of stars become unbound from the cluster. As the cluster’s evolution continues, the mass loss rate
drops significantly and fb approaches a constant value.
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Figure 3.3: Cluster bound fraction fb at t = 10 Myr plotted as a function of cluster initial conditions,
for all clusters included in the parameter space survey. The best fit functions described in the text
are also displayed when applicable. The cluster parameter varied in each panel is as follows: (a)
Star formation efficiency εSF , (b) Initial virial ratio Qi, (c) Stellar Membership N for scaling
relationship Rc ∼ N1/2, (d) Stellar Membership N for scaling relationship Rc ∼ N1/4, (e) Gas
removal time tgas, (f) Cluster scaling radius Rsc, and (g) Amount of primordial mass segregation
Fseg. Different colored curves indicate different initial conditions within each series of simulations.
In panels (a), (b), and (g), N = 300, 1000, and 2000 are indicated by the red, green, and blue
symbols, respectively, though there are no major differences between the clusters as a function of
size. In panels (c) and (d), subvirial clusters are indicated by the blue (upper) curve while virial
clusters are indicated by the red (lower) curve. In panels (e) and (f), N = 300, 1000, and 2000
are indicated by the red, green, and blue curves, respectively (lower, middle, and upper curves as
measured on the left hand side of the panel).
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Lada 2003, and references therein), and are difficult to attain theoretically (Matzner &

McKee 2000). Our results thus corroborate previous studies indicating that a significant

fraction of the stellar population is lost from a cluster during the gas removal phase.

As mentioned above, clusters with subvirial initial velocities are more tightly bound

than clusters with virial initial conditions. Figure 3.3 panel (b) demonstrates this trend

in initial virial ratio. The bound fraction is plotted as a function of the initial virial ratio.

The bound fraction decreases almost linearly with the initial virial ratio, Qi over the range

considered, 0.01 ≤ Qi ≤ 0.5, and is reasonably fit by a line with slope ∼ −1 (this fit

is indicated by the curve in Figure 3.3 panel (b)). Gas removal has a weaker effect on

spherical clusters with subvirial initial conditions because as a subvirial cluster collapses,

the stars remain interior to the embedding gas (which is assumed to be static, i.e., not in

a state of global collapse). Thus, when the embedding gas is removed from the cluster,

many of the cluster members are interior to the gas and thus are affected by the change in

the potential. The results from this suite of simulations again indicate that a significant

fraction of cluster members are lost due to the change in the gravitational potential that

occurs during the dispersal of the natal gas; In the most tightly bound subvirial clusters

Qi = 0.025 approximately 40% of stars become unbound due to dispersal of the embedding

gas.

In clusters with subvirial initial conditions, the bound fraction remains constant as a

function of cluster membership, N for both the Rc ∼ N1/2 and the Rc ∼ N1/4 cluster

membership-radius scaling relations. This finding also holds true for virial clusters that

have cluster membership-size relations similar to those observed in the solar neighborhood

(Rc ∼ N1/2). The bound fraction at t = 10 Myr is plotted as a function of cluster size

N in panels (c) and (d) of Figure 3.3. The upper lines in these panels indicate the bound

fraction at 10 Myr in the more tightly bound subvirial clusters, whereas the lower lines
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correspond to the virial clusters.

In virial clusters with a lower cluster membership-size power index (Rc ∼ N1/4), the

bound fraction decreases as a function of the cluster membership N . The bound fraction

decreases roughly as fb ∼ N−1/4 (see Figure 3.3 panel (c), lower curve). This decrease

in fb(N) is due to a combination of effects arising from the relationship between cluster

radius and cluster membership defined by equation [3.1]. In clusters with Rc ∼ N1/4,

mean velocity and velocity dispersion roughly scale as 〈v〉 ∼ σv ∼ √
GmN/Rc ∼ N3/8.

The velocity distributions in the clusters are roughly Gaussian during the embedded phase

(rather than perfectly Maxwellian as would be expected in a collisionless isothermal sphere

of stars). Therefore, the increased velocity dispersion in clusters with larger N results in

more stars with velocities high enough to escape from the cluster vesc ∼
√

2GmN/Rc. In

addition, the interaction rate between cluster members increases with the stellar density

which increases as n ∼ N1/4 in these clusters. In virial clusters with Rc ∼ N1/2 (Figure

3.3 panel (d), lower curve), the bound fraction is roughly constant. This trend occurs

because although the average velocity and velocity dispersions increase as a function of

cluster membership, the dependence on N is not as strong: 〈v〉 ∼ σv ∼ N1/4. In addition,

the stellar density actually decreases with N , n ∼ N−1/2, and the competing effects of

increased velocities and lower interactions rates are comparable and act to cancel each

other out.

The bound fraction does not appear to be simply related to either the gas removal

timescale, tgas, or the scaling radius, Rsc, (see Figure 3.3 panels (e) and (f)). This is

because in subvirial clusters, such as the ones considered in these parameter space surveys,

changing either the scaling radius or the gas removal time affects the relationship between

the gas removal time and the initial collapse and relaxation time. The resulting fb is

sensitive to the particular dynamical state at the time of gas removal, e.g., if the cluster is
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re-expanding after initial collapse when the gas is removed, most stars have trajectories that

are directed radially outward and are thus more likely to become gravitationally unbound.

Next, we consider the effects of primordial mass segregation. In general, the effects of

mass segregation saturate when more than approximately 20% of the stars are segregated

by mass. Mass segregation only slightly affects the bound fraction, and clusters with

minimal mass segregation (where the largest star is located at the cluster’s center) have

slightly lower bound fractions than clusters with Fseg = 0.2, as shown in panel (g) of Figure

3.3.

In summary, the results of this study indicate that while the star formation efficiency

εSF is the parameter that most significantly affects the probability that a cluster will emerge

from its natal cloud as a bound entity, the initial virial state of the cluster, as well as the

specific dynamical state at the time of gas dispersal, are also important parameters which

determine how tightly bound a cluster may remain. We find that in sufficiently subvirial

clusters, Qi � 0.2, the bound fraction is not a sensitive function of the initial stellar density

(as indicated by the suite of simulations varying N and the cluster membership-radius

relations), but rather is dominated by the fact that the initial global collapse produces a

cluster whose members reside interior to the bulk of the embedding gas and thus are not

strongly affected by the gas removal.

Two caveats should be included in this discussion. First, observations of young emerging

clusters cannot determine whether a cluster member is gravitationally bound or unbound

its host cluster. Over the first ∼ 10−20 Myr, bound and unbound clusters are visibly similar

and thus the results of simulations such as those presented here are not easily compared

directly to observations. Secondly, this parameter space study focuses on the early evolution

of embedded clusters. Additional dynamical evolution of the clusters (on timescales greater

than ∼ 10 Myr will lead to lower bound fractions at later times. Therefore the bound

93



fractions presented in this work should be considered as upper limits on the total bound

fraction in clusters with older ages.

3.3.2 Stellar Interaction Rates

A significant consequence of living in the higher density environments, such as those

found in nearby young embedded clusters, is that close encounters with other cluster mem-

bers may be relatively frequent. If these interactions are sufficiently close, they can have

important ramifications for planet formation and solar system survival in circumstellar disk

systems. During early stages of solar system formation, encounters may disrupt the pro-

toplanetary disk and limit planet formation (Ostriker 1994; Heller 1993; 1995; Kobayashi

& Ida 2001). At later times, close encounters may disrupt planetary systems, significantly

altering the eccentricities of planets and, in sufficiently close encounters, ejecting planets

from the solar system entirely (Adams & Laughlin 2001; Adams et al. 2006).

Throughout the cluster simulations, close encounters with impact parameters less than

b = 10, 000 AU are recorded. A cumulative distribution of close encounters is constructed,

and an interaction rate Γ is calculated by averaging the encounter distributions over the

time span of interest (the embedded phase t = 0 − tgas, the exposed phase t = tgas − 10

Myr, or the entire 10 Myr evolution). Specifically, the interaction rate is defined as the

number of close encounters with impact parameter r ≤ b per star per million years. We

find that the interaction rates have the form of power laws for encounters with closest

approach distances less than ∼ 3000 AU. These power laws may be presented as a function

of closest approach distance, b

Γ = Γ0

(
b

1000AU

)γ

, (3.6)

where the fiducial interaction rate Γ0 and the power law index γ are fit to the cumulative

closest approach distribution for each set of cluster simulations. The fiducial interaction

rate Γ0 corresponds to the number of encounters with impact parameter b less than 1000
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AU per star per million years. The fiducial interaction rate Γ0 is displayed as a function

of cluster initial conditions in Figure 3.4.

For all of the parameter space considered in this study, the interaction rate Γ depends

most sensitively on a single parameter, the stellar number density n. Specifically, the trends

observed as a function of stellar membership N and cluster scaling radius Rsc (Figure 3.4

panels (a)-(c)) are actually trends in Γ0 as a function of the average stellar density n.

We can understand this trend in simple terms as follows: Consider a cluster with N

stars and radius Rc. For simplicity, we ignore the different between impact parameters and

distance of closest approach b. A star passing through a cluster will experience on average

δn =
2N
Rc

2 bδb (3.7)

close encounters with impact parameters within the range b to b+ db (Binney & Tremaine

1987). The crossing time in a cluster is given by τc ≈ Rc/v where v is the average stellar

velocity. Therefore the a star will experience on close encounters at the rate

δΓ ≈ 2N
Rc

2

(
v

Rc

)
b δb = 2nvb δb. (3.8)

In Figure 3.4 panel (d) the Γ0 values are plotted as a function of initial stellar density

n0 = N/Rc
3 for all of the simulations varying cluster membership N and scaling radius

Rc (data from Figure 3.4 panels (a)-(c)). The plus symbols indicate the interaction rate

Γ0 for clusters with initially subvirial velocities and the interaction rates for clusters with

initially virial velocities are indicated by x’s. Lines indicating a power law index of 1 are

included in the panel; and the numerically determined data is consistent with Γ0 ∼ n0.

Using the simple argument constructed above, the total rate Γb of close encounters with

impact parameter less than b in a cluster of membership size N is given by

Γb ≈
(
1.22 × 10−1

)
N−1/2

(
b

1000 AU

)2

Myr−1, for Rc = 1.0 pc
(

N
300

)1/2

, (3.9)
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Figure 3.4: Fiducial interaction rate Γ0 (in units of the number of interactions per star per Myr)
is plotted as a function of initial cluster parameter, for all clusters included in the parameter space
survey. The cluster parameter varied in each panel is as follows: (a) Stellar Membership N for
scaling relationship Rc ∼ N1/2, (b) Stellar Membership N for scaling relationship Rc ∼ N1/4,
(c) Cluster scaling radius Rsc, (d) Initial number density n0 (for varying stellar memberships and
cluster scaling radii), (e) Initial virial parameter Qi, (f) Gas removal time tgas, (g) Amount of
primordial mass segregation Fseg, and (h) Star formation efficiency εSF . Panel (d) displays the
combined data from panels (a) - (c) as a function of initial stellar number density n0 and displays
the trend Γ0 ∼ n0 discussed in the text. In panels (a) and (b), subvirial clusters are indicated by
the blue (upper) curve while virial clusters are indicated by the red (lower) curve. In panels (c),
(e), (f), (g), and (h), N = 300, 1000, and 2000 are indicated by the red, green, and blue curves
(upper, middle, and lower curves), respectively.
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Figure 3.5: The power law index γ for the interaction rates is plotted as a function of initial cluster
parameter, for all clusters included in the parameter space survey. The cluster parameter varied in
each panel is as follows: (a) Stellar Membership N for scaling relationship Rc ∼ N1/2, (b) Stellar
Membership N for scaling relationship Rc ∼ N1/4, (c) Cluster scaling radius Rsc, (d) Initial virial
ratio Qi, (e) Gas removal time tgas, (f) Amount of primordial mass segregation Fseg, and (g) Star
formation efficiency εSF . In panels (a) and (b), subvirial clusters are indicated by the blue (upper)
curve while virial clusters are indicated by the red (lower) curve. In panels (c), (e), (f), (g), and
(h), N = 300, 1000, and 2000 are indicated by the red, green, and blue curves (lower, middle, and
upper curves), respectively.
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Γb ≈
(
9.5 × 10−3

)
N1/4

(
b

1000 AU

)2

Myr−1, for Rc = 1.0 pc
(

N
300

)1/4

. (3.10)

These estimates are roughly similar to the interaction rates found in the virial clusters,

however the fitted value of the index γ is slightly lower than 2 (due to gravitational focusing)

in the numerically determined distributions (see Figure 3.5), and the fiducial interaction

rate is somewhat higher.

The subvirial clusters have interaction rates that are roughly 8 times larger than the

rates for virial clusters of the same density (as defined by n0 = N/Rc
3). This is due to

a combination of the smaller effective cluster radius that a subvirial cluster attains after

initially collapsing and a higher bound fraction after gas dispersal. During the embed-

ded phase, subvirial clusters (Qi = 0.04) behave as if they have nearly zero temperature

starting states and thus collapse to roughly
√

2 of their initial size. This decrease in ra-

dius corresponds to a 2
√

2 increase in density. In addition, subvirial clusters retain more

of their members after the gas is removed from the cluster (fb,sub/fb,vir ∼ 0.6/0.2 = 3).

Since the encounter profiles are averaged over the initial number of stars in the cluster the

interaction rates in subvirial clusters will be roughly 3 times higher than in virial clusters

over the exposed phase of cluster evolution (due to retention effects). Note that combining

these two factors increases the interaction rates by ∼ 6
√

2 ∼ 8. The results of the virial pa-

rameter survey also indicate that subvirial clusters have higher interaction rates. In Figure

3.4 panel (e) the interaction rate clearly decreases as a function of initial virial parameter

Qi.

In addition, interaction rates are higher in clusters that have more massive stars residing

near the cluster’s center (see Figure 3.4 panel (g)). This finding is consistent with the

modeling results of NGC 1333 presented in Chapter II. The fiducial interaction rate Γ0 in

the simulated NGC 1333 cluster was approximately 5 times higher than the Γ0 calculated

in the subvirial clusters with minimal mass segregation. We suggested that the increased
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interaction rate was due to the primordial mass segregation observed in NGC 1333 (see

Figure 2.15). For comparison, subvirial clusters with N = 300 stars and Fseg = 0.05

have fiducial interaction rates that are roughly 5 times larger than those found in subvirial

clusters with N = 300 members and minimal mass segregation (see Figure 3.4 panel (g),

top curve).

The average interaction rate also increases as a function of gas removal time tgas as

shown in Figure 3.4 panel (f) (solid curves). This interaction rate is averaged over the 10

Myr simulation time. However the majority of close encounters occur during the embedded

phase, and hence the average interaction rate increases as the length of the embedded phase

increases. For clusters with embedded phases lasting more than ∼ 2 Myr, the rate of close

encounters during the embedded phase is roughly constant. Embedded phases lasting less

than ∼ 2 Myr have lower encounter rates due to lower densities during the first ∼ 1 Myr

while the subvirial cluster is still contracting.

For completeness we note that the interaction rate does not display strong trends with

varying star-formation efficiency, εSF (see Figure 3.4 panel (h)).

3.3.3 Interaction Velocities

In addition to constructing the distribution of impact parameters associated with the

close encounters in the simulated clusters, we also determine the distribution of encounter

velocities. The distribution of encounter velocities provides additional information regard-

ing the effect that close encounters may have on the constituent solar systems. For example,

the interaction cross sections depend on the encounter speeds.

We define the encounter velocity venc as the magnitude of the relative velocities of

the stars at the moment of closest approach, and create distributions of the frequency of

encounter velocities throughout the simulation. Figure 3.6 presents the encounter velocity

distribution in a cluster with radius Rc = 1 pc, N = 300 stars, and subvirial initial speeds
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(Qi = 0.04). A binning size of 0.25 km s−1 has been used to construct the histogram, and

error bars are included on the distribution to indicate the dispersion within each velocity

bin.

We find that the encounter velocity distribution can be approximated reasonably well

by a Gaussian curve where the mean μ and the width (as measured by the variance, σ2) of

the Gaussian are varied to fit the encounter velocity distribution for each particular set of

initial conditions. The Gaussian fit to the velocity distribution in Figure 3.6 is indicated

by the dashed line. We note that the Gaussian fit slightly overestimates the number of

very low velocity encounters venc < 1 km s−1 (and predicts a few encounters with negative

velocities). However, the general shape and width of the distribution is well represented

by these fits.

In Figure 3.7, the mean encounter velocity 〈venc〉 is plotted as a function of initial cluster

parameter. The encounter velocity has been normalized by the mean velocity within the

cluster’s half-mass radius (where most of the interactions occur within the cluster). The

error bars indicate the normalized width (FWHM) of the Gaussian that best fits the velocity

distribution. This figure demonstrates that the normalized encounter velocity distributions

do not vary strongly as a function of the initial conditions, but are rather a robust function

of mean cluster velocity.

The encounter velocities are roughly 2 times the average velocity in the interactive

region of the cluster, a result which is roughly consistent with an analytical estimate of

the relative velocities of cluster members whose velocities are sampled from a Maxwellian

distribution,
√
v2
rel ∼ √

2 〈v2〉 (Binney & Tremaine 1987). The encounter velocities are

somewhat larger than predicted by this estimate (∼ 2 times the mean velocity) due in part

to gravitational focusing. The numerically calculated distribution of interaction velocities

includes only a subsample of the relative velocities, because only encounters with impact
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Figure 3.6: The distribution of interaction velocities in a subvirial cluster with N = 300, Rc ∼ N1/2

and Qi = 0.04. The distribution averaged over t = 0 − 10 Myr is presented in panel (a). Panel
(b) displays the time averaged distribution of interaction velocities during the embedded phase
(t = 0 − 5 Myr) and panel (c) presents the distribution averaged over the remainder of the cluster
evolution (t = 5 − 10 Myr). The histogram binning size is 0.25 km s−1. Error bars correspond to
the dispersion (variance) within each velocity bin. The best fit Gaussian curve is indicated by the
dashed curve, and the mean of the Gaussian is indicated by the vertical dash-dot line.
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parameter b � 10, 000 AU are included in the interaction velocity distribution, and this

subsample is likely to have larger relative velocities.

