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Chapter 1

Introduction

Feedback control is used to influence the behavior of dynamical systems. With-

out feedback control systems, modern technologies such as computers, aircraft, and

spacecraft would not exist. One common example of control is the use of cruise con-

trol in modern automobiles. Cruise control enables the driver to set and maintain a

desired vehicle speed without using the throttle. An open-loop, that is, no feedback

action, method of cruise control would be to lock the throttle in a particular position;

however, the vehicle speed would eventually drift given different terrains. By incor-

porating available sensors such as vehicle speed and engine load into a feedback loop,

modern cruise controllers can accurately maintain vehicle speed over a wide variety

of terrains. Additional applications of feedback control can be found in mechanical

systems, electrical systems, financial systems, and even biological systems. In fact,

balancing a stick on the tip of your finger is an example of feedback control; you use

both your sense of sight and sense of touch to move your arm and keep the stick from

falling.

Numerous design methods are commonly used in feedback control problems, rang-

ing from classical control to modern control. Stabilizing a dynamical system when the

plant parameters are uncertain or unknown, however, presents a challenging problem.
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For example, consider the problem of stabilizing the equilibrium of the scalar plant

ẋ(t) = ax(t) + bu(t),

where a > 0 and b 6= 0. If a and b are known, then the control law u(t) = −sgn(b)kx(t)

stabilizes the system for all k > a/|b|. If a and b are uncertain, but the mod-

eling uncertainty can be contained a priori within a given set, robust controllers

[22, 25, 73, 120, 136] can be used to fix the control gain k based on the fixed level

of modeling uncertainty. However, if a and b are unknown or if the modeling uncer-

tainty cannot be ascertained a priori, knowledge of sgn b can be used to calculate

either a positive high-gain feedback u(t) = kx(t) or a negative high-gain feedback

u(t) = −kx(t) such that the closed-loop system is asymptotically stable for a suffi-

ciently large feedback gain k > 0.

Unlike robust control, adaptive control algorithms tune the feedback gains in re-

sponse to the true plant and exogenous signals, that is, commands and disturbances.

Generally speaking, adaptive controllers require less prior modeling information than

robust controllers, and thus can be viewed as highly parameter-robust control laws.

The price paid for the ability of adaptive control laws to operate with limited prior

modeling information is the complexity of analyzing and quantifying the stability and

performance of the closed-loop system, especially in light of the fact that adaptive

control laws, even for linear plants, are nonlinear.

The adaptive control literature focuses primarily on adaptive stabilization, adap-

tive command following, and model reference adaptive control [7, 16, 19, 24, 26, 28,

32, 46, 49, 50, 61, 65, 67, 77, 88, 90, 107, 118, 122]. These adaptive control prob-

lems have been approached using parameter-estimation-based adaptive controllers

[7, 50, 90, 122], universal stabilizers [46, 47, 64, 79, 81, 86, 87, 96, 106, 130, 132],

high-gain adaptive controllers [17, 18, 27, 29, 41, 46, 48, 61, 76, 77, 102], and adaptive
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predictive controllers [19, 74, 88, 107].

In addition to stabilization and command following, disturbance rejection is an-

other common objective arising in noise control, vibration suppression, and structural

control [24, 32, 77, 90, 122]. Adaptive feedforward control is frequently used to reject

harmonic disturbances when the disturbance spectrum is known or can be estimated

[62, 80, 95]. Adaptive feedforward algorithms typically rely on least-mean-square

(LMS) or recursive least-mean-square (RLMS) algorithms to update parameters.

These methods include the filtered-u LMS and filtered-x LMS algorithms. However,

adaptive feedforward algorithms do not account for the transfer function from the

control signals to the measurements.

Model reference adaptive control (MRAC), in which a reference model is designed

to generate a desired trajectory, is one of the primary approaches to adaptive control

[3, 7, 32, 50, 51, 65, 68, 72, 75, 82, 85, 90–92, 94, 122, 123, 131]. In this case, the ob-

jective is to force an unknown plant to follow the output of a known reference model.

In many formulations of model reference adaptive control, the control law depends on

the solution of a Lyapunov equation, which, in turn depends on the reference model,

and ultimately the system matrices A and B. Therefore, these control laws inher-

ently depend on the modeling information expressed by A and B. In Chapter 5, we

consider model reference adaptive control as a special case of the command-following

problem; this controller does not rely on specialized assumptions about the reference

model.

Stability and performance analysis of adaptive control laws often entails assump-

tions on the dynamics of the plant. For example, a widely invoked assumption in

adaptive control is passivity [90], which is restrictive and difficult to verify in practice.

A related assumption is that the plant is minimum phase or stably invertible [33, 45],

which may entail the same difficulties. In fact, sampled-data control may give rise

to nonminimum-phase zeros whether or not the continuous-time system is minimum
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phase [8]. Since inverse-system representations are used to establish boundedness

of the system inputs and outputs, nonminimum-phase zeros are known to present a

challenge in proofs of stability and convergence for adaptive control algorithms [5].

Beyond these assumptions, adaptive control laws are known to be sensitive to un-

modeled dynamics and sensor noise [9, 104], which motivates robust adaptive control

laws [50].

In addition to these basic issues, adaptive control laws may entail unaccept-

able transients during adaptation, which may be exacerbated by actuator limitations

[60, 98, 135]. In fact, adaptive control under extremely limited modeling information

such as uncertainty in the high-frequency gain [64, 69] may yield a transient response

that exceeds the practical limits of the plant. Therefore, the type and quality of the

available modeling information as well as the speed of adaptation must be consid-

ered in the analysis and implementation of adaptive control laws. These issues are

discussed in [5].

Certain modeling information may be required a priori to express the set in

which the adaptive controller gain matrix is known to be contained. Furthermore, if

the adaptive controller gain matrix is not contained within a particular set, projec-

tion algorithms may be used to force the adaptive controller gain into that set; see

[7, 16, 26, 32, 50, 61, 67, 90, 118, 122]. With plant changes, however, a stabilizing

adaptive controller gain may lie outside of this set, inducing an unstable closed-loop

system. In addition, although many adaptive control laws assume matched uncer-

tainty [7, 32, 90, 122], not all uncertainty is matched. This assumption frames the

model assumptions on which the method is based. The adaptive controllers presented

in this dissertation do not assume matched uncertainty.

