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ABSTRACT 
 

 
Two of the primary challenges associated with the neutronic analysis of the Very 

High Temperature Reactor (VHTR) are accounting for resonance self-shielding in the 

particle fuel (contributing to the double heterogeneity) and accounting for temperature 

feedback due to Doppler broadening. The research reported in this thesis addresses both 

of these challenges. The double heterogeneity challenge is addressed by defining a 

"double heterogeneity factor" (DHF) that allows conventional light water reactor (LWR) 

lattice physics codes  to analyze VHTR configurations. The challenge of treating Doppler 

broadening is addressed by a new "on-the-fly" methodology that is applied during the 

random walk process with negligible impact on computational efficiency. Although this 

methodology was motivated by the need to treat temperature feedback in a VHTR, it is 

applicable to any reactor design.  

With the on-the-fly Doppler method, the Monte Carlo code only requires 0K cross 

sections for each isotope. This method broadens the 0K cross sections for any isotope in 

the library to any temperature in the range 77K-3200K. The methodology is based on a 

combination of Taylor series expansions and asymptotic series expansions. The type of 

series representation was determined by investigating the temperature dependence of 

U238 resonance cross sections in three regions: near the resonance peaks, mid-resonance, 

and the resonance wings. The coefficients for these series expansions were determined by 



 x

regressions over the energy and temperature range of interest. The comparison of the 

broadened cross sections using this methodology with the NJOY cross sections was 

excellent over the entire  temperature range (77K-3200K) and energy range.   A Monte 

Carlo code was implemented to apply the combined regression model and used to 

estimate the additional computing cost which was found to be less than 1%.  

The DHF accounts for the effect of the particle heterogeneity on resonance 

absorption in particle fuel. The first level heterogeneity posed by the VHTR fuel particles 

is a unique characteristic that cannot be accounted for by conventional LWR lattice 

physics codes. On the other hand, Monte Carlo codes can take into account the detailed 

geometry of the VHTR including resolution of individual fuel particles without 

performing any type of resonance approximation. Furthermore, resonance cross-shielding 

effects due to the presence of different strong absorber nuclides can be accounted for by 

Monte Carlo codes, eliminating the need for approximate methods to treat this effect. The 

DHF accounts for all these effects, basically allowing a conventional LWR lattice physics 

code to analyze a VHTR configuration with accuracy comparable to Monte Carlo code. 

The DHF, basically a self shielding factor, was found to be weakly dependent on space 

and fuel depletion. The DHF only depends strongly on the packing fraction in a fuel 

compact. Therefore, it is proposed that DHFs be tabulated as a function of packing 

fraction to analyze the heterogeneous fuel in VHTR configuration with LWR lattice 

physics codes. 
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CHAPTER 1  
 

                                    INTRODUCTION 

 

Very High Temperature Reactors (VHTRs) are very challenging for reactor 

analysts. The particle fuel, actually a stochastic mixture of tiny particles, leads to the 

well-known double heterogeneity, which is a substantial effect (~10% on keff) that must 

be accounted for. Monte Carlo methods can be used to treat this effect but deterministic 

methods, such as advanced lattice physics codes that are used for light water reactor 

(LWR) analysis, cannot account for this effect without substantial changes to the 

methodology to account for transport in a binary stochastic mixture. This work has led to 

the coupling of Monte Carlo methods and LWR lattice physics codes to analyze VHTR 

configurations, accounting for the double heterogeneity. In addition, the strong 

temperature feedback in a VHTR, primarily due to Doppler broadening of the resonance 

cross sections, poses another challenge for the coupled neutronic-thermal-hydraulic 

(NTH) analysis of a VHTR, because conventional methodology to account for 

temperature changes during the NTH iterations is not practical for realistic VHTR 

configurations. This temperature effect is complicated by the double heterogeneity. The 

difficulty of treating Doppler broadening of cross sections in VHTR configurations led to 

the development of the on-the-fly Doppler method for Monte Carlo codes, and this 

methodology can be used for other reactor types as well. This thesis will address these 
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two methodologies that have been developed for the accurate and efficient neutronic 

analysis of VHTRs. 

The gas cooled reactor concept has been studied by several countries since the 

1950s. The DRAGON, Peach Bottom, and AVR pebble-bed reactors were operated 

successfully in the 1960s in England, the United States and Germany, respectively. These 

earlier designs finally led to a commercial design known as the High Temperature Gas-

cooled Reactor (HTGR). The Fort St. Vrain Generating Station was operated as an 

HTGR from 1979 to 1989 in the United States and decommissioned due to economic 

factors. Today, the improved design known as the VHTR is among the Generation IV[1] 

reactor concepts.   

The VHTR is a graphite-moderated, helium-cooled reactor with a once-through 

uranium fuel cycle. Its design was selected as one of the most promising concepts to meet 

the Generation IV goals in the areas of economics, safety, reliability, sustainability and 

hydrogen production. Generation IV nuclear systems are planned to reach technical 

maturity by 2030.  

 

Figure 1.1. Coated microsphere fuel particle. 
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The first level of the double heterogeneity is due to the fuel particles which are 

randomly distributed in the fuel compacts for the prismatic design or in the fuel pebbles 

for the pebble-bed design. The second level of the double heterogeneity is represented by 

spatial distribution of the fuel compacts in fuel blocks for the prismatic design or fuel 

pebbles in reactor core for the pebble-bed design. The second level of the double 

heterogeneity is similar to the fuel pin heterogeneity in a LWR. The resultant double 

heterogeneous system is a unique characteristic of the VHTR. The construction of the 

prismatic reactor core starting from the microspheres is shown in Figure 1.2.  

 

Figure 1.2. The construction stages of the prismatic VHTR core. 

 

1.1 Challenges in VHTR Analysis 

For realistic, detailed reactor calculations, Monte Carlo codes are part of a multi-

physics simulation involving thermal-hydraulic feedback to adjust temperatures and 

densities which in turn affects the neutronic analysis. This process can result in 10,000s 

of material temperatures in LWRs when broadened cross sections are needed. The 

number of material regions becomes much higher for VHTR configurations due to the 

need to resolve the particle fuel. Existing Monte Carlo codes (e.g., MCNP[2]) were not 

designed to accommodate this need. Therefore, a new closed-form formulation in 
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temperature was derived to allow on-the-fly Doppler broadening of the cross sections 

during the random walk of the neutrons for an unlimited number of material temperatures 

while maintaining a modest computing cost and at the same time accounting for 

resonance overlapping effects between closely spaced resonances in the keV range. 

The second challenge, accounting for the double heterogeneity without resorting to 

full core Monte Carlo analysis, has been addressed with a coupled Monte 

Carlo/deterministic approach that enables a conventional LWR lattice physics code to 

analyze VHTR configurations.  The first level heterogeneity posed by the VHTR fuel 

particles cannot be accounted for by traditional LWR lattice physics codes as they cannot 

resolve the individual fuel particles. Consequently, a new methodology has been 

developed to analyze VHTR fuel correctly and efficiently, accounting for the double 

heterogeneity. This will allow VHTR analysts to take advantage of the highly developed 

capabilities of lattice physics codes available for LWR neutronic analysis, including 

depletion and coupling to 3D nodal codes for efficient full core simulation. 

1.1.1 Doppler Broadening of Cross Sections for Monte Carlo Codes  

Doppler broadening of nuclear cross sections is one of the most important 

phenomena during nuclear reactor operation and has important implications for reactor 

safety. Resonance capture and fission cross sections change significantly due to the 

relative motion between the incoming neutron and the target nucleus. As the material 

temperature increases, a wider range of relative energy is generated due to the increase in 

the motion of the target nuclei. Summed over all resonance energies, the overall effect of 

the increased Doppler broadening at higher temperatures is to increase the total resonance 
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absorption (or fission) in the material region, hence giving a strong neutronic feedback as 

a result of temperature changes.  

Low lying resonances (i.e., in the eV range) of the strong absorber nuclides are 

widely spaced, whereas they are closely spaced in the keV range. As the temperature 

increases, resonances in the keV range may overlap (interfere) with each other. For 

example, two adjacent, but resolved, resonances at low temperature may merge together 

when broadened to a higher temperature. The evolution of the U-238 total cross section 

with temperature in the low and high energy regions is illustrated in Figure 1.3. 

 

Figure 1.3. Evolution of 238U
totσ  with temperature. 
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The traditional approach to obtain the Doppler broadened cross sections for use in 

continuous energy Monte Carlo codes is based on the interpolation of cross section 

libraries generated at reference temperature points. This approach was found to be 

prohibitively memory expensive and not practical for applications involving thermal-

hydraulic feedback. 

Other methods, based on the direct use of resonance parameters to broaden the 

cross sections, are not accurate enough. As an alternative approach, utilization of the 

exact Doppler broadening equation in Monte Carlo codes was found during the course of 

this research to be very expensive.  

The methods summarized above are not practical and/or do not provide sufficient 

accuracy. Computing time and memory requirement can be prohibitively large for 

realistic reactor configurations. Details on these existing Doppler broadening methods 

will be presented in the next Chapter.  

1.1.2 Representation of the Double Heterogeneity in Lattice Physics Codes 

In LWR lattice physics codes, resonance integrals for the strong absorber nuclides 

are calculated by using approximate methods for a homogeneous mixture of fuel regions, 

ignoring the pronounced self-shielding effect due to the randomly dispersed fuel particles 

in the fuel compacts. On the other hand, any physical model with complicated geometry 

features can be explicitly represented by Monte Carlo codes (e.g. MCNP) accurately, 

including the resolution of fuel particles for VHTR configurations. 
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Figure 1.4. Comparison of modeling features: Monte Carlo vs. lattice physics codes.  

 
Furthermore, resonance cross-shielding effects due to the presence of different 

strong absorber nuclides can be accounted for by Monte Carlo codes, eliminating the 

need for approximate methods to treat this effect. It should also be noted that multi-group 

cross sections used by lattice physics codes are obtained using a generic weighting 

spectrum with an approximate resonance model for the resonance cross sections. Monte 

Carlo codes eliminate the need to use approximate resonance models since they can in 

principle model the exact geometry with the exact physics, to the extent these quantities 

are known. Therefore, inconsistencies in multi-group cross sections due to assumed 

weighting functions, resonance approximation models and multi-group energy structures 

are avoided. 

As long as the continuous energy nuclear data is correct, Monte Carlo codes can 

calculate the shielded cross sections with excellent accuracy for all detailed geometries, 

provided there is a sufficient number of histories to obtain acceptable statistics. On the 

other hand, the computing cost of the Monte Carlo simulations can be very prohibitive to 
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perform a full core neutronic analysis as a function of depletion. Therefore, effort has 

been focused on developing an accurate and efficient methodology to allow a 

conventional LWR lattice physics code to analyze VHTR fuel with the help of Monte 

Carlo codes, accounting for the double heterogeneity due to TRIstructural-ISOtropic 

(TRISO) fuel. Previous methods to account for the double heterogeneity will be 

presented in the next Chapter. 
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CHAPTER 2  
 

                               LITERATURE SURVEY 
 

2.1 Doppler Broadening of Cross Sections for Monte Carlo Codes 

Current Monte Carlo particle transport codes rely on the nuclear data files 

generated at specific reference temperatures. These temperature dependent nuclear data 

files are generated by the Nuclear Data Processing (NDP) codes such as NJOY[3] which 

can produce temperature dependent point-wise and multi-group cross sections and related 

quantities from evaluated nuclear data in the ENDF format. Doppler broadening of the 

cross sections in NJOY can be performed based on either the exact Doppler broadening 

equation developed by Cullen[4] or direct use of resonance parameters. We have found 

that the former approach is not practical for realistic configurations while the latter 

approach is not very accurate. 

2.1.1 Exact Doppler Broadening Equation 
 

The well-known Doppler broadening equation developed by Cullen[4] is given in 

Eq. (2.1). It is equally applicable to neutron or charged particles.  

 ( ) ( ) ( ){ ( ) }
1
2 2 22

2 12
0

1 1, , exp expy T x T x x y x y dx
y

σ σ
π

∞⎛ ⎞ ⎡ ⎤ ⎡ ⎤= − − − − +⎜ ⎟ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ∫  (2.1) 

where x, y, α , and β  are defined as: 
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 2 2
r rx E Vα β= =  (2.2) 

 2 2y E Vα β= =  (2.3) 

 
( )2 1

A
k T T

α =
−

 (2.4) 

 
( )2 12

tM
k T T

β =
−

 (2.5) 

where Mt is the target nuclei mass, Mp is the projectile mass, A is the weight ratio 

(Mt/Mp), k is Maxwell-Boltzmann’s constant, ( )1,x Tσ  is the base cross section at T1 and 

( )2,y Tσ  is the Doppler broadened cross section at T2. The velocity-like terms y and x 

are related with incoming neutron velocity V and relative velocity Vr respectively. 

Relative velocity is defined as Vr =|V- Vt| where Vt is the target nucleus velocity.   E and 

Er are the incoming neutron energy and relative energy, respectively.  

The derivation of the exact Doppler broadening Eq. (2.1) begins with the 

definition of reaction rate, ( ) ( ) ( ) ( ), , ,0
t

r r t t
all V

R V T V V T V V P V dVσ σ= = ∫  where the 

cross sections are defined to conserve the observed reaction rates, and ( )tP V  is the 

normalized Maxwell-Boltzmann distribution.  

The numerical discretization of Eq. (2.1) allows us to calculate Doppler 

broadened cross sections of any type at T2 based on the reference cross sections generated 

at T1. It is assumed that the cross sections are given as a table of energy versus cross 

section with linear-linear interpolation in energy and cross section between tabulated 

values. Exact Doppler broadening of the cross sections, as given in Eq. (2.1), is 

performed in NJOY with the BROADR module. Cross sections can be broadened based 
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on nuclear data at 0K (default) or higher temperatures. 0K cross sections are usually 

generated by using multi-level resonance representations (e.g. Multilevel Breit-Wigner, 

Reich-Moore, Adler-Adler, etc…) for strong resonance absorbers. 

However, as will be shown in detail in the next chapter, the discretized form of 

the exact Doppler broadening expression in Eq. (2.1) requires an unacceptable computing 

time due to the cost of evaluating complementary error functions. Therefore, exact 

Doppler broadening of the cross sections during the random walk of the neutrons in 

Monte Carlo codes is not practical.  

2.1.2 PSI-CHI Representation 

The psi-chi method[5,6,7] is the only single level resonance representation where 

Doppler broadening of cross sections can be performed based on the resonance 

parameters in NJOY. For large values of neutron energy, this model assumes that the 

second exponential can be ignored in Eq. (2.1). However, this approximation 

overestimates the Doppler-broadened cross sections for lower values of neutron energy. 

Secondly, since the significant contribution to the remaining integral usually comes from 

a very narrow range of Er close to E, it is also assumed that rE  can be expanded in 

Taylor series about E. Ignoring the higher terms leads to the following equation, where 

the error introduced increases with decreasing energy:  

 ( ) ( )
2 2

/r rE E E Eα ⎡ ⎤− ≈ − Δ⎣ ⎦  (2.6) 

 where Δ  and TΔ  are defined as:  

 ( ) ( )1/2 1/22 / 4 /A AE k TE AαΔ = = Δ  (2.7) 

 2 1T T TΔ = −  (2.8) 
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The last approximation introduced for the psi-chi method is to change the lower 

limit of integration to −∞ , assuming that the interval ( )0,∞−  has negligible contribution 

to the integral: 

 ( ) ( ) ( ) 2

2 1
1, , exp r

r r r

E E
E E T E E T dEσ σ

π

∞

−∞

⎧ ⎫⎡ ⎤−⎪ ⎪= −⎨ ⎬⎢ ⎥ΔΔ ⎣ ⎦⎪ ⎪⎩ ⎭
∫  (2.9) 

The psi-chi method also assumes that the 0K cross sections are composed of a 

series of single-level Breit-Wigner resonances: 

 ( ) ( ) ( )
( ) ( )

1/2
, 2 2

/ 2
,0 /

/ 2
T

cap fis R
T R

A
E E E

E E
σ

Γ
=

Γ + −
 (2.10) 

 ( ) ( )
( ) ( )

( )
( ) ( )2 2 2 2

/ 2
,0

/ 2 / 2
T R

scat
T R T R

A B E E
E

E E E E
σ

Γ −
= +

Γ + − Γ + −
 (2.11) 

where RE , TΓ , and B are resonance energy, total resonance width, and elastic interface 

strength, respectively. Therefore, the Doppler-broadened cross sections become:  

 ( ) ( )
1/2

,
2, ,R

cap fis R
T

EE T A x
E

σ ψ ξ
⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟Γ ⎝ ⎠⎝ ⎠

 (2.12) 

 ( ) ( ) ( )2, , ,scat R R
T

E T A x B xσ ψ ξ χ ξ
⎛ ⎞

⎡ ⎤= +⎜ ⎟ ⎣ ⎦Γ⎝ ⎠
 (2.13) 

where  ( ), Rxψ ξ   and  ( ), Rxχ ξ  are defined as; 

 ( ) ( ) 2

2, exp
2 12

R
R R

x y dyx
y

ξψ ξ ξ
π

∞

−∞

⎧ ⎫⎡ ⎤−⎪ ⎪= −⎨ ⎬⎢ ⎥ +⎣ ⎦⎪ ⎪⎩ ⎭
∫  (2.14) 

 ( ) ( ) 2

2, exp
2 12

R
R R

x y ydyx
y

ξχ ξ ξ
π

∞

−∞

⎧ ⎫⎡ ⎤−⎪ ⎪= −⎨ ⎬⎢ ⎥ +⎣ ⎦⎪ ⎪⎩ ⎭
∫  (2.15) 
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The line shapes ( )Rx ξψ ,  and ( )Rx ξχ ,  are given in terms of complex functions in 

the MC2 code[8]:  

 ( ) ( ) ( )2

, Re exp
2 22

R
R R R

x i x i
x i erfc iξψ ξ ξ ξ

π

⎧ ⎫⎛ ⎞⎡ ⎤ ⎛ ⎞+ +⎪ ⎪⎜ ⎟= −⎨ ⎜ ⎟⎬⎢ ⎥⎜ ⎟⎣ ⎦ ⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
  (2.16) 

 ( ) ( ) ( )2

, Im exp
2 22

R
R R R

x i x i
x i erfc iξχ ξ ξ ξ

π

⎧ ⎫⎛ ⎞⎡ ⎤ ⎛ ⎞+ +⎪ ⎪⎜ ⎟= −⎨ ⎜ ⎟⎬⎢ ⎥⎜ ⎟⎣ ⎦ ⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
 (2.17) 

where Rξ , x, and y are defined as: 

 ( )1/2/ / 4R T R T RA kTEξ ≈ Γ Δ = Γ  (2.18) 

 ( )2 /r R Tx E E= − Γ  (2.19) 

 ( )2 /R Ty E E= − Γ  (2.20) 

The psi-chi method is not as accurate as the exact Doppler broadening equation 

because the terms important for energies less than about AkT /16  are neglected. More 

importantly, cross sections in current evaluations are not represented as a series of single-

level Breit-Wigner resonances. Strong absorber nuclides use resonance formulations that 

differ from the single-level representations (e.g., multilevel Breit-Wigner, Reich-Moore, 

Adler-Adler, etc…). In the case of light nuclides, cross sections are usually tabulated 

functions or do not use resonance parameters.  

