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CHAPTER I

Introduction

Since the early 1980’s, starting with the work of S. K. Donaldson and E. Witten,

gauge theory has become an important tool in understanding the geometry and

topology of 3 and 4-dimensional manifolds. In [3], Donaldson showed that the moduli

space of anti-self-dual connections on particular SU(2)-bundles over a smooth 4-

dimensional manifold captures invariants of its smooth structure. Meanwhile, Witten

used the language of quantum field theory to construct a refined version of Morse

theory, known as Morse–Witten theory (see [30]). Witten’s reinterpretation of Morse

theory was used by A. Floer (see [4]) to study 3- and 4-dimensional manifolds. Floer

used the anti-self-dual Yang–Mills equations to define a homology theory associated

to closed, oriented 3-manifolds, the so-called instanton Floer homology. In certain

cases, Floer’s work has made it possible to calculate Donaldson invariants of 4-

dimensional manifolds.

In 1994, Witten proposed an alternate point of view to Donaldson invariants of

4-dimensional manifolds after his joint work with N. Seiberg (see [18] and [31]).

This new point of view involved counting solutions of a particular system of quasi-

linear PDEs with abelian gauge group U(1), the so-called Seiberg–Witten equations.

Compared to Donaldson theory, Seiberg-Witten theory proved much easier to work
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with. In fact, many problems which were considered out of reach in Donaldson theory

at the time were handled relatively quickly using Seiberg–Witten theory.

The true strength of Seiberg–Witten theory was first revealed in the papers by

Taubes. In his seminal work on the Seiberg–Witten invariants of closed symplectic

4-manifolds, Taubes showed that counting solutions of the Seiberg-Witten equations

is the same as counting pseudo-holomorphic submanifolds representing a homology

class fixed in advance (see [22]). A program initiated by Taubes aims at establishing a

similar kind of correspondence between solutions of the Seiberg-Witten equations and

embedded surfaces in the realm of a larger class of smooth 4-dimensional manifolds.

As an interesting example, Taubes suggested studying 4-dimensional manifolds of

the form S1 ×M where M is a closed, oriented 3-manifold. Here, the question of

interest is when exactly such manifolds admit symplectic forms, and if they do, how

could one identify the set of all symplectic forms up to equivalence. This dissertation

grew out of an attempt to answer these questions.

It is known that if a closed, oriented 3-manifold, M, fibers over the circle, then

S1 ×M admits a symplectic form. This was first observed by W. P. Thurston (see

[27]). One way to see this is as follows: Suppose f : M → S1 is a smooth map with

no critical values. Then, one can find a Riemannian metric on M so that df := f ∗dt

is a harmonic 1-form. Here, dt denotes the the volume form on S1 with respect to

the standard Riemannian metric. As a result, the 2-form ωf := dt ∧ df + ∗df is

a symplectic form on S1 ×M, which is self-dual and harmonic with respect to the

product Riemanian metric. Conversely, the following was conjectured.

Conjecture I.1. If M is a closed, oriented 3-manifold such that the 4-dimensional

manifold S1 ×M admits a symplectic form, then M fibers over the circle.

Conjecture I.1 is often attributed to Taubes in the literature.
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Recently, S. Friedl and S. Vidussi have announced a complete proof of the above

conjecture (see [7]). Their proof involves investigating certain topological invariants

associated to finite index subgroups of the fundamental group of M. This dissertation

presents a geometric approach to proving this conjecture.

The main ingredient in our approach is a Floer-type topological invariant for

closed, oriented 3-manifolds, namely, Seiberg–Witten Floer homology. Seiberg-Witten

Floer homology was constructed by P. Kronheimer and T. Mrowka in [9] using the

Seiberg-Witten equations. Having fixed a spinc structure s on a closed, oriented

3-manifold M , Seiberg–Witten Floer homology associates to it three graded abelian

groups, ĤM(M, s),

̂

HM(M, s) and HM(M, s). Assuming that S1 ×M admits a

symplectic form, our aim is to study these Floer homology groups so as to deduce

conditions that are sufficient for M to fiber over the circle.

Before stating the first main result of this dissertation, we lay out the working

assumptions. The set S(M) of spinc structures (up to isomorphism) on M is a

principal homogeneous space for H2(M; Z). When S1 ×M admits a symplectic form

ω, S(M) is canonically identified with H2(M; Z). With this identification in mind,

we may denote the spinc structure corresponding to a given e ∈ H2(M; Z) by se.

Now, let i : M → S1 ×M be the obvious inclusion map, and fix a spinc structure se

such that c1(se) = λ[i∗ω] in H2(M; R) for some λ < 0. From now on, we will refer to

such spinc structures as those that satisfy the monotonicity condition. Then,

Theorem I.2 (K.–Taubes). HM(M, se) is trivial, ĤM(M, se) ∼=

̂

HM(M, se), and

the following hold true:

• If e = 0, then

̂

HM(M, se) ∼= Z.

• If e 6= 0 and [ω] · e ≤ 0, then

̂

HM(M, se) is trivial.
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Recently, Kronheimer and Mrowka introduced in [10] a topological invariant for

null-homologous knots in a given closed, oriented 3-manifold using Seiberg–Witten

Floer homology, so-called monopole knot homology. As an application, Kronheimer

and Mrowka proved that monopole knot homology detects fibered knots in S3, i.e.

knots in S3 whose complements fiber over the circle. Shortly afterwards, Ni proved

in [15] the following analogue of this result for closed, oriented 3-manifolds using the

ideas in [16].

Theorem I.3 (Ni). Let M be a closed, connected, oriented and irreducible 3-manifold

and Σ ⊂ M be a non-separating, closed, oriented surface of genus 2 or more. Suppose

that ̂

HM(M|[Σ]) :=
⊕

s∈S(M) : 〈c1(s),[Σ]〉=2genus(Σ)−2

̂

HM(M, s) ∼= Z.

Then, M fibers over the circle with Σ as a fiber.

Now, with the help of Theorems I.2 and I.3 we can state the second main result of

this dissertation as follows.

Theorem I.4 (K.–Taubes). Let M be a closed, connected, orientable, and irreducible

3-manifold with b1(M) = 1. Suppose that S1 ×M admits a symplectic form with non-

torsion anticanonical class. Then, M fibers over the circle.

A few remarks are in order regarding the hypotheses of Theorem I.4. First, if

S1 ×M admits a symplectic form with torsion anticanonical class, then it follows

from Theorem I.2, Theorem II.9 and Proposition 25.5.5 in [9] that M has vanishing

Thurston (semi)-norm. As Friedl and Vidussi proved in [5], this implies that M fibers

over the circle with torus fibers. Second, it follows from a theorem of J. D. McCarthy

[13] with G. Perelman’s proof of the Geometrization Conjecture that S1 ×M admits

a symplectic form in the case when M is reducible if and only if M = S1 × S2.
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The organization of this dissertation is as follows: Chapter II presents the required

background material on Seiberg–Witten theory in dimension 3. There, we follow the

book by Kronheimer and Mrowka [9], which presents an extensive treatment of the

subject. Therefore, the reader is referred to their book for proofs of most of the

results stated in that chapter. In Chapter III, we prove Theorems I.2 and I.4. The

author would like to inform the reader of the fact that most of what is in that

chapter has appeared in a joint paper with Taubes (see [11]). Finally, in Chapter

IV, we conclude with some remarks as to how one could proceed in order to give a

complete proof of Conjecture I.1 using our approach.



CHAPTER II

Background on Seiberg–Witten theory

In this chapter, we present a brief introduction to the theory of Seiberg–Witten

invariants of 3-dimensional manifolds and Seiberg–Witten Floer homology as defined

by Kronheimer and Mrowka in their book [9].

2.1 Spinc structures and oriented two-plane fields

Spinc structures constitute the geometric background on which Seiberg–Witten

theory is built. Although the notion of a spinc structure can be defined for manifolds

of any dimension, we will focus on manifolds of dimension three.

Since π1(SO(3)) ∼= Z2, there is a unique connected double cover of the Lie group

SO(3), namely the group Spin(3) = SU(2). The group Spinc(3) is defined as the

quotient of U(1)× Spin(3) by the diagonal action of Z2, thus the group U(2). Now,

let M be a closed, oriented 3-manifold, and fix a Riemannian metric on M. Then, a

spinc structure s on M is a principal U(2)-bundle P̃ such that P̃×ρ SO(3) ∼= PSO(3),

the principal SO(3)-bundle associated to the tangent bundle of M. Here, ρ denotes

the natural projection of U(2) onto U(2)/U(1) = SO(3).

A spinc structure on M has an associated Hermitian C2-bundle S, defined by the

defining representation of U(2), and a Clifford multiplication cl : T∗M → EndC(S).

The bundle S is called the spinor bundle. Its sections are called the spinors. The

6
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Clifford multiplication is a bundle map that identifies T∗M isometrically with the

bundle su(S) of traceless, skew-adjoint endomorphisms of S equipped with the inner

product 1
2
tr(A∗B). It also respects the orientations, namely, cl(e1)cl(e2)cl(e3) = 1

for an oriented orthonormal frame {e1, e2, e3}. Moreover, having fixed an oriented

orthonormal frame {e1, e2, e3} of the tangent bundle to M, there exists a splitting

of the spinor bundle into a direct sum of two complex line bundles so that Clifford

multiplication by each ei has one of the following matrix representations:

cl(e1) =

 i 0

0 −i

 , cl(e2) =

 0 −1

1 0

 , cl(e3) =

 0 i

i 0

 .

The Clifford multiplication can be extended to ∧T∗M by the rule

cl(a ∧ b) =
1

2
(cl(a)cl(b) + (−1)deg(a)deg(b)cl(b)cl(a)).

Therefore, by the orientation convention, cl(∗a) = −cl(a).

There is also a map det : U(2) → U(1) defined by taking the determinant. This

representation of U(2) yields a principal U(1)-bundle P̃ ×det U(1). The complex

line bundle associated to P̃ ×det U(1) is called the determinant bundle of the spinc

structure, which we denote by det(S), because this line bundle is the second exterior

power of the bundle S. The first Chern class of det(S) will be denoted by c1(s).

Existence of spinc structures on M is due to the fact that the tangent bundle

of an oriented 3-dimesional manifold is trivial. The set of spinc structures (up to

isomorphism) on M form a principle bundle over a point for the additive group

H2(M; Z). To elaborate, a given cohomology class e ∈ H2(M; Z) acts on a given spinc

structure in such a way that the spinor bundle for the new spinc structure is obtained

from that of the original one by tensoring with a complex line bundle E whose first

Chern class is e. The Clifford multiplication changes by tensoring that of the original

one with the identity endomorphism of E.
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Next, we discuss an alternative and perhaps more topological way to describe the

notion of a spinc structure. In this regard, let J(M) denote the set of homotopy

classes of oriented 2-plane fields on M. This set is non-empty because the tangent

bundle of M is trivial. The following lemma provides a relationship between oriented

2-plane fields and spinc structures on M.

Lemma II.1. [9, Lemma 28.1.1] There exists a one-to-one correspondence between

oriented 2-plane fields and isomorphism classes of pairs (s,ψ) consisting of a spinc

structure s and a unit-length spinor ψ.

Proof. Given an oriented 2-plane field ξ, there exists a unique unit-length 1-form

a on M such that ξ is the kernel of a and ∗a restricts positively on ξ. Then, define

a pair (s,ψ) consisting of a spinc structure s and a unit-length spinor ψ as follows:

Let S = C ⊕ ξ and ψ denote the section (1, 0) of S. Then, define the Clifford

multiplication cl : T∗M→ EndC(S) by

cl(a) =

 i 0

0 −i

 and cl(b)(1, 0) = (0, b†)

for any 1-form b orthogonal to a. Here, b† denotes the metric-dual of the 1-form b in

ξ. This data is enough to define a spinc structure s. Conversely, given a pair (s,ψ) of

a spinc structure and a unit-length spinor, there exists a unique unit-length 1-form a

on M such that the spinor bundle splits into eigenbundles of cl(a) as S = Cψ⊕ψ⊥.

Then, the 2-plane field defined by the kernel of a and oriented by ∗a is isomorphic

to the complex line bundle ψ⊥. Note that the two constructions described above are

inverses of each other. �

Therefore, one can think of J(M) as the set of homotopy classes of pairs (s,ψ)

consisting of a spinc structure s and a unit-length spinor ψ. Note, in this regard, that
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by Lemma II.1 no two pairs (s0,ψ0) and (s1,ψ1) are homotopic unless s0 and s1 are

isomorphic. The next lemma provides a classification of such pairs up to homotopy

for a fixed isomorphism class of spinc structures.

Lemma II.2. [9, Lemma 28.2.1] Let s0 be a spinc structure on M. The pairs (s,ψ)

consisting of a spinc structure s isomorphic to s0 and a unit-length spinor ψ are

classified up to homotopy by the cokernel of the map

H2(M; Z)→ Z : [σ] 7→ 〈c1(s0), [σ]〉.

Proof. Fix a unit-length section ψ0 of the spinor bundle S0, and let ψ1 be any other

unit-length spinor. Then, the homotopy class of ψ1 is determined by the Euler class

of the pull-back of S0 onto I×M relative to the sections ψ0 and ψ1 at the boundary,

namely, δ(ψ0,ψ1) = e(I× S0,ψ0 t ψ1)[I×M, ∂I × M]. Since both ψ0 and ψ1 are

of unit-length, we can write ψ1 = uψ0 for some u : M → S1. On the other hand,

by Lemma II.1, S0 = C ⊕ L for some complex line bundle L. Now, the claim of

the lemma follows from the fact that δ(ψ0,ψ1) is equal to the Euler number of the

bundle over S1 ×M obtained from I×S0 by gluing the ends via the map (1, u). Note

that the latter is precisely ([u−1du] ∪ c1(s0))[M]. �

Now, for a fixed spinc structure s on M, let J(M, s) denote the set of homotopy

classes of oriented 2-plane fields that correspond to s. By Lemma II.2, J(M, s) is

identified with Z/p where p is the greatest integer divisor of the class c1(s) unless c1(s)

is torsion, in which case p is taken to be 0. Then, we can write J(M) =
⊔
s

J(M, s).

For the remainder of this chapter, s will denote a spinc structure on M with

associated spinor bundle S and Clifford multiplication cl.
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2.2 The Seiberg–Witten equations

In this section, we introduce the Seiberg–Witten equations and the numerical

invariants associated to their solutions.

A unitary connection A on det(S) together with the Levi-Civita connection on

the orthonormal frame bundle of M determines a spinc connection A on the spinor

bundle S, that is, a Hermitian connection on S that leaves cl parallel. Then the

Seiberg–Witten monopole equations are

∗FA = ψ†τψ

DAψ = 0.(2.1)

Here, the notation is as follows: First, FA ∈ Ω2(M, iR) denotes the curvature of the

connection A. Second, ψ is a section of the spinor bundle S. Third, ψ†τψ denotes the

section of iT∗M which is the metric dual of the homomorphism ψ†cl(·)ψ : T∗M→ iR.

Fourth, DA is the Dirac operator associated to A, which is defined by

Γ(S)
∇A−→ Γ(T∗M⊗ S)

cl−→ Γ(S).

The group of gauge transformations of a spinc structure, the so-called gauge group

G = C∞(M, S1), acts on the configuration space C = Conn(det(S))× C∞(M; S) as

G × C −→ C

(u, (A,ψ)) 7−→ (A− 2u−1du, uψ).

The Seiberg–Witten equations are invariant under the action of the gauge group.

Therefore, one can define the space of equivalence classes of solutions under the

action of the gauge group. This is called the moduli space and we denote it by M.

The solutions of the Seiberg–Witten equations which are of the form (A, 0) are called
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reducible solutions because the stabilizer under the action of the gauge group is not

trivial. Solutions with non-zero spinor component are called irreducible. We let

B = C/G. It is possible to prove that M is a sequentially compact subset of B. The

gauge group G acts freely on the space of irreducible solutions of the Seiberg–Witten

equations. A suitable perturbation of the Seiberg–Witten equations guarantees that

the quotient of this space by G is a finite set of points in B.

To elaborate, let R denote the trivial line bundle over M. Each (A,ψ) ∈ C has an

associated linear operator L(A,ψ) that maps C∞(M; iT∗M⊕ S⊕ iR) onto itself. It is

defined as

(2.2) L(A,ψ)(b,φ, g) =


∗db− dg − (ψ†τφ+ φ†τψ)

DAφ+ 1
2
cl(b)ψ+ gψ

−d∗b− 1
2
(φ†ψ−ψ†φ)

 .

This operator extends to L2(M; iT∗M⊕ S ⊕ iR) as an unbounded, self-adjoint and

Fredholm operator with dense domain L2
1(M; iT∗M⊕ S ⊕ iR). Furthermore, it has

a discrete spectrum that is unbounded from above and below. The spectrum has no

accumulation points, and each eigenvalue has finite multiplicity (see [9, Section 12]).

An irreducible solution of the Seiberg–Witten equations is called non-degenerate

if L has trivial kernel. A suitable perturbation of the Seiberg–Witten equations

renders all irreducible solutions of the perturbed equations non-degenerate. In this

case, irreducible solutions of the perturbed Seiberg–Witten equations define isolated

points in B. We shall denote the set of such points by B∗.

