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CHAPTER I

Introduction

The past thirty years have seen the tremendous success of the Standard Model (SM)

of particle physics, with predictions being repeatedly tested and confirmed through

a variety of experiments. Nevertheless, this paradigm is expected to end with the

running of the Large Hadron Collider (LHC) at Geneva, which will open a window

into the phenomena at a new energy frontier – TeV scale. There are plenty of reasons

both theoretically and experimentally to expect new physics beyond the SM. First of

all, the form of the electro-weak symmetry breaking (EWSB) in the SM has not yet

been determined by the experiments. Even if the mechanism of the EWSB is correct,

the SM cannot explain it. In addition, the SM higgs suffers from large quadratically

divergent quantum corrections, which is known as the Hierarchy problem. There are

many other issues which in principle cannot be addressed in the SM, for example,

the quark mass hierarchy, the CKM matrix, and the strong CP problem. All of these

unsatisfactory features strongly suggest modifications of the SM at the TeV scale or

some higher scale.

On the cosmological scale, there are also big mysteries awaiting for explanation.
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The most notable ones are, for example, “what is the dark matter and dark energy?”,

“how to explain the inflation and the structure formation?” and “where does the

baryon asymmetry in the universe come from?”. To address all these questions

requires physics at a scale above the electroweak scale or even up to the Planck

scale, and need a theory including both the particle physics and gravity.

Given the reasons we have listed so far, we believe that the ongoing experiments

shall provide strong evidence for new physics. Among all the possible theories, the

low energy supersymmetry (SUSY) is by far the most well motivated one. It does

not only stabilize the electroweak scale but also provide a natural candidate for

dark matter. If SUSY is discovered in the LHC, confirming it and determining the

parameters in the effective lagrangian will be the main subject in the following many

years. However, this is not our ultimate goal, since we need a complete theory

eventually to explain all the unanswered questions in both particle and cosmological

areas. Having a complete theory from the beginning may provide a simple way to

organize and address all the present puzzles. So far, such a complete theory could

only possibly originate from string theory, which is a consistent quantum theory for

both particle and gravity. Working on developing such a complete theory from string

theory and study its phenomenology is the main goal of this thesis.

To connect string theory to the real world, one has to first compactify the extra

dimensions to a small size, and derive the effective 4D field theory at a high energy

scale. Then the effective theory can be evolved down to a low energy scale, where

one can compute the relevant physical observables using quantum field theory. A
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feature of string compactifications is that there exist many scalar fields, whose vac-

uum expectation values set the couplings in the 4D effective theory. However, at

the perturbative level, there is no superpotential being generated, and these scalar

fields can take any possible values, which therefore is a major obstacle for making

connections to the observations. In addition, the presence of massless scalar fields

is also in consistent with the observations. This is the so called moduli stabilization

problem, which must be solved in any realistic string construction. It should be em-

phasized that people recently realized that the string theory solutions are not likely

to be unique, and even after the moduli are stabilized, there could exist an extremely

large number of discrete vacua [2–4]. This raises the question whether string theory

is predictive at all. Here we take an optimistic point of view, i.e., the fact that there

exist a landscape of vacua provides us an opportunity to search for the right vacuum

in which we are living, with the help of the experimental observables [5, 6].

Another issue almost of the same importance is how to obtain supersymmetry

breaking with TeV scale superpartners. Though there are many possible ways to

achieve this, the most natural one in the case of moduli stabilization is through

the strong gauge dynamics which breaks the supersymmetry dynamically. In this

approach both moduli stabilization and supersymmetry breaking issues can be dealt

with simultaneously, and the hierarchy problem can potentially be addressed.

Substantial progress has been made in the past few years towards addressing the

dynamical issues of moduli stabilization, supersymmetry breaking and explaining the

Hierarchy, within various corners of the entire M-theory moduli space in a reliable
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manner [7–10]. The most well-known examples are the KKLT [7] and the Large-

Volume [8] type vacua found in the flux compactification [11, 12] of type IIB string

theory. The phenomenological consequences of these vacua have been studied in

great detail in the literature [13–27].

In this thesis, we focus on a new framework arising from another weakly coupled

limit: the eleven dimensional supergravity limit of M-theory. The moduli stabiliza-

tion issue in such a framework was first discussed in [28] and then investigated in

greater detail in [29]. It was shown there that with reasonable assumptions about

microscopic structure of the underlying construction, N=1 fluxless compactifications

of M-theory on G2 manifolds can generate the hierarchy between the electroweak and

Planck scales and stabilize all the moduli in a de Sitter vacuum. This framework

provides a starting point to study the phenomenological consequences if an MSSM

sector is assumed to exist. This leads to the interesting phenomenological model

– G2-MSSM. In this thesis, I give a detailed study of the phenomenology of this

model, which is mainly based on the two publications [30,31] and some unpublished

results [32]. It should be emphasized that although these papers are written with

collaborators, I have made major contributions to all of them and have performed

all the essential calculations.

The thesis is organized as follows. In chapter II, after a brief review of some nec-

essary background on string compactification and low energy effective theory, as well

as the main results of moduli stabilization in the framework of fluxless G2 compacti-

fication of M-theory [29], the phenomenological model, G2-MSSM, is motivated and
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introduced [30]. In chapter III, we discuss the calculation of the soft terms, renormal-

ization group running, low energy superpartner spectrum and electroweak symmetry

breaking (EWSB) [30]. In Chapter IV, we discuss the prospects of G2-MSSM at the

LHC, CP violation and the implications for electric dipole moments [32]. In Chapter

V, we discuss the non-thermal production of the dark matter and the cosmological

moduli/gravitino problem [31].



CHAPTER II

Theoretical Framework of G2-MSSM

In order to make our discussion of G2 phenomenology self-contained, it is helpful

to review the essential results for the fluxless M-Theory de Sitter vacua described

in [28,29] and explain our conventions and notation. Compactifications of M-Theory

on singular G2 manifolds are interesting in the sense that they give rise to N = 1 su-

persymmetry in four dimensions with non-Abelian gauge groups and chiral fermions.

The non-Abelian gauge fields are localized along three-dimensional submanifolds of

the seven extra dimensions whereas chiral fermions are supported at points at which

there is a conical singularity [33–36]. As explained in the introduction, in order to

look at phenomenological consequences of these compactifications in a reliable man-

ner, one has to address the dynamical issues of moduli stabilization, supersymmetry

breaking and generation of the Hierarchy.

6
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2.1 Compactification, Low Energy Effective Action and Soft

Terms

In this section, we provide some basic results of the N = 1 4D supergravity,

which typically arises from string/M theory compactifications. For more details, we

refer to the textbooks [37,38] and recent reviews [39,40]. We also briefly review the

soft supersymmetry breaking terms arising from the gravity mediation [41–44].

In the compactifications of string/M theory, we first take the low energy limit of

10D string theory(or 11d M-Theory), which is described by 10D supergravity theory

(need to include the effective brane action in cases that they are present), and then

perform a Kaluza-Klein dimensional reduce to obtain a 4D effective theory for the

massless states. In order for the effective theory to have N = 1 supersymmetry,

some special geometry for the compact extra dimensions is required, i.e., Calabi-Yau

manifold for 10D string theory case and G2 manifold for M-Theory case.

The N = 1 4D supergravity (up to two derivatives) is specified by two functions

which depend on the chiral superfields φα: the holomorphic gauge kinetic function

fa(φ) and the real gauge invariant Kähler function G(φ, φ̄)

G(φ, φ̄) = K(φ, φ̄) + log |W (φ)|2. (2.1)

Here, K(φ, φ̄) is the Kähler potential and W (φ) is the complete holomorphic super-

potential. The general Lagrangian can then be written as

L =
1

2κ2
4

R−Kαβ̄(φ, φ̄)Dµφ
αDµφβ̄ − V (φ, φ̄)

−1

8
Refab(φ)F a

µνF
bµν − 1

8
Imfab(φ)εµνρσF a

µνF
b
ρσ + · · · (2.2)
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where κ4 =
√

8πGN is the 4D gravitional coupling, which can also be expressed in

terms of the reduced Planck scale κ4 = M−1
P . F a

µν is the field strength of the gauge

fields. The Kähler metric Kαβ̄ is given by

Kαβ̄ =
∂2K(φ, φ̄)

∂φα∂φβ̄
(2.3)

The general form of the scalar potential contains two contributions from F-terms

and D-terms,

V (φ, φ̄) = eK/M2
P

(
Kαβ̄DαWDβ̄W − 3

M2
P

|W |2
)

+
1

2

(
Re(f)−1

)
ab

DaDb (2.4)

where MP is the reduced Planck constant MP = MPlanck/
√

8π. The first term is the

F-term scalar potential and the second term is the D-term potential. Here

DαW = ∂αW +
1

M2
P

KαW = Fα, (2.5)

where Kα ≡ ∂αK. For later convenience, we also introduce Fα which is defined as

Fα = Kαβ̄Dβ̄W (2.6)

In the D-term potential, the auxiliary D-fields Da(φ, φ̄) satisfy the equation ∂αDα =

−iKαβ̄Xαβ̄ where Xαβ̄ is the holomorphic Killing vectors.

The 4D theory arising from the compactification typically contain scalar fields

which are related to the size and shape of the compact dimensions. It is useful to

isolate these moduli fields φm and the matter fields Cα in the Kähler potential and

superpotential

K ⊃ K̂(φm, φ̄m) + K̃(φm, φ̄m)Cα†Cβ +
1

2
Zαβ(φm, φ̄m)CαCβ + h.c. (2.7)

W ⊃ Ŵ (φm) +
1

2
µαβ(φm)CαCβ +

1

6
Yαβγ(φm)CαCβCγ (2.8)
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It should be noted that the matter fields Cα here do not have the canonical kinetic

terms and therefore need to be normalized properly before calculating the physi-

cal masses and couplings. From the above equations, one can also notice that the

masses and couplings of matter fields are determined by the vacuum expectation

values(VEVs) of the moduli.

Now let us discuss the validity of the effective theory. In order for 10D super-

gravity theory to be valid, the radius of the curvature of gravity background has to

be much larger than the characteristic string length α′1/2. In the case of compactifi-

cation, the curvature is related the size of the compact extra dimensions Rc. So the

condition is basically

Rc > α′1/2
(2.9)

This implies the compactification scale mc is much lower than the characteristic

string scale ms ∼ α′−1/2. Finally, for for 4D theory to be valid, a cutoff should be

imposed for the 4D effective supergravity action, i.e.

M4D
cutoff . Mc =

1

Rc

. (2.10)

Below the compactification scale, one can integrated out all the heavy KK states,

and the effects can be incorporated into the effective 4D theory. Therefore, one

can match the couplings in the effective 4D theory with the 10D theory at a scale

Mmatch ∼ Mc. Below that scale, all the couplings are then renormalized according to

the low energy dynamics within the effective theory. It should be noted that there

are uncertainties related to the ambiguity of the matching scale. However, since the
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effects typically depend the scale logarithmically, they can be neglected in most of

our analysis.

In the Wilsonian effective action, the general non-renormalization theorems ap-

ply to the superpotential and gauge kinematic function. It is saying that there are

no perturbative quantum corrections to the superpotential at all, and no corrections

to the gauge kinetic functions beyond one-loop. The Kähler potential can in prin-

ciple have corrections at any loop order. Furthermore, all three quantities can have

corrections from non-perturbative quantum effects such as instantons. In the type

II string theory, there will be string quantum correction in terms of α′ and string

coupling gs for the Kähler potential.

Now we are ready to discuss the supersymmetry breaking and soft terms from

moduli mediation. As in the rigid supersymmetric theory, the conditions for unbro-

ken supersymmetry are

Fα = 0, Dα = 0 (2.11)

In the framework of a compactification, one can nicely implement the idea of hidden

sector supersymmetry breaking by considering a geometrically separated supersym-

metry breaking sector in the extra dimensions. The supersymmetry breaking effects

can be mediated through the moduli fields or high dimensional operators to the vis-

ible sector. Generally, in the 4D effective action from compacitification, the Kähler

potential is parametrized by the moduli fields. Therefore, if the auxiliary compo-

nents of moduli get VEVs, supersymmetry breaking can be mediated to the visible

sector and gives rise to the soft supersymmetry breaking terms, This is the so called
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moduli mediation, which is a special form of gravity mediation.

For phenomenological purposes, it is interesting to study the soft terms generated

from the supersymmetry breaking in such a compactification framework. The full

effective soft lagrangian is typically written as

Lsoft =
1

2
(Maλλ + h.c.)−m′2

ᾱβC ᾱ†Cβ

−1

6
A′

αβγC
αCβCγ +

1

2
B′

αβCαCβ + h.c. . (2.12)

Here Cα are the scalar components of the corresponding matter chiral fields, for

example, Cα = QL, uc
L, dc

L, LL, ec
L, H1, H2 in the minimal supersymmetry standard

Model (MSSM). In the above lagrangian, the soft masses m′
ᾱβ and the soft couplings

A′
αβγ and B′

αβ are again the un-normalized ones, and must be normalized for physical

matter fields.

Given the effective supergravity lagrangian, one can explicitly evaluate the soft

terms by taking the scalar and auxiliary fields of moduli to their VEVs, and then de-

coupling the gravity by taking MP →∞ while keeping the gravitino mass m3/2 fixed.

The soft gaugino masses, un-normalized soft scalar masses, trilinear parameters are

given respectively by [44]

Ma =
1

2
(Refa)

−1eK̂/2Fm∂mfa

m′2
ᾱβ = (m2

3/2 + V0) K̃ᾱβ − eK̂F m̄(∂m̄∂n K̃ᾱβ − ∂m̄ K̃ᾱγ K̃γδ̄∂n K̃δ̄β)F n

A′
αβγ = eK̂ Fm

[
∂mYαβγ + K̂mYαβγ

−
(
K̃δρ̄ ∂mK̃ρ̄α Yαβγ + (α ↔ β) + (α ↔ γ)

) ]
(2.13)

where Yαβγ are the Yukawa couplings in the original superpotential.



12

There are also one-loop contributions to the soft terms, which arise from the

anomalies of the super-Weyl-Kähler invariance and the sigma-model isometries. In

particular, the anomaly mediated gaugino masses are given by [45]

MAMSB
a = − g2

a

16π2

(
ba eK̂/2W − b′a eK̂/2FmK̂m + 2

∑
i

Ci
ae

K̂/2Fm∂m ln K̃i

)
. (2.14)

In this expression, ba ≡ −(3Ca−
∑

i C
i
a) and b′a ≡ −(Ca−

∑
i C

i
a), where Ca and Ci

a are

the Dynkin index of the adjoint representation and of the matter fields respectively

with i running over the number of chiral matter fields.

These soft terms should be calculated at the cutoff of the effective theory. Then

they are evolved down the low energy scale where the relevant physical masses will

be calculated. It should be noted that the evolution of the soft terms are equivalent

to the evolution of the corresponding operators in the effective theory. In some case

where the hidden sector is strongly coupled, the renormalization of the hidden sector

fields should be included and will modify the standard RG running of soft terms.

In the case where the supersymmetry is broken by moduli fields whose coupling is

suppressed by MP , the hidden sector effects can be neglected.

2.2 4D Effective Theory from G2 Compactification of M-

Theory

In this section, we briefly review the G2 compactification in M-theory and the

effective 4D theory. More details can be found in the review [36] and the refer-

ences there. We know that the low energy effective theory of M-Theory is eleven-

dimensional supergravity, with corrections in terms of 11D gravitational coupling κ11.
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To get N = 1 theory, one has to compactify the eleven-dimensional supergravity on

a seven-dimensional manifold with G2-holonomy, which is called G2 manifold. More-

over, to obtain realistic matter and gauge fields from the compacitification, singular

G2 manifolds are required. The non-Abelian gauge fields are localized along three-

dimensional submanifolds of the seven extra dimensions whereas chiral fermions are

supported at points at which there is a conical singularity [33–36].

Consider a G2 manifold X. The complexified moduli space M of X has N =

b3(X) holomorphic coordinates zi, defined by

zi = si + iti =
1

l311

∫
ϕ + iC, (2.15)

where ϕ is the G2-invariant 3-form on X and the 11D fundamental length scale l11

is given by 1/2k2
11 = 2π/l911. The metric on M is Kähler , derived from the Kähler

potential

K(z, z̄) = −3 ln
(
4π1/3VX(s)

)
(2.16)

where VX = Vol(X)/l711 is a homogeneous function of the si of degree 7/3. This

classical metric will have quantum corrections, but at large enough volumes such

corrections can be argued to be small. For the effective 4D supergravity description

to be valid, the size of the compact extra dimensions has to much larger than l11

V
1/7
X l11 > l11 =⇒ VX > 1 (2.17)

The most general homogeneous degree 7/3 function is of the form

VX =
n∏

k=1

sak
k f(si) (2.18)
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with ak such that
n∑

k=1

ak =
7

3
(2.19)

and f(si) invariant under scaling. For simplicity, in the following analysis in this the-

sis, we suppose that we are in a region of moduli space where f(si) is approximately

constant. Then we can take

VX =
n∏

k=1

sak
k (2.20)

A more general analysis done recently in [46] shows that the result of moduli stabi-

lization is independent of the choice of f(si).

Now let us turn to the gauge kinetic function in the effective 4D theory. The non-

Abelian gauge theory arises from the codimension 4 singularity and therefore lives

in a seven-dimensional space where three dimensions are wrapped on a three-cycle

Q in the G2 manifold. Start with the seven-dimensional action

S ∼ 1

16π(4π)1/3κ
2/3
11

∫
d7x

√
g

∑
a

F a
µνF

µνa. (2.21)

After dimension reduction on the three-cycle Q, one should get the standard 4D

gauge kinetic term

S4D ∼ 1

4g2
M

∫
d4x

√
gF a

µνF
µνa (2.22)

where gM is the 4D gauge coupling. Therefore, the 4D gauge coupling is identified

by

αM =
(4π)1/3κ

2/3
11

Vol(Q)

=
1

VQ
, (2.23)
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Here VQ = Vol(Q)/l311 is the (dimensionless) volume of the three-cycle Q. Therefore,

the complete gauge kinetic term can be written as

1

16π

∫
d2θfa(zi)W

αWα + h.c. (2.24)

where f(zi) is the gauge kinetic function with Refa(zi) = 4π/g2
a. Since the volume

of the three-cycle can generically be written as VQ =
∑

i Nisi, the gauge kinetic

function can be written as fa(zi) =
∑

i Nizi.

2.3 Moduli Stabilization in G2 Compactification of M-Theory

As explained in [28, 29], one is interested in the zero flux sector since then the

moduli superpotential is entirely non-perturbative. This is crucial for both stabilizing

the moduli and generating the Hierarchy naturally as we will review. Fluxes generate

a large superpotential and, unless there is a mechanism to obtain an exponentially

large volume of the extra dimensions, G2 compactifications with flux will not generate

a small mass scale, such as the TeV scale.

We assume that the G2 manifolds which we consider have singularities giving

rise to two non-Abelian, asymptotically free gauge groups. This implies that they

undergo strong gauge dynamics at lower energies leading to the generation of a non-

perturbative superpotential. At least one of the hidden sectors is assumed to contain

light charged matter fields Φ and Φ̃ (with Nf < Nc) as well. There could be other

matter fields which are much heavier and decouple well above the corresponding

strong coupling scale. Thus in the minimal1 framework, one has two hidden sectors

1More complicated situations are possible, some of them are discussed in [28,29].
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living on three-cycles with gauge group Ga×Gb undergoing strong gauge dynamics,

one of them having a pair of massless charged matter fields transforming in the

(anti)fundamental representation of the gauge group. Of course, in addition, it is

assumed that there is another three-cycle on which the observable sector gauge theory

with the appropriate chiral matter content lives. This will be discussed more in the

next subsection. This set of assumptions about the the compactification manifold

gives a working definition of the framework.

The N = 1 supergravity theory obtained in four dimensions is then characterized

by the following hidden sector superpotential:

W = M3
P

(
A1 φ−(2/P ) eib1f1 + A2 eib2f2

)
; b1 =

2π

P
, b2 =

2π

Q
(2.25)

Here φ ≡ det(ΦΦ̃)1/2 = (2ΦΦ̃)1/2 is the effective meson field (for one pair of massless

quarks) and P and Q are proportional to one loop beta function coefficients of the

two gauge groups which are completely determined by the gauge group and matter

representations. For concreteness we can consider the gauge group to be SU(Q) ×

SU(P + 1) with one vector like family of quarks charged under SU(P + 1). The

normalization constants A1 and A2 are calculable, given a particular G2-manifold.

f1,2 are the (tree-level) gauge kinetic functions of the two hidden sectors which in

general are different from each other. Schematically, the superpotential of each

hidden sector is just equal to the strong coupling scale of the the corresponding gauge

theory, i.e. W ∼ Λ3
1 +Λ3

2. The vacuum structure of the supergravity theory with this

superpotential is quite rich, but in general can only be studied numerically. A special
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case exists however, when it is possible to study the vacua semi-analytically. This is

when the two three-cycles on which the hidden sector gauge fields are localised are

in the same homology class, which in terms of gauge kinetic function then implies:

f1 = f2 ≡ fhid =
N∑

i=1

Ni zi. (2.26)

The supergravity potential is fully specified once the Kähler potential is given.

The Kähler potential for matter fields in general is hard to compute from first princi-

ples. However, owing to the fact that matter fields are localized at points inside the

seven dimensional manifold VX , it is reasonable to assume that the matter Kähler

potential is approximately canonical at leading order. Then, the Kähler potential is

given by:

K/m2
p = −3 ln(4π1/3VX) + φ̄φ (2.27)

A simple and reasonable ansatz therefore is VX =
∏N

i=1 sai
i with ai positive rational

numbers subject to the constraint
∑N

i=1 ai = 7
3

[47]. Many qualitative results about

moduli stabilization do not seem to rely on this special form of VX , but this form of

VX is useful since it gives an N − 1 parameter family of Kähler potentials consistent

with G2-holonomy, which are tractable. In a basis in which the Kähler potential is

given by (4.8), the gauge kinetic function is generically a function of all the moduli,

i.e. Ni 6= 0, i = 1, 2.., N .

In general the scalar potential of the supergravity theory determined by W and

K is a reasonably complicated function of all the moduli. Therefore, one expects

to find isolated meta-stable minima, which indeed turns out to be the case, as ex-
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plained in detail in [29]. The values of the moduli at the minima are completely

determined by the “microscopic” constants2 – {ai, Ni, A1, A2, P, Q, N ; i = 1, 2...N}

which characterize the framework. Given a particular G2-manifold consistent with

our assumptions, all of these constants are calculable in principle. Therefore, given

a particular G2-manifold within the framework, one obtains a particular set of mi-

croscopic constants and a particular 4D N = 1 supergravity theory.

To find the minima of the moduli potential V explicitly, one first stabilizes the

axionic components of the complex moduli and the phase of φ. Then one minimizes

the potential with respect to si and |φ|, which leads to N + 1 equations ∂si
V = 0

and ∂|φ|V = 0 (for N moduli). To solve these equations analytically, we consider the

class of solutions in which the volume of the hidden sector three-cycle VQ supporting

the hidden sector gauge groups is large. This allows us to reduce the first set of N

equations into just two simple equations, which can be solved order by order in a 1/VQ

expansion. Physically, this expansion can be understood as an expansion in terms of

the small gauge coupling of the hidden sector - αhid
0 which is self-consistent since our

hidden sectors are assumed to be asymptotically free. The solution corresponding to

a metastable minimum with spontaneously broken supersymmetry is given by

si =
ai

Ni

3

14π

Peff Q

Q− P
+O(P−1

eff ), (2.28)

|φ|2 = 1− 2

Q− P
+

√
1− 2

Q− P
+O(P−1

eff ), (2.29)

where Peff ≡ P ln(A1Q/A2P ). The natural values of P and Q are expected to lie

2These are called “microscopic” because they determine the effective lagrangian

at the compactification (∼ Munif) scale.
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between O(1) and O(10). It is easy to see that a large Peff corresponds to small

gauge coupling at the cutoff scale αhid
0 for the hidden sector from

(αhid
0 )−1 = VQ ≈ Q

2π(Q− P )
Peff (2.30)

implying that the expansion is effectively in P−1
eff . Given the moduli VEVs in Eq. 2.28

and 2.29, it is straightforward to calculate the VEVs for the auxiliary components

of zi and φ:

F i/W = −3P ai

2π Ni

+O
(

1

VQ

)
(2.31)

F φ/W = −
√

3 +O
(

1

VQ

)
(2.32)

Typically we can take ai ∼ 7/3N . This implies that F i are much smaller than F φ

when N is large. In fact, all the Fi vanish in the large VQ limit

Fi/W = −49 Ni

4 b1

1

V 2
Q

+O
(

1

V 3
Q

)
(2.33)

As we will see in Chapter II, this hierarchy between F i and F φ is responsible for

the particular pattern of the soft supersymmetry breaking terms in the G2-MSSM

framework.

The φ dependence of the potential at the minimum is essentially

V0 ∼ m2
3/2M

2
P

[
|φ|4 +

(
4

Q− P
+

14

Peff

− 3

)
|φ|2 +

(
2

Q− P
+

7

Peff

)]
(2.34)

Therefore, the vacuum energy vanishes if the discriminant of the above expression

vanishes, i.e. if

Peff =
28(Q− P )

3(Q− P )− 8
. (2.35)
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The above condition is satisfied when the contribution from the F -term of the meson

field (Fφ) to the scalar potential cancels that from the −3|W |2 term. For Q−P ≤ 2,

there is no solution as either si or |φ|2 become negative. The first non-trivial solution

occurs when Q − P = 3 for which Peff = 84 is required to get a vanishing vacuum

energy (to leading order). The appearance of the integer 84 is closely related to the

the dimensionality of the G2 manifold (which is 7) and that of the three-cycle (which

is 3). Other choices of Q− P are also possible theoretically, but are not interesting

because of the following reasons: a) the corresponding solutions, if they are to remain

in the supergravity regime, require the G2 manifold to have a rather small number

of moduli N , since N < 14Q
(3(Q−P )−8)π

[29]. It is unlikely that G2-manifolds with such

few moduli are capable of containing the MSSM spectrum, which has more than

a hundred relevant couplings. b) these solutions generically lead to an extremely

high susy breaking scale as will be seen in section 3.1.1 on the gravitino mass. So

phenomenologically interesting G2 compactifications arise only for the case Q−P = 3

and Peff = 84.

Some comments on the requirement of Peff = 84 are in order. First of all, it is only

a leading order result for the potential in 1/VQ expansion. In fact, including higher

order 1/VQ corrections leads to the requirement Peff ≈ 83 [29]. The potential will also

receive higher order corrections in the M-Theory expansion which will change the

requirement for Peff (probably by a small amount). One important good feature of

the framework is that these higher order corrections to the vacuum energy have little

effect on phenomenologically relevant quantities. Therefore, it is sufficient to tune
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the vacuum energy to leading order as long as one is interested in phenomenological

consequences. From a microscopic point of view, however, there are two issues - a)

Is it possible to realize a large value of Peff from explicit constructions? and b) Can

the values of Peff scan finely enough such that one can obtain the observed tiny value

of the cosmological constant? Regarding a), one notices that Peff depends on the

detailed structure of the hidden sector and is completely model dependent. For par-

ticular realizations of the hidden sector, Peff can be computed. A detailed discussion

about Peff is given in Appendix A.1. However computing Peff in more general cases

is difficult because of our limited knowledge of possible three-dimensional subman-

ifolds of G2 manifolds. In our analysis, we have assumed that three-cycles exist for

which it is possible to obtain a large Peff . The situation regarding b) is even less

known. This is because very little is known in general about the set of all compact

G2 manifolds. Duality arguments do suggest that the set of compact G2-manifolds

is larger than the space of compact Calabi-Yau threefolds. Unfortunately, there do

not currently exist any concrete ideas about that space either! In our work, we have

assumed effectively that the space of G2 manifolds scans Peff finely enough such that

vacua exist with values of the cosmological constant as observed.

2.4 Including the Observable Sector – G2-MSSM

In these compactifications, as mentioned earlier, the observable sector gauge the-

ory resides on a three-cycle different from the one supporting the hidden sector. The

observable sector three-cycle is assumed to contain conical singularities at which
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which chiral matter is supported. Since two three-manifolds in a dimensional man-

ifold generically do not intersect each other, this implies that the supersymmetry

breaking generated by strong gauge dynamics in the hidden sector is generically me-

diated to the visible sector by the (higher dimensional) gravity multiplet. This gives

rise to gravity (moduli) mediation. However, as will be seen later, anomaly mediated

contributions will also play an important role for the gaugino masses.

In our analysis henceforth, we will assume a GUT gauge group in the visible sector

which is broken to the SM gauge group, with at least an MSSM chiral spectrum,

by background gauge fields (Wilson lines). This assumption is well motivated by

considering the duality to the E8 × E8 heterotic string on a Calabi-Yau threefold.

For simplicity, we will present our results for the SU(5) GUT group breaking to the

SM group and just an MSSM chiral spectrum, but all our results should hold for

other GUT groups breaking in the same way as well.

To summarize, the full low energy N = 1 Supergravity theory of the visible and

hidden sectors at the compactification scale (∼ Munif) is defined by the following:

K = −3M2
P ln(4π1/3VX) + φ̄φ + K̃ᾱβ(si) Φ̄ᾱ

mΦβ
m + Z(si) HuHd + h.c. + ...

W = M3
P

(
A1 φ−(2/P ) eib1f1 + A2 eib2f2

)
+ Yαβγ Φα

mΦβ
mΦγ

m

f1 = f2 ≡ fhid =
∑

i

N izi; f 0
vis =

∑
i

N i
vis zi (2.36)

The visible sector is thus characterized by the Kähler metric K̃ᾱβ, un-normalized

Yukawa couplings Yαβγ of the visible sector chiral matter fields Φα
m, and the (tree-

level) gauge kinetic function f 0
vis of the visible sector gauge fields. In addition, as is
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generically expected in gravity mediation, a non-zero coefficient Z of the Higgs bilin-

ear is assumed. In general there can also be a mass term (µ′) in the superpotential

W , but as explained in [48], natural discrete symmetries can exist which forbid it, in

order to solve the doublet-triplet splitting problem. However, the Giudice-Masiero

mechanism in general generates effective µ and Bµ parameters of O(m3/2).

The Kähler metric K̃ᾱβ will be discussed in section 4.13. The visible sector gauge

couplings are determined by the gauge kinetic function fvis which is an integer linear

combination of the moduli with the integers determined by the homology class of

the three-cycle Qvis which supports the visible gauge group. Because of a GUT-like

spectrum, the MSSM gauge couplings are unified at Munif giving rise to the same f 0
vis.

Since we are assuming an MSSM visible sector below the unification scale, one has to

subject N i
vis to the constraint that f 0

vis(Munif) ≡ α−1
unif (Munif) ∼ O(25). The Yukawa

couplings in these vacua arise from membrane instantons which connect singularities

where chiral superfields are supported (if some singularities coincide, there could also

be O(1) contributions). They are given by:

Yαβγ = Cαβγ ei2π
∑

i lαβγ
i zi

(2.37)

where Cαβγ is an O(1) constant and lαβγ
i are integers. Factoring out the phases, the

magnitude of the Yukawas can be schematically written as:

|Y | ∼ |C|e−2π~l·~s (2.38)

The normalized Yukawas differ from the above by factors corresponding to field

redefinitions. Because of the exponential dependence on the moduli, it is natural
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to obtain a hierarchical structure of Yukawa couplings as is observed in nature.

However, in general it is very difficult technically to compute the Yukawa couplings

quantitatively. Therefore, for our phenomenological analysis, we will assume that

the (normalized) Yukawa couplings are the same as those of the Standard Model.

This is reasonable as in this work we are primarily interested in studying the effects

of supersymmetry breaking and electroweak symmetry breaking.

Since the moduli have been stabilized, the F -terms of the moduli (Fi) and the

meson fields (Fφ), which are the source of supersymmetry breaking, can be computed

explicitly in terms of the microscopic constants. The expressions for Fi and Fφ in

terms of these microscopic constants have been given explicitly in [29]. Since these

F -terms and the quantities in (2.36) together determine the soft supersymmetry

breaking parameters, it becomes possible to express all the soft parameters - gaugino

masses, scalar masses, trilinears, µ and Bµ, in terms of the microscopic constants.

Thus, given a particular G2-manifold one obtains a particular set of microscopic

constants and thus a particular point in the MSSM parameter space. The set of

microscopic constants consistent with the framework of G2 compactifications and

our assumptions thus defines a subset of the MSSM, which we call the G2-MSSM.