2.1.3 TEMPO Representation 

In the TEMPO method[9,10], ( )1,TEEσ  is assumed to be a tabulated function 

with linear-linear variation in energy: 
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 ( ) ( ) ( ) 2

2 1
0

1, , exp r
r r r

E E
E E T E E T dEσ σ

π

∞ ⎧ ⎫⎡ ⎤−⎪ ⎪= −⎨ ⎬⎢ ⎥ΔΔ ⎣ ⎦⎪ ⎪⎩ ⎭
∫  (2.21) 

So the Doppler-broadened reaction rate can be written as follows: 

 ( ) ( ) ( )1
2

2
1, exp

k

k

E
r

k k r r
k E

E E
R E T P Q E dE

π

+ ⎧ ⎫⎡ ⎤−⎪ ⎪= + −⎨ ⎬⎢ ⎥ΔΔ ⎣ ⎦⎪ ⎪⎩ ⎭
∑ ∫  (2.22) 

where kQ  and kP  are defined as: 

 ( ) ( )1 1 1

1

, ,k k
k

k k

R E T R E T
Q

E E
+

+

⎡ ⎤−
= ⎢ ⎥−⎣ ⎦

 (2.23) 

 ( )1,k k k kP R E T Q E= −  (2.24) 

Introducing ( ) Δ−= /rEEx , the integration of Eq. (2.22) yields: 

 ( ) ( ) ( ) ( ) ( ) ( )2 2
2 1 1

1, exp exp
2 k k k k k k

k
R E T P Q E ERF x ERF x x x

π+ +
Δ⎧ ⎫⎡ ⎤⎡ ⎤= + − + − − −⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭

∑  (2.25) 

This algorithm has the same limitations as the psi-chi method. 

2.1.4 Other Approximate Methods 

Another approach, proposed by Marable[11] of Oak Ridge National Laboratory 

(ORNL) in the 1960s, requires resonance parameters in order to Doppler broaden the 

cross sections and was based on the psi-chi resonance representation. Therefore, this 

approach inherits all of the approximations inherent in the psi-chi approach mentioned 

above. 

An alternative method that has been used frequently is based on the interpolation 

of the cross sections at the temperature of interest T between the nuclear data files 

generated by NJOY at bracketing reference temperatures, e.g., T1 < T < T2. A detailed 
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study was performed by Trumbull[12] from Knolls Atomic Power Laboratory (KAPL) by 

applying several different interpolation schemes over various temperature intervals. 

Interpolated cross sections at intermediate temperatures were compared to NJOY Doppler 

broadened results for the same temperature. Differences relative to the Doppler 

broadened results were calculated in order to judge the suitability of the interpolation 

scheme and temperature interval. Since the exact Doppler broadening equation given in 

Eq. (2.1) does not admit a simple interpolation scheme, five different interpolation 

schemes were applied, including linear-linear, log-log, sqrt-linear, linear-log and sqrt-log 

in temperature and cross section respectively. The study showed that cross sections can 

be interpolated within an accuracy of 0.1% over a temperature interval of 111 K for light 

nuclides such as H-1, B-10, and O-16. Smaller temperature intervals were required for 

nuclides with more complex resonance behavior. Some values of the interpolated cross 

sections for natural Zr, U-238, and U-235 remain greater than the target 0.1% relative 

difference even with a 28K interval, suggesting that a smaller interval is necessary for 

these nuclides. It was shown that all of the proposed interpolation schemes were not 

found to be within the target 0.1% maximum relative difference with 28K interval for U-

238.  Log-log interpolation was found to be the best scheme among the others, resulting 

in 0.296% maximum relative difference (well beyond the target 0.1% accuracy) with 28K 

intervals for U-238.  

The third approach, developed by Conlin[13], was the pseudo material construct 

which depends on the interpolation of cross section libraries at a few temperature points 

generated by the NJOY code. As temperature increases, the width of a given resonance 

varies as a function of  T . Therefore, the pseudo number density fractions, fL and fH, 
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for the low and the high temperature cross sections for a given nuclide can be calculated 

as follows;  

 H
L

H L

T T
f

T T
−

=
−

 (2.26) 

 ( )1H Lf f= −  (2.27) 

where HL TTT << . A cross-section for pseudo material at T becomes; 

 ( ) ( ) ( ) ( )1L L L HT f T f T∑ = ∑ + − ∑  (2.28) 

The number density fractions can be interpreted as fractional pseudo material 

densities and allow one to interpolate the cross sections between high and low 

temperature nuclear data files (NDFs) with T  dependence. The interpolation is 

performed by the MCNP input processor which is tantamount to a stochastic mixing of 

the two cross section fields. 

As in the previous methodology developed by Trumbull, the pseudo material 

approach depends on using pre-generated nuclear data files at fine temperature intervals. 

As the number of the resonance materials increases for a given problem, the size of the 

nuclear data that should be loaded in the memory may be unacceptable for the Monte 

Carlo calculations. 

Finally, an integral representation for the Doppler broadening function  ( ), Rxψ ξ  

was proposed by Goncalves[14] to obtain an analytical solution based on elementary 

functions by using the Fourier cosine transform. The final form of the equation was found 

to be the same as the ( ), Rxψ ξ  function in terms of complex probability function as 

reported in MC2 and NJOY manuals.  
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All of the methods summarized above to Doppler broaden cross sections for reactor 

physics applications are not practical and/or do not provide sufficient accuracy. They also 

require unacceptable amounts of storage, memory space, and computing time for realistic 

nuclear reactor configurations.  

2.2 Double Heterogeneity Treatment for Lattice Physics Codes 

Recent versions of the codes such as SCALE and WIMS have the capability of 

analyzing the double heterogeneity posed by the VHTR fuel. The SCALE code uses the 

Nordheim Integral Method[15] to calculate shielded group cross sections while WIMS 

uses equivalence theory. Both of these methods are approximate and assume a two region 

geometry for the microsphere and surrounding graphite.  

An alternative method, called reactivity-equivalent physical transformation[16] 

(RPT), was developed to account for the particle level heterogeneity posed by the VHTR 

fuel. Volumetric homogenization of the fuel compact region, including fuel particles and 

binder, overestimates the absorption and underestimates the reactivity due to reduced 

self-shielding of the fuel. The RPT method was developed without modeling a fuel 

particle explicitly. In this method, the fuel region was represented by an equivalent cell of 

two homogeneous zones:  

 

Figure 2.1. The RPT homogenization method. 
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As seen in Figure 2.1, the fuel compact dimension is reduced, preserving the 

number of fuel particles and homogenized with a graphite matrix by a simple volume-

weighting. The radius of the resultant fuel compact region was calculated such that k∞ is 

equal to the reference solution, which was calculated with Monte Carlo. Reaction rates as 

well as k-inf are conserved with the RPT method.  

In the MICROX code, developed by General Atomics (GA), shielded cross sections 

due to fuel kernels were calculated by Wälti[17] to account for the particle level 

heterogeneity. The collision probability method was utilized to calculate grain shielding 

factors for a two-region lattice cell. Cross sections, computed for the corresponding 

homogenized fuel compacts, were multiplied by the energy dependent grain shielding 

factors ( )EΓ  to compute shielded cross sections. The grain shielding factor was defined 

as the ratio of the mean flux inside the fuel particles to the mean flux inside the 

moderator region (coatings + binder): 

 ( ) ( )
( )

0

1

E
E

E
φ
φ

Γ =  (2.29) 

where ( )0 Eφ  and ( )1 Eφ are the spatially averaged fluxes at energy E in fuel kernels and 

moderator regions, respectively. The resulting equation was found to be as: 

 ( )
,0

1

1
1

x
E

W
Q

τ
ρ

Γ =
+

+

 (2.30) 

 
where ,0 0 ,0x xlτ = ∑  is the optical distance,   0 04 /l V S=  is the mean chord length,   

0 1 0 1/ /l l V Vρ = =  is the ratio of volumes , 0 1/Q Q Q=  is the ratio of the source densities, 

and the subscripts 0 and 1 correspond to fuel kernel and moderator (coatings + binding) 
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regions, respectively. Also, W is defined as ( ) ( )
~ ~

0 1,0 ,11 t tW H Hτ τ= + +  where 
~

0H  and 

~
1H  are numerically calculated for spherical kernels. In Eq. (2.30), ρ  was found to be 

very small (~0.1) so the dependence of Eq. (2.30) on Q becomes very weak. Therefore, 

the grain shielding factor depends mainly on ,0xτ : the product of the mean chord length 

and the unshielded removal cross section in the fuel kernels.  

The GAROL[18]  code, developed by General Atomics, analyzes the same problem 

with two regions. In addition, it accounts for resonance cross-shielding effects by solving 

the slowing down equations based on the collision probability method. All of these 

approximate methods that involve a two-region cell do not account for the effect of 

neighboring regions such as reflectors or control rods, and have difficulty dealing with 

resonance overlapping effects.  

As an alternative approach, Monte Carlo codes have been used to perform 

neutronic analysis of gas cooled reactors, accounting for the double heterogeneity due to 

the VHTR particle fuel. The complex geometry modeling capability of Monte Carlo 

codes allows one to account for the double heterogeneity. Monte Carlo can also account 

for the resonance cross-shielding effect caused by the presence of multiple resonance 

materials provided a sufficient number of histories are utilized.  In addition, the random 

distribution of the fuel kernels[19,20] can be handled by assuming the fuel kernels are 

placed in a regular lattice. This has been shown to be an acceptable model by several 

researchers. More accurate models allow the particles to vary randomly within a simple 

cubic lattice ("jiggling") but this effect has been shown to be small. In summary, Monte 
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Carlo codes have the unique advantage of calculating the shielded cross sections 

accurately as long as the continuous energy nuclear data is accurate.  

Explicit modeling of fuel particles was performed by W. Ji[21,22] for the VHTR full 

core configurations in MCNP5, accounting for the double heterogeneity. A general 

method was developed to derive the closed form for the average Dancoff factors using 

the chord length sampling method in a stochastic environment. Average Dancoff factors 

were calculated for fuel compacts and fuel pebbles in both finite and infinite 

geometries[23-31].  

In lattice physics codes, the second level heterogeneity due to fuel compacts or 

pebbles is handled by the well known shielding factor method that is used for LWR 

analysis. The proposed methodology is validated mostly with the CPM3[32] lattice physics 

code which is based on Carlvik’s two-term rational approximation method[32,33]. This 

method is summarized next. 

2.2.1 Resonance Treatment in CPM3 

In CPM3, the 97 group cross section data was processed with the NJOY code 

system by averaging point-wise nuclear data (ENDF/B-VI) with an energy dependent 

weighting spectrum. In fact, the true spectrum varies within the reactor lattice due to 

different dimensions and compositions. The flux spectrum, caused by resonance 

reactions, is very sensitive to the relative concentrations of absorber and moderator 

materials as well as spatial heterogeneities in the lattice. Therefore the generic spectrum 

function is not adequate to yield acceptable cross sections for resonance materials. For 

this reason, microscopic cross sections, processed by NJOY, must be corrected to obtain 

problem-specific values for a particular lattice of interest. 
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In CPM3, a variation of the widely used shielding factor method is utilized. Pre-

calculated, infinitely-dilute cross sections as well as shielding factors are tabulated in the 

nuclear data files (NDFs). This allows shielded multi-group cross sections to be 

calculated for a particular lattice of interest. Shielding factors, which indicate the degree 

of resonance self-shielding, are tabulated in NDFs as a function of temperature and 

background cross section:  

 ( ) ( )
( )

0
0

,
,

,

r
ir

i r

T
f T

T
σ σ

σ
σ

=
∞

 (2.31) 

where ( )0,r
i Tσ σ  is the shielded cross section at the temperature and background cross 

section of interest and ( )0 ,r Tσ ∞  is the infinitely dilute unshielded cross section at 

reference temperature T0 (=300K): 

 ( )
( ) ( )

( )

0

0
0

; ; ,
,

; ,

r
i

r E
i

i
E

E T E T dE
T

E T dE

σ φ σ
σ σ

φ σ
=
∫

∫
 (2.32) 

  

 ( )

( )0

0

;

,

r

r E

E T
dE

E
T

u

σ

σ ∞ =
Δ

∫
 (2.33) 

          

In NJOY, the solution to the transport equation in an infinite, homogeneous 

medium is used for the flux spectrum that is needed to process the CPM3 multi-group 

cross sections. The homogeneous medium consists of a single resonance absorber and a 

non-absorbing moderator with a constant potential scattering cross section:  

 ( )( ) ( ) ( ) ( )r r m m r r m m
pN E N E N S E N S Eσ σ φ+ = +  (2.34) 
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where the superscripts r and m stand for resonance and moderator materials, respectively. 

The quantities N , σ , pσ  and S  are number density, microscopic total cross section, 

microscopic potential scattering cross section and down-scattering source, respectively. 

The source term is the scattering source above the resonance energy and is defined as: 

 ( ) ( )
( )

'/
'

' 1

E
s

E

E
S E dE

E

α σ φ

α
=

−∫  (2.35) 

  The Intermediate Resonance (IR) approximation was used by introducing a factor 

mλ  such that the Narrow Resonance (NR) and Wide Resonance (WR) approximations 

and the infinitely dilute absorber case are all covered. For example, the parameter mλ  is 0 

or 1 for NR and WR approximations, respectively. Therefore, Eq. (2.34) can be rewritten 

as: 

 ( )( ) ( ) ( ) 0
0

r rE E S E
E

σ φσ σ φ ∞+ = +  (2.36) 

The background cross section, 0σ , is defined as: 

 0

m m m
p
r

N
N

λ σ
σ =  (2.37) 

When multiple moderators exist, 0σ  is expressed as: 

 0

m m
p

m
rN

λ
σ

Σ
=
∑

 (2.38) 

The degree of the self-shielding is represented with the background cross section. 

Dilute concentrations have large values of 0σ  with no self-shielding, whereas high 

concentrations have low values of 0σ with significant self-shielding. 
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In realistic reactor analysis, the homogeneous medium expressions must be 

related to the actual heterogeneous lattice configurations, using the "Equivalence 

Theorem" of lattice physics theory.  The flux in absorber region F of a lattice is given by:  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )'

' ' '
F F M

F F F F F F F M F M MF F F F
E E V P E N S E V P E N S E V P E N S E Vφ → →→

Σ = + +  (2.39) 

where FΣ , S and N are macroscopic cross section for absorber body F, microscopic 

down-scatter source and number density, respectively. F FP →  is the probability that a 

neutron born in body F will have its first collision  in F. 'F F
P

→
 is the probability that a 

neutron born within another absorber body F' will have its next collision in F.  M FP →  is 

the probability that a neutron born within a non-absorber region of the lattice will have its 

next collision in absorber body F. Using the flat flux approximation ( ' FF
S S ) and the 

reciprocity theorem relating F MP →  and M FP →  as well as the identity 

' 1F F F MF F
P P P→ →→

+ + = , Eq. (2.39) can be rewritten as:  

 ( ) ( ) ( ) ( ) ( )1
M

F M M FF
F F F M F

M

P N S E
E E P N S Eφ →

→

Σ
Σ = − +

Σ
 (2.40) 

where F MP →  is given by the “Wigner rational approximation”: 

 ( ) ( )
e

F M
F e

P E
E→

Σ
=
Σ +Σ

 (2.41) 

where eΣ  is the escape cross section. If Eq. (2.41) is inserted into Eq. (2.40) with the IR 

approximation and the flat flux assumption in the moderator region, the following Eq. 

(2.42) is obtained: 

 ( )( ) ( ) ( ) 0
0

r rE E S E
E

σ φσ σ φ ∞+ = +  (2.42) 
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where the new background cross section is defined as: 

 

 0

m m
p

m F e
r rN N

λ
σ ∈

Σ
Σ

= +
∑

 (2.43) 

As can be seen, Eqs. (2.36) and (2.42) are equivalent except the formulation for 0σ . The 

escape cross section in the Wigner approximation is defined as: 

 ( ),0 1e e CΣ = Σ −  (2.44) 

where C is the Dancoff factor. It is defined as the probability that a neutron escaping the 

absorber body F  will enter in another absorber body 'F . ,0 1/e RΣ =  is the reciprocal of 

the average chord length through the absorber body and the average chord length is 

defined as 4 /F FR V A= . 

Although the Wigner rational approximation is satisfactory at both the white and 

black limits, it is too low for gray absorbers. Therefore Carlvik[34] derived a more 

accurate expression for the escape probability: 

 ( ) 1 2

1 2

1 F MP E x
x x
β β
α α−

⎛ ⎞
− = +⎜ ⎟+ +⎝ ⎠

 (2.45) 

 

 

where α ’s and β ’s are constants, and ( )Fx R E= Σ . Eq. (2.45) reduces to the Wigner 

form if one rational term is used in the summation. The constants (_α ’s and β ’s) 

provides more degrees of freedom to match physical conditions placed on the escape 

probability. For an isolated cylindrical absorber body, F MP →  is equal to the isolated rod 

escape probability, ,esc FP .  