The perturbations that are under consideration here result from the choice of a

closed 2-form ρ on M. With such a 2-form chosen, the perturbed version of the
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Seiberg–Witten equations read

∗FA = ψ†τψ− i ∗ ρ

DAψ = 0.(2.3)

Now, suppose that b1(M) > 0. Then, having fixed a suitable perturbation ρ for

the Seiberg–Witten equations, each point in B∗ is assigned a canonically defined sign

determined by a fixed orientation of H1(M; R). The latter is a non-zero element

o ∈ H1(M; R). When b1(M) = 1, we further require that ([ρ] − 2πc1(s)) · o > 0.

Then, a signed count of the points in B∗ results in an integer which we denote by

SW (M, s). This is the so-called Seiberg–Witten invariant of M corresponding to the

spinc structure s. SW (M, s) constitutes an invariant of the topology of M and the

spinc structure s.

2.3 Seiberg–Witten Floer homology

The Seiberg–Witten equations are the variational equations of a functional defined

on the configuration space C by

csd(A,ψ) = −1

4

∫
M

(A− AS) ∧ (FA + FAS) +

∫
M

ψ†DAψ.

Here, AS is any given connection fixed in advance on det(S). This is the so-called

Chern-Simons-Dirac functional. Seiberg–Witten Floer homology can be regarded as

an infinite dimensional version of the Morse homology theory where B plays the role

of the ambient manifold and the Chern-Simons-Dirac functional plays the role of the

“Morse” function. As the critical points of the Chern-Simons-Dirac functional are

solutions of the Seiberg–Witten equations, the latter are used, as in Morse theory,

to label generators of the chain complex. The analogue of a non-degenerate critical

point is a solution of the Seiberg–Witten equations whose version of L has trivial
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kernel if the solution is irreducible or the kernel is spanned by elements of the form

(0, 0, i) and (b, 0, 0) where b is a harmonic 1-form on M. Here, the point is that L

is, formally, the Hessian of the Chern-Simons-Dirac functional.

Kronheimer and Mrowka describe in Chapter III of their book a large, separable

Banach space P of tame perturbations to use with the Seiberg–Witten equations.

The space P consists of formal gradients of smooth G-invariant functions on C with

certain additional properties. Moreover, Kronheimer and Mrowka prove that P con-

tains a residual set of admissible perturbations. In particular, an admissible per-

turbation has the following property: The perturbed version of the Seiberg–Witten

equations have only irreducible solutions unless c1(s) is torsion, and all of the solu-

tions are non-degenerate.

Having fixed an admissible perturbation to use with the Seiberg–Witten equations,

Kronheimer and Mrowka define in Chapter VI of their book three chain complexes

(Č, ∂̌), (Ĉ, ∂̂), and (C̄, ∂̄). Roughly speaking, the chain groups Č, Ĉ, and C̄ are

free abelian groups whose generators are obtained from gauge equivalence classes of

irreducible and/or reducible solutions to the Seiberg–Witten equations via a blow-up

of B along the set of gauge equivalence classes of reducible configurations. Blowing-up

B results in one generator for each gauge equivalence class of an irreducible solution,

and a countable set of generators for each gauge equivalence class of a reducible

solution. We will explain what goes into the definitions of the three differentials ∂̌,

∂̂, and ∂̄ momentarily.

Remember that the differential in the Morse complex is defined via a signed

count of the downward gradient flow lines of the Morse function. The analog in this

context of a gradient flow line in finite dimensional Morse theory is a smooth map
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s 7→ (A(s),ψ(s)) from R into C that obeys the rule

∂

∂s
A = − ∗ FA +ψ†τψ

∂

∂s
ψ = −DAψ.(2.4)

This can also be written as ∂
∂s

(A,ψ) = −∇L2csd|(A,ψ) where ∇L2 denotes the L2-

gradient of csd. An instanton is a solution of these equations on R×M that converges

to a solution of the Seiberg–Witten equations on each end as |s| tends to infinity.

Note that the equations in (2.4) are also invariant under the action of G.

The differentials ∂̌, ∂̂, and ∂̄ are defined using a suitably perturbed version of

these instanton equations. As in finite dimensional Morse theory, a perturbation is

in general necessary in order to have a well defined count of solutions. The perturbed

equations can be viewed as defining the analog of what in finite dimensions would

be the equations that define the flow lines of a pseudo-gradient vector field for the

given function. In this regard, admissible perturbations guarantee that the resulting

instanton equations can serve to define the differentials by means of a signed count of

the gauge equivalence classes of solutions. Then, the chain complexes (Č, ∂̌), (Ĉ, ∂̂),

and (C̄, ∂̄) as defined by the perturbed version of the Seiberg–Witten equations yield

the three versions of the Seiberg–Witten Floer homology denoted respectively bŷ

HM(M, s), ĤM(M, s) and HM(M, s). These three groups constitute an invariant

that depends only on the topology of M and the spinc structure s.

Each of these Floer homology groups admits a Z/p grading, where p is the greatest

integer divisor of c1(s) unless c1(s) is torsion, in which case p is taken to be 0. One

way to see this is by associating to each generator of the three chain complexes (Č, ∂̌),

(Ĉ, ∂̂), and (C̄, ∂̄) a unit-length section of the spinor bundle, hence an element of

J(M, s) by Lemma II.1 (see [9, Section 28]). Alternatively, as the Hessian in finite
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dimensional Morse theory can be used to define the grading of the Morse complex,

it is also the case here that the operator L can be used to define gradings for the

three Seiberg–Witten Floer homology chain complexes. In particular, L can be used

to associate an integer degree to each non-degenerate solution of the Seiberg–Witten

equations, in fact, to any given pair in C whose version of L has trivial kernel. It is

enough to say here that this degree involves the notion of spectral flow for families

of self adjoint operators such as L. In general, only the mod(p) reduction of this

degree is gauge invariant. Therefore, it descends to a Z/p grading on the set of

gauge equivalence classes of solutions to a suitably perturbed version of the Seiberg–

Witten equations.

For a fixed spinc structure s, the three Seiberg–Witten Floer homology groupŝ

HM(M, s), ĤM(M, s) and HM(M, s) are finitely generated in each degree. However,

if c1(s) is torsion, then the degrees at which

̂
HM(M, s) is non-trivial are bounded

from below, but unbounded from above. Similarly, the degrees at which ĤM(M, s)

is non-trivial are bounded from above, but unbounded from below. On the other

hand, if c1(s) is non-torsion, then both of these groups are finitely generated, and

HM(M, s) is the trivial group. Furthermore, the two Seiberg–Witten Floer homology

groups

̂

HM(M, s) and ĤM(M, s) are isomorphic (see [9, Section 22]).

An important property of the Seiberg–Witten Floer homology is that it admits

an involution. This involution is the result of a natural involution map defined on

S(M), namely, charge conjugation. To elaborate, let s∗ denote the spinc structure

that is the complex conjugate of s. The former has the associated spinor bundle

S and Clifford multiplication the same as that associated to s (as R-linear maps).

Then, Kronheimer and Mrowka prove that there are isomorphisms between each

of the three versions of the Seiberg–Witten Floer homology for the conjugate spinc
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structures s and s∗ (see [9, Propositions 25.5.5 and 25.5.7]).

The organization of the remainder of this section is as follows: First, we give an

overview of the notion of non-exact perturbations for the Seiberg–Witten equations.

These are the sort of perturbations used in this dissertation. Then, some relevant

results on the vanishing/non-vanishing of the Seiberg–Witten Floer homology groups

and their consequences are discussed.

2.3.1 Non-exact perturbations

As we mentioned in the beginning of this section, the definition of Seiberg–Witten

Floer homology requires the choice of a perturbation from a residual subset of the

Banach space P . This Banach space consists of smooth G-invariant functions on

the configuration space C, and the differential of such a function, g, at any given

(A,ψ) defines a section (G|(A,ψ),H(A,ψ)) of iT∗M ⊕ S by d
dt

g(A + tb,ψ + tφ)|t=0 =∫
M

(b ∧ ∗G− 1
2
(φ†H + H†φ)). Then, the resulting perturbed version of the Seiberg–

Witten equations read

∗FA = ψ†τψ+ G|(A,ψ)

DAψ = H|(A,ψ).(2.5)

Note that since g is G-invariant, so are the sections (G|(A,ψ),H(A,ψ)) and therefore the

equations in (2.5).

The equations in (2.5) defines an operator on C∞(M; iT∗M⊕ S⊕ iR) by

(2.6) Lg
(A,ψ)(b,φ, g) =


∗db− dg − (ψ†τφ+ φ†τψ)−DG|(A,ψ)(b,φ)

DAφ+ 1
2
cl(b)ψ+ gψ−DH|(A,ψ)(b,φ)

−d∗b− 1
2
(φ†ψ−ψ†φ)


where (DG|(A,ψ),DH|(A,ψ)) defines an operator on C∞(M; iT∗M⊕ S) by

(DG|(A,ψ)(b,φ),DH|(A,ψ)(b,φ)) = (
d

dt
G|(A+tb,ψ+tφ),

d

dt
H|(A+tb,ψ+tφ))|t=0.
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The operator in (2.6) is symmetric and it extends to L2(M; iT∗M⊕ S ⊕ iR) as an

unbounded, self-adjoint operator with dense domain L2
1(M; iT∗M⊕ S⊕ iR).

The Banach space P contains a subspace, Ω, of smooth 1-forms σ for use in

(2.5). In order to define this subspace, first denote by Ω0 the space of finite linear

combinations of eigenfunctions of the operator ∗d on C∞(M,T∗M). If σ ∈ Ω0, then

the function gσ, on C defined by gσ(A,ψ) = i
∫

M
σ∧FA is a function in P . Therefore,

P contains the linear subspace {gσ : σ ∈ Ω0}. Moreover, the induced norm on this

linear space dominates all of the Ck-norms on C∞(M; T∗M). Then, Ω is defined to

be the completion of this linear subspace of P with respect to the induced norm.

Because of the previously mentioned fact, each σ ∈ Ω is smooth. In fact, if M is

assumed to have a real analytic structure, then each σ ∈ Ω is itself real analytic.

With g = gσ, the resulting version of the Seiberg–Witten equations read

∗FA = ψ†τψ+ i ∗ dσ

DAψ = 0,(2.7)

whereas the version of the operator Lg in this case is the same as in (2.2).

Note that the Chern-Simons-Dirac functional is not usually G-invariant. To be

more precise, for every (A,ψ) ∈ C and u ∈ G we have

csd(A− 2u−1du, uψ)− csd(A,ψ) =

∫
M

u−1du ∧ FAS

= (2πi[u] ∪ −2πic1(s)) ∩ [M]

= 4π2([u] ∪ c1(s)) ∩ [M]

where [u] ∈ H1(M; Z) corresponds to the base-free homotopy class of the map u.

Denote by τ the integer ([u]∪ c1(s))∩ [M]. Then, the Chern-Simons-Dirac functional

is said to have period 4π2τ for s. Note also that since the perturbations that are
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discussed above are all G-invariant, the perturbed version of the Chern-Simon-Dirac

functional, csd + g, has the same periods as the original one. We will refer to these

perturbations as the exact perturbations.

If c1(s) is non-torsion, the Chern-Simons-Dirac functional descends to a multi-

valued function on B, and the perturbations of the sort discussed above do not

change this fact. Therefore, Kronheimer and Mrowka suggested in Chapter VIII

of [9] to consider a larger class of perturbations, which would allow the periods of

the Chern-Simons-Dirac functional to change, the so-called non-exact perturbations.

Non-exact perturbations are smooth functions on C which are not G-invariant but

their differentials are. Such a function, f, is said to have period class c ∈ H2(M; R) if

for every (A,ψ) ∈ C and u ∈ G, f(A − 2u−1du, uψ) − f(A,ψ) = ([u] ∪ c) ∩ [M]. An

example of non-exact perturbations can be constructed as follows: Let ρ be a closed

2-form on M. Define a function fρ on C by fρ(A,ψ) = −i
∫

M
(A− AS)∧ρ. The version

of the Seiberg–Witten equations obtained from the perturbed Chern-Simons-Dirac

functional csd + fρ is exactly (2.3). The period class of this perturbation is −4π[ρ],

and the periods of the perturbed Chern-Simons-Dirac functional are calculated by

4π2([u] ∪ (c1(s) + 1
4π2 c)) ∩ [M].

Having fixed a spinc-structure, s, Kronheimer and Mrowka consider non-exact

perturbations with period class c such that 4π2c1(s) + c = λ4π2c1(s) for some λ ∈ R.

Such non-exact perturbations are called balanced, positively monotone or negatively

monotone respectively when λ = 0, λ > 0 or λ < 0. Once the notion of an admissible

perturbation is extended to the case of non-exact perturbations (as is explained in

Chapter VIII of [9]), the results from the case of exact perturbations carry onto the

balanced and monotone non-exact cases almost without any change, and there are

canonical isomorphisms between the three Seiberg–Witten Floer homology groups
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and the Floer homology groups defined using admissible balanced or monotone non-

exact perturbations (see [9, Theorems 31.1.1 and 31.1.2]).

2.3.2 Vanishing and non-vanishing theorems

We continue with a discussion of some well-known facts about Seiberg–Witten

Floer homology that are relevant to the content of this dissertation. As the proofs

of the following results involve tools that are beyond the scope of this dissertation,

we omit the proofs and refer the reader to the appropriate references.

Remember that, for a fixed spinc structure, the moduli space of solutions to a

suitably perturbed version of the Seiberg–Witten equations is compact. The latter

follows from the fact that there are uniform bounds on the L2 norms of the curvature

of the connection component and the covariant derivative of the spinor component

of a solution. In fact, one can choose perturbations for each spinc structure so as

to guarantee existence of a uniform bound on the L2 norm of the curvature which

would work for every spinc structure. The following proposition is a consequence of

this last fact.

Proposition II.3. [9, Proposition 3.1.1] The groups

̂

HM(M, s), ĤM(M, s) and

HM(M, s) are non-trivial for only finitely many spinc structures s.

By taking a closer look at the uniform bound on the L2 norm of the curvature

and choosing a particular type of Riemannian metric on M, Kronheimer and Mrowka

manage to obtain a sharper result on the set of spinc structures for which the Seiberg–

Witten Floer homology groups are non-trivial. We state this result in the following

proposition. The reader is referred to [9] for the proof.

Proposition II.4. [9, Proposition 40.1.1] Let s be a spinc structure with non-torsion

first Chern class and Σ ⊂ M be a smoothly embedded, connected, oriented surface of
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non-zero genus. If

(2.8) |〈c1(s), [Σ]〉| > 2genus(Σ)− 2

then there is a Riemannian metric on M for which the unperturbed Seiberg–Witten

equations admit no solutions.

Next, we state a non-vanishing result which proves the sharpness of the bound in

(2.8). The former concerns the notion of a taut foliation from topology. Therefore,

we start with a short discussion of this subject.

Definition II.5. A codimension-1 foliation F on a 3-dimensional manifold N is a

collection of pairwise disjoint, smoothly embedded, connected surfaces, called the

leaves, that cover N in such a way that around each point x ∈ N there exists a

local coordinate chart which parametrizes each surface that intersects this chart by

horizontal planes in R3.

It turns out that codimension-1 foliations exist in abundance on 3-dimensional

manifolds. In fact, any 2-plane field on a 3-dimensional manifold is homotopic to

one that is tangent to a foliation (see e.g. [26]). Somewhat harder to come by is a

type of foliation which we shall define next.

Definition II.6. A codimension-1 foliation on a 3-dimensional manifold N is called

taut if there exists an embedded closed curve in N which intersects each and every

leaf transversally.

The question about the existence of taut foliations is addressed by D. Gabai in [8].

Before we state Gabai’s theorem on the existence of taut foliations, a short digression

follows.

It is known that every homology class in H2(M; Z) can be represented by a closed,

oriented surface smoothly embedded in M. Let S ∈ H2(M; Z) and Σ =
n⊔
i=1

Σi be a
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closed, oriented surface in M that represents the class S. Next, we define a “norm”

for Σ.

|Σ| :=
n∑
i=1

max{0, 2genus(Σi)− 2}.

Note that for a given homology class S ∈ H2(M; Z), a surface Σ which represents S

can be chosen so as to satisfy the following three conditions.

1. Σ achieves the smallest possible norm among all representatives of S.

2. No component of Σ is a sphere.

3. Each genus 1 component of Σ is homologically non-trivial.

Condition (2) can be guaranteed by attaching a 1-handle to any existing sphere

component, whereas condition (3) is guaranteed by the condition (1). With the

preceding understood, we will now state Gabai’s theorem on the existence of taut

foliations on irreducible 3-manifolds. Remember that a 3-dimensional manifold is

irreducible if it does not contain any homotopically non-trivial sphere.