Although the discrete-time adaptive control literature is more limited than the

continuous-time literature, there are discrete-time versions of many continuous-time

algorithms [2, 3, 7, 35, 51, 55, 66, 67, 91, 122], as well as adaptive control algorithms
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unique to discrete time [28, 31–34, 66, 71, 93, 127, 134]. In [33], the authors present

five algorithms for stabilization and command following of single-input single-output

and multi-input multi-output minimum-phase systems. Although these algorithms

require only that the command signal be bounded, they are based on the assumption

that an ideal tracking controller exists. Disturbance rejection is not addressed.

In [127], a discrete-time adaptive disturbance rejection algorithm is developed

based on a retrospective performance measure and ARMARKOV system representa-

tions. The retrospective performance of a system is the performance of the system at

the current time assuming that the current controller was used over a past window of

time. In [127], the retrospective performance is used in connection with time-series

modeling of both the plant and the controller to develop an adaptive disturbance

rejection algorithm that requires knowledge of only the numerator of the transfer

function from the control to the performance, and does not require knowledge of the

disturbance spectrum. Extensions of this method and experimental results are given

in [1, 37, 42, 63, 108, 110] as well as computational fluid dynamics (CFD)-based flow

control simulation results in [21, 103, 115, 116]. Robustness of the ARMARKOV

adaptive disturbance rejection algorithm is studied in [109].

In this dissertation we consider discrete-time adaptive control since these control

laws can be implemented directly in embedded code without requiring an intermedi-

ate discretization step with potential loss of phase margin. Furthermore, the adaptive

controllers in this dissertation are developed under minimal modeling assumptions. In

particular, the adaptive controllers require knowledge of the sign of the high-frequency

gain and a sufficient number of Markov parameters to approximate the nonminimum-

phase zeros (if any). No additional modeling information is necessary. The use of

Markov parameters, or impulse response coefficients, facilitates identification and on-

line retuning. Markov parameters are readily identifiable with least-squares (LS) or

recursive least-squares (RLS) algorithms, as well as the observer/Kalman filter iden-
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tification (OKID) algorithm [57]. Another application of Markov-parameter-based

control is iterative learning control [83, 84], where the primary objective is repetitive-

motion command following.

Applications of the adaptive control algorithms presented in this dissertation are

published in [99, 117]. In [99], the adaptive control algorithm developed in Chapter

2 is used for three-degree-of-freedom angular-velocity command following in a six-

degree-of-freedom Stewart platform. Closed-loop experiments were shown to reduce

root mean square (RMS) angular-velocity command-following errors by at least a fac-

tor of 2 in all axes during a 10-minute test. In [117], the adaptive control algorithm

developed in Chapter 5 is used to identify multi-input, multi-output, linear, time-

invariant, discrete-time systems. The adaptive controller is used in feedback with an

initial model to adapt the closed-loop response of the system to match the response

of an unknown plant to a known input.

The remainder of this introduction summarizes the contents of Chapter 2 through

Chapter 6 of this dissertation. In particular, these summaries outline the original

contributions of each chapter. Two primary areas of research are presented in this

dissertation. Specifically, Chapter 2 focuses on gradient-based adaptive control, while

Chapters 3-6 relate to retrospective-cost-based adaptive control. Detailed literature

reviews are provided at the beginning of each individual chapter.

Chapter 2 Summary

The results of Chapter 2 are an extension of the work presented in [36, Chapter

VII], where an adaptive controller is developed that requires limited model informa-

tion for stabilization, command following, and disturbance rejection for multi-input,

multi-output, linear, time-invariant, minimum-phase, discrete-time systems. Specifi-

cally, the controller requires knowledge of the open-loop system’s relative degree and

a bound on the first nonzero Markov parameter. Notably, the controller does not
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require knowledge of the command or disturbance spectrum as long as the command

and disturbance signals are generated by Lyapunov-stable linear systems.

The original contribution of Chapter 2, beyond the material presented in [36,

Chapter VII], is the use of a logarithmic Lyapunov function to prove Lyapunov stabil-

ity for systems whose exogenous dynamics are unknown and unmeasured. In addition,

we construct the adaptive update law as a gradient-based adaptive control algorithm.

Since an ideal deadbeat internal model controller is proven to exist, the gradient-based

construction allows us to compute and implement an optimal gradient step size. Fur-

thermore, the gradient-based construction provides a framework for directly analyzing

tradeoffs between transient performance and modeling accuracy. Finally, we derive an

inverse system representation for multi-input, multi-output, minimum-phase systems

which is necessary for the proof of Theorem 2.6.1.

Chapter 2 uses three key tools to prove global convergence of the performance

variable. First, we use a nonminimal state-space realization of the plant. Similar non-

minimal state-space realizations are considered in [23, 30, 32, 38, 101, 124, 127, 134].

Second, we prove the existence of an ideal fixed-gain controller that incorporates a

deadbeat internal model controller, also developed in Chapter 2. Lastly, using a log-

arithmic Lyapunov function, we prove global asymptotic convergence for command

following and disturbance rejection as well as Lyapunov stability of the closed-loop

adaptive system when the open-loop system is asymptotically stable. Since we use

a logarithmic Lyapunov function, we do not need to make use of the key technical

lemma [32], which is limited to output convergence. The key technical lemma along

with logarithmic Lyapunov functions [2, 3, 34, 35, 53–56, 59] are the two principal

techniques used to prove stability for discrete-time adaptive systems.
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Chapter 3 Summary

Chapter 3 begins the main topic of this dissertation. Since the method of proof

for the gradient-based adaptive control algorithm presented in Chapter 2 cannot be

extended to nonminimum-phase systems, we now focus on retrospective-cost-based

adaptive control. In particular, this chapter investigates full-state-feedback stabiliza-

tion in multi-input, linear, time-invariant, discrete-time systems. Retrospective cost

optimization [127] is a measure of performance at the current time based on a past

window of data and without assumptions about the command or disturbance signals.

In particular, retrospective cost optimization acts as an inner loop to the adaptive

control algorithm by modifying the performance variables based on the difference be-

tween the actual past control inputs and the recomputed past control inputs based on

the current control law. This technique is inherent in [127] in the use of the estimated

performance variable, but is more fully developed in this dissertation.