 ,
4 31 1

2 3
isolated

F M esc FP P x
x x−

⎛ ⎞− = − = +⎜ ⎟+ +⎝ ⎠
 (2.46) 
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In the case of a lattice of absorbers, F MP →  will not be equal to ,esc FP . The neutron 

may have its next collision in another absorber body in F'. Therefore, it was shown that 

F MP →  for a lattice can be approximated in terms of the isolated rod escape probability 

and the Dancoff factor: 

 ( ),
,

1
1 1F M esc F

esc F

CP P
C xP→

⎡ ⎤−
= ⎢ ⎥

− −⎢ ⎥⎣ ⎦
 (2.47) 

The constants α  and β   can be obtained as a function of the Dancoff factor by 

using Eqs. (2.45)-(2.47). A non-uniform lattice configuration is accounted for by the 

Dancoff factor C:  

 ( ) 2

1

5 34 1
2

C C C
α

+ − + +
=  (2.48) 

 
( ) 2

2

5 34 1
2

C C C
α

+ + + +
=  (2.49) 

 

 

 

In CPM3, a ray-tracing technique is used to compute the Dancoff factor for an 

arbitrary geometry. Dancoff factors are computed for different resonance absorber 

materials, including fuel materials, burnable absorber materials, and control rod 

materials. 

The average flux in absorber body F can be given as the sum of two solutions: 

 ( ) ( ) ( ) ( )1 0,1 2 0,2; , 1 ; ,F E E T E Tφ βφ σ β φ σ= + −  (2.50) 

where  2 11β β= −  and ( ) ( )1 2 12 4 /Cβ α α α= + − − . The solutions ( )0,; ,n nE Tφ σ  are two 

pseudo solutions to Eq. (2.42) in terms of the background cross section: 

 ,0
0 0,

m m
p

n em F
n r rN N

λ α
σ σ ∈

Σ Σ
→ = +

∑
 (2.51) 
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Inserting the flux spectrum from Eq. (2.50) into Eq. (2.32): 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
1 0,1 2 0,2

1 0,1 2 0,2

; ; , 1 ; ; ,

; , 1 ; ,

r r

r E E
F

E E

E T E T dE E T E T dE

E T dE E T dE

β σ φ σ β σ φ σ
σ

β φ σ β φ σ

+ −
=

+ −

∫ ∫

∫ ∫
 (2.52) 

Eq. (2.52) can also be expressed in terms of group resonance integrals: 

 
( ) ( ) ( )

( )
( )

( )
0,1 0,2

1 0,1 2 0,2

, 1 ,

; , ; ,
1

r
F

E E

I T I T

E T dE E T dE

β σ β σ
σ

φ σ φ σ
β β

φ φ∞ ∞

+ −
=

+ −
∫ ∫

 (2.53) 

Using the following relationship: 

 
( )
( )

( )1 0
0,1

0

;
E

E dEI φ σ
σ

σ σ φ∞
=
∫

 (2.54) 

and performing some algebraic manipulation, the following expression can be obtained 

for the average multi-group cross section of absorber body F: 

 
( )

( )

0,1 ,1 0,2 ,2

,1 0,1 ,2 0,2

,1 ,2

,1 0,1 ,2 0,2

1

1 1

r r
F F

r r
F Fr

F r r
F F

r r
F F

σ σ σ σ
β β
σ σ σ σ

σ
σ σ

β β
σ σ σ σ

+ −
+ +

=
− − −

+ +

 (2.55) 

where ,1
r
Fσ  and ,2

r
Fσ  are shielded cross sections at the two background cross section 

values, and are defined in terms of the group infinitely dilute cross sections and shielding 

factors by: 

 ( ) ( ),1 0,1,
r r r
F F Ff Tσ σ σ= ∞  (2.56) 

 ( ) ( ),2 0,2 ,r r r
F F Ff Tσ σ σ= ∞  (2.57) 
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Shielding factors are tabulated in the nuclear data file at specific values of temperature, T, 

and background cross sections, 0σ  . To obtain the desired shielding factor characteristics 

for the problem of interest, a two dimensional interpolation of these data in T and 0σ  is 

performed. 
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CHAPTER 3  

ON-THE-FLY DOPPLER BROADENING for MONTE 
CARLO CODES 

 

3.1 Theory 

In nuclear data processing codes such as NJOY, the 0K cross sections for the 

majority of the resonance nuclides are processed with the Reich-Moore representation.  

However, this model does not have any temperature dependence to broaden the cross 

sections. Since our Doppler formulation avoids using the resonance parameters, any 

multi-level resonance representation with temperature dependence can be used. Adler-

Adler[3] is the only multilevel representation that allows Doppler broadening of cross 

sections, which can be performed with the help of temperature dependent complex 

probability functions. Furthermore, the proposed regression model based on the Adler-

Adler representation does not use resonance parameters and involves only the 

temperature dependent part of the multilevel model.  

The combined regression model to perform on-the-fly Doppler broadening of the 

cross sections at energy grid points during Monte Carlo simulation is based on series 

expansions of the multi-level Adler-Adler representation with temperature dependence. 

The constants of the combined regression model were adjusted for the temperature range 

of 77K - 3200K to accommodate important fields of study as shown in Table 3.1.  
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Table 3.1. Temperature range and corresponding field of study. 

 

Temperature Range (K) Field of Study 

77 - 293.6 Cold Neutron Physics 

293.6 – 550 Benchmarking Calculations 

550 – 1600 Reactor Operation 

1600 – 3200 Accident Conditions 

 

3.1.1 Development of the Regression Model 

In the Adler-Adler multilevel resonance model, the total, fission and capture cross 

sections are represented by the following equations: 

( ) ( ) ( )2
0 0 02 2

,

4 2, sin cos 2 sin 2 ,tot R R R R
R R t

EE G H x
k k
π πσ ξ ψ ξ

⎧⎪ ⎡= Φ + Φ + Φ⎨ ⎣Γ⎪⎩
∑  

                                           ( ) ( )]RRR xGH ξχ ,2sin2cos 00 Φ−Φ+  

 232 4
1 1 22 3

AA AA B E B E
E E E

⎫+ + + + + + ⎬
⎭

 (3.1) 

( ) ( ) ( )( ), 2
,

2, , ,cap fis R R R R R
R R t

EE G x H x
k

πσ ξ ψ ξ χ ξ
⎧⎪ ⎡ ⎤= +⎨ ⎣ ⎦Γ⎪⎩
∑       

 232 4
1 1 22 3

AA AA B E B E
E E E

⎫+ + + + + + ⎬
⎭

 (3.2) 

where  ( ) TRr EEx Γ−= /2 , ( ) 2/14/ TkEA RTR Γ=ξ , ( ) ( )1/10196771.2 3 +×= − AAEk  is 

the neutron wave number, lΦ  is the phase shift, GR is the symmetric total parameter, HR 

is the asymmetric total parameter, Ai  and Bi  are coefficients of the total background 

correction. The terms G, H, Ai and Bi are defined as needed for the desired reactions. It 
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should be noted that the resonance scattering cross sections are included in Eq. (3.1). 

Resonance parameters TΓ  and x  as well as k, lΦ , G, H, Ai and Bi can be held constant 

for a given neutron energy and target nuclide. The quantity Rξ  is the only temperature 

dependent resonance parameter in the ψ  and χ  functions and it will be analyzed in 

detail. In the Adler-Adler representation, the resonance overlapping effects in the keV 

range are taken into account automatically. In addition, the background cross sections are 

broadened. For these reasons, the Adler-Adler representation is more accurate than the 

psi-chi representation. 

Since the resonance parameters TΓ  in Rξ  and x are constant for a given neutron 

energy and nuclide, the functions ( ), Rxψ ξ  and ( ), Rxχ ξ  in Eq. (3.1) and Eq. (3.2) can 

be written as ( )Tψ  and ( )Tχ , respectively. Consequently, they can be expressed in terms 

of the following series representations as a function of T: 

 ( ) ( ),R R i i
i

T a f Tψ =∑  (3.3) 

 ( ) ( ),R R i i
i

T b h Tχ =∑  (3.4) 

where iRa ,  and iRb ,  are constants corresponding to the temperature dependent functions 

if  and ih .  Inserting the Rψ  and Rχ  functions into the Adler-Adler resonance 

representation, and performing several algebraic manipulations, the temperature 

dependent cross section of any type can be represented as: 

 ( ) ( ) ( )' '
'

 x
R R R R

R

T A B T C Tσ ψ χ⎡ ⎤= + +⎣ ⎦∑  (3.5) 
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 ( ) ( ) ( )' ' ' '
'

, ,
x
R R i iR R i R R i

i iR

T A B a f T C b h Tσ ⎡ ⎤
= + +⎢ ⎥

⎣ ⎦
∑ ∑ ∑  (3.6) 

 ( ) ( ) ( )' '
' '

' '
, ,

x
R R i iR i R i

i iR R

T A f T a h T bσ = + +∑ ∑ ∑ ∑  (3.7) 

 ( ) ( ) ( )'' ''x
R R i i i i

i i
T A f T a h T bσ = + +∑ ∑  (3.8) 

The constants in the above equations are specific to the reaction type for a given 

neutron energy and nuclide. Once the form of the temperature dependence of the 

functions if  and ih  is found, the constants in the above regression models can be 

determined by applying the actual Doppler broadened cross sections (i.e., Cullen's model) 

over a given range of temperature. 

For a given nuclide, cross sections at different resonance energy points show 

different temperature dependence. Therefore, the temperature dependence of the cross 

sections must be investigated by dividing the resonance energy range into several sub-

regions. In particular, we have partitioned a typical resonance cross section into three 

regions: (1) near the peak of the resonance, (2) mid-resonance, and (3) the wings of the 

resonance. These energy regions are depicted for a typical resonance in Figure 3.1.  

 

Figure 3.1. Energy regions for a typical resonance. 
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3.1.2 Broadened Cross Sections near the Peak of a Resonance 

In this region, Doppler-broadened cross sections decrease with increasing material 

temperature. The spacing of energy grid points is chosen to satisfy a specified fractional 

tolerance criterion. The fractional tolerance is defined as the relative difference in cross 

sections between the values of actual and linearly interpolated cross sections at mid-

points of successive energy grid intervals. (A more detailed explanation is given in 

Section 3.2.)  Figure 3.2 shows the behavior of the Doppler-broadened cross sections as a 

function of material temperature for U238 around the resonance peak energy at 6.674eV. 

The plots in Figure 3.2 were produced by the auxiliary Doppler code (ADC) which will 

be explained in detail in Section 3.3. 

 

Figure 3.2. 238U
aσ  as a function of temperature near the peak of a resonance. 

Near the peak of the resonance, Rr EE ≅ therefore ( )2 0r R Tx E E /= − Γ ≈ and a 

Taylor series expansion of Rψ  and Rχ  in the variable z (which is defined below) is 
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appropriate when x is small. The variable x  can be interpreted as the distance from the 

peak of a resonance for a given neutron energy and nuclide. The temperature dependent 

terms in the resultant expansion can then be calculated using the actual broadened cross 

sections. This has been found to yield acceptable results for the least number of terms in 

the expansion. The resultant expansions may be expressed as follows: 

 ( ) ( ) ( ){ }2Re exp
2

R
R z z erfc zξψ

π
= −  (3.9) 

 ( ) ( ) ( ){ }2Im exp
2

R
R z z erfc zξχ

π
= −  (3.10) 

where ( ) 2/Rixiz ξ+= .  Taylor series expansions for the exponential and complementary 

error function are given by[35]: 

 ( )
2

2

0
exp

!

n

n

z
z

n

∞

=

=∑  (3.11) 

 ( )
2 1

0

( 1)21
!(2 1)

n n

n

z
erfc z

n nπ

+∞

=

−
− = +

+∑  (3.12) 

Since ( ) 2/14/ TkEA RTR Γ=ξ , z can be written as ( ) /R Rz b c i T= + for a given neutron 

energy and nuclide where Rb  and Rc  are constants. Therefore, we have  

 ( )
2

,
/2

1
Re exp R iR R R R R

R i
i

da b c i b c iT erfc
TT T T

ψ
∞

=

⎧ ⎫⎡ ⎤+ +⎛ ⎞ ⎛ ⎞⎪ ⎪= − =⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑  (3.13) 

 ( )
2

,
/2

1
Im exp R iR R R R R

R i
i

ea b c i b c iT erfc
TT T T

χ
∞

=

⎧ ⎫⎡ ⎤+ +⎛ ⎞ ⎛ ⎞⎪ ⎪= − =⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑  (3.14) 

where Rd  and Re  are constants. Therefore, ( ) /2
, / i

i R if T d T=  and ( ) /2
, / i

i R ih T e T= . 

Inserting  ( )if T  and ( )ih T into Eq. (3.8): 
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 ( ) ,~
, , /20

R ipeak
tot cap fis ii

k
T

T
σ

∞

=
= ∑  (3.15) 

where Rk  is constant. 

3.1.3 Broadened Cross Sections near the Resonance Wings 

In this region, Doppler-broadened cross sections increase with increasing material 

temperature. Energy grid points are widely spaced due to the slowly varying behavior of 

the cross sections as a function of energy. Figure 3.3 presents the behavior of the 

Doppler-broadened cross sections as a function of material temperature near the U-238 

resonance wings at 6.674 eV. The plots in Figure 3.3 were produced by ADC.  

 

Figure 3.3. 238U
aσ  as a function of temperature near the resonance wings. 

Near the wings of the resonance, 2 r R TE E− > Γ  therefore 

( )2 1r R Tx E E /= − Γ >>  and an asymptotic series expansion of Rψ  and Rχ  in z is 
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appropriate when x is large, since a Taylor series expansion will converge very slowly, 

requiring many terms to obtain the same accuracy. The temperature dependent terms in 

the resultant expansion can then be calculated using the actual broadened cross sections 

as done earlier for energies near the peak of the resonance. This has been found to yield 

acceptable results for the least number of terms in the expansion. It should be noted that 

asymptotic expansions of ( ) ( )2exp z erfc z−  are not convergent. This behavior is 

characteristic of the asymptotic expansion. However, only the first several terms are 

enough to obtain reasonable accuracy[35]. The resultant expansions may be expressed as 

follows: 

 ( )
2

2
0

( 1) (2 )!
!(2 )

z n

n
n

e nerfc z
n zz π

− ∞

=

−
− = − ∑  (3.16) 

This equation can be rewritten as: 

 ( ) ( )2
2

0

1 ( 1) (2 )!exp
!(2 )

n

n
n

nz erfc z
n zz π

∞

=

−
− = − ∑  (3.17) 

Since ( ) 2/14/ TkEA RTR Γ=ξ , z can be written as ( ) /R Rz b c i T= + for a given neutron 

energy and nuclide where Rb  and Rc  are constants. Therefore, we have  

 ( )
2

,
1

Re exp iR R R R R
R R i

i

a b c i b c iT erfc d T
T T T

ψ
∞

=

⎧ ⎫⎡ ⎤+ +⎛ ⎞ ⎛ ⎞⎪ ⎪= − =⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑  (3.18) 

 ( )
2

,
1

Im exp iR R R R R
R R i

i

a b c i b c iT erfc e T
T T T

χ
∞

=

⎧ ⎫⎡ ⎤+ +⎛ ⎞ ⎛ ⎞⎪ ⎪= − =⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑  (3.19) 

where Rd  and Re  are constants. Therefore, ( ) ,
i

i R if T d T=  and ( ) ,
i

i R ih T e T= . Inserting  

( )if T  and ( )ih T into Eq. (3.8): 
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 ( )~
,, ,

0

wings i
R itot cap fis

i
T l Tσ

∞

=
= ∑  (3.20) 

where Rl  is constant. 

3.1.4 Broadened Cross Sections near the Mid-Resonance 

In this region, Doppler-broadened cross sections first increase and then decrease 

with increasing material temperature. Figure 3.4 presents the behavior of the Doppler-

broadened cross sections as a function of material temperature for the mid-resonance 

region of the U-238 resonance at 6.674 eV. The plots in Figure 3.4 were produced by 

ADC. 

 

Figure 3.4. 238U
aσ  as a function of temperature near the mid-resonance. 

In this energy range, one obtains moderate values of ( ) 1/2 ≈Γ−= TRr EEx  

therefore z is also of moderate size, and there is no clear physical basis to choose a 

particular series representation in z that yields a functional expression in terms of T. 
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Therefore a computational investigation was performed for representative energy grid 

points in this region to identify the best polynomial representation among several models. 

The form of temperature dependence in each polynomial model is based on the paper by 

Trumbull[12] which was summarized  in Section 2.1.4. Therefore linear, square-root and 

logarithmic models in temperature were analyzed. To be consistent with the final form of 

the combined regression model which can be found in the next Section 3.1.5, 12th order 

(13 terms) polynomial models were chosen. The SSE (sum of squares error) and RMSE 

(root mean square error) error terms were monitored to find the best fit for the range of 

resonance cross sections in this region. The results are presented in Table 3.2. 

Table 3.2. Comparison of Different 12th–Order Regression Models. 

 6.630eV 6.619eV 6.609eV 
 SSE RMSE SSE RMSE SSE RMSE 

 ( )
12

0

n
n

n
m T

=
∑  1.23E+04 1.99E+00 8.98E+03 1.70E+00 1.72E+04 2.35E+00

( )
12

/2

0

n
n

n
m T

=
∑  2.94E+00 3.07E-02 2.66E+01 9.25E-02 2.68E+01 9.29E-02 

( )
12

0
ln n

n
n

m T
=
∑  3.13E+08 3.17E+02 4.12E+08 3.64E+02 4.36E+08 3.75E+02

( )
12

/2

0
ln n

n
n

m T
=
∑  2.94E+08 3.07E+02 4.07E+08 3.62E+02 3.70E+08 3.45E+02

 

As can be seen in Table 3.2, the second polynomial representation of the U-238 

absorption cross section as a function of T  provides the best accuracy among the others 

for a fixed number of terms.  

 ( )~ /2
, ,

0

mid res i
tot cap fis i

i
T m Tσ

∞−

=
≅ ∑  (3.21) 
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The physical basis of this observation can be explained as follows: It is already 

known that, as temperature increases, the width of a given resonance increases with T  

and this is observed near the mid-resonance region where the resonance width is defined.  

3.1.5 Combined Doppler Broadening Model 

Cross sections for the three energy regions (near the peak of the resonance, mid-

resonance, and resonance wings) for any resonance based on the Adler-Adler multi-level 

representation was found in the previous sections. The mid-resonance representation in 

Eq. (3.21) already involves the temperature dependent terms found for the wings in Eq. 