Theorem II.7 (Gabai). Let M be a closed, oriented, irreducible 3-manifold and

Σ ⊂ M be a smoothly embedded, closed, oriented, surface representing a non-zero

homology class in H2(M; Z) and satisfying the above three conditions. Then there

exists an oriented, taut foliation on M where Σ is a union of closed leaves of the

foliation. This foliation has smooth leaves and an associated C0 tangent plane field.

In fact, this foliation is smooth except possibly along genus 1 components of Σ.

Now, suppose that M is a closed, oriented, irreducible 3-manifold that carries an

oriented, taut foliation F with smooth leaves and associated C0 tangent plane field.

Suppose further that the Euler class e(F) of the associated field of tangent planes is

non-torsion. Let sF be the spinc structure corresponding to the tangent plane field
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of F, which has c1(sF) = e(F). Then, the following proposition states the promised

non-vanishing result.

Proposition II.8. [9, Corollary 41.4.2]

̂

HM(M, sF) has non-zero rank in the degree

that corresponds to the tangent plane field of F.

Note that if Σ ⊂ M is a smoothly embedded, closed, connected, oriented surface

representing a non-torsion homology class in H2(M; Z) and satisfying the above

three conditions, then Gabai’s theorem provides us with a taut foliation F such

that 〈e(F), [Σ]〉 = 2genus(Σ)− 2. Furthermore,

̂

HM(M, sF) has non-zero rank. This

observation is central to the discussion in the next subsection.

2.3.3 Floer homology and the Thurston norm

Using Proposition II.4 and Proposition II.8, it is possible to identify the set of

spinc structures for which the Seiberg–Witten Floer homology has non-zero rank in

a more quantitative fashion. In this regard, we will begin by defining a semi-norm

on the homology H2(M; R) of a closed, orientable 3-manifold M. This latter was

introduced by W. P. Thurston in [28] and it measures the minimal complexity of an

embedded surface.

Let S ∈ H2(M; Z), then the so-called Thurston norm of S is defined by

||S||T := min{|Σ| : Σ ⊂ M represents S}.

Thurston shows that || · ||T defines a Z-linear and subadditive function on H2(M; Z)

which extends to a semi-norm on H2(M; R). The reason why || · ||T might fail to

define a norm on H2(M; R) is because there might be non-torsion homology classes

in H2(M; Z) which are represented by unions of embedded tori in M.

With the above understood, there is a naturally defined dual norm on a subspace

of H2(M; R), which we denote by || · ||T. Let H ⊂ H2(M; R) denote the linear
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subspace consisting of the cohomology classes which annihilate any member of the

span in H2(M; R) of the homology classes with vanishing Thurston norm. Then, if

e ∈ H, we define its dual Thurston norm as follows:

||e||T := inf{C ≥ 0 : 〈e,S〉 ≤ C||S||T for each S ∈ H2(M; R)}.

The unit ball of the dual Thurston norm is a convex polytope in H, and if M is

irreducible then the unit ball of the dual Thurston norm is the convex hull of the

Euler classes e(F) as F runs through all taut foliations on M. This remarkable result

is due to Thurston and Gabai (see [28] and [8]). Having said that, it is not hard to

prove the following theorem.

Theorem II.9. [9, Theorem 41.5.2] If M is a closed, orientable, irreducible 3-

manifold, then the unit ball of the dual Thurston norm in H is the convex hull of

the classes c1(s) where s runs through all spinc structures for which
̂

HM(M, s) has

non-zero rank.

Proof. First, if s is a spinc structure for which

̂

HM(M, s) has non-zero rank, then

by Proposition II.4 |〈c1(s), [Σ]〉| ≤ 2genus(Σ)− 2 for any closed, connected, oriented

surface Σ embedded in M. Therefore, c1(s) ∈ H and ||c1(s)||T ≤ 1, i.e. c1(s) is in

the unit ball of the dual Thurston norm. Second, by Proposition II.8, the unit ball

of the dual Thurston norm is inside the convex hull of the classes c1(s) where s runs

through all spinc structures for which

̂

HM(M, s) has non-zero rank. This completes

the proof of the theorem. �

2.4 Sutured monopole homology

Seiberg–Witten Floer homology is defined only for closed manifolds. Recently,

Kronheimer and Mrowka constructed a variant of Seiberg–Witten Floer homology
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for certain kinds of compact manifolds with boundary. The latter are the so-called

balanced sutured manifolds. We will begin with the definitions of a balanced sutured

manifold and sutured monopole homology, a Floer homology invariant for balanced

sutured manifolds defined by Kronheimer and Mrowka in [10]. Then, we will see how

sutured monopole homology can be used to detect closed, oriented 3-manifolds that

fiber over the circle.

Definition II.10. A balanced sutured manifold is a pair (N,γ) that consists of a

compact, oriented 3-manifold N with boundary ∂N and no closed components, and

a collection γ of disjoint, closed, oriented curves in ∂N, called the sutures, satisfying

the following two conditions:

• Let A(γ) denote a collection of pairwise disjoint annuli around each component

of γ and R(γ) denote the closure of ∂N \ A(γ). Then, R(γ) does not contain

any closed components.

• Orient the boundary of A(γ) in the same way as the curve γ, and orient R(γ) so

that its oriented boundary coincides with the given orientation of the boundary

of A(γ). As a result, R(γ) is divided into two regions R+(γ) and R−(γ) labeled

according to whether the orientations determined by γ on either region agrees

or disagrees with the boundary orientation. Then, χ(R+(γ)) = χ(R−(γ)).

Example II.11. The simplest example of a balanced sutured manifold is a product

sutured manifold. A product sutured manifold is a pair ([−1, 1] × Σ, γ̄) where Σ is

a compact, oriented surface with non-empty boundary and no closed components,

and γ̄ = {0} × ∂Σ oriented as the boundary of Σ. Then, A(γ̄) = [−1, 1] × ∂Σ and

R±(γ̄) = {±1} × Σ. Figure 2.1 shows the product sutured manifold where Σ is an

annulus.
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Figure 2.1: Product sutured manifold from an annulus.

Given a balanced sutured manifold (N,γ), Kronheimer and Mrowka construct a

closed, oriented 3-manifold M as follows. Fix a compact, oriented surface Σ with as

many boundary components as the number of components in γ, and construct the

product sutured manifold ([−1, 1]×Σ, γ̄) as in the above example. Then, glue A(γ̄)

onto A(γ) via an orientation-reversing map which maps R±(γ̄) onto R±(γ). The

result is a 3-manifold with boundary which consists of two homeomorphic regions

R± = R±(γ̄) ∪ R±(γ). Now, suppose that the genus of R± is at least 2. Then, glue

R+ and R− via a homeomorphism which respects their orientations. The resulting

closed, oriented 3-manifold M contains a non-separating surface R of genus 2 or more

obtained via the identification of R+ with R−. With the preceding understood, we

are ready to give the definition of sutured monopole homology.

Definition II.12 (Kronheimer and Mrowka). The variant of the Seiberg–Witten

Floer homology for the balanced sutured manifold (N,γ) is defined to be the finitely

generated abelian group

(2.9) SHM(N,γ) :=

̂

HM(M|[R]) =
⊕

s : 〈c1(s),[R]〉=2genus(R)−2

̂

HM(M, s).

This group is independent of the choice of the surface Σ and the various gluing maps
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used to construct the closed, oriented 3-manifold M.

Now, a key step in proving Theorem I.3 requires using a theorem by Kronheimer

and Mrowka which enables us to detect product sutured manifolds. First, we state

this theorem without providing a proof. Then, we close this chapter by giving a

sketch of the proof of Theorem I.3 following [16].

Theorem II.13. [10, Theorem 6.1] Suppose that a balanced sutured manifold (N,γ)

admits a taut foliation and N is a homology product, namely, the inclusions of R±(γ)

into N induce isomorphisms of the integer homology groups. Then, (N,γ) is a product

sutured manifold if and only if SHM(N,γ) ∼= Z.

Remark II.14. The proof of Theorem II.13 is by contradiction, and the main step in

the proof involves showing the existence of two taut foliations on N which extend to

two taut foliations on M with different Euler classes and with associated plane fields

tangent to R. This idea is originally due to P. Ghiggini which he used to prove a

version of Theorem II.13 in the context of Heegaard-Floer homology.

Proof of Theorem I.3. Start by cutting M open along Σ so as to obtain a compact

3-manifold N′ with boundary which consists of two copies of the surface Σ denoted by

Σ+ and Σ− according to whether the boundary orientation agrees with the orientation

of Σ or not. When b1(M) > 1, the assumption that

̂

HM(M|[Σ]) ∼= Z implies that the

Alexander polynomial of M is monic (see [14]), therefore N′ is a homology product

as is explained in [15, Section 3]. When b1(M) = 1, one can replace M by the double

of N′ along its boundary resulting in a manifold M′ with first Betti number greater

than 1. Now, there are two copies of the surface Σ inside M′. Cut M′ open along one

of these two copies of Σ and apply the previous argument. As a result, N′ is again a

homology product.
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Next, Ni observes the following: One can assume, without loss of generality, that

N′ contains a submanifold of the form G× [−1, 1] where G is a once-punctured torus

and G × {±1} are embedded inside Σ± in such a way that when we glue Σ+ back

onto Σ−, G× {1} glues onto G× {−1} so as to yield a submanifold homeomorphic

to G × S1 inside M. Now, denote by N the closure of N′ \ G × [−1, 1] and by γ

the curve ∂G × {0} on the boundary of N. Then, (N,γ) is a balanced sutured

manifold which is a homology product (see Figure 2.2). Moreover, there exists a

taut foliation on N since there exists a taut foliation on N′ that is tangent to the

boundary of N′ by Gabai’s theorem. Thus, Theorem II.13 implies that (N,γ) is

a product sutured manifold. In particular, N is a product manifold. Finally, glue

(N,γ) and (G× [−1, 1],γ) along γ× [−1, 1] so as to retrieve N′ and to see that N′ is

a product manifold. Therefore, M fibers over the circle with Σ as a fiber. �

Figure 2.2: Proof of Theorem I.3.



CHAPTER III

Symplectic forms on S1 ×M3

Let X denote a 2n-dimensional manifold with a differentiable structure on it. A

symplectic form on X is a closed 2-form ω such that ω∧n is nowhere zero on X.

The latter implies that X is an orientable manifold, and ω induces an orientation

on X. A smooth, orientable 2n-manifold X together with a symplectic form on it

is called a symplectic manifold. An example of a symplectic manifold is (R2n,ω0)

where ω0 =
n∑
i=1

dxi ∧ dyi and (x1, y1, · · · , xn, yn) are the coordinates on R2n. It is a

theorem of G. Darboux [2] that any symplectic 2n-manifold is locally diffeomorphic

to (R2n,ω0). In other words, dimension is the only local invariant of a symplectic

manifold. Therefore, the question about the existence of symplectic forms on a given

smooth 2n-manifold concerns very much the topology of that manifold. Note in this

regard that every closed, oriented Riemann surface admits a symplectic form, e.g.

its area form. Therefore, the smallest dimension for which the existence question is

non-trivial is 4.

Now, let M be a closed, connected, orientable 3-manifold and suppose that the

4-dimensional manifold S1×M admits a symplectic form. Let ω denote a symplectic

form on S1 ×M. Then, one can write ω as

(3.1) ω = dt ∧ ν+ µ

28
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where dt is the volume form on S1, ν is a section over S1 ×M of T∗M and µ is a

section over S1 ×M of ∧2 T∗M. Let d denote the exterior derivative along M factor

of S1 ×M. Since ω is a closed 2-form, one has ∂
∂t
µ = dν and dµ = 0. Thus, µ

is a closed form on M at any given t ∈ S1. Its cohomology class in H2(M; R) is

denoted by [µ]. As explained momentarily, the class [µ] is non-zero. To see why this

is the case, first use the Künneth formula to write H2(S1 ×M; R) as the direct sum

[dt]∪H1(M; R)⊕H2(M; R) where [dt] denotes the cohomology class of the 1-form dt.

Let [ω] denote the cohomology class of the symplectic form ω. This class appears

in the Künneth decomposition as [dt] ∪ [ν̄] + [µ] where ν̄ is the push-forward from

S1 ×M of the 2-form dt ∧ ν. This understood, neither [ν̄] nor [µ] are zero by virtue

of the fact that [ω] ∪ [ω] is non-zero.

Our convention is to orient S1 by dt, and S1 ×M by ω ∧ω. Doing so finds that

ν ∧ µ is nowhere zero and so orients M at any given t ∈ S1.

Here is what can be said about the topology of S1 ×M. A smooth, orientable 4-

manifold of the form S1 ×M has vanishing Euler characteristic and signature. Hence,

b±2 (S1 ×M) = b1(M) and the intersection form of S1 ×M can be represented by a

matrix of the form b1(M)

 0 −1

1 0

. Moreover, b1(M) > 0 since S1 ×M admits a

symplectic form.

Now, fix a t-independent Riemannian metric on M, and let ∗ denote the Hodge

star operator. At each t ∈ S1, the 1-form ∗µ is a nowhere vanishing 1-form on M

and so defines a homotopy class of oriented 2-plane fields by its kernel. This 2-plane

field is denoted in what follows by K−1. This bundle is oriented by µ and so has a

corresponding Euler class which we write as −c1(K) ∈ H2(M; Z). The latter is the

so-called anticanonical class associated to the symplectic form ω on S1 ×M.
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Fix a spinc structure s on M with associated spinor bundle S. At any t ∈ S1,

the eigenbundles for Clifford multiplication by ∗µ on S split S as a direct sum,

S = E⊕EK−1, where E is a complex line bundle over M. Here, our convention is to

write the +i|µ| eigenbundle on the left. The canonical spinc structure is that with

E = C, the trivial complex line bundle. We use det(S) to denote the complex line

bundle ∧2S = E2K−1 over M. Note that the assignment of c1(E) ∈ H2(M; Z) to a

given spinc structure identifies the set of isomorphism classes of spinc structures over

M with H2(M; Z). This classification of the spinc structures over M is independent

of the choice of t ∈ S1. For any given class e ∈ H2(M; Z), we use se to denote the

corresponding spinc structure. Thus the spinor bundle S for se splits as E ⊕ EK−1

with c1(E) = e.

With the preceding understood, here is what can be said about the Seiberg–Witten

invariants of M.

Theorem III.1 ([21]). The Seiberg–Witten invariant of M for the canonical spinc

structure is non-zero, more precisely SW (M, s0) = ±1. Moreover, suppose that

b1(M) > 1. Then, SW (M, se) 6= 0 only if 0 ≤ e · [ω] ≤ c1(s0) · [ω], and either equality

holds if and only if e = 0 or e = c1(s0), respectively.

Theorem III.1 is the 3-dimensional version of Taubes’ well-known result on the

Seiberg–Witten invariants of symplectic 4-manifolds. Theorem III.1 and Theorem

1.1 in [14] were used by Vidussi in [29] to deduce the following facts about the

Alexander polynomial ∆M of M. Remember that Alexander polynomial of a closed,

oriented 3-manifold M is an element of the group ring Z[H2(M; Z)/Tor]. Suppose

without loss of generality that [ω] ∈ H2(S1 ×M; Z). Then, there exists a closed,

connected, oriented, genus-minimizing surface Σ ⊂ M such that [Σ] ∈ H2(M; Z) is

primitive and some positive integer multiple of [Σ] is the Poincaré dual of [ν̄]. Now,
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the group homomorphism Γ : H2(M; Z)/Tor → Z defined by Γ(c) = 〈c, [Σ]〉 extends

to a homomorphism Γ̃ : Z[H2(M; Z)/Tor] → Z[t, t−1] of group rings. Then, Γ̃(∆M)

is monic, and its degree is equal to 2genus(Σ) − 2, or 2genus(Σ) if b1(M) = 1.

Unfortunately, the latter is not enough to determine whether M fibers over the circle

or not. For example, the Alexander polynomial of the 3-dimensional manifold S3
0(P)

obtained by performing 0-framed surgery on the (5,−3, 5) pretzel knot P ⊂ S3 is

∆S3
0(P) = 1− 3t + t2, which is monic and has degree equal to twice the genus of P.

However, S3
0(P) does not fiber over the circle. Still, as Friedl and Vidussi showed in

[6], the manifold S1 × S3
0(P) admits no symplectic forms.

3.1 A one-parameter family of equations

Our purpose in this section is to outline our proof of Theorem I.2. The proofs for

most of the assertions made in this section are deferred to the subsequent sections

of this dissertation.

Fix t ∈ S1, and let Mt denote the slice Mt = {t} ×M. A version of the Seiberg–

Witten equations on Mt can be defined as follows: Let $S be the harmonic 2-form

on M representing the class 2πc1(det(S)). Fix a connection, AS, on det(S) with

curvature 2-form −i$S. Then, any given connection on det(S) is of the form AS + 2a

for a ∈ C∞(M; iT∗M). Now, fix r ≥ 1 and t ∈ S1. We consider the equations

∗da = r(ψ†τψ− i ∗ µ) +
i

2
∗$S

DAψ = 0,(3.2)

where µ is the 2-form defined by the symplectic form. Suitably rescaling ψ, we see

that these are a version of the equations in (2.3). These equations are the variational
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equations of a functional defined as

(3.3) a(AS + 2a,ψ) = −1

2

∫
Mt

a ∧ (da− i$S)− ir
∫

Mt

a ∧ µ+ r

∫
Mt

ψ†DAψ,

where a ∈ C∞(M; iT∗M) and ψ ∈ C∞(M; S).