How this works in practice should become clear in the following sections. Formulae

(3.3), (3.8), (3.10), (3.19), (3.31) give the soft-breaking parameters at the unification

scale, in terms of the microscopic constants.

Before moving on to discussing the phenomenology of the G2-MSSM vacua in

detail, it is worth noting that realistic M-Theory vacua with a visible sector larger
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than the MSSM, will give rise to additional, different predictions for low energy

phenomenology in general, and LHC signatures in particular. Therefore, the pattern

of LHC signatures may help in distinguishing them. We hope to study this issue in

the future.

2.4.1 Gauge Coupling Unification

In section 2.4, it was mentioned that in many cases the strong coupling limit of

E8×E8 heterotic string theory compactifications on a Calabi-Yau threefold Z is the

same as M-Theory compactifications on a singular G2-holonomy manifold X. Since a

GUT-like spectrum is natural in weakly coupled heterotic compactifications, a GUT-

like spectrum (breaking down to the MSSM by Wilson-lines) was assumed for G2

compactifications in our study as well. At a theoretical level, because of an underlying

GUT structure, the MSSM gauge couplings are unified at the compactification scale

MKK for both heterotic and G2 compactifications. However, when one tries to impose

constraints from the extrapolated values of observed gauge couplings, interesting

differences arise between weakly coupled heterotic and G2 compactifications. Here,

we will explain the difference between weakly coupled heterotic compactifications and

G2 compactifications regarding gauge unification and then discuss the procedure used

in our analysis to obtain sets of parameters compatible with gauge unification.

In weakly coupled heterotic string compactifications, there is a relation between

the Newton’s constant GN , the unified gauge coupling αunif , the string coupling eφ

and the volume of the internal manifold VCY [49]. Assuming a more or less isotropic
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Calabi-Yau, one has VCY ∼ M−6
unif which gives:

GN ≈ α
4/3
unif

4M2
unif

(
16π

e2φ

)1/3

>
α

4/3
unif

4M2
unif

(2.39)

since the string coupling is weak by assumption (e2φ < 1). Substituting the values

of αunif and Munif obtained by extrapolating the observed gauge couplings in the

MSSM, the prediction for GN turns out to be too large compared to the observed

value. Various proposals have been put forward for dealing with this problem within

the perturbative heterotic setup, but none of them are obviously compelling.

In G2 compactifications however, one finds a different relation among the same

quantities after doing a similar analysis [50]:

GN ≈ α2
unif

32π2M2
unif

(
1

a

)
; a ≡ VX

V
7/3
Qvis

(2.40)

Here, a is the dimensionless ratio between the volume of the G2 manifold VX and

the volume of the three-cycle Qvis on which the visible sector MSSM gauge group is

supported. If one does a more careful analysis and takes into account the threshold

corrections to the unified gauge coupling from Kaluza-Klein (KK) modes, one obtains

[50]:

GN =
α2

unif

32π2M2
unif

(
(L(Qvis))

2/3

a

)
(2.41)

where L(Qvis) is the contribution from the threshold correction. Substituting the

values of αunif and Munif obtained by extrapolating the observed gauge couplings in

the MSSM and the value of GN , one finds:

(
(L(Qvis))

2/3

a

)
≈ 15 (2.42)
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In all examples where duality with heterotic string theory or Type IIA string theory

is used to deduce the existence of the G2 manifold X, “a” is expected to be much

less than unity [50]. For G2-MSSM vacua, with natural values of the microscopic

parameters one obtains VX = 10− 100 [29] while VQvis
∼ α−1

unif ∼ O(25)3. Thus, a ≡
VX

V
7/3
Qvis

¿ 1 is also naturally satisfied for G2-MSSM vacua. In addition, by expressing

VX and VQvis
in terms of M11 and Munif respectively, a < 1 implies Munif < M11 which

means that the unification scale constraint stated in section 3.1 can be naturally

satisfied. Since a ¿ 1, from (2.42) one requires:

(L(Qvis))
2/3 ¿ 15 (2.43)

The quantity L(Qvis))
2/3 depends on certain topological invariants of the three-cycle

Qvis and can be computed for special choices of Qvis. For one such choice - Qvis =

S3/Zq; q ∈ Z, (L(Qvis))
2/3 has been computed [50]. It depends on two integers

ω, q such that 5ω is not a multiple of q.4 Figure 2.1 shows the variation of L2/3 for

Qvis = S3/Zq as a function of q for different choices of 5ω mod q. One sees that

L2/3 ¿ 15 can be obtained in a natural manner for a large range of q. For other

choices of Qvis, it is reasonable to expect a similar result. To summarize therefore,

G2-MSSM vacua are naturally compatible with gauge unification in general and the

“unification scale constraint” mentioned in section 3.1 in particular.

The value of the unified gauge coupling αunif is also affected by the threshold

corrections. The tree-level unified gauge coupling of the visible sector at the com-

3The unified coupling constraint will be discussed in Appendix 2.4.2.
4It is assumed that an SU(5) GUT group is broken to the MSSM by Wilson lines.
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Figure 2.1: Plot of L2/3 as a function of integer q from 2 to 50. Different curves

correspond to different choices of ω as marked in the plot.

pactification scale is the volume of the visible sector three-cycle Qvis:

α−1
M ≡ Re(f 0

vis) = VQvis
=

N∑
i=1

N vis
i si, (2.44)

After taking into account the threshold corrections (at one-loop), one has:

α−1
unif = α−1

M + δ (2.45)

For the one-loop result to be reliable, δ should be small compared to α−1
M . Since

for the MSSM α−1
unif ∼ 25 one requires α−1

M ∼ O(25) as well. The conditions under

which the microscopic parameters can give rise to the above value of α−1
M is discussed

in section 2.4.2. The threshold correction δ can be computed from the topological

invariants of the three-cycle Qvis, so it also depends on integers characterizing the

topology of Qvis. However, it is in general regularization dependent in contrast to

expression (2.41) for the unification scale [50]. Therefore, in our analysis we will
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assume δ to be a free parameter varying in a reasonable range such that one-loop

results are still reliable.

2.4.2 Constraints on “Microscopic” Parameters

The vacua in realistic G2 compactifications are characterized by the “microscopic”

parameters Ni, N sm
i , ai, N , P , Q, A1, A2 and δ where i = 1, 2, .., N . However, only

certain parameters such as Q, P , A2 and δ as well as certain combinations of them,

such as VX , VQvis
and Peff are responsible for relevant physics quantities. These

parameters have to satisfy various constraints such that the effective 4D description

and the procedure of moduli stabilization are valid and consistent. In the following,

we discuss three important constraints:

• The validity of the supergravity approximation requires VX > 1. We call this

the “weak supergravity constraint”. In its “strong” form, one could require all

geometric moduli si to be greater than unity.

• Since it is known that, for an MSSM visible sector α−1
unif ∼ 25, this implies

VQvis
∼ 25. We call this the “unified coupling constraint”.

• M11 > Munif ∼ O(1016 GeV), which is required to make intrinsic M-Theory

corrections to gauge couplings and other parameters negligible at and below

Munif . We call this the “unification scale constraint”.

The main question here is that whether all these constraints can be satisfied

simultaneously with reasonable choices of the microscopic parameters. Given the

large number choices of parameters ai, Ni, N
sm
i with i = 1, .., N , in order to make
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the analysis tractable, we consider the following two extreme cases:

(a) ai are roughly equal, ai ≈ 7
3N

.

(b) ai are maximally asymmetric, for example, a1 ≈ 7
3

and ai6=1 ≈ 0.

Since other choices of the above parameters lie in between the two extremes, pre-

sumably so would their implications. For later use, it is useful to rewrite the moduli

VEVs as

si =
ai

Ni

ν, ν ≈ 3PeffQ

14π(Q− P )
(2.46)

where Peff ≡ P log
(

A1Q
A2P

)
.

Let us first consider the weak supergravity constraint for the phenomenologically

interesting dS vacua, which reads:

VX =
N∏

i=1

sai
i > 1 (2.47)

For case (a), we can rewrite the seven dimensional volume as

VX ≈
(

7ν

3N

)7/3
(

N∏
i=1

Ni

)− 7
3N

≈
(

7ν

3NN̄

)7/3

(2.48)

where N̄ is defined to be the geometric mean of the Ni’s. One should keep in mind

that N̄ can be small even if some of the Ni’s are large, if N is O(10) or greater. The

supergravity constraint then turns out to be:

7ν

3NN̄
> 1 =⇒ PeffQ

2πNN̄(Q− P )
> 1 (2.49)
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For the case (b), we have
(

ai

Ni

)ai ≈ 1 for i 6= 1, and so VX =
(

a1ν
N1

)7/3

. Therefore the

constraint turns out to be

a1

N1

ν > 1 =⇒ PeffQ

2πN1(Q− P )
> 1 (2.50)

A typical set of “reasonable” as well as phenomenologically interesting values is

Peff ∼ O(10 − 100), Q ∼ O(10), Q − P ∼ O(1)(but > 3), N̄ ∼ O(1) and N1 ∼

O(1), which easily satisfies the supergravity constraint in case (b). The supergravity

constraint for case (a) is also satisfied for many sets of values of the parameters in

the above ranges, although not as easily for case (b). For a general case which lies

between (a) and (b), we expect a situation in between the two and the constraint

should be satisfied for parameters in the above range. The important point is that

this constraint can always be satisfied by an asymmetric distribution of ai.

Now let us consider the unified coupling constraint. The gauge kinetic function

for the visible sector is the volume of the visible three-cycle (See Eq.2.44), which

obeys the following inequality:

VQvis
> N

(
N∏

i=1

N sm
i

)1/N (
N∏

i=1

si

)1/N

(2.51)

For case (a), (2.51) can be written as:

VQvis
> N

(
N∏

i=1

N sm
i

)1/N (
7ν

3NN̄

)
(2.52)

From Eq.(2.49) and assuming N sm
i > 1 for all i, we find VQvis

> N . Since for the

MSSM VQvis
= α−1

M ∼ O(25), this implies N . O(25). Thus, equal values of ai

require the number of moduli to be relatively small. One way out of this is that
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most of the N sm
i are zero, and only p . O(10) of them are nonzero. This however,

is non-generic. For case (b), one has
(∏N

i=1 si

)1/N

∼ 0. Therefore, inequality (2.51)

can be easily satisfied. Again, case (b) is more easily satisfied than case (a). For a

more general situation lying in between (a) and (b), one expects that the constraint

can be satisfied for many sets of values of the microscopic parameters.



CHAPTER III

Supersymmetry Breaking in G2-MSSM

Having introduced the G2-MSSM framework, we are now ready to examine the

associated phenomenology. Since supersymmetry is spontaneously broken, all the

supersymmetric partners of the standard model particles get masses. These new

particles, if they are light enough, can either be produced in the collider experiments

or can participate many different physical processes, and therefore lead to deviations

from the Standard Model predictions. In fact, the phenomenology related to the soft

supersymmetry breaking sector is quite rich [51]. Before we study the phenomenol-

ogy in the G2-MSSM framework, we have to first calculate the soft terms from the

4D effective supergravity setup. These calculations will set the boundary condition

for the renormalization group extrapolation of the low energy soft terms. We will

then include various threshold corrections and compute the low energy superpartner

masses and couplings. In this chapter, we also discuss the electroweak symmetry

breaking and the precision gauge coupling unification, which are intimately related

to the soft terms.

33
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3.1 Soft Supersymmetry Breaking Terms at Munif

3.1.1 Gravitino Mass

The bare gravitino mass in N = 1 supergravity can be computed as follows:

m3/2 ≡ M−2
P e

K

2M2
P |W | (3.1)

This quantity plays an important role in gravity mediated models of supersymmetry

breaking and sets the typical mass scale for couplings in the supergravity Lagrangian.

It is therefore useful to compute this quantity in detail in the G2-MSSM.

As explained earlier, |W | is generated by strong gauge dynamics in the two hidden

sectors, W1,2 ∼ (Λ1,2)
3. This implies that the gravitino mass can be schematically

expressed as:

m3/2 ∼ Λ3

M2
P

(3.2)

up to some factors of volume coming from the Kähler potential in (3.1). More

precisely, the gravitino mass is:

m3/2 = MP
eφ2

0/2

8
√

πV
3/2
X

C2

∣∣∣Pφ
− 2

P
0 −Q

∣∣∣e−
Peff
Q−P

≈ MP
eφ2

0/2

8
√

πV
3/2
X

C2|Q− P |e−
Peff
Q−P (3.3)

where in the last line, φ0 ≈ 1 is used. In the above equation, C2 ≡ A2/Q is used for

convenience. The exponential part in the equation is roughly Λ3
cond in units of MP .

As seen from above, the gravitino mass is effectively determined by four parameters:

{Peff , Q−P , VX and C2}. For Q−P = 3, the gravitino mass can be well approximated



35

by

m3/2 = 708 TeV × C2V
−3/2
X e−(Peff−83)/3 (3.4)

For the case of zero cosmological constant Peff = 83 1, the exponential is unity and

the gravitino mass is bounded from above by 708 TeV. As will be seen later, VX turns

out to be typically in the range 10-100, implying that m3/2 naturally lies between

10 and 100 TeV. If one allows a dS minimum with a large cosmological constant,

Peff can be smaller than 84 and the gravitino mass can become larger. For larger

values of Q−P , the Peff required to tune the cosmological constant (see eqn. (2.35))

is smaller. For example, for Q − P = 4, Peff = 28 is required. Since the gravitino

mass is exponentially sensitive to Peff (as seen from (3.4)), the gravitino mass for

Q − P > 3 turns out to be much larger then the TeV scale. This is the reason for

mainly considering the case Q− P = 3.

3.1.2 Scalars and Trilinears at Munif

The general expressions for the un-normalized scalar masses and trilinear pa-

rameters are given in Eq. (2.13). In order to determine physical implications, how-

ever, one has to canonically normalize the visible matter Kähler potential Kvisible =

K̃ᾱβΦᾱΦβ + ..., which is achieved by introducing a normalization matrix U :

Φ → U · Φ, s.t. U †K̃U = 1. (3.5)

1The upper limit Peff = 84 obtained in the zeroth order of the 1/VQvis
approxima-

tion is modified to Peff = 83 after taking higher order corrections into account.
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The Us are themselves only defined up to a unitary transformation, i.e. U ′ = U ·N is

also an allowed normalization matrix if N is unitary. The normalized scalar masses

and trilinears can then be written formally as:

m2
ᾱβ = (U † ·m′2 · U)ᾱβ (3.6)

Ãαβγ = Uαα′Uββ′Uγγ′A
′
α′β′γ′

More precisely, the scalar masses can be written as:

m2
ᾱβ = (m2

3/2 + V0) δᾱβ − U †ΓᾱβU (3.7)

Γᾱβ ≡ eK̂F m̄(∂m̄∂n K̃ᾱβ − ∂m̄ K̃ᾱγ K̃γδ̄∂n K̃δ̄β)F n

Thus, when the cosmological constant has been tuned to be small, the scalar masses

generically have a flavor universal and flavor diagonal contribution equal to m2
3/2

from the first term in Eq. (3.7) and a flavor non-universal and flavor non-diagonal

contribution from the second term in Eq. (3.7). In order to estimate the size of the

non-universal and non-diagonal contributions, one has to know about the moduli

and meson dependence of the visible sector Kähler metric. This dependence of the

matter Kähler metric is notoriously difficult to compute in generic string and M

theory vacua, and the vacua under study here are no exception. Therefore, it is

only possible to proceed by making reasonable assumptions. Under our assumptions

about the meson field kinetic term, the only contribution to the non-universal and

non-diagonal terms in Eq. (3.7) comes from the F terms of the moduli Fi. Since

Fi ¿ Fφ, the non-universal contributions are negligible compared to the universal
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and diagonal contribution. Thus,

m2
ᾱβ ≈ m2

3/2 δᾱβ (3.8)

This implies that flavor changing neutral currents (FCNCs) are adequately sup-

pressed. The fact that the scalar masses are are roughly equal to the gravitino mass

can be traced to the non-sequestered nature of the Kähler potential in Eq. (2.36).

In the absence of fluxes, the G2 compactifications considered here do not have any

warping, which implies that one generically does not have sequestering in these com-

pactifications [52]. Since the scalars are heavy and also flavor universal at leading

order, we expect that no significant signals should occur for observables from loops

with sleptons or squarks, in particular for rare flavor violating decays such as µ → eγ,

K → πνν̄, b → sγ, etc, and also no significant signal for gµ − 2.

The computation of the trilinears also simplifies under the above assumptions.

Again, since the un-normalized Yukawa couplings and the visible sector Kähler metric

are not expected to depend on the meson field, the dominant contribution to the

trilinears comes from the first term in the expression for trilinears in (2.13). Thus,

one has:

A′
αβγ ≈ eK̂ F φ K̂φ Y ′

αβγ (3.9)

This implies that the normalized trilinear parameters are:

Ãαβγ ≈ (Uαα′Uββ′Uγγ′) eK̂ F φ K̂φ Y ′
α′β′γ′

≈ eK̂/2 F φ K̂φ Yαβγ

≈ 1.48 m3/2 Yαβγ (3.10)
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Here we have used the fact that the normalized Yukawa couplings are given by Yαβγ =

eK̂/2(Uαα′Uββ′Uγγ′) Y ′
α′β′γ′ and that eK̂/2 F φ K̂φ ≈

√
3 φ0 m3/2 ≈ e−iγW 1.48 m3/2 [29].

The reduced normalized trilinear parameters have a particularly simple form:

Aαβγ ≡ Ãαβγ

Yαβγ

≈ 1.48 m3/2 (3.11)

Thus, we see that in G2-MSSM vacua, the scalar masses and trilinears are generically

of O(m3/2).

3.1.3 Gaugino Masses at Munif

We now turn to gaugino masses. The computation of gaugino masses depends

less on our knowledge of the matter Kähler potential, therefore it is possible to obtain

quite detailed formulae. In G2 vacua the tree-level gaugino masses are suppressed

relative to the gravitino mass unlike the scalars and trilinears. Therefore, other

contributions such as those from anomaly mediation and those from threshold effects

arising from integrating out heavy fields can be important. Schematically, one can

write

Ma(µ) = M tree
a (µ) + MAMSB

a (µ) + M thres
a (µ) (3.12)

In the following we wish to compute each contribution at the unification scale Munif .

We study the case when the low energy spectrum is that of the MSSM. As mentioned

in section 2.4, for concreteness we will assume an SU(5) GUT group broken to the

MSSM by a discrete choice of Wilson lines for concreteness. This gives rise to a pair

of Higgs triplets whose effects should be properly taken into account. For the case
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of a different GUT group breaking to the MSSM by Wilson lines, there would be

similar heavy particles whose effects should be taken into account. As we will see,

the results obtained will be the same for all GUT groups as long as the low energy

spectrum is that of the MSSM.

Tree-level Suppression of Gaugino Masses

The tree-level gaugino masses at the scale µ are given by [44]:

M tree
a (µ) =

g2
a(µ)

8π

(∑
m,n

eK̂/2Kmn̄Fn̄∂m Ref 0
a

)
(3.13)

=
g2

a(µ)

8π

N∑
i=1

eK̂/2K īiFīN
vis
i . (3.14)

where f 0
a is the tree-level gauge kinetic function of the ath gauge group. As explained

earlier, the tree-level gauge kinetic function f 0
a of the three gauge groups in the MSSM

are the same (= f 0
vis) because of the underlying GUT structure. The tree-level

gaugino mass at the unification scale can then be computed in terms of microscopic

parameters. The details are provided in section VIIIA of [29]. Here, we write down

the result:

M tree
a (Munif) ≈ − η

Peff

(
1 +

2

φ2
0(Q− P )

+O(P−1
eff )

)
m3/2

where α−1
unif = Re(f 0

vis) + δ; η = 1− δ

α−1
unif

(3.15)

δ corresponds to threshold corrections to the (unified) gauge coupling and will be

discussed more in section 2.4.1. As seen from above, gaugino masses are suppressed

by Peff relative to gravitino mass. This property is independent of the details of the

Kähler potential for φ and the form of VX .
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Because the MSSM is obtained by the breaking of a GUT group by Wilson lines,

the gauge couplings of the MSSM gauge groups are unified at the unification scale

giving rise to a common Re(f 0
vis). This implies that the tree level gaugino masses at

Munif are also unified. In particular, for Q − P = 3 with a vanishing cosmological

constant (Peff = 83) and the Kähler potential given by (4.8), one has an explicit

expression for the gaugino mass:

M tree
a (Munif) ≈ − 1

83
η

(
1 +

2

3φ2
0

+
7

83φ2
0

)
×m3/2

≈ η 0.024 m3/2 (3.16)

Here we have used the fact that for Q − P = 3, φ2
0 ≈ 0.73. As explained in section

2.3, a large Peff is required for the validity of our solutions. Therefore, the parametric

dependence on P−1
eff in Eq.(3.15) indicates a large suppression in gaugino masses. The

precise numerical value of the suppression may change if one considers a more general

form of the matter Kähler potential since then the numerical factor multiplying P−1
eff

in (3.15) may change in general. However as long as the couplings for higher order

terms in the matter Kähler potential such as (φ̄φ)2 are sufficiently small, a large

numerical suppression is generic. In our analysis henceforth, we will assume that to

be the case.

From a physical point of view, the suppression of gaugino masses is directly related

to the fact that the F -terms of moduli Fi (in Planck units) are suppressed compared

to m3/2 and that the gauge kinetic function f 0
a in (3.13) only depends on the moduli

si. This implies that the F -term of the meson field does not contribute in (3.15). It
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is also useful to compare the above result for the tree-level suppression of gaugino

masses in G2 dS vacua with that of Type IIB dS vacua. In KKLT and large volume

type IIB compactifications, the moduli F terms also vanish in the leading order

leading to a suppression of tree-level gaugino masses, although for a different reason

- the flux contribution to the moduli F terms cancels the contribution coming from

the non-perturbative superpotential [23]. Another difference is that the subleading

contributions in those Type IIB vacua are suppressed by the inverse power of the

volume of the compactification manifold. Note that a large associative three-cycle

on a G2 manifold (VQvis
) does not translate into a large volume compactification

manifold. So, it is possible for G2 vacua to have a large VQvis
while still having a

high compactification scale.

Anomaly Mediated Contributions

Since the tree-level gaugino mass is suppressed, the anomaly mediated contri-

butions become important and should be included. In our framework they are not

suppressed. The general expression for the anomaly contribution to gaugino masses

at scale µ is written as [45]:

where i runs over all the MSSM chiral fields. Again, since the Kähler metric

for visible sector matter fields is expected to be independent of the meson field, the

third term in (4.12) is much smaller than the first two. Thus, the anomaly mediated
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contribution can be simplified:

MAMSB
a (Munif)

g2
a

≈ − 1

16π2

[
ba − b′aφ

2
0

(
1 +

2

(Q− P ) φ2
0

)]
m3/2 (3.17)

ba ≡ −(3Ca −
∑

i

Ci
a); b′a ≡ −(Ca −

∑
i

Ci
a)

As seen from (3.17), the anomaly mediated contributions are not universal. Since

the anomaly mediated contributions are numerically comparable to the tree-level

contributions, the gaugino masses will be non-universal at the unification scale. That

the tree-level and anomaly mediated contributions are similar in size seems to be

accidental – one is suppressed by 1/Peff = 1/83, the other by the loop factor 1/16π2,

and these factors are within a factor of two of each other.

The Complete Gaugino Masses

In principle, there can also be threshold corrections to gaugino masses from high

scale physics and it is important to take them into account. In general, a threshold

correction to the gaugino masses at a scale Mth is induced by a threshold correction

to gauge couplings by the following expression [53]:

∆Ma = g2
a(Mth) F I∂I (∆ f thresh

a ) (3.18)

In these M-theory compactifications, possible threshold corrections at scales ≤ Munif

can arise from the following:

• Generic heavy M-theory excitations Ψ of O(M11) - ∆fM theory
a .

• 4D particles in the GUT multiplet with mass ≈ Munif - ∆fT,T̃
a .
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• Kaluza-Klein (KK) excitations of O(Munif) - ∆fKK
a .

It turns out that threshold corrections to the gauge couplings from KK modes

are constants [50]. Therefore, from (3.18), they will not give rise to any threshold

correction to the gaugino masses. In addition, the corrections from generic heavy

M-theory states T with mass ∼ M11 as well as from 4D heavy GUT particles with

mass (∼ Munif) (such as Higgs triplets in SU(5)), to the gaugino masses are also

negligible. So, the complete gaugino mass can be approximately written as:

Ma(Munif)

g2
GUT

≈ − 1

16π2

{
ba +

(
4π Re(f 0)

Peff

− b′aφ
2
0

) (
1 +

2

φ2
0(Q− P )

)}
m3/2 (3.19)

where b1 = 33/5, b2 = 1.0, b3 = −3.0, b′1 = −33

5
, b′2 = −5.0, b′3 = −3.

The above analytical expression for gaugino masses is true up to the first subleading

order in the 1/VQ expansion. In general, the full gaugino mass at the unification

scale (3.19) depends on the parameters {Re(f 0), Q − P , δ, VX , Peff and C2}. For

the phenomenologically interesting case with Q − P = 3 and Peff = 83, there are

effectively only four parameters: {Re(f 0), δ, VX , C2}. As seen from (3.4), m3/2 is

determined from the last two parameters - VX and C2. Therefore, the ratio of the

gaugino masses to the gravitino mass for the phenomenologically interesting case of

Q−P = 3, Peff = 83 just depends on the parameters Re(f 0) and δ which are subject

to the constraint α−1
unif = Re(f 0) + δ ≈ O(25) (see section 2.4). The gaugino masses

are plotted as a function of δ in Figure 3.1 for m3/2 = 20 TeV. Notice that M2 and

M3 are smaller than M1 by a factor of few at the unification scale. However, as will

be seen promptly, the gluino will still turn out to be the heaviest gaugino because of
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Figure 3.1: The gaugino masses at the unification scale are plotted as functions of

threshold correction to the gauge kinetic function δ for Q − P = 3,

Peff = 83, m3/2 = 20 TeV and α−1
unif = 26.5.

RG effects.

3.2 Superpartner Spectrum at MEW and Electroweak Sym-

metry Breaking

As seen in previous section, the scalar and Higgsino masses at Munif are close to

that of the gravitino. This has to be larger than & 10 TeV in order to evade the LEP

II chargino bound because of the large suppression of the gaugino masses relative to

the gravitino. In addition, a gravitino mass of & 10 TeV is also required to mitigate

the moduli and gravitino problems.

In order to connect to low-energy physics, one has to RG evolve the soft super-

symmetry breaking parameters from Munif to the electroweak scale. It turns out

that RG evolution increases the masses of the first and second generation squarks
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and sleptons. However, since the increase is mostly proportional to the gaugino

masses [54] which are much smaller than the high-scale sfermion mass, the masses

of the first and second generations squarks and sleptons are still of O(m3/2). The

masses of the third generation squarks and sleptons - stops, sbottoms and staus are

also affected non-trivially by the trilinear parameters (again of O(m3/2)) because

of their larger Yukawa couplings [54]. In particular, the lightest stop (t̃1) becomes

much lighter than the other sfermions (even though still considerably heavier than

the gauginos). Finally, the µ parameter, which determines the masses of the higgsi-

nos, does not change much during RG evolution because of the non-renormalization

theorem. So, the µ parameter at the electroweak scale is also of O(m3/2).

Because of the large hierarchy in the spectrum, it is convenient to work in an

effective theory with the heavy fields (scalars and Higgsinos) integrated out at their

characteristic scale (Ms ∼ 10 − 100 TeV). The low energy effective theory below

Ms only contains the light gauginos and the SM particles. Therefore it is very

important to compute the masses of gauginos as these are the only light new states

predicted by the theory2. To take into account the threshold effects of these heavy

states on the gaugino masses, we follow the “match and run” procedure which is a

good approximation when Ma ¿ Ms. In this paper, we use a one-loop two-stage

RGE running with a tree-level matching at the scale Ms. All other thresholds are

calculated using the exact one-loop results.

2The lightest stop could also be light in some cases.
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3.2.1 Gaugino Masses at MEW

The weak scale gaugino mass parameters at one-loop can be related to those at

unification scale by a RG evolution factor Ka as follows:

Ma(Mweak) = Ka Ma(Munif) (3.20)

The RG evolution factors Ka are given by:

Ka =

(
αs

a

αunif

)(
αEW

a

αs
a

)b̃SM
a /bSM

a

(3.21)

where b̃a’s and ba’s are the β function coefficients of the gaugino masses and gauge

couplings respectively:

b̃SM
1 = 0, b̃SM

2 = −6, b̃SM
3 = −9

bSM
1 =

41

10
, bSM

2 = −11

6
, bSM

3 = −5. (3.22)

αs
a and αEW

a are the gauge couplings at the decoupling scale Ms and the electro-weak

scale MEW respectively, which can be expressed as

(αs
a)
−1 = α−1

unif +
ba

2π
ln

(
Munif

Ms

)

(αEW
a )−1 = (αs

a)
−1 +

bSM
a

2π
ln

(
Ms

MEW

)
(3.23)

As an example, for αunif = 1/26.5, for Ms varying from 10 TeV to 100 TeV, the

corresponding RG factors are

K1 ≈ 0.47− 0.49, K2 ≈ 0.99− 1.08, K3 ≈ 3.7− 4.6. (3.24)

Notice that the RG evolution factor K3 is quite large for a large Ms. This prevents

the gluino becoming the LSP even though the gluino mass M3 is typically small at

the unification scale.
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Once the running masses of the gauginos at the low scale are calculated, their pole

mass can be obtained by adding weak scale threshold corrections. For general MSSM

parameters, they are given in [55]. In our ‘match and run’ procedure, the threshold

corrections of heavy scalars and Higgsinos are automatically included except some

finite terms which are usually small and negligible. However, since in our case the

Higgsino mass µ is of order m3/2, the finite threshold correction cannot be neglected

and is given by [55–57]:

∆Mfinite
1,2 ≈ −α1,2

4π

µ sin (2β)

(1− µ2

m2
A
)

ln(
µ2

m2
A

)

≈ α1,2

4π
µ =

α1,2

4π
zeff m3/2 (3.25)

In the second line, we have used the fact that µ2

m2
A
∼ 1 so that the logarithm can

be expanded. In addition, since µ does not change much in the RG evolution, it

is a good approximation to use its high scale value µ ≡ zeff m3/2. It should be

noted that this correction is actually proportional to µ(Bµ)∗ and in general has the

same phase as the moduli and anomaly mediated gaugino masses (see Section 4.2.1

for details). Therefore, it leads to a decrease in both bino (M1) and wino (M2)

masses. Since α2 > α1, this correction will most significantly affect M2. Therefore

it could potentially affect the identity of the LSP. For the case with gravitino mass

m3/2 ∼ 30 TeV, this finite correction to M2 is roughly 100 GeV, which may even

dominate over the tree-level mass. This large correction to M1,2 is not surprising since

the low energy effective theory is non-supersymmetric and there is no symmetry to

protect the gaugino masses from finite radiative corrections. This leads to gaugino
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Figure 3.2: Gaugino Masses at low scales (including the correction in Eq. (3.25))

as a function of δ for the case with cosmological constant tuned to zero

(Peff = 83), Q− P = 3, VX = 10.8, C2 = 1 and α−1
unif = 26.5.

mass at low scale as shown in Figure 3.2.

Of course, one also has to include weak scale threshold corrections from gaugino-

gauge-boson loops. These are especially important for the gluino mass:

∆M rad
3 =

3g2
3

16π2

(
3 ln

(
M2

EW

M2
3

)
+ 5

)
M3 (3.26)

For M3 not much heavier than MEW, there is a substantial correction of at least

3α3M3.

We calculated the gaugino mass at the Weak scale, with all these corrections taken

into account. As mentioned before, the hierarchy of gaugino masses is most sensitive

to δ and Peff . In order to obtain realistic phenomenology, we choose Q− P = 3 and

tune the cosmological constant to obtain Peff = 83. Then, the hierarchy of gaugino

masses mainly depends on δ - the threshold corrections to the unified gauge coupling.
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The dependence of gaugino masses on δ is shown in Figure 3.2. From the figures, we

the wino tends to be the LSP (|M2| < |M1|) in the region with small δ. Also, |M3|

is significantly larger than |M1|, |M2| for values of |δ| & 3. As will be seen in section

2.4.1, |δ| & 3 is favored by precision gauge unification.