(3.20). Therefore, the mid-resonance and resonance wing models can be combined into 

one model: 

 ( )~ , /2
, ,

0

mid res wings i
itot cap fis

i
T n Tσ

∞−

=
= ∑  (3.22) 

So cross sections as a function of temperature can be summarized by the 

following two series representations for the three regions: 

 ( ) ,~
, , /20

R ipeak
tot cap fis ii

k
T

T
σ

∞

=
= ∑ ,  ( )~ , /2

, ,
0

mid res wings i
itot cap fis

i
T n Tσ

∞−

=
= ∑  (3.23) 

A final numerical study was performed to find a single regression model by 

combining two different series solutions in Eq. (3.23) so that cross sections over all three 

energy ranges can be calculated accurately with a modest computing cost.  The most 

challenging resonance absorber, U-238, was chosen for the numerical investigation. A 

numerical investigation was performed by combining different numbers of terms from 

each representation in Eq. (3.23), at the same time keeping the total number of terms 

constant in each outer iteration (outer iteration=total number of terms=10, .. 15) and 
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providing excellent accuracy over all regions. Maximum relative error in absorption cross 

section over the entire energy interval was monitored to decide the optimum functional 

representation of cross sections as a function of temperature. The following equation was 

found as a result of the numerical investigation described above: 

 ( )
6 6

/2
, , /2

1 1

ii
tot cap fis ii

i i

aT bT c
T

σ
= =

≅ + +∑ ∑  (3.24) 

where ai, bi, c are the constants of the above regression model and depend on the specific 

nuclide and type of reaction. The combined regression model was successfully tested 

against several other resonance absorbers including plutonium isotopes and fission 

products, indicating that the U-238 cross section was a good choice for fitting the 

regression model. 

The combined regression model requires pre-generated temperature dependent 

cross sections on an energy grid at every 1K to determine the constants ai, bi, c in Eq. 

(3.24) in order to satisfy a given fractional tolerance (FT), as discussed in the next 

section. However, the energy grid structure at different temperatures for a given nuclide 

needed to satisfy the FT will be different, resulting in disparate energy grids for the same 

nuclide. This will not allow a consistent regression in temperature for all energies, so a 

"union" energy grid is constructed for the temperature range of interest and for each 

nuclide, allowing the combined regression model to determine the constants over the 

temperature range of interest.  

3.2 Construction of the Union Energy Grid 

Continuous energy Monte Carlo codes require nuclear cross sections on a 

sufficiently fine energy grid structure to allow linear interpolation of cross sections within 
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a given tolerance. The input parameter used by the nuclear data processing (NDP) codes 

to construct the energy grid is called the Fractional Tolerance (FT). It is defined as the 

relative difference in cross sections between the values of actual and linearly interpolated 

cross sections at mid-points between successive energy grid points. 

 

 

Figure 3.5.  FT calculation for a given energy grid interval. 

 Figure 3.5 depicts a typical FT calculation where ( )1 2 / 2E E E= +  is the mid-

point energy and  ( )1 2 / 2x x x
linσ σ σ= +  is the corresponding linearly interpolated cross 

section.  

In order to construct the 0K energy grid, the corresponding cross section data 

1 2,x xσ σ , and x
exactσ  are calculated based on resonance parameters by using different 

multi-level representations (e.g. Multilevel Breit-Wigner, Reich-Moore, Adler-Adler, 

etc…) in NJOY. Then the following check is performed if an additional energy grid point 

is required to accurately represent the cross sections between energy grid points within a 

given FT: 

 
x x
exact lin

x
exact

FT
σ σ

σ

−
>  (3.25) 
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If Eq. (3.25) is satisfied (i.e., the FT criterion is not satisfied), a new energy grid point E  

is added halfway between 1E  and 2E . This process is performed in a cyclic fashion until 

convergence is reached over the entire energy grid for a given nuclide. 

When Doppler broadened cross sections are needed, the exact Doppler 

broadening Eq. (2.1) is used to calculate cross sections ( )x
exact Tσ  at the elevated 

temperature T based on the previously generated 0K nuclear data. An investigation was 

carried out to determine the number of energy grid points needed by NJOY at different 

elevated temperatures as a function of FT, using 0K data as the base set of cross sections. 

Results are given in Table 3.3 for U-238. 

Table 3.3. Number of energy grid points as a function of temperature and FT for U238. 

 
 Fractional Tolerance 
  0.1% 0.3% 0.5% 1.0% 2.0% 3.0% 4.0% 5.0% 

T (K)  Number of Energy Grid Points 
0 193131 122935 100646 76856 57347 49659 44955 41676 
77 103600 70240 59900 50049 43716 41408 40250 39514 

293.6 85247 60192 52352 44810 39965 38089 37104 36494 
500 77676 55786 49097 42506 38188 36509 35565 35006 

1000 67437 50226 44773 39625 35957 34593 33810 33282 
1500 62302 47227 42557 38000 34881 33616 32956 32490 
2000 58735 45153 41098 36957 34109 32999 32384 31918 
2500 56248 43774 39933 36177 33586 32543 31948 31560 
3000 54282 42707 39051 35557 33208 32192 31661 31314 
 

Figure 3.6 shows the energy grid structure for two temperature points of the U-

238 resonance at 20.871eV. Two extreme temperature points were chosen to show the 

variation of energy grid points clearly in different portions of a given resonance. As 

shown in Figure 3.6, when the temperature increases, the number of the energy grid 

points to satisfy a given FT decreases near the peak of a resonance as it smooths out, 

resulting in a coarser energy grid structure. On the other hand, as shown in Figure 3.6, 
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when the temperature increases, more energy grid points are required for the middle and 

wings of a resonance to satisfy the same FT, yielding a finer energy grid structure. 

Although the overall effect is usually to decrease the final number of energy grid points 

with increasing temperature, the structure of the energy grid to satisfy a given FT 

depends on temperature, nuclide, and energy range within the resonance, Therefore, as 

explained above, the construction of a union energy grid is required in order to use the 

combined regression model over the entire temperature range of interest for a given 

nuclide. 

 

Figure 3.6.  Evolution of energy grid structure with temperature. 

Therefore, a union energy grid was developed to allow one to calculate the 

constants of the combined regression model that satisfy a single given FT for the 

temperature range of interest [77K-3200K] for U-238. For simplicity, only the absorption 

cross section was chosen to illustrate the methodology. In reality, this methodology 
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should include all three cross sections ( capσ , fisσ , and scatσ ) at the same time to test the 

FT at every T between 77K and 3200K to determine the final union grid. 

The algorithm depicted in Figure 3.7 was implemented to add new points to the 

77K energy grid to find a union energy grid for the entire temperature range of interest 

[77K-3200K]. 

 

Figure 3.7. Algorithm to construct the union energy grid. 

In Figure 3.7, new energy grid points were continuously added to the original grid 

at 77K until the convergence in FT was reached at every energy interval for the 

temperature range of interest. In line 1, new cross sections were calculated by Eq. (2.1) at 

the middle of the successive energy grid points at every T between 77K and 3200K. They 

are then compared with the linearly interpolated cross section at the same energy grid 

point for the same temperature range of interest [77K-3200K]. In this case, the cross 

sections, at least for one of the temperature points, were not within the given FT, so a 
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new energy point was added to the original grid, marked with a red line, as can be seen in 

line 2. The energy grid vector is updated automatically when a new point is added.  In 

lines 2 and 3, the same methodology was applied but the convergence in FT, at least for 

one of the temperature points, was not reached so additional energy points were added. In 

line 4, it was found that the first energy interval converged therefore the energy grid 1, 

marked with brown box, was recorded in a separate vector and deleted from the energy 

grid vector. The iteration is performed until one energy grid point is left in the energy 

grid vector. The energy grid points, recorded in the separate vector, represent the final 

union energy grid for the given nuclide and temperature range of interest.  

However, the union energy grid, described above, cannot be generated by cross 

section processing codes such as NJOY. Therefore, a c++ code, named Auxiliary Doppler 

Code (ADC), was implemented to determine the union energy grid and the corresponding 

cross sections for a temperature range of interest and a given nuclide. The ADC code was 

tested against NJOY at different reference temperature points for several resonance 

absorbers and it was found that ADC is exactly (within 8 significant figures) consistent 

with NJOY. The ADC code is required to preprocess the 0K cross section data for the 

temperature range of interest to find a union energy grid and the corresponding cross 

sections for a given nuclide. The ADC code will be explained in detail in the next section.  

It should be noted that the number of energy grid points at a given temperature 

can become very large for some nuclides that have narrow, high-energy resonances. This 

problem was solved in NJOY as follows. If the contribution to the resonance integral 

from any one interval is small, the interval will be declared converged. This residual 

resonance integral error was set at 0.001 barns in NJOY for a FT of 0.1%. Since 
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important resonance integrals vary from a few barns to a few hundred barns, this yields 

an error in the resonance integral of less than 0.1%. This methodology was also 

implemented in ADC to end up with a reasonable file size.  

Table 3.4.  Union energy grid of 238U
absσ  for 77K-3200K. 

 # of Union Grid Points (FT = 0.1%) 

ΔT (K) Res. Int. Err. = 0.001 b Res. Int. Err. = 0.0001 b Res. Int. Err. = 0 

100 109,134 148,366 360,129 

50 109,154 148,614 363,513 

25 109,159 148,692 364,525 

 

The original energy grid of 238U
absσ  has 103,600 points at 77K to satisfy an FT of 

0.1%. In Table 3.4, when NJOY’s default resonance integral error (0.001b for an FT of 

0.1%) is used, the increase in the number of grid points was found to be around 5500. A 

further decrease of resonance integral error to 0.0001b leads to a higher number of energy 

grid points. If the resonance integral error check is not performed (see the last column in 

Table 3.4), the number of union energy grid points can be several times larger than at 

77K.  

3.3 Auxiliary Doppler Code (ADC) 

3.3.1 Discretization of Doppler Broadening Equation 

According to Cullen[4], Eq. (2.1) can be simplified for ( )2,Tyσ  as follows:  

 ( ) ( ) ( )* *
2 2 2, , ,y T y T y Tσ σ σ= − −  (3.26) 
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 ( ) ( ) ( )2* 2
2 12

0

1 1, , expy T x x T x y dx
y

σ σ
π

∞

⎡ ⎤⎡ ⎤= − −⎣ ⎦ ⎣ ⎦∫  (3.27) 

Zero temperature cross sections were tabulated as a function of energy with linear-linear 

interpolation. So ( )1,Tyσ  can be written in a discretized form as follows; 

 ( ) ( ) ( )2 2
1 1,i i i ix T T s x xσ σ= + −  (3.28) 

where is  is defined as: 

 ( ) ( )1 1 1
2 2

1

i i
i

i i

T T
s

x x
σ σ+

+

−
=

−
 (3.29) 

Inserting Eq. (3.28) into Eq. (3.27) and replacing the integral with a sum and letting z=x-

y, we have: 

( ) ( ) ( ) ( )
1 1

2 4* 2 2 2
2 12

0

1 1, exp exp
i i

i i

x y x yN

i i i i
i x y x y

y T T s x z y z dz s z y z dz
y

σ σ
π

+ +− −

= − −

⎧ ⎫⎪ ⎪⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − + − + + −⎨ ⎬⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎪ ⎪⎩ ⎭

∑ ∫ ∫  (3.30) 

Eq. (3.30) can be rewritten in the following form; 

 ( ) ( ){ }* 2
2 1

0
,

N

i i i i i i
i

y T T s x A s Bσ σ
=

⎡ ⎤= − +⎣ ⎦∑  (3.31) 

where iA  and iB  are defined as follows; 
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1

2 2
2

1 1 exp
i

i

x y

i
x y

A z y z dz
y π

+ −

−
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1

4 2
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i
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Letting  

 ( ) ( ) ( )2
1

1, , exp
b

n
n i i n

a

H x y x y H a b z z dz
π+− − = = −∫  (3.34) 
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iA  and iB  are rewritten as; 

 ( ) ( ) ( )2
2 1 02

1 , 2 , ,iA H a b yH a b y H a b
y

⎡ ⎤= + +⎣ ⎦  (3.35) 

 ( ) ( ) ( ) ( ) ( )2 3 4
4 3 2 1 02

1 , 4 , 6 , 4 , ,iB H a b yH a b y H a b y H a b y H a b
y

⎡ ⎤= + + + +⎣ ⎦  (3.36) 

where ( ) ( ) ( )bFaFbaH nnn −=,  are calculated based on the F functions defined as 

follows: 

 ( ) ( )21 expn
n

a

F a z z dz
π

∞

= −∫  (3.37) 

 ( ) ( )0
1
2

F a erfc a=  (3.38) 

           ( ) ( )1
1 exp

2
F a a

π
=                  (3.39) 

 
The F functions obey the following recurrence relation: 

 ( ) ( ) ( )1
2 1

1
2

n
n n

nF a F a a F a−
−

−
= +  (3.40) 

Extra attention must be paid when )( ba −  gets small because ( )baHn ,  loses its 

significance. Therefore ( )baHn ,  must be calculated with a Taylor series expansion:  

 ( ) ( ) ( )' ( ), ... ...
1! !

m
m

n n n
b a b aH a b G a G a

m
− −

= + + +  (3.41) 

 ( )
1

2 2
1 [ exp( )] exp( ) ( )

m
m n m
n nm

dG x x x x P x
dx

−

−= − = −  (3.42) 

 1 1( ) 2 ( )m m m
n n n

dP P x xP x
dx

− −= −  (3.43) 

 1 n
nP x=  (3.44) 
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Since the error function calculation was expensive, these relations were computed 

up to only 6 accurate decimal digits when the original broadening module was 

implemented in NJOY. In our ADC code, error functions are computed with 16 digit 

accuracy, eliminating the need for the Taylor series expansion when  )( ba −  gets small. 

This makes ADC several times faster than the BROADR module of NJOY, while 

preserving the same accuracy.  

 For ( )2
* ,Tyσ , the exponential function in Eq. (3.27) limits the significant part 

of the integral to the range: 

ββ
44

−<<− VVV r    44 +<<− yxy    44 <<− z  

 The limits of the summation in Eq. (3.31) are shown in Figure 3.8 for 

( )2
* ,Tyσ . Cross sections between y-4 and y+4 are utilized in Eq. (3.31) to Doppler 

broaden the cross section y located at the grid point xi as shown in Figure 3.8. 

 

Figure 3.8. Integral limits for ( )2
* ,Tyσ . 

Similarly, for ( )2
* ,Ty−σ , the exponential function in Eq. (3.27) limits the 

significant part of the integral to the range: 

β
40 <≤ rV        40 <≤ x  
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 The limits of the summation in Eq. (3.31) are shown in Figure 3.8 for 

( )2
* ,Ty−σ . Cross sections between 0 and 4 are utilized in Eq. (3.31) to Doppler broaden 

the cross section y located at the grid point xi as shown in Figure 3.9. 

 

 

Figure 3.9. Integral limits for ( )2
* ,Ty−σ . 

where x and y are velocity like terms which were defined in Eq. (2.2) and Eq. (2.3), 

respectively. Doppler broadening of the cross section located at the grid point xi requires   

 One needs to pay attention when broadening the cross sections close to the end 

points of the energy grid. As shown in the following Figure 3.10, cross sections may not 

be known in the range before y-4 or before y+4 and will need to be approximated in order 

to be integrated. 

 

 

Figure 3.10. Low and high energy approximations. 
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3.3.1.1  Low Energy Approximation 

 When the tabulated low energy cross sections end before reaching the lower 

bound y-4,  the cross sections are approximated as v/1  up to zero to broaden them at y. 

This is consistent with the theoretical low energy dependence of most nuclear cross 

sections: 

 ( )1, Cx T
x

σ =  (3.45) 

where ( )111 ,TxxC σ= . Inserting Eq. (3.45) into Eq. (3.27) and letting z=x-y: 

 ( ) ( )
1

* 2
2 2

1 1, exp
x y

y

y T z y C z dz
y

σ
π

−

−

⎡ ⎤⎡ ⎤= + −⎣ ⎦ ⎣ ⎦∫  (3.46) 

 ( ) ( ) ( )*
2 1 1 1 12, , ,Cy T H y x y yH y x y

y
σ ⎡ ⎤= − − + − −⎣ ⎦  (3.47) 

3.3.1.2 High Energy Approximation: 

 When the high energy cross sections are not known before reaching the upper 

bound y+4,  the cross sections are assumed to be constant beyond the last data point: 

 ( )1 1,Nx T Cσ + =  (3.48) 

Inserting Eq. (3.48) into Eq. (3.27) and letting z=x-y: 

 ( ) ( )2* 2
2 2

1 1, exp
Nx y

y T z y C z dz
y

σ
π

∞

−

⎡ ⎤ ⎡ ⎤= + −⎣ ⎦⎣ ⎦∫  (3.49) 

 ( ) ( ) ( ) ( )* 2
2 2 1 32, 2N N N

Cy T F x y yF x y y F x y
y

σ ⎤⎡= − + − + −⎣ ⎦  (3.50) 
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3.3.2  Comparison of ADC with NJOY99 

Absorption cross sections were Doppler broadened with ADC and results were 

compared against NJOY at different material temperatures for U-238, Pu-239, Xe-135 

and Sm-149 at the peak of the most important resonance energy grid points. Results are 

presented in Table 3.5.  

Table 3.5. Comparison of aσ  between NJOY and ADC. 

 U-238 (6.674eV) U-238 (20.871eV) U-238 (36.682eV) 
Temp 

(K) NJOY ADC NJOY ADC NJOY ADC 

77 1.148987E+04 1.148987e+04 1.152135E+04 1.152135e+04 8.737500E+03 8.737498e+03

293.6 7.185715E+03 7.185712e+03 6.926944E+03 6.926941e+03 5.458244E+03 5.458242e+03

1100 4.152143E+03 4.152141e+03 3.907597E+03 3.907596e+03 3.151735E+03 3.151734e+03

1300 3.857621E+03 3.857619e+03 3.622438E+03 3.622436e+03 2.927983E+03 2.927982e+03

 PU-239 (0.2945eV) XE-135 (0.0253eV) SM-149 (0.0959eV) 
Temp 

(K) NJOY ADC NJOY ADC NJOY ADC 

77 2.234414E+03 2.234414e+03 2.640631E+06 2.640631e+06 1.273629E+05 1.273629e+05

293.6 2.194571E+03 2.194571e+03 2.652683E+06 2.652682e+06 1.246251E+05 1.246250e+05

1100 2.074636E+03 2.074636e+03 2.697482E+06 2.697482e+06 1.164763E+05 1.164763e+05

1300 2.049774E+03 2.049774e+03 2.708572E+06 2.708572e+06 1.148073E+05 1.148073e+05

 

As can be seen from Table 3.5, ADC can calculate the Doppler broadened cross 

sections with excellent accuracy. Absorption cross sections, computed by ADC, were 

compared against NJOY at the VHTR average fuel temperature of 1300K and results are 

shown in Figure 3.11 for the U238 resonances at 6.674eV, 20.871eV, and 36.682eV 

resonances of U238 and the PU239 resonance at 0.28 eV. U238 and Pu239 are two of the 

strongest and most important resonance absorber nuclides for thermal reactors. It was 

found that the maximum relative difference in absorption cross sections over the entire 

energy grid points is less than 1x10-5% between NJOY and ADC. 
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Figure 3.11. Comparison of Resonance Cross Sections between NJOY and ADC. 