For future purposes, we introduce a new functional on C. Fix r ≥ 1, t ∈ S1 and

for (A,ψ) ∈ C let

(3.4) E(A,ψ) = i

∫
Mt

ν ∧ da.

Our approach is to consider S1 ×M as a 1-parameter family of three-dimensional

manifolds, each a copy of M and parametrized by t ∈ S1. We use the gauge equiva-

lence classes of solutions of the equations in (3.2) on Mt (when non-degenerate) to

define the generators of the Seiberg–Witten Floer homology. Here it is important

to remark that the solutions of the equations in (3.2) can serve this purpose for any

r ≥ 1 because we assume that c1(det(S)) = λ[µ] in H2(M; R) with λ < 0. For the

same reason, (3.2) has no reducible solutions.

Here, we remark that what is written in (3.2) has period class −4π[µ]. The

assumption that [µ] is a negative multiple of c1(det(S)) guarantees that we are in the

positively monotone case.

There is one more important point to make here: The only t-dependence in (3.2)

is due to the appearance of the 2-form µ through the latter’s t-dependence on t ∈ S1.

to define generators of the corresponding Seiberg–Witten Floer homology. Note that

the t-dependence is due entirely to the appearance of the 2-form µ and its dependence

on t.

We suppose Theorem I.2 is false, and hence that there are at least two generators

of the Seiberg–Witten Floer homology for each t ∈ S1 if E = C or that the Seiberg–

Witten Floer homology is non-trivial for each t ∈ S1 if E 6= C with c1(E) · [ω] < 0.
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Note in this regard that there is at least one generator for the E = C case because the

fact that S1 ×M is symplectic implies, via Theorem III.1, that the Seiberg–Witten

invariant for the canonical spinc structure on S1 ×M is equal to 1. If there are at

least two generators, then there are at least two solutions. Our plan is to use the

large r behavior of at least one of these solutions to derive a contradiction from the

assumed existence of two or more generators.

What follows describes what we would like to do. Given the existence of two or

more non-zero Seiberg–Witten Floer homology classes, we would like to use a variant

of the strategy from [24] and [25] to find, for large enough r ≥ 1 and for each t ∈ S1,

a set Θt ⊂ Mt of the following sort: Θt is a finite set of pairs of the form (γ,m) with

γ ⊂ Mt a closed integral curve of the vector field that generates the kernel of µ|t,

and m is a positive integer. These are constrained so that no two pair have the same

integral curve. In addition, with each γ oriented by ∗µ|t, the formal sum Σ(γ,m)∈Θtmγ

represents the Poincaré dual to c1(E) in H1(Mt; Z). We would also like the graph

t→ Θt to sweep out a smooth, oriented surface S ⊂ S1 ×M whose fundamental class

gives the Poincaré dual to c1(E) in H2(S1 ×M; Z). Note in this regard that such a

surface is oriented by the vector field ∂
∂t

and by the 1-form ν that appears when we

write ω = dt∧ ν+ µ. In particular, ω|TS is positive and so the integral of ω over S

is positive. On the other hand, the integral of ω over S must be non-positive if the

cup product of [ω] with c1(E) is non-positive. This is the fundamental contradiction.

As it turns out, we cannot guarantee that Θt exists for all t ∈ S1, only for most

t, where ‘most’ has a precise measure-theoretic definition. Even so, we have control

over enough of S1 to obtain a contradiction which is in the spirit of the one described

from any violation to the assertion of Theorem I.2.

Given what has been said so far, we have the desired sets Θt ⊂ Mt for points t
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in the complement of a closed set with non-empty interior in S1. On the face of it,

this is far from what we need, which is a surface S ⊂ S1 ×M that is swept out by

such points. As we show below, we can make due with what we have. In particular,

we first change our point of view and interpret integration of ω over a surface in

S1 ×M as integration over S1 ×M of the product of ω and a closed 2-form Φ that

represents the Poincaré dual of the surface. We then construct a 2-form Φ on S1 ×M

that is localized near the surface swept out by Θt on most of S1 ×M. This partial

localization is enough to prove that
∫

S1×M
ω ∧ Φ > 0 when this integral should be

zero or negative. The existence of such a form gives the fundamental contradiction

that proves Theorem I.2.

3.2 Properties of solutions

In this section, we discuss certain analytic properties of solutions to the equations

in (3.2) and their geometric significance. Our goal is to understand under what

conditions would solutions to the equations in (3.2) yield the sets Θt. We start by

deriving some fundamental estimates on the norms of solutions and their derivatives.

3.2.1 Basic analytic estimates

Many of the following arguments in this section exploit two fundamental a priori

bounds for solutions of the large r versions of (3.2). To start with, write a section

ψ of S = E⊕ EK−1 as ψ = (α,β) where α is a section of E and β is a section of

EK−1. Given a spinc connection A on S, denote by ∇E the covariant derivative

operator on sections of E defined by ∇Eα = 1
2
(1 − i

|µ| ∗ µ)∇A(α, 0). Similarly,

denote by ∇EK−1 the covariant derivative operator on sections of EK−1 defined by

∇EK−1β = 1
2
(1 + i

|µ| ∗ µ)∇A(0,β). Then, the next lemma supplies the fundamental

estimates on the norms of α and β.
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Lemma III.2. Fix a bound on the C3-norm of µ. Then, there are constants c, c′ > 0

with the following significance: Suppose that (A,ψ = (α,β)) is a solution of a given

t ∈ S1 and r ≥ 1 version of the equations in (3.2). Then,

• |α| ≤ |µ|1/2 + c r−1

• |β|2 ≤ c′ r−1(|µ| − |α|2) + c r−2.

Proof. This lemma is the same as Lemma 2.2 in [24] except for the inevitable

appearance of |µ|. We will give the proof in this new context.

Since DAψ = 0, one has DA
2ψ = 0 as well. Then, the Weitzenböck formula for

DA
2 yields

(3.5) DA
2ψ = ∇†∇ψ+

1

4
R ψ− 1

2
cl(∗FA)ψ = 0

where R denotes the scalar curvature of the Riemannian metric. Contract this

equation with ψ to see that

(3.6)
1

2
d∗d|ψ|2 + |∇ψ|2 +

r

2
|ψ|2(|ψ|2 − |µ| − c0

r
) ≤ 0.

where c0 > 0 is a constant depending only on the supremum of |$S| and the infimum

of the scalar curvature.

Now, introduce ψ = |µ|1/2 ψ′, therefore α = |µ|1/2 α′ and β = |µ|1/2 β′. Then,

one can rewrite (3.6) as follows:

|µ|
2

d∗d|ψ′|2− < d|µ|, d|ψ′|2 > +
1

2
|ψ′|2d∗d|µ|

+
r

2
|µ‖ψ′|2(|µ||ψ′|2 − |µ| − c0

r
) ≤ 0(3.7)

Manipulating (3.7), one obtains

(3.8)
1

2
d∗d|ψ′|2 − 1

|µ|
< d|µ|, d|ψ′|2 > +

r

2
|µ‖ψ′|2(|ψ′|2 − 1− c1

r
) ≤ 0
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where c1 > 0 is a constant depending on c0. An application of the maximum principle

to (3.8) yields

(3.9) |ψ′|2 ≤ 1 +
c1

r

from which the first bullet of Lemma III.2 follows immediately.

As for the claimed estimate on the norm of β, start by contracting (3.5) first with

(α, 0) and then with (0,β) to get

1

2
d∗d|α|2 + |∇Eα|2 +

r

2
|α|2(|α|2 + |β|2 − |µ|) + κ1|α|2 + κ2(α,β)

+κ3(α,∇Eα) + κ4(α,∇EK−1β) = 0

1

2
d∗d|β|2 + |∇EK−1β|2 +

r

2
|β|2(|α|2 + |β|2 + |µ|) + κ1

′(β,α) + κ2
′|β|2

+κ3
′(β,∇Eα) + κ4

′(β,∇EK−1β) = 0(3.10)

where κi’s and κi
′’s depend only on the Riemannian metric. Then, the equations in

(3.10) yield the following equations in terms of α′ and β′:

1

2
d∗d|α′|2 + |∇Eα

′|2 +
r

2
|µ||α′|2(|α′|2 + |β′|2 − 1) + λ1|α′|2

+λ2(α′,β′) + λ3(α′,∇Eα
′) + λ4(α′,∇EK−1β′) = 0

1

2
d∗d|β′|2 + |∇EK−1β′|2 +

r

2
|µ||β′|2(|α′|2 + |β′|2 + 1) + λ1

′(β′,α′)

+λ2
′|β′|2 + λ3

′(β′,∇Eα
′) + λ4

′(β′,∇EK−1β′) = 0(3.11)

where λi’s and λi
′’s depend only on the Riemannian metric.

Now, introduce w = 1− |α′|2. Then, the top equation in (3.11) can be rewritten

as

−1

2
d∗dw + |∇Eα

′|2 − r

2
|µ||α′|2w +

r

2
|µ||α′|2|β′|2 +

λ1|α′|2 + λ2(α′,β′) + λ3(α′,∇Eα
′) + λ4(α′,∇EK−1β′) = 0.(3.12)
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Using the estimate in (3.9), manipulating the lower order terms and maximizing

positive valued functions that do not depend on the value of r or the particular

solution (α,β), the bottom equation in (3.11) and the equation (3.12) yield the

following inequalities:

−1

2
d∗dw + ζ0|∇Eα

′|2 − r

2
|µ||α′|2w ≤ ζ1 + ζ2|∇EK−1β′|2

1

2
d∗d|β′|2 + η0|∇EK−1β′|2 +

r

2
η1|µ||β′|2 +

r

2
|µ||α′|2|β′|2 ≤ η2

r
+
η3

r
|∇Eα

′|2

(3.13)

where ζi’s and ηi’s are positive constants depending only on the Riemannian metric

and the constant c0.

Multiplying the top inequality in (3.13) by k
r

where k is a positive constant large

enough to satisfy

• kζ0 ≥ η3 and

• η0 ≥ kζ2,

and adding the resulting inequality to the bottom inequality in (3.13), we deduce

that there are positive constants c2 and c3 that depend only on the Riemannian

metric and the constant c0 such that

(3.14) d∗d(|β′|2 − c2

r
w − c3

r2
) + r|µ||α′|2(|β′|2 − c2

r
w − c3

r2
) ≤ 0.

Then, an application of the maximum principle to (3.14) yields

|β′|2 ≤ c2

r
(1− |α′|2) +

c3

r2

which, eventually, gives rise to the second bullet of Lemma III.2 after multiplying

both sides of the inequality by |µ|. �

Given Lemma III.2, the next lemma finds a priori bounds on the derivatives of α

and β.
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Lemma III.3. Fix a bound on the C3-norm of µ. Given r ≥ 1 and t ∈ S1, let

(A,ψ = (α,β)) denote a solution of the t and r version of the equations in (3.2).

Then, for each integer n ≥ 1 there exists a constant cn ≥ 1, which is independent

of the value of t ∈ S1, the value of r ≥ 1 and the solution (A,ψ = (α,β)), with the

following significance:

• |∇n
Eα| ≤ cnr

n/2

• |∇n
EK−1β| ≤ cnr

(n−1)/2.

The following is also true: Fix ε > 0. There exists δ > 0 and κ > 1 such that if r > κ

and if |α| ≥ |µ|1/2−δ in any given ball of radius 2κr−1/2 in Mt, then |∇n
Eα| ≤ εcnrn/2

for n ≥ 1 and |∇n
EK−1β| ≤ εcnr(n−1)/2 for all n ≥ 0 in the concentric ball with radius

κr−1/2.

Proof. The proof is essentially identical to that of Lemma 2.3 in [24]. This is to say

that the proof is local in nature: Fix a Gaussian coordinate chart centered at any

given point in M so as to view the equations in (3.2) as equations on a small ball in

R3. Then rescale coordinates by writing x = r−1/2y so that the resulting equations

are on a ball of radius O(r1/2) in R3. The r-dependence of these rescaled equations

is such that standard elliptic regularity techniques provide uniform bounds on the

rescaled versions of β and the derivatives of the rescaled α and β in the unit radius

ball about the origin. Rescaling back to the original coordinates will give what is

claimed by the lemma. �

One of the key implications of Lemma III.2 is a priori bounds on the values of E .

First, note that since ν ∧ µ > 0 at each t ∈ S1, it follows that

(3.15) ν = ∗ q

|µ|
µ+ υ
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where q =< ν, ∗µ > |µ|−1 is a positive valued function on Mt at each t ∈ S1, and

υ ∧ µ = 0. The following lemma states the a priori lower bound on E that follows

from this last observation.

Lemma III.4. There exists a constant κ > 1 with the following significance: Suppose

that r ≥ κ, t ∈ S1, and (A,ψ) is a solution of the corresponding version of the

equations in (3.2). Then, E(A,ψ) ≥ −κ.

Proof. Fix r ≥ 1 and t ∈ S1. Let (A,ψ) be a solution of the t and r version of the

equations in (3.2). Write A = AS + 2a and ψ = (α,β). Then, by (3.15) we can write

(3.16) E(A,ψ) = i

∫
M

ν ∧ da = r

∫
M

q(|µ| − |α|2) + i

∫
M

υ ∧ da.

Now, it follows from (3.2) and Lemma III.2 that

(3.17) E(A,ψ) ≥ 1

2
r

∫
M

q(|µ| − |α|2)− c4 ≥ −c5

where c4, c5 > 0 are constants depending only on the Riemannian metric. �

The next lemma concerns an estimate for the connection itself.

Lemma III.5. Fix t ∈ S1 and r ≥ 1. Suppose that (A = AS + 2a,ψ = (α,β))

is a solution of the corresponding version of (3.2). Then, there exists a smooth

map u : M → S1 and a constant c > 0 such that â = a − u−1du obeys |â| ≤

c(r2/3|E(A,ψ)|1/3 + 1).

Proof. Remember that any given connection on det(S) is of the form A = AS + 2a

where a is an imaginary valued 1-form on M. Then, for each such a there is a

smooth map u : M→ S1 such that a − u−1du is co-closed and the norm of its

L2-orthogonal projection onto the space of harmonic 1-forms has an upper bound

c0 depending only on the Riemannian metric. To see this, remember that each



40

cohomology class in H1(M; Z) has a unique harmonic representative of the form

iu−1du where u : M→ S1 is smooth. Therefore, there is a smooth map u1 : M→ S1

such that the L2-orthogonal projection of a− u1
−1du1 onto the space of harmonic 1-

forms has a bound on its norm depending only on the Riemannian metric. Next, note

that by Hodge theory d∗(a−u1
−1du1) = d∗dh where h is a smooth, imaginary valued

function uniquely determined up to a constant. Let u2 = eh so that u2
−1du2 = dh.

As a result, d∗(a − u1
−1du1 − u2

−1du2) = 0, and the L2-orthogonal projection of

â = a − u1
−1du1 − u2

−1du2 onto the space of harmonic 1-forms is the same as that

of a− u1
−1du1.

Now, using the Green’s function for the operator ∗d acting on the space of co-

closed 1-forms on M, we obtain

(3.18) |â|(x) ≤ c0 +

∫
M

1

d(x, ·)2
| ∗ dâ|,

where d(x, ·) denotes the distance from a fixed point x ∈ M. Let diam(M) ≥ r0 > 0.

Then, break the integral on the right-hand side of (3.18) into two parts∫
d(x,·)>r0

1

d(x, ·)2
| ∗ dâ|+

∫
d(x,·)≤r0

1

d(x, ·)2
| ∗ dâ|.

Now, the portion of the integral over the region where d(x, ·) > r0 yields the following

inequality after an appeal to Lemma III.2:

(3.19)

∫
d(x,·)>r0

1

d(x, ·)2
| ∗ dâ| ≤ r

∫
d(x,·)>r0

1

d(x, ·)2
||µ| − |α|2|+ c1,

where c1 > 0 is a constant depending only on the Riemannian metric. Then, using

(3.16), it is easy to see that the right-hand side of (3.19) is no greater than

(3.20) c2r0
−2E(A,ψ) + c3

where c2, c3 > 0 are constants depending only on the Riemannian metric.
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As for the portion of the integral over the region where d(x, ·) ≤ r0, using Lemma

III.2 and the inequality ||µ| − |α|2| ≤ |µ|+ 2c
r

, which follows from (3.16), we obtain

(3.21)

∫
d(x,·)≤r0

1

d(x, ·)2
| ∗ dâ| ≤ c4rr0 + c5,

where c4, c5 > 0 are constants depending only on the Riemannian metric.

Finally, the desired estimate follows from (3.20) and (3.21) once we set r0 =

r−1/3|E(A,ψ)|1/3. �

3.2.2 Existence and uniqueness

Here, we address the question of existence of the sets Θt. What follows is the key

to this question.