The original contribution of Chapter 3 is the development of a retrospective-cost-

based adaptive controller for full-state-feedback stabilization. Furthermore, we prove

Lyapunov stability of the closed-loop system for a special case. We also present nu-

merical examples to illustrate the robustness of the algorithm under conditions of

Markov-parameter uncertainty. Theoretical and numerical results suggest that the

converged adaptive controller has a downward adaptive gain margin of 6 dB and an

infinite upward adaptive gain margin, which is reminiscent of continuous-time fixed-

gain LQR control. Guaranteed stability margins for discrete-time fixed-gain LQR are

discussed in [119], but the margins are found to be inferior to their continuous-time

counterparts.

Chapter 4 Summary

To further develop retrospective-cost-based adaptive control, the results of Chap-

ter 4 generalize the results of Chapter 3 to static-output-feedback stabilization.
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Specifically, we construct a retrospective-cost-based adaptive controller for multi-

input, multi-output, linear, time-invariant, discrete-time systems with knowledge of

the sign of the high-frequency gain and a sufficient number of Markov parameters to

approximate the nonminimum-phase zeros (if any). No additional information about

the poles or zeros need be known. In addition, we develop a theoretical link between

nonminimum-phase zero information and Markov parameters. This link is detailed

in Appendix A. We also present numerical examples to illustrate the robustness of

the algorithm under conditions of Markov parameter uncertainty.

Chapter 5 Summary

The results of Chapter 5 are based on the adaptive control algorithms developed

in [127] as well as Chapter 3 and Chapter 4 of this dissertation. Specifically, Chapter

5 generalizes the results of Chapter 3 and Chapter 4 to dynamic compensation for sta-

bilization, command following, disturbance rejection, and model reference adaptive

control. We construct a retrospective-cost-based adaptive controller for multi-input,

multi-output, linear, time-invariant, discrete-time systems with knowledge of the sign

of the high-frequency gain and a sufficient number of Markov parameters to approx-

imate the nonminimum-phase zeros (if any). No additional information about the

poles or the zeros need be known.

A novel feature of the adaptive control algorithms developed in Chapters 3-5

of this dissertation is the use of an adjustable learning-rate parameter α which al-

lows us to develop Newton-step-based adaptive update laws. In addition, Chapter 5

further develops the theoretical link between Markov parameters and nonminimum-

phase zeros. We also develop preliminary metrics for analyzing the gain and phase

margins for discrete-time adaptive systems. Finally, numerical robustness analysis

with uncertainty in the required modeling information is presented for plants that

are multi-input, multi-output, nonminimum phase, and possibly unstable. These
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numerical studies show that the adaptive control algorithm is effective for handling

nonminimum-phase zeros under minimal modeling assumptions. These studies also

provide guidance into the choice of the learning-rate parameter α for stable response

and acceptable transient behavior.

Chapter 6 Summary

Adaptive control algorithms can be classified as either direct or indirect, depend-

ing on whether they employ an explicit parameter estimation algorithm within the

overall adaptive scheme; see [32, 50, 77, 90]. Most direct adaptive control algorithms,

with the exception of universal adaptive control algorithms [46, 47, 64, 79, 81, 86,

87, 96, 106, 130, 132], require some prior modeling information, such as the sign of

the high-frequency gain. By updating the required modeling information, perhaps

through closed-loop identification, a direct adaptive control algorithm can be con-

verted to an indirect adaptive control algorithm, which may yield greater versatility

in practice.

The results of Chapter 6 extend the results of Chapter 5. Specifically, the direct

adaptive controller developed in Chapter 5 is augmented with recursive least-squares

estimation to form a discrete-time indirect adaptive control law that is effective for

systems that are multi-input, multi-output, and/or nonminimum phase. Recursive

least-squares estimation is used for concurrent Markov parameter updating. We

present numerical examples to illustrate the algorithm’s effectiveness in handling

nonminimum-phase zeros as plant changes occur. These results are noteworthy since

nonminimum-phase zeros are known to be challenging for adaptive control algorithms

[5]. Numerical results show that the algorithm is able to update the Markov param-

eters and maintain stabilization of the system.
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Chapter 2

Adaptive Gradient-Based Dynamic
Compensation

In this chapter, we present an adaptive controller that requires limited model

information for stabilization, command following, and disturbance rejection for multi-

input, multi-output, linear, time-invariant, minimum-phase, discrete-time systems.

Specifically, the controller requires knowledge of the open-loop system’s relative de-

gree and a bound on the first nonzero Markov parameter. Notably, the controller

does not require knowledge of the command or disturbance spectrum as long as the

command and disturbance signals are generated by Lyapunov-stable linear systems.

Thus, the command and disturbance are combinations of discrete-time sinusoids and

steps. In addition, the controller uses feedback action only and thus does not re-

quire a direct measurement of the command or disturbance signals. We prove global

asymptotic convergence for command following and disturbance rejection.

The results of this chapter are an extension of the work presented in [36, Chapter

VII]. Beyond the material presented in [36, Chapter VII], this dissertation incorpo-

rates a logarithmic Lyapunov function to prove Lyapunov stability for systems whose

exogenous dynamics are unknown and unmeasured. In addition, the adaptive update

law is now constructed as a gradient-based adaptive control algorithm. In contrast

to [127], which was only able to compute an implementable gradient step size, we
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prove the existence of an ideal deadbeat internal model controller, and thus, we are

now able to compute the optimal gradient step size. Furthermore, the gradient-based

construction provides a framework for directly analyzing tradeoffs between transient

performance and modeling accuracy. Finally, an appendix includes the derivation

of an inverse system representation for multi-input, multi-output, minimum-phase

systems. This derivation is necessary for the proof of Theorem 2.6.1. A precursor

to the results of this chapter is given in [39], while the full results and methods of

this chapter are published in [45]. An application of this algorithm to 3-axis angular

velocity command following in a six-degree-of-freedom Stewart platform is published

in [99], and a variation of the adaptive control algorithm developed in this chapter is

implemented on an experimental testbed in [43] to demonstrate broadband adaptive

disturbance rejection.