The comparison between ADC and NJOY was extended to cover resonances of 

U-238 in the keV range. Since these resonances are very closely spaced, they start 

interfering with each other when Doppler broadening of the cross sections is performed 

and must be analyzed carefully. Figure 3.12 shows two closely spaced U235 resonances 

in keV range where they overlap with increasing material temperature due to the Doppler 

broadening of the cross sections.  
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Figure 3.12. Resonance overlapping due to Doppler broadening. 

3.4 Numerical Analysis of the Regression Model 

The combined Doppler broadening regression model equation developed in the 

previous section was applied to the discrete temperature dependent U238 absorption 

cross section data generated by ADC at every 1K interval between 77K and 3200K. 

Constants of the model equation were adjusted by least squares linear regression.  

In regression modeling ( ) ( )∑
=

=
N

k
kk TfaT

1

σ , the term ‘linear’ does not mean that the 

function of T itself is linear, but that the model dependence on its parameters ak is linear. 

Our model equation has N=13 constants to be adjusted by Least Squares linear 

regression. In addition, the regression model was compared with the equivalent 

polynomial regression model of degree N-1.  
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Figure 3.13 shows the evolution of U238 absorption cross sections as a function of 

energy at room temperature, T=293.6K. The combined regression model was tested in 

both the eV and keV energy ranges to ensure that resonance overlapping effects are 

accounted for.  

 

Figure 3.13. 238U
aσ as a Function of Energy. 

3.4.1 Maximum Relative Error Analysis 

After applying our regression model equation to the discrete temperature 

dependent U238 absorption cross section data at every energy grid point, the maximum 

relative differences (%) in cross sections were calculated: 

 Max. Relative Diff. (%) = 
( ) ( )

( )[77 3200 ] 100
Exact Model
a a

T K K Exact
a

T T
MAX x

T
σ σ

σ∈ −

⎧ ⎫−⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

 (3.51) 
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Results were compared with the equivalent simple polynomial regression model 

of degree N-1 as shown in Figure 3.14.  

 

Figure 3.14. 238U
aσ as a function of energy. 

It was found that our regression model equation can accurately calculate the 

temperature dependent cross section using N=13 constants adjusted by least squares 

linear regression. For comparison, an equivalent polynomial regression model of degree 

N-1 was used resulting in maximum relative differences around 3-4% for the resonances 

in eV region and up to 100% in the keV region as shown in Figure 3.15. 
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Figure 3.15. Maximum relative differences (%) for 238U
aσ  at selected resonances. 

3.4.2 Residual Scatter Analysis 

Residuals for U238 absorption cross sections at selected energy grid points of 

important resonances were calculated for temperatures in the range 77K and 3200K by 

applying our linear regression model equation. The main reason to compute the residuals 

in cross sections was to observe the change of error with temperature. Results were 

compared with the equivalent simple polynomial regression model of degree N-1 as 

shown in Figure 3.16. The residual error is defined as follows:  

 Residual error = ( ) ( )Exact Model
a aT Tσ σ−  (3.52) 

As seen in Figure 3.16a, the maximum residual error in 238U
aσ  was calculated as 

6x10-7 barns with our regression model at 77K. Residuals in 238U
aσ  decrease down to 

1x10-9 barns as the temperature increases. With the equivalent polynomial model, the 
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residuals change from 5 to 35 barns for those selected energy grid points of important 

resonances as shown in Figures 3.16b, 3.16c, and 3.16d.  

 

Figure 3.16. Residual scatter for 238U
aσ at selected resonance energy grid points. 

3.4.3 Goodness of the Linear Regression Model 

Another means of comparison is the goodness of the proposed combined 

regression model as measured by  the SSE and RMSE over a given temperature range. 

The SSE statistic measures the total deviation of the response values from the fit to the 

response values. It is also called the summed square of residuals. The RMSE statistic is 

also known as the fit standard error or the standard error of the regression. The SSE and 

RMSE statistics are defined as: 

 ( ) ( )
23200

77

Exact Model
a a

T
SSE T Tσ σ

=

⎡ ⎤= −⎣ ⎦∑  (3.53) 
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 SSERMSE
v

=  (3.54) 

where mnv −=  is the residual degrees of freedom, n is the number of response values, 

and m is the number of fitted coefficients estimated from the response values. The 

quantity v  indicates the number of independent pieces of information involving the n 

data points that are required to calculate the sum of squares. For example, for a 

temperature range of 77K-3200K and 13 constants in the model equation, v =(3200-

77+1)-13=3111. 

Plots of SSE and RMSE near selected important resonances of 238U
aσ  are shown 

in Figure 3.17.  It can be seen that both SSE (~1x10-11) and RMSE (~6x10-8) are very 

close to zero indicating an outstanding fit of the data to the combined regression model. 

 

Figure 3.17. SSE and RMSE around selected important resonances of 238U
aσ . 
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3.5 Timing Analysis 

A Monte Carlo code was implemented in c++ to determine the computing cost of 

the combined regression model to calculate broadened cross sections at the energy grid 

points during the Monte Carlo random walk. This Monte Carlo code is based on well-

known methods to sample from the free gas scattering kernel. It was observed that the 

additional computing cost to evaluate the three sets of cross sections ( tσ , aσ  and fσ ) at 

a collision site by the combined regression model Eq. (3.24) is less than 1%, compared 

with the conventional approach where cross sections are linearly interpolated between the 

energy grid points. So the negligible overhead to perform on-the-fly Doppler broadening 

can be understood by noting that on-the-fly broadening requires an evaluation of 13 terms 

in a summation while conventional cross section determination requires linear 

interpolation between the given grid points. While this difference is not negligible, the 

computational effort to determine cross sections is relatively small compared to the effort 

to carry out the random walk of the neutron, including distance to boundary calculations, 

collision processing, and tallying. For that reason, the overhead is small for our test code 

and is likely even smaller for a production code with many other options such as 

MCNP5. 

3.5.1 Monte Carlo Code 

The thermal distribution of nuclides in a medium can be represented with the 

Maxwellian Gas model[4,36,37]. Although this model is not exact, it was shown by Lamb[38] 

that many materials of interest in reactor physics calculations can be treated as an ideal 

gas at an effective temperature. As the temperature increases, the crystalline effects 
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become less important so the model gets better. Since the purpose of this effort is to 

obtain reasonable estimates of computational efficiency for a realistic Monte Carlo 

simulation code, this thermalization model is sufficient. 

3.5.1.1 Thermal Motion of Target Nuclide 

The following analysis is based on previously published works[36-37]. The 

distribution of the nuclide energy is given as: 

 ( )
( )3/2

2 exp t
t t

EM E E
kTkT

π
π

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (3.55) 

where k is the Maxwell-Boltzmann constant, Et is the target nuclide energy and T is the 

material temperature. When the free gas thermal treatment is applied to sample the 

motion of the target atom in the medium, the reaction rate can be expressed as; 

 ( ) ( ) ( ),
2t t s rel rel t t

dR v dv d N v v M E dE μμ μ σ⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦  (3.56) 

where tv  is the target velocity, relv  is the relative velocity between target nuclide and 

incoming neutron, N is the number density of the target nuclide in the material region and 

( )s relvσ  is the scattering cross section at relative energy. 

Historically, the zero temperature scattering cross sections are assumed to be 

almost independent[2,36,37] of the incoming neutron energy. In practice, the scattering 

cross section is a slowly varying function of relative velocity for light nuclides. However, 

they can vary rapidly with relative velocity for heavy nuclides but the moderating effect 

of scattering is small in that case. Therefore, it is assumed that the variation of ( )vsσ  with 

target velocity can be ignored. (This is sufficient for the purpose of our test Monte Carlo 

code but recent research[39,40,41] has pointed out the importance of strongly varying 
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scattering cross sections in the resonance range of heavy nuclides. This topic is beyond 

the scope of this thesis.) With this assumption the total reaction rate can be written as 

 ( ) [ ] ( ),
2t t s rel t t

dR v dv d N v M E dE μμ μ σ ⎡ ⎤= ⎣ ⎦  (3.57) 

( )tM E  can be easily transformed into ( )tM v  with the help of the Jacobian 

transformation: 

 ( )
3/2 2

24 exp
2 2

t
t t

AvAM v v
kT kTπ

⎛ ⎞⎡ ⎤= −⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠
 (3.58) 

The reaction rate can be rewritten as:   

 ( ) [ ] ( )3 2 2 24, exp
2t t s rel t t t

dR v dv d N v v v dE μμ μ σ β β
π

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
 (3.59) 

where  

 
1/2

1/22 2 2 ,
2rel n t n t n t

Av v v v v v v
kT

μ β ⎛ ⎞⎡ ⎤= − = + − = ⎜ ⎟⎣ ⎦ ⎝ ⎠
 (3.60) 

Integrating R(vt, μ) over μ and inserting x=βνt and a=βνn, we have;  

 ( ) ( ) ( )3 3 22 exp
3

sN dxR x dx a x a x x x
a
σ

βπ
⎡ ⎤= − − − −⎣ ⎦  (3.61) 

Integrating R(x) over x, we obtain; 

 ( ) ( ) ( )2
2

0

1 11 exp
2

sN aR R x dx erf a a
a a

σ
β π

∞ ⎡ ⎤⎛ ⎞= = + + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫  (3.62) 

The Probability Density Function (PDF) for x  is calculated by ( ) /R x dx R : 

 ( )
( ) ( )

( ) ( )

3 3 2

2
2

2

exp2
1 13 1 exp

2

a x a x x x dx
f x dx

a erf a a
a a

π
π

⎡ ⎤− − − −⎣ ⎦=
⎛ ⎞+ + −⎜ ⎟
⎝ ⎠

 (3.63) 
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The target velocity-like term x is sampled by using the above probability density 

function. The probability of having a velocity x decreases rapidly with increasing x due 

to the exponential term in Eq. (3.62) and becomes almost zero when sampled outside the 

range of [0,4].   

The PDF for the collision angles[42] that would produce the effective cross section 

for the given neutron and the target velocities is determined by selecting from the 

distribution for the cosine μ : 

 ( ) 1/22 2 2f C a x axμ μ⎡ ⎤= + −⎣ ⎦  (3.64) 

Then integrating over [-1,1]: 

 ( )
1

1

1f dμ μ
−

=∫  (3.65) 

The constant C is found as: 

 
( )3 3

3axC
a x x a

=
+ − −

 (3.66) 

So the PDF for the collision angle is;  

 ( )
( )

1/22 2

3 3

2
3

a x ax
f ax

a x x a

μ
μ

⎡ ⎤+ −⎣ ⎦=
+ − −

 (3.67) 

The cumulative PDF can be defined as: 

 ( ) ( )
1

F f d
μ

ξ μ μ μ
−

= = ∫  (3.68) 

So μ can be calculated analytically;  

 ( ) ( )
2/33 332 21

2
a x x a x a x a

ax
μ ξ⎡ ⎤⎡ ⎤⎡ ⎤= + − + + − − +⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

 (3.69) 
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where ]1,0[ξ . With these equations, one can sample the thermal motion of the target 

atom.  

3.5.1.2 Collision Site and Nuclide 

The distance to a collision site is sampled by[2]: 

 1 ln(1 )l
t

d ξ= − −
∑

 (3.70) 

where 0 1[ , ]ξ .  The kth nuclide is chosen as the collision nuclide[2] if  

 
1

1 1 1

k n k

ti ti ti
i i i

ξ
−

= = =

∑ < ∑ < ∑∑ ∑ ∑  (3.71) 

where ]1,0[ξ , n is the total number of nuclides at the collision site and ti∑  is the total 

cross section of the ith nuclide.  

3.5.1.3 Collision Kinematics 

The post collision neutron velocity in the LAB frame, wn,lab, must be calculated to 

complete the description of the MC code.    

 

                Pre-collision                                                                         Post-collision     

 

Figure 3.18. Collision kinematics. 
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Pre- and post- collision lines of travel were rotated through a random angle Ψn about 

Wcm or Vcm.  

 , .
, , , , 1

n lab t lab
n lab n cm cm n cm cm n cm

v AV
w w W w V w

A
+

= + = + = +
+

 (3.72) 

 , , 0n cm n cmw v= Ω  (3.73) 

where Ω0 is the post-collision unit vector. 

 , ,
, , , ,1 1

n lab t lab
n cm n lab cm n lab rel lab

v AV Av v V v v
A A

+
= − = − =

+ +
 (3.74) 

 2 2
, 2 , cosrel lab n t n t t tv v V v V μ μ θ= + − =  (3.75) 

Ω0=(u0,v0,w0) is isotropic in the center of mass frame. So; 

 0 12 1w ξ= −  (3.76)  

 2
0 0 21 cos(2 )u w πξ= −  (3.77)  

 2
0 0 21 sin(2 )v w πξ= −  (3.78)  

where 1[0,1]ξ  and 2[0,1]ξ . So we have; 

 . , 0 , ,
1

1 1 1n lab rel lab n lab t lab
A Aw v v V

A A A
= Ω + +

+ + +
 (3.79) 

 ( ) ,, ,
. 0 0

, , , ,

1 rel labn lab t lab
n lab n t

n lab n lab n lab n lab

vv VA xw A A
av v v v

δ
⎡ ⎤+ ⎡ ⎤= + Ω + = Ω + Ω + Ω⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

 (3.80) 

where Ωn and Ωt are the unit vectors in the vn and Vt directions. δ  is defined as: 

 
2 2

, , ,
2 2

, , ,

2 21 1rel lab t lab t lab t
t

n lab n lab n lab

v V V xx
v v v a a

μδ μ= = + − = + −  (3.81) 

Defining vector R which is parallel to wn,lab: 
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v
+
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 0 0 0, ,u t v t w t
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( )

2
' ' ' '

2
, , ,

1
u v wR R R Ru v w E E

R R R A
= = = =

+
 (3.84) 

3.5.2 Testing Monte Carlo (MC) Against MCNP5 

A simple test problem was setup to compare the accuracy and timing of our 

Monte Carlo code against MCNP5 in a homogeneous mixture of U-238 and H-1 at 

293.6K. A mono-energetic source at 10eV was placed in an infinite medium to populate 

the U-238 6.67eV resonance at room temperature. Number densities of H-1 and U-238 

are 5.9754x10-04 and 4.5536x10-02 respectively.  

Our Monte Carlo code was run by utilizing the on-the-fly regression model and 

direct use of the exact Doppler broadening Eq. (2.1) separately for the test problem 

summarized above. As can be seen from Figure 3.19, both MC codes agree with each 

other perfectly. 
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Figure 3.19. Flux Comparison between different broadening methods. 

However, the timing result for the exact broadening Monte Carlo case MC(Exact 

Broadening)  is substantially worse than other methodologies. Results are presented in 

Table 3.6. Utilization of the on-the-fly regression model MC(Regression Model)  yields 

almost the same timing result as MC(Linear Interpolation).   

Table 3.6. Computing time. 

 CPU Time (min) X-Sec Calculation 

MC(Linear Interpolation) 14.7 Linear Interpolation 

MC(Regression Model) 14.8 On-the-fly + Linear interpolation 
MC(Exact Broadening) 623.3 Exact 

 

3.6 Calculation of Total NDF Size 

In addition to fuel resonance absorbers, there are numerous fission products (FPs) 

that, as a result of their concentration and thermal neutron absorption cross section, have 

a strong poisoning effect on reactor operation. As the number of resonance absorbers 

increases during reactor operation, nuclear data must be loaded into memory at a given 
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temperature in order to perform the Monte Carlo calculations. Therefore, it is important 

to determine the list of resonance absorbers including FPs for a given uranium based fuel 

type to estimate the approximate size of the nuclear data that will be needed when 

accounting for Doppler broadening.  

The lattice physics burnup code, CPM3[32], was chosen to determine the list of 

resonance absorbers including FPs. The CPM-3 code package includes a nuclear data file 

derived from ENDF/B-VI that contains cross-section data and nuclear parameters in 97 

energy groups for over 300 nuclides. This nuclear data file includes extended data 

representations to perform resonance treatments and isotopic burnup calculations of fuel 

and fission product chains and burnable absorber materials. 

A simple VHTR[43] fuel compact cell with a homogeneous fuel region was set up  

in CPM3 as shown in Figure 3.20.  Reflected boundary conditions were specified on the 

boundaries of the hexagonal fuel compact cell. Room temperature (293.6K) was used in 

the fuel and moderator regions. The fuel compact radius is 0.6225cm and the fuel 

compact cell center-to-flat distance is 0.9398cm.   

 

Figure 3.20. VHTR Fuel Compact Cell. 

The material composition of the fuel compact cell is given in Table 3.7. The 

natural boron concentration in the moderator region was specified as 6.9 ppm.  
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Table 3.7. Material Composition. 

 
  CPM3 MCNP5   
Fuel Compact Weight (%) Number Density (at/cc) Density (g/cc) 

U-235 1.2689E+00 6.4621E-05 

1.9877E+00 
U-238 1.0978E+01 5.5203E-04 

C 8.0158E+01 7.9957E-02 
O 1.2360E+00 9.2499E-04 
Si 6.3587E+00 2.7206E-03 

Moderator Weight (%) Number Density (at/cc) Density (g/cc) 
C 9.9999E+01 8.7241E-02 

1.7384E+00 B-10 1.3743E-04 1.4369E-07 
B-11 6.0823E-04 5.7838E-07 

 
 

In CPM3, burnup steps were specified as accumulated exposure in GWd/MT-HM. 

Table 3.8 presents the burnup steps in GWd/MT-HM used for the CPM3 calculation.  

Table 3.8. Burnup Steps and Accumulated Exposure in GWd/MT-HM. 