3.3.4 Radial and Mass Distributions

As a cluster evolves, interactions between stars and between the stars and the back-

ground gas potential produce a distribution of stellar positions and velocities. The distri-

bution of stars within a cluster at a given time t can be characterized by the cumulative

mass distribution M(r, t)/MT∗ or the cumulative number distributions N(r, t)/N where

the subscript MT∗ and N are the total masses and numbers of the stars that are gravita-

tionally bound to the cluster at time t, respectively. In the simulated clusters, each of these

distributions is calculated at intervals of 0.25 Myr. The profiles are then averaged over

the cluster lifetime and over 100 realizations of the cluster used to produce a statistical

description of the mass and number profiles. We find that both of these distributions may

be fit by simple functions of the form

M(r)
MT∗

=
(

ξa

1 + ξa

)p

, (3.11)

N(r)
N

=
(

ξa

1 + ξa

)p

, (3.12)

where ξ = r/r0 and the scale radius r0 and index p are free parameters that are fit to

the distributions observed in the simulated clusters. The parameter a may also be varied

to fit the data. We find that the choice a = 2 gives the best fit for the subvirial clusters

and a = 3 gives the best fit for the initially virial clusters (this finding is consistent with

the choice of index a in Chapter II). In the series of simulations in which the initial virial

parameter Qi is varied, a = 2 best fits simulations for which Qi < 0.25, and a = 3 best

fits those for which Qi ≥ 0.25. The parameters r0 and p which provide the best fit for the

radial distributions (equation [3.12]) and the mass profiles (equation [3.11]) are similar,

though not identical due to the IMF assumed in the simulations.
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Figure 3.7: The parameters specifying the distribution of interaction velocities, specifically the
mean μ and the FWHM of the distribution as a function of initial cluster parameter, for all clusters
included in the parameter space survey. The mean interaction velocity, μ in km s−1 is indicated by
the data points and the FWHM is noted by the size of the error bars. Velocities are scaled by the
cluster mean velocity. The distribution parameters μ and FWHM are presented as a function of
(a) Stellar membership N for virial clusters Qi = 0.5 and Rc ∼ N1/2, (b) Stellar membership N for
subvirial clusters Qi = 0.04 and Rc ∼ N1/2, (b) Stellar membership N for virial clusters Qi = 0.5
and Rc ∼ N1/4, (d) Stellar membership N for subvirial clusters Qi = 0.04 and Rc ∼ N1/4, (e)
Initial cluster scaling radius Rsc, (f) Star formation efficiency εSF , (g) Initial virial parameter Qi,
(h) Time of gas removal tgas, and (i) Amount of primordial mass segregation Fseg.
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The radial profiles of clusters provide insight into the general evolution of a cluster, and

perhaps more importantly into the expected radiation fields that young solar systems in the

cluster will experience. Circumstellar disks and forming solar systems residing in a cluster

will be subjected to the FUV and EUV radiation fields produced by the cluster population,

and these fields are dominated by the large stars in the cluster. If these radiation fields are

strong enough, they are capable of photoevaporating circumstellar disks and preventing (or

at least limiting) giant planet formation. The massive young stars producing the majority

of the UV radiation are often located near the center of the cluster (see Chapter I Section

1.2, and references therein). Thus, an understanding of the EUV and FUV fields associated

with young clusters combined with the average radial distributions of stars in young clusters

provides the framework with which to predict how effectively cluster radiation can restrict

planet formation. (Johnstone et al. 1998; Fatuzzo & Adams 2008; Adams et al. 2006).

Figure 3.8 presents the median cluster radius rmed calculated from the fit to the cumu-

lative radial distributions for the entire set of parameter space. The scale rmed is defined

as the radius at which N(r)/N = 0.5 and thus represents the radius which, on average,

contains half of the cluster members. As is evident from Figure 3.8, the median cluster

radius rmed scales with the initial virial parameter Qi, the gas removal timescale tgas, the

cluster membership N , and the cluster scaling radius Rsc. On the other hand, rmed does

not vary strongly with the either star formation efficiency εSF or the amount of primordial

mass segregation Fseg.

Scaling the median radius rmed by the initial cluster radius Rc removes the dependency

on this initial cluster parameter and more readily identifies trends that are distinct from

the initial assumptions concerning cluster size. Figure 3.9 displays rmed normalized by

the initial cluster radius Rc. It is clear in panel (a) of this figure that the median radius

depends almost linearly on the initial virial parameter Qi for Qi ≤ 0.5. This result is
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Figure 3.8: The median radius calculated from the radial profiles N(r)/N as a function of initial
cluster parameter, for all clusters included in the parameter space survey. The cluster parameter
varied in each panel is as follows: (a) Initial virial ratio Qi, (b) Gas removal time tgas, (c) Stellar
MembershipN for scaling relationship Rc ∼ N1/2, (d) Stellar MembershipN for scaling relationship
Rc ∼ N1/4, (e) Cluster scaling radius Rsc, (f) Amount of primordial mass segregation Fseg, and
(g) Star formation efficiency εSF . In panels (a), (b), (e), (f), and (g), N = 300, 1000, and 2000 are
indicated by the red, green, and blue curves (lower, middle, and upper curves), respectively. In
panels (c) and (d), subvirial clusters are indicated by the blue (lower) curve while virial clusters
are indicated by the red (upper) curve.
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Figure 3.9: The median radius calculated from the radial profiles N(r)/N normalized by the initial
cluster radius Rc as a function of initial cluster parameter, for all clusters included in the parameter
space survey. The cluster parameter varied in each panel is as follows: (a) Initial virial ratio Qi,
(b) Gas removal time tgas, (c) Stellar Membership N for scaling relationship Rc ∼ N1/2, (d) Stellar
Membership N for scaling relationship Rc ∼ N1/4, (e) Cluster scaling radius Rsc, (f) Amount of
primordial mass segregation Fseg, and (g) Star formation efficiency εSF . In panels (a), (b), (e), (f),
and (g), N = 300, 1000, and 2000 are indicated by the red, green, and blue curves (lower, middle,
and upper curves), respectively, though there are no major differences between the clusters as a
function of size. In panels (c) and (d), subvirial clusters are indicated by the blue (lower) curve
while virial clusters are indicated by the red (upper) curve.

106



consistent with the initial collapse associated with the evolution of a cluster with subvirial

velocities: the equilibrium radius scales linearly with the initial virial parameter. Clusters

with completely subvirial starting states have median radii that are approximately
√

2 of

the median radii of virial clusters.

The median radius also decreases as a function of the gas removal time tgas. The data

points connected by a solid line in Figure 3.9 panel (b) correspond to the time averaged

(0−10 Myr) normalized median radius rmed of clusters with differing values of tgas. During

the embedded phase, these (initially subvirial) clusters remain bound and do not expand.

As a result, clusters that become unbound early in their history have larger median radii

simply due to time averaging (over the 10 Myr simulation). The data points connected by

the dotted curve correspond to the normalized median radius averaged over the embedded

stage of the cluster evolution (0 − tgas Myr). Removing the apparent dependence on

tgas that is actually due to the time averaging, we find that in clusters with dispersal times

greater than ∼ 2 Myr, the cluster median radius does not depend on tgas.

However, clusters with early gas dispersal times (tgas � 2 Myr) have much larger median

radii than clusters with later gas dispersal times. The average crossing time in a subvirial

cluster is roughly 1 Myr, and thus gas removal within the first couple of crossing times

prevents the cluster from approaching a state of virial equilibrium. This behavior is also

why the bound fractions in clusters with tgas � 2 Myr are very low (see Figure 3.3 panel

(e) and the discussion in Section 3.3.1). In other words, the process of gas dispersal in a

cluster that is not in virial equilibrium is much more destructive to the cluster than if it

were to occur after a cluster has approached a state of equilibrium (Goodwin & Bastian

2006).

Panel (c) in Figure 3.9 displays the normalized median cluster radius as a function

of the initial scaling radius Rsc used in equation [3.1]. The normalization of the median
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cluster radius includes the intrinsic dependence on Rsc, and so the trend observed in the

normalized median radius rmed/Rc must be accounted for by another mechanism. The

larger normalized median radius observed in clusters with smaller initial values of Rsc can

be understood in light of the higher interaction rates observed in these clusters which keep

the cluster cores slightly inflated. This trend should be observed to some extent in any

clusters with high interaction rates, but is easiest to observe in the Rsc series of simulations

because the interaction rates have the widest dynamical range, varying by three orders of

magnitude (see Figure 3.4).

3.4 Conclusion

In this chapter we have presented the results of a parameter space survey of dynamics

in young cluster environments. Our choice of parameter space was motivated by recent

catalogs and surveys of young star-forming regions in the solar neighborhood. We consider

clusters with a range of memberships N , a variety parameters values Rsc and α defining

the cluster membership-radius relation (equation [3.1]), a range of gas removal timescales

tgas, initial virial states Qi, star formation efficiencies εSF , and amounts of primordial mass

segregation Fseg. The range of parameter space surveyed is summarized in Table 3.1.

We have identified how evolutionary parameters of interest vary as a function of the

initial cluster environment. Specifically, in Section 3.3.1 we considered the cluster’s bound

fraction at t = 10 Myr, fb. The bound fraction varies most sensitively as a function of the

star formation efficiency, εSF , but also depends quite strongly on the initial virial state

of the cluster. Stars that are formed with subvirial velocities have a higher probability of

remaining bound to a cluster than those that have initially virialized velocities.

In Sections 3.3.2 and 3.3.3 we considered the distributions of close encounters between

cluster members over the course of the cluster’s evolution. We find that the encounter rates

scale as the average stellar density, Γ ∼ n, and that the interaction rates increase as the
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initial virial parameter decreases. Subvirial clusters have interaction rates that are roughly

8 times higher than those found in clusters that star in a virialized state. We also show that

the interaction rates are higher in clusters which have larger amounts of primordial mass

segregation. In addition, the distributions of interaction velocities are nearly Gaussian (see

Figure 3.7). The interaction velocities do not themselves vary as a function the initial

conditions in the cluster. Rather the interaction velocities are approximately 2 times the

average stellar velocity within the cluster.

Finally, in Section 3.3.4 we present the results of the empirical fits to the cluster radial

profiles. We find that in general, the median cluster radius rmed scales as the initial

cluster radius Rc. However, in some clusters, the interactions between stellar members

break the rmed ∼ Rc relationship. Specifically, clusters which are initially subvirial have

smaller median radii than those which are initially in virial equilibrium. In addition, if the

embedding gas is removed from a subvirial cluster early in the cluster’s evolution (tgas � 2

Myr), the median cluster radius are much larger than it would be if the gas removal occurred

at a later time. This difference occurs because the cluster is not in virial equilibrium at

the time of gas removal. As a result, gas dispersal is more destructive in a cluster that has

not yet approached virial equilibrium.

We note that these general trends in the output parameters (i.e., that the interaction

rate Γ ∝ n) are not unexpected. However, this work puts these (perhaps expected) results

on a firm, statistically significant footing. In addition, we find quantitative results, well

beyond the expected qualitative scaling behavior.

This chapter presents a database of cluster evolution parameters as a function of cluster

initial conditions. Our future work will include combining this database with calculations

of the radiation fields in young clusters and cross sections for planetary system disruption,

as was done in Chapter II. We plan to produce disk truncation radii (due to FUV and EUV
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radiation, and close encounters between cluster members) and planetary ejection rates as

a function of cluster environmental conditions. These combined results will provide a more

complete statistical description of cluster evolution and the impact of clustered environment

on planet formation.
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CHAPTER IV

Kinematic Signatures of Subvirial Initial Conditions in
Young Clusters

4.1 Introduction

Most stars are thought to form within clusters of some type (e.g., Lada & Lada 2003;

Porras et al. 2003), although a great deal of controversy remains concerning the distribu-

tion of cluster properties. Nonetheless, given that stars form in clusters, two overarching

questions immediately arise. The first considers the clusters as astrophysical objects: [1]

how can molecular clouds produce aggregates of N > 100 stars with centrally concentrated

surface density, with the massive stars near the center, and with a stellar mass distribution

that follows the IMF, all within a few pc and within a few Myr? A second vital question

then becomes: [2] if stars form in clusters, how does the cluster environment affect star

formation and the accompanying process of planet formation? A complete understanding

of star and planet formation requires detailed answers to both questions. However, this

chapter will focus on one specific issue within this larger context. Observed young em-

bedded stellar clusters display departures from both spherical symmetry and initial virial

equilibrium, and this chapter will explore the effects of these complications on the kine-

matics of cluster members through N -body simulations. These results, in turn, will help

provide a contribution to the overarching questions posed above.

Departures from spherical symmetry in star-forming regions have long been known, but
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have been little studied. On the scale of cluster themselves (with radii of a few pc, and

masses of 100 − 3000 M�), for example, some systems are categorized as irregular (Lada

& Lada 2003), or filamentary (Walsh et al. 2004), or otherwise described as nonspherical

(Allen et al. 2007). Furthermore, the star formation efficiencies are low, so that the grav-

itational potential in these systems is dominated by the mass of the gas (at least in the

early phases of evolution, before gas expulsion). As a result, the gas potential must be

generalized to include the observed departures from spherical symmetry (see Adams et al.

2007 and Section 4.2). For completeness, we also note that on the smaller scale of cores

(or clumps or kernels) that represent individual star formation events, the precollapse gas

is observed to be nonspherical, with typical aspect ratios of 2 : 1 (e.g., Myers et al. 1991;

Ryden 1996).

Observations are starting to show that clusters begin their evolution with subvirial initial

conditions, and hence this complication must be included in our simulated clusters. In many

regions, prestellar clumps are observed to move subsonically before the clumps form stars

(Peretto et al. 2006; Walsh et al. 2004; André 2002; Kirk et al. 2007), implying that newly

formed stars begin their dynamical evolution with subvirial speeds. Motivated by such

observations, our work considers clusters that are seeded with subvirial stellar velocities.

As such, our N -body simulations (see Section 4.2) differ from those of many preceding

studies (though not all, see Bonnell & Davies 1998; Adams et al. 2006) that assume the

initial phase-space variables of the stars are close to virial equilibrium. Subvirial initial

conditions can have a significant impact on the early cluster evolution (Adams et al. 2006),

and are thus considered herein.

The theoretical work presented here provides a determination of the kinematic signature

of young embedded clusters with both subvirial starting conditions and nonspherical gas

potentials. Fortunately, astronomical observations are now becoming available to compare
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with these theoretical calculations. In this chapter, we focus on clusters of moderately

large size, with stellar membership N ∼ 103, appropriate for the Orion Nebula Cluster

(ONC). Clusters of this size are large enough for interesting kinematic signatures to arise

in observations, and small enough that many such clusters are expected within the galactic

cluster population. In addition, the ONC is an example of a nonspherical cluster as the

stellar population is elongated north to south along the filament of dense molecular gas in

the region (Hillenbrand & Hartmann 1998). Recent observations in the ONC (Fűrész et al.

2008; Tobin et al. 2009, TO9 hereafter) display a gradient in the radial velocity structure

along the length of the cluster, much like that expected for the elongated subvirial clusters

considered herein.

This chapter is organized as follows. In Section 4.2, we outline the theoretical approach

used in this chapter. Specifically, we describe the N -body codes, the required number of

realizations of the numerical experiments, the implementation of subvirial starting speeds,

the inclusion of axisymmetric and triaxial gas distributions, as well as the specification

of simulation parameters. We then present the theoretical results of our simulations in

Section 4.3, with a focus on the velocity signatures produced by the departures from

equilibrium and spherical symmetry. In Section 4.4, we compare our results to observations,

primarily the kinematic velocity measurements recently carried out in the ONC. We find

good qualitative agreement, and reasonable quantitative agreement, and suggest that the

observed kinematic signature requires subvirial starting conditions, nonspherical potentials,

and viewing angles that do not coincide with the principal axes of the systems. These

conclusions and other results are summarized in Section 4.5, along with a discussion of

their implications.
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4.2 Methods

N -body simulation techniques are used to calculate the dynamics of young stellar clus-

ters during the embedded star-forming epoch. We consider clusters with nonspherical ge-

ometries and subvirial initial velocities and study the observed kinematics of these clusters.

In this section, we discuss the N -body code used, the simulation parameters chosen, and

the experiments performed to identify and characterize kinematic signature in nonspherical

clusters with subvirial initial conditions.

4.2.1 N-Body Simulation Techniques

The dynamical evolution of a young embedded cluster depends on its initial stellar

distribution, the distribution and removal mechanism of the embedding gas, the star for-

mation history, and is especially sensitive to the initial velocity distribution (e.g., Adams

et al. 2006). In this chapter, we complete a suite of N -body simulations of young embedded

clusters to understand how the cluster’s initial spatial and velocity distribution imprints

itself on the evolved cluster’s kinematic structure. The NBODY2 direct integration code

developed by Aarseth (2001) is used as a starting point to calculate the cluster’s dynamics

from the star-forming epoch out to ages of 10 Myr. As outlined below, we modify the code

to include specific stellar and gas distributions and star formation epochs that are similar

to those observed in young embedded clusters.

Distributions of stellar positions and velocities are required to characterize kinematic

signatures in these young clusters. We find that ∼ 50 equivalent realizations of each set of

cluster initial conditions are required to provide statistically robust distributions of stellar

positions and radial velocities. This study focuses on the kinematic signatures produced by

two different contributions to the initial conditions commonly present in young embedded

clusters: asphericity (combined with effects due to projection of a three-dimensional cluster

onto the two-dimensional sky), and subvirial initial velocities. In addition, we consider the
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effect of extinction on the observed kinematic structure of young clusters.

Cluster evolution is numerically integrated from the star formation epoch (0 − 1 Myr)

through the gas removal phase (at t = 5 Myr) out to ages of 10 Myr (see Section 4.2.2

for further detail). After 50 realizations of each set of initial conditions are completed,

the results are combined to produce distributions of stellar positions and velocities. The

simulations provide three-dimensional position and velocity information for each stellar

member at intervals of 0.1 Myr. These six phase-space coordinates are reduced to two

position coordinates in the plane of the sky and two velocity components, one along the

line-of-sight (radial velocity) and one in the plane of the sky (transverse velocity). For

the sake of definiteness, the ẑ′-projected axis is defined by the projection of the three-

dimensional ẑ-axis (the major axis in elongated clusters) onto the plane perpendicular to

the line-of-sight. The terms “north” and “south” with reference to projections of simulated

clusters correspond to positive and negative ẑ′ values, respectively. This nomenclature is

arbitrary and has been chosen to coincide with that of the ONC, which is elongated north

to south and displays north-south asymmetry in the radial velocity structure (see Section

4.4).

4.2.2 Simulation Parameters

Cluster Membership, N . We consider moderately large young clusters comparable in size

to the Orion star-forming region. Specifically, our simulated clusters contain N = 2000

or 2700 stars. Estimates of the stellar population of the ONC vary depending on the

cluster radius adopted, and our choices of N roughly reflect the range of this variation

(e.g., Hillenbrand & Hartmann (1998) advocate N = 2300, near the center of this range).

We found that there were no significant differences in the kinematic signature observed

in clusters of 2000 and 2700 stars. Another motivation for our choice of cluster size is

that clusters of this size have large enough memberships that kinematic signatures may be
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identified in the data from observed clusters and compared to the results presented in this

study.

The stellar masses are sampled from the log-normal analytic fit presented by Adams

& Fatuzzo (1996) to the standard IMF of Miller & Scalo (1979). The masses range from

0.07 to 10 M�. A limited number of simulations with equal stellar masses were completed

and we found that the kinematic signature discussed herein was present in both the single

stellar mass clusters and those with a more realistic stellar mass distribution.

Stellar Distribution. One goal of this study is to compare kinematical signatures of

clusters with spherical geometries to those of elongated clusters. Spherical clusters have

centrally concentrated stellar distributions described by an ρ∗ ∼ r−1 density profile. Two

elongated stellar distributions are considered: uniform density prolate spheroids and cen-

trally concentrated clusters with ρ∗ ∼ m−1, where m2 = x2/a2+y2/b2+z2/c2 is the triaxial

coordinate. We compare elongated clusters with different aspect ratios to characterize the

effect of cluster elongation on the observed kinematic signature. Table 4.1 summarizes the

initial stellar density distributions used in the cluster simulations.

Initial Speeds. Initial stellar velocities are sampled from a uniform distribution within

a unit sphere, producing an isotropic and position-independent velocity distribution. The

velocities are then scaled to produce a cluster in a particular virial state, defined by the

virial ratio Q ≡ |K/W |, where K is the total kinetic energy of the cluster and W is the

total virial potential energy of the cluster. A cluster in virial equilibrium is defined to have

Q = 0.5. Simulations of clusters with virialized initial velocities are compared to clusters

with subvirial initial velocities. The subvirial clusters are chosen to have Qi = 0.04 or 0.15,

which corresponds to initial velocities that are approximately one-third or one-half of the

virial velocity, respectively.