2.1 Introduction

The adaptive control literature focuses primarily on adaptive stabilization, adap-

tive tracking, and model reference adaptive control [7, 28, 32, 50, 67, 90, 122]. These

adaptive control problems have been approached using parameter-estimation-based

adaptive controllers [7, 50, 90, 122], universal stabilizers [47, 79, 81, 86, 96, 106, 130],

and high-gain adaptive controllers [18, 27, 29, 41, 46, 48, 61, 76, 77, 102]. In addition

to stabilization and command following, disturbance rejection is a third common ob-

jective, arising in noise control, vibration suppression, and structural control. In the

present chapter, we consider the combined stabilization, command following, and dis-

turbance rejection problem for uncertain minimum-phase discrete-time systems with

command and disturbance signals generated by exogenous dynamics with unknown

spectra. Furthermore, unlike adaptive feedforward control, we do not require a direct

measurement of the command or disturbance signals.
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Adaptive feedforward control is frequently used to reject harmonic disturbances

when the disturbance spectrum is known or can be estimated [62, 80, 95]. Adap-

tive feedforward algorithms typically rely on least-mean-square (LMS) or recursive

least-mean-square (RLMS) algorithms to update parameters. These methods include

the filtered-u LMS and filtered-x LMS algorithms. However, adaptive feedforward

algorithms do not account for the transfer function from the control signals to the

measurements.

In [127], a discrete-time adaptive disturbance rejection algorithm is developed

based on a retrospective performance measure. The retrospective performance of

a system is the performance of the system at the current time assuming that the

current controller was used over a past window of time. In [127], the retrospective

performance is used in connection with time-series modeling of both the plant and

the controller to develop an adaptive disturbance rejection algorithm that requires

knowledge of only the numerator of the transfer function from the control to the per-

formance, and does not require knowledge of the disturbance spectrum. Extensions

of this method and experimental results are given in [42, 63, 108, 110].

Although the discrete-time adaptive control literature is more limited than the

continuous-time literature, there are discrete-time versions of many continuous-time

algorithms [2, 3, 7, 35, 51, 55, 66, 67, 91, 122], as well as adaptive control algorithms

unique to discrete time [32, 33, 71, 134]. In [33], the authors present five algorithms for

stabilization and command following of single-input single-output (SISO) and multi-

input multi-output (MIMO) minimum-phase systems. Although these algorithms

require only that the command signal be bounded, they are based on the assumption

that an ideal tracking controller exists. Disturbance rejection is not addressed. In

[78], the authors consider output regulation with a known plant and an unknown

exosystem that generates reference and disturbance signals.

In the present chapter, we develop a discrete-time adaptive MIMO output feed-
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back controller for stabilization, command following, and disturbance rejection in

minimum-phase systems. This Markov-parameter-based adaptive control algorithm

requires knowledge of only the open-loop system’s relative degree and a bound on

the first nonzero Markov parameter. We assume that the command and disturbance

signals are generated by a Lyapunov-stable linear system so that the command and

disturbance signals consist of discrete-time sinusoids and steps. However, we do not

require any information regarding the spectrum of the command or the disturbance,

and we do not require a direct measurement of the command or the disturbance. We

prove globally asymptotic command following and disturbance rejection, as well as

Lyapunov stability of the closed-loop error system when the open-loop dynamics are

asymptotically stable. If there are no command or disturbance signals, then we prove

output stabilization, that is, global asymptotic convergence of the output to zero.

The present chapter uses three key tools to prove global convergence of the per-

formance variable. First, we use a nonminimal state-space realization of the plant.

Similar nonminimal state-space realizations are considered in [23, 30, 32, 38, 124, 134].

The nonminimal state-space realization has a state that consists entirely of delayed

inputs and outputs, which allows us to represent dynamic output feedback as static

full-state feedback. More precisely, dynamic output feedback can be written as the

product of a known feedback vector and a matrix of estimated controller parameters.

Second, we prove the existence of an ideal fixed-gain controller that incorporates a

deadbeat internal model controller. For more information on deadbeat internal model

control, see [40]. Lastly, we use a logarithmic Lyapunov-like function to prove asymp-

totic command following and disturbance rejection. Logarithmic Lyapunov functions,

that is, quadratic functions that incorporate a logarithm, are used in [2, 3, 35, 53–

56, 59] to prove Lyapunov stability of discrete-time systems. In [128], a quadratic

Lyapunov-like function is used to establish convergence of discrete-time systems. Us-

ing the logarithmic Lyapunov function, we prove global asymptotic convergence for
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command following and disturbance rejection as well as Lyapunov stability of the

adaptive system when the open-loop system is asymptotically stable.

2.2 Problem Formulation

Consider the MIMO discrete-time system

x(k + 1) = Ax(k) +Bu(k) +D1w(k), (2.1)

y(k) = Cx(k) +D2w(k), (2.2)

where x(k) ∈ Rn, y(k) ∈ Rly , u(k) ∈ Rlu , w(k) ∈ Rlw , and k ≥ 0. Our goal is to

design an adaptive output feedback controller under which the performance variable y

converges to zero in the presence of the exogenous signal w. Note that w can represent

either a command signal to be followed, an external disturbance to be rejected, or

both. For example, if D1 = 0 and D2 6= 0, then the objective is to have the output Cx

follow the command signal −D2w. On the other hand, if D1 6= 0 and D2 = 0, then the

objective is to reject the disturbance w from the performance measurement Cx. The

combined command following and disturbance rejection problem is considered when

D1 and D2 are block matrices. More precisely, if D1 =

[

D̂1 0

]

, D2 =

[

0 D̂2

]

,

and w(k) =







w1(k)

w2(k)






, then the objective is to have Cx follow the command −D̂2w2

while rejecting the disturbance w1. Lastly, if D1 and D2 are empty matrices, then the

objective is output stabilization, that is, global asymptotic convergence of y = Cx

(and thus x) to zero.

In the nonadaptive case, a sufficient condition for command following and dis-

turbance rejection is lu ≥ ly [40, 44]. Furthermore, we require that ly ≥ lu because

the construction of an ideal fixed-gain controller in Section 2.4 requires that the first

nonzero Markov parameter from u to y be left invertible. Thus, we require that
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ly = lu. Henceforth, l
△
= ly = lu.

Next, define the transfer function matrix

Gyu(z)
△
= C(zI − A)−1B =

∞
∑

i=d

z−iHi, (2.3)

and define d to be the smallest positive integer i such that the ith Markov parameter

Hi
△
= CAi−1B is nonzero. We make the following assumptions:

(A1) The triple (A,B,C) is controllable and observable.