Burnup 
Step 

GWd/MT-
HM 

Burnup 
Step 

GWd/MT-
HM 

Burnup 
Step 

GWd/MT-
HM 

Burnup 
Step 

GWd/MT-
HM 

0 0.0 10 1.0 20 12.5 30 55.0 
1 0.1 11 2.0 21 15.0 31 60.0 
2 0.2 12 3.0 22 17.5 32 65.0 
3 0.3 13 4.0 23 20.0 33 70.0 
4 0.4 14 5.0 24 25.0 34 75.0 
5 0.5 15 6.0 25 30.0 35 80.0 
6 0.6 16 7.0 26 35.0 36 85.0 
7 0.7 17 8.0 27 40.0 37 90.0 
8 0.8 18 9.0 28 45.0 38 95.0 
9 0.9 19 10.0 29 50.0 39 100.0 

 

At the end of each burnup step, the list of resonance absorber nuclides can be 

found for each fuel material region in the CPM3 output file. Table 3.9 presents all of the 

resonance absorber nuclides including FPs encountered during the time to reach 100 

GWd/MT-HM burnup. 
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Table 3.9. Resonance Absorber Nuclides. 

Resonance Absorber Nuclides for The Fuel Compact 
U234 U235 U236 U238  NP237 PU238 PU239 PU240 PU241 PU242 

AM241 AM242 AM243 CM242 CM244 KR83 ZR93 MO95 MO97 TC99 
RU101 RH103 RH105 PD105 PD108 AG109 CD113 IN115 XE131 XE135 
CS133 CS134 CS135 CE141 PR141 ND143 ND145 PM147 PM148 PM148m
SM147 SM149 SM150 SM151 SM152 EU153 EU154 EU155     
 

As a result of this burnup analysis, 48 resonance absorber nuclides were generated 

for the uranium based fuel. Then, NJOY99 was used to generate temperature dependent 

nuclear data files for each resonance absorber nuclide in Table 3.9 using a fractional 

tolerance of 0.1%. Two different temperatures, T=1100K and T=1300K, were used, 

corresponding to average fuel temperatures for PWR and VHTR configurations, 

respectively. Table 3.10 gives the total size of the cross section files needed for these 

isotopes for the union grid versus the conventional approach where cross sections for two 

temperatures are stored. Although the storage requirement for the union grid is higher, it 

provides cross sections for all temperatures in the range 77K-3200k, whereas the PWR 

and VHTR entries only provide cross sections for two temperatures. 

 
Table 3.10. Total Data File Size of 48 Resonance Absorber Nuclides for MCNP5. 

 

 Union Grid PWR VHTR 
 T=77K-3200K T=1100K T=1300K 

Total Size 
(MB) 195 132 129 

 

To estimate the amount of cross section storage needed for a realistic case, it was 

assumed that each fuel rod (or fuel compact) in the problem would have its own 

temperature. Using this assumption and the results in Table 3.10, Table 3.11 presents 
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these estimates for full core VHTR and LWR configurations. Table 3.12 shows the 

amount of storage needed for on-the-fly Doppler broadening, which does not depend on 

the number of fuel rods or fuel compacts. 

Table 3.11. Cross section storage for conventional Doppler broadening.  

 Assembly 
Type 

Size of 
NDFs/Road 

(MB) 

# of 
Assemblies

Fuel 
Rods / 

Assembly
Sym

# of 
Regression 
Constants 

Total 
size 
(GB) 

PWR Square 132 193 264 1/8 N/A 841 
VHTR Prismatic 129 1020 222 1/12 N/A 2,434

 
 
 
 

Table 3.12. Cross section storage for on-the-fly Doppler broadening. 

 Assembly 
Type 

Size of 
NDFs/Road 

(MB) 

# of 
Assemblies

Fuel 
Roads / 

Assembly
Sym

# of 
Regression 
Constants 

Total 
size 
(GB) 

PWR Square 195 N/A N/A N/A 13 2.5 
VHTR Prismatic 195 N/A N/A N/A 13 2.5 

 
 

As illustrated in Table 3.12, the new on-the-fly Doppler method is independent of 

the number of temperature regions for any given problem and the approximate total size 

of the 48 resonance nuclear data files, generated by CPM3, was calculated to be ~2.5GB, 

covering the temperature range of 77K-3200K. Furthermore, the accuracy in cross 

sections for all nuclides, energies, and temperatures was found to be in excellent 

agreement with NJOY when the proposed regression model was used. Moreover, the 

storage required to perform the same analysis by using the discrete temperature 

dependent nuclear data files is prohibitive, requiring 841GB for a typical PWR 

configuration and 2,434GB space for a typical VHTR configuration.  
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CHAPTER 4  
 

Coupled Monte Carlo / Collision Probability Method for 
VHTR Analysis 

                          

4.1 Theory 

Two different methodologies were developed to account for the first level 

heterogeneity due to fuel kernels within a conventional lattice physics code. The initial 

approach involved the simultaneous execution of MCNP5 and CPM3, with direct 

communication of MCNP5 shielded multi-group resonance cross sections into CPM3 

during the simulation, effectively overwriting the CPM3 resonance integrals. This task 

was performed with the help of an Application Program Interface (API), developed to 

link the CPM-3 and MCNP5 codes. Subsequently, an alternative approach was developed 

based on defining a double heterogeneity factor (DHF), yielding similar results but with 

substantial advantages for realistic VHTR analyses. Actually, the DHF method involves 

an array of DHFs for each nuclide, with a separate DHF computed for each of two 

different microscopic cross sections (absorption and nu-fission) for each of 65 resonance 

groups, or 130 DHFs per nuclide.  The DHF approach was applied to both CPM3 and 

Helios[44] lattice physics codes.  

Computation of shielded multi-group cross sections of any type can be performed 

in MCNP5 by tallying the corresponding multi-group flux and reaction rate within a 
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given region of interest, for a given resonance nuclide and reaction type. The desired 

multi-group resonance microscopic cross section of any type in a given region can be 

calculated as: 

 
i
x,gi

x,g i
g

A
σ =

φ
 (4.1) 

where i is the material region, x is the type of reaction and g is the energy group.  i
gφ  and 

i
x,gA  are group fluxes and reaction rates in region i respectively. i

x,gA  is defined as: 

 i i i
x,g x,r r

r g res r

A (E) (E)dE
∈

= σ φ∑ ∫  (4.2) 

where the summation is taken over all resonances r within energy group g. The CPM3 

multi-group energy structure was introduced into MCNP5 to compute i
x,gσ  by tallying 

multi-group fluxes and reaction rates in fuel kernels for each resonance nuclide.  

4.1.1 Direct Communication of Cross Sections between MCNP5 and CPM3 

With this approach, CPM3 analyzes the homogeneous assembly model at the 

same time that MCNP5 analyzes the heterogeneous assembly model. MCNP5 calculates 

65 group resonance shielded effective resonance cross sections (σa and νσf) in each fuel 

kernel, averaged over the whole assembly for the resonance absorber materials (U-235 

and U-238). These assembly-averaged 65 group cross sections are transferred to CPM3 

during the coupled execution of MCNP5 and CPM3. CPM3 then proceeds to perform its 

transport calculation of the homogeneous fuel assembly with the MCNP5 resonance cross 

sections. The communication between CPM-3 and MCNP5 was managed by an 

Application Program Interface (API), which is described next. 
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4.1.1.1 Application Program Interface  

CPM-3 is a code system comprised of six modules. The logic flow diagram of the 

CPM-3 code is illustrated in Figure 4.1. 

 
 

Figure 4.1. Logic flow diagram of CPM3.  

 
Each code module performs a specific task such as processing user input data, 

performing the flux calculation and editing the results of the calculations. Each loop 

through the program represents an eigenvalue calculation or a burnup step. The cross 

section processing module AGXSEC was modified to allow it to use MCNP5-generated 

multi-group effective resonance cross sections in CPM3. Since these cross sections are 

properly shielded, they account for the double heterogeneity. Macroscopic cross sections 
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are prepared based on the microscopic cross sections in the AGXSEC module for each 

nuclide to perform flux, reaction rate edit, and burnup calculations. The resonance self-

shielding calculation is performed within a fuel rod (or compact) for absorber nuclides 

within this module.  Ray-tracing is used to calculate generalized Dancoff factors in a two 

dimensional lattice but again this option is not needed if MCNP5 cross sections are used. 

In fact, since the resonance cross sections computed by CPM3 are overwritten by the 

MCNP5-generated cross sections, much of the existing coding in AGXSEC is moot for 

this approach.  

The API consists of a Fortran-90 code that was implemented and embedded in the 

CPM3 source code to couple CPM3 and MCNP5. It prepares the MCNP5 flux and 

reaction rate tallies for the corresponding double heterogeneous configuration to calculate 

shielded microscopic resonance cross sections (σγ , σf and νσf) for each resonance 

nuclide. Capture and fission cross sections are combined to obtain absorption cross 

sections. Once the MCNP5 code is executed, the resulting reaction rates and fluxes are 

used to obtain resonance absorption and fission cross sections for the resonance nuclides 

and these cross sections are communicated to CPM3 for its subsequent analysis. The 

average reaction rate and group flux are computed over all fuel kernels within the 

assembly for each resonance group and nuclide in MCNP5. Then, Eq. (4.1) is used to 

calculate assembly averaged cross sections of any type to feed into CPM3. The following 

Figure 4.2 illustrates the logic flow diagram of the coupling methodology.  
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Figure 4.2. CPM3-MCNP5 coupling. 

The calculation of the fine group resonance cross sections is performed in 

subroutine EFRES1. Subroutines EFRES2 and SHDXS perform resonance calculations 

based on a two-term rational approximation. These subroutines are called within module 

AGXSEC. A Fortran-90 code fragment was embedded into the subroutine called 

EFRES2 to stop the CPM3 effective multi-group resonance calculation, generate the 

MCNP5 input file, perform the MCNP5 calculation, calculate the fine group resonance 

cross sections, and update the CPM3 resonance cross section arrays prior to performing 

any region-wise macroscopic cross section and transport calculation. 

The 65-group resonance cross sections determined by MCNP5 were transferred 

back into CPM3 with the API. Two 2-D arrays, one for each isotope, were created in 

CPM3 to hold the MCNP5-generated 65-group resonance absorption and fission cross 

sections. These arrays, ABSMOD and FISMOD, are described in Table 4.1: 
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Table 4.1. New arrays to store resonance cross sections. 

Array Description 
ABSMOD  (1,1:65)    U-235 absorption x-sections

ABSMOD  (2,1:65)  U-238 absorption x-sections

AFISMOD (1,1:65)    U-235 fission x-sections 

AFISMOD (2,1:65)    U-238 fission x-sections 
 

The following code was also implemented into EFRES2 routine to insert the 

MCNP5 resonance cross sections in CPM3. In addition, 3-D arrays called SA and SNYF 

in CPM3 hold the 65-group resonance absorption and ν-fission cross sections 

respectively, as shown in Figure 4.3.  

 
 

Figure 4.3. Inserting MCNP5 resonance x-sections into EFRES2. 

After importing and inserting the MCNP 65-group resonance cross sections into 

CPM3, all of the microscopic cross section data is written into a CPM3 internal file by 

the code to calculate the region-wise macroscopic cross sections and perform the flux 

calculation. 

There are some disadvantages with this approach. The treatment of depletion 

would be quite tedious with this direct approach because both CPM3 and MCNP5 would 

need to be depleted simultaneously. In addition, spatial dependence of resonance cross 

sections of any type requires additional factorization as a function of space within a given 
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assembly. Therefore, an alternative methodology was developed based on the Double 

Heterogeneity Factor (DHF), yielding similar results with the direct approach but with 

substantial advantages for realistic VHTR analyses. 

4.1.2 Double Heterogeneity Factor (DHF) Approach 

The basic idea behind the DHF approach is that CPM3 and MCNP5 will yield 

approximately the same cross sections for an assembly with a homogeneous fuel region 

(i.e., no particle level heterogeneity). Therefore, two MCNP5 calculations, with 

homogeneous and heterogeneous fuel regions, can be used to define a correction factor 

which is the ratio of the group cross sections for these two cases. If this ratio (or 

correction factor) is then applied to the CPM3 cross section, the resultant cross section 

should be close to the MCNP5 heterogeneous cross section. Therefore, CPM3 analyzes 

the assembly with homogeneous fuel model whereas MCNP5 analyzes configurations 

that include both heterogeneous and homogeneous fuel regions, to calculate DHFs once 

for at Beginning of Life (BOL). (It has been found that the DHF is not sensitive to 

burnup, which is discussed later.) MCNP5 calculates 65 group resonance DHFs  for both 

absorption and nu-fission reactions within each fuel kernel, averaged over the whole 

assembly for the resonance absorber materials (U-235 and U-238). These assembly-

averaged 65 group DHFs are read into CPM3. Then CPM3 performs its transport 

calculation by multiplying its resonance group cross sections (calculated with 

homogeneous fuel regions) by the MCNP5 DHFs. In essence, the method can be 

summarized by the following equation: 

 i,CPM3 MOD i,MCNP het
xg xg

− −σ ≈ σ  (4.3) 
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where i,MCNP het
xg

−σ  is the MCNP5-generated fine group g resonance cross section for 

isotope i and i,CPM3 MOD
xg

−σ is the corresponding cross section in CPM3 after the DHF is 

applied. In other words, the fine group resonance cross sections from a heterogeneous 

fuel MCNP5 calculation replace the fine group resonance cross sections computed by 

CPM3 using homogeneous fuel. 

The new approach is ostensibly a minor variation on the original method but it has 

major implications for ease of use and practicality for routine analysis, and can be applied 

to more general configurations than the original method. The new method can be 

described by the following equation: 

 i,CPM3 MOD i,CPM3 i
xg xg xgDHF−σ ≈ σ ×  (4.4) 

where i
xgDHF  is a “correction factor”, basically a “self-shielding factor” and can be 

defined as:  

 ( )
( )

i
xg

fine group x sec tion from MCNP5 heterogeneous fuel compacts
DHF

fine group x sec tion from MCNP5 hom ogeneous fuel compacts
−

=
−

 (4.5) 

 
i,MCNP5 het
xgi

xg i,MCNP5 hom
xg

DHF
−

−

σ
=
σ

 (4.6) 

In this case, the DHF multiplies the CPM3 cross section and consists of the ratio 

of fine group resonance cross sections computed by MCNP5 for heterogeneous fuel 

versus homogeneous fuel. For comparison, the earlier cross section replacement method 

is equivalent to using a DHF defined by: 

 ( )
( )

alt,i
xg

fine group x sec tion from MCNP5 heterogeneous fuel compacts
DHF

fine group x sec tion from CPM3 hom ogeneous fuel compacts
−

=
−

 (4.7) 
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i,MCNP5 het
xgalt ,i

xg i,CPM3
xg

DHF
−σ

=
σ

 (4.8) 

Since CPM3 can analyze a VHTR configuration with homogeneous fuel, the 

denominators of Eqs. (4.6) and (4.8) should be about the same, i.e., i,CPM3 i,MCNP5 hom
xg xg

−σ ≈ σ  

hence alt ,i i
xg xgDHF DHF≈ , and the resultant corrected resonance cross sections i,CPM3 mod

xg
−σ  

from both methods should be comparable. The DHF approach has a number of 

advantages which will be discussed later. 

4.1.3 Description of VHTR Fuel Assembly  

A heterogeneous VHTR fuel assembly with explicit TRISO fuel was constructed 

in MCNP5. The corresponding homogenized assembly was modeled in both MCNP5 and 

CPM3. The VHTR fuel assembly is composed of 222 fuel compacts and 109 coolant 

holes. The MCNP5 assembly geometry consisted of three different hexagonal unit cells 

corresponding to coolant holes (white), fuel compacts (yellow), and graphite regions 

(green) as shown in Figure 4.4. The outer graphite edge of the assembly was modeled 

explicitly with both MCNP5 and CPM3. The distance between two flat surfaces is 0.3581 

m. 
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Figure 4.4. Cross-section view of the VHTR fuel assembly. 

4.1.3.1 Geometry 

The VHTR fuel compact cell is an idealized unit cell that consists of a fuel 

compact surrounded by its share of the graphite in an assembly. It is a useful geometry 

because it is simple yet includes the double heterogeneity, and can be used to compare 

alternative computational models. For the VHTR, the compact cell is composed of an 

inner cylindrical fuel compact and an outer hexagonal graphite moderator region 

containing boron impurities. The fuel compact region consists of fuel kernels surrounded 

by SiC and PyC layers. The packing fraction is 29%. Table 4.2 summarizes the 

dimensions of the VHTR fuel compact that is modeled by both MCNP5 and CPM3. 

Table 4.2. Heterogeneous and homogeneous VHTR fuel compact cell dimensions. 

 
Fuel Particle Fuel Compact Hexagonal Compact Cell

  Radius (cm) Radius (cm) Height (cm) Pitch (cm) Height (cm) 
Fuel Kernel 0.0175 0.6225 4.5553 1.8796 4.5553 
Porous PyC 0.0275  Coolant Hole     
Inner PyC 0.0315 Radius (cm) Height (cm)     
SiC 0.0350 0.7938 4.5553     
Outer PyC 0.0390         
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4.1.3.2 Material Composition 

Number densities and weight fractions for the fuel compacts that were used by 

MCNP5 and CPM3 are summarized in Table 4.3. 

Table 4.3. Material composition of fuel compact for MCNP5 and CPM3 calculations. 

 
MCNP5 MCNP5 CPM3 

Heterogeneous Fuel 
Compact Cell 

Homogeneous Fuel 
Compact Cell 

Homogeneous Fuel 
Compact Cell 

Fuel Kernel  N (at/cc)   N (at/cc)   Weight (%) 
U-235 2.4749E-03 U-235 6.4622E-05 U-235 1.2691E+00 
U-238 2.1142E-02 U-238 5.5204E-04 U-238 1.0981E+01 

C 1.1808E-02 C 7.9957E-02 C 8.0153E+01 
O 3.5426E-02 O 9.2499E-04 O 1.2363E+00 

    Si 2.2706E-06 Si 6.3603E+00 
Porous PyC           

C 5.0183E-02         
Inner PyC           

C 9.5348E-02         
SiC           

C 4.8060E-02         
Si 4.8060E-02         

Outer PyC           
C 9.5348E-02         

Graphite 
Matrix           

C 8.5312E-02         
Moderator   Moderator   Moderator   

C 8.7241E-02 C 8.7241E-02 C 9.9999E+01 
B-10 1.4369E-07 B-10 1.4369E-07 B-10 1.3743E-04 
B-11 5.7838E-07 B-11 5.7838E-07 B-11 6.0823E-04 

 

4.1.3.3 Modeling of Fuel Assembly with MCNP5 

A hexagonal fuel assembly universe was filled with the bodies shown in Figure 

4.5 to obtain the full fuel assembly model shown in Figure 4.4. The repeated structure 

feature in MCNP5 makes this relatively easy. Reflecting boundary conditions were 

specified on each face of the hexagonal assembly. 
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Figure 4.5. Repeating cells in the VHTR fuel assembly. 