Star Formation History. The simulated clusters have a star formation epoch that lasts
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for the first Δt = 1 Myr of the cluster’s evolution. During simulation initialization each

star, regardless of mass or initial position within the cluster, is assigned a random formation

time between 0 and 1 Myr (with a uniform distribution, independent of stellar mass, over

this interval). A star is then tied to its formation site (chosen as described above) until its

collapse phase of star formation is complete. That is, the stars are initially included in the

simulation as point masses, but are held at a fixed position until their formation time. After

that time, the star becomes free to move through the total gravitational potential of the

cluster with an initial velocity sampled from the distribution described above. As a result,

the stars do not execute ballistic orbits until after they have formed. For completeness, we

note that stellar evolution is not included in these simulations.

We vary the star formation efficiency (SFE) from 17% to 50%, which spans the range of

mass estimates of the gas in the region of the ONC. It is important to note that although the

evolution of a cluster subsequent to gas removal depends strongly on the SFE, its evolution

prior to gas removal is more sensitive to the initial virial ratio than it is to the SFE alone.

In other words, provided that the stars are moving with sufficient velocities to account

for the additional potential due to excess gas (i.e., their virial ratios are comparable), the

evolution of a cluster with an SFE of 33% or 50% will be qualitatively similar during the

embedded stage. Increasing the SFE will, however, decrease the average virial velocity.

After gas is removed from the cluster, the subsequent dynamical evolution does depend

on the SFE. Of course, increasing the SFE will increase the rate of close encounters, but

this effect on global cluster evoltuion is modest on the (short) timescales of interest here

(Adams et al. 2006).

Embedding Gas Distributions. We assume that the distributions of stars in a cluster

roughly traces the geometry and density of the embedding gas. Thus, a spherical centrally

concentrated Hernquist profile (Hernquist 1990) is chosen to represent the embedding gas
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in a spherical cluster (see Adams et al. 2006).

Likewise, the elongated stellar distributions are embedded in elongated gas potentials.

Specifically, the uniform density stellar distributions are embedded in a uniform density

gas distribution that is twice the extent of the stellar distribution. The homoeoid theorem

states that the net force on a particle within a uniform density homoeoid shell is zero.

Thus the larger gas distribution allows for a simpler computation of the force and potential

terms due to the embedding gas without changing the dynamics of the system (Binney &

Tremaine 1987).

The centrally concentrated prolate clusters are embedded in a static gas potential of

the form ρ ∼ m−1, where m is the generalized coordinate. Calculation of the force terms,

analytic expressions for the potential, and a discussion of orbits and orbit instabilities

within this triaxial potential were presented in Adams et al. (2007). The gas distributions

and associated parameters are summarized in Table 4.2.

Observations indicate that embedding gas does not remain in young clusters for a long

time. After a few million years, winds from hot young stars begin to carve out the embed-

ding gas and very few embedded clusters are found with ages greater than ∼ 5 Myr. Our

simulations account for gas removal as a temporal step function in the evolution of the

static gas potential: at t = 5 Myr, the gas potential is completely removed from the cluster

which then continues to evolve due to interactions between the stars. After gas removal, the

cluster expands and a significant fraction of the members become gravitationally unbound.

4.2.3 Numerical Experiments

In this section we discuss the specific parameters that were varied to study the effects

of particular initial conditions on the kinematic structure observed in the clusters. A more

detailed discussion of each experiment’s initial set-up and result is reserved until Section

4.3.
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Table 4.1: Stellar Distributions

Description Density Profile Parameters

Spherical ρ(ξ) =
{
ρ0/ξ,
0,

0 < ξ ≤ 1
ξ > 1 ξ = r/r0

Uniform Spheroid ρ(m) =
{
ρ0,
0,

0 ≤ m ≤ 1
m > 1

m2 = (x/a)2 + (y/b)2 + (z/c)2

a = b < c

1/m Spheroid ρ(m) =
{
ρ0/m,
0,

0 < m ≤ 1
m > 1

m2 = (x/a)2 + (y/b)2 + (z/c)2

a = b < c

Table 4.2: Embedding Gas Distributions

Description Density Profile Parameters
Spherical ρ(ξ) = ρ0/ξ(1 + ξ)3, 0 < ξ ξ = r/r0

Uniform Spheroid ρ(m) =
{
ρ0,
0,

0 ≤ m ≤ 2
m > 2

m2 = (x/a)2 + (y/b)2 + (z/c)2

a = b < c

1/m Spheroid ρ(m) = ρ0/m, 0 < m
m2 = (x/a)2 + (y/b)2 + (z/c)2

a = b < c

Cluster Geometry and Virial Ratio. We compare the evolution of clusters under various

assumptions of initial geometry and virial balance. Specifically, we compare centrally

concentrated (ρ∗ ∼ r−1) spherical clusters with subvirial (Qi = 0.04) and virial (Qi = 0.5)

initial velocities to uniform density elongated clusters with similarly subvirial and virial

velocities. The spherical clusters are 2 pc in radius, and the elongated clusters have axis

parameters a = b = 2 pc and c = 4 pc. Each of these clusters had stellar membership

N = 2000 and an SFE of 50%. We find that only clusters with subvirial initial velocities

and elongated geometries produce significant gradients in the radial velocity along the

length of the cluster. The observed radial velocity gradients are thus a combined effect of

global collapse and the projection of a nonspherical cluster. Hereafter, the term ‘kinematic

signature’ refers to this radial velocity gradient. This kinematic signature is discussed in

detail in Section 4.3.1.

With the requirements of subvirial velocities and elongated stellar/gas distributions

identified as prerequisites for the kinematic signature, we proceed to complete a series of
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numerical experiments to determine how changing cluster parameters in subvirial elongated

clusters changes the observed structure of the signature.

Initial Virial Ratio. To characterize the effect of subvirial velocities on the kinematic

signature, the evolution of centrally concentrated elongated clusters with initial virial ratio

Qi ranging from 0.04 to 0.15 is compared. These virial ratios correspond to average initial

velocities that are roughly one-third to one-half of the virial velocity and are comparable

to pre-stellar clump velocities observed many star-forming regions including NGC 2264

(Peretto et al. 2006) and Perseus (Kirk et al. 2007).

Cluster Elongation. The effect of cluster elongation on the evolved velocity structure of

the cluster is studied by comparing subvirial clusters that range from spherical to elongated

with aspect ratios ranging from 1 to 4. Recent results from the Spitzer Young Cluster

Survey indicate this range of aspect ratios is appropriate, as the clusters in the survey had

aspect ratios between 0.53 and 3.88 (Gutermuth et al. 2009, in preparation).

Initial Density Distribution. Another experiment compares subvirial elongated clusters

with uniform density distributions to those with ρ∗ ∼ m−1 to study the effect of the density

distribution on the strength of and evolution of the kinematic signature.

Star Formation Efficiency. To determine the effect of SFE on the kinematic signatures

observed in the cluster, we compare subvirial elongated clusters with efficiencies ranging

from 17% to 50%.

4.3 Simulation Results

4.3.1 Radial Velocity Structure Due to Global Collapse and Elongation

We find that radial velocity gradients along the length of the clusters are produced by

a combination of two effects: [1] projection of an elongated or nonspherical cluster, and

[2] subvirial initial velocities. The separation of these two effects is nontrivial, as discussed

below.
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Figure 4.1: Evolution of the mean radius and velocity dispersion in spherical clusters with virial and
subvirial initial velocities. The top panel displays the evolution of the mean radius of a spherical
cluster with virial (dashed curve) and subvirial (solid curve) initial velocities. The bottom panel
displays the evolution of the velocity dispersion of a spherical cluster with virial (dashed curve) and
subvirial (solid curve) initial velocities.

A cluster that is initially subvirial will collapse as stars in the outer parts of the cluster

fall toward the cluster’s center of mass. This collapse takes place because cluster members

that are seeded with subvirial velocities are not moving fast enough to remain in orbit

(at their starting radial positions) around the cluster’s center. Instead they fall through

the gravitational potential, gain kinetic and potential energy, and eventually reach an

equilibrium state in which the virial theorem is satisfied. Thus, during the first crossing

time, a subvirial cluster will collapse significantly as the stellar velocities increase. Figure

4.1 compares the mean cluster radius and velocity dispersion as a function of time for

spherical clusters with both virial and subvirial initial conditions. The overall cluster

collapse and velocity enhancement in subvirial clusters are clearly demonstrated by these

plots.

During the initial collapse phase, the velocity vectors of the cluster members are prefer-

entially directed toward the center of mass until the stars pass close to the cluster’s center

and continue on (mostly) radial trajectories outward. During this first crossing time, some
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close encounters may cause the individual stellar motions to deviate from this general pat-

tern. As shown in Adams et al. (2006), however, close encounters are relatively rare on

these short timescales (a few Myr or less) and the aggregate dynamics are thus dominated

by this initial collapse and re-expansion.

Elongated subvirial clusters display a gradient in the radial velocity along the direction

of elongation due to this initial collapse. For example, consider a cluster with its major

axis in the ẑ-axis direction and let the system be observed along a line-of-sight that is less

than 90◦ from the major axis. For clarity, we define north and south to be the projected

positive and negative ẑ-axes, respectively. During the first half of a crossing time, the

northern part of the cluster appears to be redshifted away from the observer while the

southern hemisphere is blueshifted toward the observer. The collapse of an elongated

subvirial cluster naturally results in a north-south gradient in the radial velocities along

the length of the cluster (see Figure 4.2). The magnitude and direction of the radial velocity

gradient depend on the line-of-sight chosen to “observe” the simulated cluster (see Section

4.3.3).

This kinematic signature in the radial velocities is present only if an elongated cluster

is viewed along a line-of-sight that is not coincident with a principal axis and if the cluster

has subvirial velocities. When viewed along a minor axis, a subvirial elongated cluster

displays no north-south gradient in the radial velocities, as the stars are preferentially

moving perpendicular to the line-of-sight. Viewed along the major axis, the portion of the

cluster moving away from the observer is projected directly onto the region of the cluster

moving toward the observer, and hence a gradient is not observed.

Likewise, a virial cluster does not display a strong radial velocity gradient, as it is

not globally collapsing and the stellar velocities have no spatial correlation. A very slight

gradient is observed in the virial clusters at early times; however, it is approximately 10
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Figure 4.2: Diagram represents an elongated collapsing cluster which is viewed along a line-of-sight
not coincident with a primary axis. During the initial (collapse-like) phase of a cluster with subvirial
initial conditions, the upper portion of the cluster will appear redshifted while the lower portion
of the cluster appears more blueshifted. This asymmetry results in a radial velocity gradient along
the extent of the cluster.

times weaker than that observed in the subvirial clusters and is associated with the slight

contraction of the simulated virial clusters as the stellar velocities are redistributed from

the random isotropic distribution to a true virial distribution (see Figure 4.1).

A cluster that is undergoing global expansion can also produce a gradient in the radial

velocities similar to that observed in the collapsing elongated cluster (Figure 4.3, panel(d)).

However, the signature will differ in shape because the stars that populate outermost

spatial bins will not have bound orbits. The stars will not be at the furthest point in their

orbits and therefore will not have reduced velocities as they change direction and return

to the cluster’s center. Therefore, instead of having an S-shaped kinematic signature, an

expanding cluster will have a relatively flat gradient, with no turnover at the end-points.

We also note that rotation of a virial cluster may produce a kinematic signature that is

similar to the one observed in subvirial clusters, but only if the rotation takes place around

an axis perpendicular to the line-of-sight.
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Figure 4.3 illustrates the radial velocity signature for various projections of spherical

and elongated subvirial and virial clusters. In each panel, the data points correspond to the

mean radial velocity of the stars in 0.2 pc bins and the lengths of the error bars correspond

to the standard deviation of the velocities within each bin. For completeness, we note that

this radial velocity gradient calculated from the simulated clusters is not sensitive to the

choice of bin size for bin sizes ranging from 0.05 to 1.0 pc. In individual clusters (such as

the ONC), the lower limit of the bin size is determined by small number statistics.

It is clear from this figure that the radial velocity signature is created by a combination

of two effects: projection of an elongated cluster and subvirial initial velocities (the latter

implies global collapse). The bottom right panel shows the only cluster that demonstrates

this kinematic signature. This cluster is elongated, is not viewed along a primary axis, and

is seeded with subvirial initial velocities.

One way to characterize the strength of a radial velocity gradient is by using the am-

plitude of the cumulative velocity distribution, ACRV . The cumulative radial velocity

distribution is created by sorting the individual radial velocity measurements by the ẑ′-

coordinate and then producing the cumulative distribution from this sorted data set. We

normalize this measure by both the number of stars in the cluster, N , and the velocity

dispersion of the cluster, σRV. This procedure results in a (dimensionless) normalized

cumulative radial velocity distribution that can be more meaningfully compared across

clusters of different sizes and velocity dispersions. An additional advantage of the cumu-

lative velocity distribution is that it is created from individual stellar radial velocities and

thus is insensitive to the choice of bin size.

A cluster with no radial velocity gradient will have (on average) the same number of

stars with positive and negative radial velocities with respect to the cluster’s center of mass

or mean radial velocity. Therefore, the cumulative velocity distribution in such a cluster
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Figure 4.3: Radial velocity as a function of ẑ′ position for a differing geometries, initial velocity
distributions, and projections for simulated embedded clusters. The mean radial velocity (averaged
over 0.2 pc bins) is indicated by the data points. The error bars correspond to the standard devi-
ation of the radial velocity distribution within the bins. The panels correspond to differing initial
geometries, initial velocity distribution, and projections of simulated embedded clusters: (a) spher-
ical cluster, with subvirial initial conditions, (b) elongated cluster, with subvirial initial conditions,
and viewing angle of 0◦ from major axis, (c) elongated cluster, with virial initial conditions, and
viewing angle of 30◦ from major axis, and (d) elongated cluster, with subvirial initial conditions,
and viewing angle of 30◦ from major axis. The first distribution is shown at time t = 1.5 Myr after
the start, whereas the other three cases are shown at t = 2.1 Myr.
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will fluctuate around zero and be relatively flat as a function of z′.

On the other hand, a cluster with a strong gradient along ẑ′ will have preferentially

more blueshifted stars at the negative ẑ′ end of the cluster center and more redshifted stars

at the positive ẑ′ end of the cluster. Therefore, the cumulative radial velocity distribution

will be a decreasing function for z′ < 0 and an increasing function for z′ > 0, resulting in

a dip in the cumulative radial velocity distribution.

The normalized cumulative radial velocity distributions for the clusters depicted in

Figure 4.3 are displayed in Figure 4.4. The ranges on the ŷ-axes are held constant to

emphasize how this distribution varies for subvirial and virial initial conditions. Although

the virial elongated cluster in panel (c) of Figure 4.3 appears to have a slight gradient in

the radial velocity, the cumulative distribution indicates that the strength of this signature

is more than seven times weaker than in the subvirial elongated cluster. The cumulative

distribution for the virial cluster peaks at ACRV ∼ 0.04, whereas that of the subvirial

cluster peaks at ACRV ∼ 0.29. Note that the minimum is not observed in the subvirial

spherical cluster, panel (a), which indicates that subvirial velocities alone are insufficient to

produce this kinematic signature. As a result, in general, both subvirial and nonspherical

initial conditions are required to observe the kinematic signature.

The key feature in the cumulative radial velocity distribution signature is neither the

growth nor the decay of the function, but rather the peak produced by both a region of

growth and then a region of decay. While either the growth, or the decay, of the distribution

can be mimicked by constructing the distribution in a velocity frame that is significantly

different from the average velocity of the cluster, both cannot be created in the same frame.

For instance, if the cumulative radial velocity distribution for a virial cluster is constructed

by shifting into a velocity frame that is significantly higher than the cluster’s average

velocity, then almost all stars contribute negative values to the distribution, and thus the
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Figure 4.4: Cumulative radial velocity distribution (normalized by cluster size and velocity disper-
sion) summed along the ẑ′-axis of the projected cluster. The panels correspond to differing initial
geometries, initial velocity distribution, and projections of simulated embedded clusters: (a) spher-
ical cluster, with subvirial initial conditions, (b) elongated cluster, with subvirial initial conditions,
and viewing angle of 0◦ from major axis, (c) elongated cluster, with virial initial conditions, and
viewing angle of 30◦ from major axis, and (d) elongated cluster, with subvirial initial conditions,
and viewing angle of 30◦ from major axis. The first distribution is shown at time t = 1.5 Myr after
the start, whereas the other three cases are shown at t = 2.1 Myr.
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distribution decreases as a function of z′. For the purpose of this study, we construct

all cumulative radial velocity distributions by shifting each stellar velocity by the median

radial velocity.

We also note that a flat radial velocity gradient, such as that produced by a rotating

virial cluster, or an expanding elongated cluster, can produce a peak in the cumulative

radial velocity distribution similar to the one observed in the collapsing elongated cluster.

Therefore, both the kinematic signatures presented in Figure 4.3 and the integrated distri-

butions presented in Figure 4.4 should be considered when looking for signs of collapse in

an observed cluster’s radial velocity structure.

4.3.2 Velocity Dispersions

Observations of kinematic signatures in young clusters can be compared to these simu-

lated signatures only if the observed clusters are large enough that the binned radial velocity

data do not suffer significantly from small number statistics. We investigate trends in the

total, radial, and tangential velocity dispersions in order to allow for comparison to smaller

and less studied clusters for which only estimates for the total velocity dispersions are

available.

In both spherical and elongated subvirial clusters, the velocity dispersions increase as a

function of time during the initial collapse phase and then decrease as the cluster evolves

toward virial equilibrium. Clusters that experience multiple collapse and re-expansion

cycles before gas removal also display corresponding cycles in their velocity dispersions. The

dispersions peak before the re-expansion phase and bottom out before the collapse phase,

with the peak values becoming smaller with each successive cycle. Virial clusters have

velocity dispersions that increase only slightly during the first 1 Myr, the star formation

epoch, and then remain relatively flat through the rest of the embedded stage. These

trends are similar to the ones depicted in Figure 4.1. While an elongated cluster’s total
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velocity dispersion does not depend on the projection, its radial and tangential velocity

dispersions do. This dependence on projection angle, θ is discussed in Section 4.3.3.2.

4.3.3 Kinematic Signatures

As discussed in Section 4.3.1, only clusters with subvirial initial velocities and elongated

geometries produce radial velocity gradients. The kinematic signature evolves over time.

During the first 1 Myr, the radial velocity gradient arises as stars become free to move

through the gravitational potential of the cluster. The gradient becomes larger during the

first “free-fall time” while the stars fall toward the cluster center. As a majority of the

stars pass through the cluster center, the radial velocity gradient decreases and eventually

changes sign as the cluster re-expands. Clusters with sufficiently small crossing times will

undergo several gradient sign changes before gas removal at t = 5 Myr as the cluster size

oscillates around its equilibrium size. In addition, as the cluster evolves toward equilibrium,

the strength of the kinematic signature decays.

At t = 5 Myr, the embedding gas potential is removed from the cluster which then

continues to evolve due to gravitational interactions between the stars. Depending on the

specific kinematic status of the cluster at the time of gas removal, the signature considered

here may or may not remain in the cluster. If the gas is removed while a significant portion

of the stars are in the re-expanding phase, the kinematic signature is amplified and remains

in the cluster even after 5 Myr of evolution. It is important to note that the details of the

gas removal process may significantly affect the characteristics of the signature, and hence

we refrain from making any strong conclusions about the kinematic signature’s presence

after gas removal.