(A2) If λ ∈ C and rank

[

A− λI B
C 0

]

< normal rank

[

A− zI B
C 0

]

, then

|λ| < 1.

(A3) d is known.

(A4) Hd is nonsingular.

(A5) There exists H̄d ∈ Rl×l such that 2HT
d Hd ≤ HT

d H̄d + H̄T
d Hd and H̄d is known.

(A6) There exists an integer n̄ such that n ≤ n̄ and n̄ is known.

(A7) The performance variable y(k) is measured and available for feedback.

(A8) The exogenous signal w(k) is generated by

xw(k + 1) = Awxw(k), (2.4)

w(k) = Cwxw(k), (2.5)

where xw ∈ R
nw and Aw has distinct eigenvalues, all of which are on the unit

circle.

(A9) There exists an integer n̄w such that nw ≤ n̄w and n̄w is known.

(A10) The exogenous signal w(k) is not measured.

(A11) A,B,C,D1, D2, Aw, Cw, n, nw, and Hd are not known.
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Assumption (A1) implies that the McMillan degree of Gyu(z) is n. In the SISO

case, assumption (A1) prevents pole-zero cancellation when forming the transfer func-

tion Gyu(z), which implies that the order of Gyu(z) is n.

Let Gyu(z) have a left coprime matrix-fraction description Gyu(z) = µ(z)−1ν(z),

where µ(z) and ν(z) are l × l polynomial matrices. Without loss of generality, we

assume that µ(z) is in column-Hermite form, that is, µ(z) is upper triangular where

each diagonal entry is a monic polynomial whose degree is higher than the degree of

all of the remaining entries in its column [58, Theorem 6.3-2]. Thus, we can write

µ(z) = zmµ0 + zm−1µ1 + · · · + zµm−1 + µm, (2.6)

where m ≤ n and µ0, . . . , µm ∈ Rl×l are upper triangular. Note that the leading

coefficient matrix µ0 is not necessarily Il. However, it can be seen that there exists

an l × l upper-triangular polynomial matrix

Q(z)
△
=



















zh11 q12z
h12 · · · q1lz

h1l

zh22 · · · q2lz
h2l

. . .
...

zhll



















, (2.7)

such that the leading term of α(z)
△
= Q(z)µ(z) is zmIl. Thus, we can write

α(z) = zmIl + zm−1α1 + zm−2α2 + · · ·+ zαm−1 + αm, (2.8)

where α1, . . . , αm ∈ Rl×l. Furthermore, Gyu(z) has the matrix-fraction description

Gyu(z) = α(z)−1β(z), where β(z)
△
= Q(z)ν(z), and we can write

β(z) = zm−dβd + zm−d−1βd+1 + · · · + zβm−1 + βm, (2.9)

17



where βd, . . . , βm ∈ R
l×l. Note that if the input to Gyu is u = δ(0)ei, where δ(0) is

the unit impulse at k = 0 and ei is the ith column of Il, then the output is

y(k) =











0, 0 ≤ k < d,

βdei, k = d.
(2.10)

Thus, it follows that βd = Hd. Note that α(z) and β(z) are not necessarily left

coprime. However, since µ(z) and ν(z) are left coprime, it follows that Q(z) is

the greatest common left divisor of α(z) and β(z). Furthermore, since det Q(z) =

zh11+···+hll, the pole-zero cancellation that occurs when forming the transfer function

Gyu(z) = α(z)−1β(z) occurs only at z = 0.

Define the transfer function matrix

Gyw(z)
△
= C(zI −A)−1D1 +D2, (2.11)

and, assuming that Gyw has a matrix-fraction description of the form Gyw =

α(z)−1γ(z), which is not necessarily left coprime, we can write

γ(z) = zmγ0 + zm−1γ1 + · · ·+ zγm−1 + γm, (2.12)

where γ0, . . . , γm ∈ R
l×lw . Therefore, for k ≥ m, the state-space system (2.1), (2.2)

has the time-series representation

y(k) =

m
∑

i=1

−αiy(k − i) +

m
∑

i=d

βiu(k − i) +

m
∑

i=0

γiw(k − i). (2.13)

Definition 2.2.1. Let G be a strictly proper transfer function matrix. Then the

normal rank of G is rank G = rank G(λ) for almost all λ ∈ C.

Next, note that it follows from (2.3) and assumption (A4) that, for all suffi-

ciently large λ ∈ C, rank Gyu(λ) = l. Thus, Gyu(z) has full normal rank, that is,
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normal rank Gyu = l. Consequently, normal rank ν = l.

Definition 2.2.2. Let G be a strictly proper s × t transfer function matrix with the

Smith-McMillan form

G(z) = U1(z)



















q1(z)
p1(z)

0

. . .

qr(z)
pr(z)

0 0(s−r)×(t−r)



















U2(z), (2.14)

where r = normal rank G, U1 and U2 are unimodular matrices, and q1, . . . , qr, p1, . . . , pr

are monic polynomials such that, for all i = 1, . . . , r, qi and pi are coprime and, for

all i = 1, . . . , r − 1, pi+1 divides pi and qi divides qi+1. Then the poles of G, count-

ing multiplicity, are the roots of p1 · · · pr, and the transmission zeros of G, counting

multiplicity, are the roots of q1 · · · qr.

Lemma 2.2.3. Let G be a strictly proper s × t transfer function matrix with a left

coprime matrix-fraction description G(z) = P (z)−1Z(z). Then λ ∈ C is a transmis-

sion zero of G if and only if rank Z(λ) < normal rank Z. Furthermore, p ∈ C is a

pole of G if and only if det P (p) = 0.

Assumption (A2) states that the invariant zeros of (A,B,C) are contained in

the open unit circle. Since, by assumption (A1), (A,B,C) is minimal, it follows

that the invariant zeros of (A,B,C) are exactly the transmission zeros of Gyu(z).

Therefore, assumption (A2) is equivalent to the assumption that the transmission ze-

ros of Gyu(z) are contained in the open unit circle. Since µ(z) and ν(z) are left

coprime, it follows from Lemma 2.2.3 that assumption (A2) is equivalent to the

assumption that, if λ ∈ C and rank ν(λ) < normal rank ν, then |λ| < 1. Fur-

thermore, since normal rank ν = l by assumption (A4), it follows that assumption

(A2) implies that, if λ ∈ C and det ν(λ) = 0, then |λ| < 1. Consequently, since
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det β(λ) = det Q(λ)det ν(λ) = zh11+···+hlldet ν(λ), it follows that, if λ ∈ C and

det β(λ) = 0, then |λ| < 1.