Proposition III.6. Fix a bound on the C3-norm of µ, and fix constants K > 1

and δ > 0. There exists κ > 1 with the following significance: Suppose that r ≥ κ,

t ∈ S1, and (A = A0 + 2A,ψ = (α,β)) is a solution of the equations in (3.2) with

E(A,ψ) ≤ K and with supM(|µ| − |ψ|2) > δ. Then,

• There exists a finite set Θt whose typical element is a pair (γ,m) with γ ⊂

Mt a closed integral curve tangent to the kernel of µ, and with m a positive

integer. Distinct pairs in Θt have distinct curves, and Σ(γ,m)∈Θtmγ generates

the Poincaré dual to c1(E) in H1(Mt; Z).

• Each point where |α|2 < |µ| − δ has distance κr−1/2 or less from a curve in Θt,

and also from some point in α−1(0).

• Fix (γ,m) ∈ Θt. Let D ⊂ C denote the closed unit disk centered at the origin

and ϕ : D → Mt denote a smooth embedding such that all the points in ϕ(∂D)

have distance κr−1/2 or more from any loop in Θt. Assume in addition that

ϕ(D) has intersection 1 with γ. Fix a trivialization of the bundle ϕ∗E over
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D so as to view ϕ∗α as a smooth map from D into C. The resulting map is

non-zero on ∂D and has degree m as a map from ∂D into C \ {0}.

Proof. Given Lemmas III.2, III.3 and III.5, the proof of this proposition is identical

but for minor changes to the proof of Theorem 2.1 given in Section 6 of [24]. The

proof of the second bullet is just as in Lemma 6.5 in [24]. �

Proposition III.6 raises the following, perhaps obvious, question:

How do we find solutions with E bounded at large r?

To say something about this absolutely crucial question, remark that Proposition

III.6 here has an almost exact analog that played a central role in [24] and [25].

These papers use the analog of (3.2) with ∗µ replaced by a contact 1-form to prove

the existence of Reeb vector fields. The contact 1-form version of E replaces the

form ν with the contact 1-form also. The existence of an r-independent bound on

the contact 1-form version of E played a key role in the arguments given in [24] and

[25]. The existence of the desired bound on the contact 1-form version of E exploits

the r-dependence of the functional a.

We obtain the desired r-independent bound on our version of E for most t ∈ S1

by exploiting the t-dependence of a. To say more about this, it proves useful now

to introduce a spectral flow function, F , for certain configurations in C. There are

three parts to its definition. Here is the first part: Fix a section ψE of S so that the

(AS,ψE) version of the operator L as defined in Section 2.2 is non-degenerate. Use

LE to denote the latter operator. The second part introduces the version of L that is

relevant to (3.2); it is obtained from the original by taking into account the rescaling
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of ψ. In particular, it is defined by

(3.22) L(A,ψ)(b,φ, g) =


∗db− dg − 2−1/2r1/2(ψ†τφ+ φ†τψ)

DAφ+ 21/2r1/2(cl(b)ψ+ gψ)

−d∗b− 2−1/2r1/2(φ†ψ−ψ†φ)


for each (b,φ, g) ∈ C∞(M; iT∗M⊕ S ⊕ iR). Thus, LE is the r = 1 version of (3.22)

as defined using (AS,ψE). To start the third part of the definition, suppose that

(A,ψ) ∈ C is non-degenerate in the sense that the operator L(A,ψ) as depicted in

(3.22) has trivial kernel. As explained in [24] and [25], there is a well defined spectral

flow from the operator LE to L(A,ψ) (see, also [23]). This integer is the value of F at

(A,ψ). Note that F(·) is defined on the complement of a codimension-1 subvariety

in C. As such, it is piecewise constant. In general, only the mod(p) reduction of F

is gauge invariant where p is the greatest divisor of the class c1(det(S)).

The function a is not invariant under the action of G on C; and, as just noted, nei-

ther is F when c1(det(S)) is non-torsion. However, our assumption that c1(det(S)) =

λ[µ] in H2(M; R) implies the following: There exists a constant C independent of

r ≥ 1 and t ∈ S1 such that

aF = a + rCF

is invariant under the action of G. We will say more about the role of aF with regard

to the question we addressed above in the next section.

The next proposition says something about when we can guarantee Proposition

III.6’s condition on |ψ|:

Proposition III.7. Fix a bound on the C3-norm of µ. Then, there exists κ > 1

such that if r ≥ κ, then the following are true:

• Suppose that S = C ⊕ K−1. Then, for any t ∈ S1, there exists a unique gauge

equivalence class of solutions (AC,ψC) of the t and r version of the equations
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in (3.2) with |ψC| ≥ |µ|1/2− κ−1. Moreover, these solutions are non-degenerate

with |ψC| ≥ |µ|1/2 − κr−1/2 and E(AC,ψC) ≤ κ.

• Suppose that S = E⊕EK−1 with c1(E) 6= 0. If (A,ψ) is a solution of any given

t ∈ S1 version of the equations in (3.2), then there exists points in M where

|ψ| ≤ κr−1/2.

Proof. In the case when c1(E) 6= 0, the claim about |ψ| follows from Lemma III.2

given that α is a section of E. This understood, we now assume that E = C. To

start, let 1C denote a unit length trivializing section of the C summand. There exists

a unique connection A0 on K−1 such that the section ψ0 = (1C, 0) of S0 = C⊕ K−1

obeys DA0ψ0 = 0. Now, we look for a solution of the equations in (3.2) of the form

(A,ψ) = (A0 + 2(2r)1/2b, |µ|1/2ψ0 + φ)

with (b,φ) ∈ C∞(M; iT∗M ⊕ S). Then, (A,ψ) will solve the equations in (3.2) if

b = (b,φ, g) ∈ C∞(M; iT∗M⊕ S⊕ iR) solves the following system of equations:

∗db− dg − 2−1/2r1/2[|µ|1/2(ψ0
†τφ+ φ†τψ0) + φ†τφ] = −2−3/2r−1/2 ∗ FA0

DA0φ+ 21/2r1/2[|µ|1/2(cl(b)ψ0 + gψ0) + (cl(b)φ+ gφ)] = −cl(d|µ|1/2)ψ0

−d∗b− 2−1/2|µ|1/2r1/2(φ†ψ0 −ψ0
†φ) = 0.

(3.23)

For notational convenience, we denote by L0 the operator L(A0,|µ|1/2ψ0) as defined in

(3.22). Then, the equations in (3.23) can be rewritten as

L0(b,φ, g) + r1/2


−2−1/2φ†τφ

21/2(cl(b)φ+ gφ)

0

 =


−2−3/2r−1/2 ∗ FA0

−cl(d|µ|1/2)ψ0

0

 .

(3.24)
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Now, for b = (b,φ, g) and b′ = (b′,φ′, g′) in C∞(M; iT∗M⊕S⊕iR), let (b, b′) 7→ b∗b′

be the bilinear map defined by

(3.25) b ∗ b′ =
1

2


−2−1/2(φ†τφ′ + φ′†τφ)

21/2(cl(b)φ′ + gφ′ + cl(b′)φ+ g′φ)

0

 ,

and let u denote the section defined by (−2−3/2r−1/2 ∗ FA0 ,−cl(d|µ|1/2)ψ0, 0) of

iT∗M⊕ S⊕ iR. Then, (3.24) has the schematic form

(3.26) L0b + r1/2b ∗ b = u.

Our plan is to use the contraction mapping theorem to solve (3.26) in a manner much

like what is done in the proof of Proposition 2.8 of [25]. To set the stage for this, we

first introduce the Hilbert space H as the completion of C∞(M; iT∗M⊕ S⊕ iR) with

respect to the norm whose square is:

(3.27) ||ξ||H2 =

∫
M

|∇0ξ|2 +
1

4
r

∫
M

|ξ|2,

where ∇0 denotes the covariant derivative on sections of iT∗M ⊕ S ⊕ iR that acts

as the Levi-Civita covariant derivative on sections of iT∗M, the covariant derivative

defined by A0 on sections of S, and that defined by the exterior derivative on sections

of iR.

Lemma III.8. There exists κ ≥ 1 such that

• ||ξ||6 ≤ κ||ξ||H and ||ξ||4 ≤ κr−1/8||ξ||H for all ξ ∈ H.

• If r ≥ κ, then κ−1||ξ||H ≤ ||L0ξ||2 ≤ κ||ξ||H for all ξ ∈ H.

Proof. The first bullet follows using a standard Sobolev inequality with the fact

that |d|ξ|| ≤ |∇0ξ|. The right hand inequality in the second bullet follows by simply
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from the appearance of only first derivatives in L0. To obtain the left hand inequality

of the second bullet, use the Bochner-type formula for the operator L0
2 (see (5.21)

in [25]). To elaborate, let f be any given function on M. Write a section ξ of

iT∗M ⊕ S ⊕ iR as (b,φ, g). Then, L(A0,fψ0)
2(b,φ, g) has respective iT∗M, S and iR

components

∇†∇b + 2rf2b + r1/2V1(ξ)

∇A0

†∇A0φ+ 2rf2φ+ r1/2V2(ξ)

d∗dg + 2rf2g + r1/2V3(ξ),(3.28)

where Vi are zero’th order endomorphisms with absolute value bounded by an r-

independent constant. In the case at hand, f = |µ|1/2 is strictly bounded away from

zero. This last point understood, then the left hand inequality in the second bullet

of the lemma follows by first taking the L2 inner product of L0
2ξ with ξ and then

integrating by parts to rewrite the resulting integral. �

It follows from Lemma III.8 that the operator L0 is invertible when r is large.

This understood, write y = L0
−1u,

Lemma III.9. There exists κ ≥ 1 for use in Lemma III.8 such that when r ≥ κ,

then the corresponding y = L0
−1u obeys |y| ≤ c0r

−1/2.

Proof. Let ∆ denote the operator that is obtained from what is written in the

f = |µ|1/2 version of (3.28) by setting Vi all equal to zero. The latter has Green’s

function G, a positive, symmetric function on M×M with pole along the diagonal.

Moreover, there exists an r-independent constant c > 1 such that if x, y ∈ M, then

G(x, y) ≤ c

dist(x, y)
e−
√
r

dist(x,y)
c ,

|dG|(x, y) ≤ c(
1

dist(x, y)2
+

√
r

dist(x, y)
)e−
√
r

dist(x,y)
c .(3.29)
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Both of these bounds follow by using the maximum principle with a standard parametrix

for G near the diagonal in M×M.

Now write (3.28) as ∆ξ+ r1/2Vξ, and then use G, the fact that L0
2y = L0u, and

the uniform bounds on the terms Vi to see that

|y|(x) ≤ c′
∫

M

G(x, ·)(1 + r1/2(1 + |y|)),

where c′ is independent of r. This last equation together with (3.29) yields

|y|(x) ≤ c′′r−1/2(1 + supM|y|),

where c′′ is also independent of r. The lemma follows from this bound. �

With y in hand, it follows that ξ ∈ H is a solution of the equations in (3.26) if

ξ̃ = ξ − y is a solution of the equation L0ξ̃ + r1/2(ξ̃ ∗ ξ̃ + 2y ∗ ξ̃) = −r1/2y ∗ y. To

find a solution ξ̃ of the latter equation, introduce the map T : H→ H defined by

(3.30) T : ξ̃ 7→ −r1/2L0
−1(y ∗ y + ξ̃ ∗ ξ̃+ 2y ∗ ξ̃).

Note in this regard that Sobolev inequalities in Lemma III.8 guarantee that T does

indeed define a smooth map from H onto itself when r is larger than some fixed

constant. Our goal now is to show that the map T has a unique fixed point with

small norm. Given R ≥ 1, we let BR ∈ H denote the ball of radius r−1/2R centered

at the origin. We next invoke

Lemma III.10. There exists κ > 1, and given R ≥ κ, there exists κR such that if

r ≥ κR, then T maps BR onto itself as a contraction mapping.

Proof. Let R > 1 be such that ||y||∞ ≤ 1
210 r

−1/2R1/2. We first show that if r is

large, then T maps BR into itself. Indeed, this follows from Lemma III.8 using the
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following chain of inequalities:

||T(ξ̃)||H ≤ || − r1/2y ∗ y− r1/2(ξ̃ ∗ ξ̃+ 2y ∗ ξ̃)||2

≤ r1/2||y ∗ y||2 + r1/2||ξ̃ ∗ ξ̃+ 2y ∗ ξ̃||2

≤ 1

4
r−1/2R + r1/2(||ξ̃ ∗ ξ̃||2 + 2||y ∗ ξ̃||2)

≤ 1

4
r−1/2R + r1/2(||ξ̃||4

2
+ 2||y||4||ξ̃||4)

≤ 1

4
r−1/2R + r1/2(κr−1/4||ξ̃||H

2
+ r−1/2R1/2κr−1/8||ξ̃||H)

≤ 1

4
r−1/2R + r1/2(κr−1/4r−1R2 + r−1/2R1/2κr−1/8r−1/2R)

≤ r−1/2R(
1

4
+ 2κRr−1/8).(3.31)

Next, using similar arguments, we show that T|BR
is a contraction mapping. In this

regard, let ξ̃1, ξ̃2 ∈ BR, then

||T(ξ̃1)− T(ξ̃2)||H ≤ || − r1/2(ξ̃1 ∗ ξ̃1 + 2y ∗ ξ̃1) + r1/2(ξ̃2 ∗ ξ̃2 + 2y ∗ ξ̃2)||2

≤ r1/2(||(ξ̃1 ∗ ξ̃1 − ξ̃2 ∗ ξ̃2)||2 + 2||y ∗ ξ̃1 − y ∗ ξ̃2||2)

≤ r1/2(||(ξ̃1 + ξ̃2) ∗ (ξ̃1 − ξ̃2)||2 + ||y ∗ (ξ̃1 − ξ̃2)||2)

≤ r1/2(||ξ̃1 + ξ̃2||4||ξ̃1 − ξ̃2||4 + 2||y||4||ξ̃1 − ξ̃2||4)

≤ r1/2(||ξ̃1||4 + ||ξ̃2||4 + 2||y||4)||ξ̃1 − ξ̃2||4

≤ r1/2(2κr−1/8r−1/2R + r−1/2R1/2)κr−1/8||ξ̃1 − ξ̃2||H

≤ 3κ2Rr−1/8||ξ̃1 − ξ̃2||H.(3.32)

Therefore, by the contraction mapping theorem, there exists a unique fixed point

of the map T in the ball BR. Moreover, by standard elliptic regularity arguments, it

follows that the fixed point is smooth, therefore it lies in C∞(M; iT∗M⊕ S⊕ iR). �

We next find an r-independent constant κ and prove that the norm of ψ =

|µ|1/2ψ0 + φ is bounded from below by |µ|1/2 − κr−1/2. To this end, note that ξ̃



49

obeys the equation

(3.33) ∆ξ̃+ r1/2Vξ̃ = −r1/2L0(y ∗ y + ξ̃ ∗ ξ̃+ 2y ∗ ξ̃).

What with (3.29) and the bound |y| ≤ 2r−1/2R this last equation implies is

|ξ̃|(x) ≤ c0r
−1/2 + c0r

1/2

∫
M

(
1

dist(x, ·)2
+

√
r

dist(x, ·)
)e−
√
r

dist(x,·)
c (|ξ̃|2 + r−1/2|ξ̃|)]

(3.34)

where c0 is independent of x and r. Bound the term r−1/2|ξ̃| in the integral by

|ξ̃|2 + r−1. The contribution to the right hand side of (3.34) of the resulting term

with r−1 factor is bounded by c1r
−1/2 where c1 is independent of r. To say something

about the term with |ξ̃|2, note that the function 1
dist(x,·) |ξ̃| is square integrable with

L2-norm bounded by an x-independent multiple of the L2
1-norm of |ξ̃|; and thus by

c2||ξ̃||H with c2 independent of r and ξ̃. This understood, the term in the integral

with |ξ̃|2 contributes at most c3(r1/2||ξ̃||H
2

+ r||ξ̃||2||ξ̃||H) with c3 independent of r

and ξ̃. The latter is bounded by an r-independent multiple of r−1/2. Thus, we see

that |ξ̃| ≤ c4r
−1/2 which proves our claim that |ψ| ≥ |µ|1/2 − κr−1/2.

We now turn to the claim about uniqueness. To this end, let δ ∈ (0, infM|µ|
2

) and

let (A,ψ) be a solution of some t ∈ S1 and r ≥ 1 version of the equations in (3.2)

with the property that |ψ| ≥ |µ|1/2−δ at each point in M. Granted such is the case,

it follows from Lemma III.2 that |α| ≥ |µ|1/2 − δ− κr−1/2 at each point in M, with

C0 independent of r. We now make use of Lemma III.3 to see the following: Given

ε > 0, there exists δε > 0 such that if δ < δε, then

|µ|1/2 − ε ≤ |α| ≤ |µ|1/2 + ε and |β| ≤ εr−1/2,

|∇Eα| ≤ εr1/2 and |∇EK−1β| ≤ ε,

|∇2
Eα| ≤ εr and |∇2

EK−1β| ≤ εr1/2.(3.35)
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Since α is nowhere zero for sufficiently large r > 1, one has u = ᾱ/|α| ∈ G. Now,

change (A,ψ) to a new gauge by u, and denote the resulting pair of gauge and spinor

fields again by (A,ψ). Since uα = |α|1C, one has A = A0 + 2ia where

(3.36) a = − i
2

(α−1∇Eα− ᾱ−1∇Eᾱ).