4.3.3.1 Effect of Initial Virial Ratio

We compare centrally concentrated elongated clusters (ρ ∼ m−1) clusters with virial

parameters Qi = 0.04 and 0.15 to determine how the departure from virial equilibrium
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affects the strength of the kinematic signature. The clusters have N = 2000 members,

an SFE of 50%, and axis parameters a = b = 2 pc and c = 4 pc. We find that as the

initial virial ratio (and the average starting stellar velocity) decreases, the strength of the

kinematic signature increases. Therefore, the larger the departure from virial equilibrium

corresponds to a larger kinematic signature. We measure the strength of the signature by

the amplitude of the normalized cumulative radial velocity distribution ACRV , and find

that the Qi = 0.04 cluster had a maximum at ACRV ∼ 0.33 whereas the Qi = 0.15 cluster

had a maximum at ACRV ∼ 0.20.

In addition, even though the Qi = 0.15 cluster had larger initial velocities, the Qi = 0.04

cluster has a larger average velocity dispersion over the embedded stage. Specifically, the

average velocity dispersions were 0.51 km s−1 and 0.47 km s−1 for the Qi = 0.04 and 0.15

clusters respectively.

4.3.3.2 Effect of Projection Angle

For a subvirial elongated cluster, the strength of the radial velocity signature varies most

strongly with projection angle. This trend is due to two competing effects. First, the most

significant collapse occurs along the major axis of the cluster, the ẑ-axis. The component

of the velocity that is observed along the line-of-sight varies as the cosine of the projection

angle θ between the ẑ-axis and the line-of-sight. Therefore, the smaller the projection

angle, the stronger the signature. Second, the radial velocity signature is only observed

when there are significantly more redshifted stars in a declination bin than blueshifted stars

(or vice versa). Therefore, a larger projection angle θ will cause the red- and blueshifted

populations to be more spatially separated, whereas a small projection angle will result in

a projected cluster whose redshifted and blueshifted populations appear to overlap.

Figure 4.5 displays the amplitude of the normalized cumulative radial velocity distribu-

tion ACRV , as a function of projection angle θ, for the uniform density elongated cluster
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Figure 4.5: Amplitude of the normalized cumulative radial velocity distribution ACRV , as a function
of projection angle θ. The data are shown for an elongated cluster with axis ratios (1 : 1 : 2), uniform
stellar and gas densities, and subvirial initial velocities at the time t = 2.1 Myr.

with a = b = 2 pc and c = 4 pc at t = 2.1 Myr. A projection angle between 25◦ and 35◦

from the ẑ-axis produces the strongest radial velocity signature. The peak of the distri-

bution is relatively broad, however, with a full width at half-maximum of approximately

60◦, which suggests that a radial velocity gradient will usually be observable in elonagated

subvirial clusters.

During collapse, the dispersion in the radial velocities σRV is a decreasing function of the

projection angle θ from the ẑ-axis, whereas the velocity dispersion along the ẑ′-axis σ‖, z′

is an increasing function of θ. This result occurs because the dispersions are geometrically

related to each other by σRV(θ) = σ‖, z′(90 − θ). These trends are representative of the

fact that during the collapse phase, the velocity dispersions are largest along the principal

axis.

In contrast, the plane-of-sky velocity dispersion perpendicular to the ẑ′-axis does not

depend on the projection angle. This result is due to the x, y symmetry of the prolate

spheroid. Figure 4.6 displays σRV (top panel), σ‖, z′ (middle panel), and σ⊥, z′ (bottom

panel) for the same cluster shown in Figure 4.5. Each curve corresponds to a different

choice of projection angle, θ = 0, 15, 30, 45, 60, 75, and 90◦. The relationship between
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σRV and σ‖, z′ described above is apparent in Figure 4.6.

4.3.3.3 Effect of Cluster Elongation

To observe differences caused by the amount of elongation, we compare two subvirial

clusters with differing axis ratios. Specifically, we compare a cluster with an aspect ratio

of 0.5 (a = b = 2 pc, c = 4 pc) to one with an aspect ratio of 0.25 (a = b = 1 pc, c = 4

pc). Each of the clusters has 2700 members, a density profile ρ ∼ m−1, an SFE of 33%,

and a virial parameter Qi = 0.04.

We find that the more elongated cluster evolves on a slightly shorter timescale and that

the mean radial velocities in a given declination bin are larger. As a result, the kinematic

signature discussed in Section 4.3.1 is stronger. For comparison, the maximum mean radial

velocity in a declination bin is approximately 1 km s−1 for the less elongated cluster and

2 km s−1 for the more strongly elongated cluster. Therefore the overall change in radial

velocity is approximately 4 km s−1 over the length of the cluster in the strongly elongated

geometry. The average velocity dispersion is also larger in the more elongated cluster,

σ = 1.60 km s−1, compared to the less elongated cluster where σ = 1.18 km s−1.

4.3.3.4 Effect of Initial Density Distribution

The kinematic signatures also vary as a function of initial density distribution. We

investigate this variation by comparing subvirial (Qi = 0.04) elongated cluster with uniform

density distributions to those with centrally concentrated ρ∗ ∼ m−1 density profiles. Each

cluster contains N = 2000 members, has an SFE of 50%, and has axis parameters a = b = 2

pc and c = 4 pc.

Elongated clusters that are more centrally concentrated have central regions which

evolve on shorter timescales than the outer regions. This trend can be seen by considering

the gravitational contraction of an centrally concentrated sphere with radius r0 and density

profile ρ ∼ r−1 . The collapse is inside out because free-fall time for a particle initially at a
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Figure 4.6: Evolution of the velocity dispersions in an elongated subvirial cluster during the em-
bedded stage for various projection angles. The top panel displays the radial velocity dispersion
σRV as a function of time for θ = 0, 15, 30, 45, 60, 75, and 90◦. The middle panel displays
the velocity dispersion parallel to the ẑ′-axis, σ‖, z′ for the same projection angles. Note that
σRV(θ) = σ‖, z′(90− θ) by definition. The bottom panel shows the velocity dispersion in the plane
of the sky perpendicular to the ẑ′-axis, σ⊥, z′ . On account of the x, y symmetry of a prolate
spheroid, σ⊥, z′ does not vary as a function of θ. The data presented here are from a uniform
spheroid cluster with subvirial initial velocities and axis parameters a = b = 2 pc and c = 4 pc.
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position r is given by tff ∼ ρ−1/2 ∼ √
r, and so the central regions of the system evolve on

shorter timescales. Goodman & Binney (1983) showed that this general argument holds

true for spheroidal clusters as well.

On account of this inside-out collapse, the center of a subvirial cluster will collapse and

begin to re-expand while the outskirts of the cluster are still collapsing. As a result, the

red- and blueshifted populations will not be as spatially separated as in the uniform density

cluster shown in Figure 4.3, panel (d). Instead, the generally redshifted z′ > 0 portion of

the cluster will contain many blueshifted stars near the center, and this addition acts to

blueshift the average radial velocity in the central z′ bins. On the other side of the cluster’s

center, redshifting may occur for the same reason, resulting in a kinematic signature that

is flat or even oppositely sloped (with respect to the general trend) near z′ = 0.

In addition, the inside-out collapse causes the average velocity dispersion during the

embedded stage to be higher in centrally concentrated clusters than in uniform density

clusters. This effect occurs because the peak in the velocity dispersion, which occurs during

the cluster’s collapse and re-expansion, is broader (in time) in the ρ∗ ∼ m−1 clusters than

in the ρ∗ ∼ ρ0 clusters. In a centrally concentrated spheroid, the stellar members reach

their highest speeds at a time that depends on their initial position within the cluster. In

contrast, in a uniform spheroid, the stellar members reach their highest speeds at roughly

the same time. Therefore, the velocity dispersion in a centrally concentrated cluster remains

higher for a longer period of time. This finding has observational consequences: initially

centrally concentrated clusters are more likely to be seen with high velocity dispersions.

4.3.3.5 Effect of Star Formation Efficiency

To investigate the effect of SFE on the kinematic signatures observed, we compare

elongated clusters with SFE of 17%, 33%, and 50%. Each cluster has a ρ∗ ∼ m−1 stellar

density profile, axis parameters a = b = 2 pc and c = 4 pc, and subvirial Qi = 0.04 initial
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velocities. The clusters with SFEs of 17% and 13% have N = 2700 stars, whereas the

cluster with a 50% SFE has N = 2000 stars.

Clusters with lower star formation efficiencies evolve on shorter timescales due to the

higher velocities associated with the deeper potential wells of the gas component. In

addition, both the amplitude ACRV and the total velocity dispersion increase as SFE

decreases.

4.3.3.6 Effect of Extinction due to High Column Density

Most very young clusters are still embedded in the molecular cloud from which they

formed. In cases where optical spectra are used to determine stellar kinematics, extinction

from the embedding clouds can potentially change the observed kinematic signatures in

these clusters. For example, consider a cluster that is roughly shaped like a prolate spheroid

with its north end tipped toward the observer. The southern region is farther away, and

is collapsing toward the center of mass, and thus appears blueshifted with respect to the

stars in the northern region. If even a modest fraction of the cluster members that are

farthest from the observer are not included in the observed data set due to extinction

by the embedding cloud, this blueshifted population would appear less blueshifted than if

it were not obscured. These observed selection effects may be mitigated by using H- or

K-band spectra to select targets.

As an example, consider an embedding cloud that has a dust opacity of κV = 200 cm

g−1 at optical wavelengths and a mean molecular mass μ = 2.4mH . In order to have

an optical depth with the value of unity, the minimum column density is required to be

Ncol ≈ 1.28 × 1021 cm−2. A typical molecular cloud has number densities ranging from

n = 102−103 cm−3. Therefore, if the sources are being observed through more than 0.4−4

pc of molecular cloud, they would be undetected and hence removed from the sample.

To test this hypothesis, we re-analyzed the simulated cluster data by omitting stars
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Figure 4.7: Same as Figure 4.2, but indicates portion of cluster that is assumed to be obscured due
to extinction.

that are behind an “obscuring plane” (see Figure 4.7) which includes a column density

threshold. In this model, the obscuring plane is introduced with an orientation normal to

the line-of-sight and at a distance 0 ≤ dobs ≤ 5 pc beyond the center of the cluster from

the observer. We found that if only a modest number of stars in the southern region of the

cluster are removed from the sample (due to the fact that they are beyond the obscuration

plane) and their velocities are not included in the velocity versus position plot, the southern

portion of the cluster will have a significantly less steep velocity gradient compared to the

northern region. Specifically, if 10% − 15% of the stellar population is unobservable, the

kinematic signature in the southern half of the simulated cluster is completely washed out.

Figure 4.8 displays the radial velocity signatures for a cluster with various amounts of

the stars extincted. In the top panel, dobs = 0.6 pc and 32% of the cluster members are

removed from the sample. The radial velocity signature in the middle panel is observed

when dobs = 1.4 pc and 12% of the cluster members are thus obscured. For comparison,

the bottom panel is the radial velocity signature produced when all stars are included in

the sample.
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Figure 4.8: Each panel displays the radial velocity as a function of ẑ′ position in a uniform density
subvirial elongated cluster for different locations of the obscuring plane. The mean radial velocity
(averaged over 0.2 pc bins) is indicated by the data points. The error bars correspond to the
standard deviation of the radial velocity distribution within the bins. In the top panel, dobs = 0.6
pc and 32% of the cluster members are removed from the sample. The radial velocity signature
in the middle panel is observed when dobs = 1.4 pc and 12% of the cluster members are thus
obscured. The bottom panel is the radial velocity signature produced when all stars are included
in the sample. Even modest amounts of extinction can wash out the structure of the kinematic
signature.
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4.4 Comparison to Observations - The Orion Nebula Cluster

Recent kinematic studies of the Orion star-forming region have determined radial ve-

locities for a large sample (∼ 1200) of visible sources within the region. In this section we

discuss the kinematic results of these studies in light of the numerical simulations presented

above.

The ONC region is a good environment in which to look for kinematic signatures such

as the ones observed in our simulated clusters for many reasons. First, the ONC has a large

population and is close enough to be well studied so that many of the cluster members

have measured radial velocities. The large sample size of the cluster allows the data to

be binned in declination while maintaining a reasonable number of data points in each

bin, so that the results suffer only mildly from small number statistics. Furthermore, the

ONC is visibly elongated in projection (Hillenbrand & Hartmann 1998), which is one of

the requirements for the kinematic signature to be observed.

Finally, although opinions vary, there are significant arguments supporting the assertion

that the ONC region as a whole is young and is estimated to be less than one crossing time

old. Observations of the ONC by Fűrész et al. (2008) and more recently by T09 identify

spatially coherent kinematic structure in the stellar distribution that closely matches the

observed kinematic structure of the gas in the region as measured in 13CO by Bally et al.

(1987). The authors argue that this correlation indicates that the cluster is not dynamically

relaxed and that in fact, the region is less than a crossing time old. The results of the

previous section indicate that the strength of the kinematic signature peaks before the

cluster is a crossing time old. Therefore, the strongest observed signature will occur in

clusters that are less than a crossing time old, as the ONC may be.
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4.4.1 Observations

The radial velocities cited in this study were determined from multiple observations

using Hectochelle on MMT and MIKE fibers at Magellan. The Hectochelle observations

from Fűrész et al. (2008) have been combined with additional Hectochelle and MIKE

observations (T09) to produce a list of ∼ 1200 sources with radial velocity measurements in

the region surrounding the ONC. A detailed discussion of the observations, data reduction,

spectral fitting, and radial velocity measurements is provided in the observational papers.

In addition, much care has been taken to identify binaries and non-cluster members from

the ONC data, and this procedure is detailed in T09.

4.4.2 Kinematic Signatures

As discussed in these observational papers (Fűrész et al. 2008, and T09), the stars and

gas in the region surrounding the ONC show similar north-south velocity gradients. We

consider the ONC members that are near the molecular cloud filament by selecting the

R.A. range 84.0−83.5, and remove identified binaries from the sample. The distribution of

sources is shown in the left panel of Figure 4.9. In the right panel of Figure 4.9, the binned

median velocities are plotted as a function declination. To calculate the median velocity in

each declination bin, a histogram of the radial velocities is created. The median is calculated

ignoring all bins that have less than half of the maximum value in the distribution. The

medians calculated without localizing on the filament differ from those shown here by a

few 0.5 km s−1 shifts to the red or blue.

Figure 4.9 is analogous to Figure 4.3 for the simulated cluster data. The north-south

velocity gradient is clear, though the gradient is steeper in the northern part of the ONC

(north of declination ∼ −5.5) than it is in the southern region. The observed kinematic

structure in the ONC region is qualitatively similar to the kinematic structure of elongated

subvirial clusters viewed off axis (bottom right panel of Figure 4.3).
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Figure 4.9: Left panel displays the positions of stars in the ONC with radial velocities measured
by (Fűrész et al. 2008, and T09) that are spatially associated with the filament of dense gas. In
the right panel, the median radial velocity of the stellar population is plotted for each declination
bin. Bin width is indicated by the vertical extent of the bars. The horizontal error bars indicate
the velocity dispersion in each bin, where the dispersion is defined by the distribution’s full width
at half-maximum divided by 2

√
2 ln 2. There is a noticeable radial velocity gradient in the northern

ONC, which is qualitatively similar to the one observed in the simulated subvirial clusters.

Figure 4.10 presents the cumulative radial velocity distribution observed in the ONC

(analogous to Figure 4.4) for the entire sample (solid curve) as well as the distribution

for only those stars north of declination −6 and −5.5 (dashed curves). This distribution

is composed of the radial velocities of the ONC members that have velocities within 3 σ

of the median radial velocity of the distribution of the median velocity, where σ = 3.1

km s−1 (Fűrész et al. 2008). The constrained data set (without the declination cuts)

includes approximately 89% of the sources shown in the left panel of Figure 4.9. To

produce these plots, the radial velocities were shifted by the median observed velocity and

normalized by the velocity dispersion of and number of stars in the data set. This shift and

normalization allows the observed data to be directly compared to the cumulative radial

velocity distribution in the simulated clusters, where the velocities are measured in the

center of mass reference frame. The kinematic signature peak observed in our simulated
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Figure 4.10: Normalized cumulative radial velocity distribution summed along declination in the
Orion star-forming region. This cumulative distribution is created from the ONC members with
radial velocities within 3 σ of the median radial velocity of the distribution. From Fűrész et al.
(2008), the radial velocity dispersion in this region of the ONC is σ = 3.1 km s−1. The cumulative
radial velocity distributions for the stars north of declination −6 and −5.5 are indicated by the
dashed lines.

clusters is also observed in the ONC, over the extent of the cluster, as well as over just

the northern portion. The ONC data are significantly less smooth than the theoretical

results. This difference is mostly due to the summing of 50 simulations used to produce

the theoretical results shown in Figure 4.4.

4.4.3 Comparison to Simulation Results

The kinematic structure observed in the ONC may be understood in light of the sim-

ulated cluster kinematics. The correlation between the motion of the stars and the gas

in the ONC indicates that the region is fairly young and that the stars and gas are still

collapsing. The observed radial velocity gradient also supports the theory that the ONC is

dynamically young and that the region is less than a crossing time old. Also, the signature

suggests the stars in the region are formed with subvirial velocities, an initial condition

required by the simulations to produce the structure observed. The ONC region is elon-

gated and the combination of elongation, subvirial initial velocities, and extremely young

dynamical age can account for the kinematic structure observed as demonstrated by the
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simulations presented in this study. This interpretation requires that the northern region

of the ONC be closer to the observer than the southern region. However, at this time, the

distance to the ONC as a whole is still poorly constrained (Jeffries 2007, and references

therein) and determining distance differences on the order of 10 pc between the northern

and southern regions of the ONC is not yet possible.

The kinematic signatures observed in the ONC are qualitatively similar to those ob-

served in the elongated subvirial clusters. The simulated cluster that is physically most

similar to the ONC region is the centrally concentrated elongated cluster with axis ratio:

2 : 2 : 8 pc and a low SFE of ∼ 17%. This cluster displays a kinematic signature similar

in magnitude to the observed signature in the ONC. Specifically, at t = 0.7 Myr, the sim-

ulated cluster has a radial velocity gradient of ∼ 2 km s−1 pc−1, and ACRV ∼ 0.15. In

addition, the simulated cluster has a radial velocity dispersion of ∼ 3 km s−1. In compari-

son, the Orion data have a radial velocity gradient of ∼ 5 km s−1 over 0.6◦ in declination;

at a distance of 420 pc, the parameters are approximately a gradient of 1.1 km s−1 pc−1,

ACRV ∼ 0.2, and a radial velocity dispersion of 3.1 km s−1.

Proper-motion studies in Orion (such as the one conducted by Jones & Walker 1988)

found plane-of-sky velocity dispersions along the cluster’s major axis that are somewhat

larger than the dispersions perpendicular to the major axis. In the notation adopted in this

chapter, σ‖, z′ = 2.63 ± 0.9 km s−1 and σ⊥, z′ = 2.03 ± 0.11 km s−1. Fűrész et al. (2008)

determined a radial velocity dispersion of σRV = 3.1 km s−1. This relatively large difference

between σRV and σ⊥, z′ is indicative of some type of global collapse because virial elongated

clusters have at most modest differences between σRV and σ⊥, z′ . In our simulated virial

clusters 1 < σRV/σ⊥, z′ ≤ 1.3, whereas in the subvirial clusters 1 < σRV/σ⊥, z′ ≤ 2.3.