For SISO systems, assumption (A5) specializes to the assumption that sgn Hd is

known and an upper bound on the magnitude |Hd| is known. For MIMO systems,

assumption (A5) is a generalization of this SISO assumption. In particular, if Hd is

positive definite, then assumption (A5) specializes to the assumption that an upper

bound on the magnitude of λmax(Hd) is known. Similarly, if Hd is negative definite,

then assumption (A5) specializes to the assumption that an upper bound on the

magnitude of |λmin(Hd)| is known. More precisely, if Hd is positive definite, then

assumption (A5) is satisfied with H̄d > λmax(Hd)Il, while, if Hd is negative definite,

then assumption (A5) is satisfied with H̄d > |λmin(Hd)|Il. Note that assumptions

(A4) and (A5) imply that H̄d is nonsingular.

Assumption (A8) restricts our consideration to command and disturbance signals

that consist of discrete-time sinusoids and steps. The assumption that the eigenvalues

of Aw are distinct entails no loss in generality compared to the assumption that the

eigenvalues of Aw are semisimple, that is, appear only in Jordan blocks of order 1.

For example, consider the system

xw(k + 1) =







λ 0

0 λ






xw(k), w(k) = xw(k), (2.15)

where xw(k)
△
= [xw1(k) xw2(k)]

T. We consider two cases. First, suppose that

xw1(0) 6= 0 and construct the system

xwr(k + 1) = λxwr(k), wr(k) =







1

xw2(0)
xw1(0)






xwr(k). (2.16)
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Then, with xwr(0) = xw1(0), it follows that

wr(k) =







1

xw2(0)
xw1(0)






λkxwr(0) =







λkxw1(0)

λkxw2(0)






= w(k). (2.17)

A similar argument applies to the case xw2(0) 6= 0. Therefore, it follows that there

exists a system with distinct eigenvalues whose output is identical to the output of

(2.4), (2.5). Or course, Jordan blocks of order greater than 1 give rise to unbounded

disturbances, which are not considered.

Assumption (A10) implies that a direct measurement of the command and dis-

turbance is not required, while assumption (A11) implies that the spectrum of the

command and disturbance signals is unknown. We stress that y(k) is the only signal

available for feedback.

2.3 Nonminimal State Space Realization

We use a nonminimal state-space realization of the time-series system (2.13) whose

state consists entirely of measured information. More specifically, the state consists

of past values of the performance variable y(k) and the control u(k). To construct

the nonminimal state-space realization of the time-series system (2.13), we introduce

the following notation. For a positive integer p, define the nilpotent matrix

Np
△
=



















0l×l · · · 0l×l 0l×l

Il · · · 0l×l 0l×l
...

. . .
...

...

0l×l · · · Il 0l×l



















∈ R
lp×lp, (2.18)
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and define

E1
△
=







Il

0l(p−1)×l






∈ R

lp×l, (2.19)

where the dimension p is given by context.

Now, let nc ≥ m and consider the 2lnc-order nonminimal state-space realization

of (2.13)

φ(k + 1) = Aφ(k) + Bu(k) + D1W (k), (2.20)

y(k) = Cφ(k) + D2W (k), (2.21)

where

A △
= Anil +







E1C

0lnc×2lnc






, B △

=







0lnc×l

E1






, (2.22)

C △
=

[

−α1 · · · −αm 0l×l(nc−m) 0l×l(d−1) βd · · · βm 0l×l(nc−m)

]

, (2.23)

D1
△
=







E1D2

0lnc×(m+1)lw






, D2

△
=

[

γ0 · · · γm

]

; (2.24)

Anil
△
=







Nnc
0lnc×lnc

0lnc×lnc
Nnc






(2.25)

22



is nilpotent; and

φ(k)
△
=

































y(k − 1)

...

y(k − nc)

u(k − 1)

...

u(k − nc)

































, W (k)
△
=













w(k)

...

w(k −m)













. (2.26)

Note that the definition of C in (2.23) requires nc ≥ m. The triple (A,B, C) is stabi-

lizable and detectable. However, (A,B, C) is neither controllable nor observable. In

particular, (A,B, C) has n controllable and observable eigenvalues, while the remain-

ing 2lnc −n eigenvalues are located at 0. Moreover, (A,B) has lnc −n uncontrollable

eigenvalues at 0, while (A, C) has lnc unobservable eigenvalues at 0. Note that in this

basis, the state φ(k) contains only past values of the performance variable y and the

control u.

Now, we consider the time-series controller

u(k) =
nc
∑

i=1

Miu(k − i) +
nc
∑

i=1

Niy(k − i), (2.27)

where, for all i = 1, . . . , nc, Mi ∈ Rl×l and Ni ∈ Rl×l. The control can be written as

u(k) = θφ(k), (2.28)

where

θ
△
=

[

N1 · · · Nnc
M1 · · · Mnc

]

∈ R
l×2lnc. (2.29)

The control (2.28), which is dynamic output feedback in terms of y, can be com-
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puted by recording and using nc past values of the performance variable y and the

control u. However, (2.28) is a full-state-feedback control law for the nonminimal

state-space system (2.20)-(2.25). The closed-loop system consisting of (2.20)-(2.25)

with the linear time-invariant feedback (2.28) is

φ(k + 1) = Ãφ(k) + D1W (k), (2.30)

y(k) = Cφ(k) + D2W (k), (2.31)

where

Ã △
= A + Bθ = Anil +







E1C

E1θ






. (2.32)

2.4 Ideal Fixed-Gain Controller

In this section, we prove existence and derive properties of an ideal fixed-gain

controller of the form (2.27) for the open-loop system (2.1) and (2.2). This con-

troller, whose structure is illustrated in Figure 2.1, is used in subsequent sections to

construct an error system for analyzing the adaptive closed-loop system. We stress

that the ideal controller is not intended for implementation. An ideal fixed-gain con-

troller consists of two distinct parts, specifically, a precompensator, which cancels the

transmission zeros of the open-loop system, and a deadbeat internal model controller,

which operates in feedback on the observable states of the precompensator cascaded

with the open-loop system.