3.2.2 Electroweak Symmetry Breaking

Since the scalars in the G2-MSSM are generically very heavy, there are large

logarithmic corrections to the Higgs potential. To analyze EWSB in such a theory,

it is better to work in the low energy effective field theory in which all heavy fields

are decoupled. Then, the large logarithmic corrections are automatically resummed

when the Higgs parameters are RG evolved to the low scale. After decoupling all the

heavy fields, the low energy effective theory is simply the standard model plus light

gauginos. It is well known that in order to have electroweak symmetry breaking,

there must exist a light Higgs doublet below the decoupling scale with negative

mass parameter. It was pointed out in [58] that generically it is very hard to get

EWSB predominantly from radiative effects below the decoupling scale, more so if the

decoupling scale is not too high (as in our case). Therefore, if electroweak symmetry

breaking happens in the effective theory at low scale, it should also happen in the

MSSM theory at the decoupling scale. This means that we only need to check the

existence of EWSB at the decoupling scale in the MSSM framework.
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In order to do that, we have to first diagonalize the mass matrix of (hu, h
∗
d):




m2
Hu

+ µ2 −b

−b m2
Hd

+ µ2


 (3.27)

The eigenvalues are

ζ1,2 =
1

2

[
(m2

u + m2
d)±

√
(m2

u −m2
d)

2 + 4b2
]
, (3.28)

where m2
u = m2

Hu
+ µ2 and m2

d = m2
Hd

+ µ2. The light Higgs doublet h is a superpo-

sition of hu and hd

h = sin βhu + cos βh∗d (3.29)

where β is determined by the diagonalization of the matrix. In a complete high

scale theory, the mass matrix Eq. (3.27) is completely determined by the high scale

boundary condition. The existence of EWSB depends on whether there is one neg-

ative eigenvalue.

In the G2-MSSM, the effective µ and Bµ terms in the low-energy lagrangian

can arise from the non-zero Higgs bilinear coupling Z, if the µ term in the original

superpotential is forbidden by some discrete symmetry3 as in [48]. In such a case,

they are given by [44]:

µ =
(
m3/2Z − eK̂/2F m̄∂m̄Z

)
(K̃HuK̃Hd

)−1/2

Bµ =

{
(2m2

3/2 + V0)Z −m3/2e
K̂/2F m̄∂m̄Z + m3/2e

K̂/2Fm[∂mZ − Z∂m ln(K̃HuK̃Hd
)]

− eK̂F m̄F n[∂m̄∂nZ − ∂m̄Z∂n ln(K̃HuK̃Hd
)]

}
(K̃HuK̃Hd

)−1/2 (3.30)

3This is favored by the motivation of the solution to the doublet-triplet splitting

problem
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where Z is the Higgs bilinear coefficient and K̃ is the Kähler metric for the Higgs

fields. Z is a complex-valued function of all hidden sector chiral fields in general.

However, with the reasonable assumption that the visible sector Kähler metric and

the Higgs bilinear coefficient Z are independent of the meson field φ, one can make

simplifications. Combining the above with the fact that F i ¿ F φ, one has the

following approximation:

µ ≈ m3/2Z (K̃HuK̃Hd
)−1/2

Bµ ≈ (2m2
3/2 + V0)Z (K̃HuK̃Hd

)−1/2 (3.31)

Therefore, we impose the following boundary conditions

µ(Munif) ≈ zeffm3/2, Bµ(Munif) ≈ 2zeffm2
3/2 (3.32)

Using the above relation and RG evolving them to the decoupling scale, one can

obtain a Higgs mass matrix which is parameterized by zeff . One then finds that

for zeff < z∗eff ∼ O(1) there will always be a negative eigenvalue and so electroweak

symmetry is broken. This condition for the existence of EWSB is naturally satisfied

if zeff ∼ O(1). Since all elements in the mass matrix (3.27) are O(m3/2), the mixing

coefficients (sin β and cos β) of hu and h∗d are of the same order. Thus, tan β is

naturally predicted to be of O(1). This is in contrast to usual approaches to high-

scale model-building where µ and Bµ are completely unknown from theory and are

only determined after fixing MZ and choosing tan(β). In the G2-MSSM, tan β is not

a free parameter and is determined by the relation between µ and Bµ predicted from

the theory.
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Since all the elements in the mass matrix (3.27) are O(m3/2), the Higgs mass

eigenvalues should also be m3/2 which is around 100 times larger than the EW scale.

This implies a fine-tuning if there is no magic cancellation. So, even though the

existence of EWSB is generic, getting the correct Z mass is not. As will be discussed

below, the requirement of obtaining the correct Z-boson mass fixes the precise value

of zeff . This requires a fine-tuning of zeff .

In the following we describe the precise procedure used for obtaining EWSB with

the correct Z mass. The heavy scalars are decoupled at Ms and the couplings of the

low energy effective theory (consisting of the SM particles and the MSSM gauginos)

are matched with those of the complete MSSM. Most importantly, the matching

condition for the quartic coupling of the Higgs is given by:

λ(ms) =
3
5
g2
1 + g2

2

8
cos2 2β (3.33)

It turns out that at energies below the decoupling scale Ms, the one-loop RG evolution

of m (the SM Higgs mass parameter), λ and the Yukawa couplings is the same as

that of the Standard Model:

16π2dλ

dt
= 24λ2 − 6y4

t + 12λy2
t +

27

200
g4
1 +

9

20
g2
1g

2
2 +

9

8
g4
2 −

9

5
λg2

1 − 9λg2
2

16π2dm2

dt
= m2(6λ + 6y2

t −
9

10
g2
1 −

9

2
g2
2)

16π2dyt

dt
= yt

[
(
9

2
y2

t +
3

2
y2

b + y2
τ )− (

17

20
g2
1 +

9

4
g2
2 + 8g2

3)
]

16π2dyb

dt
= yt

[
(
3

2
y2

t +
9

2
y2

b + y2
τ )− (

1

4
g2
1 +

9

4
g2
2 + 8g2

3)
]

16π2dyτ

dt
= yτ

[
(3y2

t + 3y2
b +

5

2
y2

τ )− (
9

4
g2
1 +

9

4
g2
2)

]
(3.34)

It is important to mention that the above equations are different from the corre-
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sponding ones for split-supersymmetry because Higgsinos in the G2-MSSM are also

very heavy (of O(m3/2)) unlike that in split-supersymmetry [59]. Therefore, for the

G2-MSSM, the Higgsinos also decouple below Ms forbidding additional terms which

appear in the one-loop RG equations for split-supersymmetry. From above, the quar-

tic coupling λ will get a large correction from RG evolution because of the large top

Yukawa coupling. The gaugino masses Ma on the other hand will only receive one-

loop corrections from gauge boson exchange. The corresponding RGE equations at

one-loop are as follows:

16π2dM1

dt
= 0 (3.35)

16π2dM2

dt
= −12b2

2M2 (3.36)

16π2dM3

dt
= −18b2

3M3 (3.37)

Given the boundary conditions for soft parameters for realistic M-theory vacua as in

section 3.1, one finds that EWSB occurs if zeff is of O(1). But the generic value of

MZ is around m3/2, which can be seen from the fact that all the Higgs parameters

are of the order of m3/2. In order to get MZ = 91 GeV, one has to tune zeff so that

µ and Bµ take values such that the lightest Higgs mass parameter comes out to be

around MEW . This fine-tuning is a manifestation of the little hierarchy problem -

an unexplained hierarchy between the electroweak (SM-like Higgs) and superpartner

(scalar) scales. Our current understanding of the theory does not yet allow us to

explain the little hierarchy problem by a dynamical mechanism.

In the low energy effective theory the ratio of the Higgs mass to the Z mass turns
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Figure 3.3: Plot of the ratio of the Higgs mass and the Z mass as a function of the

gravitino mass.

out to be quite robust4. The ratio is given by:

mh

mZ

=
2
√

λ(MEW )

(3
5
g2
1 + g2

2)(MEW )
(3.38)

λ is determined by the gauge couplings, Yukawa couplings and tanβ. One has to use

the boundary condition for λ at Ms as in Eq. (3.33) and then RG evolve it to the

electroweak scale using the first equation in Eq. (3.34). The gauge couplings at the

electroweak scale can also be determined by their RGEs. Thus, one can obtain the

ratio mh/mZ as a function of m3/2 as shown in Figure 3.3. It is worth noting that

this ratio only mildly depends on m3/2. If MZ is tuned to its experimental value, we

can use λ obtained from the RG equation or from Figure 3.3 to predict the Higgs

boson mass for any given value of m3/2. Once one finds the Higgs VEV v, the Higgs

4even when one does not tune zeff to obtain the correct Z mass as explained in

the previous paragraph.
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mass is simply m2
h = 2λv2 just as in the Standard Model since all heavy scalars and

Higgsinos have already been decoupled. The Higgs boson mass thus computed turns

out to be of O(120) GeV for a range of interesting values of m3/2 as it only mildly

depends on it. Since all susy-breaking large logarithms have already been taken into

account in the ‘Match and Run’ procedure, only some finite term contributions could

have been missed in this analysis. One could take those effects into account as well

in a more detailed analysis, but that would not change the Higgs mass significantly.

The origin of the above value of the Higgs mass can be understood as follows. If

one did not decouple the scalars and Higgsinos at Ms, then the Higgs mass receives

very large radiative corrections, making the Higgs mass heavy as required. However,

because of the hierarchy between the scalars and gauginos, these radiative corrections

are hard to compute in a controlled manner. In the spirit of effective field theory

therefore, it makes sense to integrate out the scalars and Higgsinos at Ms. In this

picture, all the radiative corrections to the Higgs mass can be incorporated in the

running of the quartic coupling λ. λ gets renormalized from Ms to MEW giving rise

to a heavy Higgs.

3.3 Precision Gauge Coupling Unification

As seen in section 2.4.1, G2-MSSM vacua naturally incorporate gauge coupling

unification from a top-down point of view. We will now examine the issue of precision

gauge coupling unification including the low scale threshold corrections. There are

two aspects to this issue:
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• Is there a unification of gauge couplings at a high scale O((1−3)×1016) GeV by

continuing the gauge couplings up in energy from the laboratory scale including

all the low-scale thresholds?

• Whether the unified gauge coupling and the unification scale obtained are con-

sistent with the theoretical prediction in terms of “microscopic” parameters.

As we will see, it turns out that the G2-MSSM is compatible with precision gauge

coupling unification in the sense that there exists a relatively large set of reasonable

microscopic parameters which gives rise to precise gauge coupling unification.

Before going into details, it is important to notice the following general fact

– gaugino masses at the unification scale and hence the low scale depend on the

value of α−1
unif . However, the value of α−1

unif itself depends on corrections to the

gauge couplings from superpartner thresholds at low scale. This means that there

is a feedback between the spectrum of superpartner masses and the value of α−1
unif .

Therefore, one has to remember to take into account the effects of this feedback in

general.

Since the squarks and sleptons come in complete GUT multiplets, they do not

affect gauge unification. The Higgs doublets, Higgsinos and gauginos do affect gauge

unification since they do not form complete GUT multiplets. Since the Higgsino

mass (µ) in these vacua are heavy (O(m3/2)) and is robustly determined by the

gravitino mass once the EWSB breaking constraint is imposed, for a fixed gravitino

mass gauge coupling unification will mostly depend on the light gaugino masses,
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Figure 3.4: Gaugino Mass spectra vs m3/2 compatible with gauge unification for

Peff = 83, C2 = 5. The red, green and blue lines correspond to gaugino

mass M1, M2 and M3 respectively.

the gaugino mass ratio |M3|/|M2| in particular because it contributes the most to

the threshold corrections to the gauge couplings. We find that in order to have

precise unification, this ratio has to be greater than around 3 − 4. This sensitivity

to |M3|/|M2| is much greater here than in split-SUSY where both the Higgsinos and

gauginos are light. Finally, if there are particles in the GUT multiplet in addition to

the MSSM (the Higgs triplets in the SU(5) case for example) that are lighter than

Munif , then one should also take their threshold contributions to the gauge couplings

into account. However one finds that their threshold contribution causes α−1
3 and

α−1
1 to move away from each other. Therefore, the requirement of precision gauge

unification forces us to assume that such particles (like the triplets) are at least as

heavy as the unification scale. It seems possible to arrange that in many models.
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Based on the above arguments, we performed a complete scan over the parameter

space on which the gaugino masses depend – {δ, VX , C2, α−1
vis}, assuming Q − P =

3, Peff = 83. As negative δ is necessary to obtain the right unification scale, we take

a range −10 ≤ δ ≤ 0. C2 is taken to be O(1). α−1
vis ≡ Re(f 0) is taken to be of O(25).

The lower and upper bounds on VX are given by 5:

V min
X = 1; weak supergravity constraint (section 2.4.2)

V max
X = V

7/3
Qvis

≈ (α−1
unif − δ)7/3; corresponding to a ≡ VX

V
7/3
Qvis

= 1 (3.39)

In addition, we consider a gravitino mass below 100 TeV so that the spectrum is light

enough to be potentially be seen at the LHC, as well as satisfy all our constraints.

From the previous discussion, we know that |M3| is typically a few times larger than

|M2|, and it turns out that gauge couplings unify very well around some unification

scale. The gaugino mass spectra compatible with precision gauge unification and all

bounds on superpartner masses are shown in Figure 3.4. The most stringent bound

among superpartner mass bounds is that of the lightest chargino from LEP II. For the

bino LSP case, the bound is MC̃1
≥ 104 GeV. However for a wino LSP, which turns

out to be relevant for us, the bound depends on the mass splitting ∆M ≡ Mχ̃±1
−Mχ̃0

1
;

for simplicity we take MC̃1
≥ 80 GeV [60].

The procedural details used are as follows. For a choice of δ, C2, VX and α−1
unif

in the above range as well as for a set of initial values of Yukawa couplings and zeff

at Munif ∼ O(1016) GeV, the MSSM spectrum was computed at low scales using the

5The upper bound is determined from the fact that in both heterotic and type IIA

duals of these vacua, the parameter a ≡ VX

V
7/3
Q

is always less than unity [50].
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analysis in sections 3.1.3 and 3.2.1. The experimental values of the gauge couplings

(both their max. and min. values taking the uncertainty into account) were then

RG evolved backwards to the high scale using two-loop RGEs which depend on the

superpartner thresholds. The unified gauge coupling and the unification scale were

determined by the requirement α1(Munif) = α2(Munif). The Yukawa couplings were

evolved to the high scale at the same time. The original parameters were scanned

within their respective ranges and only those values for which the initial assumed

αunif was equal to the value of the computed αunif up to experimental uncertainties,

were recorded. MZ was checked to be approximately 91 GeV. The condition for

gauge coupling unification, i.e. α3,min(Munif) < α1,2(Munif) < α3,max(Munif), was

checked and only sets of parameters which satisfied the above condition as well

as other constraints on superpartner masses, were recorded. In the above condition,

α3,min(Munif) and α3,max(Munif) are the lower and upper values of α3 at the unification

scale, determined by RG evolving the low scale experimental value of α3 taking

the uncertainties into account. The low scale gaugino mass spectra consistent with

precise gauge coupling unification are plotted in Figure 3.4. One sees from Figure

3.4 that only discrete values of gaugino masses are possible since it is not possible to

satisfy precision gauge unification constraints for continuous sets of parameters.

3.4 What is the LSP?

From Figure 3.4, the lightest supersymmetric particle (assuming R-parity conser-

vation) turns out to be predominantly wino-like. The Higgsinos are of O(m3/2) and



60

are much heavier than the gauginos. Here, as usual we have assumed that Q−P = 3

and Peff = 83.

It is worthwhile to compare and contrast the results obtained for the G2-MSSM

for the nature of the LSP with those for the Type IIB vacua corresponding to the

“mirage mediation” framework mentioned in the introduction. There one always gets

bino LSPs. In mirage mediation, the gaugino mass contribution is dominated by the

tree-level and conformal anomaly contribution (the first term in Eq. (4.12)) which

are of the same order [53]. The second and third term in Eq. (4.12) are negligible

because of the assumption of sequestering. On the other hand, for the G2-MSSM, the

Konishi anomaly contribution coming from the second and third term in Eq. (4.12) is

also important as one does not expect sequestering in general. The second important

difference is that the µ parameter is very large for the G2-MSSM (of O(10) TeV)

compared to that for mirage mediation. This implies that the finite contribution to

M1 and M2 from Eq. (3.25) in the G2-MSSM is quite important in contrast to that

in mirage mediation. Therefore, due to all the above reasons, the nature of the LSP

obtained for the G2-MSSM is different from that for mirage mediation.

3.5 Summary and Benchmark Spectra

To summarize, the G2-MSSM models have a distinctive spectrum. One finds that,

at the compactification scale (∼ Munif), the gauginos are light (. 1 TeV) and are

suppressed compared to the trilinears, scalar and Higgsino masses which are roughly

equal to the gravitino mass (∼ 30− 100 TeV). At the electroweak scale, the lightest
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top squark turns out to be significantly lighter than the other squarks (∼ 1−10 TeV)

because of RGE running. In addition, there are significant finite threshold correc-

tions to bino and wino masses from the large Higgsino mass. Radiative electroweak

symmetry breaking is generic and tan β is naturally predicted from the structure

of the high scale theory to be of O(1)6. The value of mZ is fine-tuned, however,

implying the existence of the Little-hierarchy problem, which, because of the larger

scalar masses is worse than the usual little hierarchy.

For concreteness, we generate four benchmark G2-MSSM models with Q − P =

3, Peff = 83. The “microscopic” input parameters and corresponding low-scale mass

spectra are shown in Table 3.5. These models are consistent with the precision gauge

coupling unification.

6Theoretical predictions of tan β are fairly rare
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parameter BM-1 BM-2 BM-3 BM-4

δ -4 -6 -8 -10

m3/2 67558 35252 34295 17091

VX 14 21.6 22 35

α−1
unif 26.7 26.4 26.5 26.0

Zeff 1.58 1.65 1.65 1.77

tan β 1.44 1.45 1.45 1.45

µ 87013 45572 44164 22309

mg̃ 994.7 732.5 900.4 573.5

mχ̃0
1

116.6 110.9 173.1 107.1

mχ̃0
2

390.0 228.3 253.5 137.1

mχ̃±1
116.7 111.0 173.2 107.3

mũL
67600 35254 34298 17094

mũR
67559 35264 34298 17093

mt̃1 18848 9010 8700 3850

mt̃2 49554 25707 24998 12378

mb̃1
49554 25707 24998 12378

mb̃2
67497 35220 34265 17076

mẽL
67558 35253 34296 17091

mẽR
67559 35253 34296 17091

mτ̃1 67527 35237 34280 17084

mτ̃2 67543 35245 34288 17088

mh 123.6 120.8 120.3 118.1

mA 1.3× 105 7.0× 104 6.8× 104 3.4× 104

At 1.8× 104 7.8× 103 7.4× 103 2.9× 103

Ab 1.6× 105 8.3× 104 8.1× 104 4.0× 104

Aτ 1.8× 105 9.5× 104 9.3× 104 4.5× 104

Table 3.1: “Microscopic” parameters and low scale spectra for four benchmark G2-

MSSM models. All masses are in GeV. The top mass is taken to be

174.3 GeV in our calculation. For all the above points, Q − P = 3 and

Peff = 83 are taken as discussed in the text. The gravitino mass depends

mainly on the combination C2V
−3/2
X as in Eq. (3.4). So the spectra are

largely determined by two parameters δ and m3/2. All the above spectra

are consistent with current observations. Scalar masses are lighter for

benchmark 4, so flavor changing effects need to be explicitly checked later.
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LHC Prospects and CP Violation

Having discussed the supersymmetry breaking and calculated the soft terms as

well as the sparticle mass spectra at low energy, it is ready to discuss various aspects

of low energy phenomenology of this framework. In this Chapter, we first study the

superpartner production and decay at the LHC as well as the prospects for detection.

Then, in the rest of chapter, we study the CP violation in the soft supersymmetry

breaking section and the prediction for electric dipole moments.

4.1 LHC Prospects of G2-MSSM

This section is devoted to studying the phenomenological consequences of the

G2-MSSM at the LHC.

The pattern of sparticle spectra at low scales crucially determines the pattern of

signatures at a hadronic collider. As discussed in Chapter III, it is clear that the

G2-MSSM spectrum is characterized by heavy, multi-TeV scalars and higgsinos, sub-

TeV gauginos, and an SM-like Higgs field1. Thus, the arrangement of the sub-TeV

1The parameter tan β is of O(1)
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fields crucially determines the pattern of observable signatures at the LHC.

In the G2-MSSM, the LSP is predominantly a neutral Wino. For the models

examined, the following hierarchy between the sub-TeV particles was observed:

mg̃ > mχ̃0
2

> mχ̃±1
> mχ̃0

1
(4.1)

The χ̃0
1 is nearly degenerate with the χ̃±1 (mχ̃±1

− mχ̃0
1

< 200 MeV). Variation of

high-scale input parameters Peff , VX , and δ simply shift the overall mass scale and

relative mass splitting of the fields, but do not modify this hierarchy. This feature

significantly constrains the possible decay modes observable at the LHC.

4.1.1 Production Cross Sections

Given the fact that the only light superpartners in the G2-MSSM framework are

gauginos, their productions dominate the superpartner productions. The primary

production modes for the G2-MSSM models are neutralino-chargino associate pro-

duction (χ̃0
1 χ̃±1 ), chargino pair production (χ̃+

1 χ̃−1 ) and gluino pair production (g̃ g̃).

Table 4.1 shows the production cross sections for the four G2-MSSM benchmark

models. The cross sections were obtained using PYTHIA [61]. Associated produc-

tion of g̃χ̃±1 or g̃χ̃0
1, and other modes that proceed through a t- or u-channel squark

exchange are heavily suppressed. The χ̃0
1χ̃

±
1 and χ̃+

1 χ̃−1 modes can proceed through

an s-channel W± or Z boson, respectively, which drives the large cross section de-

spite this suppression. Production of χ̃±1 χ̃0
2 pairs is suppressed because of the tiny

Wino component in χ̃0
2. Production of χ̃0

i χ̃
0
j pairs is suppressed because the higgsino

component of χ̃0
i is negligible.
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Channel BM-1 BM-2 BM-3 BM-4

pp → g̃ g̃ 0.25 pb 1.9 pb 0.49 pb 8.6 pb

pp → χ̃0
1 χ̃±1 6.4 pb 8.1 pb 1.6 pb 8.4 pb

pp → χ̃+
1 χ̃−1 2.2 pb 2.7 pb 0.5 pb 2.8 pb

Table 4.1: Cross sections of dominant production modes for four G2-MSSM bench-

mark models at the LHC.

4.1.2 Decay of Superpartners

Having discussed the production channels and the associated cross sections, we

now turn to the decay of the produced superpartners. The second lightest neutralino

χ̃0
2 dominantly decays into chargino plus W , i.e. χ̃0

2 → χ̃±1 W∓ as long as mχ̃0
2

> mχ̃±1
.

Otherwise, it decays through an off-shell W . The lightest chargino χ̃±1 is almost in

degenerate in mass with the LSP. Its decay is different from that of the usual Bino

LSP models, and will be discussed in the next section. In the following, we shall

only focus on the gluino decay.

Since mq̃ > mg̃, the produced gluinos proceed through a three-body decay into

two quarks and either a χ̃0
2, χ̃0

1, or a χ̃±1 . The decay channels and the associated

branching ratios for the four benchmark models can be found in Table 4.2.

Channel BM-1 BM-2 BM-3 BM-4

g̃ → χ̃0
1,2t

∓t± 37% 39% 62% 36%

g̃ → χ̃±1 t∓b± 25% 21% 14% 16%

g̃ → χ̃0
1,2b

∓b± 8% 9% 5% 10%

g̃ → χ̃±1 q∓q′± 18% 19% 11% 21%

g̃ → χ̃0
1,2q

∓q± 11% 12% 7% 15%

Table 4.2: Decay channels and branching ratios of gluino for the four G2-MSSM

benchmark models. The branching ratios are calculated using SUSY-

HIT [1].
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For a three-body decay of gluino, the decay width is proportional to m−4
q̃ . There-

fore, the decay through t̃1 is favored because it is much lighter than all other squarks.

In addition, since t̃1 is mostly right-handed, it preferably decay to top and Bino-like

χ̃0
2. This indicates that the dominant decay of gluino is via g̃g̃ → t̃∗1t̄ → χ̃0

2tt̄. The

other possible final states of gluino decay are either suppressed by the larger interme-

diate squark mass or the small stop mixing angle. In order to have a more realistic

analysis, we also have to take into account the phase space factors, which affect the

decay widths and so the branching ratios. For the channel χ̃0
2tt̄, the allowed phase

space is typically smaller than those of other channels. In cases where the gluino

mass is below TeV scale, this effect is significant and leads to additional suppression

in the decay width. Therefore, the branching ratio of χ̃0
2tt̄ channel is not so much

greater than those of the rest of the channels, as we can see from Table 4.2.

In addition to the dominant three-body decay modes described above, the gluino

can also have a two-body decay mode to the gluon (g) and the second neutralino

Ñ2. This mode mostly proceeds through a t̃1 ≈ t̃R since it is lightest squark. Thus,

for the wino-LSP cases considered, BR(g̃ → χ̃0
2g) > BR(g̃ → χ̃0

1g) due of the much

greater bino content of the χ̃0
2. The overall suppression is still high however, and

BR(g̃ → χ̃0
2g) . 0.02 with the maximum fraction occurring only for models with a

very high spectrum.
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4.1.3 Signatures at the LHC

As we have seen in Section 4.1.1, the dominant production for G2-MSSM is the

direct production of electro-weakinos χ̃+
1 χ̃−1 and χ̃0

1χ̃
±
1 . The first channel gives rise to

events with two LSPs plus some very soft particles from chargino decay, which have

very small missing ET because it is the vector sum of PT s of the visible objects. The

second channel can gives rise to additional W s, but again the missing ET is small

because of the same reason. Therefore, events from both channels are difficult to

trigger on since there is no hard jets or a large missing ET
2.

Now consider the gluino pair production. For reasons mentioned in section 4.1.2,

the majority of gluino decay modes include a pair of either top or bottom quarks,

or a combination of both. The top quark decays exclusively as: t → W + b, which

results in at least two b-jets per decay, and four b-jets for a g̃ g̃ event for these modes.

Therefore, a typical signature for the G2-MSSM models is multi-bjets plus missing

ET .

There are also a fair number of leptonic events. The leptonic events have two

sources - firstly, the tops decay to W s which could decay semi-leptonically. Secondly,

the χ̃0
2 produced from g̃ → t t̄ χ̃0

2 decays predominantly as: χ̃0
2 → χ̃±1 W , which could

again decay semi-leptonically. Therefore, one has an observable fraction of multi-

lepton events. An important point to notice is that since all leptons come from W

bosons, one expects no flavor correlation in opposite-sign dilepton events. Finally,

2There could be leptons from W s, but it suffer from the huge Standard Model

background
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since gluino pair production is the dominant mechanism leading to observable lepton

events, the single lepton and dilepton charge asymmetry is expected to be very small.

Long-lived Gluino?

In models with light gauginos and super-heavy squarks, such as in split-supersymmetry

[62–64], the decay width of the gluino is suppressed by the super-heavy masses of the

squarks, leading to a long life-time of the gluino. This leads to a distinctive signature

of gluinos being detected directly by detectors at the LHC [62]. In the G2-MSSM

models, the squarks are much less heavier than in split-supersymmetry although still

considerably heavier than the gauginos. Therefore, it becomes interesting to find out

if the lifetime of the gluino is long enough such that it could be detected directly.

For a gluino which decay via a three-body process, the lifetime is given by

τg̃ ∼ 96π

αs α1

m4
q̃

M5
g̃

≈ 8× 10−16 sec×
( mq̃

20 TeV

)4
(

500 GeV

Mg̃

)5

. (4.2)

where mq̃ is the average mass of squarks. The above result serves as a basic estimation

of the gluino lifetime in the G2-MSSM models. Let us now make some more detailed

discussion. Given the fact that the right-handed stop is the lightest squark, which

is 3-5 times smaller than first two generation squarks, the lifetime would be at least

two orders of magnitude smaller if mt̃1 is used in Eq. 4.2. However, the decay to

the χ̃0
2tt̄ final state generally suffers from the phase space suppression, while the one

to the χ̃−1 tb̄(or χ̃+
1 bt̄) final state is suppressed by the small left- and right-handed

stop mixing. An estimate based on this analysis again gives a gluino lifetime ∼
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10−16 sec for typical gluino and squark masses. Therefore, Eq.4.2 does give the

correct estimation of gluino lifetime in G2-MSSM.

Since both gluino and squark masses are proportional to the gravitino mass,

we can see from Eq.4.2 that the lifetime of gluino decreases as the gravitino mass

increases. In addition, for a heavy gluino(& 1 TeV), the decay to χ̃0
2tt̄ final state will

have negligible phase space suppression and so the gluino lifetime will be smaller than

the one calculated from Eq.4.2. Therefore, the gluino lives longer in a case with light

superpartners. Let us now take τg̃ = 5× 10−16 sec as the standard lifetime of gluino

for a light G2-MSSM mass spectrum. This corresponds to a distance of 0.15 µm

before the gluino decay, which is much smaller than the resolution for a displaced

vertex, for example & 10µm in ATLAS detector. Therefore, the gluino does not

live long enough such that it can be detected through a displaced vertex. However,

the lifetime of a very light gluino could have a large relativistic enhancement with

a factor γ ∼ 3 TeV/mg̃. In such a case, there could be a few events with displaced

vertex at the LHC with a few 100 fb−1 integrated luminosity.

Detecting Wino LSP at the LHC

A characteristic feature of models with a W̃ LSP is the near degeneracy between

χ̃±1 and χ̃0
1. At tree-level ∆M = mχ̃±1

− mχ̃0
1

is zero at leading order. However,

inclusion of higher order corrections at tree level as well as loop corrections splits the

degeneracy enough so that the χ̃±1 decays to either soft hadronic, or leptonic states;

the former resulting in the emission of one or more soft π± depending on the size of
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the mass difference. In general, detection of such decays is difficult because the soft

decay products are swamped by excessive backgrounds. Detection possibilities for

such decays were considered previously in [65] for AMSB models with positive results.

The techniques are general, however, and can be applied to the G2-MSSM as well.

The sensitivity to detection depends on the level of ∆M . This mass difference can

be split into three regimes: ∆M < mπ± , mπ± < ∆M . 200 MeV and 200 MeV .

∆M . few GeV, each having unique signatures and requiring different detection

strategies.

In the G2-MSSM, the dominant contribution to the splitting ∆M arises at loop-

level. For small chargino and neutralino mixing (true for the G2-MSSM) and keeping

only gauge boson contributions, we can derive the following approximate formula for

the one-loop correction to ∆M [66]

∆M =
g2

8π2
M2

[
2c2

W B0(M2,M2,MZ) + 2s2
W (M2,M2, 0)− 2B0(M2,M2,MW )

− c2
W B1(M2,M2,MZ)− s2

W B1(M2,M2, 0) + B1(M2,M2,MW )

]
(4.3)

where B0 and B1 are the Passarino-Veltman functions. The mass splitting is inde-

pendent of the masses of heavy fields which have been integrated out in the effective

theory. After numerically evaluating this correction, the mass splitting turns out to

be larger than the charged pion mass(139.6 MeV) when M2 & 70 GeV3. This can be

seen from Figure 4.1.

Here the mass gap is large enough to produce either soft pions or leptonic decay

3The LEP II lower bound for a wino LSP in degenerate with the lightest chargino

at leading order is ∼ 88 GeV [60]
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Figure 4.1: The chargino and Wino LSP mass difference as a function of Wino mass

M2 as shown as the solid line. The dash line in the plot corresponds to

the charged pion mass 139.6 MeV.

products. It will decay before the muon chambers but still a significant distance inside

of the inner tracking system. The dominant signature in this regime is significant

missing energy, combined with a charged track that “kinks” when the χ̃±1 decays to

very soft hadrons or leptons. Also possible is a “track-stub”; a clear, charged track

that appears to vanish when the soft decay products are not detected. This latter

scenario requires dedicated off-line analysis to resolve.

4.2 CP Violation and EDMs

The null measurements of the electric dipole moments (EDMs) of the neutron [67],

and recently, heavy atoms like Thallium (205Tl) [68,69] and Mercury (199Hg) [70,71],

have put very strong constraints on the amount of CP violation from new physics
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beyond the Standard Model (SM). The precision of these measurements is expected

to significantly improve in a few years. If an excess above the SM prediction is

observed, it requires the presence of new physics beyond the SM. However, since the

EDMs, even if observed, are already “small”, this strongly suggests that the new

physics must be such that it has an underlying mechanism to naturally suppress

EDMs.