Then, (3.35) and (3.36) imply

(3.37) r−1/2|a|+ r−1|∇a| ≤ c0ε.

We now change (A,ψ) to yet another gauge so as to write the resulting pair of

connection and spinor as (A0 + 2(2r)1/2b, |µ|1/2ψ0 + φ) where (b,φ, 0) obey (3.23).

This gauge transformation is written eix where x : M→ R. Thus, the pair (b,φ) is

b = i(2r)−1/2(a− dx)

φ = eixψ− |µ|1/2ψ0.(3.38)

Equation (3.23) is obeyed if and only if x obeys the equation

(3.39) d∗dx + 2|µ|1/2r|α| sin x = d∗b.

We can now proceed along the lines of what is done in [25] to solve an analogous

equation, namely (2.16) in [25]. In particular, the arguments in [25] can be used

with only small modifications to find an r-independent constant κ such that if the

constant ε in (3.35) is bounded by κ−1 and r ≥ κ, then (3.39) has a unique solution,

x, with

(3.40) |x|+ r1/2|dx| ≤ κε.

Granted this, it follows that b = (b,φ, 0) with (b,φ) as in (3.38) obeys (3.26) and

that

(3.41) |b| ≤ cε
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with c > 0 a constant that is independent of ε and r. Then, h = b − y obeys

L0h = r1/2(y ∗ y + h ∗ h + 2y ∗ h) and ||h||∞ ≤ c0ε where c0 is independent of (A,ψ)

and r. This understood, it follows from Lemma III.8 that

(3.42) ||h||H ≤
1

4
Ryr

−1/2 + c1r
1/2||h||∞||h||2 ≤

1

4
Ryr

−1/2 + c2r
1/2ε||h||2,

where Ry is an r independent constant such that ||y||∞ ≤ 1
210 r

−1/2Ry and c1, c2 > 0

are constants which are both independent of (A,ψ) and r. This last inequality implies

that ||h||H < Ryr
−1/2 when ε < c4 with c4 an r and (A,ψ) independent constant.

This understood, it follows from Lemma III.10 that (A,ψ) is gauge equivalent to the

solution of (3.2) that was constructed from Lemma III.10’s fixed point of the map T

when r is larger than some fixed constant. This then proves the uniqueness assertion

made by Proposition III.7.

We introduce (AC,ψC) to denote the solution that is obtained from Lemma III.10’s

fixed point. This solution is of the form (A0 +2(2r)1/2b, |µ|1/2ψ0 +φ). Our final task

is to prove that the (AC,ψC) version of the operator in (3.22) has trivial kernel. To

see that such is the case, remember that (b,φ) has norm bounded by c0r
−1/2 with

c0 independent of r. This being the case, the operator in question differs from the

operator L0 by a zero’th order term with bound independent of r. As a consequence,

there is a constant c > 0 which is independent of r and such that

(3.43) ||L(AC,ψC)ξ||2 ≥ c||ξ||H

for all ξ ∈ H when r is large. This understood, the fact that (AC,ψC) is non-

degenerate when r is large follows from Lemma III.8. This finishes the proof of

Proposition III.7. �
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3.3 Dependence of solutions on the parameter

In this section, we investigate the behavior of solutions to the equations in (3.2)

as t ∈ S1 varies. Our purpose is to find solutions of the equations in (3.2) for large

r > 1 so as to guarantee existence of the sets Θt for every t outside a set of small

measure.

3.3.1 Bifurcation analysis

In [25], Taubes proves the existence of a residual subset of Ω such that for each

perturbation from this residual set there exists a locally finite set of r > 1 values in

the complement of which all solutions of the corresponding version of the equations

under consideration are non-degenerate. Moreover, for such values of r, the values of

the perturbed version of the Chern-Simons-Dirac functional on pairs of configurations

which are not gauge equivalent are different. These results can be carried over to the

solutions of the equations in (3.2) for fixed values of t ∈ S1. Here, we shall prove a

similar result for t ∈ S1 values with r ≥ 1 fixed.

Proposition III.11. Fix r ≥ 1 and δ > 0. Then there exist a t-independent 1-form

σ ∈ Ω with P norm bounded by δ such that the following is true: Replace µ by µ+dσ.

• The resulting 2-form ω = dt ∧ ν+ µ is symplectic.

• There exists finite sets Tr and Tr
′ in S1 such that if t ∈ S1 \ Tr, then aF

distinguishes distinct gauge equivalence classes of solutions of the t and r version

of the equations in (3.2). On the other hand, if t ∈ S1 \ Tr
′ all solutions of the

t and r version of the equations in (3.2) are non-degenerate.

• There exists a countable set Sr ∈ S1 that contains Tr ∪ Tr
′ with accumulation

points on the latter such that if t ∈ S1 \Sr, then the gauge equivalence classes
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of solutions of the equations in (3.2) can be used to label the generators of the

Seiberg–Witten Floer complex. In this regard, the degree of any generator can

be taken to be mod(p) reduction of the negative of the spectral flow function F .

Proof. The claim in the first bullet of the proposition is obvious. As for the second

and third bullets, the proof of these two follow from the arguments similar to those

used in Sections 2a and 2b of [25]. There are three parts to the proof.

Part 1 : We shall start by changing the symplectic structure in its isotopy class.

Let ∆ ⊂ Ω denote an open ball of small radius consisting of 1-forms σ on M such that

dt∧ν+ (µ+ dσ) is a symplectic form on S1 ×M. Being an open subset of Ω, ∆ is a

smooth Banach manifold. Note also that perturbing the symplectic form via forms

in ∆ does not change the canonical spinc structure. Then, with dt∧ ν+ (µ+ dσ) as

the new symplectic form, the equations in (3.2) read

∗da = r(ψ†τψ− i ∗ (µ+ dσ))

DAψ = 0.(3.44)

Let H2 and H3 denote respectively the Banach spaces L2
2(M; iT∗M⊕ S) and

L2
3(M; iT∗M⊕ S). Given t ∈ S1 and r ≥ 1, let Y denote the set of triples (σ, (a,ψ))

in ∆×H3 that solves the corresponding version of the equations in (3.44). The set

Y is the zero locus of some smooth section of a smooth vector bundle over ∆ ×H3

whose fiber over any (σ, (a,ψ)) is the subspace in H2 of pairs (q, ξ) satisfying

(3.45) −d∗q− 2−1/2r1/2(ξ†ψ−ψ†ξ) = 0.

The aforementioned section of this smooth vector bundle is defined by

(3.46) (σ, (a,ψ)) 7→ (∗da− r(ψ†τψ− i ∗ (µ+ dσ)), 2r1/2DAψ).
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In what follows, we shall denote this section by S. We will next show that Y has the

structure of a smooth Banach manifold.

The image of a vector (η, b,φ) under the differential of the section S at any

(σ, (a,ψ)) has respective iT∗M and S components

∗db− 2−1/2r1/2((ψ†τφ+ φ†τψ)− i ∗ dη)

DAφ+ 21/2r1/2cl(b)ψ.(3.47)

First of all, observe that the image of vectors of the form (0, b,φ) under the

differential of the section S at an arbitrary (σ, (a,ψ)) has respective iT∗M and S

components which are the g = 0 versions of the first two components in the image

of the operator L as it is defined in (3.22). Therefore, the differential of S has finite

dimensional co-kernel at any (σ, (a,ψ)). Let (q, ξ) be a vector in this co-kernel.

Then, (q, ξ) is L2-orthogonal to any vector in the image of the differential of S. In

particular, it is L2-orthogonal to the image of any vector of the form (0, b,φ) under

the differential of S, and since L is a self-adjoint operator, (q, ξ) obeys the coupled

equations

∗dq− 2−1/2r1/2(ψ†τξ+ ξ†τψ) = 0

DAξ+ 21/2r1/2cl(q)ψ = 0

−d∗q− 2−1/2r1/2(ξ†ψ−ψ†ξ) = 0.(3.48)

Since (q, ξ) is L2-orthogonal to the image of any vector of the form (η, 0, 0) under

the differential of S as well, one has −i
∫

M
dη ∧ ∗q = 0 for any η. The latter implies

dq = 0. Hence, one could write q = h + df where h is an imaginary valued harmonic

1-form and f is an imaginary valued function on M. Then, the middle equation in

(3.48) requires that ξ = −21/2r1/2fψ + ζ where DAζ = −21/2r1/2cl(p)ψ. But now,
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the top equation in (3.48) implies that ζ = κψ for some imaginary valued function

κ defined on the set where ψ 6= 0. Therefore, h = 2−1/2r−1/2dκ on this set, and it

follows by the unique continuation property of the Dirac operator that h = 0 and κ

extends to a constant function on M. To be more explicit, the unique continuation

property and the ellipticity of the Dirac operator requires that the zero set of ψ is

neither an open subset of M nor it disconnects some open ball in M. Therefore, any

loop representing a homology class in M can be homotoped so as to avoid the zero set

of ψ. Since h is exact outside the zero set of ψ, its integral on any generator of the

first homology of M yields zero. Next, an application of the maximum principle to

the bottom equation in (3.48) shows that f is a constant function. Therefore, q = 0

which in turn requires that ξ = 0.

The set Y has the structure of a smooth Banach manifold as a result of the above

discussion. Now, consider the quotient of Y by the action of the gauge group. This

is also a smooth Banach manifold which we will denote by Y/G. Furthermore, the

projection π : Y/G → ∆ is a Fredholm map of index zero. This is because the

restriction of the section S onto Y ∩ {σ}×H3 for any (σ, (a,ψ)) ∈ Y is Fredholm of

index zero. Therefore, by the Sard-Smale theorem [19] there exists a residual set of

regular values of the map π in ∆. Note that σ is a regular value of π if and only if

all solutions of the corresponding version of equations in (3.44) are non-degenerate.

Now, fix r ≥ 1 and consider the smooth vector bundle with base space S1 ×∆×

H3 and with fibers over any (t,σ, (a,ψ)) being the subspace in H2 of pairs (q, ξ)

satisfying (3.45). Let X denote the zero set of the smooth section of this bundle

defined by (3.46). Denote this section by S as well. The image of (s,η, b,φ) under

the differential of this section at an arbitrary (t,σ, (a,ψ)) has respective iT∗M and
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S components

∗db− 2−1/2r1/2((ψ†τφ+ φ†τψ)− i ∗ (µ̇+ dσ̇)s− i ∗ dη)

DAφ+ 21/2r1/2cl(b)ψ.(3.49)

An argument very much the same as the one provided above can be used to prove

that the differential of S is surjective at any (t,σ, (a,ψ)). Therefore, X has the

structure of a smooth Banach manifold. Its quotient X/G by the action of the gauge

group is also a smooth Banach manifold, and the projection π1 : X/G → ∆ is a

Fredholm map of index 1. Then, by the Sard-Smale theorem there exists a residual

set of regular values of the map π1 in ∆. If σ is a regular value, then its pre-image

under the map π1 is a smooth 1-dimensional manifold consisting of solutions of the

equations in (3.44). Now, let σ be a regular value of the map π1 and πσ1 : π−1
1 (σ)→ S1

denote the projection map. Then, by Sard’s theorem, critical values of the map πσ1

form a compact set of measure zero in S1, and t ∈ S1 is a regular value if and only if

all solutions of the t, r and σ version of the equations in (3.44) are non-degenerate.

In fact, critical values of the map πσ1 form a finite subset of S1. To see this, suppose

that (t,σ, (a,ψ)) is a critical point of πσ1 . As is explained in Section 7 of [24], π−1
1 (σ)

can be endowed with the structure of a real analytic set near (t,σ, (a,ψ)). Since πσ1

is a proper map, this implies that the set of critical values of πσ1 is locally finite. We

denote this set by Tr
′.

Part 2 : Denote by W the subset of X × X whose elements are of the form

((t,σ, c1), (t,σ, c2)) such that both c1 and c2 are non-degenerate solutions of the t,

r and σ version of the equations in (3.44), and c1 and c2 are not gauge equivalent.

Then, W has the structure of a smooth Banach manifold which one can show as
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follows: The subset V of X consisting of elements of the form (t,σ, c) where c is a

non-degenerate solution of the t, r and σ version of the equations in (3.44) is open.

Therefore, V×V is open in X×X as well. Consider the projection V×V → (S1 ×∆)
×2

under which ((t1,σ1, c1), (t2,σ2, c2)) is mapped to ((t1,σ1), (t2,σ2)) . Then, the pre-

image of the diagonal under this projection map is a smooth Banach manifold since

for any ((t,σ, c1), (t,σ, c2)) in the pre-image of the diagonal, both c1 and c2 are

non-degenerate solutions of the corresponding versions of the equations in (3.44). To

elaborate, note that the tangent space of V at an arbitrary (t,σ, c) is the set of vectors

of the form (s,η, b,φ) that are in the kernel of the differential of the section S as

described in (3.49), and when c is a non-degenerate solution of the t, r and σ version

of the equations in (3.44), all possible values of s and η appear among these vectors.

The differential of the projection map at an arbitrary ((t,σ, c1), (t,σ, c2)) maps a

tangent vector ((s1,η1, b1,φ1), (s2,η2, b2,φ2)) to ((s1,η1), (s2,η2)). Therefore, it is

surjective at any point in the pre-image of the diagonal. Then, W has the structure

of a smooth Banach manifold as well because of being an open subset of V × V .

Now consider the functional

w :W → R

defined by w((t,σ, c1), (t,σ, c2)) = aF(c2)− aF(c1). We will show that the functional

w has no critical values.

Let (t,σ, c = (AS + 2a,ψ)) ∈ W . Then, the image of a tangent vector (s,η, b,φ)

under the differential of a is given by

(3.50) −ir(∂a
∂t

(c))s− ir
∫

M

η ∧ da + r

∫
M

ψ†cl(b)ψ

Therefore, if ((t,σ, c1), (t,σ, c2)) ∈ W where ci = (Ai = AS +2ai,ψi) for i = 1, 2, then
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the differential of w is identically zero at ((t,σ, c1), (t,σ, c2)), only if

da1 = da2,

ψ1
†cl(·)ψ1 = ψ2

†cl(·)ψ2.(3.51)

The first equation in (3.51) implies that a2 = a1 − iγ for some closed 1-form γ. On

the other hand, the second equation in (3.51) requires that ψ2 = uψ1 for a smooth

S1-valued function defined on the set where ψ1 6= 0. Since both DA1ψ1 = 0 and

DA2ψ2 = 0, γ = u−1du on this set. The unique continuation property of the Dirac

operator requires that u extends to a smooth S1-valued function on M, and hence

c1 and c2 become gauge equivalent which contradicts with the working assumptions.

Therefore, the differential of the functional w is surjective at ((t,σ, c1), (t,σ, c2)) as

is claimed. In particular, 0 is a regular value of the functional w, and w−1(0) is a

co-dimension 1 sub-manifold of W .

Now, consider the quotient w−1(0)/G of w−1(0) by the action of G × G. The

projection π2 : w−1(0)/G → ∆ is a Fredholm map of index zero. Hence, by the

Sard-Smale theorem, there exists a residual set of regular values of this map, and

if σ is a regular value, then the pre-image of σ in w−1(0)/G is a zero-dimensional

manifold thus a locally finite set of points. In particular, the projection of this zero-

dimensional manifold onto S1 is a finite set. Denote this set by Tr.

Part 3 : With what is said in Parts 1 and 2 understood, the claim in the third

bullet of the proposition follows from the arguments that are almost exactly the same

as those used in the proof of Proposition 2.3 in [25]. Therefore, we shall not repeat

those arguments here. �

In order to clarify the claim in the third bullet of Proposition III.11, we shall
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give a pictorial explanation of what should be expected as the values of t varies in

S1. Having fixed r ≥ 1, Proposition III.11 lets us find a canonical basis for the

Seiberg–Witten Floer complex as defined by the solutions of the equations in (3.2)

at each t ∈ S1 \ Sr. This basis consists of gauge equivalence classes of solutions

{[ci]}nr,t

i=1 to the perturbed version of the equations in (3.2) ordered in such a way

that aF(ci) > aF(ci+1) for i = 1, . . . , nr,t − 1. As t varies in one of the connected

components of S1 \Sr this basis varies smoothly without any change. On the other

hand, three different things could happen as t crosses a point in Sr.

• Handle slide: As t crosses a point in Tr, pairs of generators from this basis

could change order.

• Pair annihilation/creation: As t crosses a point in Tr
′, pairs of generators

from this basis could cancel each other or a new pair of generators could be

born.

• As t crosses a point in Sr \ Tr ∪ Tr
′, a change of the bases could occur which

would be represented by an upper triangular matrix with all diagonal entries

equal to 1.