First, we demonstrate how to construct the ideal fixed-gain controller. Using
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x(k + 1) = Ax(k) + Bu(k) + D1w(k)
y∗(k) = Cx(k) + D2w(k)

x̂db(k + 1) = Âdbx̂db(k) + B̂dby∗(k)

udb(k) = Ĉdbx̂db(k)

x̂pc(k + 1) = Âpcx̂pc(k) + B̂pcudb(k)

u∗(k) = Ĉpcx̂pc(k) + udb(k)

-

-

6

k-
-

��

w

ue
y∗

udb

u∗

Plant
[

Gyu Gyw

]

Ideal Fixed-Gain Controller

Precompensator Ĝpc Deadbeat Internal Model Ĝdb

Figure 2.1 Closed-loop system with the ideal fixed-gain controller. The pseudo-input e
facilitates the proof of Theorem 2.4.1 but is otherwise set to zero.

assumption (A4), consider the l × l exactly proper precompensator

u∗(k) = −H−1
d

m−d
∑

i=1

βd+iu∗(k − i) + udb(k), (2.33)

which has a minimal state-space realization of the form

x̂pc(k + 1) = Âpcx̂pc(k) + B̂pcudb(k), (2.34)

u∗(k) = Ĉpcx̂pc(k) + udb(k), (2.35)

where x̂pc ∈ Rn̂pc and n̂pc is the McMillan degree of Ĝpc(z)
△
= β(z)−1zm−dHd, which

is the transfer function from udb to u∗. Note that n̂pc ≤ l(m − d). The poles of the

precompensator Ĝpc(z) are exactly the transmission zeros of the open-loop transfer

function Gyu(z). Furthermore, assumption (A2) implies that the transmission zeros

of Gyu(z), and thus the poles of Ĝpc(z), are asymptotically stable. Therefore, the

cascade

Gyu(z)Ĝpc(z) = α(z)−1β(z)β(z)−1zm−dHd

= α(z)−1zm−dHd (2.36)
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has asymptotically stable pole-zero cancellation. Let no be the McMillan degree of

Gyu(z)Ĝpc(z), and note that no ≤ lm.

Define the pseudo-input

e(k)
△
= u(k) − u∗(k), (2.37)

and cascade the precompensator (2.34), (2.35) with the open-loop system (2.1), (2.2)

to obtain







x(k + 1)

x̂pc(k + 1)






=







A BĈpc

0 Âpc













x(k)

x̂pc(k)






+







B

B̂pc






udb(k)

+







B

0






e(k) +







D1

0






w(k), (2.38)

y∗(k) =

[

C 0

]







x(k)

x̂pc(k)






+D2w(k), (2.39)

where y∗ is the ideal system output. Since the poles of Ĝpc(z) cancel the transmission

zeros of Gyu(z), it follows that













A BĈpc

0 Âpc






,







B

B̂pc






,

[

C 0

]






(2.40)

is not minimal. However, since (A,B) and (Âpc, B̂pc) are controllable, it follows that

(2.40) is controllable. Thus,













A BĈpc

0 Âpc






,

[

C 0

]






(2.41)

is not observable. In fact, it follows from the pole-zero cancellations between Ĝpc(z)
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and Gyu(z) that the unobservable modes of (2.41) are exactly the poles of Ĝpc(z), all

of which are asymptotically stable.

Next, let x̂db ∈ Rn̂db , and let

x̂db(k + 1) = Âdbx̂db(k) + B̂dby∗(k), (2.42)

udb(k) = Ĉdbx̂db(k), (2.43)

be an internal model controller (whose existence is shown in Section 2.9) for the

observable states of (2.38) and (2.39) that guarantees exact command following and

disturbance rejection in finite time, that is, (2.42), (2.43) is a deadbeat internal model

controller. Thus, the ideal fixed-gain controller consists of the precompensator (2.34),

(2.35) and the deadbeat internal model controller (2.42), (2.43). Define the transfer

function matrix of the deadbeat internal model controller (2.42), (2.43) by

Ĝdb(z)
△
= Ĉdb(zI − Âdb)

−1B̂db.

The following theorem constructs the ideal fixed-gain controller

u∗(k) =

nc
∑

i=1

M∗iu∗(k − i) +

nc
∑

i=1

N∗iy∗(k − i), (2.44)

which can be expressed as

u∗(k) = θ∗φ∗∗(k), (2.45)

where

θ∗
△
=

[

N∗1 · · · N∗nc
M∗1 · · · M∗nc

]

(2.46)
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and

φ∗∗(k)
△
=

































y∗(k − 1)

...

y∗(k − nc)

u∗(k − 1)

...

u∗(k − nc)

































. (2.47)

The closed-loop system with the ideal fixed-gain controller is shown in Figure 2.1 and

is given by

φ(k + 1) = Ã∗φ(k) + D1W (k), (2.48)

y(k) = Cφ(k) + D2W (k), (2.49)

where

Ã∗

△
= A + Bθ∗ = Anil +







E1C

E1θ∗






. (2.50)

Theorem 2.4.1. Consider the ideal closed-loop system consisting of (2.48), (2.49),

where Ã∗, B, and C are given by (2.50), (2.22), and (2.23), respectively. Furthermore,

let

nc ≥ no + 2lnw +m− d. (2.51)

Then there exists an ideal linear output-feedback controller (2.44) of order nc such

that the following statements hold:
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(i) For all initial conditions φ∗∗(0) and xw(0) and all integers k ≥ k0, where

k0
△
= no + nc + d−m, (2.52)

it follows that y∗(k) = 0.

(ii) Ã∗ is asymptotically stable.

(iii) For i = 1, 2, 3, . . . ,

CÃi−1
∗ B =

{

Hd, i = d,
0, i 6= d.

(2.53)

Proof. We show that a time-series representation of the fixed-gain controller

(2.34), (2.35), (2.42), and (2.43) depicted in Figure 2.1 exists and satisfies (i)-(iii).

First, consider the cascade (2.38), (2.39), and recall that (2.40) is controllable

but not observable. Furthermore, the unobservable modes of (2.41) are precisely the

poles of Ĝpc(z), all of which are asymptotically stable because of assumption (A2).