4.1.3.4 Modeling of Fuel Assembly with CPM3 

A different approach to construct the assembly had to be found with CPM3 

because of its restricted geometry features. Bodies must be defined explicitly in CPM3 

but the graphite bodies on the outer surface of the assembly are different sizes and are 

aligned at different rotational angles. The bodies that are available in CPM3 are shown in 

Figure 4.6 and these can only be rotated by 90, 180, or 270 degrees. Because of these 

restrictions, the VHTR assembly shown in Figure 4.4 cannot be explicitly modeled with 

CPM3. 

 

 

Figure 4.6. Available hexagonal unit cells in CPM3. 

This problem was overcome by identifying a portion of the repeating hexagonal 

lattice that is rectangular with reflecting boundary conditions, which can be modeled by 
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CPM3. Portions of two assemblies were combined to model an infinite hexagonal lattice 

of fuel assemblies. This is shown in Figure 4.7, where the rectangle (marked with solid 

red lines) represents a repeating rectangular geometry that exactly represents an infinite 

lattice of hexagonal assemblies. Thus the rectangle in Figure 4.7 models the VHTR fuel 

assembly exactly, including the outer graphite edge. For this rectangular region, the 

available bodies and allowable rotational angles are sufficient to allow CPM3 to model 

the geometry shown in Figure 4.7, which corresponds to an infinite lattice of hexagonal 

fuel assemblies. 

 

 

Figure 4.7. CPM3 Model of the VHTR Assembly Lattice. 

Homogeneous MCNP5 and CPM3 models were obtained by homogenizing the 

fuel region as shown in Figure 4.8. Only the TRISO fuel region is homogenized and the 

homogeneous and heterogeneous fuel assemblies are otherwise identical to Figure 4.4. 
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Figure 4.8. Heterogeneous and corresponding homogeneous model. 

4.1.4 CPM3 Energy Group Structure 

The CPM-3 code package includes a nuclear data file derived from ENDF/B-VI 

that contains cross-section data and nuclear parameters in 97 energy groups for over 300 

nuclides. Neutron cross section data is provided in 97 energy groups over the energy 

range of 0-10 MeV. Gamma-ray cross-section data is provided in 18 energy groups up to 

10 MeV. The user may specify condensed energy group structures for both eigenvalue 

and editing calculations by using the discrete energy group boundaries given on the 

nuclear data file. There are 65 resonance energy groups that are numbered from 25 to 89. 

Groups 1-24 are the fast neutron groups where there are no resolved resonances, and 

groups 90-97 are the lower thermal energy groups that are below the resonance range. 

Multi-group energy boundaries of CPM3 are shown in Table 4.4.  Resonance groups are 

marked with red. 

Table 4.4. CPM3 97 Multi-Group Energy Boundaries. 

 
Grp Energy Range (eV) Grp Energy Range (eV) Grp Energy Range (eV) 

1 1.00E+07 - 7.79E+06 34 2.61E+03 - 2.04E+03 67 1.31E+00 - 1.17E+00
2 7.79E+06 - 6.07E+06 35 2.04E+03 - 1.59E+03 68 1.17E+00 - 1.10E+00
3 6.07E+06 - 4.72E+06 36 1.59E+03 - 1.23E+03 69 1.10E+00 - 1.07E+00
4 4.72E+06 - 3.68E+06 37 1.23E+03 - 9.61E+02 70 1.07E+00 - 1.06E+00
5 3.68E+06 - 2.87E+06 38 9.61E+02 - 7.49E+02 71 1.06E+00 - 1.05E+00
6 2.87E+06 - 2.23E+06 39 7.49E+02 - 5.83E+02 72 1.05E+00 - 1.04E+00
7 2.23E+06 - 1.74E+06 40 5.83E+02 - 4.54E+02 73 1.04E+00 - 1.01E+00
8 1.74E+06 - 1.35E+06 41 4.54E+02 - 3.54E+02 74 1.01E+00 - 9.51E-01 
9 1.35E+06 - 1.05E+06 42 3.54E+02 - 2.75E+02 75 9.51E-01 - 7.82E-01 
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10 1.05E+06 - 8.21E+05 43 2.75E+02 - 2.15E+02 76 7.82E-01 - 6.25E-01 
11 8.21E+05 - 6.39E+05 44 2.15E+02 - 1.67E+02 77 6.25E-01 - 5.03E-01 
12 6.39E+05 - 4.98E+05 45 1.67E+02 - 1.30E+02 78 5.03E-01 - 4.17E-01 
13 4.98E+05 - 3.88E+05 46 1.30E+02 - 1.01E+02 79 4.17E-01 - 3.58E-01 
14 3.88E+05 - 3.02E+05 47 1.01E+02 - 7.89E+01 80 3.58E-01 - 3.21E-01 
15 3.02E+05 - 2.35E+05 48 7.89E+01 - 6.14E+01 81 3.21E-01 - 3.01E-01 
16 2.35E+05 - 1.83E+05 49 6.14E+01 - 4.79E+01 82 3.01E-01 - 2.91E-01 
17 1.83E+05 - 1.43E+05 50 4.79E+01 - 3.73E+01 83 2.91E-01 - 2.71E-01 
18 1.43E+05 - 1.11E+05 51 3.73E+01 - 2.90E+01 84 2.71E-01 - 2.51E-01 
19 1.11E+05 - 8.65E+04 52 2.90E+01 - 2.26E+01 85 2.51E-01 - 2.28E-01 
20 8.65E+04 - 6.74E+04 53 2.26E+01 - 1.76E+01 86 2.28E-01 - 1.84E-01 
21 6.74E+04 - 5.25E+04 54 1.76E+01 - 1.37E+01 87 1.84E-01 - 1.46E-01 
22 5.25E+04 - 4.09E+04 55 1.37E+01 - 1.07E+01 88 1.46E-01 - 1.12E-01 
23 4.09E+04 - 3.18E+04 56 1.07E+01 - 8.32E+00 89 1.12E-01 - 8.20E-02 
24 3.18E+04 - 2.48E+04 57 8.32E+00 - 6.48E+00 90 8.20E-02 - 5.69E-02 
25 2.48E+04 - 1.93E+04 58 6.48E+00 - 5.04E+00 91 5.69E-02 - 4.28E-02 
26 1.93E+04 - 1.50E+04 59 5.04E+00 - 3.93E+00 92 4.28E-02 - 3.06E-02 
27 1.50E+04 - 1.17E+04 60 3.93E+00 - 3.06E+00 93 3.06E-02 - 2.05E-02 
28 1.17E+04 - 9.12E+03 61 3.06E+00 - 2.38E+00 94 2.05E-02 - 1.24E-02 
29 9.12E+03 - 7.10E+03 62 2.38E+00 - 1.86E+00 95 1.24E-02 - 6.33E-03 
30 7.10E+03 - 5.53E+03 63 1.86E+00 - 1.73E+00 96 6.33E-03 - 2.28E-03 
31 5.53E+03 - 4.31E+03 64 1.73E+00 - 1.60E+00 97 2.28E-03 - 2.53E-04 
32 4.31E+03 - 3.36E+03 65 1.60E+00 - 1.46E+00         
33 3.36E+03 - 2.61E+03 66 1.46E+00 - 1.31E+00         

 
 

The CPM3 data file is based on ENDF/B-VI Release IV whereas MCNP5 uses 

ENDF/B-VI Release V. It was reported in the CPM3 nuclear data manual[45] that 

ENDF/B-VI Release V virtually gives identical results as ENDF/B-VI Release IV for 

thermal reactors. Although they give identical results for the light water reactors, the 

results are very different for CANDU reactors, which are also thermal reactors but use 

D2O rather than H2O as moderator[46]. 
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4.2 Computational Results 

4.2.1 Sensitivity Study 

 
Since CPM3 was designed to analyze LWR lattices, the key numerical integration 

parameters for the collision probability calculation were analyzed in detail for the infinite 

lattice of the VHTR assemblies. The integration parameters are the spacing between 

integration lines and the number of angles chosen to represent the 360 degree rotation of 

the integration lines. Table 4.5 shows the multiplication factor results for the case of the 

VHTR assembly shown in Figure 4.4. The default spacing and number of angles in 

CPM3 are 0.1 cm and 9 angles, respectively. 

Table 4.5. Numerical integration parameters for CPM3 calculations. 

 
Spacing (cm) Number of Angles kinf 

0.1 9 1.4375 
0.1 12 1.4391 
0.1 60 1.4380 
0.1 90 1.4381 
0.05 9 1.4375 
0.05 12 1.4391 
0.05 60 1.4380 
0.05 90 1.4381 
0.01 9 1.4374 
0.01 12 1.4390 
0.01 60 1.4380 
0.01 90 1.4381 

 

As a result of the CPM3 sensitivity study, the spacing was chosen to be 0.1 cm 

and the number of angles was chosen to be 60 (shaded yellow in Table 4.5), yielding the 

optimum CPM3 ray tracing parameters for the VHTR assembly configuration. 
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4.2.2 Direct Transfer of Cross Sections 

Direct transfer of shielded cross sections, provided by MCNP5, into CPM3, yields 

excellent agreement with the corresponding double heterogeneous MCNP5 case for both 

kinf and resonance escape probability. MCNP5 was chosen as the reference case due to its 

flexible geometric modeling feature to account for all spatial heterogeneities within the 

geometry of interest, including the double heterogeneities posed by TRISO fuel. Table 

4.6 presents the infinite medium multiplication factors and resonance escape probability 

(Pesc) obtained with the coupled MCNP5-CPM3 (modified) methodology compared with 

the standalone CPM3 (original) calculations for the infinite lattice of assemblies 

described above. The CPM3 calculation was performed with both transport options: the 

Method of Characteristics (MOC) and the Collision Probability Method (CPM), and are 

shown in Table 4.6. The relative difference between MOC and CPM was found to be 

negligible. For the purpose of comparing the coupled MCNP5/CPM3 methodology, the 

CPM option was chosen for the transport calculation, providing benchmark-quality 

results and was used for the rest of the assembly calculations discussed in this report. The 

assembly configuration as well as geometry and material composition was summarized in 

the previous section. 

Table 4.6. Coupled MCNP5/CPM3 vs CPM3 for VHTR Fuel Assembly. 

 

 MCNP5 
(ref) 

CPM3 
(original)

Difference
(%) 

CPM3 
(modified)

Difference 
(%) 

Kinf-moc 1.4975 1.4409 3.8 1.4970 .03 
Kinf-cpm 1.4975 1.4409 3.8 1.4970 .03 

Pesc 0.704 0.675 4.1 0.705 -.14 
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The relative difference in the infinite medium multiplication factors for the 

coupled MCNP5-CPM3 calculations was found to be 0.03% for the fuel assembly with 

heterogeneous fuel, as shown in Table 4.6. In this case, CPM3 by itself can only treat the 

fuel as homogeneous and yields kinf = 1.4409, compared to 1.4975 for MCNP5, thus 

showing that it totally misses the particle fuel heterogeneity posed by the TRISO fuel. On 

the other hand, if MCNP5 resonance cross sections are inserted into CPM3, kinf becomes 

1.4970, which is very close to the MCNP5 result. This agreement is very encouraging 

and affirms the basic methodology. 

Since kinf is a global parameter, it may be masking errors from different portions 

of the CPM3 calculation unrelated to the resonance calculation.  Therefore, a comparison 

of the resonance escape probability, pesc, was also performed and was included in Table 

4.6, with excellent results. This quantity is a direct measure of the accuracy of the 

resonance calculation, which is the only portion of the CPM3 methodology that is 

changed. 

4.2.3 DHF Approach 

4.2.3.1 VHTR Assembly 

Multi-group DHFs were calculated with MCNP5 for each of the resonance 

nuclides (U-235 and U-238) in fuel kernels, averaged over an assembly with reflected 

boundary conditions. DHFs were read into CPM3 to multiply the homogeneous fuel 

compact cross sections to yield self shielded resonance cross sections accounting for the 

double heterogeneity. The assembly configuration, geometry and material composition 

were summarized in the previous section. 
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Results are given in Tables 4.7 and 4.8 with two different lattice physics codes, 

CPM3 and Helios.  

Table 4.7. DHF Approach with CPM3. 

 

 MCNP5 
(ref) 

CPM3 
(original)

Difference
 (%) 

CPM3 
(modified)

Difference
 (%) 

Kinf-cpm 1.4975 1.4409 3.8 1.4990 -.10 
 

Table 4.8. DHF Approach with HELIOS. 

 

 MCNP5 
(ref) 

Helios 
(original)

Difference
 (%)

Helios 
(modified)

Difference 
 (%) 

Kinf-cpm 1.4975 1.4458 3.4 1.4951 .16 
 

The relative difference in infinite multiplication factor was found to be -0.10% 

with CPM3 whereas the difference goes up to 0.16% with Helios. Although the results 

for both codes are quite good, the fact they disagree can be explained in terms of the 

differences in nuclear data files, different resonance approximation methods and different 

resonance energy group structures. In summary, both CPM3 and Helios lattice physics 

codes yield reasonable results in k-inf for VHTR configurations when used with the DHF 

approach. 

4.2.3.2 Deep Burn Concept – Driver Fuel Compact 

While the use of nuclear power grows, the waste produced by the existing nuclear 

reactors increases at the same rate. In other words, new repository capacity equal to the 

Yucca Mountain in US is required about every 20 years[47]. Therefore, a new concept 

called Deep Burn[47,48] was proposed to use thermal Modular Helium Reactor systems 
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(MHRs) for the transmutation of waste from nuclear reactors. As an essential feature of 

this concept, ceramic coated fuel particles are used. They are strong enough, durable and 

have high resistance to irradiation, providing extensive destruction levels in one burnup 

cycle. All of the weapon-usable materials as well as 95% of all transuranics (TRUs) can 

be destroyed. With the Deep Burn concept, nuclear waste volume and toxicity can be 

reduced, avoiding the construction of new repository sites. In other words, one of the 

most important limitations to expand the nuclear power capacity can be eliminated. 

However, the analysis of this concept is complicated because the fuel consists of TRU 

isotopes (e.g., plutonium and neptunium) that are recycled from thermal reactors.   

 The applicability of the double heterogeneity factor (DHF) approach was tested 

for the analysis of TRISO fuel in CPM3 lattice physics calculations for a realistic TRU 

fuel composition characteristic of the Deep Burn concept developed by General Atomics. 

The MCNP5 and CPM3 cases were performed for the fuel compact, where the fuel kernel 

comprises Pu-Np-CO, representing the Pu-Np isotopics in typical used nuclear fuel 

(UNF) from light water reactors. The purpose of this simulation was to check the 

applicability of the Double Heterogeneity Factor (DHF) methodology to treat the low-

lying resonances of Pu-loaded fuel. Although the uranium-fueled cases have TRU 

isotopes as a result of burnup, the concentration of these isotopes is far less than would be 

encountered with Deep Burn fuel, and one can expect the DHFs will be somewhat 

different as a result.  

Driver fuel compact cell dimensions are different than that of VHTR. The kernel 

diameter and the buffer layer thickness were chosen to limit particle internal pressure 

arising from the fission products from the deep burnup and the helium generated from 
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alpha decay of the TRUs. Tucker’s Deep Burn design report[49] was used to perform the 

analysis for the driver fuel. Driver fuel geometry and resonance material composition are 

presented in Table 4.9 and Table 4.10, respectively. 

Table 4.9.  Deep Burn - Driver fuel compact cell dimensions 

 
Region Radius (cm) 

Fuel Kernel 0.0150 
Buffer PyC 0.0300 
Inner PyC 0.0335 

SiC 0.0370 
Outer PyC 0.0410 

Driver Fuel Compact 0.6223 
Region Radius (cm) 

Moderator 0.9398 
 

Table 4.10. Driver fuel material composition. 

 
Resonance Nuclide Weight (%)

Np-237 5.2 
Pu-238 1.5 
Pu-239 57.0 
Pu-240 23.0 
Pu-241 8.3 
Pu-242 5.0 

 
Several CPM3 calculations were performed to assess the adequacy of the DHF 

approach, compared with our original approach based on replacement of the CPM3 

resonance group cross sections with cross sections from a heterogeneous MCNP5 run. 

The heterogeneous MCNP5 run is considered to be the benchmark calculation as 

mentioned earlier. Three different CPM3 calculations were performed for homogenized 

driver fuel, using different cross sections for the 65 resonance groups in CPM3 as 

summarized in Table 4.11.  
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Table 4.11. Explanation of different Deep Burn cases. 

 
Case Number Case Name Description 

1 MCNP5 (het) MCNP5 calculation with heterogeneous TRISO 
fuel. 

2 CPM3  (orig) Original version of CPM3 with its own 65 group 
resonance cross sections. 

3 CPM3 (mod2)
Direct replacement of 65 group resonance 

absorption and nu-fission cross sections with 
MCNP5 cross sections.  

4 CPM3 (mod3)
Using DHFs from MCNP5 to correct 65 group 

resonance absorption and nu-fission cross sections 
in CPM3.  

 

In order for CPM3 to run for the Pu lattices, a trace amount of uranium (10-5
 %) 

was required. This is small enough to have no effect on the resultant CPM3 run. This is 

probably a consequence of the fact that CPM3 was designed for slightly enriched 

uranium fuel. The infinite multiplication factors k∞ for the three CPM3 cases are 

compared in Table 4.12 with those from the two MCNP5 cases.  

Table 4.12. Infinite Multiplication Factor Comparison 

 
Case # Case Name kinf 

1 MCNP5 (het) 1.1043 
2 CPM3    (orig) 1.0347 
3 CMP3    (mod1) 1.1038 
4 CMP3    (mod2) 1.1032 

 
 

The test of the DHF methodology is the comparison of Cases 1 and 4, where the 

difference is approximately 0.1%, indicating the DHF methodology is yielding excellent 

results for Pu-fueled fuel compacts. A comparison of Cases 1 and 3 indicates that our 

original methodology of replacing CPM3 cross sections with MCNP5 cross sections 

yields better results ((<.05%) than the DHF methodology. However, the advantages of 
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the DHF approach, coupled with its acceptable results, make this the preferred 

methodology. Overall, the comparison indicates that the DHF approach provides a 

sufficiently accurate treatment for the TRISO double heterogeneity for realistic Pu-Np 

compositions for Deep Burn applications. 