In general versions of supersymmetric extensions of the Standard Model, new

sources of CP violation can arise from complex phases of the soft supersymmetry

breaking parameters. These phases are therefore tightly constrained to be small

[72, 73](or to have cancellation [74–77]) for TeV scale superpartners. Thus, from a

theoretical perspective, the existence of such small phases has to be explained by

some underlying mechanism. Many studies of supersymmetric models from a low-

energy phenomenological perspective focus on the mediation mechanism and only pa-

rameterize the supersymmetry breaking. Explaining small soft CP-violating phases,

which requires a dynamical understanding of supersymmetry breaking, is especially

challenging as this is not available in such a framework. Without a specification

of the supersymmetry breaking mechanism, this problem exists in both gravity and

gauge-mediated models of supersymmetry breaking in general.

Put differently, whenever supersymmetry is treated as a general TeV-scale effec-

tive theory both the values and phases of the soft-breaking masses are treated as

arbitrary, and EDMs are typically much larger than experimental values. Many peo-

ple have argued that such large EDMs are implied or required from supersymmetry,
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and that this is a problem for supersymmetry. Such arguments ignore the fact that

any underlying theory will predict and relate phases. This implies that the underly-

ing theory of which low energy supersymmetry is a lower limit has a structure that

suppresses or relates the low scale phases.

In this section, we study the CP violating phases in the soft supersymmetry

breaking sector in the G2-MSSM framework. In principle, CP violating phases can be

generated when supersymmetry is broken. However, we find that they are naturally

small in the G2-MSSM framework, providing an excellent starting point to explain

the non-observation of EDMs. The mechanism is a non-trivial generalization of an old

idea [78](and more recently [79]), and may also apply to other string compactification

scenarios where moduli are stabilized in a de Sitter vacuum.

Although the CP-violating phases from supersymmetry breaking are small at

leading order, there could be additional significant contributions to the CP violation.

First, in the M-theory framework, the trilinear matrices are typically not proportional

to the Yukawa matrices after moduli are stabilized, which in general leads to non-

trivial CP-violating phases in the trilinear A-terms in the physical quark basis and

therefore generates non-zero EDMs [73,80]. That allows upper bounds for EDMs to

be calculated in the M-theory framework, contrary to what would happen in other

SUSY models. The estimated upper bounds of EDMs are all within the current

experimental limits. For some values of parameters, some upper bounds on the EDM

can be close to the experimental limit. Second, off-diagonal contributions to Kähler

potential may contribute CP-violating effects which could be significant. These will
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be studied in detail in the following sections.

4.2.1 Small CP-violating Phases from SUSY breaking

Superpotential and Kähler Potential

For the convenience of the discussion, let us start with the effective Kähler poten-

tial and superpotential in the G2-MSSM framework. First, the superpotential can

be separated into two parts:

W = Ŵ + Y ′
αβγC

αCβCγ (4.4)

where Ŵ depends only on the moduli zi = si + iti and the meson φ. Here Cα are the

matter fields in the minimal supersymmetric standard model (MSSM) with α being

higgs, quark or lepton chiral superfields. Y ′
αβγ denote the superpotential Yukawa

couplings. The effective Yukawa couplings (still not fully normalized) in the MSSM

are given by Yαβγ = eK/2Y ′
αβγ . The connection to the usual convention in MSSM

can be made by taking the first index to be the Higgs fields, the second to be the

quark doublets, and the third to be the quark singlets, for example, YHuQiuj
≡ Y u

ij .

In the M-theory framework, an elegant way to generate Yukawa couplings is from

membrane instantons which generically take the form [34]

Y ′
αβγ = cαβγ ei 2π

∑
i lαβγ

i zi

(4.5)

with cαβγ = O(1) and lαβγ
i being integers determined by the homology class of the

three-manifold which the instanton wraps.

The first term Ŵ is the moduli superpotential, and is generated non-perturbatively
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from gaugino condensation [81]

Ŵ/m3
p = A1 (det(φ2))a e−b1 fhid + A2 e−b2 fhid (4.6)

Here b1,2 are the beta function coefficients of the two hidden sector gauge groups and

fhid are the corresponding gauge kinetic functions given by fhid =
∑N

i=1 Nizi. In the

first term in the superpotential, we have included the meson field φ = (Q̃QT )1/2.

The parameter a in the superpotential is a constant depending on Nc and Nf , and

is not important for our discussion.

The Kähler potential can be written as

K = K̂ + K̃αβCα†Cβ +
(
ZαβCαCβ + h.c.

)
(4.7)

Here K̂ is the moduli Kähler potential and K̃αβ is the Kähler metric of matter fields

Cα. Zαβ is expected to be non-zero only for Higgs field Hu,d, which is needed to

generate µ and B terms. In these compactifications, matter fields with different

flavors are localized at different singularities [50]. Therefore, the Kähler metric is

expected to be nearly flavor diagonal K̃αβ ≈ K̃αδαβ. As argued in [46], the Kähler

metric for localized matter fields Cα in the 11D frame is canonical, i.e. C†
αCα due

to the absence of local moduli. Going to the Einstein frame implies that there is an

overall dependence on the internal volume VX , which still preserves the diagonality.

Of course, there could be non-perturbative corrections which leads to non-diagonal

Kähler metric, for example from instantons wrapping a three-manifold connecting

the two singularities. However, these corrections are typically exponentially small.
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The Kähler potential for moduli fields contains two pieces

K̂/m2
p = −3 ln(VX) +

2

VX

Tr
(
φ†φ

)
(4.8)

Here VX is the volume of the G2 manifold in units of the eleven-dimensional length

scale l11. The second term originates from the Kähler potential for vector-like matter

fields Q and Q̃ in the hidden sector, which generally takes the form [46]

K̂ =
1

VX

(
Q†Q+ Q̃†Q̃

)
(4.9)

By using the D-term equations Q†Q = Q̃T Q̃∗ and the definition of the meson field

φ, it can be rewritten in terms of φ as given in second term in Eq. (4.8). Of course,

there could be additional (higher order) corrections, these will be discussed in Section

A.13. Now for the simple case Nf = 1, we can replace det(φ2) by φ2 and Tr(φ†φ) by

φφ in Eq. (4.6) and (4.8) respectively.

After supersymmetry is spontaneously broken by the strong gauge dynamics,

soft supersymmetry breaking terms in the visible sector are generated which take

the following form

Lsoft =
1

2
(Maλλ + h.c.)−m2

ᾱβĈ ᾱ†Ĉβ

− 1

6
ÂαβγĈ

αĈβĈγ +
1

2

(
BαβĈαĈβ + h.c.

)
(4.10)

where Ĉα are the canonically normalized chiral matter fields. The trilinear Âαβγ can

often be factorized as AαβγYαβγ . In the following, we will be careful in distinguishing

between trilinears Â and A.
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CP-violating Phases

Now we turn to the CP-violating phases in the soft Lagrangian. In order to study

the dependence of the soft parameters on complex phases, it is crucial to understand

the structure of the superpotential in the relevant supersymmetry breaking vacuum.

In the superpotential W in (4.6), A1, A2, zi and φ are complex variables in general.

However, (see Appendix B.1) the relative phase between the first and second terms

in W is fixed by the minimization of axions in the vacuum [78, 82]. This leaves just

one overall phase in the superpotential, eiγW . This argument can be generalized to

extend to a large class of superpotentials, as explained in Appendix B.1. Since it is

possible to do a global phase transformation of the superpotential without affecting

physical observables, this overall phase γW is not physical and can be rotated away.

From now on, we will take γW = 0. The Kähler potential, K, as seen from (4.8),

only depends on real fields si which determine VX and the combination φ̄φ, so does

not contain any explicit phases.

The structure of the F -terms F I = K̂IJ̄FJ̄ ≡ K̂IJ̄(∂J̄W + (∂J̄K)W ) where I, J

run over both zi and φ in general, can be computed as follows. For J corresponding

to M-theory geometric moduli zi, it is easy to see ∂J̄K is real and FJ̄ = real. For

J corresponding to meson moduli φ, (∂J̄K)W = real × eiγφ , where γφ is the phase

of φ. Also, since W depends holomorphically on {zi, φ} as in the first line in (4.6),

one again finds ∂J̄W̄ = W/φ = real × eiγφ . Therefore, we have FJ̄ = real × eiγφ

for J corresponding to meson moduli φ. Based on these observations, it is not
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difficult to find that F I = real or F I = real × eiγφ depending on I equals to zi

or φ respectively. This leads to interesting implications for the soft supersymmetry

breaking parameters.

First, the tree-level gaugino masses are given by:

M tree
a (µ) =

g2
a(µ)

8π

(∑
I

eK̂/2F I∂I f vis
a

)
(4.11)

Since f vis
a only depends on the geometric moduli zi with integer coefficient, and as we

have found, the auxiliary component F I of zi are real, there are no phases generated

for the tree-level gaugino masses. In the M-theory framework, the tree-level gaugino

masses are suppressed relative to the gravitino mass [28]- [46], and the one-loop

anomaly mediated contribution has to be included, which is given by [45]

MAMSB
a = − g2

a

16π2

(
ba eK̂/2W − b′a eK̂/2F IK̂I

+ 2
∑

i

Ci
ae

K̂/2F I∂I ln K̃i

)
. (4.12)

This contribution includes terms proportional to either W or F I∂IK̂ or F I∂IK̃i.

Since the Kähler potential is a real function of zi, ∂zi
K̂ and ∂zi

K̃ are real. In

addition, the Kähler potential only depends on φ̄φ, which implies that the derivative

with respective to φ are proportional to φ̄ ∼ e−iγφ . Therefore, all these terms are

real, which gives rise to real anomaly mediated gaugino masses. Hence, the gaugino

masses have no observable phase in the above framework.

The trilinear A-terms (with the Yukawa couplings factored out) are given in

general by [44]:

Aαβγ = eK̂/2F I∂I

[
ln

(
eK̂Y ′

αβγ/K̃αK̃βK̃γ

)]
(4.13)
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where I, J run over both zi and φ. It should be noted that in order to be able to

factor out the Yukawa matrices the matter Kähler metric has to be diagonal. This

is a good approximation in the M-theory framework as we have discussed. Since the

moduli Kähler potential K̂ and the visible sector Kähler metric K̃ are real function

of zi + z̄i and φ̄φ and superpotential takes the form in Eq. (4.5), it is straightforward

to check that the contractions F I∂IK̂, F I ∂IK̃ and F I∂I ln Ŷ ′ are all real, implying

that no CP phases are generated in the trilinear A-terms through supersymmetry

breaking. However, it should be mentioned that there could be phases in the full

trilinear couplings Â coming from the Yukawa couplings, as we shall discuss in the

next section.

Finally, we move on to the µ and B terms. We focus on the case where the

superpotential contribution to the overall high scale µ parameter vanishes. This

can be easily guaranteed by a symmetry [34]. In this case, µ and B parameters of

O(m3/2) can be generated by the Giudice-Masiero mechanism [83] via the parameter

Zαβ in Eq. (4.8). The general result for µ and B can be written in terms of Z, F I∂IK̂,

F I ∂IK̃ and F I ∂IZ [44], all of which have the same phase γZ from Zαβ (complex in

general). Therefore, both µ and B can have a phase eγZ . However, this phase is not

physical since it can be eliminated by a U(1)PQ rotation [51].

4.2.2 CP-violating Phases from Yukawa

Although the CP-violating phases from supersymmetry breaking are small as

found above, there is an additional contribution to CP violation if the trilinear Â
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parameters are not aligned with the Yukawas. This can be easily seen as follows.

Since the Yukawa matrix generically contains O(1) phases in order to explain the

observed CKM phase, the unitary matrices needed to go to the super-CKM basis

(in which the Yukawa matrices are real and diagonal) also contain some phases.

Therefore, the rotation by itself can induce CP-violating phases even if the A or Â

matrices are initially completely real as long as Â’s are not proportional to Yukawas

in the flavor basis (or equivalently A’s are flavor non-universal and non-diagonal).

This implies in particular that the diagonal components of trilinear Â will contain

CP phases in the super-CKM basis, giving rise to possibly important contributions

for EDMs.

In the M-theory framework, as we can see from Eq. (4.5), the Yukawa couplings

generally depend on the geometric moduli zi which get non-zero F -term vevs. Hence,

from (4.13) we find that the second term in the expression for trilinears gives rise to an

O(1) misalignment between the Yukawas and the trilinears. If the Yukawa couplings

depend on moduli or other hidden sector fields which do not break supersymmetry,

then the trilinears can be naturally aligned with the Yukawas [79]. However, within

M-theory, this does not seem to be a generic situation; hence we will consider the

conservative case in which the trilinears are misaligned with the Yukawas.

In the remainder of this section, we will estimate the diagonal CP phases in

the trilinear Â in the super-CKM basis since they are directly related to the EDM

observables. We consider flavor non-universal and non-diagonal trilinear A-matrices

(in the gauge eigenstate basis) at the GUT scale with real O(1) matrix elements. To
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set the convention, we write down the soft trilinear terms explicitly

Lsoft ∼ Au
ij Y u

ij Q̄LiHuuRj + Ad
ij Y d

ij Q̄LiHddRj

+ Ae
ij Y e

ij L̄LiHdeRj (4.14)

where Au,d,e are the trilinear matrices in the gauge eigenstate basis of matter fields.

For the M-theory framework, chiral matter fields are localized on singular points

inside the compact G2 manifold [34, 35, 84, 85]. From the phenomenological point

of view, the Yukawas in this framework can be described by a hierarchical Yukawa

texture (see Eq. (4.5))

Y u
ij ∼ εq

i ε
u
i , Y d

ij ∼ εq
i ε

d
j , Y e

ij ∼ εl
iε

e
j , (4.15)

This kind of texture can also be realized by the localization of matter fields in extra

dimensional models [86–89] or by a spontaneously broken flavor symmetry (Froggatt-

Nielson mechanism) [90]. Then, the fermion mass hierarchy is given by:

mu
i /m

u
j ∼ |εq

i ε
u
i |/|εq

jε
u
j |, md

i /m
d
j ∼ |εq

i ε
d
i |/|εq

jε
d
j |,

me
i/m

e
j ∼ |εl

iε
e
i |/|εl

jε
e
j | (4.16)

It is straightforward to check that the observed fermion mass hierarchy can be ac-

commodated by a set of properly chosen εi with the hierarchy |ε1| . |ε2| . |ε3|. The

above Yukawa couplings can have O(1) phases in order to explain the CP phase in

the CKM matrix. To simplify the discussion, we eliminate the phases in the diago-

nal elements by redefinition of the quark and lepton fields. Therefore, the diagonal

elements (Âψ)11,22,33 with ψ = u, d, e are all real at the GUT scale.
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First, we point out that the renormalization group (RG) corrections to the tri-

linear couplings typically mix the phases between different flavors. This will lead to

phases in the diagonal elements of the trilinear matrices. It can be understood from

the RG equation for Yukawa couplings and trilinear couplings, e.g. for Y u and Âu,

which are given by

dY u

dt
∼ 1

16π2
Y u

[
3Tr(Y uY u†) + 3Y u†Y u + Y d†Y d

]

dÂu

dt
∼ 1

16π2
Âu

[
3Tr(Y uY u†) + 5Y u†Y u + Y d†Y d

]

+
Y u

16π2

[
6Tr(ÂuY u†) + 4Y u†Âu + 2Y d†Âd

]
(4.17)

where only terms involving Yukawas are explicitly shown. From the above equations,

we notice that the phases in Âu evolve during the RG running. To illustrate this,

one can examine the following term which contributes to the running of Âu
11:

dÂu
11

dt
∼ 5

16π2
Âu

13Y
u†
33 Y u

31 +
4

16π2
Y u

13Y
u†
33 Âu

31 (4.18)

From the equation, one can see that the phases of Y u
31, Y u

13, Âu
13 and Âu

31 can enter

Âu
11, which is real at the high scale, through the RG evolution. The magnitude of

this correction is typically large since the magnitude of the right-hand side of the

above equation is proportional to 1
16π2 |Y u

33|2 given the factorizable Yukawa matrices

as in Eq. (4.15). This indicates that the RG correction to Âu
11 is large and involve

an O(1) phase. This is also true for other elements in the trilinear matrices and

Yukawa matrices. The only exception is for the third generation Y u
33 and Âu

33, for

which the largest RG corrections come from the terms involving only Y u
33 and Âu

33

with additional flavor mixing terms typically suppressed by ε2
2/ε

2
3. Since Âu

33 has
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the same phase as Y u
33, the corresponding A-term Au

33 = Âu
33/Y u

33 remains real up to

corrections of the order (ε2/ε3)
2.

Starting from the Yukawa matrices Y u,d,e
ij defined in the gauge eigenstate basis,

the super-CKM basis can be achieved by unitary rotations of the matter fields so that

the Yukawa matrices are real and diagonal. In the super-CKM basis, the trilinear

couplings become

(Âψ
SCKM)ij = (V ψ†

L )il A
ψ
lk Y ψ

lk (V ψ
R )kj (4.19)

where ψ = u, d, e. Given the hierarchical Yukawa matrices in Eq. (4.15), the unitary

transformation matrices are given by

(V u
L )ij ∼ (V u

L )ji ∼ εq
i /ε

q
j , for i < j

(V u
R )ij ∼ (V u

R )ji ∼ εu
i /ε

u
j , for i < j (4.20)

One can now perform the same transformation for the trilinear terms to get the

diagonal elements in the super-CKM basis, which can be schematically written as

(Âu
SCKM)11 ≈ εq

1ε
u
1

∑
i,j=1,2,3

ξijA
u
ij, (4.21)

(Âu
SCKM)22 ≈ εq

2ε
u
2

∑
i,j=2,3

ηijA
u
ij, (4.22)

(Âu
SCKM)33 ≈ Y u

33A
u
33 ∼ εq

3ε
u
3A

u
33 (4.23)

where ξij and ηij are O(1) coefficients arising from the Yukawa matrices, and are

complex in general. In the above equations, we have neglected subleading terms

suppressed by the fermion mass hierarchy. Since the off-diagonal components in Aij

are O(1) within our framework, the summations in Eq. (4.21) and (4.22) are expected
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to be of O(1) in magnitude with O(1) phases. The (Â)33 component, however, does

not mix with other components and is proportional to Y u
33, so no phase is generated

at leading order for Âu
33.

Therefore, we conclude that the first two diagonal components of the complete

trilinear coupling in the super-CKM base can contain order one phases, while the

third diagonal component is real up to a small correction, i.e.

Im(Âu
SCKM)11 ∼ A0Y

u
11,

Im(Âu
SCKM)22 ∼ A0Y

u
22,

Im(Âu
SCKM)33 ∼ A0

(
ε2

ε3

)2

Y u
33 (4.24)

where A0 is the characteristic magnitude of the trilinear A-terms. Here we do not

distinguish between q, u, d and use εi for the average value. For later purposes, it is

convenient to take ε2/ε3 ∼ 0.1, which provides a right order of magnitude estimate

and is also compatible with the quark mass hierarchy. This result has important

implications for EDM predictions, which we compute in section 4.2.4.

4.2.3 Electric Dipole Moments and The Experimental Limits

Before starting our calculation of EDMs, we briefly summarize some general re-

sults relevant for the calculation of EDMs. In the minimal supersymmetric standard
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models, the important CP-odd terms in the Lagrangian are:

δL = −
∑

q=u,d,s

mq q̄(1 + iθqγ5)q + θG
αs

8π
GG̃

− i

2

∑

f=u,d,s

(dE
q q̄Fµνσµνγ5q + d̃C

q q̄gst
aGa

µνσµνγ5q)

−1

6
dG

q fαβγGαµρG
ρ
βνGγλσε

µνλσ, (4.25)

where θG is the QCD θ angle, The terms in the second line in (4.25) are dimension five

operators, which are generated by CP violation in the supersymmetry breaking sector

and evolved down to ∼ 1 GeV. The coefficients dE,C
q correspond to quark electric

dipole moment and chromo-electric dipole moment(CEDM) respectively. The last

line in (4.25) contains the gluonic dimension six Weinberg operator. The CP-odd

four-fermion interactions are not important here, and so have not been included

above.

Now let us briefly summarize the EDM results for electrons, neutrons and mer-

cury in terms of the coefficients of these operators. The electron EDM in minimal

supersymmetric models is given by:

dE
e = dχ+

e + dχ0

e + dBZ
e

where dχ±
e and dχ0

e are one-loop contributions from the neutralino and chargino while

dBZ
e is the two-loop Barr-Zee type contribution [91–99]. It should be noted that what

is actually measured is the atomic EDM dT l, which receives contributions mainly

from the electron EDM and the CP-odd electron-nucleon couplings [100]:

dT l = −585× dE
e − 8.5× 10−19e cm(CS TeV2) + · · ·
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where CS is the coefficient of the operator ēiγ5eN̄N . The CS coefficient could be

generated from a new scalar particle coupled to quarks and leptons through a CP-

odd higgs like coupling [100]. However, this is independent of CP-odd interactions

originating from the soft terms. Given the current experimental limit |dT l| < 9 ×

10−25e cm, we obtain an upper limit on electron EDM

|dE
e | < 2× 10−27e cm

For the neutron, there exist several different approaches to compute the corre-

sponding EDM. In the following discussion, we shall follow a simple approach, i.e.,

the naive dimensional analysis (NDA) [101–103]. The neutron EDM can be calcu-

lated as:

dn =
4

3
dd − 1

3
du. (4.26)

In this expression, the quark EDMs can be estimated via NDA as:

dq = ηEdE
q + ηC e

4π
dC

q + ηG eΛ

4π
dG

with dE,C
q = d

g̃(E,C)
q + d

χ̃+(E,C)
q + d

χ̃0(E,C)
q . The QCD correction factors are given by

ηE = 1.53, ηC ∼ ηG ∼ 3.4 [75], and Λ ∼ 1.19 GeV is the chiral symmetry breaking

scale. The current experimental limit on neutron EDM is given by

|dn| < 3× 10−26e cm

The current theoretical estimate for the mercury EDM induced by dimension 5

operators is given by [104]:

dHg = −7.0× 10−3 e (dC
d − dC

u − 0.012dC
s ) + 10−2 × de
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where we have included the contribution from the strange quark CEDM [105]. The

recent experimental result on Mercury EDM [71] significantly tightens the bound

|dHg| < 3.1× 10−29 e cm

The QCD θ-term in (4.25) also contributes to EDMs of the neutron, deuteron

and the mercury atom [106]:

dn ∼ 3× 10−16θ e cm

dD ∼ −1× 10−16θ e cm

|dHg| ∼ O(10−18 − 10−19) θ e cm

These formulae together with suppressed leptonic EDMs provide a correlation pat-

tern for the θ-induced electric dipole moments. The current upper bound on the

neutron EDM implies θ < O(10−10), which leads to the strong CP problem. Once

EDMs are observed for n, Hg and T l it will be essential to separate the strong and

weak contributions, by combining data on different nuclei and dE
e .

4.2.4 Predictions for EDMs

For an explicit computation of the EDMs, it is important to specify the general

structure of supersymmetry breaking parameters, in particular the structure of the

trilinear parameters (especially the imaginary part of the diagonal components), as

well as that of the scalar and gaugino masses, since all of these appear in the final

expression for the EDMs. This is the subject of this section.

Within the M-theory framework, the general structure of supersymmetry break-



88

ing parameters is as follows. For the choice of microscopic parameters with a vanish-

ingly small positive cosmological constant, the gravitino mass naturally turns out to

be in the range 10-100 TeV [29]. The gravitino mass is essentially∼ Fφ/mp. However,

as mentioned earlier, the F -terms of the moduli are suppressed compared to Fφ. Since

the gauge kinetic function for the visible sector depends only on the moduli, from

(4.11) it is easy to check that the gaugino masses are suppressed relative to that of the

gravitino. However, this suppression does not hold for the scalar masses, trilinears, µ

and Bµ parameters unless the visible sector is sequestered from the supersymmetry

breaking sector. Since sequestering is not generic in M-theory, the scalar masses,

trilinears, µ and Bµ parameters typically turn out to be of O(m3/2) ∼ O(10) TeV.

The third generation squarks, however, could be significantly lighter because of the

RG effects.

As we have discussed in Section 4.2.1, within the M-theory framework it is natural

to expect that the Kähler metric for visible matter fields is approximately diagonal

in the flavor indices. Then, the scalar mass matrix turns out to be roughly diagonal

with suppressed off-diagonal contributions. The estimates for the EDMs then depend

on the overall scale of the squark masses. So, for concreteness we consider gauginos

with masses . 600 GeV, non-universal but flavor-diagonal scalar mass matrices with

masses ∼ 20 TeV, and µ,Bµ and trilinear parameters of the same order as scalar

masses. Some contributions to EDMs depend primarily on third generation sfermion

masses, so we also mention the situation when third generation scalars are much

lighter, i.e. O(1) TeV.
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We now estimate the contribution to the EDMs of the electron, neutron and

mercury from dimension 5 and 6 operators (Eq. (4.25)) in the M-theory framework.

As we have seen in the Section III, the CP-violating phases appear only in the

trilinear Â parameters. After renormalization group evolution and the super-CKM

rotation of the trilinear matrices, these phases appear in the off-diagonal elements in

the squark mass matrices, leading to imaginary parts of mass-insertion parameters

as follows:

(δii
q )LR =

vq((Â
q
SCKM)ii − µ∗Y q

iiRq)

(m2
q̃)ii

(4.27)

where Ru(d) = cot β (tan β) and vu(d) = v sin β (v cos β). As explained above, ÂSCKM

is in general a 3 × 3 matrix in the Super-CKM basis and its diagonal components

contain CP-violating phases. Thus, these insertion parameters contribute to EDMs

through the dimension 5 and 6 operators in (4.25).

Leading Contributions

The dimension five electric and chromo-electric couplings can be generated at

leading order [72, 74, 75] at one-loop through the vertices ff̃ χ̃0
i , ff̃ ′χ̃±i and qq̃g̃ as

can be seen in Fig. 4.2.

In general, the squark mass matrix may not be aligned with the quark mass ma-

trix, which could lead to dangerous flavor changing neutral currents. Nevertheless, in

the case with super-heavy scalars (& 10 TeV), the flavor constraints could be satis-

fied even with large flavor non-universality. In the following, let us first consider the

simple situation where the flavor mixing in the squark mass eigenstates is negligible.
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∼g , ∼χ0∼χ+ ,

∼ g

γ

f

f fL R

Figure 4.2: One-loop diagrams contributing to the dimension 5 operators

This allows us to treat the mass matrix of each flavor separately. We will return to

the case of large flavor mixing at the end.

First consider the quark CEDM which contributes to both the mercury and neu-

tron EDMs. Since there exists a hierarchy between gauginos and squarks in the

M-theory framework [28, 29], one can expand using the small ratio r ≡ m2
i /m

2
q̃,

where mi is the corresponding neutralino, chargino or gluino masses in the diagram.

One then obtains the following result

dC
q ∼

gsα

4π

mq

m3
i

Im(ASCKM
q )r2G(r) (4.28)

where Aq is the diagonal element of the corresponding trilinear matrix (without

Yukawa coupling) in the super-CKM bases. In the expression, the function G(r) =

C(r) + rC ′(r) for gluinos and G(r) = B(r) + rB′(r) for charginos and neutralinos.

The function B(r) and C(r) are loop functions defined in the Appendix 4.2.1. One

can see that dC
q decreases rapidly as m−4

q̃ when the squark masses increase. However,

the function G(r) behaves differently for different particles (g̃, χ̃±, χ̃0) in the loop.

Due the gaugino and squark mass hierachy, r is small. From Fig. 4.3, we can see that

C(r) + rC ′(r) is enhanced in the small r region compared to other functions which
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Figure 4.3: Comparison of the one-loop functions A(r), B(r) and C(r). The x coor-

dinate is the ratio r ≡ m2
i /m

2
q̃.

remain small. Therefore, the gluino contribution dominates the quark CEDM. For

the quark EDM, it is given by a similar expression as (4.28) but now the quantity

G(r) is determined only by A(r) and B(r). In particular, G(r) is determined solely

by B(r) for g̃ and χ̃0 in the loop, and by a combination of A(r) and B(r) for χ̃± in

the loop. Since B(r) and A(r) are much smaller than C(r) as seen from Figure 4.2,

the quark EDM contributions to the neutron EDM are negligible compared to that

of the quark CEDM contributions. Therefore, we only need to calculate the quark

CEDM, for which the gluino diagram gives the dominant contribution as explained

above. Since Aq ∼ mq̃ in the M-theory framework, one obtains:

dC
q ∼ 10−28 ·

( mq

1MeV

)( mg̃

600GeV

) (
20TeV

mũ

)3

e cm (4.29)

Based on the quark EDM and CEDM, the neutron EDM can be computed from
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(4.26):

dNDA
n ∼ 3× 10−28 ·

( mg̃

600GeV

) (
20TeV

mũ

)3

e cm (4.30)

Similarly, the mercury EDM is

|dHg | ∼ 10−30 ·
( mg̃

600GeV

) (
20TeV

mũ

)3

e cm (4.31)

Moving on to the electron EDM, it can be computed at leading order from the one-

loop neutralino and chargino diagrams. However, as shown in section 4.2.1, there are

no CP-violating phases in the gaugino sector. This implies that the chargino diagram

does not contribute as seen from Eq. (B.13). The neutralino contribution, on the

other hand, gives rise to a non-zero contribution because of a dependence on the

selectron mixing parameters (which contains CP-violating phases) in its couplings.

Given the fact that the higgsino coupling to electron and selectron is suppressed

by the small Yukawa coupling, and the wino does not couple the RH fermion and

sfermion, the dominant contribution is from the diagram with χ̃0
2(almost pure bino in

the M-theory framework), which can be calculated using Eq. (B.17) in the Appendix.

Thus, the electron EDM is given by:

dE
e ∼

( mχ̃0
2

200GeV

) (
20TeV

mẽ

)3

× 10−31 e cm (4.32)

Two-loop Contributions

So far, we have considered the one-loop contribution to quark and electron EDMs

(and/or CEDMs). In addition, there are two-loop Barr-Zee type contributions [91–

99] such as the one in Fig. 4.4. In general, the Barr-Zee type diagrams can involve
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either squarks or charginos in the inner loop, and higgs bosons (neutral or charged)

and gauge bosons in the outer loop 4. Since only the trilinear couplings contain CP-

violating phases in our framework, we consider those diagrams with third generation

squarks running in the inner loop as seen in Figure 4.4. When the mass splitting

between the two third generation squarks is not particularly large, the diagram to

the quark CEDM can be estimated as (see Appendix B.3):

dC BZ
f ≈ gsαs

64π3

mfRfµ

M4
A

∑

q=t̃,b̃

y2
q Im(ASCKM

q )F ′(rq)

∼ 10−32 ·Rf

( mf

1MeV

) (
20TeV

mũ

)2

e cm (4.33)

where Rf = cot β(tan β) for I3 = 1/2(−1/2), rq ≡ m2
q̃/M

2
A with mq̃ third generation

squark mass and MA the pseudoscalar mass of A0. For simplicity, in the above

estimation, we take µ ∼ MA ∼ mt̃,b̃ ∼ mũ. It can be seen that the result of the

Barr-Zee diagram to quark CEDM (similar for EDM) is negligibly small. One of

the reasons is that CP violation in the third generation is suppressed by about two

orders of magnitude as in (4.24). Similarly, for the electron EDM the result is:

dE BZ
e ∼ 10−33 ·

(
20TeV

mũ3

)2

tan β e cm (4.34)

which is again quite suppressed. This contribution may be enhanced for large tanβ

as seen from above. The M-theory framework, however, predicts tanβ = O(1) [46].

The neutron EDM could also get a contribution from the dimension six pure

gluonic operator (Weinberg operator), which can be generated from the two loop

4The two-loop diagram considered in split supersymmetry are not relevant here,

since there the CP violation is not from trilinear couplings, but instead from the

chargino sector.
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gγ,

∼q

gγ,

f f fL R R

a gγ,

gγ,∼

a

q

f f fL R R

Figure 4.4: Two-loop Barr-Zee type diagrams contributing to the dimension 5 oper-

ators.

gluino-top-stop and gluino-bottom-sbottom diagrams. For the case where CP vi-

olation only comes from the soft trilinear couplings, the result can be estimated

by [107]

dG ≈ −3αs

( gs

4π

)3 1

m3
g̃

∑

q=t,b

Im(ASCKM
q )zqH(z1, z2, zq) (4.35)

where zi = m2
q̃i
/m2

g̃ for i = 1, 2, and zq = m2
q/m

2
g̃ for q = t, b. The two-loop

function H(z1, z2, zt) is given in [107]. This gives a contribution to the neutron

EDM dG
n ∼ 10−30 e cm for mt̃,b̃ ≈ 20 TeV, mg̃ = 600 GeV and Aq = 20 TeV.