Figure 3.1: Bifurcation diagrams.
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Figure 3.1 explains schematically first two of the three things that could occur as

t crosses a point in Sr. The top diagram in Figure 3.1 refers to a handle slide which

corresponds to crossing a point in Tr, and the two diagrams in the bottom of Figure

3.1 refer respectively to a pair annihilation and a pair creation as t crosses a point

in Tr
′.

3.3.2 Min-Max generators

Suppose now that t ∈ S1 \ Sr and that θ is a non-zero Seiberg–Witten Floer

homology class. Let {ci}nr,t

i=1 be the canonical basis for the Seiberg–Witten Floer

complex as found by Proposition III.11 and n = Σzi[ci] denote a cycle that represents

θ . Here zi ∈ Z and [ci] ∈ B is a gauge equivalence class of solutions of the t and r

version of the equations in (3.2). Let aF [n; t] denote the maximum value of aF on

the set of generators {[ci]} with zi 6= 0. Set aFθ to denote the minimal value in the

resulting set {aF [n; t]} when n runs through all possible representatives of the class

θ. The value aFθ is attained by a unique generator [cΘ] from the canonical basis and

this generator is called the min-max generator. The min-max generators change in

a smooth fashion as t varies in S1 \Tr. As is stated in the next proposition, this fact

could be used to construct a continuous, piecewise differentiable function on S1.

Proposition III.12. The various t ∈ S1 \Sr versions of the Seiberg–Witten Floer

homology groups can be identified in a degree preserving manner so that if θ is any

given non-zero class, then the function aFθ(·) on S1\Sr extends to the whole of S1 as

a continuous, Lipschitz function that is smooth on the complement of Tr. Moreover,

if I ⊂ S1 \ Tr is a component, then there exists I′ ⊂ S1 containing the closure of I

and a smooth map cθ,I : I′ → C that solves the corresponding version of the equations

in (3.2) at each t ∈ I′ and is such that aFθ(t) = aF(cθ,I(t)) at each t ∈ I′.
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Proof. The proof is, but for notational changes and two additional remarks, identical

to that of Proposition 2.5 in [25]. To set the stage for the first remark, fix a base point

0 ∈ S1 \Sr. The identifications of the Seiberg–Witten Floer homology groups given

by adapting what is done in [25] may result in the following situation: As t increases

from 0, these identifications results at t = 2π in an automorphism, U, on the t = 0

version of the Seiberg–Witten Floer homology. This automorphism need not obey

aFUθ = aFθ. If not, then it follows using Proposition III.11 that the identifications

made at t < 2π to define U can be changed if necessary as t crosses points in Tr

so that the new version of U does obey aFUθ = aFθ. The second remark concerns

the fact that any given cθ,I is unique up to gauge equivalence. This follows from

Proposition III.11’s assertion that the function aF distinguishes the Seiberg–Witten

solutions when t ∈ S1 \ Tr. �

When E = C, we need to augment what is said in Proposition III.12 with the

following:

Proposition III.13. Suppose that E = C and that there are at least two non-zero

Seibeg-Witten Floer homology classes. Then, the identifications made by Proposition

III.12 between the various t ∈ S1 versions of the Seiberg–Witten Floer homology

groups can be assumed to have the following property. There is a non-zero class θ

such that none of Proposition III.12’s maps cθ,I send the corresponding interval I′ to

a solution in the gauge equivalence class of Proposition III.7’s solution (AC,ψC).

Proof. At any given t ∈ S1 \ Tr, there is a class θ with cθ not gauge equivalent to

(AC,ψC). To see this, first assume the contrary. Then, it should be the case that any

two non-zero homology classes have the same degree, otherwise we would be able

to find another homology class whose associated min-max generator is not gauge
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equivalent to (AC,ψC). Now, suppose that θ1 and θ2 are two non-zero homology

classes. Then, by assumption, both cθ1 and cθ2 are gauge equivalent to (AC,ψC).

Therefore, there exist two relatively prime integers z1 and z2 such that z2θ1 = z1θ2.

As a result, the homology is generated by a single class which contradicts with our

working assumptions. This understood, Proposition III.12’s isomorphisms can be

changed as t crosses a point in Tr while increasing from t = 0 to insure that no

version of cθ,I gives the same gauge equivalence class as (AC,ψC). �

Let I denote a component of S1\Tr. The assignment of t ∈ I to E(cθ,I(t)) associates

to θ a smooth function on I. View this function on I as the restriction from S1 \Tr of

a function, Eθ. Note that the latter need not extend to S1 as a continuous function.

With the function aFθ understood, we come to the heart of the matter, which is

the formula for the derivative for this function on any given interval I ⊂ S1 \Tr: Let

cθ,I be as described in Proposition III.12. Then

(3.52)
d

dt
aF(cθ,I(t)) = −ir

∫
Mt

ν ∧ da = −rEθ.

To explain, keep in mind that cI is a critical point of aF and so the chain rule for the

derivative of aF(cθ,I(·)) yields

(3.53)
d

dt
aF(cθ,I(t)) = −ir

∫
Mt

a ∧ ∂

∂t
µ;

and this is the same as (3.52) becauseω is a closed form. Indeed, writeω = dt∧ν+µ

to see that the equation dω = 0 requires ∂
∂t
µ = dν. This understood, an integration

by parts equates (3.53) to (3.52).

We get bounds on Eθ after integrating (3.52) around S1. Given that aFθ is a

continuous function, integration of the left-hand side over S1 gives zero. Thus, we

conclude that

(3.54)

∫
S1

Eθ = 0.
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This formula tells us that Eθ is bounded at some points in S1. Granted the lower

bound on E provided by Lemma III.4, the next result follows as a corollary:

Lemma III.14. There exists a constant κ > 1 with the following significance: Fix

r ≥ κ so as to define the set Sr ⊂ S1. Let θ denote a non-zero Seiberg–Witten

Floer homology class. Let n denote a positive integer.Then, the measure of the set

in S1 \Sr where Eθ ≥ 2n is less than κ2−n.

Proof. Given the lower bound provided by Lemma III.4, the claim of the lemma

follows easily from (3.54). �

3.4 Proofs of Theorem I.2 and Theorem I.4

We now fix r very large so as to define the set Tr = {ti}i=1,..,Nr . We set tNr+1 =

t1 and take the index i to increase in accordance with the orientation of S1. For

each i, we use Propositions III.12 and III.13 to provide cθ,[ti,ti+1] which we write as

(Ai,i+1,ψi,i+1). We view the connection Ai,i+1 as defining a connection on the line

bundle det(S) over I′ ×M where I′ ∈ S1 is some open neighborhood of [ti, ti+1]. We

also view the t ∈ [ti, ti+1] versions of Proposition III.7’s connection AC as a connection

on the bundle K−1 over [ti, ti+1]×M. Note in this regard that K−1 is the determinant

line bundle for the canonical spinc structure with spinor bundle S0 = C⊕K−1.

With r large and δ > 0 very small, we define Φ on [ti + δ, ti+1 − δ] × M to be

i
2π

(FAi,i+1
− FAC). This done, we have yet the task of describing Φ on the part of

S1 ×M where t ∈ [ti − δ, ti + δ]. We do this as follows: If δ > 0 is sufficiently small,

then Proposition III.6 asserts that cθ,[ti,ti+1] is defined on the interval [ti− δ, ti+1 + δ],

and likewise cθ,[ti−1,ti] is defined on the interval [ti−1 − δ, ti + δ]. This understood,

we find a suitable gauge transformations so as to write Ai−1,i = AS + 2ai−1,i and

Ai,i+1 = AS + 2ai,i+1 on [ti− δ, ti + δ]×M. In particular, these gauge transformations
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should be chosen so that the spectral flow between the respective (Ai−1,i,ψi−1,i) and

(Ai,i+1,ψi,i+1) versions of (3.22) is zero. We then interpolate between ai−1,i and ai,i+1

on [ti− δ, ti + δ]×M using a smooth bump function, v so as to define a connection

Ai = AS+2(1−v)ai−1,i+2vai,i+1 on det(S) over [ti−δ, ti+δ]×M. The “Poincaré dual”

of this gluing process and what we hope to get from it is illustrated in Figure 3.2.

With this connection in hand, we define Φ to be i
2π

(FAi
−FAC) on [ti− δ, ti + δ]×M.

Figure 3.2: Gluing one-parameter family of solutions.

The continuity of the function t→ aFθ(t) is then used to prove the following:

Proposition III.15. Fix a bound on the C3-norm of µ. There exists κ > 1 such

that if r ≥ κ and if δ > 0 is sufficiently small, then

• Φ is twice the first Chern class of a bundle of the form E⊗ L where c1(L) has

zero cup product with [ω].

•
∫

S1×M
ω ∧ Φ > 0.
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What is claimed by Proposition III.15 is not possible given that the first Chern

class of E is assumed to have non-positive cup product with the class defined by ω.

Thus there can be no counter example to the claim made by Theorem I.2. We prove

Proposition III.15 in this section and thus complete the proof of Theorem I.2. The

proof that follows has nine parts.

Part 1 : Here we say more about the solution of each t ∈ S1 version of the equations

in (3.2) provided by Proposition III.7. We denote this solution as (AC,ψC) and

write it at times as (AC = AS0 + 2AC,ψC = (αC,βC)) where AS0 is a t-independent

connection on the line bundle K−1 = det(S0) with harmonic curvature form, and

where AC is a connection on the trivial bundle C. Since each t ∈ S1 version of these

solutions is non-degenerate, the family parametrized by t ∈ S1 can be changed by

t-dependent gauge transformations to define a smooth map from the universal cover,

R, of S1 into C. Moreover, because αC is nowhere zero, a further gauge transformation

can be applied if necessary to obtain a 2π-periodic map from R into C and thus a

map from S1 into C. This understood, we can view AC as a connection on the trivial

bundle over S1 ×M. We write its curvature form as

(3.55) FAC = FAC|t + dt ∧ ȦC.

where FAC|t denotes the component long Mt. Note that the integral of i
2π
ω∧dt∧ ȦC

over S1 ×M is zero since (AC,ψC) is a 1-parameter family of solutions of the equations

in (3.2). To see this, use an integration by parts, the fact that dν = µ̇ and the

equation in (3.52) to get
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i

2π

∫
S1×M

ω ∧ dt ∧ ȦC =

∫
S1

(

∫
M

ȦC ∧ µ)dt

= − i

2π

∫
S1

(

∫
M

ν ∧ dAC)dt

=
2π

r

∫
S1

d

dt
aF(AC,ψC)dt = 0.(3.56)

Therefore,

(3.57)
i

2π

∫
S1×M

ω ∧ FAC =
i

2π

∫
S1×M

ω ∧ FAC|t .

We also note that the left hand side in (3.57) is equal to zero since AC is a connection

on the trivial bundle.

Part 2 : Fix r ≥ 1 large in order to define Tr as in Proposition III.11. Let

Tr = {ti}i=1,..,N−r. Given δ > 0 very small we shall use Ii to denote the interval

[ti− δ, ti + δ] and we shall use Ji,i+1 to denote the interval [ti + δ, ti+1− δ]. We write

the connection Ai,i+1 as Ai,i+1 = AS0 + 2Ai,i+1 where Ai,i+1 is viewed as a connection

on the bundle E over (Ii ∪ Ji,i+1 ∪ Ii+1)×M. The curvature of Ai,i+1 over Ji,i+1 ×M

is given by

(3.58) FAi,i+1
= FAi,i+1|t + dt ∧ Ȧi,i+1.

We now write the integral of i
2π
ω ∧ (FAi,i+1

− FAC|t) over Ji,i+1 ×M as

(3.59)
i

2π

∫
Ji,i+1×M

dt ∧ ν ∧ (FAi,i+1|t − FAC|t) +
i

2π

∫
Ji,i+1×M

µ ∧ dt ∧ Ȧi,i+1.

We will first examine the left most integral in (3.59) and then the right most integral.

Moreover, in order to consider the left most integral, we fix an integer n to define

Ji,i+1;n to be the set of t ∈ Ji,i+1 where Eθ(t) < 2n. We then consider separately the
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contribution to the left most integral from (Ji,i+1 \ Ji,i+1;n)×M and from Ji,i+1;n×M.

Part 3 : Little can be said about the contribution from (Ji,i+1 \ Ji,i+1;n)×M to the

left most integral in (3.59) except what is implied by Lemma III.2. In particular, it

follows from the latter using (3.15) that if t ∈ Ji,i+1 \ Ji,i+1;n, then

(3.60)
i

2π

∫
Mt

ν ∧ (FAi,i+1|t − FAC|t) ≥ c0
−1Eθ(t)− c0

where c0 > 0 is independent of n, the index i, t, and also r. Note in particular that

(3.60) is positive if 2n > c0
2.

As we show momentarily, there is a positive lower bound for the contribution to

the left most integral in (3.59) from Ji,i+1;n ×M. To this end, we exhibit constants

c∗ > 0 and rn > 1 with the former independent of n, both independent of r and the

index i; and such that

(3.61)
i

2π

∫
Mt

ν ∧ (FAi,i+1|t − FAC|t) ≥ c∗

at each fixed t ∈ Ji,i+1;n when r ≥ rn. What follows is an outline of how this is done.

We first appeal to Proposition III.6 to find rn such that if r > rn, then each point of

αi,i+1
−1(0) has distance c0r

−1/2 or less from a curve of the vector field that generates

the kernel of µ. We then split the integral in (3.61) so as to write it as a sum of two

integrals, one whose integration domain consists of points with distance O(r−1/2) or

less from the loops in Mt, and the other whose integration domain is complementary

part in Mt. We show that the contribution to the former is bounded away from zero

by some constant L > 0 which is essentially the length of the shortest closed integral

curve of this same vector field. We then show that the contribution from the rest of

Mt is much smaller than this when r is large.
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Part 4 : Fix t ∈ Ji,i+1;n. Given ε > 0, Proposition III.6 finds a constant rn,ε, and

if r > rn,ε, a collection Θt of pairs (γ,m) with various properties of which the most

salient for the present purposes are that γ is a closed integral curve of the vector

field that generates the kernel of µ|t such that ||αi,i+1| − |µ|1/2| < ε at points with

distance cεr
−1/2 from any loop in Θt. Here, cε ≥ 1 depends on ε but not on r, t, or

the index i. This understood, fix some very small ε and let Mt,ε ⊂ Mt denote the set

of points with distance 27cεr
−1/2 or greater from all loops in Θt.

To consider the contribution to (3.61) from Mt \Mt,ε, we write the 1-form ν as in

(3.15). Then, by Lemma III.2, it follows that

(3.62)
i

2π

∫
Mt\Mt,ε

|υ ∧ (FAi,i+1|t − FAC|t)| ≤ cεr
−1/2Lt,

where Lt = Σ(γ,m)m · length(γ).

To see about the rest of the Mt \Mt,ε contribution, note that Lemma 6.1 in [24]

has a verbatim analogue in the present context. In particular, the latter implies that

(3.63)
i

2π
∗ (∗µ ∧ FAi,i+1|t) ≥

1

8π
r|µ|(|µ| − |αi,i+1|2)

at all points in Mt\Mt,ε if r is large. It follows from this, the third item in Proposition

III.6 and (3.62) that

(3.64)
i

2π

∫
Mt\Mt,ε

ν ∧ (FAi,i+1|t − FAC|t) ≥ c0Lt,

when r is larger than some constant that depends only on ε and n. Here, c0 > 0 is

independent of r, t, n, ε and the index i.

Part 5 : Turn now to the contribution to (3.61) from Mt,ε. By Lemma III.3, no

generality is lost by taking rn,ε so that
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||µ|1/2 − |αi,i+1|| < ε and |∇Ai,i+1

kαi,i+1| ≤ εrk/2 for k = 1, 2;

|∇Ai,i+1

kβi,i+1| ≤ εr(k−1)/2 for k = 0, 1, 2(3.65)

at all points in Mt with distance cεr
−1/2 or more from any loop in Θt. Let M′

denote the latter set. Note in this regard that Mt,ε is the set of points with dis-

tance 27cεr
−1/2 or more from any loop in Θt, so Mt,ε ⊂ M′. Meanwhile, we can

also assume that (3.65) holds at all points in Mt when (Ai,i+1, (αi,i+1,βi,i+1
)) is re-

placed by (AC, (αC,βC)). Granted these last observations, we change the gauge for

(Ai,i+1,ψi,i+1) on M′ so that αi,i+1 = hαC where h is a real and positive valued func-

tion. Having done so, we write Ai,i+1 on M′ as Ai,i+1 = AC +(2r)1/2b with b a smooth

imaginary valued 1-form. This understood, then the contribution to (3.61) from Mt,ε

is no greater than

(3.66) c1

∫
Mt,ε

|db|

where c1 depends only on ω. Our task now is to show that (3.66) is small if r is

sufficiently large.

To start this task, we note that with our choice of gauge, it follows from (3.65)

and its (AC,ψC) analogue that

(3.67) |αi,i+1 − αC|+ |b| ≤ c0ε

on M′. Here, c0 is independent of ε and r.