4.2.4 Detailed DHF Analysis 

In order to determine the applicability of the DHF approach for the analysis of 

TRISO fuel in lattice physics calculations, the effort was extended to assess the DHF 

sensitivity to spatial location in the assembly, burnup, and packing fraction. The 

motivation for this work was to minimize the number of MCNP5 runs by parameterizing 

the calculation of DHFs from a few MCNP5 runs and then build a "library" of DHFs that 

CPM3 could use without having to repeat the MCNP5 calculations.  

4.2.4.1 Spatial Dependence 

DHFs were calculated for fuel compacts at different locations in an assembly to 

determine the spatial dependence of the DHFs. Two limiting assembly configurations 

shown in Figure 4.9 were analyzed to calculate 65 group DHFs for U-238 and U-235. 

One case is an assembly with reflecting boundary conditions representative of an interior 

assembly near the center of the core, and the second is a configuration representative of 

an exterior assembly near the outer edge of the core.  
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Figure 4.9. Two limiting assembly configurations; interior and exterior. 

 
Spatial distribution of DHFs was determined for a 1/12 symmetric portion of the 

fuel assembly as shown in Figure 4.9 marked with red triangles. Results were obtained 

for all 65 resonance groups but are only shown for the important resonance energy groups 

for U-238 shown in Table 4.13, which includes both low and high energy resonances: 

 

Table 4.13. Energy Group Boundaries. 

Grp  Lower (eV) Higher (eV) 
57 6.476 8.315 
53 17.6 22.6 
51 29.02 37.27 
38 748.5 961.1 

 

The MCNP5 simulations for the heterogeneous and the corresponding 

homogeneous assembly configurations used 500,000 histories per cycle with a total of 

400 active cycles, yielding standard deviations in keff of less than .004% and in the DHF 

of less than 0.5%. Figures 4.10-4.13 show the comparison of the DHFs for the energy 

groups given in Table 4.13 for these limiting assembly configurations. Standard 

deviations in flux as well as Reaction Rate (R.R.) are also shown in Figures 4.10-4.13. 
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Figure 4.10. Spatial comparison of DHFs over two limiting assemblies at group #57. 

 

  

Figure 4.11. Spatial comparison of DHFs over two limiting assemblies at group #53. 
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Figure 4.12. Spatial comparison of DHFs over two limiting assemblies at group #51. 

 
 

  

Figure 4.13. Spatial comparison of DHFs over two limiting assemblies at group #38. 
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As can be seen in Figures 4.10-4.13, spatial dependence of the DHFs, calculated 

in fuel kernels and averaged over each fuel compact, is negligible for these limiting 

assemblies. They were found to be within the standard deviation in each of the limiting 

assemblies except the edges. The small deviation of the DHFs at the edges is due to the 

effect of the moderator region surrounding the assemblies. Dancoff factors at the edges 

change slightly but the DHFs are still very close to assembly averaged multi-group 

DHFs, yielding a negligible effect on k-inf as shown previously. As will be shown later, 

Dancoff factors mainly depend on the kernel packing fraction in fuel compacts.  

 Furthermore, DHFs are almost the same for the corresponding fuel compact 

locations within the two limiting assemblies, suggesting the use of one set of multi-group 

DHFs for each resonance nuclide and VHTR fuel assembly at any location in the full 

core. It should also be pointed out that the DHFs for U-235 are equal to, or close to, unity 

for all resonance groups. This is due to the fact that the concentration of U-235 is 

relatively dilute compared to U-238, hence the self-shielding is relatively small, leading 

to a DHF close to unity.  

4.2.4.2 Material Composition Dependence 

The original lattice physics burnup code CPM3 was used to deplete the fuel 

materials in an infinite lattice of fuel compact cells with a total burnup of 100GWd/MT-

HM. Burnup time steps are presented in Table 3.8. The accumulation of the fission 

products were accurately determined by specifying very fine initial time steps. The initial 

heterogeneous and homogeneous VHTR fuel compact cell dimensions as well as material 

composition are illustrated in Table 4.2 and Table 4.3. Resonance material compositions 

as a function of burnup are shown in Table 4.14 for the MCNP5 and CPM3 cases.  
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Table 4.14. Resonance material compositions as a function of burnup time step. 

 
  0 GWd/MT-HM 50 GWd/MT-HM 100 GWd/MT-HM 
Compact MCNP Het MCNP Het MCNP Het 
  (at/cc) (at/cc) (at/cc) 
Fuel       
U-235 2.4749E-03 1.2494E-03 4.6613E-04 
U-238 2.1142E-02 2.0426E-02 1.9546E-02 
PU-239 0.0000E+00 3.4243E-04 3.6760E-04 
PU-240 0.0000E+00 6.0620E-05 1.0465E-04 
Compact MCNP Hom MCNP Hom MCNP Hom 
  (at/cc) (at/cc) (at/cc) 
Fuel       
U-235 6.4621E-05 3.2622E-05 1.2171E-05 
U-238 5.5203E-04 5.3335E-04 5.1036E-04 
PU-239 0.0000E+00 8.9412E-06 9.5983E-06 
PU-240 0.0000E+00 1.5828E-06 2.7325E-06 
Compact CPM3 CPM3 CPM3 
  Weight (%) Weight (%) Weight (%) 
Fuel       
U-235 1.2689E+00 6.4566E-01 2.4291E-01 
U-238 1.0978E+01 1.0691E+01 1.0316E+01 
PU-239 0.0000E+00 1.7999E-01 1.9483E-01 
PU-240 0.0000E+00 3.1996E-02 5.5697E-02 

 
 
 As can be seen in Table 4.14, the initial number density of U-235 decreases by 

50% at 50GWd/MT-HM and 81% at 100GWd/MT-HM. On the other hand, total PU 

concentration at 100GWd/MT-HM becomes almost the same as the final concentration of 

U-235. The decrease in U-238 concentration was found to be 6% at 100GWd/MT-HM. 

MCNP5 calculations were performed by using 50,000 histories/batch with a total 

of 200 active cycles. The resultant statistics were found to be less than 0.1%. The DHFs 

were calculated for each nuclide at burnup time steps 0, 50 and 100 MWd/MT-HM. 

Results are illustrated in Table 4.15.  
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Table 4.15. Multi-group DHFs at different burnup time steps. 

 
 0 GWd/MT-HM 50 GWd/MT-HM 100 GWd/MT-HM 
 U235 U238 PU239 PU240 U235 U238 PU239 PU240 U235 U238 PU239 PU240 

25 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
26 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
27 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
28 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
29 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
30 1.00 0.99 0.00 0.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 
31 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
32 1.00 0.99 0.00 0.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 
33 1.00 0.99 0.00 0.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 
34 1.00 0.98 0.00 0.00 1.00 0.98 1.00 1.00 1.00 0.98 1.00 1.00 
35 1.00 0.97 0.00 0.00 1.00 0.97 1.00 1.00 1.00 0.97 1.00 1.00 
36 1.00 0.98 0.00 0.00 1.00 0.98 1.00 1.00 1.00 0.98 1.00 1.00 
37 1.00 0.97 0.00 0.00 1.00 0.97 1.00 1.00 1.00 0.97 1.00 1.00 
38 1.00 0.97 0.00 0.00 1.00 0.97 1.00 1.00 1.00 0.97 1.00 1.00 
39 1.00 0.96 0.00 0.00 1.00 0.96 1.00 1.00 1.00 0.96 1.00 1.00 
40 1.00 0.96 0.00 0.00 1.00 0.96 1.00 1.00 1.00 0.96 1.00 1.00 
41 1.00 0.98 0.00 0.00 1.00 0.98 1.00 1.00 1.00 0.98 1.00 1.00 
42 1.00 0.93 0.00 0.00 1.00 0.93 1.00 1.00 1.00 0.93 1.00 1.00 
43 1.00 0.93 0.00 0.00 1.00 0.93 1.00 1.00 1.00 0.93 1.00 1.00 
44 1.00 0.87 0.00 0.00 1.00 0.87 1.00 1.00 1.00 0.87 1.00 1.00 
45 1.00 0.98 0.00 0.00 1.00 0.98 1.00 1.00 1.00 0.98 1.00 1.00 
46 1.00 0.86 0.00 0.00 1.00 0.86 1.00 1.00 1.00 0.86 1.00 1.00 
47 1.00 0.97 0.00 0.00 1.00 0.97 1.00 1.00 1.00 0.97 1.00 1.00 
48 1.00 0.84 0.00 0.00 1.00 0.84 0.98 0.99 1.00 0.84 0.98 0.99 
49 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
50 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 0.99 
51 1.00 0.81 0.00 0.00 1.00 0.81 1.00 0.99 1.00 0.81 1.00 0.99 
52 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
53 0.99 0.81 0.00 0.00 0.99 0.81 1.00 1.00 0.99 0.81 1.00 1.00 
54 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
55 0.99 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
56 0.99 1.00 0.00 0.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
57 1.00 0.81 0.00 0.00 1.00 0.81 1.01 1.00 1.00 0.81 1.01 1.00 
58 0.99 0.99 0.00 0.00 0.99 0.99 1.00 1.00 0.99 0.99 1.00 1.00 
59 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
60 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
61 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
62 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
63 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
64 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
65 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
66 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
67 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
68 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
69 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
70 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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71 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
72 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
73 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
74 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
75 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
76 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
77 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
78 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
79 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
80 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
81 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
82 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
83 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
84 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
85 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
86 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
87 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
88 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
89 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

As can be seen from Table 4.15, multi-group DHFs of the initial resonance 

materials are not sensitive to burnup. Furthermore, DHFs for most of the important TRU 

nuclides like Pu-239 and Pu-240 are equal to, or close to, unity throughout the burnup 

process as can be seen in Table 4.15. In addition, relative concentration of TRU nuclides 

is negligible in the VHTR fuel. Therefore, it is concluded that fuel depletion of the 

resonance nuclides has a negligible effect on DHFs for the resonance nuclides. The 

concentrations of these nuclides are insufficient to cause significant self-shielding within 

a fuel kernel hence the only heterogeneity that needs to be accounted for is the fuel 

compact heterogeneity and this is already accounted for by the original CPM3 

calculation.  

As can be seen in Table 4.15, DHFs, basically the self-shielding factors, may be 

greater than one for some resonance groups and absorbers due to resonance cross-

shielding effect. If the two materials have resonances that overlap, the flux perturbation 

caused by each material will shield resonance reactions of the other material. The level of 
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cross-shielding depends on the relative concentration of two absorbers as well as the 

specific shapes of their resonance cross sections. This is also known as resonance 

interference effect and was discussed by Williams[50]. It was shown that resonance 

shielding factors can be greater than one for some resonance groups and absorbers.     

4.2.4.3 Packing Fraction Dependence 

Detailed analysis of the grain shielding factor developed by Wälti [17] suggests that 

DHFs should mainly depend on the relative volume of the fuel kernels and moderator 

region (coatings + binder) in a given fuel compact cell. It was already shown that material 

composition has a negligible effect on the DHFs and the spatial dependence over an 

assembly (and core) is weak. To examine the sensitivity of the DHFs to the packing 

fraction, DHFs were calculated for each resonance energy group for U235 and U238 with 

packing fractions. Table 4.16 shows how the multi-group DHFs change as a function of 

packing fraction.  

Table 4.16. Multi-group DHFs for U-238 as a function of kernel packing fraction. 

 

Case # Packing 
Fraction Multi-group DHFs for U-238 

  44 46 48 51 53 57 
1 13.2% 0.84 0.80 0.79 0.66 0.68 0.72 
2 14.5% 0.83 0.81 0.79 0.68 0.69 0.72 
3 16.0% 0.83 0.80 0.79 0.69 0.70 0.72 
4 17.5% 0.84 0.81 0.79 0.71 0.71 0.73 
5 19.1% 0.84 0.82 0.79 0.73 0.73 0.75 
6 20.9% 0.85 0.82 0.80 0.74 0.75 0.76 
7 22.7% 0.85 0.83 0.81 0.77 0.76 0.77 
8 24.7% 0.86 0.84 0.82 0.78 0.78 0.79 
9 26.7% 0.86 0.85 0.82 0.80 0.80 0.80 
10 28.9% 0.87 0.86 0.83 0.81 0.81 0.81 
11 31.2% 0.88 0.86 0.84 0.83 0.82 0.83 
12 33.6% 0.88 0.87 0.86 0.84 0.83 0.84 
13 36.1% 0.89 0.88 0.86 0.85 0.85 0.85 
14 38.7% 0.90 0.88 0.87 0.86 0.86 0.86 
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15 41.5% 0.90 0.89 0.88 0.87 0.87 0.87 
16 44.4% 0.91 0.90 0.89 0.88 0.87 0.87 
17 47.4% 0.91 0.90 0.90 0.90 0.89 0.88 
18 50.6% 0.92 0.91 0.90 0.90 0.89 0.89 
19 53.9% 0.92 0.92 0.91 0.91 0.90 0.90 

 

As can be seen, the effect of packing fraction is finite but not huge. For example, 

the packing fraction changes by 8% going from Case 10 to Case 11 but the DHF changes 

by 2%. Since the packing fraction does not change during operation, DHFs would 

probably be generated for each packing fraction although it may be possible to 

parameterize the DHFs as a function of packing fraction. This dependence can also be 

expressed as a function of Dancoff factor, which could account for the weak spatial 

dependence as well as the packing factor dependence.  
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CHAPTER 5  
 

SUMMARY & CONCLUSIONS 

 

Two of the primary challenges associated with the neutronic analysis of the Very 

High Temperature Reactor (VHTR) are accounting for resonance self-shielding in the 

particle fuel (contributing to the double heterogeneity) and accounting for temperature 

feedback due to Doppler broadening. The research reported in this thesis addresses both 

of these challenges. The double heterogeneity challenge is addressed by defining a 

"double heterogeneity factor" (DHF) that allows conventional light water reactor (LWR) 

lattice physics codes to analyze VHTR configurations. The challenge of treating Doppler 

broadening is addressed by a new "on-the-fly" methodology that is applied during the 

random walk process with negligible impact on computational efficiency. Although this 

methodology was motivated by the need to treat temperature feedback in a VHTR, it is 

applicable to any reactor design. 

5.1 On-the-fly Doppler Broadening for Monte Carlo Codes 

A new regression model for cross sections of any type was developed based on the 

Adler-Adler  multi-level temperature dependent resonance representation. Furthermore, it 

is the only multi-level formulation based on resonance parameters in the ENDF library. 

The temperature dependence of the resonance model was investigated for a given nuclide 
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and neutron energy for cross sections of any type as a function of temperature. The 

analysis was performed at the energy grid points of several important resonance nuclides, 

dividing a resonance into three sub-regions: near the peak of the resonance, near the 

middle of the resonance, and the wings of the resonance. The maximum relative error 

compared to the NJOY approach is less than 1x10-9% and 1x10-6 over the peak and mid-

resonance regions respectively for U-238 in the temperature range of 77K-3200K. For the 

wings of the U238 resonances, the cross section difference was less than 0.1% or so but 

the absolute difference was negligible because the cross sections are so small in this 

range. This should be compared with a maximum relative difference of up to 100% for all 

regions with the equivalent polynomial regression model. A Monte Carlo code was 

implemented to apply the combined regression model to calculate the additional 

computing cost. It was found to be less than <1% without keeping the broadened cross 

sections in the memory and allowing an unlimited number of material temperatures. 

5.2 Coupled Monte Carlo/Collision Probability Method for VHTR 
Analysis 

 
Two related methodologies were developed to analyze VHTR configurations by 

the conventional advanced LWR lattice physics codes, accounting for the double 

heterogeneity posed by the VHTR fuel.  

The initial approach involved the simultaneous execution of MCNP5 and CPM3, 

with direct communication of MCNP5 resonance cross sections to CPM3 during the 

simulation. An application program interface was implemented to provide the 

communication between CPM3 and MCNP5. This  methodology was found to work very 

well, demonstrating that CPM3 (with assistance from MCNP5) is able to analyze a 
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VHTR assembly with TRISO fuel and yield excellent results compared with MCNP5, 

even though CPM3 models the TRISO fuel as a homogeneous region.  

An alternative approach, based on defining a double heterogeneity factor (DHF), 

was developed. It yielded similar results but has substantial advantages over the direct 

approach for realistic VHTR analysis. DHFs, which are basically self shielding factors, 

were found to have important characteristics. Spatial dependence of DHFs was analyzed 

for two limiting assembly configurations and it was found to be negligible for both 

assembly configurations. Furthermore, DHFs are almost the same at the corresponding 

fuel compact locations between two limiting assemblies, suggesting the use of one set of 

multi-group DHFs for each resonance nuclide and VHTR fuel assembly at any location in 

the full core. Secondly, DHFs of resonance nuclides were found to be insensitive to 

burnup. Furthermore, DHFs for most of the important transmutation nuclides like Pu-239 

and Pu-240 are equal to, or close to, unity throughout the burnup process. Since the 

relative concentration of transmutation nuclides is negligible in the VHTR fuel, it is 

concluded that fuel depletion has a negligible effect on DHFs for the resonance nuclides.  

As a final analysis, the dependence of the DHFs on packing fraction was investigated. 

Since the packing fraction does not change during operation, DHFs can be generated for 

each packing fraction although it may be possible to parameterize the DHFs as a function 

of packing fraction.  

In conclusion, the DHF approach eliminates simultaneous execution of MCNP5 

and CPM3. This methodology is independent of the target lattice physics code as long as 

it can analyze homogeneous VHTR fuel.  
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5.3 Future Work 
 

A simple, accurate, and efficient closed form equation was suggested to Doppler 

broaden the cross sections at the energy grid points for each nucleus. Although this 

method appears to be a promising approach, the accuracy and efficiency of the proposed 

model must also be tested in production level Monte Carlo codes. Furthermore, the 

proposed regression model was optimized based on ENDF/B-VI library and the proposed 

methodology in this thesis may need to be repeated with ENDF/B-VII library for further 

optimization.  

A new methodology based on DHFs was developed to account for double 

heterogeneity posed by the VHTR fuel in conventional LWR lattice physics codes. It was 

shown that the DHF only depends strongly on the packing fraction in a fuel compact. 

Therefore, it was proposed that DHFs be tabulated as a function of packing fraction to 

analyze the heterogeneous fuel in VHTR configuration with LWR lattice physics codes. 

This dependence can also be expressed as a function of Dancoff factor, which could 

account for the weak spatial dependence as well as the packing factor dependence. 
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