Thus the neutron EDM from the Weinberg operator is smaller than the one-loop

CEDM contribution. However, when the masses of the third generation squarks and

trilinears are around 1 TeV, the contribution to the neutron EDM can be significantly

larger, and be comparable to the one-loop result.

In general, imaginary parts of the off-diagonal components of squark mass matrix,

e.g. non-zero Im(m2
q̃ 23)LR could also generate quark and electron EDMs. However,

these contributions require more than a single insertion, therefore they are usually

not as large as the one-loop contribution we have discussed.
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∼g ∼ qq

Figure 4.5: Feynman diagram contributing to the Weinberg operator

To summarize our results, we have calculated the EDMs arising from the CP-

violating phases in the trilinear terms in a general framework with light gauginos

and heavy scalars, and the results are within current experimental bounds. We

find that the one-loop diagram is typically the dominant contribution to EDMs.

However, in contrast to the situation in which gauginos and scalars have masses of

the same order, the one-loop diagram with gluinos gives the largest contribution to

the quark CEDM due to the enhanced loop factor at small r. This leads to a larger

ratio between neutron EDM and electron EDM of O(103). In typical supersymmetric

models with gauginos and scalars of the same order, this ratio is . 102 [106]. Finally,

it is easy to see that the mercury EDM provides the most stringent limit on the

squark masses. For squark masses around 10 TeV, the mercury EDM will increase

to ∼ 10−29 e cm, which could be tested in the near future with better experimental

precision. Basically, we have found that the CP-violating phases in the trilinear

couplings, which arise from the Yukawa couplings when supersymmetry is broken,

and the suppression from M-theory giving heavy scalar masses are combined to give

upper bounds on the EDMs in the M-theory framework.
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4.2.5 Higher-Order Corrections and Generalizations

In Section 4.2.1, we found that there are no CP-violating phases from super-

symmetry breaking at leading order in the framework of M-theory compactifications

considered. It is therefore important to check if corrections to the Kähler poten-

tial and superpotential lead to further contributions to CP-violating phases in the

soft parameters and in turn to the EDMs. Although the detailed form of possible

corrections is not known in M-theory, some general arguments can neverthless be

made, which strongly suggest that higher order corrections still naturally suppress

CP-violating phases.

The corrections to the soft parameters may arise in general from corrections in

the superpotential and the Kähler potential. In the zero flux sector, which we have

considered, the superpotential may receive additional non-perturbative corrections

from strong gauge dynamics or from membrane instantons. These corrections can

be naturally suppressed compared to the existing terms if the arguments in the

corresponding exponentials are just O(1) larger than that in the existing terms.

Even if they are comparable, the mechanism of dynamically alignment of the phases

can still be applied and leads to no additional phases. More importantly, large

corrections could arise in the Kähler potential for the hidden sector comprising the

moduli and hidden matter fields, such as terms with higher powers of φ. However,

the field φ is composed of elementary quark fields Q, Q̃ which are charged under the

hidden gauge group. Therefore, higher order corrections must be functions of Q†Q
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or Q̃†Q̃ in order to be gauge invariant. When written in terms of φ, these corrections

are always functions of φ†φ. This structure is important for our claim of small CP-

violating phases since it does not introduce any new phases in the soft parameters. In

addition, the crucial fact that the Kähler potential is a real function of zi + z̄i is also

expected to be true under the perturbative corrections. The dependence on zi + z̄i

is a reflection of the shift symmetry of the axion ti → ti + δ, which is only broken by

non-perturbative effects. Thus, although it is very hard in general to compute the

form of corrections in M-theory, the above result should be quite robust as it only

relies on symmetries.

One could try to generalize the results obtained within the M-theory framework

so that they could be applied to other string compactifications as well. Consider

an N = 1 string compactification to four dimensions which can be described by

N = 1 supergravity at energies lower than the compactification scale. The nature of

the hidden sector dynamics is such that there are gauge-singlet scalar fields Xi and

moduli fields Tj, both of which break supersymmetry in general. These additional

scalar fields Xi could arise from matter fields for example. The following conditions,

if satisfied, would lead to no CP-violating phases in the soft supersymmetry breaking

parameters:

• The moduli superpotential is a polynomial in Xi and exponential in Tj of the

form:

Ŵ = Ŵ0 +

NW∑
n=1

Ŵn, Ŵn = dn(Xi) exp(bj
nTj), (4.36)
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where Ŵ0 is a constant and dn are polynomial function of Xi, and bj
n are real.

• The Kähler potential is a real function of Tj + T j and X̄iXi

K = K(Ti + T̄i, X̄iXi) (4.37)

• The gauge kinetic functions are given by fa = kj
aTj with real constants kj

a.

• The holomorphic (unnormalized) Yukawa couplings have the following struc-

ture:

Y ′
αβγ = y(Xi) e

∑
j cαβγ

j Tj hαβγ (4.38)

where y(xi) is a polynomial function of Xi and cαβγ are real. These parame-

ters could also vanish in specific cases. In addition, the Kähler potential and

superpotential can also depend the other scalar fields which do not break su-

persymmetry, which we do not included explicitly here.

The dynamical alignment of the phases among different terms in the superpotential is

expected to hold as explained in Section 4.2.1 and Appendix B.1. Thus, the structure

of W guarantees that F Ti ’s remain real. The requirement that the kähler potential

be a function of X̄iXi and that the superpotential and holomorphic (unnormalized)

Yukawas be a polynomial function of Xi makes sure that the contractions FXi∂Xi
K

and FXi∂Xi
Y to be real. Therefore, both gaugino masses and trilinear couplings are

real up to an overall phase which can be rotated away. The phases of µ and B can

also be rotated away if they are generated from the Giudice-Masiero mechanism.

The conditions listed above can be seen as a non-trivial generalization of the ones
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discussed in [78,79]. They can be naturally satisfied in a general moduli stabilization

framework in which additional matter fields provide a dynamical F -term uplifting

mechanism for the vacuum energy.

4.2.6 Summary

In this section, we have discussed CP violation in theories arising from fluxless M-

theory compactifications with low energy supersymmetry and all moduli stabilized.

We have found that CP-violating phases only arise from the Yukawas of the quark

and lepton not from soft supersymmetry breaking, at the leading order. However,

trilinear couplings can pick up CP-violating phases from the Yukawa couplings when

the trilinear matrices are not proportional to the Yukawa matrices. Given a model

of Yukawas, one can estimate the effects of these phases of Yukawas on the trilinear

couplings, and therefore on the EDMs.

We have estimated the contribution of CP phases in the trilinear couplings to the

electron, neutron and mercury electric dipole moments, and found that the estimated

upper bounds of the EDMs are all within the current experimental limits. The

estimated upper bound for mercury EDM is near the current experimental limit and

could be probed in the near future. On the other hand, we found a large splitting

between the neutron EDM and the electron EDM resulting from the mass hierarchy

between gauginos and scalars as predicted by the M-theory framework. This provides

an additional means to test the framework. It should be emphasized that our results

of EDMs are based on the fact that the CP-violating phases are entirely from the
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Yukawas, and therefore, any experimental result which indicates other source of

phases would contradict with and rule out this approach.

We also discuss effects of possible corrections to the Kähler potential and super-

potential, and the generalization to other string compactifications. Note that our

results are largely independent of a full solution to flavor problems. It has been

effectively assumed that a solution of the flavor problems exists, but the precise

mechanism has been left unspecified.

The quark Yukawas give the CKM phases, and the lepton Yukawas the PNMS

phases. The latter can provide the phases needed for baryogenesis via leptogenesis

consistent with the above framework, as described in [108]. So even with no phases

from the soft supersymmetry breaking this framework can give a complete description

of all known CP violation.



CHAPTER V

Solving Moduli/Gravitino Problem and

Non-thermal Dark Matter

5.1 Introduction

The existence of Dark Matter seems to require physics beyond the Standard

Model. If this physics arises from a string/M-theory vacuum, one is faced with various

problems associated with the moduli fields, which are gauge-singlet scalar fields that

arise when compactifying string/M-theory to four dimensions. In particular, moduli

fields can give rise to disastrous cosmological effects.

For example, the moduli have to be stabilized, or made massive, in accord with

cosmological observations. Even if these moduli are made massive, there could be a

large amount of energy stored in them leading to the formation of scalar condensates.

In most cases, this condensate will scale like ordinary matter and will quickly come

to dominate the energy density. The moduli are unstable to decays to photons,

and when this occurs, the resulting entropy can often spoil the successes of big-

bang nucleosynthesis (BBN). This is the cosmological moduli problem [109–113]. In

supersymmetric extensions of the standard model, the overproduction of gravitinos

101
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can cause similar problems and have been a source of much investigation [114–118,

118–120,120–125].

In addition, the “standard” picture in which Dark Matter (DM) particles are

produced during a phase of thermal equilibrium can be significantly altered in the

presence of moduli. The moduli, which scale like non-relativistic matter, typically

dominate the energy density of the Universe making it matter dominated. Therefore,

the dominant mechanism for production of DM particles is non-thermal production

via the direct decay of moduli1. However, this can lead to further problems since it

is easy to produce too much dark matter compared with what we observe today.

In the G2-MSSM framework, all moduli are stabilized by dynamically generated

non-perturbative superpotential. It is also attractive in the sense that they provide

a mechanism for supersymmetry breaking at low scales (∼ TeV), thus accommodat-

ing the hierarchy between the Electroweak and Planck scales (see [11, 129, 130] for

reviews). Since one can concretely study the couplings between moduli and mat-

ter fields, we have an opportunity to address many issues in particle physics and

cosmology from an underlying microscopic viewpoint.

In this Chapter we focus on the Dark Matter and moduli/gravitino problems.

We will show that the moduli, gravitino and dark matter problems are all naturally

solved within this framework. Because of the presence of moduli, the Universe is

matter-dominated from the end of inflation to the beginning of BBN. The LSPs

1For other phenomenologically based approaches to non-thermal dark matter and

the related issue of baryon asymmetry in the presence of scalar decay see [126–128].
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are mostly produced non-thermally via moduli decays. The final result for the relic

density only depends on the masses and couplings of the lightest of the moduli (which

decay last) and the mass of the LSP. This is related to the fact that the LSP is a Wino

in the G2-MSSM and that there is a fairly model independent critical LSP density at

freeze out. For natural/reasonable choices of microscopic parameters defining the G2

framework, one finds that it is possible to obtain a relic density of the right order of

magnitude (up to factors of O(1)). With a more sophisticated understanding of the

microscopic theory, one might obtain a more precise result. The qualitative features

which are crucial in solving the above problems may also be present in other realistic

string/M-theory frameworks.

Moduli which decay into Wino LSPs have been considered previously in the

context of Anomaly Mediated Supersymmetry Breaking Models (AMSB) by Moroi

and Randall [131]. The moduli and gaugino masses they consider are qualitatively

similar to those of the G2-MSSM. There are some important differences however. In

particular, the MSSM scalar masses in the [131] are much lower than the G2-MSSM,

leading to much fewer LSPs produced per modulus decay compared to the G2 models.

Furthermore, unlike in AMSB, in the G2 case one is able to calculate all the moduli

masses and couplings explicitly which leads to a more detailed understanding. In

essence, though, many of the important ideas in our work are already present in [131].

The G2-MSSM models can be thought of as a concrete microscopic realization of the

relevant qualitative features of the AMSB models.

Interestingly, our actual result for the relic density (equation 5.53) is a few times
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larger than the WMAP value if we use central values for the microscopic constants,

which should probably be regarded as a success. It is also worth remarking that,

contrary to common views, it is not at all possible to get any value one wants – we

can barely accommodate the actual observed value in the G2 framework.

The Chapter is organized as follows. In Section 5.2 we briefly summarize early

universe cosmology in the presence of moduli, and address many of the issues as-

sociated with their stabilization and decay. In Section 5.3 we give a non-technical

overview of the main results. This is largely because much of this paper involves

technical calculations. In section 5.4 we present a brief review of the G2-MSSM, a

model which arises after considering moduli stabilization within the framework of

M-theory compactifications. A basic discussion of decay rates and branching ratios

for the moduli and gravitinos in this model follows, with a detailed calculation left

for Appendix C.2. Then in section 5.5, we consider again the cosmology of moduli

presented in section 5.2) for the case of the G2-MSSM. In section 5.6, after a review

of dark matter production in both the thermal and non-thermal cases, we consider

the dark matter abundance arising from the non-thermal decay of the G2-MSSM

moduli. This section is a more technical overview of the salient features of dark mat-

ter production, leaving an even more detailed treatment for Appendix C.1. In this

section we present our main result, which is that the G2-MSSM naturally predicts

a relic density of Wino-like neutralinos of about the right magnitude in agreement

with observation. This is followed by a detailed discussion of the results obtained

and how it depends on the qualitative (and quantitative) features of the underlying
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physics. We then conclude with considerations for the future.

5.2 Early Universe Cosmology in the Presence of Moduli

Before considering the particular case of moduli in the G2-MSSM, we first briefly

review the early universe evolution of moduli and the associated cosmological issues

that can result. This section will also serve to set our conventions.

Currently, the only convincing model leading to a smooth, large, and nearly

isotropic Universe as well as providing a mechanism for generating density pertur-

bations for structure formation is cosmological inflation. At present we have very

little understanding of how the “inflationary era” might arise within the M-theory

framework. In what follows,therefore, we will assume that adequate inflation and

(p)reheating have taken place and focus on the post-reheating epoch. We will also

conservatively take the inflationary reheat temperature to be near the unification

scale 1014− 1015 GeV, so that possibilities for high-scale baryogenesis exist. We will

comment more on this issue at the end.

During inflation, the moduli fields are generically displaced from their minima

by an amount of O(MP ) [132]. This can be seen by looking at the following generic

potential experienced by the moduli:

V (ψ) ∼ 1

2
m2

soft(ψ − ψ0)
2 −H2

inf (ψ − ψ0)
2 +

1

M2n
P

(ψ − ψ0)
4+2n (5.1)

where ψ0 is the true vacuum-expectation-value (vev) of the field, i.e. in the present

Universe. Only the first term in (5.1) comes from zero-temperature supersymmetry

breaking, the other two highlight the importance of high-scale corrections and the
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mass-squared parameter (∼ −H2
inf ) which results from the finite energy density

associated with cosmological inflation [132]. As argued earlier, the potential (5.1) is

dominated by the last two terms during inflation since Hinf À msoft ∼ m3/2. Thus,

a minimum of the potential will occur near:

〈ψ〉inf ∼ ψ0 + MP

(
Hinf

MP

)1/(n+1)

H À msoft. (5.2)

Here, for simplicity, we have implicitly assumed that the induced mass-squared pa-

rameter for ψ during inflation is negative and of O(H2
inf ). This is possible for a non-

minimal coupling between the inflationary fields and the moduli, a generic possibility

within string theory. A large displacement of moduli fields is also possible when the

induced mass-squared parameter during inflation is positive, but much smaller than

|H2
inf |. In this case, large dS fluctuations can drive the moduli fields to large values

during inflation. Therefore, independent of details, the assumption we make is that

gauge singlet scalar fields like moduli (and meson fields in the G2-MSSM) will be

displaced from their present minimum by large values.

After the end of inflation and subsequent cosmological evolution, when H . m3/2,

the soft mass term in the potential will dominate and we have:

〈ψ〉present ∼ ψ0 H . msoft. (5.3)

ψ0 is also typically of order MP . In Section 5.4, we will present the soft masses and de-

cay rates for the moduli arising from soft SUSY breaking in the G2-MSSM low-energy

effective theory relevant in the present Universe. Thus, we see that by considering

moduli in the early universe with high-scale inflation, it is a rather generic conse-
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quence to expect moduli to be displaced from their low-energy (present) minimum

by an amount:

|∆ψ| ≡ |〈ψ〉inf − 〈ψ〉present| ≈ MP

(
Hinf

MP

)1/(n+1)

. MP (5.4)

5.2.1 Addressing the “Overshoot Problem”

The evolution of moduli after the end of inflation is governed by the following

equation:

ψ̈ + (3H + Γψ)ψ̇ +
∂V

∂ψ
= 0. (5.5)

where the modulus decay rate ψ → XX is given by:

Γψ = Dψ

m3
ψ

M2
P

, (5.6)

which reflects the fact that the modulus is gravitationally coupled (Γψ ∼ GN ∼ M−2
P )

and Dψ is a model dependent constant that is typically order unity. After the end of

inflation, the Universe is dominated by coherent oscillations of the inflaton field and

H ∼ 2
3t

. After the decay of the inflaton and subsequent reheating at temperature Tr,

the Universe is radiation dominated and H ∼ 1
2t

. In both these phases, the evolution

of the moduli can be written as:

ψ̈ +O(1)
1

t
ψ̇ +

∂V

∂ψ
= 0. (5.7)

where we have neglected Γψ as it is planck suppressed. The minimum of the potential

now is time-dependent due to the time dependence of the Hubble parameter. The

evolution of the moduli in the presence of matter and/or radiation as in the case

above, has been studied in [133–142]. In this case, as the modulus begins to roll
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down the potential, it was shown in [133, 136, 137, 140]) that the presence of mat-

ter/radiation has a slowing effect on the evolution of the field. This can naturally

allow for the relaxation of moduli into coherent oscillations about the time-dependent

minimum2. This ‘environmental relaxation’ can then slowly guide the modulus to

the time-dependent minimum.

Another possibility arises if the minimum of the potential is located at a point

of enhanced symmetry where additional light degrees of freedom become important.

This naturally arises in SUGRA theories that are derived from string theories, where

an underlying knowledge of the UV physics is known [138, 139, 143, 144]. If the

modulus initially has a large kinetic energy, as it evolves close to the point of enhanced

symmetry, new light degrees of freedom will be produced and then backreact to pull

the modulus back to the special point of enhanced symmetry. This simple example

of ‘moduli trapping’ is present in a large number of examples in string theory with

points of enhanced symmetry [138,139,141,142].

The above effects lead to a natural solution of the so-called ‘overshoot problem’

[145] (see also [146]), as argued below. As the universe expands and cools, the Hubble

parameter (H) decreases until it eventually drops below the mass of the modulus

mψ (∼ m3/2). Thus, from Eq. (5.1), we see that the first term in the potential now

becomes of the same order as the other two terms and can no longer be neglected.

At this time the modulus field becomes under-damped and begins to oscillate freely

about the true minimum ψ0 with amplitude fψ ∼ (Mn
P mψ)1/(n+1). As an example, for

2We thank Joe Conlon and Nemanja Kaloper for discussions on this approach.



109

n = 1, fψ is (MP mψ)1/2 leading to a potential value V ∼ m2
ψf 2

ψ ∼ m3
ψMP which is

much smaller than the overall height of the potential barrier at this time (∼ m2
ψM2

P ,

as in any soft susy breaking potential). Thus, there is no overshoot problem.

The modulus will now quickly settle into coherent oscillations at a time roughly

given by tosc = 2H−1 ∼ 2m−1
ψ . After coherence is achieved, the scalar condensate will

then evolve as pressure-less matter3, i.e. ρm(tosc) = 1
2
m2

ψf 2
ψ. Because the condensate

scales as pressure-less matter ρm ∼ 1/a3, its contribution relative to the background

radiation ρr ∼ 1/a4 will grow with the cosmological expansion as a(t) ∼ 1/T . Thus,

if enough energy is stored initially in the scalar condensate it will quickly grow to

dominate the total energy density.

5.3 Overview of Results

This section summarizes the our main results without technical details.

As explained above, the moduli start oscillating when the Hubble parameter drops

below their respective masses. Then they eventually dominate the energy density of

the Universe before decaying. Within the context of G2-MSSM models, the relevant

field content is that of the MSSM and N + 1 real scalars. N of these are the moduli,

XK , of the G2-manifold and the remaining one is a scalar field, φ, called the meson

field, which arises in the hidden sector dominating the supersymmetry breaking. A

reasonable choice for N would be O(50) - O(100).

3If there are additional terms that contribute to the potential (besides the soft

mass), then a coherently oscillating scalar does not necessarily scale as pressure-less

matter.
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The masses are roughly as follows. The lightest particles beyond the Standard

Model particles are the gauginos. In terms of the gravitino mass, m3/2, their masses

are of order κm3/2, suppressed by a small number κ. κ is determined by a com-

bination of tree level and one-loop contributions which turn out to be comparable.

The tree-level contribution is suppressed essentially because φ dominates the super-

symmetry breaking, and to leading order, the gauge couplings are independent of

φ. The precise spectrum of gaugino masses is qualitatively similar, but numerically

different, to AMSB models. The LSP is a Wino in the G2-MSSM, similar to AMSB

models. The current experimental limits on gauginos require that the gravitino mass

is at least 10 TeV or so. In the G2 framework, gravitinos naturally come out to be of

O(10− 100) TeV [29]. 50 TeV is a typical mass that we consider in this paper. The

MSSM sfermions and higgsinos have masses of order m3/2, except the right handed

stop which is a factor of few lighter due to RG running. Of the N moduli, one, XN

is much heavier than the rest, Xi. The heavy modulus mass is about 600 m3/2, while

the (N−1) light moduli are essentially degenerate with masses ∼ 2m3/2. Finally the

meson mass is also about 2m3/2. The decays of the moduli and meson into gravitinos

will therefore be dominated by the heavy modulus XN .

The decays can be parameterized by the decay width as,

ΓX = DX
m3

X

M2
P

(5.8)

reflecting the fact that the decays are gravitationally suppressed. DX is a constant

which we calculate to be order one for the moduli but order 700 for φ. So, the light
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moduli have decay widths of order 10−13eV, corresponding to a lifetime of order

10−3 s. The heavier scalars have shorter lifetimes, 10−5 s for φ and 10−10 for XN ,

see tables 1 and 2. So, as the Universe cools further and H reaches a value of order

ΓXN
, the heavy modulus decays. When this happens, the Universe is reheated to a

temperature, roughly of order Tr ∼ (Γ2
XN

M2
P )1/4 ∼ 40 GeV. The entropy is increased

in this phase, by a factor of about 1010. This greatly dilutes the thermal abundance

of gravitinos and MSSM particles produced during reheating (by the inflaton). The

abundance of the light moduli and meson are also diluted. Then, when H reaches

order Γφ the meson decays. This reheats the Universe to a temperature Tr ∼ 100

MeV and increases the entropy by a factor of order 100. Finally, as the Universe

cools again and reaches a temperature of about 10−13 eV the light moduli decay.

They reheat the Universe to a temperature of about 30 MeV and a dilution factor

of about 100 again. After this, all the moduli have decayed and the energy density

is dominated by the decay of the light moduli. Since the final reheat temperature is

well above that of nucleosynthesis, BBN can occur in the standard way.

Furthermore, since the entropy increases by a total factor of about 1014, the

gravtino density produced by moduli and meson decays is sufficiently diluted to an

extent that it avoids existing bounds from BBN from gravitino decays.

Since the energy density is dominated by the decaying light moduli, the relic

density of Wino LSP’s is dominated by this final stage of decay. The initial density

of LSP’s at the time of production is such that the expansion rate is not large enough
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to prevent self-interactions of LSP’s. This is because

ninitial
LSP >

3H

〈σv〉

∣∣∣∣
Tr

(5.9)

where the right side is to be evaluated at the final reheating temperature and σv

is the typical Wino annihilation cross-section ∼ 10−7GeV−2. Therefore, the Wino’s

will annihilate until they reach the density given on the R.H.S., which is roughly

1012 eV3 - an energy density of 1023 eV4. Here we have assumed, as is reasonable,

that since there is a lot of radiation produced at the time of decay, the LSPs quickly

become non-relativistic by scattering with this ‘background’. Since the entropy at

the time of the last reheating s ∼ 10 T 3 ∼ 1023 eV3, the ratio of the energy density

to entropy, is around 1 eV. This should be compared to the observed value of this

ratio today, which is 3.6 h2 eV, where the Hubble parameter today is about 0.71.

Therefore, we see that the Wino LSP relic density is very reasonable in these

models. The rest of this paper is devoted to a much more precise, detailed version

of this calculation.

5.3.1 Scalar Decay and Reheating Temperatures

Here we collect some more precise formulae for the decay and reheat temperatures

as a function of the moduli/meson masses.

The temperature at the time of decay can be found using

3H2
d =

mψYψ

M2
P

sd =
mψYψ

M2
P

(
2π2

45

)
g∗s(Td) T 3

d , (5.10)

−→ Td =

(
30

π2

)1/3 (
Γ2

ψM2
P

mψYψg∗s(Td)

)1/3

, (5.11)
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where Yψ = nψ/s is the comoving number density and

s =
ρ + p

T
=

2π2

45
g∗sT 3, (5.12)

is the entropy density with g∗s the number of relativistic degrees for freedom4. Pa-

rameterizing the decay rate as above, i.e. Γψ = Dψm3
ψ/M2

P we find

Td =

(
30

π2

)1/3

g−1/3
∗s (Td)

(
D2

ψm5
ψ

YψM2
P

)1/3

(5.13)

For later use we also note that if more than one modulus dominates at the time of

decay then the temperature at the time of decay becomes

Td =

(
30

π2

)1/3

g−1/3
∗s (Td)

(
D2

ψm6
ψ

M2
P

∑
i miYi

)1/3

(5.14)

where the sum is over all moduli (including the one that decays). When the modulus

decays, the relativistic decay products will reheat the universe to a temperature,

3H2 =
4Γ2

ψ

3
= M−2

P

(
π2

30

)
g∗(Tr) T 4

r , (5.15)

−→ Tr =

(
40

π2

)1/4

g−1/4
∗ (Tr)

√
ΓψMP , (5.16)

or

Tr =

(
40

π2

)1/4

g−1/4
∗ (Tr)

(
Dψm3

ψ

MP

)1/2

. (5.17)

Instead, if more than one modulus contributes to the energy density before decay

the reheat temperature becomes

Tr =

(
40

π2

)1/4

g−1/4
∗ (Tr)

(
mψYψ∑

i miYi

)1/4 (
Dψm3

ψ

MP

)1/2

, (5.18)

4We will take g∗s = g∗, which is true if all particles track the photon tempera-

ture. This is a good approximation for most of the history of the universe (prior to

decoupling) [147].
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where the sum is over all moduli (including the one that decays) and we note that

this could lead to a subdominant radiation density compared to that of the remaining

moduli. The entropy production is characterized by (assuming that ∆ À 1)

∆ =

(
Sr

Sd

)
=

g∗s(Tr)a
3(tr)T

3
r

g∗s(Td)a3(td)T 3
d

, (5.19)

where Td and Tr are the decay and reheat temperatures, respectively. Making use of

Eq. (5.17), (5.19), and (5.13) we find

∆ =
2

15

(
250π2

)1/4
(

g∗s(Tr)

g∗s(Td)

) (
g∗s(Td)

g
3/4
∗ (Tr)

)
mψYψ

(ΓφMP )1/2
,

=
2

15

(
250π2

)1/4
g1/4
∗ (Tr)

(
MP

Dψmψ

)1/2

Yψ, . (5.20)

For the case that more than one modulus dominates the energy density before ψ

decays, we have instead

∆ =
2

15

(
250π2

)1/4
g1/4
∗ (Tr)

(
MP

Dψmψ

)1/2 [∑
i miYi

mψYψ

]1/4

Yψ, (5.21)

where the sum runs over all moduli that contribute to the energy density (including

the decaying modulus ψ).

Moduli decay and BBN

From Eq. (5.21), we see that the decay of moduli can produce a substantial

amount of entropy. Therefore, if any moduli present do not decay before the onset of

BBN the resulting entropy production when decay occurs could result in devastating

phenomenological consequences. However, another possibility is provided if the late-

time decay of the moduli reheat the universe to temperatures greater than a few
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MeV. Such reheating will then allow BBN to proceed as usual. Requiring that the

modulus decay exceeds this temperature one finds from Eq. (5.17) that mψ & 10 TeV.

5.4 Moduli Masses and Decay Widths

5.4.1 Moduli Masses

Since in this paper we are interested in the evolution of the moduli (and meson)

fields, it is important to study their masses in the vacuum described above. The

set of gauge-singlet scalar fields includes N geometric moduli si associated with G2

manifold and a hidden sector meson field φ. Since these moduli and meson will mix

in general, the physical moduli correspond to mass eigenstates. The mass matrix

can be written as:

(
m2

X

)
i j

=
(
(aiaj)

1/2K1 + δijK2

)
m2

3/2 (5.22)

(
m2

)
i φ

= (ai)
1/2K3 m2

3/2 (5.23)

(
m2

)
φφ

= K4 m2
3/2 (5.24)

where K1 to K4 are obtained in [29]:

K1 =
16

9261

(
Q

Q− 3

)2

P 4
eff (5.25)

K2 =
22

3
− 8

9φ2
0

− 2φ2
0 − (1 +

2

3φ2
0

)
36

Peff

(5.26)

K3 =

√
2

3

(
16

1323

)(
Q

Q− 3

)2
P 3

eff

φ0

(5.27)

K4 =
32

567

(
Q

Q− 3

)4
P 4

eff

φ2
0

(5.28)

where φ2
0 ≈ 0.734. The special structure of the mass matrix allows us to find the

eigenstates analytically. There is one heavy eigenstate with mass mXN
= (7K1/3 +
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K2)
1/2m3/2, (N − 1) degenerate light eigenstates with mass mXj

= (K2)
1/2m3/2 and

an eigenstate with mass mφ = (K4 − K2
3

K1
)1/2m3/2. These mass eigenstates of the

moduli fields are given by:

Xj =

√
aj+1

(
∑j

k=1 ak)(
∑j+1

k=1 ak)

(
j∑

k=1

√
ak δs′k −

∑j
k=1 ak√
aj+1

δs′j+1

)
; j = 1, 2 · · ·N − 1

XN =

√
3

7

N∑

k=1

√
ak δs′k (5.29)

where δs′j =
√

3aj

2s2
j

δsj are the canonically normalized moduli fields. The normalized

moduli fields can be related to the eigenstates by δs′i = UijXj, in which Uij can be

constructed using the eigenstates listed above. It is easy to show that ( ~Xj)i = Uij

for the eigenvector ~Xj. In addition, there is another eigenstate Xφ corresponding to

the meson field. Actually, the heavy eigenstate XN and Xφ mix with each other.

This mixing hardly changes the components of the eigenstate XN and Xφ since

mXN
À mφ. However, the mass of the eigenstate Xφ is affected by the mixing. The

masses mXN
and mφ only have a mild dependence on Q (for Peff = 84, Q− P = 3),

and do not depend on the number of moduli N at all. The mass of the light moduli

mXj
does not even depend on Q. Taking the expression for K2, one immediately

finds that mXj
≈ 1.96 m3/2, j = 1, · · · , N − 1. This result is very important since

light moduli are then not allowed to decay into gravitinos, essentially eliminating

the moduli induced gravitino problem. Choosing a reasonable value of Q to be of

O(10), one finds that mφ is roughly around 2m3/2 while mXN
is roughly around

600 m3/2. Changing values of Q by O(1) hardly changes the moduli masses mXN

and mφ. Therefore, the above typical values will be used henceforth in our analysis.
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To summarize, the meson and moduli masses in the G2 -MSSM can be robustly

determined in terms of m3/2.

5.4.2 Couplings and Decay Widths

Understanding the evolution of the moduli also requires a knowledge of the cou-

plings of the moduli (meson) fields to the visible sector gauge and matter fields. Since

all the moduli are stabilized explicitly in terms of the microscopic constants of the

framework, all couplings of the moduli and meson fields to the MSSM matter and

gauge fields can in principle be explicitly computed. Here we focus on the moduli

couplings to MSSM matter and gauge fields. A different visible sector, as might arise

from an explicit construction, will give rise to different couplings of the moduli fields

in general, although with roughly the same moduli masses.

Here we will give a brief account of the important couplings of the moduli meson to

visible gauge and matter fields and set the notation. Details are provided in Appendix

C.2. The most important couplings of the moduli and meson fields involve two-body

decays of the moduli and meson to gauge bosons, gauginos, squarks and slepton,

quarks and leptons, higgses and higgsinos. The three-body decays are significantly

more suppressed and will not be considered.