Introduce M′′ ⊂ M′ to denote the set of points with distance 26cεr
−1/2 or more

from any loop in Θt. We now see how to find a function x : M→ R with the following

properties: First, b = (b− i(2r)−1/2dx, eixψ−ψC, 0) obeys the equation

(3.68) L(AC,ψC)b + r1/2b ∗ b = 0
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on M′′. Second, |b| ≤ zε where z > 0 is independent of r and ε.

To explain our final destination, fix a smooth, non-increasing function χ : [0,∞)→

[0, 1] with value 0 on [0, 3
4
] and with value 1 on [1,∞). Set χε

′ to denote the function

on M given by

(3.69) χε
′ = χ(dist(·,∪(γ,m)∈Θtγ)/27cεr

−1/2).

Let b′ = χε
′b. This function has compact support in M′′ and it obeys the equation

(3.70) L(AC,ψC)b
′ + r1/2b ∗ b′ = h,

where |h| ≤ c0z|dχε′|ε where c0 is independent of r, t, ε and the index i. Note in

particular that the L2-norm of h is bounded by c1zLtε where c1 is also independent

of the same parameters. This understood, it follows from (3.43) that

(3.71) ||b′||H ≤ c2zεr1/2||b′||2 + c1zεLt.

Equation (3.71) gives the bound ||b′||H ≤ 2c1zεLt when ε < 1
4
(c2z)−1. As a final

consequence, (3.66) is seen to be no greater than c3zεLt with c3 again independent

of r, t, ε and the index i.

To find the desired function x, introduce again the function χ, and define χε :

M → [0, 1] by replacing 27cεr
−1/2 in (3.69) by 26cεr

−1/2. Equation (3.70) is then

satisfied on M′′ if x obeys the equation

(3.72) d∗dx + 2|µ|1/2r|αi,i+1| sin x = χεd
∗b.

This equation has the same form as that in (3.28). In particular, the arguments in

[25] that find a solution of the equation (2.16) in [25] can be applied only with minor

modifications to find a solution, x, of the equation in (3.72) that obeys the bounds

in (3.40). This being the case, the resulting b = (b − i(2r)−1/2dx, eixψ − ψC, 0) is



71

such that |b| ≤ zε.

Part 6 : It follows from what is said in Parts 4 and 5 that there exists c∗ > 0

and rn ≥ 1 such that if r ≥ rn, then (3.61) holds. Moreover, c∗ is independent of n

because it is larger than some fixed fraction of the shortest closed integral curve of

any given t ∈ S1 version of the kernel of µ. With (3.60), this implies that the left

most integral in (3.59) obeys

(3.73)
i

2π

∫
Ji,i+1×M

dt ∧ ν ∧ (FAi,i+1|t − FAC|t) ≥ c∗∗length(Ji,i+1),

where c∗∗ is also independent of n and r which are both very large.

To say something about the right most integral in (3.59), we write Ai,i+1 = AE +

ai,i+1 where AE is the t-independent connection on E with harmonic curvature form

chosen so that AS = AS0 + 2AE. We then use the fact that the equations in (3.2) are

the variational equations of the functional a as in (3.3) to write

(3.74)
i

2π

∫
M

µ ∧ ȧi,i+1 = − 1

4πr

∫
M

ai,i+1 ∧ dai,i+1.

Here, we use the fact that DAi,i+1
ψi,i+1 = 0 to dispense with the derivative of the

right most integral in (3.3) with respect to t. Granted (3.74), we identify the right

most integral in (3.59) with

1

4πr
[−

∫
M

(ai,i+1 ∧ (dai,i+1 − i$S))|ti+1−δ +

∫
M

(ai,i+1 ∧ (dai,i+1 − i$S))|ti+δ].

(3.75)

Equations (3.73) and (3.75) summarize what we say for now about (3.59).
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Part 7 : Recall that Ii = [ti − δ, ti + δ]. We now review how we define the

connection Ai on E over Ii×M. This is done using a ‘bump’ function, v : Ii → [0, 1].

This function is non-decreasing, it is equal to 0 near ti− δ and equal to 1 near ti + δ.

Meanwhile, we chose gauges for Ai−1,i and Ai,i+1 so that there is no spectral flow

between the respective (Ai−1,i,ψi−1,i) and (Ai,i+1,ψi,i+1) versions of (3.22). Having

done so, we write Ai−1,i = AE + ai−1,i and Ai,i+1 = AE + ai,i+1. We then defined

Ai = AS + 2(1 − v)ai−1,i + 2vai,i+1 and we used the latter to define Φ on Ii ×M by

i
2π

(FAi
− FAC).

In order to say something about

(3.76)

∫
Ii×M

ω ∧ i

2π
(FAi
− FAC)

we write FAi
− FAC|t as

v (FAi,i+1|t − FAC|t) + (1− v)(FAi−1,i|t − FAC|t)

+dt ∧ ∂

∂t
(vai,i+1) + dt ∧ ∂

∂t
((1− v)ai−1,i).(3.77)

As we saw in Parts 4 and 5 above, the two left most terms in (3.77) give positive

contribution to the integral in (3.76). The contribution of the two right most terms

are

(3.78)
i

2π

∫
Ii×M

(dt ∧ µ ∧ ∂

∂t
(vai,i+1)) +

i

2π

∫
Ii×M

(dt ∧ µ ∧ ∂

∂t
((1− v)ai−1,i)).

We analyze (3.78) using an integration by parts to write it as the sum of

(3.79) − i

2π

∫
Ii×M

(dt ∧ dν ∧ vai,i+1 + (1− v)ai−1,i),

and

(3.80)
i

2π

∫
M

(µ ∧ ai,i+1)|ti+δ −
i

2π

∫
M

(µ ∧ ai−1,i)|ti−δ.
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Our only remark about the term in (3.79) is that it is bounded below by −Kδ,

where K is a constant that is independent of δ. This is all we need to know. Mean-

while, we use (3.3) to write (3.80) as the sum of the two terms:

(3.81) − 1

2πr
(a(cθ,[ti,ti+1])|ti+δ − a(cθ,[ti−1,ti])|ti−δ)

and

(3.82)
1

4πr
[

∫
M

(ai−1,i ∧ (dai−1,i − i$S))|ti−δ −
∫

M

(ai,i+1 ∧ (dai,i+1 − i$S))|ti+δ].

To say something about (3.81), recall that we choose gauges when defining ai−1,i

and ai,i+1 on Ii×M so that the spectral flow F take the same value on (Ai−1,i,ψi−1,i)

and (Ai,i+1,ψi,i+1). As a consequence,

− 1

2πr
(a(cθ,[ti,ti+1])|ti+δ − a(cθ,[ti−1,ti])|ti−δ) = − 1

2πr
(aFθ(ti+δ)− aFθ(ti−δ)).

(3.83)

Because the function aFθ is continuous and piecewise differentiable, what appears

on the right hand side of (3.83) is bounded below by −Kδ, with K again a constant

that is independent of δ.

We comment on (3.82) in Part 8.

Part 8 : The terms in (3.82) are fully gauge invariant. This understood, we observe

that the term with integral of ai,i+1 ∧ dai,i+1 is identical but for its sign to the right

most term in (3.75). As the signs are, in fact, opposite, these two terms cancel.

Meanwhile, the term with ai−1,i ∧ dai−1,i is identical but for the opposite sign, to the

left most term in the version of (3.75) over the interval Ji−1,i;δ. Thus, it cancels the

latter term. This understood, the sum of the various {Ji,i+1}i=1,..,Nr version of (3.75)

is exactly minus the sum of the various {Ii}i=1,..,Nr versions of (3.82). Thus, they
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cancel when we sum up the various contributions to
∫

S1×M
ω ∧ Φ. This we now do.

In particular, we find from (3.71) and from what is said above and in Part 7 that

(3.84)

∫
S1×M

ω ∧ Φ ≥ 4πc∗∗ − NrKδ

where K is a constant that is independent of δ. Thus, if we take δ > 0 sufficiently

small, we see that

(3.85)

∫
S1×M

ω ∧ Φ > 0.

Part 9 : With (3.85) understood, our proof of Proposition III.15 is complete with a

suitable idenfication of the class defined by Φ in H2(M; Z). To this end, remark that it

follows from our definition of each Ai,i+1 and each Ai, that Φ can be written as i
2π

(FA−

FAC) where A can be written as AS0 + 2A where A is a connection on a line bundle

E′ over S1 ×M whose first Chern class restricts to each Mt as that of E. Indeed, A

is defined first on each of {Ji,i+1 ×M}i=1,..,Nr as {Ai,i+1 = AS0 + 2Ai,i+1}i=1,..,Nr , and

then on each of {Ii×M}i=1,..,Nr as {Ai = AS0 + 2AE + 2(1−v)ai−1,i + 2vai,i+1}i=1,..,Nr .

These various connections were then glued on the overlaps using maps from M to S1.

We write E′ as E⊗ L. Let 0 ∈ S1 denote any chosen point. Given what was just

said, L over [0, 2π) ×M is isomorphic to the trivial bundle. As such, it is obtained

from the trivial bundle over [0, 2π]×M by identifying the fiber over {2π} ×M with

that over {0} ×M using a map u : M → U(1). To say more about L, we define for

each t ∈ S1, a section ψ|t of S as follows: For any given index i ∈ {1, ..,Nr}, define

ψ|t = ψi,i+1 on Ji,i+1 ×M. We then define ψ at t ∈ Ii to be vψi,i+1 + (1 − v)ψi−1,i

using the same gauge choices that are used above to define Ai. This done, the

pair (A = AS0 + 2A,ψ) defines a pair of connection over S1 ×M for the line bundle

det(S)⊗L2 and section of the spinor bundle S⊗L. We now trivialize L over [0, 2π)×M

so as to view the restrictions to any given Mt of (A,ψ) as defining a smooth map
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from [0, 2π) into C. There is then the corresponding 1-parameter family of operators

whose t ∈ [0, 2π) member is the (A,ψ)|t version of (3.22). This family has zero

spectral flow. Indeed, this is the case because A was defined over Ii by interpolating

between Ai−1,i and Ai,i+1 in gauges where there is zero spectral flow between the

respective (Ai−1,i,ψi−1,i) and (Ai−1,i,ψi−1,i) versions of (3.22).

Because (A,ψ)|2π = (A|0 − 2u−1du, uψ|0) and there is no spectral flow between

the respective (A,ψ)|0 and (A,ψ)|2π versions of (3.22), it follows from [1] that the

cup product of c1(L) with c1(det(S)) is zero. Keeping this last point in mind, and

given that L restricts as the trivial bundle to each Mt, we use the Künneth formula

to see that the cup product of c1(L) with the class defined by ω is the same as

that between c1(L) and the class defined by µ|0. By assumption, the latter class is

proportional to c1(det(S)) in H2(M; R). Therefore, c1(L) has zero cup product with

[ω]. �

We end this chapter with the proof of Theorem I.4, which is a special case of

Conjecture I.1.

Proof of Theorem I.4. Note that if −c1(K) is not torsion in H2(M; Z), then

c1(K) = λ[µ] in H2(M; R) with λ > 0. This is because the cup product pairing

between c1(K) and [ω] has the same sign as λ. If λ < 0, then it follows from [12] or

[17] that M = S1 × S2.

Now, let S denote the generator of H2(M; Z) with the property that 〈c1(K),S〉 > 0.

Note that such a class exists by virtue of the fact noted above that c1(K) = λ[µ]

in H2(M; R) with λ > 0. Let Σ denote a closed, connected, oriented and genus-

minimizing representative for the class S. Note that ||S||T = 2genus(Σ) − 2, which

one can easily show using the fact that b1(M) = 1. Then it is a consequence of

Proposition II.4 that 2genus(Σ) − 2 ≥ 〈c1(K),S〉. This is to say that c1(K) lies in
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the unit ball of the dual Thurston norm on H. In fact, c1(K) is an extremal point

in this ball, which is to say that 〈c1(K),S〉 = 2genus(Σ)− 2. Here is why: Theorem

I.2 in the present context says that

⊕
e∈H2(M;Z) : 〈e,S〉<0

̂

HM(M, se) ∼= {0},

⊕
e∈H2(M;Z) : 〈e,S〉=0

̂

HM(M, se) ∼= Z.

Meanwhile, Proposition 25.5.5 in [9] asserts isomorphisms between the Seiberg–

Witten Floer homology groups for the spinc structure se and those for the spinc

structure sc1(K)−e. Thus, Theorem I.2 also finds that

⊕
e∈H2(M;Z) : 〈e,S〉>〈c1(K),S〉

̂

HM(M, se) ∼= {0},

⊕
e∈H2(M;Z) : 〈e,S〉=〈c1(K),S〉

̂
HM(M, se) ∼= Z.(3.86)

These last results together with Theorem II.9 imply that c1(K) is an extremal

point of the unit ball as defined by the dual of the Thurston norm, that is to say

〈c1(K),S〉 = 2genus(Σ) − 2. The unit ball of the dual Thurston norm is shown in

Figure 3.3.

Figure 3.3: The unit ball of the dual Thurston norm.

Finally, given (3.86), the assertion made by Theorem I.4 follows directly from

Theorem I.3. �



CHAPTER IV

Conclusion and Remarks

As we mentioned in the Introduction, Friedl and Vidussi have recently announced

a complete proof of Conjecture I.1. Given a closed, oriented, irreducible 3-manifold,

M, Firedl and Vidussi find in [6] conditions on the twisted Alexander polynomials of

M that are necessary for S1 ×M to admit a symplectic form. In [7], using Stallings’

criterion (see [20]), they show that these conditions are sufficient to deduce that M

fibers over the circle. In this dissertation, we present an alternative way of proving

Conjecture I.1 using Seiberg–Witten Floer homology. However, the monotonicity

condition imposed in the statement of Theorem I.2 restricts a priori our ability to

extend the statement of Theorem I.4 to manifolds with first Betti number 2 or more.

Yet, if a closed, oriented 3-manifold M fibers over the circle and f : M → S1 is a

smooth fiber bundle map, then for any class Ξ ∈ H2(M; R) with [df ]·Ξ > 0 there exists

a symplectic form ω on S1 ×M such that [ω] = [dt]∪[df ]+Ξ (see [7]). Moreover, the

anticanonical class for the symplectic form ωf satisfies the monotonicity condition.

This motivates the following question.

Question IV.1. Is it possible to prove that when S1 ×M admits a symplectic form

with non-torsion anticanonical class, it also admits a symplectic form whose anti-

canonical class satisfies the monotonicity condition?

77
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At the moment, the author does not know how to answer this question. In fact, it

seems that answering this question is as hard as proving Conjecture I.1. Still, if the

answer to Question IV.1 were affirmative, then we would be able to use Theorem I.2

to extend our proof of Conjecture I.1 to manifolds with first Betti number 2 or more

as follows: Let ω = dt ∧ ν + µ be a symplectic form on S1 ×M with non-torsion

anticanonical class which satisfies the monotonicity condition. Decompose [ω] into

its Künneth components as [ω] = [dt]∪ [ν̄]+ [µ]. Since the set of cohomology classes

represented by a symplectic form constitute an open cone in H2(S1 ×M; R), we could

wiggle [ν̄] to make sure that e · [ω] = 0 for any e ∈ H2(M; Z) for which

̂

HM(M; se)

is non-trivial. We could also guarantee that the resulting class [ν̄] lies in H1(M; Q).

Note that none of these changes to the symplectic form affect the canonical spinc

structure. Therefore, we could proceed as in the proof of Theorem I.4 in order to

complete our proof.

Even if we were able to answer Question IV.1, the case when the symplectic form

on S1 ×M has torsion anticanonical class still needs special treatment. In this case,

we could appeal to the fact that torsion anticanonical class implies the vanishing

of the Thurston norm. Then, Friedl and Vidussi prove in a rather short way that

M fibers over the circle with torus fibers. Alternatively, we could try to prove an

analogue of Theorem I.2 for Seiberg–Witten Floer homology with twisted coefficients

where the twisting is defined using the class [µ] (see [9]). In this case, we would

also need an analogue of Theorem I.3 for torus bundles over the circle in order to

complete the proof of Conjecture I.1. Such an analogue of Theorem I.3 has already

been proven by Kronheimer and Mrowka in [9].

It was suggested to the author by Kronheimer that one could extend our proof

of Conjecture I.1 to closed, oriented 3-manifolds with first Betti number 2 or more
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in the following way: Suppose ω is a symplectic form on S1 ×M that represents a

cohomology class in H2(S1 ×M; Z). Once again, write [ω] = [dt] ∪ [ν̄] + [µ], and

consider a closed, connected, oriented and genus-minimizing surface Σ ⊂ M such

that [Σ] ∈ H2(M; Z) is primitive and a positive integer multiple of [Σ] is the Poincaré

dual of the class [ν̄]. Then, cut M open along Σ and reglue with a diffeomorphism

of Σ so that the first Betti number of the resulting manifold, M′, is equal to 1. This

is possible because the manifold that we obtain by cutting M open along Σ is a

homology product. Now, the following question remains to be answered.

Question IV.2. Does S1 ×M′ admit a symplectic form?

If one can give an affirmative answer to this question, then Theorem I.4 implies that

both M′ and M fiber over the circle with Σ as a fiber. The author hopes to answer

this question in the near future.
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