The ONC region displays significant mass segregation among the most massive stars

(m � 2 M�) which reside in the Trapezium at the center of the ONC. Previous numerical
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studies of the ONC cluster indicate that the mass segregation must be primordial as the

cluster is not old enough for dynamical mass segregation to account for the presence of the

Trapezium (Bonnell & Davies 1998). Our simulated clusters begin with somewhat different

initial conditions, by focusing on subvirial initial velocities and cluster elongation, but arrive

at the same conclusion: the region is not old enough for dynamical mass segregation to have

taken place. In the simulated clusters, we compared the radii that enclosed 25%, 50%, and

75% of the stellar mass in different mass bins. The results of these simulations showed no

difference in the radii of different mass bins during the first 1−3 Myr of evolution, indicating

that dynamical mass segregation had not yet occurred. Subvirial initial velocities will result

in a higher central density at earlier times on account of global collapse, but even with an

increased density and thus higher interaction rate, the ONC is still too young for significant

mass segregation to have occurred.

In addition to the lack of mass segregation in the spatial distribution of stars within the

cluster, no significant differences in the kinematic distributions are observed as a function

of stellar mass in the simulations. The masses of stars in the Orion region are not well

enough constrained to compare this result of the simulations to the observations at this

time. However, future studies of young stars in this region may yield mass information

that, combined with kinematic data, will be able to test this prediction.

As seen in Figure 4.9, the radial velocity gradient apparent in the northern region is not

as evident in the region south of the ONC. The asymmetry may indicate that the center of

the gravitational collapse is not the Trapezium, but rather is located slightly north of the

Trapezium. The collection of cumulative radial velocity distributions displayed in Figure

4.10, however, indicates that the signature is present even if the center of the gravitational

collapse is assumed to be somewhat north of the Trapezium. The asymmetry could also

be due to a north-south asymmetry in the initial conditions that is not well represented
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by the idealized simulations of Section 4.3. The star-forming region north of the ONC is

located at the edge of the integral-shaped molecular cloud, whereas the region south of

the ONC extends into a larger complex of molecular clouds. Therefore, the dynamics in

the northern region is better suited to our approximate of an isolated elongated centrally

concentrated cluster than those of the south.

4.5 Conclusion

This study presents N -body simulations that explore the kinematic signatures produced

by asphericity and subvirial initial velocities in young embedded clusters. We have iden-

tified a robust kinematic signature, in particular a gradient in the radial velocities, which

is naturally produced by elongated subvirial clusters. We characterize the properties of

this kinematic signature as a function of initial conditions. Specifically, we compare the

kinematics of evolving spherical and aspherical clusters and with both virial and subvirial

initial conditions. We consider changes in the kinematic signature due to differing amounts

of cluster elongation, SFE and departure from virial equilibrium, and discuss possible sam-

ple bias due to extinction in observed clusters. Finally, we compare the signature displayed

in our simulated clusters to kinematic data from the ONC. The main results of our work

are summarized as follows:

• Elongated clusters with subvirial initial velocities display a gradient in the radial

velocities as a function of projected position along the cluster. Both aspherical ini-

tial geometries and subvirial initial velocities are required to produce this kinematic

signature (see Figure 4.3).

• The strength of the kinematic signature increases during the first free-fall time as

the cluster collapses, and then decreases as the stars pass through the center of the

cluster. The gradient changes sign as the cluster re-expands, and the amplitude of
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the cumulative radial velocity distribution decreases (see Figure 4.4) as the cluster

evolves (see also Figure 4.1).

• The strength of the kinematic signature varies most sensitively as a function of the

projection angle, as measured from the major axis of the cluster. The signature

is weakest at projection angles of 0◦ or 90◦ and strongest at projection angles of

∼ 25◦ − 35◦ (see Figure 4.5). The peak is broad, however, with a full-width at half-

maximum of ∼ 60◦, indicating that the kinematic signature is strong at most viewing

angles.

• Making the cluster more elongated increases the gradient of the radial velocity across

the cluster while leaving the velocity dispersions roughly similar.

• The initial stellar (and gas) density distribution affects the rate at which the cluster

evolves and thus the timescale on which the kinematic signature evolves. In addition,

centrally concentrated clusters have higher velocity dispersions than uniform density

clusters.

• The kinematic signature is sensitive to observational selection effects. Extinction in

an embedded cluster can preferentially deselect stars further from the observer and

will thus affect the kinematic signature. A modest amount of extinction that removes

10% of the cluster members will wash out the kinematic signature in the region of

extinction (see Figure 4.7).

• The asymmetric kinematic signature is qualitatively similar to the observed kinemat-

ics of the Orion star-forming region, suggesting that in addition to being elongated (as

observed) a significant fraction of the cluster members started with subvirial initial

velocities (see Section 4.4). The large gradient observed (∼ 1 km s−1 pc−1) indi-

cates that the cluster is dynamically young. This result is consistent with previous

145



independent claims (e.g., Bonnell & Davies 1998).

Previous studies have shown that the SFE of clusters and the initial velocity distribu-

tion have significant effects on the long-term evolution of a cluster (Adams 2000; Boily &

Kroupa 2003b; Adams et al. 2006), i.e., the cluster bound fraction and stellar interaction

rates. This work emphasizes the fact that these conditions affect the short-term evolution

of the cluster as well. In addition, this work is significantly different from previous studies

in that it considers nonspherical initial conditions in both the stellar and gaseous compo-

nents in young embedded clusters. Although many examples of clusters with nonspherical

geometries exist and a considerable amount of work has considered orbits of individual stars

within axisymmetric and triaxial potentials, little work has been done theoretically to un-

derstand how these clusters, taken as a whole, differ from spherical clusters. We have shown

that elongated clusters naturally produce observable kinematic signatures that depend on

the initial starting velocities of the cluster members and the projection of the cluster onto

the plane of the sky. These signatures may allow us to identify, or at least constrain, the

initial conditions in star-forming clusters that still retain most of their embedding gas.

The kinematic signatures found in the elongated subvirial cluster simulations may shed

some light on kinematics within nearby young clusters. As one example, this work shows

that the gradient produced in simulated clusters is qualitatively similar to that observed

in the radial velocities of the ONC members. Although the ONC kinematic data display

some additional asymmetry not observed in the simulated clusters, this asymmetry is likely

to be due to the more complicated environment and feedback processes which are not well

represented by the simulation. Nevertheless, the general structure and magnitude of the

observed kinematic signature in the ONC may be explained theoretically, provided that

the stars are formed with subvirial initial velocities.
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Current instruments such as the Hectochelle and MIKE have helped make large spec-

troscopic studies of many objects more efficient and have produced many radial velocity

studies of stellar clusters as well as larger globular clusters and dwarf galaxies. These in-

struments have provided insight into the kinematics of astronomical objects ranging from

the rotation of individual stars to the large-scale dynamics of galaxies. In the next decade,

the GAIA mission will provide the opportunity to study the three-dimensional kinematics

of clusters with exquisite detail. For example, proper motions and radial velocities will be

measured for stars in ONC brighter than 20th magnitude. This study will result in accurate

transverse velocities to combine with the radial velocities supplemented by ground-based

observations. As more detailed kinematic data become available for the ONC and other

young clusters, they should be used in conjunction with cluster simulations such as those

presented here to understand the initial conditions necessary to produce the observed kine-

matics. A more detailed understanding of the initial conditions can then inform cluster

formation and evolution models, with the overarching goal of better understanding star

and planet formation within young stellar clusters.
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CHAPTER V

Tidal Disruption of Protoclusters in Giant Molecular Clouds

5.1 Introduction

Over the last three decades it has become evident that molecular clouds serve as the

site of all star formation within galaxies with the result that a clear understanding of

molecular cloud structure and evolution is necessary to fully describe the initial conditions

for star formation. Typical giant molecular clouds (GMCs) are ∼ 10 − 50 pc across and

have masses between 106 and 107 M� (Liszt et al. 1981; Solomon et al. 1987). They are

nonuniform, composed of high density clumps with sizes of ∼ 1 − 10 pc and masses of

∼ 102 − 105 M� embedded in a lower density background (Kramer et al. 1998; Heyer &

Terebey 1998). These high density clumps are the sites of star formation within GMCs.

Although GMCs do not globally collapse, many of the small-scale high density clumps

undergo local collapse and fragmentation. The most massive of these clumps produce clus-

ters of young stars (Ballesteros-Paredes et al. 2007). Throughout this chapter, the term

“protocluster” will refer to these massive, high density regions within molecular clouds

which have the potential to produce clusters of stars. The process by which protoclusters

fragment into collapsing substructures and eventually protostars is complex and not com-

pletely understood. It may be due to a combination of Jeans instabilities, the decay of

turbulence (Klessen & Burkert 2000; 2001), and the decoupling of fluid and MHD waves

(Myers 1998). Observations of star-forming regions reveal that newly formed clusters of
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stars are not isolated within molecular clouds. Rather, star-forming regions of molecular

clouds tend to contain multiple clusters and smaller groups of young stellar objects near

each other (Allen et al. 2007).

Since GMCs are highly nonuniform in structure and there is evidence of clusters forming

near other clusters, a relevant question in cluster formation is: under what conditions can

the collapse of a protocluster be treated in isolation, i.e. ignoring the influence of the

surrounding GMC environment?

This question is analogous to the question of how star and planet formation in cluster

environments differs from formation in isolation. Studies that have considered star and

planet formation within clustered environments have shown that environment may have

modest to significant effects on the formation processes depending on the properties of

cluster considered. Specifically, in very dense massive clusters frequent close encounters

between stars may disrupt disks and young solar systems and UV radiation from massive

stars may cause photoevaporation of protostellar disks (Bonnell & Kroupa 1998; Störzer &

Hollenbach 1999). However, in more intermediate-sized clusters, with parameters typical

of those observed within ∼ 1 kpc of the sun, interactions between stars are much less

common, and the cluster’s effects on planet-forming disks are relatively modest (Adams

et al. 2006). In this study, we consider a similar question, but on a larger scale and at an

earlier time in cluster development.

The above question can be addressed in a gross way with simple tidal force estimates,

i.e. calculating the Roche limit. However the analytic Roche limit does not provide the

details of how tidal distortion affects the evolution of the internal protocluster structure,

how this evolution varies with the initial cloud structure, nor how it depends on the relative

motion of the protocluster with respect to its environment. To address these questions,

one must complete numerical simulations of the collapsing protocluster within its GMC
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environment.

To this end, we perform an ensemble of N -body simulations to calculate the collapse

of a protocluster in the presence of a nearby massive object in the same GMC. The point

mass is intended to represent another protocluster or high density region that is sufficiently

massive and compact enough to be roughly modeled as a point mass. These calculations

treat only the gravitational interactions and ignore the effects of gas pressure, stellar winds,

and radiation. Molecular cloud maps of star-forming regions contain numerous dense gas

structures with varying geometries, so a full numerical investigation of this question should

consider protoclusters with spherical, flattened, and filamentary initial geometries. In this

study, we focus on flattened disk-shaped protoclusters.

Our choice of protocluster geometry is partially motivated by observations of star-

forming regions revealing flattened, layered, and/or filamentary cloud structures. For ex-

ample shells of molecular gas surrounding OB stars have been identified by Deharveng et al.

(2005) and Churchwell et al. (2006). Within many of these shells triggered star formation

appears to be occurring (Churchwell et al. 2006; Zavagno et al. 2006). Furthermore, the

distribution of young stars within embedded clusters is often aligned with the elongation

or filament structure of the embedding gas (Allen et al. 2007; Kumar et al. 2007; Teixeira

et al. 2006). Observations such as these suggest that “reduced dimensionality” may be a

characteristic of star-forming clouds.

Flattened cloud structures may be formed by OB winds (Weaver et al. 1977; Whit-

worth et al. 1994) or expanding H ii regions (Elmegreen & Lada 1977) sweeping up and

condensing nearby cold molecular gas. Cluster-forming clouds that are believed to have

been compressed by these mechanisms include Orion B near the OB1 association (Wilson

et al. 2005) and the DR 21 ridge near the Cyg OB2 association (Schneider et al. 2006;

Kumar et al. 2007). Elmegreen (1998) and Whitworth (2005) provide more detailed dis-
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cussions of proposed flattening mechanisms capable of producing the structure observed in

many star-forming regions. Simulations by Burkert & Hartmann (2004) demonstrated that

even in isolation, finite self-gravitating sheets collapse into dense structures with interesting

geometries.

In addition to the observational evidence for flattened initial states, we choose to simu-

late flattened protoclusters because they are harder to disrupt than spherical protoclusters

of the same mass and radius. This is because the disks are more centrally concentrated

and thus more tightly bound. Therefore they are more likely to succeed in forming stellar

clusters than their 3D counterparts, all else being equal.

We simulate the collapse of a disk-shaped protocluster in the presence of another dense

object in the GMC to determine the survivability of collapsing protoclusters in GMCs. In

Section 5.2 the N -body collapse calculations are described. The results from these simu-

lations are summarized in Section 5.3, and a discussion of these results in the context of

observed star-forming regions is presented in Section 5.4. Appendix B contains a discus-

sion of the simulations of collapsing systems with analytic solutions used to estimate the

uncertainties in N -body calculations of the dynamics of gaseous systems.

5.2 Numerical Calculation of Disk Collapse

In this study, we complete an ensemble of N -body simulations to study the collapse of

flattened protoclusters in the presence of a nearby dense object represented by a massive

point particle. This dense object may be another dense protocluster, a region that is

currently forming stars, a stellar cluster, or another significant density enhancement in the

GMC, provided that it is more massive than the protocluster and small enough that its

gravitational influence on the protocluster can be well approximated as a point mass. A

modified version of the NBODY2 direct N -body integration code (Aarseth 2001; 2003) is

used to complete the simulations. The NBODY2 code was modified to implement a sink
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cell algorithm associated with the particle initially located at the center of the protocluster

disk. This algorithm allows particles that collapse to the center of the disk to accrete onto

it. A more detailed discussion of the sink cell algorithm in included in the Appendix.

A fluid dynamics code will always model a fluid system with more precision than will

an N -body code because on small scales close encounters between point masses deviate

from fluid behavior. For this reason N -body techniques are not widely used to study fluid

problems. Two significant concerns arise when modeling a fluid system with an N -body

code. First, N -body simulations do not take into account the pressure forces between point

particles. Secondly, close gravitational scattering encounters between point particles are

not physically realistic in fluid systems. If these two concerns are appropriately addressed,

an N -body code may be competitive with a full fluid simulation when studying the large-

scale gravitational evolution of a fluid.

Specifically, if the fluid can be approximated as cold and pressure free, the dominant

force between fluid elements is gravity and thus the fluid elements may be modeled as

individual particles moving under the influence of their mutual gravitational potential.

Protoclusters are cold with typical temperatures of � 20 K (Liszt et al. 1981; Solomon et al.

1987) and can be approximated as pressure free fluids until the late stages of collapse. Our

choice of radially symmetric ring structure was chosen specifically to minimize the number

of close scattering interactions that particles undergo during disk evolution (For a more

detailed discussion, see Appendix.) Thus we can carefully use an N -body code to address

the large-scale question of when the collapse of a protocluster may be treated as if it occurs

in isolation, neglecting the effects of the surrounding GMC environment.

In addition, for modest values of N (in this study, N � 1000) N -body simulations

are computationally more efficient than fluid codes. Therefore, judicious use of an N -

body code with a relatively modest investment of computational time can return a broad
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understanding of a system over a wide range of parameter space.

To better understand the regime in which the N -body simulation reliably models

gaseous disk collapse behavior and thus can be used effectively in this study, the code

must be systematically tested. Therefore, this particular N -body code was used to com-

plete simulations of collapsing systems for which analytic solutions exist. Specifically, the

collapse of an isolated Maclaurin disk and Mestel disk were simulated and the results of

the simulations compared to the analytic collapse solutions. We find that the N -body

simulations predict free-fall times for the Maclaurin and Mestel disks with errors less than

3.4% and 2.4% and cumulative mass profiles with errors less than 6.1% and 7.4%, respec-

tively. A complete discussion of these test calculations and comparison to the pressure-free

analytic collapse solutions is provided in the Appendix and summarized in Table B.1.

It is important to stress that this approach investigates only the gravitational interac-

tions within the disk and between the disk and the point mass. Other physical processes

in gas such as pressure and turbulence are not included in our simulations of protocluster

collapse. The detailed structure of the final cluster-forming cloud and the amount of star

formation which will subsequently occur depends on these processes. A more in depth dis-

cussion of how these physical processes may affect the results of our simulations is reserved

for Section 5.4.2.

We assume that the flattened protoclusters are formed when a three dimensional dense

cloud is compressed into a two dimensional disk. This assumption is motivated by evidence

that flattened structures in star-forming regions may be created by stellar winds or shocks

sweeping material into a layer. Thus the surface density of the protocluster disk depends on

the assumed density of the pre-flattened three dimensional cloud from which it is formed.

Consider a uniform density sphere which is compressed along one dimension. The resulting
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density distribution, a Maclaurin disk, has the surface density profile

Σ(r) =

⎧⎪⎪⎨⎪⎪⎩
Σ(0)

[
1 −

(
r
rd

)2
]1/2

, 0 ≤ r ≤ rd

0, r > rd,

(5.1)

where rd is the disk radius (Binney & Tremaine 1987).

The majority of our simulations considered disks that are initially described by Maclau-

rin surface density profiles. These disks are weakly centrally condensed and consistent with

the disk formation scenario described above. It is difficult to form a less centrally condensed

disk distribution by flattening a realistic three dimensional clump of gas. However, flat-

tening of a somewhat centrally condensed three dimensional clump of gas will produce an

even more strongly centrally concentrated disk. To investigate the evolutionary differences

central concentration may create, a limited number of strongly centrally concentrated disks

were also completed. Specifically we considered the pre-flattened three dimensional dense

cloud with the density distribution of a singular isothermal sphere. When flattened it

produces a Mestel disk described by the surface density distribution

Σ(r) =
Σ(A)A
r

, 0 < r <∞, (5.2)

where Σ(A) is the surface density at the fiducial radius A (Mestel 1963). A comparison of

the Maclaurin and Mestel disk evolution is included in Section 5.4.1.

The free-fall time for a particle initially at rest at radius r ≤ rd in a Maclaurin disk of

mass Md is

tff(r) =
√
π

6

√
r3d
GMd

. (5.3)

Therefore, a Maclaurin disk collapses all at once. The free-fall time for a particle initially

at rest at radius r in a Mestel disk is

tff(r) =
√
π

4
r√

GΣ(A)A
(5.4)

resulting in an inside-out collapse.
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Each simulated disk is composed of a central point mass and 25 rings of 32 equal mass

particles. The mass of the central particle and of each ring is varied to produce the desired

surface density distribution. Each disk has a total mass of Md = 103 M� and a radius of

rd = 1 pc. (The simulated Mestel disk is truncated at rd.) For star formation efficiencies

of ∼ 0.3 these parameters are consistent with observations of young clusters with a stellar

masses of a few hundred solar masses and radii on the order of a parsec (Lada & Lada 2003;

Porras et al. 2003). For Maclaurin and Mestel disks with these parameters the free-fall

time of a particle initially at rest at rd is 0.342 Myr and 0.525 Myr respectively.

In this study we investigate the disruption of a protocluster disk due a massive point

particle Mc which represents a neighboring high density region in the GMC a distance d

from the center of the disk and in the plane defined by the disk. We choose this initial

geometry because the most efficient way to tidally disrupt an axisymmetric disk is by

placing the massive perturber in the plane of the disk. A point mass coincident with the

symmetry axis will encourage disk collapse or, if the separation distance is small enough,

accretion onto the massive particle. A point mass that is neither coincident with the

symmetry axis nor in the disk plane will tidally distort the disk, but not as strongly as a

point mass at the same distance but located in the plane of the disk.