Let us start with the decay to gauge bosons and gauginos. The relevant part of

the Lagrangian is given by:

L ⊃ gXkgg Xk F̂ a
µνF̂

a,µν + gXk g̃g̃ Xk λ̂aλ̂a +

g ˆδφ0g̃g̃
ˆδφ0 λ̂aλ̂a (5.30)
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where k = 1 · · ·N and a = 1, 2, 3. In addition, Xk, ˆδφ0, F̂ a
µν and λ̂a are the normalized

moduli, meson, gauge field strength and gaugino fields respectively. The expression

for the couplings will be provided in Appendix C.2. It is important to note that the

meson field does not couple to gauge bosons since the gauge kinetic function fsm

does not depend on φ0. The normalized moduli eigenstates Xk have already been

discussed. The others can be written as:

δ̂φ0 =
δφ0√

2
; F̂ a

µν =
F a

µν√
〈Im(fsm)〉 ; λ̂a =

λa

√
〈Im(fsm)〉 (5.31)

where fsm is the gauge kinetic function for the visible SM gauge group. In the rest

of the paper, we will neglect the hats for these normalized fields and MP in the

couplings for convenience.

The coupling of the moduli and meson fields to the MSSM non-higgs scalars (ie

sfermions) turn out to be important, as will be seen later. Since the Standard model

fermion masses (including that of the top) are much smaller than that of the moduli,

the decay of the moduli and meson to these fermions will not be considered. The

coupling to the MSSM sfermions can be written as:

L ⊃ (g′
Xf̃f̃

)i,αβ

[
∂µ(Xi f̃α∗)∂µf̃α

]
− gα

Xf̃f̃
Xif̃

∗ᾱf̃α

+ (g′
δ̂φ0f̃ f̃

)i,αβ

[
∂µ(δφ0 f̃α∗)∂µf̃α

]
− gα

δφ0f̃ f̃
δ̂φ0f̃

∗ᾱf̃α (5.32)

where f̃α are the canonically normalized scalar components of the visible chiral fields

Cα, i.e. f̃α = Cα√
K̃α

. The couplings to the higgs and higgsinos are different due to

the presence of the higgs bilinear Z HuHd + h.c in the Kähler potential [30], which

gives rise to contributions to the µ and Bµ parameters. In addition to the couplings
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similar as those in Eq. (5.32), there are additional couplings for scalar higgses, which

can be schematically written as:

L ⊃ gXHdHu XjHdHu + g′XHdHu
∂µXj∂

µ(HdHu) + c.c

+ gδφ0HdHu δφ0HdHu + g′δφ0HdHu
∂µδφ0∂

µ(HdHu) + c.c (5.33)

As explained in [30], all higgs scalars except the SM-like higgs and all higgsinos are

heavier than the gravitino, implying that the moduli and meson fields can only decay

in this sector to the light SM-like higgs (h). The coupling to the SM-like higgs can

be determined from the above coupling 5.33 as explained in appendix C.2.

Finally, the moduli and meson fields can also decay directly to the gravitino. In

fact, it turns out that the (non-thermal) production of gravitinos from direct decays

dominates the thermal production of gravitinos in the early plasma. Therefore, it is

important to consider the moduli and meson couplings to the gravitinos. Since the

meson and light moduli are lighter than twice the gravitino mass (as seen from the

previous subsection), only the heavy modulus can decay to the gravitino.

The explicit form of these couplings in terms of the microscopic constants is

provided in appendix C.2. An important point to note is that these couplings are

computed from the theory at a high scale, presumably the unification scale. However,

since the temperature at which the moduli decay is much smaller than the unification

scale, one has to RG evolve these couplings to scales at which these moduli decay

(around their masses). The RG evolution has also been discussed in appendix C.2

for the important couplings. Once the effective couplings of these moduli and meson
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are determined, one can compute the decay widths, as shown below.

For the G2-MSSM model, we have found that light moduli and meson dominantly

decay to light higgses and squarks, while the heavy modulus dominantly decay to

light higgses only. In appendix C.2, we have explicitly calculated the decay widths

of the moduli Xk and meson. The widths of moduli can be schematically written as:

Γtotal
Xk

≡ DXk
m3

Xk

M2
P

≈ ΓXk→gg + ΓXk→g̃g̃ + ΓXk→q̃q̃ + ΓXk→hh (5.34)

=
7

72π

(
NG(AXk

1 +AXk
2 ) +AXk

3 +AXk
4

) (
m3

Xk

M2
P

)
,

where k = 1 · · ·N and NG = 12 is the number of gauge bosons or gauginos. Note

that AXk
3 is significant only for k = 1, 2..., N − 1 (see appendix C.2). For the meson,

the width can be written as:

Γtotal
δ̂φ0

≡ Dφm
3
φ

M2
P

≈ Γδφ0→g̃g̃ + Γδφ0→q̃q̃ + Γδφ0→hh

=
7

72π
(NGAφ0

1 +Aφ0

2 +Aφ0

3 )

(
m3

φ

M2
P

)
. (5.35)

5.5 Evolution of Moduli in the G2-MSSM

In this section, we apply the general discussion in Section 5.2 to the model of the

G2-MSSM reviewed in the previous section. For clarity we will summarize our main

results focusing on the more salient aspects of the physics, leaving the more technical

details of the calculations to Appendix C.1. We will illustrate our computations with

benchmark values, in order to get concrete numerical results, and comment on the

choice of the benchmark values in section 5.7.

As discussed in Section 5.2, we assume that cosmological inflation and (p)reheating
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have provided adequate initial conditions for the post-inflationary universe.

5.5.1 Moduli Oscillations

As reviewed in the last section, we have a heavy modulus XN , N−1 light moduli

Xi, and the scalar meson φ. These will begin to oscillate in the radiation dominated

universe once the temperature cools and the expansion rate becomes comparable to

their masses.

For a benchmark gravitino mass value5 of 50 TeV, the heavy modulus will begin

oscillations first, at around tosc
XN

≈ 10−32 seconds, corresponding to a temperature of

roughly T = 1012 GeV. Following the heavy modulus, the other moduli will begin

coherent oscillations around 10−30 s corresponding to a temperature of roughly 1011

GeV. These results are summarized in Table 5.1 below.

Modulus Mass (m3/2 = 50 TeV) Oscillation Time (seconds)

XN mXN
= 600 m3/2 tXN

osc = 2× 10−32

Xφ mφ . 2 m3/2 tφosc = 7× 10−30

Xi mXi
. 2 m3/2 tXi

osc = 7× 10−30

Table 5.1: Oscillation times for the G2-MSSM moduli

Since coherently oscillating moduli (ρm) scale relative to radiation as ρm/ρr ∼

a(t) ∼ 1/T , the moduli will quickly come to dominate the energy density of the

universe, which is then matter dominated. Following the beginning of coherent

oscillations of the heavy modulus, until the decay of all the moduli the universe

5We give detailed numerical values for m3/2 = 50 TeV. It will be clear that values

a factor of two or so smaller or larger than this will not change any conclusions in

this and related analyses.



122

will remain matter dominated. We will see that this, along with the entropy pro-

duced during moduli decays, results in negligible primordial thermal abundances of

(s)particles compared with the non-thermal abundances coming from direct decays

of the moduli. This will be crucial in addressing the gravitino problem and estab-

lishing a Wino-like LSP as a viable dark matter candidate through its non-thermal

production.

5.5.2 Moduli Decays and Gravitino Production

As the universe continues to cool the expansion rate will eventually decrease

enough so that the moduli are able to decay. This occurs when H ∼ ΓX , at which

time the moduli will decay reheating the universe and producing substantial entropy.

We will parameterize the decay rates of the G2-MSSM moduli as:

ΓX = DX
m3

X

M2
P

, (5.36)

where ΓX is the decay width for particle X. The decay times will be computed for a

set of benchmark values of DX for the various moduli (meson) which can be obtained

by choosing particular (reasonable) sets of values of the microscopic constants (see

appendix C.2 for details).

Modulus Decay Coefficient Decay Time (seconds)

XN DXN
= 2 τXN

= 9× 10−11

Xφ Dφ = 710 τφ = 6× 10−6

Xi DXi
= 4.00 τXi

= 10× 10−4

Table 5.2: Decay coefficients and lifetimes for the G2-MSSM moduli for a set of

benchmark microscopic values
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Heavy Modulus Decay and Initial Thermal Abundances

Given the G2-MSSM values in Table 5.2 above, the heavy modulus will be the

first to decay at around 10−11s. This decay will produce a large amount of en-

tropy ∆XN
= Safter/Sbefore ≈ 1010 (even though the energy density of the heavy

modulus is less than that of the meson and moduli), reheating the universe to a

temperature TXN
r = 41 GeV. The entropy production will not only dilute the ther-

mal abundances of all (s)particles, but also all the other moduli. One particularly

important non-relativistic decay product of the heavy modulus is the gravitino. Grav-

itinos will be non-thermally produced by the modulus decay with a branching ratio

BXN

3/2 = 0.07%, which yields a comoving abundance Y
(XN )
3/2 = n3/2/s ≈ 10−9. This can

be compared to the thermal abundance of gravitinos, which before modulus decay

is Y thermal
3/2 = 2.67 × 10−8. This is further diluted by entropy production resulting

from the decay, i.e. Y thermal
3/2 → Y thermal

3/2 /∆XN
≈ 10−18. We see that the thermal

contribution to the gravitino abundance is negligible compared to that from non-

thermal production. A similar result follows for all other (s)particles that are ther-

mally populated following inflation. Therefore, the primary source of (s)particles,

and in particular gravitinos and Lightest SUSY Particles (LSPs), will result from

non-thermal production resulting from decays of the moduli.

Meson/Light Moduli Decays and the Gravitino Problem

The decay of the heavy modulus is followed by the decay of the meson, at around

10−6s (for benchmark values). The meson will decay before the light moduli because
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of a larger decay width compared to that for the light moduli (see appendix C.2 for

details). Similar to the heavy modulus, the meson contribution to the energy density

is small compared to that of the N − 1 light moduli. Nevertheless, it produces some

entropy (∆φ ≈ 121) and reheats the universe to a temperature of around 134 MeV.

The entropy production will again dilute the abundance of light moduli, and any

(s)particles present, including the gravitinos from the heavy modulus decay.

The decay of the meson to gravitinos is particularly important, as this can result

in the well-known gravitino problem. If the scalar decay yields a large number of

gravitinos, these gravitinos can later decay producing a substantial amount of entropy

that could spoil the successes of BBN.

The entropy produced from the decay of the meson and the other light mod-

uli further dilutes the gravitino abundance from the heavy modulus. The primary

contribution to the gravitino relic abundance comes from the decay of the heavy

modulus since the other fields have masses of order 2 m3/2. After the decay of the

meson, the energy density of the N − 1 light moduli is the dominant contribution to

the total energy density of the Universe.

Given that the N − 1 light moduli are approximately degenerate in mass, their

decays will occur at nearly the same time, after the decay of the meson. The resulting

reheat temperature is found to be approximately 32 MeV, which is an acceptable

temperature for consistency with the bound of 1 MeV set by BBN [148–151].

We note that the moduli decay rates have a strong dependence on the gravitino

mass (as it sets the moduli mass scale). So, the decay of the light moduli being able
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to avoid BBN constraints is a result of the fact that the gravitino mass is relatively

large (m3/2 & 50 TeV). However, as explained in detail in [30], the gauginos are

significantly suppressed relative to the gravitinos allowing us to still obtain a light

(< TeV) spectrum which can be seen at the LHC. The decay of each modulus will

contribute to the total entropy production, and one finds that the total entropy

production for the set of benchmark values of the microscopic constants is given by

∆Xi
= 418. We also note that the light moduli lifetime depends inversely on the

decay coefficient DXi
, so if instead of taking relatively large values DXi

= 4 we take

relatively small values DXi
= 0.4, we find a reheat temperature of 10 MeV which is

still compatible with BBN6. The decay of light moduli to gravitinos is kinematically

suppressed for the same reason as for the meson. The final gravitino abundance

is then just the contribution from the heavy modulus decay diluted by the decay

of the meson and light moduli and is Y final
3/2 = Y φ

3/2/∆Xi
≈ 10−14 . The above

gravitino abundance is well within the upper bound on the gravitino abundance set

by BBN constraints, as it will not lead to any significant entropy production at the

time the gravitinos decay. Thus, we find that there is no gravitino problem in the

G2-MSSM. In addition to the relativistic decay products, the light moduli will also

decay appreciably into neutralinos (LSPs), which we consider in detail in the next

section.

6See appendix A for a discussion of the range of the coefficients DXi
.
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5.6 Dark Matter from the G2-MSSM

Natural models of electroweak symmetry breaking (EWSB) require additional

symmetries and particles beyond those of the Standard Model. The additional par-

ticles typically come charged under additional discrete symmetries suppressing their

decay to Standard Model particles (e.g. R-parity, KK-parity, etc.), so such models

predict an additional, stable, weakly interacting particle with an electroweak scale

mass, i.e. they naturally predict a candidate for Weakly Interacting Massive Particle

(WIMP) cold dark matter. In the case of the G2-MSSM, this gives rise to a Wino-like

neutralino which is the lightest supersymmetric particle (LSP) of the theory.

For completeness in section 5.6.1 we will review the standard calculation for

computing the (thermal) dark matter relic density today. In section 5.6.2, we will

then revisit this calculation for non-thermal production of LSPs resulting from scalar

decay. In Section 5.6.3, we examine how non-thermal production is naturally realized

in the G2-MSSM and predicts the Wino LSP as a viable WIMP candidate.

5.6.1 Standard Thermal Dark Matter

In the standard calculation of the relic abundance of LSPs it is assumed that

prior to BBN the universe is radiation dominated. In particular, it is assumed that

the dark matter particles are created from a thermal bath of radiation created from

(p)reheating after inflation. In this radiation dominated universe, the Friedmann

equation reads 3H2 = M−2
P ρr, with ρr = (π2/30)g∗T 4 the radiation density and g∗

the number of relativistic degrees of freedom at temperature T .
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The evolution of LSPs are given by the Boltmann equation

ṅX = −3HnX − 〈σv〉 [n2
X − n2

eq

]
, (5.37)

where 〈σv〉 is the thermally averaged cross-section, nX is the number density, and

neq is the number density of the species in chemical equilibrium, i.e. XX ↔ γγ,

where γ is a relativistic particle such as the photon.

Assuming that initially the dark matter particles are relativistic (mX < T ) and

in chemical equilibrium, then they will pass through three phases as the universe

expands and cools. Initially their density will be determined by all the factors on

the right side of (5.37). As long as the interactions of the particles take place on

smaller time scales than the cosmic expansion then the particles will remain close

to their equilibrium distributions. While the species is relativistic (mX < T ) this

means that their comoving abundance is given by YX = nX/s ≈ Y eq
X = const..

Once the universe cools enough from the cosmological expansion so that X becomes

non-relativistic (T < mX) then particle creation becomes more difficult (Boltzmann

suppressed) and the comoving abundance tracks that of a non-relativistic species

YX ≈ Y eq
X = 0.145 x3/2 exp(−x) where x ≡ mX/T . The particle density will continue

to decrease until the number of particles becomes so scarce that the expansion rate

exceeds the annhiliation rate and the particle species undergoes ‘freeze-out’. From

(5.37) we see that at this time the number density is given by:

nX =
3H

〈σv〉

∣∣∣∣
Tf

, (5.38)

where Tf indicates that this relation only holds at the time of freeze-out. Using (5.38)
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and YX ≈ Y eq
X at the time of freeze-out, we find that freeze-out is only logarithmically

sensitive to the parameters of the model, xf ≡ mX

Tf
≈ ln [mXMP 〈σv〉] and corrections

are O(ln ln xf ). Taking both the cross-section and mass mX to be weak scale at

around 100 GeV we find that xf = 4 and thus the freeze-out temperature is Tf =

mX/25 ≈ 4 GeV. From (5.38) and (5.12), we find the comoving density at freeze-out:

Yf =
3H

s〈σv〉 , (5.39)

=
45

2π
√

10

1

σ0g
1/2
∗

(
1

MP 〈σv〉Tf

)
, (5.40)

=
45

2π
√

10

1

σ0g
1/2
∗

(
mX

MP

)
xf , (5.41)

where we have taken 〈σv〉 = σ0 m−2
X . We note that this answer is rather insensitive

to the details of freeze-out, and the abundance is determined solely in terms of the

properties of the produced dark matter (mass and cross-section). In particular, there

is no dependence on the underlying microscopic physics of the theory.

5.6.2 Non-thermal Production from Scalar Decay

We know from the successes of BBN that at the time the primordial light elements

were formed the universe was radiation dominated at a temperature greater than

around an MeV. However, perhaps surprisingly, there is no evidence for a radiation

dominated universe prior to BBN. In particular, we have seen that in the presence

of additional symmetries and flat directions, scalar moduli can easily dominate the

energy density of the universe and then later decay. The presence of these decaying

scalars can alter the standard cold dark matter picture of the last section in significant

ways.
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To understand this, consider the decay of an oscillating scalar condensate φ, which

decays at a rate Γφ ∼ m3
φ/M

2
P . When the expansion rate becomes of order the scalar

decay rate (H ∼ Γ) the scalars will decay into LSPs along with relativistic (s)particles

which reheat the universe to a temperature Tr. If this reheat temperature is below

that of the thermal freeze-out temperature of the particles Tf ∼ mX/25 then the

LSPs will never reach chemical equilibrium. As an example, if we consider a scalar

mass mφ ∼ 10−100 TeV this gives rise to a reheat temperature Tr ∼
√

ΓφMP & MeV

where Γφ ∼ m3
φ/M

2
P . The decay of φ in a supersymmetric setup could lead to LSPs

with weak-scale masses mX ∼ 100 GeV, which have a thermal freeze-out temperature

Tf ∼ mX/25 ∼ few GeV. We see that in this case Tr < Tf is quite natural and

the particles are non-thermally produced at a temperature below standard thermal

freeze-out. Thus, the particles will be unable to reach chemical equilibrium.

Depending on the yield of dark matter particles from scalar decay, there are two

possible outcomes of the non-thermally produced particles.

Case one: LSP Yield Above the Fixed Point

If the production of LSPs coming from scalar decay is large enough, then some

rapid annihilation is possible at the time of their production. Since the particles are

produced at the time of reheating, we know from the Boltzmann equation (5.37) that

the critical density for annihilations to take place is:

nc
X =

3H

〈σv〉

∣∣∣∣
Tr

, (5.42)



130

which is different from the result (5.38) in that here the reheat temperature and not

the thermal freeze-out is the important quantity. This is very important because

Tr ∼
√

ΓφMP depends on the microscopic parameters of the theory as the reheat

temperature is set by the decay rate of the scalar. In the standard case, we saw

that the freeze-out temperature, or more precisely, the parameter xf ≡ mX/Tf was

only logarithmically sensitive to the parameters of the dark matter and gave no

information at all about the underlying theory from which the dark matter was

produced (e.g. scalars from the underlying microscopic physics).

Given that the initial number density of particles exceeds the above bound

(nX(0) > nc
X), the LSPs will quickly annihilate until they reach the density (5.42).

Thus, the critical value nc
X serves as a fixed point for the number density, since any

production above this limit will always result in the same yield of particles given by

nc
X . From this one finds the comoving density [131]

YX =
c1

g
1/2
∗

1

MP 〈σv〉Tr

= Y std
X

(
Tf

Tr

)
, (5.43)

where c1 = 45/(2π
√

10). We see that non-thermal production can yield a greater

comoving density than standard thermal production by a factor (Tf/Tr). For the

example considered above, namely mφ ∼ 10 − 100 TeV, mX ∼ 100 GeV, and Tr ∼

few MeV we find the comoving density is enhanced by a factor ∼ 102 − 103. One

interesting consequence of this is it allows room for larger annihilation cross-sections

for the LSPs. For example, in standard thermal production a Wino-like LSP leads to

too small a relic density since its annihilation cross section is only s-wave suppressed
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. In the case of the G2-MSSM, non-thermal production is a natural consequence

of the microscopic physics and a Wino LSP will provide a perfectly suitable WIMP

candidate.

Case two: LSP Yield Below the Fixed Point

The other possibility is that the decay of the scalar yields few enough LSPs

(nX(0) < nc
X) so that annihilation does not occur. Then the comoving abundance is

simply given by

YX = Bφ∆
−1
φ Y

(0)
φ ∼ Bφn

(0)
φ

T 3
r

, (5.44)

where Bφ is the branching ration of scalars to LSPs and Y
(0)
φ is the initial abundance

of scalars in the decaying condensate. We note that again this result depends on the

underlying physics of the UV theory, since both the branching ratio and the reheat

temperature are coming from the physics of the scalar.

5.6.3 Dark Matter in the G2-MSSM

As shown in [30], the LSP in the G2-MSSM is predominantly Wino-like. There

are two significant sources of these LSPs in the G2-MSSM – direct production from

decays of both the gravitino and the light moduli. As explained earlier, the thermal

abundance of LSPs in the early plasma after inflation is vastly diluted by the entropy

productions from the heavy modulus, meson and the light moduli. Therefore, the

thermal abundance of LSPs is negligible. In addition, the LSPs produced from decays

of the heavy modulus and the meson field are also diluted by the entropy production

from the light moduli and are negligible as well.
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The light moduli may decay to LSPs directly, or via decay to superpartners.

From Section 5.4 the branching ratio for this process to occur for a set of benchmark

values of the microscopic paramaters is BXi
LSP ∼ 25% and the comoving abundance

is then found to be:

Y
(Xi)
LSP = ∆−1

Xi
BXi

LSP (N − 1)Y
(φ)
Xi

= 1.19× 10−7, (5.45)

where ∆Xi
= 417.7 [(N)/100]3/4 is the entropy production from the decay of all the

light moduli Xi. Here we have taken benchmark value for the number of light moduli

to be 100. The corresponding number density at the time of reheating is

nLSP = s(TXi
r )YLSP , (5.46)

= 1.79× 10−11 GeV3 (5.47)

As discussed in the last section, we must compare this number density of LSPs to

that of the critical density for annihilations (5.42). At the time of reheating from

the light moduli the Hubble parameter is given by

H(tr) =

(
π2g∗
90

)1/2
(TXi

r )2

MP

= 4.48× 10−22 GeV. (5.48)

The dominant (s-wave) annihilation cross section for the LSPs (W̃ 0W̃ 0 → W+W−)

is given by

〈σv〉 = σ0 m−2
LSP =

1

m2
LSP

g4
2

2π

(1− xw)3/2

(2− xw)2
= 3.26× 10−7 GeV−2, (5.49)

where xw = m2
w/m2

LSP , mw = 80.4 GeV is the W -boson mass, and g2 ≈ 0.65 is the

gauge coupling constant of SU(2)L at temperatures Tr ∼MeV, and this defines σ0. It
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is crucial that the cross-section is s-wave so that there is no temperature dependence

in 〈σv〉. We will comment more on this in section 5.7. Using (5.42) we find the fixed

point density for annihilations

nc
LSP = 4.12× 10−15 GeV3. (5.50)

We see that the produced density is greater than the fixed point value nXi
LSP > nc

LSP

and annihilations will occur. This corresponds to the “LSP yield above the fixed

point” case discussed above. Thus, the LSPs produced will quickly annihilate down

toward the fixed point value in less than a Hubble time. The relic density of dark

matter is then given by the fixed point value (5.50) and the critical density of LSPs

today coming from decay of the light moduli is

ΩXi
LSP =

mLSP Y c
LSP

ρc/s0

=
1

ρc/s0

(
45

2π
√

10g∗σ0

)(
m3

LSP

MP TXi
r

)
= 0.76 h−2 (5.51)

where s0 and ρc are the entropy density and critical density today, respectively, and

we have used the experimental value ρc/s0 = 3.6×10−9h2 GeV with h parameterizing

the Hubble parameter today with median value h = 0.71.

In addition to this contribution, there is also the contribution from the decay of

non-thermal gravitinos produced from the heavy modulus which have a final abun-

dance Y final
3/2 ≈ 10−14. The contribution from gravitinos to the critical density of

dark matter is then

Ω
(3/2)
LSP =

mLSP Y final
3/2 s0

ρc

= 0.0008h−2, (5.52)

which is negligible compared with that coming from the light moduli.
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Thus, the total critical density in dark matter coming from the LSPs of the

G2-MSSM is :

ΩLSP h2 ≈ 0.27
( mLSP

100 GeV

)3
(

10.75

g∗(Tr)

)1/4 (
3.26× 10−7GeV−2

〈σv〉
)

×
(

4

DXi

)1/2 (
2 m3/2

mXi

)3/2 (
100 TeV

m3/2

)3/2

, (5.53)

where we have included all the parametric dependence of the answer derived in

Appendix C.2. This value should be compared to the experimental value ΩCDMh2 =

0.111 ± 0.006 [152]. For those used to 〈σv〉 in other units, note that 1 GeV−2 =

0.4× 10−27cm2.

This result is not presented in terms of central values – rather it is the best

value we can obtain. The LSP mass can be larger than 100 GeV, but not smaller.

The constant DXi
can be order 4, but a scan of the microscopic parameter space

suggests a somewhat smaller value for the only calculable example so far known (see

appendix C.2.4). A better understanding of the string theory could give 4 or a larger

value. Whereas m3/2 is somewhat constrained to be at most about 100 TeV by the

parameters of the framework, as explained in [30]. Therefore, this framework is rather

constrained and predictive. We view the closeness of this result as a success, and

as an indication that improving the underlying theory may improve the agreement

with data.

5.7 Discussion of Results

We have seen in the previous sections that for natural values of microscopic pa-

rameters, there is no moduli and gravitino probem in realistic G2 compactifications.
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In addition, within the G2-MSSM, the non-thermal production of Wino LSPs from

the light moduli give rise to a relic density with the right order of magnitude (up

to factors of a few). It is possible that with a more sophisticated understanding of

the theory, one could obtain a result more consistent with the observational results.

It is also worthwhile to understand these results from a physical point of view. The

results obtained above depend surprisingly little on many of the details of the micro-

scopic parameters. In particular, there is essentially no dependence of the final relic

density on the total number of moduli (N), the masses (mXN
,mφ) and couplings

(DXN
, Dφ) of the heavy modulus and meson fields as well as the initial amplitudes

of the moduli (fXk
) and meson (fφ) fields. This is good in a sense since our under-

standing of the underlying theory and many of the above microscopic parameters is

incomplete. However, the result does depend crucially on certain qualitative (and

also some quantitative) features of the underlying physics, as we discuss below. In

general it is better if results depend on the microscopic theory, since then data can

tell us about the underlying theory.

One very important feature which helps avoid the gravitino problem is that the

meson and light moduli have masses which are of order (actually slightly below) two

gravitino masses, as we saw explicitly in Section 4.1, This kinematically suppresses

their decays to the gravitino. The gravitino abundace is thus dominated by decay of

the heavy modulus which is further diluted by entropy production from the decays of

the meson and light moduli. Therefore, a natural mechanism for solving the gravitino

problem in a generic setup is that the modulus which decays last does not decay to
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the gravitino, The moduli problem can also be easily solved in frameworks where the

gravitino mass is & 10 TeV, which is naturally satisfied in the G2 framework.

Another qualitative feature of the G2 framework is that there is a hierarchy in

the time scales of decay of the various moduli (meson) fields. Since the mass of the

heavy modulus is much larger (∼ 300 times) than that of the other moduli (meson),

it decays much earlier. Also, from our current understanding of the Kähler potential

of the meson and moduli fields, one finds (see appendix C.2) that the meson decays

before the light moduli due to a larger decay width. The precise computation of

the decay width depends on the nature of the Kähler potential for the meson and

moduli and the Kähler metric for matter fields, and one might argue that there are

inherent uncertainties in our understanding of these quantities. However, the only

qualitative feature relevant for cosmological evolution is that the meson decays before

the light moduli. As long as the light moduli decay last (which we have argued in

the appendix to be the natural case from our current understanding of the Kähler

potential), the result does not depend on any of the masses and couplings of the

heavy modulus or the meson field. The final result depends only on the masses and

couplings of the light moduli which decay last. The same qualitative feature could

be present in other frameworks arising from other limits of string/M-theory.

Now that it is clear that it is the light moduli decaying at the end which affect

the final relic density, it is important to understand their effect more closely. In any

theory of (soft) supersymmetry breaking, the mass of the light moduli will be set by

the gravitino mass scale. In the context of low energy supersymmetry, the gravitino
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mass will typically be in the range 1 − 100 TeV. Therefore, the light moduli will

also be typically in the above range7. Since the reheat temperature of the moduli

basically depends on the moduli masses (assuming the coefficient DXi
is O(1)), the

light moduli will typically give rise to a reheat temperature TXi
r of O(1− 100) MeV,

which is far smaller than the freezeout temperature of the LSPs (TLSP
f ∼ GeV)

which could be produced from the light moduli. This is true for the G2 framework

and could be true for many other frameworks as well. Therefore, with TXi
r < TLSP

f ,

the final outcome for the relic density will depend on the whether the number density

of the LSPs produced from the light moduli (n
(Xi)
LSP ) is greater or smaller than the

critical number density at TXi
r (n

(c)
LSP |T Xi

r
).

For the G2 framework, for natural values of the microscopic parameters one finds

that n
(Xi)
LSP > n

(c)
LSP |T Xi

r
as shown in section 5.6.3. This is equivalent to the inequality:

B
(Xi)
LSP DXi

>
1.5

σ0

(
m2

LSP

m2
Xi

) ≈ 120 γ2

with γ ≡ mLSP

m3/2

(5.54)

where σ0 is defined by (5.49) and we have used mXi
≈ 1.96 m3/2. As explained

in [30], the quantity γ depends predominantly on δ, which characterizes the threshold

correction to the gauge couplings at the unification scale. The dependence on other

microscopic parameters such as V7 and C2 (see section 5.4) is largely absorbed into

the gravitino mass. The suppression factor γ depends almost linearly on |δ|, and

typically takes value in the range ∼ (1−6)×10−3. Now, the constraint (5.54) is easy

7This is however not true for Large Volume compactifications as the lightest mod-

ulus in that case is much lighter than m3/2 [20].



138

to understand. For natural values of microscopic parameters in the G2 framework,

one has B
(Xi)
LSP = O(25%), DXi

= O(1) (see appendix C.2) which easily satisfy (5.54)

above. In order for other frameworks to realize this situation, a criterion similar to

(5.54) needs to be satisfied.

When (5.54) is satisfied, the final relic density can be written as (see (5.50) and

(5.53)):

ΩLSP h2 ≈ mLSP Y c
LSP

ρc/s0

=
1

ρc/s0

(
45

2π
√

10g∗σ0

)(
m3

LSP

MP TXi
r

)

≈ 1

ρc/s0

(
45

2
√

10π(40g∗)1/4σ0

) (
m3

LSP

D
1/2
Xi

M
1/2
P m

3/2
Xi

)

≈ 18 GeV−3/2

(
m

3/2
LSP γ3/2

D
1/2
Xi

)
= 18 GeV−3/2

(
m

3/2
3/2γ

3

D
1/2
Xi

)
(5.55)

An upper bound on the observed value of the relic density implies that smaller

values of γ and mLSP and larger values of DXi
are preferred. A small γ implies that

for a given LSP mass a heavier gravitino is preferred implying that the moduli be

correspondingly heavier. Also, since γ is roughly linear in |δ|, smaller values of |δ|

are preferred. These features can be seen easily from the plots in figures 5.1 and 5.2.

Figure 5.1 shows a contour plot of the relic density in the DXi
−m3/2 plane for two

(large and small) values of |δ| which correspond to two (large and small) values of γ.

Figure 5.2 shows the dependence of the relic density on the reheat temperature

of the light moduli (TXi
r ). As seen from the first line in Eq. (5.55), the relic density is

inversely proportional TXi
r implying that a higher reheat temperature is preferred. A

higher TXi
r corresponds precisely to a larger DXi

and mXi
(larger m3/2) as explained
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Figure 5.1: The contour plot of the relic density in the G2-MSSM in the DXi
−m3/2

plane for two (large and small) values of |δ| which correspond to two

(large and small) values of γ. The solid lines are for δ = −3 (a correction

to α−1
unif of order 3/26), and the dashed lines for δ = −4.5.

above.

As explained in section 5.6.3, the nature of the LSP is also crucial to the final

result for the relic density. For the G2 framework, the annihilation cross-section is

s-wave and does not depend on TXi
r . On the other hand, if the LSP were Bino, the

cross-section would be p-wave suppressed and would depend linearly on TXi
r /mLSP ,

thereby making it suppressed relative to the s-wave result. This would make the relic

density much larger than the result obtained for the s-wave case above. Therefore,

the upper bound on relic density prefers small mixing angles (or vanishing mixing
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Figure 5.2: The LSP relic density for the G2-MSSM plotted as a function of the

reheat temperature of the light moduli. The solid line assumes no coan-

nihilation with charged Winos; the dashed line includes coannihilation

with charged Winos.

angles, as in the G2-MSSM) with the Bino and Higgsino components. This can be

seen from figure 5.3.

5.8 Summary and Future Directions

In this paper we have emphasized the importance of the cosmological moduli and

gravitino problems and the relation to adequate generation of dark matter in thermal

equilibrium, or generation of too much dark matter non-thermally in string/M theory

frameworks. Focussing on G2 compactifications, in particular on the G2-MSSM, we

have found that the decay of moduli in this framework is rather naturally consistent
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Figure 5.3: The LSP relic density in the G2-framework plotted as a function of the

mixing angle of Bino and Wino for M2 = 100GeV.

with BBN constraints, and the associated large entropy production at late times

(but before BBN) results in an avoidance of the gravitino problem(s). Moreover, we

have seen that the late decay of the light moduli into Wino-like neutralinos leads

to a nearly acceptable relic density of cold dark matter. This result arises from a

combination of entropy production and LSPs from moduli decay giving an adequate

relic density from non-thermal production of dark matter. This process offers an

explicit example of how thermal dark matter production is not the dominant source

of cosmological dark matter, especially in the presence of moduli. The LSP is Wino-

like here as well as in anomaly mediated theories, but for interestingly different
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reasons – here the tree level gaugino masses are universal but about the same size

as the anomaly mediated ones, and the finite one loop Higgsino is comparable with

both.

The result for the final relic density depends parametrically on the couplings and

mass of the light moduli (which decay last) and the mass of the LSP. The masses

of the light moduli and the LSP are set by the gravitino mass scale and depend

on a set of underlying microscopic parameters of the theory. The couplings of the

moduli depend on the Kähler potential of the theory. Since our understanding of the

Kähler potential is incomplete, it is only possible to make reasonable assumptions to

proceed, which is what we have done, but one can see that most of the results are

insensitive to these uncertainties. That is because the moduli decays produce a large

number density of LSPs, which then annihilate down to the final relic density that

only depends on the reheating temperature. From Eq. (5.55) and figure 5.1, we see

that an upper bound on the relic density prefers a light LSP, heavy gravitino and large

couplings to the visible sector parameterized by DXi
(defined in Eq. (5.34)). These

results obtained have been explained in terms of the underlying qualitative features

of the framework. These qualitative features could be present in other string/M

theory frameworks as well, leading to similar results.

There is not yet a satisfactory inflation mechanism for the G2-MSSM. This is

under study. Fortunately, our results are not sensitive to that. We assume only that

at an early time inflation ends and the energy density of the universe is dominated

by moduli settling into the minimum of the potential.
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In future, one would like to understand the origin of the baryon asymmetry in the

Universe (BAU) within string/M-theory frameworks. In the G2 framework, the large

entropy production resulting from the decay of the moduli was crucial for addressing

the gravitino problem. However, this entropy will also act to reduce any initial

baryon asymmetry. Therefore, one requires a large initial asymmetry or a late-time

mechanism for regeneration of the asymmetry. For example, a large initial baryon

asymmetry could arise from the Affleck-Dine mechanism [153], or it could happen

that the superpartner parameter space allows for late-time electroweak baryogenesis.

This is work in progress.

Understanding the above issues would be crucial to solving the “cosmological

inverse problem” (see [154,155] for some preliminary work in this direction), usually

considered separate from the “LHC Inverse Problem” [156]. Within the context of

realistic string/M-theory frameworks, however, the two inverse problems merge into

one “inverse problem” as the microscopic parameters characterizing the underlying

physics of any framework have predictions (at least in principle) for both particle

physics as well as cosmological observables, thereby providing unique connected in-

sights into these basic issues.



CHAPTER VI

Conclusion

With the start of the LHC and many other experiments soon, interpreting new

data and testing theories will be the main subject in the following many years. For

theorists, it is crucial to bring their favorite theory into contact with experiments. In

this thesis, I focus on a quite generic setup of G2 compactification of M-theory with

moduli stabilized. This scenario has several notable appealing features: first, moduli

are stabilized by gaugino condensation and supersymmetry is broken dynamically at

the same time. Second, the TeV scale can be qualitatively obtained in the allowed

region of parameter space. Third, there is a unique de Sitter minimum in the poten-

tial. This makes it interesting to perform a detailed phenomenology analysis. Along

this line, I have studied in detail the soft supersymmetry breaking terms, and calcu-

late the low energy superpartner mass spectra. Then I have systematically studied

several important phenomenological topics, for example, the prospects for the LHC,

CP violation and EDMs predications, dark matter and cosmological issues.

The M-Theory scenario in our study is very distinctive in that it will lead to four-

top signatures in the LHC. Thus it can be discovered at the early stage after the LHC

144
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starts. In addition, the CP violating phases in this scenario is naturally suppressed.

The main CP violation comes from the non-universal A-terms, which gives non-trivial

predictions for EDMs of electron, neutron and Mercury. The aspects of dark matter is

also promising. The dark matter relic density could be generated non-thermally and

qualitatively in consistent with the current observation. Moreover, the notorious

moduli and gravitino problems are naturally solved due to mass relation between

different moduli fields and gravitino. Of course, there are still much to be done to

get a complete scenario for phenomenology. Particularly, inflation, axion and strong

CP problem which could be discussed in the near future.

There are many directions for future research. From a theoretical perspective,

one of the most outstanding problems is to explicitly construct a visible sector with

MSSM or its extension. Although this is a difficult task in general, substantial

progress has been made based on constructions of local singularities using the tech-

niques of geometric engineering [157–160]. Of course, the more ambitious goal is to

construct global examples of G2 manifolds with the right structure of conical and

orbifold singularities. This would require a major breakthrough from a mathematical

point of view. However, a better understanding of the dualities from Heterotic and

Type IIA string theory could also lead to important insights.

From the phenomenological perspective, it would be extremely useful to study

variations of the minimal proposal which could solve important phenomenological

problems while still retaining the desirable features. A good feature of this frame-

work is that important phenomenological issues such as inflation, generation of small
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neutrino masses, explanation of quark mass hierarchy and strong CP problem etc.

can in principle be addressed within this framework.

Although restricted to the M-Theory scenario, most of the techniques and ideas

can be generalized to other corners of String/M-Theory. Similar analysis for other

types of string frameworks will certainly be interesting and must be done in parallel

with the bottom-up study. With the LHC data, one hopes certain string framework

can be favored and others disfavored if the corresponding LHC signatures are studied

in detail. This will eventually allows us to learn about the correct string vacuum in

which we are living.
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APPENDIX A

Calculation of Peff

A.1 General Discussion

As we have seen in section 2.3, a large Peff is crucial for the validity of our

solutions and the supergravity approximation. It also leads to the the suppression of

tree-level gaugino masses compared to the gravitino mass. Finally, in order to tune

the cosmological constant, one requires Peff = 84 (83 if one includes higher order

corrections) for Q − P = 3. In this paper, until now we have just used Peff as one

of the parameters which could vary within a certain range. However, in an explicit

microscopic construction of the hidden sector, it is computable from first principles.

From the definition:

Peff ≡ P ln

(
C1

C2

)
(A.1)

it is easy to see that for a large Peff such as 83, a large splitting in the coefficients C1

and C2 is required. Here for the convenience of the discussion, we have introduced

C1 and C2 through C1 = A1/P and C2 = A2/Q. At tree level, these coefficients are
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simply determined by the cutoff scale of the effective gauge theory and are given by

(Λcutoff/MP )3. This would not give a large Peff . However, one has to take into account

threshold corrections to the gauge couplings of the hidden sectors. To compute the

threshold corrections, one has to specify the concrete setup of the hidden sector Q,

as well as the geometry of the three-cycle where the hidden sector lives. Generally

the one-loop gauge couplings can be written as:

16π2

g2(µ)
=

16π2

g2
M

+ b log(Λ2/µ2) + S, (A.2)

where b is the one-loop beta function coefficient, and S is the one-loop threshold

correction. For instance, the contribution from KK modes has the form [50]:

S = S ′ + 2Nc log(Vol(Q)Λ3
cutoff), (A.3)

where Vol(Q) is the volume of the hidden-sector three-cycle Q and S ′ can be ex-

pressed in terms of certain topological invariants of Q, known as the “Ray-Singer

analytic torsion”. Before we go to explicit examples, we would like to show the

general requirement on the threshold corrections. Let us first denote the gauge ki-

netic function as f = f0 +∆f1 and f2 = f0 +∆f2, where ∆f1,2 are the corresponding

threshold correction. The superpotential from strong gauge dynamics can be written

as:

W ∼ Λ3+α
cutoff |φ|−α P e−

2π
P

(f+∆f1) + Λ3
cutoff Qe−

2π
Q

(f+∆f2) (A.4)
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We can easily identify the coefficient C1,2 as follows:

C1 =

(
Λcutoff

MP

)3+α

e−
2π
P

∆f1 (A.5)

C2 =

(
Λcutoff

MP

)3

e−
2π
P

∆f2 (A.6)

Since α = 2/P is small, we have

C1

C2

≈ e−
2π
P

∆f1+ 2π
Q

∆f2 . (A.7)

For the case Q−P = 3 and Peff = 84, using Eq.(A.1) and (A.7) we have the estimate

∆f1 −∆f2 ∼ 14. (A.8)

In view of the fact that f0 ≈ 14
3
Q = O(50), the requirement Eq.(A.8) is not com-

pletely unreasonable.

A.2 A Particular Example - Q = S3/Zk

As a particular example, we consider the three-cycle Q to be the lens space

S3/Zk as in this case the threshold corrections can be computed. In addition, for

concreteness, we consider a situation where the first hidden sector gauge group is

obtained from a larger group SU(P + M + 1) by Wilson line breaking SU(P + M +

1) → SU(P + 1) × SU(M) × U(1), while the second hidden sector group is still

SU(Q) without breaking. Again we assume one flavor of charged matter Q and Q̄.

As long as M is sufficiently smaller than P (such as < P/2), we can neglect its

contribution to the superpotential and also in moduli stabilization. The calculation

of the threshold correction is similar to that in [50]. For the first hidden sector, it is



151

given by S ′1 = 2(P + 1) TO + 2M Tλ, while for the second one it is S ′2 = 2QTO. Tλ

and TO are the relevant torsions:

TO = − log(k), Tλ = log(4 sin2(Gπλ/k)), (A.9)

where G = P + M + 1, and λ is an integer specifying the Wilson line. As discussed

above, C1,2 can be calculated straightforwardly, which are

C1 = M−3
P 〈Vol(Q)−(1+1/P )〉Λ−1/P

cutoff e−
S′1
2P (A.10)

C2 = M−3
P 〈Vol(Q)−1〉 e−

S′2
2Q . (A.11)

Here, Vol(Q) is the dimensionful volume of the hidden-sector three-cycle Q. It

is important to remember that C1, C2 should be thought of as depending on the

vacuum expectation value of Vol(Q) as shown in the above equation. Therefore, this

dependence does not invalidate the holomorphicity of the superpotential. One can

now compute the Peff from the above equations:

Peff ≈ P (− S ′1
2P

+
S ′2
2Q

)

= −TO −M Tλ

= log(k)−M log(4 sin2(Gπλ/k)) (A.12)

It is obvious that k has to be very large to get a large Peff . For example, P = 15,

Q = 18, M = 10, V7 = 50, λ = 80 and k = 99 gives Peff = 58 and C2 = 1.5 × 10−4.

Notice C2 is much smaller than one. The gravitino for this case is about 0.8TeV.

One can also consider other patterns of symmetry breaking, e.g. SO(2(P + 1)) →

SU(P +1)×U(1). In this case smaller values of k compared to the previous example
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can give rise to a large Peff , although in general a large k is still needed. Large

values of k may seem unrealistic, but that is not clear since the allowed possibilities

for compact G2 manifolds fibred over Lens spaces with large k are not known. In

addition, although at present it is not known how to compute the torsion for other

three-cycles, it is possible that a large Peff can be obtained more “naturally” in other

examples.

A.3 More Possibilities

Other three manifolds might give rise to a large Peff more naturally. Rather than

study further explicit examples we give a toy model which illustrates this possibility.

The model has parameters which extend the previous example and is given by

TO = −γ0 log(k), Tλ1 = γ1 log(α sin2(Gπλ1/k)), Tλ2 , Tλ3 , ... (A.13)

where G is an integer and γ0,1 are determined by the topology of the manifold and

are kept as free parameters. α is determined by group theory. In general, there could

be other non-trivial torsions Tλ2 , Tλ3 , etc. depending on how the higher gauge group

is broken by the Wilson lines. In order to illustrate the idea, we will restrict to TO

and Tλ1 . Let’s again consider the case where the first hidden sector group SU(P +1)

arises from the breaking SU(P + M + 1) → SU(P + 1) × SU(M) × U(1). Now, it

is possible to get both Peff ≈ 84 and C2 ∼ O(1). For example, the set of parameters

γ0 = γ1 = 6.3, P = 15, Q = 18, M = 10, V7 = 50 and k = 11 gives Peff = 84.2 and

C2 = 5.4.

The above example was shown just to illustrate the fact that with more general
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three-cycles Q, it may be possible to obtain a large Peff quite naturally. As another

possibility, if Q is such that the relevant torsions TO, Tλ1 , Tλ2 , etc. in (A.13) have a

linear dependence on k instead of logarithmic one, it is quite easy to obtain a large

Peff naturally. In addition, if there are massive quarks1 which are charged under the

hidden sector gauge group, the strong coupling scale will be lowered and both the

values of Peff and C2 will be affected.

To summarize, the values of Peff and C2 depend crucially on the microscopic

details of the hidden sector and can take a wide range of values. Therefore, in our

phenomenological analysis, we have simply assumed that Peff and C2 can take values

in the range of phenomenological interest.

1Of course, their masses should be larger than the strong coupling scale.
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APPENDIX B

Calculation of Electric Dipole Moments

B.1 Dynamical Alignment of Phases in the Superpotential

The dynamical alignment of phases is crucial for solving the SUSY CP problem.

It means that all terms in the superpotential dynamically align to acquire the same

phase in the vacuum. To show that, we start with the generic moduli superpotential

W =

NW∑
n=1

|Wn|eiγn (B.1)

The superpotential depends on geometric moduli zi as well as other chiral superfields

φi in general. It is generically a polynomial and/or exponential function of these fields

(for example, see Eq. (4.6)), and so γn are functions of Im(zi) and the phase of φi,

which are collectively denoted by ψi. The scalar potential in N = 1 supergravity is

written as:

V = eK
(
Kij̄DiWDj̄W − 3|W |2

)
(B.2)
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In the following, we consider the Kähler metric to be diagonal for simplicity, but the

results are independent of this assumption. Then we have:

V ∼
∑

i

K īi|DiW |2 − 3|W |2, (B.3)

where

|W |2 =
∑

n

|Wn|2 + 2
∑

n6=m

|Wn||Wm| cos(γn − γm),

|DiW |2 =
∑

n

|DiWn|2 + 2
∑

n6=m

|DiWn||DiWm| × cos(γn − γm). (B.4)

The second line in Eq. (B.4) can be obtained by utilizing the fact that the su-

perpotential is generically a polynomial and/or exponential function of fields. For

fields φi occurring polynomially, one has ∂iWn ∼ Wn/φi = real × eiγn−iγφi as well

as ∂iK Wn = real × eiγn−iγφi . Similarly, for fields zi occurring exponentially in the

superpotential, one has ∂iWn = real×eiγn as well as ∂iK Wn = real×eiγn , giving rise

to the expressions in Eq. (B.4) above. This then implies that the first and second

terms in Eq. (B.3) contain the same functional dependence on γn.

Therefore, the minimization of the scalar potential with respect to ψi gives

∑

n6=m

Anm sin(γn − γm)∂ψi
[γn(ψi)− γm(ψi)] = 0 (B.5)

where Anm is a real matrix and the explicit form is not important here. Since γn

is a combination of several phases, ∂ψi
(γn − γm) is non-zero for some i in general.

Therefore, the solution to the system of equations in Eq. (B.5) is:

sin(γn − γm) = 0 (B.6)
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Generically, the number of degree of freedom ψk is more than the number of γn, and

the above equations can be solved by γn = γm for any n and m. As an example, for

the superpotential in (4.6), there is only one independent equation corresponding to

the combination ((b1− b2) ~N ·~t + aγφ) but N + 1 degree of freedom corresponding to

N axion ti and the phase of the meson γφ. This means all Wn share the same phase,

which proves that the phases are dynamically aligned in the vacuum. Of course, if

the number of dynamical phases is less than the number of independent equations,

then there could be relative phases between different terms in the superpotential.

However, that is not generic.

B.2 One-loop Diagrams

The fermion EDMs can be generated at one-loop in supersymmetric models with

CP-violating phases in the soft supersymmetry breaking sector. Within the frame-

work considered in this paper, the CP-violating phases only reside in the trilinear

terms and therefore appear in the mass mixing terms of the left- and right-handed

sfermions. Therefore, the main contribution to the quark EDM and CEDM comes

from diagrams involving gluinos because of the large gauge coupling. For the elec-

tron EDM, the dominant contribution comes from the diagram involving neutralinos.

This is because the diagrams with charginos in the loop require CP-violating phases

in the chargino sector which do not arise within the M-theory framework considered.

Let us first consider the diagrams contributing to quark EDM and CEDM with
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gluino running in the loop

dg̃(E)
q =

−2eαs

3π

2∑

k=1

Im(Γ1k
q )

mg̃

m2
q̃k

Qq̃B

(
m2

g̃

m2
q̃k

)
(B.7)

dg̃(C)
q =

gsαs

4π

2∑

k=1

Im(Γ1k
q )

mg̃

m2
q̃k

C

(
m2

g̃

m2
q̃k

)
(B.8)

where Γ1k
q = Dq2kD

∗
q1k and Dq is the 2×2 matrix which diagonalizes the squark mass

matrix m2
q̃

D†
qm

2
qDq = Diag(m2

q̃1,m
2
q̃2). (B.9)

More explicitly

q̃L = Dq11q̃1 + Dq12q̃2

q̃R = Dq21q̃1 + Dq22q̃2. (B.10)

Here B(r) and C(r) are loop functions defined as:

B(r) =
1

2(r − 1)2

(
1 + r +

2r ln(r)

1− r

)

C(r) =
1

6(r − 1)2

(
10r − 26 +

2r ln(r)

1− r
− 18 ln(r)

1− r

)

In the above equations, we assume no flavor mixing in the squark mass matrices as

argued in the main body of the paper. Using the fact that Im(Γ11
q ) = −Im(Γ12

q ), we

have:

dg̃(E)
q ≈ −2eαsQq̃

3π

Im(m2
q̃)LR

m3
g̃

r2 (B(r) + r B′(r)) (B.11)

Similarly

dg̃(C)
q ≈ gsαs

4π

Im(m2
q̃)LR

m3
g̃

r2 (C(r) + r C ′(r)) (B.12)
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In the calculation above, we assume the mass splitting of squarks is small compared

to the squark mass. This is usually true since we are only interested in the up and

down squarks. When r = m2
g̃/M

2
q̃ ¿ 1, one finds that C(r) À A(r), B(r). It is

easy to see that d
g̃(C)
q À d

g̃(E)
q . For other diagrams which involve neutralino and

charginos, the structure is very similar. However, they are much smaller than dg̃
q and

can be neglected.

Now let us turn to the one-loop diagrams contributing to the electron EDM

dχ̃+

e =
eαem

4π sin2 θW

2∑

k=1

Im(Γei)
mχ̃+

m2
ν̃

A

(
m2

χ̃+

m2
ν̃

)
(B.13)

dχ̃0

e =
eαem

4π sin2 θW

2,4∑

k,i=1,1

Im(ηeik)
mχ̃0

m2
ẽk

B

(
m2

χ̃0

m2
ẽk

)
(B.14)

where Γei = U∗
i2V

∗
i1, and

ηeik =
[
−
√

2 {tan θW (Qf − T3e)X1i + T3eX2i}D∗
e1k

+κeXbiD
∗
e2k

] (√
2 tan θW QeX1iDe2k − κeXbiDe1k

)

Here we have

κe =
me√

2mW cos β
(B.15)

The loop function A(r) is given by

A(r) =
1

2(1− r)2

(
3− r +

2 ln(r)

1− r

)
(B.16)

In the above equations, U(V ), X and De are the conventional chargino, neutralino

and selectron mixing matrices. It is easy to see that the chargino diagram do not

contribute to the electron EDM in the framework considered, since there is no CP-

violating phases in the chargino sector. In the absence of the neutralino mixing, the
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expression of dχ̃0
e can be significantly simplified

dE
e ≈

eαem

4π cos2 θw

Im(m2
ẽ)LR

m3
B̃

r2
1 [B(r1) + r1B

′(r1)] (B.17)

where r1 = m2
B̃
/m2

ẽ with mẽ denoting the average mass of the selectrons. In the above

result, the higgsino contribution is neglected since it is suppressed by the small Y 2
e .

B.3 Barr-Zee Type Diagrams

As we have discussed in subsection 4.2.4, we are concerned with the Barr-Zee

diagram with the third generation squarks, i.e. t̃ and b̃, running in the inner loop.

Here we give the detailed derivation of Eq. (4.33) and (4.34). We start with the

general results of EDM and CEDM for the Barr-Zee diagram [93]

dE
f = Qf

3eαem

32π3

Rfmf

M2
A

∑

q=t,b

ξqQ
2
q [F (r1)− F (r2)]

dC
f =

gsαs

64π3

Rfmf

M2
A

∑

q=t,b

ξq [F (r1)− F (r2)] (B.18)

where MA is the mass of pseudoscalar higgs A0, r1,2 = m2
q̃1,2

/M2
A, Rf = cot β(tan β)

for I3 = 1/2(−1/2) and F (z) is the two-loop function

F (z) =

∫ 1

0

dx
x(1− x)

z − x(1− x)
ln

[
x(1− x)

z

]
. (B.19)

The CP-violating couplings are given by

ξt = −sin 2θt̃mtIm(µeiδt)

2v2 sin2 β

ξb = −sin 2θb̃mbIm(Abe
−iδb)

2v2 sin β cos β
(B.20)
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where θt̃,b̃ are the stop and sbottom mixing angles, and δq = Arg(Aq + Rqµ
∗). The

mixing angle of the squark sector is given by

tan(2θq) = − 2mq|µRq + A∗
q|

M2
Q̃
−M2

q̃ + cos 2βM2
Z(T q

z − 2eqs2
w)

≈ −2mq|µRq + A∗
q|

M2
Q̃
−M2

q̃

(B.21)

Therefore, Eq. (B.20) becomes

ξt ≈ y2
t |A∗

t + µ cot β|Im(µeiδt)

M2
Q̃
−M2

t̃

ξb ≈ cot β
y2

b |A∗
b + µ tan β|Im(Abe

−iδb)

M2
Q̃
−M2

b̃

(B.22)

Using Eq. (B.20) and (B.21), we can rewrite Eq. (B.18) as

dE
f ≈ Qf

3eαem

32π3

Rfmf

M4
A

Im

[
4

9
y2

t µ(At + µ∗ cot β)F ′ (r1)

+
1

9
y2

bAb(A
∗
b + µ tan β) cot βF ′ (r2)

]

dC
f ≈ gsαs

64π3

Rfmf

M4
A

Im

[
y2

t µ(At + µ∗ cot β)F ′ (r1)

+y2
bAb(A

∗
b + µ tan β) cot βF ′ (r2)

]
(B.23)

where r1 ≡ m2
t̃
/M2

A and r2 ≡ m2
b̃
/M2

A with mt̃,b̃ being the average masses of the stops

and sbottoms respectively.
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APPENDIX C

Cosmological Evolution of the Moduli

C.1 Cosmology of the G2-MSSM Moduli – A Detailed Treat-

ment

In this appendix, we include detailed calculations leading to the abundances,

entropy production, and reheat temperatures quoted in the paper for sets of bench-

mark values of the microscopic parameters. The computation of couplings and decay

widths of the moduli and meson fields in terms of the microscopic parameters which

motivate the benchmark values will be given in appendix C.2. We have retained

the parametric sensitivity to the gravitino mass, number of moduli (topology), and

the overall couplings of the moduli (meson) in order to address the robustness and

plausibility of the framework.

C.1.1 Heavy modulus oscillations

At the time the heavy moduli (XN) starts coherent oscillations the universe is

radiation dominated and the Hubble equation is given by

3H2 = 3

(
1

2
mXN

)2

= M−2
P

(
π2

30

)
g∗T 4. (C.1)



162

The temperature at which the modulus starts oscillating is then given by

TXN
osc =

(
90

4π2

)1/4

g−1/4
∗ (TXN

osc ),

= 2.70× 1012

(
228.75

g∗(T
XN
osc )

)1/4 (
mXN

600 m3/2

)1/2

GeV. (C.2)

From this we find the entropy density

s(TXN
osc ) =

2π2

45
goscT

3
osc, (C.3)

= 1.98× 1039
( gosc

228.75

)1/4
(

mXN

600 m3/2

)3/2

GeV3, (C.4)

and the comoving abundance is then

Y
(0)
XN

= =
1

2
mXN

f 2
XN

s−1(TXN
osc ),

= 4.51× 104

(
228.75

g∗(Tosc)

)1/4 (
fXN

MP

)2 (
600 m3/2

mXN

)1/2

, (C.5)

The oscillating modulus will quickly come to dominate the radiation density and

the temperature at this time is given by

TXN
eq = 1.80× 1012

(
228.75

g∗(T
XN
osc )

)1/4 (
mXN

600 m3/2

)1/2 (
fXN

MP

)2

GeV, (C.6)

so that we see once the modulus starts coherent oscillations it quickly overtakes the

energy density (i.e., TXN
eq ≈ TXN

osc ).

C.1.2 Meson and Light Moduli Oscillations

Because the meson and light moduli are approximately degenerate in mass (i.e.

mφ = mXi
) they will begin to oscillate at the same time,

3H2 = 3

(
2

3
mφ

)2

= M−2
P

(
π2

30
g∗(T φ

osc)
(
T φ

osc

)4
+ mXN

YXN
s(T φ

osc)

)
. (C.7)
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Noting that the radiation term has already become negligible compared to the heavy

modulus density we find the temperature at this time is given by

T φ
osc =

(
30

π2

)1/3
[

m2
φM

2
P

g∗s(T
φ
osc)mXN

YXN

]1/3

= 8.24× 1010

(
228.75

g∗(T
XN
osc )

) 1
4
(

mφ

2m3/2

) 2
3
(

600m3/2

mXN

) 1
6
(

MP

fXN

) 2
3

GeV (C.8)

which is in excellent agreement with the exact answer obtained numerically (including

radiation) T φ
osc = 9.97× 1010 GeV. The entropy density at this time is

s(T φ
osc) = 5.62× 1034

(
g∗(TXN

osc )

228.75

) 1
4

(
mφ

2m 3
2

)2 (
600m3/2

mXN

) 1
2
(

MP

fXN

)2

GeV3. (C.9)

The meson φ initial abundance is then

Y
(0)
φ = 5.30×106

(
228.75

g∗(Tosc)

)1/4 (
fφ

MP

)2 (
fXN

MP

)2 (
mXN

600m3/2

)1/2 (
2m3/2

mφ

)
. (C.10)

The light moduli will begin coherent oscillations at roughly the same time as the

meson. Their abundance is then given by

Y
(0)
Xi

= (N − 1) Y
(0)
φ

= 5.25× 108

(
N − 1

99

)(
228.75

g∗(Tosc)

)1/4 (
fXi

MP

)2 (
fXN

MP

)2

×
(

mXN

600m3/2

)1/2 (
2m3/2

mXi

)
, (C.11)

where we have implicitly assumed that because the masses of the meson and light

moduli are approximately degenerate they will have equal oscillation amplitudes1.

1We note that initially this may not be the case, but at the onset of coherent

oscillations (much less than a Hubble time) the system will settle into this symmetric

configuration.
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C.1.3 Heavy Modulus Decay

Once the Hubble parameter decreases to the point when H ≈ ΓXN
, the heavy

modulus decays and from (5.18) the corresponding reheat temperature is,

TXN
r = 41.40

(
10.75

g∗(T
XN
r )

)1/4 (
DXN

1.6

)1/2 (
mXN

600 m3/2

)3/2

×
(

MP

fφ

)1/2 (
100

N

)1/4

GeV. (C.12)

To understand the N and φ dependence in this expression, we note that from (5.18)

the reheat temperature includes the factor,

(
mXN

YXN
+ mφYφ + mXi

YXi

mXN
YXN

)1/4

(C.13)

Using that the meson and light moduli have degenerate mass and therefore equal

oscillation amplitudes (i.e. mXi
YXi

= (N − 1)mφYφ) we find

(
1 + N

mφYφ

mXN
YXN

)−1/4

≈
(

N
mφYφ

mXN
YXN

)−1/4

(C.14)

which leads to the parametric dependence in the reheat temperature.

Using (5.21) the entropy increase resulting from the heavy modulus decay is

∆XN
= 4.35× 1010

(
g∗(TXN

r )

10.75

)1/4 (
228.75

g∗(T
XN
osc )

)1/4 (
fXN

MP

)2

×
(

1.6

DXN

)1/2 (
600 m3/2

mXN

)(
fφ

MP

)1/2 (
N

100

)1/4

, (C.15)

where we have again used (C.14). Therefore, after the decay the other moduli abun-
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dances are given by

Y
(XN )
φ = ∆−1

XN
Y

(0)
φ ,

= 1.22× 10−4

(
10.75

g∗(T
XN
r )

)1/4 (
DXN

1.6

)1/2 (
fφ

MP

)3/2

×
(

mXN

600 m3/2

)3/2 (
2 m3/2

mφ

)(
100

N

)1/4

(C.16)

Y
(XN )
Xi

= ∆−1
XN

Y
(0)
Xi

,

= 1.21× 10−2

(
10.75

g∗(T
XN
r )

)1/4 (
DXN

1.6

)1/2 (
fXi

MP

)3/2

×
(

mXN

600 m3/2

)3/2 (
2 m3/2

mXi

)(
N

100

)3/4

, (C.17)

where we have again used N − 1 ≈ N . There is also a decay to gravitinos with

branching ratio B
(XN )
3/2 = 0.2% = 0.002. The corresponding comoving abundance is

thus,

Y
(XN )
3/2 = 2×B3/2 ×

Y
(0)
XN

∆XN

,

= 1.45× 10−9

(
B3/2

0.07%

)(
10.75

g∗(T
XN
r )

)1/4 (
DXN

1.6

)1/2

×
(

mXN

600m3/2

)1/2 (
MP

fφ

)1/4 (
100

N

)1/4

, (C.18)

C.1.4 Meson Decay

When the meson decays, its contribution to the total energy density will be less

than that of the other N − 1 light moduli. The universe will be matter dominated

before and after the decay, but because the two energy sources are comparable there

is a somewhat significant entropy production. The meson decay reheats the universe
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to a temperature

T φ
r = 134×

(
100

N

)1/4 (
10.75

g∗(Tr)

)1/4 (
Dφ

711.6

)1/2 (
mφ

2 m3/2

)3/2

MeV. (C.19)

The entropy increase is given by

∆φ = 121×
(

DXN

1.6

)1/2 (
711.6

Dφ

)1/2 (
mXN

600 m3/2

)3/2 (
2 m3/2

mφ

)3/4 (
fφ

MP

)3/2

. (C.20)

The decay of the meson will further dilute the other moduli, we find

Y
(φ)
Xi

= ∆−1
XN

∆−1
φ Y

(0)
Xi

,

= 9.94× 10−5

(
N

100

)3/4 (
10.75

g∗(Tr)

)1/4 (
Dφ

711.6

)1/2 (
2 m3/2

mXi

)1/4

.(C.21)

The decay of both the meson and the light moduli to gravitinos is kinematically

suppressed, so that the only source of gravitinos comes from the decay of the heavy

modulus. This abundance after the decay of the meson is then

Y (φ)
m3/2

= ∆−1
φ Y (XN )

m3/2
,

= 1.19× 10−11

(
B

(XN )
3/2

0.07%

)(
100

N

)1/4 (
10.75

g∗(Tr)

)1/4

×
(

Dφ

711.6

)1/2 (
mφ

2 m3/2

)3/4 (
600 m3/2

mXN

)(
MP

fφ

)7/4

. (C.22)

C.1.5 Light Moduli Decays

The decay of the light moduli results in a reheating temperature

TXi
r = 31.7×

(
10.75

g∗(Tr)

)1/4 (
mXi

2 m3/2

)3/2 (
DXi

4

)1/2

MeV, (C.23)

which agrees with the bounds set by BBN (i.e. TXi
r > 1 MeV). The resulting entropy

production is

∆Xi
= 417.7×

(
Dφ

711.6

)1/2 (
4

DXi

)1/2 (
2 m3/2

mXi

)3/4 (
N

100

)3/4

. (C.24)



167

The new gravitino abundance is given by

Y (Xi)
m3/2

= ∆−1
Xi

Y (φ)
m3/2

,

= 2.86× 10−14

(
B

(XN )
3/2

0.07%

)(
100

N

)(
10.75

g∗(Tr)

)1/4 (
mφ

2 m3/2

)3/2

×
(

600 m3/2

mXN

)(
DXi

4

)1/2 (
MP

fφ

)7/4

(C.25)

which is small enough to avoid the gravitino problem. The light moduli will decay

into LSPs yielding an abundance

Y
(Xi)
LSP = ∆−1

Xi
BXi

LSP Y
(φ)
Xi

,

= 1.19× 10−7

(
BXi

LSP

25%

)(
10.75

g∗(Tr)

)1/4 (
mXi

2 m3/2

)1/2 (
DXi

4

)1/2

, (C.26)

where BXi
LSP is the branching ratio for the decay of the light moduli to LSPs. This

corresponds to a number density at the time of decay of nLSP = 1.79× 10−11 GeV3.