We consider disks that have both zero and nonzero initial velocities with respect to

the nearby point mass, point masses within the range Mc = 1 − 103Md (103 − 106 M�),

and separation distances of d = 2 − 10rd (2 − 10 pc). The majority of the simulations

consider disks with Maclaurin density profiles. A limited number of simulations were also

completed using the more centrally condensed Mestel density distribution. The results for

the Maclaurin and Mestel disks are compared in Section 5.3. Disk collapse begins at time

t = 0 and continues until the disk is accreted onto the neighboring point mass or reaches a

maximum mean surface density. This maximum value occurs at approximately the disk’s
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free-fall time and is explained in more detail in Section 5.3.3.

By modeling the nearby high density region as a point mass, we overestimate its effect on

the collapsing disk. The point mass representation is only exact for density enhancements

that have spherically symmetric mass distributions (and a handful of special nonspherical

mass distributions). The high density clump in the GMC will likely be a distributed mass

which does not fall into one of these special cases, and will exert a force on the disk that

is less than the force of a point particle with a mass equal to the mass of the clump and

located at the clump’s center. Therefore, our estimates of tidal disruption may not be

applicable in regions containing larger amounts of distributed dense gas, for example the

Orion (L1641) region (see Section 5.4 for further discussion).

A large body of work exists concerning the destructive effects galaxy and GMC environ-

ment can have on stellar clusters. Terlevich (1987) and Theuns (1991) completed N -body

simulations to investigate the effect the galactic tidal field and interstellar clouds have on

the long-term evolution of initially bound stellar clusters. More recent studies have con-

sidered the disruption of a stellar cluster due to interactions with passing spiral arms and

GMCs (Gieles et al. 2006; 2007). In addition, there have been many numerical studies of

the disruption of stellar clusters when the original embedding gas is violently removed by

winds from massive stars or nearby supernovae (Lada et al. 1984; Geyer & Burkert 2001;

Adams 2000). These works consider the interaction of stellar clusters and stellar cluster

members with their environments while our calculations consider an earlier stage in the

life of a stellar cluster. Specifically we determine the effects of GMC environment on the

clouds that are possible progenitors of stellar clusters.

5.3 Simulation Results

The initial simulations consider the behavior of a collapsing Maclaurin disk in the

presence of a massive point particle for various mass ratios and separation distances. For
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comparison, a limited number of simulations of collapsing Mestel disks were also completed.

The results of these calculations are summarized below.

5.3.1 Interaction Outcomes

In each simulation, the disk evolves according to one of three distinct behavior patterns:

collapse, elongation, or accretion. The disk evolution depends most sensitively on the mass

of the neighboring point mass and the initial distance of separation (see Section 5.3.2

for further discussion.) Figure 5.1 provides a face on view of disks evolving via different

scenarios. For clarity, all of the disks depicted in Figure 5.1 are initially 3.0 pc from a

massive particle, and only the mass of the particle is varied.

Figure 5.1 (a) depicts the evolution of a disk that follows the collapse evolution scenario.

This disk collapses to a point-like object with little to no distortion in the disk’s shape. A

small amount of elongation along the x-axis does occur. This is to be expected as it is the

axis which intersects the center of the disk and the massive point particle. However, the

ratio of the short axis of the disk to the long axis of the disk ((Δy/Δx)min, see Section

5.3.4) remains greater than 0.5 for all disks that evolve via the collapse scenario.

Elongation refers to disks that collapse while being tidally squeezed. These disks result

in filament-like dense structures. The elongation scenario is further subdivided into two

categories: weak and strong elongation. Weak elongation occurs when the disk collapses

into a filament that is shorter than the initial diameter of the disk. On the other hand,

strong elongation occurs when the disk is stretched into a filament that is longer than the

initial disk diameter. The latter behavior indicates that the force of tidal disruption is

stronger than the force of collapse.

Figure 5.1 (b) displays the evolution of a Maclaurin disk that undergoes weak elonga-

tion. The disk collapses as in the collapse scenario, but at earlier times shows significant

distortion. The differences between strong and weak elongation become apparent when
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Figure 5.1 (b) is compared to Figure 5.1 (c). A disk that is strongly elongated becomes

significantly tidally stretched. Tidal interaction, rather than gravitational collapse dom-

inates the disks evolution. In addition, a strongly elongated disk accelerates toward the

system’s center of mass more than a weakly elongated disk, which is another indication of

the strength of the force between the disk and the neighboring point mass.

The evolution of a disk accreting onto the neighboring point mass is shown in Figure

5.1 (d). The disk is significantly stretched out by the tidal force of the massive neighbor.

Moreover, it travels the initial separation distance quickly enough that the disk does not

have time to collapse under its own self-gravity (as in the collapse or weak elongation

scenarios), or reach a maximum density as a filament (as in the strong elongation scenario).

5.3.2 Dependence of Outcome on Neighbor Mass and Distance

Figure 5.2 displays the behavior of the Maclaurin and Mestel disks as a function of

the influencing particle mass, Mc, and the initial separation distance, d. The portions of

M -d space in which the systems behave differently are separated by lines in the figure.

Systems that reside in the lower right portion of the plot will have disks that collapse

without disruption or distortion from the nearby clump. This is the region of M -d space in

which protocluster disk collapse occurs as if in isolation. The band of M -d space stretching

from low mass and low separation distance to high mass and high separation distance is

the region in which the disk undergoes elongation into a filament as it collapses. Systems

residing within this regime should form filaments stretched out toward the massive nearby

high density regions. Finally, systems with properties in the upper left portion of the

M -d plot are those in which the protocluster disks will accrete onto the nearby massive

object. We should not expect to find individually collapsing protoclusters near massive

dense objects with these properties.

A constant value of initial force between the center of the disk and the massive particle
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Figure 5.1: Face-on view of the collapse of a Maclaurin disk 3.0 pc away from a high mass particle.
Each point denotes the position of a particle within the disk. Panel a): Collapse: undistorted
collapse of disk to a point, point mass Mc = 5Md. Panel b): Weak Elongation: collapse of a disk to
short filament, point mass Mc = 10Md. Panel c): Strong Elongation: stretching of disk into a long
filament, point mass Mc = 50Md. Panel d): Accretion: accretion of disk onto a nearby massive
particle, point mass Mc = 100Md. The location of the point mass is marked by an X where the size
of the X indicates the mass. For each simulation, the display time which most clearly represents
the evolution scenario was chosen. The times are noted in units of the analytic free-fall time of the
disk in isolation (tff = 0.342 Myr). The size and position of the disk at time t = 0 is indicated by
the circle.
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corresponds to a slope of 2 in Figure 5.2 due to the inverse-square nature of the gravitational

force. The dividing lines between regions of different system behavior have slopes slightly

steeper than 2 due to the geometry of the interacting system. For smaller values of d,

the disk has less distance to travel before it will accrete onto the nearby point mass.

Furthermore, for smaller values of d the point mass will more effectively squeeze the disk

along the y-axis and stretch the disk along the x-axis (where the axes are defined as in

Figure 5.1). These processes combined cause two systems with equal values of Mc/d
2 but

different initial separations to behave differently. Specifically, the system with smaller d

will be more easily distorted by the nearby point mass, which is consistent with the results

of our simulations.

Calculation of the Roche limit also provides insight into the behavior of a collapsing

disk under the influence of a nearby massive object. In our nomenclature, the Roche limit

is the distance d at which an object with radius rd and mass Md will be torn apart by a

point mass Mc (Shu 1982). Specifically, it is the distance at which the tidal force from

the nearby point mass is equal to the force that causes the disk to collapse under its own

self-gravity. The calculation of the Roche limit depends on the density distribution of the

disk and is given by dR = κ(Md/Mc)1/3rd where κ = (8/3π)1/3 for the Maclaurin disk and

κ = 21/3 for the Mestel disk. In Figure 5.2 the Roche limit is denoted by a dashed line

with slope 3 in each panel. Note that the Roche limit approximately corresponds to the

separation between the weak and strong elongation. This further supports the distinction

between the regime in which the tidal disruption dominates the system behavior and the

regime in which self-gravitational collapse dominates the disk behavior.

The evolution of a Mestel and Maclaurin disks are very similar for a given disk-to-

point mass ratio and initial separation. However, the Mestel disks are slightly more easily

disrupted. Specifically, accretion and significant elongation occur at more modest mass
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ratios for a given initial separation, d. Comparison of the inside-out collapse of a Mestel

disk to the uniform collapse of the Maclaurin disk provides insight into why this is so.

The free-fall time for the outer portion of a Mestel disk is about 50% longer than that of

a corresponding Maclaurin disk. Therefore the exterior of the Mestel disk is exposed to

the tidal forces due to the nearby point mass for a longer period of time. In addition, the

Mestel disk has a longer amount of time to travel toward the massive particle before it

collapses, more easily coming near enough for edge accretion to occur. This difference is

also borne out by the Roche limit calculation: the power law coefficient κ is larger for the

Mestel disk which indicates that tidal disruption occurs at larger distances for the Mestel

disk than for the Maclaurin disk. It is important to note that although the outer regions

of the Mestel disk are more vulnerable to distortion and accretion, the interior of a Mestel

disk is extremely robust against tidal distortion. Even a Mestel disk that is stretched into

a filament (strong elongation) contains a massive core which is a remnant of the rapid

collapse of the inner portion of the disk.

5.3.3 Disk Density Enhancement

Figure 5.3 presents the maximum surface density enhancement factor for each simulated

Maclaurin disk over the course of the disk’s evolution or distortion. The density enhance-

ment factor Σ(t)/Σ0 is defined as the ratio of the mean surface density at time t to the

initial mean surface density. To calculate the mean surface density one of the outer rings

in the disk is identified as the boundary of the disk. The average surface density is then

the ratio of the mass contained interior to that ring (including the mass of the ring itself)

to the area of the convex hull that encircles all particles interior to the chosen ring. The

convex hull of a set of points is the smallest convex set that contains all of the points in the

set, and can be informally thought of as the polygon created by stretching a rubber band

around the outside of a set of points (Ripley & Rasson 1977). For the data presented in
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Figure 5.2: Maclaurin (upper panel) and Mestel (lower panel) disk collapse behavior as a function
of the mass of the point mass Mc in units of disk mass and the initial separation d in units of disk
radius. Filled circles correspond to disks that collapse to point-like objects with little or no distortion
due to the nearby massive point mass, Collapse. Filled ellipses correspond to disks that collapse
to filament-like structures under the influence of a nearby massive point mass, Weak Elongation.
Open ellipses correspond to disks that are tidally stretched to long filament-like structures under the
influence of a nearby point mass, Strong Elongation. Open circles correspond to disks that accrete
onto the nearby point mass before significant collapse occurs, Accretion. Solid lines separate the
portions of the M -d space in which systems exhibit significantly different collapse behaviors. The
dashed line in each panel indicates the Roche limit. The slopes α of the solid and dashed lines are
indicated in each panel.
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Figure 5.3 the boundary chosen to calculate the surface density enhancement factor is the

smallest ring containing at least 90% of the mass (We do not choose the ring that encloses

100% of the mass in order to reduce “edge effects” discussed in the Appendix).

As disk collapse proceeds the value of Σ(t)/Σ0 increases as the particles in the disk

approach the disk’s center. An artifact of the simulation technique is that some disk

particles pass close to the sink cell without entering it and continue outward on a radial path

away from the disk’s center. Thus the mean density reaches a maximum (at approximately

the analytic free-fall time for the disk collapse in isolation) and then begins to decrease.

This is not commensurate with the behavior of a fluid which continues to collapse until

pressure forces slow and eventually halt the collapse. Therefore, when a collapsing disk

reaches a maximum density we consider this to be the end of the collapse phase.

While the evolution scenarios give general information about the fate and morphology

of disrupted protoclusters, the surface density enhancement factor gives more detailed in-

formation about the amount of collapse that occurs within the protocluster. The disks that

collapse to a point with little to no distortion attain the highest values of Σmax/Σ0. The

Mestel disks attain values of Σmax/Σ0 which are significantly higher than the Maclaurin

disks. This again is due to the fact that the Mestel disk collapses from the inside-out.

The collapse produces a massive central core which is not even slightly distorted due to

the tidal stretching/squeezing of the nearby massive object. For larger values of Mc/d
2

the maximum density enhancement factor drops due to the more significant interactions

between the collapsing disk and the point mass. The filamentary structures created during

these interactions have much lower surface densities than the point-like structures. Disks

that do not collapse onto themselves but instead accrete directly onto the nearby point

mass have disk surface densities that decrease as a function of time, and thus attain values

of Σmax/Σ0 ∼ 1 near the beginning of the disk’s evolution.
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Figure 5.3: Maximum density enhancement factor as a function of initial disk-point mass configu-
ration in terms of Mc/d

2 (in units of Md/r
2
d) for the Maclaurin disk simulations. Plotting symbols

correspond to behavior of disk-point mass system as in Figure 5.2.

5.3.4 Disk Elongation

A final way of representing the difference between the evolution of disks in the presence

of a nearby massive particle is to compare the amount of disk distortion which occurs as the

disk collapses. Because the point mass is located on the x-axis, tidal forces cause the disks

to collapse along the y direction faster than along the x direction. Therefore, as the disk

evolves the ratio of the disks’ extent along the y-axis to its extent along the x-axis decreases

from the initial value of 1. Figure 5.4 displays the minimum axis ratio (Δy/Δx)min that

each simulated Maclaurin disk acquires during collapse. As is evident in the plot, the

larger the initial force value, the more effectively tidal forces squeeze and stretch the disk

as it collapses. The scatter in this plot is due to the geometric considerations discussed

in Section 5.3.2 which cause systems with small separation distances to be more severely

distorted due to tidal squeezing. Because the outer portions of a Mestel disk are bound less

tightly to the center of mass of the disk, Mestel disks develop significantly smaller values

of (Δy/Δx)min than do the Maclaurin disks with the same values of Mc/d
2.

164



Figure 5.4: Minimum axis ratio (Δy/Δx) as a function of initial disk-point mass configuration in
terms of Mc/d

2 (in units of Md/r
2
d) for the Maclaurin disk simulations. Plotting symbols correspond

to behavior of disk-point mass system as in Figure 5.2.

5.3.5 Disk Dispersal

It is important to note that even a disk which is substantially distorted due to the

interaction ultimately forms a dense structure. For the mass ratios and initial separations

considered in this study, the tidal forces are not violent enough to disperse the disk mass

into the background GMC. Instead the tidal forces determine the resulting geometry of the

dense structure. Even the most violent interactions between a disk and a point mass result

in the disk accreting onto the massive particle. We assume this point mass represents a high

density region. It is likely that this region is gravitationally unstable, or becomes so with the

additional accreted mass, and therefore will collapse into a dense structure as well. Thus,

for the considered range of initial conditions, gravitational interaction alone is incapable of

making dense structures (i.e., the disks) significantly less dense. The most destructive an

interaction can be is to collect nearby gas onto another dense structure. This effectively

moves the dense structures around but does not destroy them. Consequently, under the

influence of gravity alone, dense structures are destined to remain dense structures.

Our simulations assume that a protocluster starts in an initially cold state, that is there
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are no internal motions. Therefore, the initial conditions force our protoclusters to be

gravitationally bound objects. Thus, the final states of the tidally distorted protoclusters

are also gravitationally bound. In order to disperse the mass contained within these dense

objects a mechanism other than gravity must be invoked, for example winds from young

massive stars formed within or very near to the protocluster.

5.3.6 Moving Interactions

Observations indicate that GMCs are not quiescent static objects but rather they exhibit

moderate amounts of internal motion. For GMCs with sizes of 10−50 pc, the corresponding

clump to clump velocities are on the order of a few kilometers per second. Therefore, in

addition to the simulations described above, we complete simulations of the collapse of

Maclaurin disks that are initially moving with respect to the nearby massive particle.

This ensemble of simulations considers systems with particle-to-disk mass ratios of 10−

1000, initial separation distances of 5−10 pc, and initial relative velocities of 1−10 km s−1.

The angle between the x-axis and disk’s velocity vector varies from 15 to 45 degrees. We

found that for these initial conditions, the disk-point mass systems behaved in much the

same way as the corresponding zero velocity systems. The collapse times for the disks are

short (0.342 Myr) so that the disks do not travel a significant distance before collapse, and

therefore the non-zero velocities do not significantly change the behavior of the disk-point

mass system.

For the 60 simulations completed, over 80% of the systems with initial non-zero relative

velocities exhibited behavior patterns in the same category (as defined in Section 5.3.1) as

the corresponding system with an initial relative velocity of zero. Systems that did not

exhibit the same behavior as their zero velocity counterparts were slightly more interactive.

Specifically, the system with Mc = 1000Md, d = 7rd, and v0 > 0 km s−1 accreted onto the

nearby point mass. The disk had a positive initial velocity component in the direction of
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the point mass. This effectively reduced the separation distance d and shifted the position

of the system in the behavior diagram (Figure 5.2) to the left.

5.4 Discussion

5.4.1 Initial Central Concentration and Tidal Disruption

The results of our simulations imply that central concentration has a modest effect

on the evolution of disks in the presence of a massive perturber. Specifically the Mestel

disks, which are strongly centrally concentrated, have outer regions which are more easily

disrupted by the point mass than the Maclaurin disks. For a given disk to point mass

ratio, Mestel disks exhibit accretion onto the point mass and stronger elongation at larger

distances than the Maclaurin disks, due in large part to the longer free-fall time of the

outer portions of the Mestel disk.

While Mestel disks have exteriors that are more easily disrupted, their interiors collapse

rapidly producing a dense core (Section 5.3.3). In Mestel disks that are tidally stretched

into filaments, the result is a very dense inner core with little elongation that is surrounded

by an elongated lower density halo of material. On the other hand, Maclaurin disks which

are tidally stretched produce structures that are less centrally peaked and less strongly

elongated. Assuming stellar cluster structure reflects the initial protocluster structure, the

ONC is a good example of a dense centrally concentrated cluster with a relatively lower

density star-forming region surrounding it (O’dell 2001). NGC 1333 is a good example of a

cluster which shows moderate elongation (axis ratio ∼ 2 : 1) but a roughly constant density

in the central regions. (Gutermuth et al. 2008b). If NGC 1333 formed from a flattened

protocluster disk, it is likely that the disk was less centrally condensed and more closely

resembled a Maclaurin disk than a Mestel disk.

An important point to note is that the tidal zone outside of which disks can be considered

to collapse as if in isolation is the same for both Maclaurin and Mestel disks. The bottom
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line separating the collapse and weak evolution scenarios in the M -d plot (Figure 5.2 is

the same for both the Maclaurin disks (top panel) and the Mestel disks (bottom panel).

Thus, on the largest scales, disruption of the protocluster disk is not sensitive to the

specific surface density distribution. However, once a protocluster is within the tidal zone,

the amount of distortion the disk will experience does depend on the amount of central

concentration. The more centrally condensed disks have exteriors that are more easily

disrupted and interiors that are more robust against tidal distortion.

5.4.2 Effects of Other Physical Processes

The effects of pressure have not been included in the N -body simulations and will pro-

duce some modifications to the results presented here. As disk collapse proceeds, pressure

will increase and at the latest states of collapse may prevent the entire disk from collaps-

ing to a concentrated point. Therefore, actual protocluster disks will probably not have

mean surface densities that are as high as those reached by our simulated disks. In addi-

tion, tidal stretching of the protocluster gas will produce pressure enhancements along the

x-axis which may results in less compression in the y direction, producing clusters with

elongations less extreme than those quoted in Section 5.3.4.

Small deviations from a perfectly smooth initial density distribution will be magnified

during collapse and will likely cause fragmentation and lead to star formation (Klessen

& Burkert 2000; 2001; Heitsch et al. 2008). If O and B stars are formed within the

protocluster, strong winds produced by these stars may act to disrupt the protocluster

from the inside out, possibly halting star formation near the O and B stars and altering

the shape of the embeddeding gas. However, these effects take place at a later time in

cluster evolution than is considered in this investigation.

Our simulations considered protocluster disks composed of particles with zero initial ve-

locity. However, observations of protocluster sized cloud cores reveal unstructured internal
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velocities of ∼ 1 km s−1. These velocities are less than the escape speed from the edge of a

103 M� disk with a 1 pc radius which is ∼ 3 km s−1, and below the average speed required

for the protocluster disk to be in virial equilibrium ∼ 2 km s−1. Both the escape speed and

the virial speed increase as R−1/2
d as the disk collapses (and Rd decreases). Collapse pro-

ceeds rapidly (� 0.5 Myr) once a protocluster disk becomes gravitationally unstable and

thus it is unlikely that a significant fraction of the protocluster gas parcels will ’evaporate’

due to internal motions.

These internal motions however, will contribute to the internal structuring of the col-

lapsing cloud. The angular momentum associated with the internal motions will act to

rearrange the density enhancements within the collapsing protocluster and thus perhaps

give structure to the forming stellar cluster. These disordered motions may also work to

enhance or inhibit star formation within regions of the collapsing disk. However, unless the

internal motions are well ordered so that the total angular momentum of the disk is much

greater than zero the angular momentum from the internal motions will not be capable of

supporting the protocluster against gravitational collapse, or changing the gross geometry

of the cluster.

5.4.3 Applications in Cluster-Forming Regions

With recent advances in infrared telescopes, and most recently, with the Spitzer Space

Telescope there has been a shift in our understanding of the distribution of young stars

within molecular clouds. These higher sensitivity observations reveal that clusters of young

stars are not usually isolated within molecular clouds but often have neighboring smaller

clusters which were previously unidentified. Examples of regions where clusters appear

to be forming near other clusters include the Perseus molecular cloud, Orion A, and the

region surrounding Mon R2 (Kirk et al. 2006; Allen 1995; Gutermuth et al., in prep.)

Our simulations allow us to estimate the regions around massive clusters where we
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should not expect smaller clusters to successfully form from flattened protocluster clouds.

If we consider the system from the perspective of the more massive disrupting point mass,

our calculations allow us to define a “tidal zone” around the dense region or massive

protocluster that the point mass represents. Within this tidal zone smaller clusters cannot

form without significant disruption or distortion. The tidal zone’s size depends on the

mass and radius of the collapsing protocluster. Specifically, the size of the tidal zone

around a given massive object increases as the mass of the collapsing protocluster decreases.

In addition, the size of the tidal zone increases as the initial radius of the protocluster

increases. This is consistent with the Roche calculation where d ∼M
−1/3
d rd.

Recall that the high density disrupting object is treated as point mass in our simulations.

This overestimates the strength and focusing of the force the disrupting object has on

the collapsing protocluster (assuming that the disrupting object is not exactly spherically

symmetric). Therefore, the estimates of the outer region of the tidal zones presented here

are upper limits. That is, the tidal zones may in fact be smaller and the tidal distortion

less apparent.

Consider a point mass of 104 M� a distance d parsecs away from the center of a

103 M� Mestel disk truncated at a radius of 1 pc. Figure 5.2 indicates that if the disk

center lies within ∼ 2 pc of the point mass, it will accrete onto the point mass. However,

if the disk center is between ∼ 2 and 4 pc from the point mass, the disk will collapse while

being elongated into a filament-like structure. If the disk center is more than ∼ 4 pc from

the point mass, the disk will collapse axisymmetrically, as if in isolation. Therefore our

calculations indicate that a 104 M� cluster should not have surviving neighbor clusters of

103 M� within ∼ 2 pc.

The Roche limit for a 103 M� Mestel disk with a radius of 1 pc in the presence of a

104 M� point mass is dR = 2.71 pc. Therefore the Roche limit falls neatly inside the region
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where disk disruption is significant. However, our simulated disks exhibit some distortion at

slightly larger distances (∼ 4 pc) than the analytic calculation. This is because the Roche

calculation ignores the effect of the disk accelerating toward the massive particle as it

collapses, and thus underestimates the effect of the gravitational force on the protocluster.

The Maclaurin disk is even more robust against accretion onto the nearby point mass

due to its shorter free-fall time. A 103 M� Maclaurin disk with radius 1 pc will accrete

onto a nearby 104 M� point mass only if the separation distance is less than ∼ 1.5 pc. If

the separation distance is between ∼ 1.5 pc and ∼ 4 pc the Maclaurin disk will collapse

into a filament-like structure, whereas if the separation distance is greater than ∼ 4 pc,

the disk will collapse as if in isolation. Thus, for both the Maclaurin and Mestel disks, the

“tidal zone” in which collapsing protoclusters of 103 M� are compromised is ∼ 4 pc from

a 104 M� high density region.

Estimates of this kind are applicable when we consider the distribution of clusters

within molecular clouds. For instance, these estimates are consistent with observations

of the Perseus molecular cloud which reveal the cluster B5 forming in close proximity to

the IC 348 region. Kirk et al. (2006) presented an extinction map of the Perseus star-

forming region derived from the Two Micron All Sky Survey images created as a part of

the COMPLETE survey (Ridge et al. 2006). They identified 11 “super cores” within this

map, including the B5 and IC 348 star-forming regions. These large, high density cores

are similar to the types of protoclusters our simulations considered.

In this region a 103 M� cluster (B5) appears to be forming near the 2 × 103 M� IC

348 cluster. According to Figure 5.2, we should expect to find a 103 M� cluster surviving

near a 2 × 103 M� only if it is at least 2.5 − 3 pc away. Assuming a distance to Perseus

of 250 ± 50 pc, the separation of IC 348 and B5 is approximately 4.5 ± 0.9 pc away (in

projection) and therefore B5 is safely outside of the tidal zone surrounding IC 348.
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Another region where our estimates are applicable is in the region containing Mon R2.

Observations of this region indicate smaller clusters surrounding the main Mon R2 cluster.

The main Mon R2 cluster contains a total mass (in stars and gas) of ∼ 1700 M� and has an

effective rations of 3 pc (assuming an average stellar mass of 0.5 M� and an extinction to

mass conversion of 1 AV pc−2 = 15 M�). Therefore, from Figure 5.2 clusters with masses

greater than 103 M� should not form within about 1 − 2 pc of the main Mon R2 cluster.

No clusters are found within 1 − 2 pc of the main Mon R2 cluster. In fact, the nearest

region forming groups of stars is ∼ 3.7 pc (in projection) to the east of the center of Mon

R2 and has a mass of ∼ 135 M� and a radius of 1 pc (Gutermuth et al., in prep). Using

the Roche limit calculation, we find that the tidal zone in which a 135 M� cluster with

radius may be disrupted in the presence of a 1700 M� point mass is 2− 3 pc depending on

the disk density distribution chosen. Assuming the results of our simulations scale down in

mass as the Roche calculation does, the estimated tidal zone is somewhat larger, ∼ 4 pc.

Thus we predict that a protocluster at a distance of 3.7 pc should collapse as if in isolation

and not be significantly disrupted by the neighboring 1700 M� cluster.

In regions containing significant amounts of distributed gas, such as the region in L1641

south of the Orion Nebula Cluster (ONC), collapse disruption due to nearby massive objects

(in this case the ONC) may be less effective than estimated by these simulations. In this

region there is a string of stellar clusters that have developed near one another and near the

ONC (Allen 1995; Allen et al. 2007). Dense gas distributed around the protocluster is likely

to wash out the gravitational force felt by a collapsing protocluster due to a nearby massive

object. This may allow clusters to form nearer each other than one would estimate solely

based on the mass and proximity of the nearest massive neighbor. Therefore, care should

be taken when applying the estimates presented here to significantly gas-rich regions.

A rough estimate of the average background density required to change the results of
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our simulations can be made by assuming the background gas has a uniform density n0.

The force on a protocluster from a 104 M� point mass a distance 4 pc from the protocluster

center equals the force on the protocluster due to sphere of gas with radius 4 pc centered

4 pc from the protocluster if n0 ≈ 750 cm−3 (assuming the gas is composed of molecular

hydrogen). 4 pc is the edge of the tidal zone for a 103 M� protocluster near a 104 M� point

mass. Thus background gas densities higher than this may begin to wash out the effects

of nearby massive perturbers. However, the densities required for the forces to be equal

scale as n0 ∼ d−3. So for the background gas to have as much influence on the disk as

a 104 M� point mass 2 pc from the protocluster, a much higher average gas density of

n0 ≈ 6000 cm−3 is required. Typical densities in GMCs range from 102 to 103 cm−3 (Liszt

et al. 1981). In the higher density regions, which often exhibit clustered star formation,

densities may reach 5 − 15 × 103 cm−3 (Kirk et al. 2006), and so it is in these denser

regions of GMCs that our simulations may overestimate the effects of nearby perturbers

on protocluster evolution.

Tidal zone estimates of the kind presented here may be applied to other rich star-

forming regions such as the Cyguns X region which contains many clusters as well as many

sites of current star formation (Schneider et al. 2006, and references therein).

5.5 Summary

Our calculations of the collapse of protoclusters in GMCs provide the framework in

which to identify regions where protocluster collapse can be assumed to proceed as if in

isolation. The following conclusions can be drawn from the results of our simulations:

• Depending on the geometry and strength of the interaction, protocluster disks either

collapse as if in isolation, are weakly or strongly elongated, or are accreted by the

neighboring point mass. The outcomes of our simulations are presented in Figure 5.2

and are consistent with the Roche limit estimates of disruption.
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• The amount of disk disruption due to a nearby massive particle depends most sensi-

tively on the mass of and distance to the particle and less sensitively on the distribu-

tion of material within the protocluster disk.

• The tidal zone defined by the separation between collapse and elongation evolu-

tion scenarios does not sensitively depend on how centrally concentrated the disk

is. Maclaurin (weakly centrally concentrated) and Mestel (strongly centrally concen-

trated) disks have tidal zones that are roughly the same for a given disk to point mass

ratio.

• The interior of disks that are initially more centrally condensed are more robust

against tidal distortion than those that are less centrally condensed. Therefore, for

flattened protoclusters that formed from density distributions that were centrally

peaked, it is likely that once the it becomes unstable against gravitational collapse,

the inner portion of the disk will continue to collapse, even in the presence of another

massive object.

• On account of both the short collapse times of protoclusters and the modest clump

to clump velocities observed in GMCs, the interaction outcomes do not depend sig-

nificantly on the relative velocity between the protocluster and the point mass.

• In systems with conditions consistent with those observed in GMCs, gravitational

interactions alone only produce density enhancements within the protoclusters. Thus,

tidal stripping does not significantly disperse mass from the condensing disk.
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CHAPTER VI

Conclusions

Over the past three decades, a working theory of star and planet formation has been

constructed, with the major successes of the theory applying specifically to the formation

of single, isolated stars (e.g., Shu et al. 1987). Recent advances in infrared astronomy have

unveiled star-forming regions in dramatic detail, revealing that most stellar nurseries con-

tain clusters of young stars embedded in dark dusty clouds of molecular gas (Lada & Lada

2003; Porras et al. 2003; Allen et al. 2007). These observations raise a fundamental question

in star and planet formation: if stars form in clusters, how does that clustered environ-

ment affect star formation and subsequent planet formation in the disks surrounding young

stars? My thesis research addresses this question by characterizing young cluster evolution

and determining how effective the cluster environment is at disrupting circumstellar disks

and young solar systems.

Since the first discovery of a planet orbiting another main sequence star in 1995, the

list of extrasolar planets has grown to over 340, including solar systems very different

from our own. Understanding the interaction between planetary formation and the cluster

environment is a crucial step in our quest to understand these systems. In young clusters,

the planet-forming disks may be quickly evaporated by UV light from nearby massive

stars (Johnstone et al. 1998; Shu et al. 1993; Störzer & Hollenbach 1999; Adams et al.

2004). Alternatively, portions of the disk may be disrupted or stripped away during close
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encounters with other cluster members (Heller 1993; Ostriker 1994; Kobayashi & Ida 2001).

Each of these processes inhibits planet formation within the disk. Furthermore, assuming

that a solar system is able to form, a later encounter with another cluster member may

jostle the planets out of stable orbits around their host star, or otherwise change the

architecture of the planetary system.

This research has focused on the dynamics of young stellar clusters like those found in

our solar neighborhood, that is, clusters with intermediate sizes, N ∼ 100 − 3000, that

are embedded in molecular gas during their earliest evolutionary states, and contain stars

that initially have subvirial velocities. In Chapter II, we undertook an initial survey of the

dynamical evolution of young stellar clusters, specifically comparing subvirial and virial

clusters. In addition, we presented calculations of scattering cross sections for disrupting

planetary systems and distributions of the FUV luminosities expected in these young clus-

ters. Our work indicates that, when compared to virial clusters, clusters with subvirial

initial velocities are more interactive and have members that are exposed to stronger radi-

ation fields. This finding indicates that planet formation in subvirial clusters is more easily

compromised by the cluster environment. However, even in subvirial clusters, the interac-

tion rates and radiation levels are relatively low, so that planet formation is only modestly

affected by the cluster environment. In Chapter III, we presented the results of a larger

parameter space survey in which we systematically studied cluster evolution as a function

of initial conditions commonly found in nearby stellar clusters. Armed with our statistical

descriptions of the dynamics of the embedded clusters (e.g., the close encounter distribu-

tions and the radial profiles), we discussed the implications of specific cluster environments

on planetary formation.

Motivated by observations of elongation in many young embedded clusters and by re-

cent kinematic observations of the Orion Nebula Cluster (ONC), we completed a series of
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simulations to explore the kinematic signatures produced by the combination of subvirial

initial velocities and nonspherical cluster geometries. In Chapter IV, we present a robust

kinematic signature that is naturally produced in elongated subvirial clusters: elongated

clusters with subvirial initial conditions display a gradient in the radial velocities as a func-

tion of projected position along the cluster’s major axis. We characterize this signature

as a function of cluster elongation, star-formation efficiency, and initial virial state. In

addition, we discuss how the strength and shape of the kinematic signature varies due to

observational conditions including extinction and projection. Finally, we compared radial

velocity measurements of stars in the ONC to the kinematic signature identified in our

simulated clusters and found good qualitative agreement, which is an indication that the

stars in the ONC were likely formed with subvirial initial velocities and that the ONC is

still in a dynamically young state. This study underscores the need to include both sub-

virial initial conditions and nonspherical (e.g., triaxial) gravitational potentials in cluster

studies.

In Chapter V we considered a larger physical system, and focused on the interaction

of protocluster clouds. This work still addresses the overarching theme concerning the

effects of environment on the formation of astrophysical objects. We studied the collapse

of protocluster clouds under the influence of other nearby massive protocluster clouds (or

clusters) embedded within the same giant molecular cloud (GMC). Our work concentrated

on flattened cloud geometries and discussed the effectiveness of the GMC environment at

disrupting and/or preventing protocluster collapse. These highly flattened cluster mass

objects are called “disks”, although they represented a much larger scale than circumstel-

lar disks that form planets. We found that centrally concentrated disks were quite robust

against tidal distortions and that, due to a combination of the short collapse times of pro-

tocluster disks and the modest densities of dense massvie objects in GMCs, the assumption
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that protocluster collapse occurs as if in isolation is valid in most GMC environments.

This thesis has resulted in two important contributions to the study of young stellar

cluster evolution. First, we have demonstrated the importance of including subvirial initial

velocities in simulations of young cluster dynamics, as well as the need to break spherical

symmetry. Subvirial starting states result in clusters that are more interactive than those

which are initially assumed to be in virial equilibrium. These subvirial clusters provide

environments in which planet formation may be more easily compromised. In addition,

elongated clusters with subvirial initial velocities produce observable kinematic signatures

that linger in the clusters throughout the embedded stage. These kinematic signatures

may be used to constrain the initial virial state of observed clusters which can, in turn,

inform theories of cluster and star formation.

Second, our work has underscored the need for multiple realizations of cluster simu-

lations in order to accurately describe cluster evolution. Intermediate-sized young stellar

clusters are intrinsically chaotic and each simulation results in a slightly different set of the

output measures that characterize the cluster’s evolution. These variations are naturally

due to under-sampling of the distributions which describe young clusters, e.g., the initial

mass function, the radial distribution of stellar positions, the velocity distribution, etc. By

performing a large ensemble of realizations of the same cluster configurations, we are able

to identify the average evolution of a cluster with a specific initial configuration and the

distribution of possible output parameters that may result from that configuration. Most

importantly, this approach allows us to discuss the general effects that cluster environment

may have on planet formation without relying on the specific dynamics of individual cluster

realizations.

Although we have completed a large parameter space survey, the range of initial con-

ditions observed in young clusters is quite vast. In light of the results of Chapter IV,
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which indicate that elongated subvirial clusters produce interesting observable kinematic

signatures, and recent observations of the geometries in young clusters (e.g., Teixeira et al.

2006; Allen et al. 2007), perhaps the most interesting future direction in which to take

this research is to study cluster dynamics under different assumptions of initial geometries.

Specifically, the stellar distributions and embedding gas profiles should be generalized to

include flattened and filamentary structures like those observed in nearby star-forming re-

gions. Some progress toward this goal has already been made, including the development

of a triaxial version of uniform and centrally concentrated gas potentials that can be in-

cluded in the cluster simulations (Adams et al. 2007; Proszkow et al. 2009). However, a

systematic study of the effect of initial geometry, such as the one presented for other initial

cluster parameters in Chapter III, should be undertaken and is left for future studies.

With each new astronomical observation of young stellar clusters, our understanding of

star-forming environments is honed, revealing cluster-to-cluster diversity while reinforcing

underlying common elements such as elongated structure, subvirial stellar velocities, mod-

erate levels of mass segregation, and rapid molecular gas removal. This work has come

at an opportune time when observations can motivate simulations, and simulations can

in return clarify observations and contribute to our understanding of the early stages of

cluster evolution and planetary formation within young stellar clusters.
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APPENDIX A

Summary of N-Body Simulations

Table A.1 provides a summary of all of the N -body simulations included in this thesis.

The simulations were completed with a modified version of the NBODY2 code developed

by Aarseth (2001). Column (1) contains a name for the simulation or set of simulation

described in each row. Column (2) indicates the cluster membership, N . Column (3)

indicates the cluster geometry, “Sph” corresponds to a spherical geometry and “PSph”

corresponds to a prolate spheroidal geometry. For clusters which are shaped like prolate

spheroids, the aspect ratio is indicated in the simulation name. Column (4) contains

the cluster radius, Rc in parsec. Column (5) contains the density profile of the stellar

distribution in the cluster, ρ∗, centrally concentrated or uniform density. Column (6)

indicates the amount of primordial mass segregation in the cluster, Fseg ≡ Nbound/N .