As we noted in the text, this abundance is produced below the freeze-out temper-

ature of the LSPs (non-thermal production) and is greater than the critical density

(5.42) for annihilations to take place, which is nc
Xi

= 4.12 × 10−15 GeV3. Thus, the

LSPs will quickly annihilate (in less than a Hubble time) and the final abundance

will be given by the critical value.

Thus, the relic density coming from the decay of the light moduli is given by

ΩLSP =
mLSP Y c

LSP s0

ρc

,

= 0.26 h−2
( mLSP

100 GeV

)3
(

10.75

g∗(Tr)

)1/4 (
3.26× 10−3GeV−2

σ0

)

×
(

4

DXi

)1/2 (
2 m3/2

mXi

)3/2 (
100 TeV

m3/2

)3/2

, (C.27)
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where s0 and ρc are the entropy density and critical density today respectively, and

we have used the experimental value ρc/s0 = 3.6×10−9h2 GeV where h parametrizes

the Hubble parameter today with median value h = 0.71.

C.2 Couplings and Decay Widths of the Moduli and Meson

Fields

In this section, we discuss the moduli couplings to MSSM particles and then cal-

culate their decay widths in terms of the microscopic parameters of the G2-MSSM

framework. This will motivate the benchmark values used for numerical results

throughout the paper. We will find that the moduli decay into scalars is very im-

portant.

C.2.1 Moduli Couplings

Let us first consider the couplings associated with N eigenstates Xj of the geomet-

ric moduli si. For simplicity, we neglect the small mixing with the meson modulus

φ (we will return to that later). First consider the moduli coupling to gauge bosons

through the gauge kinetic function f sm. The relevant term is:

L ⊃ −1

4
Im(fsm)F a

µνF
aµν (C.28)

= −1

4
〈Im(fsm)〉F a

µνF
aµν − 1

4

∑
i

N sm
i δsiF

a
µνF

aµν (C.29)
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where we have expanded the moduli as si = 〈si〉+ δsi. After normalizing the gauge

fields and the moduli fields, the interaction term can be written as:

LXjgg =
1

4 fsm

N∑
i=1

N sm
i

√
2〈si〉
3ai

Uij XjF
a
µνF

aµν (C.30)

=

√
7

6
√

2
B Cj XjF

a
µνF

aµν , (C.31)

where B and Cj are defined as:

B ≡
(

N∑
i=1

N sm
i

Ni

ai

)−1

(C.32)

Cj ≡
N∑

i=1

N sm
i

Ni

( ~XN)i( ~Xj)i. (C.33)

For the heavy modulus, since (XN)2
i = 3

7
ai, we have CN = 3

7
B−1 while for the light

moduli Xi, i = 1, · · · , (N − 1), it is easy to show:

N−1∑
i=1

C2
i = l2 sin2 θ, (C.34)

where l is the length of the vector ~X
′

N defined as ( ~X
′

N)i ≡ ( ~XN)i N
sm
i /Ni and θ is

the angle between ~X
′

N and ~XN . So, generically Ci are less than one. There are two

extreme cases: one when N sm
i = kNi in which the moduli couplings to gauge bosons

vanish since the vector ~XN is orthogonal to ~Xj, and the other when ~X
′

N equal to one

of the Xi’s in which all Ci’s are zero except one.

For the couplings to gauginos, the dominant contribution comes from the follow-

ing terms in the lagrangian:

L ⊃ − i

4
∂ifsmF iλaλa + h.c. (C.35)
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where ∂ifsm = N sm
i and −i arises because of the convention of the moduli chiral

fields zi = ti + isi we used. Expanding the F -terms of the moduli fields around their

vevs, we have:

F i = 〈F i〉+ 〈∂sk
F i〉δsk (C.36)

The derivative of the F -term can be calculated as follows:

∂sk
F i = ∂sk

(
eK/2Kij̄(Kj̄W

∗ + W ∗̄
j )

)

= −ie−iγm3/2

(
4

3

ai

Ni

Nkν
2 z̃

x̃
+

4

3

Nk

Ni

(3ai − 2δik)ν
ỹ

x̃
+

Nk

Ni

(3ai − 2δik)

)

= −ie−iγm3/2

(
−4

3
siNkb1b2ν − 3

Nk

Ni

ai + 2δik + · · ·
)

(C.37)

where in the last line, the subleading terms are not explicitly shown. γ is the phase

in the superpotential which will be set to zero for simplicity without affecting any

result here. We have used the following equations:

∂si
K = −3ai

si

, K ij̄ =
4s2

i

3ai

δij̄, ∂sk
Kij̄ =

2

sk

Kij̄δik (C.38)

After normalizing the moduli fields and the gauge fields, the couplings are given by:

LXiλλ ≈ 1

4

√
2

3
m3/2

[(
4

3
ν2b1b2

) N∑

k=1

a
1/2
k Uki − 1

fsm

2ν
N∑

k=1

N sm
k

Nk

a
1/2
k Uki

]
Xiλ

aλa + h.c.

=

√
14

12
m3/2

[
4

3
ν2b1b2( ~XN · ~Xi)− 2B ( ~X ′

N · ~Xi)

]
Xiλ

aλa + h.c. (C.39)

For the light moduli fields, the first term vanishes and the couplings turn out to be:

LXlλλ ≈ −
√

14

6
B Cim3/2 Xiλ

aλa + h.c. (C.40)

For the heavy modulus field, the first dot product is unity and the coupling is:

LXlλλ ≈
√

14

12
m3/2

(
4

3
ν2b1b2

)
Xiλ

aλa + h.c. (C.41)
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The moduli couplings to other MSSM particles can be derived generically by

expanding all the moduli around their vevs in the supergravity lagrangian:

L ⊃ K̃ᾱβDµf̃
∗ᾱDµf̃β + iK̃ᾱβf †ᾱσ̄µDµf

β − V (f̃ ∗, f̃) + · · · (C.42)

where fα and f̃α are fermions and their superpartners. The other derivative terms in-

volving moduli and matter fields are not explicitly shown for simplicity. The relevent

coupling here are the moduli-sfermion-sfermion coupling and the moduli-fermion-

fermion coupling. They are found to be

L ⊃ ∂si
K̃ᾱβ

[
δsi ∂µf̃

∗ᾱ∂µf̃β + iδsi f †ᾱσ̄µ∂µf
β
]
− ∂si

m′2
ᾱβ δsif̃

∗ᾱf̃β + · · ·(C.43)

= g′αXif̃ f̃

[
∂µ(Xi f̃ ∗ᾱc )∂µf̃α

c + c.c. + iXi f̄ ᾱ
c σ̄µ∂µf

α
c

]
− gα

Xif̃ f̃
Xif̃

∗ᾱ
c f̃α

c + · · ·(C.44)

where f̃α
c and fα

c are the canonical normalized fields. For simplicity, we consider the

Kahler metric to be diagonal K̃ᾱβ = K̃αδᾱβ, then

gα
Xj f̃ f̃

≈ m2
3/2∂si

log(K̃α)

√
2s2

i

3ai

Uij

=

√
14

3
m2

3/2 ( ~X ′′
N)α · ~Xj (C.45)

g′αXj f̃ f̃ =

√
14

6
( ~X ′′

N)α · ~Xj (C.46)

where ( ~X ′′
N)α

i ≡ ξi,α(XN)i/ai and ξi,α ≡ si∂si
log(Kα). In this calculation, we have

used the fact that ∂φ0K̃α = 0 and have neglected terms involving F -terms of geo-

metric moduli F i which are suppressed relative to m3/2.

For the couplings to the higgs doublets, there are differences from other scalars.

The kinetic terms and the mass terms for the higgs fields in the MSSM can be written
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as:

L ⊃ K̃Hu

[
∂µH

∗
u∂µHu + i ¯̃Huσ̄

µ∂µH̃u

]
+ · · ·

− (K̃−1
Hd
|µ′|2 + m′2

Hu
)H∗

uHu + (Hu ↔ Hd)

− (Bµ′HdHu + c.c.) (C.47)

where

µ′ = m3/2Z − F̄ m̄∂m̄Z (C.48)

is only generated by the higgs bilinear term in the Kahler potential [30]. To derive

the modular couplings to higgs doublets, one needs ∂si
µ′, which is:

∂si
µ′ = (∂si

m3/2)Z + m3/2∂si
Z − (∂si

F̄ m̄)∂m̄Z − F̄ m̄∂si
∂m̄Z (C.49)

One can see that the second and the third terms are of order m3/2 while the rest are

suppressed. Therefore, the dominant contribution is:

∂si
µ′ ≈ 1

2
m3/2(∂smZ)

(
−4

3
smNib1b2ν + 4δim

)
(C.50)

For simplicity, taking all the phases of the superpotential and that of Z to be van-

ishing, we find:

−L ⊃ gXjHuHuXjH
∗
uHu (C.51)

gXjHuHu ≈ m2
3/2

[
Z2

eff∂sm log Z

(
−4

3
smNib1b2ν + 4δim

)
− Z2

eff∂si
log K̃Hd

+ ∂si
log K̃Hu

]√
2s2

i

3ai

Uij

=

√
14

3
m2

3/2Z
2
eff

(
− 4

3
ν2b1b2

(
N∑

m=1

ζm

)
~XN · ~Xj + 4 ~X ′′′

N · ~Xj

− ( ~X ′′
N)Hd · ~Xj

)
+

√
14

3
m2

3/2( ~X ′′
N)Hu · ~Xj (C.52)
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where ( ~X ′′′
N )i ≡ ζi

ai
(XN)i and ζi ≡ si∂si

log(Z). We also use the fact that ∂φ0Z = 0

and the F -terms Fi/MP ¿ m3/2 for geometric moduli. To get the corresponding

couplings for Hd, we can simply replace Hu by Hd in the above equations. The

coupling of moduli to higgs through the kinetic term is similar to the non-higgs

scalar

g′αXiHuHu
=

√
14

6
( ~X ′′

N)Hu · ~Xi (C.53)

Let us now consider the Bµ term, which is given by:

Bµ′ = (2m2
3/2 + V0)Z −m3/2F̄

m̄∂m̄Z + m3/2F
m[∂mZ − ∂m log(K̃HuK̃Hd

) Z]

− F̄ m̄F n[∂m̄∂nZ − ∂n log(K̃HuK̃Hd
)∂m̄Z]. (C.54)

The corresponding derivative is given by:

∂si
Bµ′ ≈ 1

2
m2

3/2 Z ∂si
log(K̃HuK̃Hd

)

(
−4

3
siNkb1b2ν + 2δik

)
+ 2m2

3/2∂si
Z, (C.55)

which gives rise to the coupling:

−L ⊃ gXjHdHuXjHdHu + c.c. (C.56)

gXjHdHu ≈
√

14

6
m2

3/2 Zeff

(
− 4

3
ν2b1b2

(
N∑

m=1

ξHu
m

)
~XN · ~Xj

+ 2( ~X ′′
N)Hu · ~Xj + (Hu → Hd) + 4 ~X ′′′

N · ~Xj

)
(C.57)

Besides the term mentioned above there is another coupling from the bilinear term

in the kähler potential K ∼ Z(si)HdHu + h.c. [131]. This term leads to a coupling:

L ⊃ g′XjHdHu
∂µXj∂

µ(HdHu) + c.c. (C.58)

g′XjHdHu
=

√
14

6
Zeff

~X ′′′
N · ~Xj (C.59)
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This coupling could be very important since it is proportional to the moduli mass

squared if equations of motion of Xi are used. Again for the coupling to be unsup-

pressed, the bilinear coefficient Z should have a sizable dependence on the geometric

moduli si, which is natural. This coupling is essential for electroweak symmetry

breaking in the G2-MSSM.

C.2.2 Meson Couplings

In the G2-MSSM framework, the hidden sector is not sequestered from the visible

sector and there are couplings between the hidden sector meson field φ and various

MSSM particles, which we want to compute. First since the tree level gauge kinetic

function does not depend on φ, there is no coupling to gauge bosons. However there

are couplings to the gauginos which depend on ∂φ0 , which are computed to be

∂φ0F
i = −ie−iγ 4si

3φ0

Fm3/2, (C.60)

F =
2QPeff

21P
+ 2 +

3

P
+O(P−1

eff ). (C.61)

After normalization of fields, the coupling of meson to the gauginos is given by:

Lδφ0λλ = e−iγ 1

3
√

2φ0

Fm3/2δφ0λλ (C.62)

We now move on to the couplings of the meson field to scalars. We will assume that

the Kähler metric and the higgs bilinear Z do not depend on φ0. We then have for
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the non-higgs scalars:

Lδφ0f̃ f̃ =
1√
2K̃α

∂m
′2
α

∂φ0

δφ0f̃
∗f̃

=
√

2m3/2 (∂φ0 m3/2)δφ0f̃
∗f̃

≈
√

2m2
3/2φ0(1 +

2

3φ2
0

)δφ0f̃
∗f̃ (C.63)

In the above, we have neglected terms proportional to Fi/MP which are ¿ m3/2.

There are various kinds of couplings of the meson to the Higgs fields Hu and Hd.

The coupling originating from the term
∫

d4θ (ZHuHd +c.c) does not give rise to any

contribution since Z is assumed to be independent of φ0. The couplings Lδφ0H∗
uHu

and Lδφ0H∗
dHd

are computed as follows:

Lδφ0HuHu = gδφ0HuHuδφ0H̃
∗
uH̃u

gδφ0HuHu =
1√

2K̃Hu

∂(K̃−1
Hd
|µ′|2 + m

′2
Hu

)

∂φ0

≈
√

2(Z2
eff + 1) m2

3/2φ0

[
(1 +

2

3φ2
0

) + (
Z2

eff

Z2
eff + 1

)
2F
3φ2

0

N∑
i=1

ζi

]
(C.64)

Lδφ0Ĥ∗
d Ĥd

can be obtained from the above by replacing Hu with Hd. Again, we have

neglected terms proportional to Fi/MP . Finally, we look at the coupling Lδφ0HdHu .

It is given by:

Lδφ0HdHu = gδφ0HdHuδφ0H̃dH̃u

gδφ0HdHu =
1√

2(K̃HuK̃Hd
)1/2

∂(Bµ′)
∂φ0

≈
√

2m2
3/2 φ0Zeff

[
2(1 +

2

3φ2
0

) +
F
3φ2

0

N∑
i=1

(ξHu
i + ξHd

i )

]
(C.65)

The coupling Lδφ0H∗
uH∗

d
can be computed by taking the complex conjugate of the

above expression.
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C.2.3 RG Evolution of the Couplings

In the last subsection, we computed all the relevant couplings of the moduli and

meson at a high scale, presumably around the unification scale. However, since the

scale at which moduli decay is much smaller than the unification scale, one should

in principle use the effective couplings at that scale to compute the decay widths.

The RG running of the moduli-scalar-scalar couplings are especailly important for

the third generation squarks and the higgs doublets and are the main focus of this

subsection. The leading contribution to the β functions are terms proportional to

|yt|2 and g2
3
2, which are given below:

β(gXjHdHu) ≈ 1

16π2
3|yt|2gXjHdHu ,

β(g′XjHdHu
) ≈ 1

16π2
3|yt|2g′XjHdHu

,

β(gXjHuHu) ≈ 1

16π2
6|yt|2

(
gXjHuHu + Xt

)
,

β(g′XjHuHu
) ≈ 1

16π2
6|yt|2g′XjHuHu

,

β(gXjQ̃3Q̃3
) ≈ 1

16π2

[
gXjQ̃3Q̃3

(
2|yt|2 − 16

3
g2
3

)
+ 2|yt|2Xt

]
,

β(g′
XjQ̃3Q̃3

) ≈ 1

16π2
g′

XjQ̃3Q̃3

(
2|yt|2 − 16

3
g2
3

)
,

β(gXj ũ3ũ3) ≈ 1

16π2

[
gXju3u3

(
8|yt|2 − 16

3
g2
3

)
+ 4|yt|2Xt

]
,

β(g′Xj ũ3ũ3
) ≈ 1

16π2
g′Xju3u3

(
8|yt|2 − 16

3
g2
3

)
, (C.66)

where Xt ≡ gXjHuHu + gXjQ̃3Q̃3
+ gXj ũ3ũ3 . For other beta functions not listed above,

the RGE effects can be neglected.

2Here we have not included the digrams proportional to gXjgg and gXj g̃g̃, since

their contributions are relatively smaller
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To examine the RG effects on the moduli-scalar-scalar couplings, we take all the

weighted dot products involved in the moduli-scalar-scalar couplings to be equal for

simplicity3,

~X ′′′
N · ~Xi = ( ~X ′′

N)α · ~Xi = Π. (C.67)

This is reasonable as their structure is very similar. So the high scale couplings can

be written as:

gXjHuHu = gXjHdHd
=

√
14

3
m2

3/2(3Z
2
eff + 1)Π (C.68)

g′XjHuHu
= g′XjHdHd

=

√
14

6
Π (C.69)

gXjHdHu =
4
√

14

3
m2

3/2ZeffΠ (C.70)

g′XjHdHu
=

√
14

6
ZeffΠ (C.71)

Using the beta functions given in Eq.(C.66), we can see that at low scale gXjHuHu

is squashed because of the large yukawa couplings. Similarly gXjQ̃3Q̃3
and gXj ũ3ũ3

decrease significantly and become negative at low scales.

One important thing to compute for moduli decay to light higgs is the effective

coupling geff
Xjhh, which can be written in terms of the couplings to higgs doublets

geff
Xihh = (gXiHuHu − 2m2

hg
′
XiHuHu

) cos2 α + (gXiHdHd
− 2m2

hg
′
XiHdHd

) sin2 α

− (gXiHdHu −m2
Xi

g′XiHdHu
) sin 2α (C.72)

where all the couplings involved should be evaluated at low scales and α is the

higgs mixing angle. For the G2-MSSM, the higgs sector is almost in the “decoupling

3The more general case will be studied later.
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region”, which implies α ≈ β − π
2
. Now with universal boundary condition for

the weighted dot products for concreteness and simplicity, the effective coupling of

moduli to hh final state is given by:

geff
Xihh ≈

√
14

3
m2

3/2

[
(3Z2

eff + 1)(sin2 α + K1 cos2 α)− 2K2Zeff sin(2α)
]
Π(C.73)

where K1 and K2 are the RG factors. To estimate these factors, we take yt = 1,

α−1
unif = 26.7 and Zeff = 1.58, which is the same as the first Benchmark G2-MSSM.

Then, typically we find K1 ∼ 0.2 and K2 ∼ 0.5. For readers not familiar with

the details of the G2-MSSM, it is helpful to know that generically tan β ∼ 1 and

Zeff ∼ 1.5. For the effective coupling to third generation squarks, including the RG

effects, we have:

geff
Xj ũ3ũ3

≈ geff

XjQ̃3Q̃3
∼
√

14

3
m2

3/2Π (C.74)

where geff

Xj f̃ f̃
≡ gXj f̃ f̃ − m2

f̃
g′

Xj f̃ f̃
. From the above RGE results, we find that the

couplings to the non-higgs scalars and higgs should be roughly of the same order

because of the large radiative correction even when some of them are suppressed

relative to the other at the high scale boundary. Therefore, if the couplings to

scalars are large, then we should expect a significant branching ratio of the moduli

to LSPs.

For the coupling of the meson field to scalars, the β functions are exactly the same.

Similar to the analysis of light moduli, we introduce factors K1 and K2 to account

for the RG effects on gφHuHu and gφHdHu . Typically one has K1 ∼ 0.25 and K2 ∼ 0.5.

From Eq.(C.64) and (C.63), we find the coupling gφHuHu is at least Z2
effF ∼ 30 times
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larger than gφf̃ f̃ at the high scale. Because of this large coupling gφHuHu , even if the

couplings gφQ̃3Q̃3
and gφũ3ũ3 are zero at the high scale, they can still be generated at

the low scale, which is proportional to gφHuHu by a factor K3 ∼ 0.1.

C.2.4 Decay Rates of the Moduli

Now that we have computed all the the relevant couplings for moduli decay, we

can proceed to compute the corresponding decay widths. In the following, we give

the result of decay widths for all the moduli, calculated from the two-body width

formulae. There could be contribution from three-body decays, which is generally

small because of the phase space. Although certain three-body decays, e.g. moduli

to top quarks and higgs [116,131] is relatively large, it is still comparatively small in

the current framework compared to the two-body decay modes.

For light moduli Xi, i = 1, · · · , (N − 1), the total decay width is

Γ(Xi) ≡
DXi

m3
Xi

M2
P

=
7

72π

(
NGAXi

1 + NGAXi
2 +AXi

3 +AXi
4

) m3
Xi

M2
P

, (C.75)

where AXi
1 , AXi

2 , AXi
3 and AXi

4 are the corresponding coefficients for the decays

to gauge bosons gg, gauginos g̃g̃, non-higgs scalars f̃ f̃ and light higgs bosons hh
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respectively. They are given by:

AXi
1 =

1

2

(
N∑

i=1

N sm
i

Ni

ai

)−2

( ~X ′
N ·Xi)

2, (C.76)

AXi
2 =

(
m2

3/2

2m2
Xi

)(
N∑

k=1

N sm
k

Nk

ak

)−2

( ~X ′
N ·Xi)

2, (C.77)

AXi
3 ≈

∑

α=t̃L,t̃R,b̃L

3

(
m4

3/2

m4
Xi

)(
1− 4

m2
f̃α

m2
Xi

)1/2

Π2, (C.78)

AXi
4 ≈

(
m4

3/2

2m4
Xi

)[
(3Z2

eff + 1)(sin2 α + K1 cos2 α)− 2K2Zeff sin(2α)

]2

Π2(C.79)

Here, weighted dot products in the scalar couplings are assumed to be equal and are

denoted as Π as in the last subsection. In addition, the RGE effects on the couplings

are included. In the above result, the gaugino and gauge bosons are treated as

massless. The two-body decay to the standard model fermions is suppressed by

(
mf

mXi
)2 ¿ 10−4, so it is neglected in our result; even the top quark contribution

is small. For the decay to non-higgs scalars, naively there is a large kinematic

suppression since these scalars have mass close to m3/2. However, the RGE running

significantly decreases the third generation squark mass at the scale much lower than

the unification scale. In G2 MSSM framework, the lightest stop is t̃R which is about 4

times lighter than the gravitino. It, therefore, has a large contribution to the partial

width. In addition, Q̃3 (b̃L and t̃L) are also light enough such that they contribute

to the decay width.

The above result for A’s depend on the specific choices of the fundamental param-

eters, such as ai, Ni and N sm
i , through several weighted dot products of vectors ~XN

and ~Xi. These quantities are different for different moduli. However from Eq.(C.34)
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they are constrained by:

N∑
i=1

( ~X ′
N · ~Xi)

2 = | ~X ′
N |2 sin2 θ. (C.80)

Similar constraints apply for other products. From the above equation, one expects

that on average

( ~X ′
N · ~Xi)

2 ∼ 1

N − 1
| ~X ′

N |2 sin2 θ (C.81)

which is suppressed by 1/(N − 1). It is obvious that this symmetric configuration is

favored in cosmology. If one wants the moduli to decay before BBN, then the most

dangerous modulus is the one with the smallest total decay width, which is bounded

by the average width. This gives rise to a strong constraint on the geometry of the G2

manifold, since the width is suppressed by the number of moduli N . In the following

discussion, we will focus on this symmetric configuration.

In order to evaluate the decay width and the branching ratio, one needs to know

the typical values of these weighted dot products of ~XN and ~Xi. To do the estimation,

we generate a set of fundamental parameters ai, Ni, N sm
i , ξi and ζi randomly with

the following conditions:

N∑
i=1

ai =
7

3
, 1 < N sm

i < 2, 2 < Ni < 6, −1 < ξi < 0, −1 < ζi < 0. (C.82)

The above ranges are chosen based on constraints arising from the G2 framework and

our current understanding of the Kähler metric of visible matter fields in realistic

constructions. We also impose the supergravity condition V7 > 1 and volume of

three-cycle V sm
Q ≈ 26. The ranges of Ni and N sm

i are chosen such that the efficiency
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of the parameter generation is maximized when the above constraints are imposed.

Due to our primitive understanding about the kähler metric, the modular weights

(corresponding to ξi and ζi) are taken randomly in the allowed range. We plot the

distribution for B−2( ~X ′
N · ~Xi)

2 and ( ~X ′′′
N · ~Xi)

2 in Fig.C.1, where we can see the

typical values are 2 × 10−4 and 20. This result can be understood from the very

rough estimate ( ~X ′
N · ~Xi) ∼ √

ai ∼ 1/
√

N and ( ~X ′′′
N · ~Xi) ∼ 1/

√
ai ∼

√
N . The

distribution of (( ~X ′′
N)α · ~Xi)

2 is expected to be about the same as ( ~X ′′′
N · ~Xi)

2, since

they all have the same structure. However, one should be aware that all the weighted

dot products are independent and so are not necessarily equal.
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Figure C.1: Left: distribution of the average of B−2( ~X ′
N · ~Xi)

2. Right: distribution

of the average of the weighted dot product ( ~X ′′′
N · ~Xi)

2.

Now let us estimate the decay width for the light moduli. Consider the first

benchmark model of G2-MSSM [30] for example, assuming the weighed dot products

take their average value, we find AXi
1 ≈ AXi

2 ∼ 10−4, AXi
3 ∼ 7.3 and AXi

4 ∼ 20.5. To

summarize, the main channels of interest for light moduli decays and their partial

widths are Γ(gg) = Γ(g̃g̃) ≈ 0.024 sec−1, Γ(t̃Rt̃R) ≈ 60 sec−1, Γ(t̃Lt̃L) = Γ(b̃Lb̃L) ≈

43 sec−1 and Γ(hh) ≈ 412 sec−1. The total width is the sum of these partial width.
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LSPs arise mainly from gauginos (including LSPs), t̃t̃ and b̃b̃, so the LSP branching

ratio is the sum of the gaugino and squark channels divided by the total width.

One can see that the decay to higgs and scalar dominate the decay of the light

moduli. The total decay width is about 558 sec−1 or the corresponding DXi
= 0.86.

The branching ratio of the light moduli to LSP is about 26%. These results should

still be roughly correct for other benchmarks, differing at most by O(1) since the

dependence on the mass spectrum is mild as seen from the explicit result of AXi
i .

The main uncertainty arises from the deviation of those weighted dot products from

their typical values. To explore the more general case, one can relax the condition

that all the weighted dot products are equal. Instead we choose:

~X ′′′
N · ~Xi = ( ~X ′′

N)Hu · ~Xi = ( ~X ′′
N)Hd · ~Xi = Π1 (C.83)

( ~X ′′
N)Q̃3 · ~Xi = ( ~X ′′

N)ũ3 · ~Xi = Π2 (C.84)

Then we vary Π1 and Π2 according to the distributions of the weighted dot products

in Fig.C.1. The distribution for DXi
and the branching ratio to LSPs is shown in

Fig.C.2. One can see that the branching ratio has a very small variation, but the

distribution of DXi
has a long tail. In the paper, we will use 0.4 < DXi

< 4 for

concreteness, although other values may be possible.

For the heavy modulus XN , the total decay width is

Γ(XN) =
7

72π

(
NGAXN

1 + NGAXN
2 +AXN

4

) m3
XN

M2
P

, (C.85)

where AXN
i corresponds to the decay to gauge bosons gg, gauginos g̃g̃ and higgs
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Figure C.2: Left: distribution of DXi
. Right: distribution of moduli branching ratio

to LSP.

bosons, and are given by

AXN
1 =

9

98
(C.86)

AXN
2 =

2

9

(
m3/2

mXN

)2 (
ν2b1b2

)2
(C.87)

AXN
4 = Z2

eff

(
~X ′′′

N · ~Xi

)2

. (C.88)

In the above result, we have not included the contributions from the decay to non-

higgs scalars and fermions since they are suppressed by (m3/2/mXN
)4 and (mf/mXN

)2

given the large mass of the heavy modulus mXN
∼ 600 ×m3/2. Taking benchmark

1 of G2-MSSM in [30] and typical values for weighted dot products, we get AXN
1 ≈

0.1, AXN
2 ≈ 0.01 and AXN

4 ≈ 50. The total width is about 3 × 1010 sec−1 or the

corresponding DXN
≈ 1.6. The branching ratio to LSPs is about 3× 10−3.

The decays of moduli to gravitinos is also very important. The decay of a modulus

to gravitinos can be calculated using the following formula: [117]

Γ(X → 2ψ3/2) ' |G(eff)
X |2
288π

m5
X

m2
3/2M

2
P

(C.89)

where G(eff)
X is the effective coupling of the modulus field to gravitinos which includes



185

effects of moduli mixing. For the heavy modulus, the coupling arises from the mixing

with meson field, since the goldstino is mainly the fermionic partner of the meson.

Since the heavy modulus is much heavier than the meson a rough estimate4 gives

G(eff)
X ∼ m3/2/mXN

. Therefore, for the heavy modulus, the decay rate to gravitino

is

Γ(XN → 2ψ3/2) ∼ 1

288π

m3
XN

M2
P

(C.90)

This corresponds to BXN

3/2 ∼ 7 × 10−4. In addition, since the heavy modulus decays

much earlier than other moduli, the gravitino produced will be diluted by the sub-

sequent moduli decays. So this estimate is enough for our discussion of gravitino

problem. For both the light moduli and the meson fields, the decay to gravitino is

kinematically suppressed since mXi
,mφ0 ≈ 2m3/2.

C.2.5 Decay Width of the Meson

The total decay width of meson modulus is:

Γ(δφ0) ≡
Dφm

3
φ

M2
P

=
1

72π

(
NGAφ0

1 +Aφ0

2 +Aφ0

3

) m3
φ

M2
P

, (C.91)

4There could be an additional suppression in special cases as discussed in [115,122].

We thank Fuminobu Takahashi for discussions regarding this point.
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where Aφ
i corresponds to the decay to gauginos g̃g̃, non-higgs scalar f̃ f̃ and light

higgs bosons hh, and are given by:

Aφ0

1 =
1

2φ2
0

F2

(
m3/2

mφ

)2

, (C.92)

Aφ0

2 =
∑

α

27φ2
0K

2
3Z

4
eff

(
(1 + Z−2

eff )(1 +
2

3φ2
0

) +
2F
3φ2

0

N∑
i=1

ζi

)2

×
(

m4
3/2

m4
φ

)(
1− 4

m2
f̃α

m2
φ

)1/2

, (C.93)

Aφ0

3 =
9

2
φ2

0

(
m4

3/2

m4
φ0

)[
Z2

eff

(
(1 + Z−2

eff )(1 +
2

3φ2
0

) +
2F
3φ2

0

N∑
i=1

ζi

)
(sin2 α + K1 cos2 α)

− K2Zeff

(
2(1 +

2

3φ2
0

) +
F
3φ2

0

N∑
i=1

(ξHu
i + ξHd

i )

)
sin 2α

]2

. (C.94)

Here, as discussed in the last subsection, the low scale couplings to third-generation

squarks are dominantly generated from RG running and are related to the coupling

gφHuHu by a factor K3 ∼ 0.1. For the first benchmark of G2-MSSM in [30] and taking

the simplest assumption ξi = ζi = −1/2, we get Aφ0

1 ≈ 13.7, Aφ0

2 ≈ 2.9 × 104 and

Aφ0

3 ≈ 1.3 × 105. One can see that this result is enhanced from the naive estimate

by the total number of moduli ∼ N and large (hidden-sector) three-cycle volume ν.

The total decay width is about 4.6 × 105 sec−1, corresponding to Dφ = 711. The

branching ratio to LSPs is about 18%. Again, this can change by O(1) for other

benchmarks.
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