Minimal mass segregation is indicated by “Min” and corresponds to the initial configuration

in which the largest star is located at the center of the cluster. Column (7) indicates the

average stellar mass in the cluster, MT∗ = N〈m〉∗. Column (8) contains the initial virial

parameter Qi ≡ |K/W |. Column (9) contains the density profile of the stellar distribution

in the cluster, ρgas. “UniS”, “SphH”, and “TriH” correspond to a uniform density spheroid,

spherical Hernquist profile, and triaxial Hernquist potential respectively. Column (10)

indicates the time of instantaneous gas removal, tgas. Column (11) contains the total star

formation efficiency εSF of the cluster. Column (12) indicates which parameter (if any) is
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varied over the set of simulations (for Chapters III and IV). Finally, column (13) references

the chapter in which the simulations and their results are discussed.
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APPENDIX B

The Use of N-Body Simulations to Study Gaseous Disk
Collapse

In this Appendix we discuss the use of N -body simulations to calculate the dynamics

of a collapsing gaseous disk. We provide the results from the simulated collapse of iso-

lated Maclaurin and Mestel disks using an N -body code. Analytic treatments of collapsing

gaseous systems provide generalized descriptions of collapse behavior by employing ideal-

ized geometries, density distributions, simplifying approximations, etc. However, analyses

of this kind are limited by the very approximations that make them possible. On the other

hand, fluid dynamics codes are capable of simulating various initial geometries and may

include more complex physical processes such as gas pressure, drag forces, or interactions

with magnetic fields, etc. N -body simulations are computationally much more efficient

than fluid dynamics codes and can be used with care to simulate the behavior of gaseous

(or gas dominated) systems. Toomre & Toomre (1972) is a classic example of using an N -

body simulation (specifically, a restricted three-body simulation) to study the dynamics of

interacting galaxies. More recently, full N -body simulations have been employed to study

galaxy interactions in the stellar-dynamical limit (Hernquist 1993).

Modeling the behavior of a gaseous disk with an N -body code requires that care be

taken when configuring the initial conditions and interpreting the results of the simulation.

The initial configuration should minimize the scattering interactions that occur. This is
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accomplished by choosing an axisymmetric ring configuration where particles in each ring

have equal mass. Specifically, the simulated disk contains a central point mass and 25 rings

of 32 equal mass particles. The total mass of each ring is then varied to produce a a 103

M� disk with radius 1 pc a desired initial density distribution.

The number of particles N chosen to represent the protocluster was determined by two

competing factors: N must be large enough that the particles represent the smoothness

of the density distribution and small enough to minimize particle-particle scattering inter-

actions. We found that a choice of N ∼ 800 produces a disk distribution that was both

smooth enough to model accurately the behavior of the isolated disks and sparse enough to

minimize the number of scattering interactions which occurred during the collapse simula-

tion. For example, a disk with N ∼ 500 particles had initial mass and force profiles with

errors larger than the N ∼ 800 disk. We compared simulations of disks with N ∼ 2000

and N ∼ 800 particles. We found that the evolution of both disks were very similar during

the first half of the collapse, but at later times the N ∼ 2000 disk had larger errors in their

mass profiles and collapse times (when compared to the analytic solution) due to more

frequent scattering interactions in the higher number density regions of the disk.

Another consideration when calculating the dynamics of fluids with N -body simulations

is that the simulated behavior and conclusions drawn from that behavior should be consis-

tent with the behavior of fluid systems. A consequence of using the N -body simulation is

that as the disk of particles collapses, particle-particle interactions will allow some particles

to pass through the center of mass and continue on a radial path outward. This collapse

and subsequent expansion is an artifact of the simulation method. In a fluid system, mass

collapses directly toward the center of mass until the pressure gradient becomes too large

and collapse is slowed. Therefore, to simulate accretion in the N -body code, we have

implemented a sink cell algorithm.
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This algorithm allows the central particle in the disk to inelastically “absorb” the mass

of any particle that comes within the sphere of radius rsink surrounding the central particle.

Experimentation with values of this fiducial radius resulted in the choice of rsink = 0.049 pc

≈ 10, 000 AU. We required that the sink cell radius be small enough that it encompasses

only the central particle at t = 0, and large enough that it maximized the number of

disk particles that entered the sink cell during the simulation. For the test calculations

of isolated Maclaurin and Mestel disks, more than 90% of the disk particles collapse from

their initial position within the disk directly into the sink cell.

We model the continuous disk as a set of discrete particles arranged in an axisymmetric

ring structure. The ring spacing, ring mass, and central particle mass are chosen so that

these disks have radially averaged mass and force profiles that are in close agreement with a

Maclaurin and Mestel profiles. Specifically, the simulated Maclaurin and Mestel disks have

errors of 2.4% and 3.2% in their initial mass profiles, respectively. The initial force profiles

have errors of 6.0% and 10.0%, respectively. These percent errors in the mass and force

profiles are calculated as the r.m.s. error in the profile divided by M(r1/2) and F (r1/2)

where r1/2 is the initial half-mass radius of the Maclaurin or Mestel disk.

One of the problems inherent in representing a fluid disks as set of discrete particles is

that the inner and outermost portions of the particle disk suffer from “edge effects” caused

by the discrete nature of the ring structure. That is, these portions of the disks have mass

and force profiles that differ from the edge of the analytic solutions. These “edge effects”

are visible in the initial mass profiles depicted in Figure B.2 and in the calculated free-fall

times in Figure B.1. We found that these effects do not propagate throughout the system

but remain confined to their respective regions of the disk. Therefore, we can overcome

these “edge effects” by describing the evolution of the disk without considering the inner

and outermost regions in the description.
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Thus, throughout this paper the descriptions of disk behavior do not include the inner-

most or outermost ring of the Maclaurin disk. The region of interest for collapse behavior is

r1 < r < r25 for a disk with 25 rings, where ri is the radius of the ith ring. The Mestel disk

has the property that the equation of motion for a particle in the disk depends only on the

mass interior to the ring containing that particle (Mestel 1963). This is not generally true

for disk systems, but the Mestel disk is a special case where Gauss’s law in disk geometry

does hold. This allows us to embed the Mestel disk we are interested in simulating within

a larger Mestel disk without changing the behavior of the smaller interior disk. Therefore,

instead of ignoring the outer rings in the determination of disk behavior, we initially em-

bed the Mestel disk in a larger disk with Rlarge = 1.5rMestel, which effectively moves the

“edge effects” outside of the region of interest (r ≤ rMestel), and then consider the entire

small Mestel disk except for the innermost ring (r1 < r ≤ rMestel). It is worth noting that

more than 90% of the mass within the Maclaurin and Mestel disks is contained within the

regions of interest defined above and thus only a small fraction of the disk suffers from

these “edge effects”.

The test calculations of disk collapse considered isolated Mestel and Maclaurin disks

with initial radii of rd = 1.0 pc and total masses of Md = 1000 M�. Analytic solutions to

the pressure-free collapse of these systems exist and we compare our simulated results to

the analytic solutions. For these initial conditions, the free-fall time for a Maclaurin disk

0.342 Myr independent of initial position within the disk. The Mestel disk has a free-fall

time for a test mass initially at r of tff(r) = 0.526r Myr. The resulting free-fall times for

the simulated disks are plotted in Figure B.1 as a function of initial position of the particle

within the disk. The free-fall time for a particle is defined as the time that the particle

enters the sink cell. For particles that do not enter the sink cell, the free-fall time is the

time at which the particle passes closest to the disk’s center.
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Figure B.1: The free-fall time for each particle in the simulated collapsing disk is plotted as a
function of the initial radial position of the particle within the disk (diamonds). The upper (lower)
panel displays the data from the Maclaurin (Mestel) disk simulation. Solid lines correspond to the
analytic free-fall time calculated from the collapse solution for each initial surface density profile.

The “edge effects” are clearly seen in the free-fall times of the inner and outer rings in

the Maclaurin disk. The error in the calculated free-fall times is 3.4% and 2.4% for the

Maclaurin and Mestel disks respectively. This error is calculated by dividing the r.m.s.

error by the free-fall time of a particle initially at the half-mass radius. By choosing to

consider the regions of interest described above, the errors in the simulated behavior are

reduced. For instance, if the entire disk was considered in the calculation of the free-fall

times, the errors for the Maclaurin and Mestel disks would be 4.6% and 2.7%, respectively.

Figure B.2 depicts the evolution of the cumulative mass profiles for the collapsing

Maclaurin (top panel) and the Mestel (bottom panel) disks. The solid curves correspond

to the cumulative mass profiles of the simulated disk at t = 0.0, 0.2, 0.4, 0.6, and 0.8tff .

The dashed curves correspond to the analytic solution for the cumulative mass profiles of

the collapsing disk at the corresponding times. It is clear from this plot that discrepan-

cies in the mass profile which are relics of the initial discrete particle configuration remain
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throughout the simulation. However, the error is contained in the outermost rings, and

does not significantly affect the evolution of the bulk of the disk. At each time step, the

mass profile agrees well with the analytic solution out to a fraction of the disk radius,

and this fraction does not change significantly over time. The errors in the mass profiles

range from 2.4%−6.1% and 3.2%−7.4% for the Maclaurin and Mestel collapse simulations

respectively for t ≤ 0.8 tff , where the percent error in the mass profile is defined as the

r.m.s. error in the profile divided by half of the total disk mass.

The error in particle positions was also calculated as a function of time. At a particular

time and for a particular ring of particles in the disk, we calculate the r.m.s. error in the

positions of the particles with respect to the analytic collapse solution. The r.m.s. error

is scaled by the distance that the ring has collapsed, resulting in a percent error in the

position of a ring at a particular time. For the Maclaurin disk, the errors in the simulated

ring positions range from 0.13 − 39.19% (with a mean of 7.04%) if we consider all rings,

and all times. However, the largest percent errors occurred in the inner-most rings and

at times close to the collapse time for the ring. If instead, we consider the region of the

disk between rings 3 and 23 and times less than 0.75tff the errors in ring positions range

from 0.13% − 9.95% (with a mean of 5.01%). This calculation was also completed for

the simulated Mestel disk. Considering all rings and times, the errors in the simulated

particle positions ranged from 0.14 − 16.88% (with a mean of 5.53%). If only the portion

of the disk between rings 3 and 24, and times less than 0.75tff are considered, the errors

in ring positions range from 0.14 − 12.46% (with a mean of 5.11%). Therefore, the bulk

of the particles in the simulated Maclaurin and Mestel disks have small positional errors

throughout most of the simulation. A summary of the errors in the simulated collapsing

disks when compared to the pressure-free analytic collapse solutions is provided in Table

B.1.
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Figure B.2: Top panel displays cumulative mass distributions for the Maclaurin disk at times
t = 0, 0.2, 0.4, 0.6, and 0.8 tff (in order from right to left). Thicker curves correspond to later
times. The solid curve corresponds to the simulated data while the dashed curve corresponds to
the analytic solution for the cumulative mass distribution at the corresponding times. Cumulative
mass distributions for the Mestel disk at the same times are displayed in the bottom panel.

Table B.1: Simulation Errors

Maclaurin Disk Mestel Disk
Initial Force Profile, F (r)/m 6.0% 10.%
Free Fall Time, tff 3.4% 2.4%
Initial Mass Profile, M(r, t = 0) 2.4% 3.2%
Mass Profiles, M(r, t ≤ 0.8tff ) 2.4 - 6.1% 3.2 - 7.4%

190



These test simulations provide evidence that our N -body code is indeed useful for

studying systems of collapsing disks. We were able to reconstruct with our simulations

disks of discrete particles that behaved as the corresponding gaseous disk with the smoothed

surface density distribution behaves. These simulations brought to light the “edge effects”

that our discrete systems displayed while at the same time revealing that those effects truly

remained on the edge of the disks. Therefore, they can be consciously worked around by

defining the region of interest as the inner portion of the disk. In addition, the particles

in our simulation underwent very few particle encounters during the time leading up to

the disk collapse indicating that the choice of the axisymmetric ring distribution succeeded

in eliminating the scattering effect of random particle-particle interactions. And finally,

our calculated initial force profiles, free-fall times, mass profiles, and particle positions

agreed well with analytic solutions justifying use of this simulation method for calculation

of Maclaurin and Mestel disk systems.
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Piskunov, A. E., Kharchenko, N. V., Röser, S., Schilbach, E., & Scholz, R.-D. 2006, A&A,
445, 545

Porras, A., Christopher, M., Allen, L., Di Francesco, J., Megeath, S. T., & Myers, P. C. 2003,
AJ, 126, 1916

Portegies Zwart, S. F., Hut, P., Makino, J., & McMillan, S. L. W. 1998, A&A, 337, 363

Press, W. H., Flannery, B. P., & Teukolsky, S. A. 1986, Numerical recipes. The art of scientific
computing (Cambridge: University Press, 1986)

Proszkow, E.-M., Adams, F. C., Hartmann, L. W., & Tobin, J. J. 2009, ApJ, 697, 1020

Proszkow, E.-M. & Myers, P. C. 2008, ApJ, 683, 226

Quillen, A. C., Thorndike, S. L., Cunningham, A., Frank, A., Gutermuth, R. A., Blackman,
E. G., Pipher, J. L., & Ridge, N. 2005, ApJ, 632, 941

Rasio, F. A., McMillan, S., & Hut, P. 1995, ApJ, 438, L33

Richtmyer, R. D. 1978, Principles of Advanced Mathematical Physics (New York: Springer-
Verlag, 1978)

Ridge, N. A., Di Francesco, J., Kirk, H., Li, D., Goodman, A. A., Alves, J. F., Arce, H. G.,
Borkin, M. A., Caselli, P., Foster, J. B., Heyer, M. H., Johnstone, D., Kosslyn, D. A., Lom-
bardi, M., Pineda, J. E., Schnee, S. L., & Tafalla, M. 2006, AJ, 131, 2921

Ripley, B. D. & Rasson, J. P. 1977, J. Appl. Prob., 14, 483

Ryden, B. S. 1996, ApJ, 471, 822

Salpeter, E. E. 1955, ApJ, 121, 161

Scally, A. & Clarke, C. 2001, MNRAS, 325, 449

Schaller, G., Schaerer, D., Meynet, G., & Maeder, A. 1992, A&AS, 96, 269

198



Schmeja, S. & Klessen, R. S. 2006, A&A, 449, 151

Schneider, N., Bontemps, S., Simon, R., Jakob, H., Motte, F., Miller, M., Kramer, C., &
Stutzki, J. 2006, A&A, 458, 855

Shu, F. H. 1977, ApJ, 214, 488

—. 1982, The physical universe. an introduction to astronomy (A Series of Books in Astron-
omy, Mill Valley, CA: University Science Books, 1982)

Shu, F. H., Adams, F. C., & Lizano, S. 1987, ARA&A, 25, 23

Shu, F. H., Johnstone, D., & Hollenbach, D. 1993, Icarus, 106, 92

Smith, K. W. & Bonnell, I. A. 2001, MNRAS, 322, L1

Solomon, P. M., Rivolo, A. R., Barrett, J., & Yahil, A. 1987, ApJ, 319, 730

Sterzik, M. F. & Durisen, R. H. 1998, A&A, 339, 95

Störzer, H. & Hollenbach, D. 1999, ApJ, 515, 669

Strom, K. M., Strom, S. E., & Vrba, F. J. 1976, AJ, 81, 308

Sugitani, K., Tamura, M., & Ogura, K. 1995, ApJ, 455, L39+

Szentgyorgyi, A. H., Cheimets, P., Eng, R., Fabricant, D. G., Geary, J. C., Hartmann, L.,
Pieri, M. R., & Roll, J. B. 1998, in Presented at the Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference, Vol. 3355, Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, ed. S. D’Odorico, 242–252

Tafalla, M., Myers, P. C., Caselli, P., Walmsley, C. M., & Comito, C. 2002, ApJ, 569, 815

Teixeira, P. S., Lada, C. J., Young, E. T., Marengo, M., Muench, A., Muzerolle, J., Siegler,
N., Rieke, G., Hartmann, L., Megeath, S. T., & Fazio, G. 2006, ApJ, 636, L45

Terlevich, E. 1987, MNRAS, 224, 193

Testi, L., Palla, F., & Natta, A. 1998, A&AS, 133, 81

—. 1999, A&A, 342, 515

Theuns, T. 1991, Memorie della Societa Astronomica Italiana, 62, 909

Thies, I., Kroupa, P., & Theis, C. 2005, MNRAS, 364, 961

Tobin, J. J., Hartmann, L., Furesz, G., Mateo, M., & Megeath, S. T. 2009, ArXiv e-prints

Toomre, A. & Toomre, J. 1972, ApJ, 178, 623

Verschueren, W. & David, M. 1989, A&A, 219, 105

Vrba, F. J., Strom, K. M., Strom, S. E., & Grasdalen, G. L. 1975, ApJ, 197, 77

Walker, M. G., Mateo, M., Olszewski, E. W., Bernstein, R., Sen, B., & Woodroofe, M. 2007,
ApJS, 171, 389

Walsh, A. J., Myers, P. C., & Burton, M. G. 2004, ApJ, 614, 194

Walsh, A. J., Myers, P. C., Di Francesco, J., Mohanty, S., Bourke, T. L., Gutermuth, R., &
Wilner, D. 2007, ApJ, 655, 958

Weaver, R., McCray, R., Castor, J., Shapiro, P., & Moore, R. 1977, ApJ, 218, 377

199



Whitney, B. A., Sewilo, M., Indebetouw, R., Robitaille, T. P., Meixner, M., Gordon, K.,
Meade, M. R., Babler, B. L., Harris, J., Hora, J. L., Bracker, S., Povich, M. S., Churchwell,
E. B., Engelbracht, C. W., For, B.-Q., Block, M., Misselt, K., Vijh, U., Leitherer, C., Kawa-
mura, A., Blum, R. D., Cohen, M., Fukui, Y., Mizuno, A., Mizuno, N., Srinivasan, S., Tielens,
A. G. G. M., Volk, K., Bernard, J.-P., Boulanger, F., Frogel, J. A., Gallagher, J., Gorjian,
V., Kelly, D., Latter, W. B., Madden, S., Kemper, F., Mould, J. R., Nota, A., Oey, M. S.,
Olsen, K. A., Onishi, T., Paladini, R., Panagia, N., Perez-Gonzalez, P., Reach, W., Shibai,
H., Sato, S., Smith, L. J., Staveley-Smith, L., Ueta, T., Van Dyk, S., Werner, M., Wolff, M.,
& Zaritsky, D. 2008, AJ, 136, 18

Whitworth, A. 1979, MNRAS, 186, 59

Whitworth, A. P. 2005, in Cores to Clusters: Star Formation with Next Generation Telescopes,
ed. M. S. N. Kumar, M. Tafalla, & P. Caselli, 15

Whitworth, A. P., Bhattal, A. S., Chapman, S. J., Disney, M. J., & Turner, J. A. 1994, A&A,
290, 421

Wilking, B. A. & Lada, C. J. 1983, ApJ, 274, 698

Wilson, B. A., Dame, T. M., Masheder, M. R. W., & Thaddeus, P. 2005, A&A, 430, 523

Winston, E., Megeath, S. T., Wolk, S. J., Muzerolle, J., Gutermuth, R., Hora, J. L., Allen,
L. E., Spitzbart, B., Myers, P., & Fazio, G. G. 2007, ApJ, 669, 493

Zavagno, A., Deharveng, L., Comerón, F., Brand, J., Massi, F., Caplan, J., & Russeil, D.
2006, A&A, 446, 171

Zinnecker, H., McCaughrean, M. J., Rayner, J. T., Wilking, B. A., & Moneti, A. 1993, in
Reviews in Modern Astronomy, Vol. 6, Reviews in Modern Astronomy, ed. G. Klare, 191–208

200