Therefore, it follows from the Kalman decomposition that there exists a nonsingular

matrix T ∈ R(n+n̂pc)×(n+n̂pc) such that







Ao 0

A21 Aō






= T







A BĈpc

0 Âpc






T−1, (2.54)

[

Co 0

]

=

[

C 0

]

T−1, (2.55)

where Ao ∈ Rno×no , (Ao, Co) is observable, and Aō is asymptotically stable.

Now, defining







xo(k)

xō(k)







△
= T







x(k)

x̂pc(k)






, where xo(k) ∈ Rno , and applying this
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change of basis to the cascade (2.38) and (2.39) yields







xo(k + 1)

xō(k + 1)






=







Ao 0

A21 Aō













xo(k)

xō(k)






+







Bo

Bō






udb(k)

+







Be,o

Be,ō






e(k) +







D1,o

D1,ō






w(k), (2.56)

y∗(k) =

[

Co 0

]







xo(k)

xō(k)






+D2w(k), (2.57)

where xo ∈ Rno and







Bo

Bō






= T







B

B̂pc






,







Be,o

Be,ō






= T







B

0






,







D1,o

D1,ō






= T







D1

0






. (2.58)

Note that (Ao, Bo, Co) is a minimal realization of the transfer function matrix

Go(z)
△
= Co[zI −Ao]

−1Bo = Gyu(z)Ĝpc(z)

= α(z)−1zm−dHd. (2.59)

Next, we consider a deadbeat internal model controller of the form (2.42), (2.43)

designed for the observable subsystem of (2.56), (2.57) given by

xo(k + 1) = Aoxo(k) +Boudb(k) +Be,oe(k) +D1,ow(k), (2.60)

y∗(k) = Coxo(k) +D2w(k). (2.61)

The invariant zeros of (Ao, Bo, Co) are located at the origin and thus do not coincide

with the eigenvalues of Aw by assumption (A8). Since, in addition, (Ao, Bo, Co) is

minimal, the dimension of y equals the dimension of u, and normal rank Go = l,
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it follows from Theorem 2.9.1 with n̂ = no, n̂w = nw, and l̂y = l that, for all n̂db

satisfying

n̂db ≥ no + 2lnw, (2.62)

there exists a discrete-time controller (2.42), (2.43) such that the dynamics matrix

Ãdbo
△
=







Ao BoĈdb

B̂dbCo Âdb






, (2.63)

of the closed-loop system (2.42), (2.43), (2.60), and (2.61), which represents the feed-

back interconnection of Go and Ĝdb, is nilpotent. Furthermore, with e(k) ≡ 0, for all

initial conditions (xo(0), xō(0), x̂db(0), xw(0)) and all integers k ≥ no + n̂db, it follows

that y∗(k) = 0.

The closed-loop system (2.42), (2.43), (2.56), and (2.57) is













xo(k + 1)

x̂db(k + 1)

xō(k + 1)













=













Ao BoĈdb 0

B̂dbCo Âdb 0

A21 BōĈdb Aō

























xo(k)

x̂db(k)

xō(k)













+













Be,o

0

Be,ō













e(k) +













D1,o

B̂dbD2

D1,ō













w(k), (2.64)

y∗(k) =

[

Co 0 0

]













xo(k)

x̂db(k)

xō(k)













+D2w(k). (2.65)
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Since Ãdbo is nilpotent and Aō is asymptotically stable, it follows that













Ao BoĈdb 0

B̂dbCo Âdb 0

A21 BōĈdb Aō













(2.66)

is asymptotically stable.

To construct the ideal fixed gain controller, we first write the transfer function

matrix of (2.42), (2.43) as

Ĝdb(z) = M̂(z)−1N̂(z), (2.67)

where

M̂(z) = zn̂dbIl + zn̂db−1M̂1 + · · ·+ zM̂n̂db−1 + M̂n̂db
, (2.68)

N̂(z) = zn̂db−1N̂1 + zn̂db−2N̂2 + · · · + zN̂n̂db−1 + N̂n̂db
, (2.69)

where, for i = 1, . . . , n̂db, M̂i ∈ Rl×l and N̂i ∈ Rl×l. Therefore, (2.42), (2.43) has the

time-series representation

udb(k) = −
n̂db
∑

i=1

M̂iudb(k − i) +

n̂db
∑

i=1

N̂iy∗(k − i). (2.70)

Now, let n̂db = nc + d −m, and note that, since (2.51) holds, n̂db = nc + d −m ≥

no + 2lnw, as required by (2.62). With e(k) ≡ 0, and thus u(k) = u∗(k) for all

k ≥ k0, the ideal fixed-gain controller, which consists of the precompensator (2.33)

and the deadbeat internal model controller (2.70), is given by (2.44), where, for
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i = 1, 2, . . . , nc,

M∗i
△
= −H−1

d βd+i −
i
∑

j=1

M̂jH
−1
d βd+i−j , (2.71)

N∗i
△
= N̂i, (2.72)

where, for all i > m, βi = 0, and, for all i > n̂db, M̂i = N̂i = 0.

To show (i), consider the 2lnc-order nonminimal state-space realization of the

controller (2.45), (2.71), and (2.72) given by

φ∗∗(k + 1) = Acφ∗∗(k) + Bcy∗(k), (2.73)

u∗(k) = Ccφ∗∗(k), (2.74)

where

Ac
△
= Anil +







0lnc×2lnc

E1θ∗






, Bc

△
=







E1

0lnc×l






, Cc

△
= θ∗. (2.75)

Note that Ac = A+BCc −BcC. Therefore, the ideal closed-loop system (2.20)-(2.25)

and (2.73)-(2.75) is







φ∗(k + 1)

φ∗∗(k + 1)






=







A BCc

BcC Ac













φ∗(k)

φ∗∗(k)







+







B

0






e(k) +







D1

BcD2






W (k), (2.76)

y∗(k) =

[

C 0

]







φ∗(k)

φ∗∗(k)






+ D2W (k), (2.77)
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where

φ∗(k)
△
=

































y∗(k − 1)

...

y∗(k − nc)

u(k − 1)

...

u(k − nc)

































. (2.78)

The closed-loop system (2.76) and (2.77) is a nonminimal representation of the

closed-loop system (2.64) and (2.65). Furthermore, every unobservable or uncontrol-

lable mode of (2.76) and (2.77) is located at zero. Thus, the spectrum of

Ãcl
△
=







A BCc

BcC Ac






(2.79)

consists of the eigenvalues of (2.66) as well as 4lnc −n− n̂pc − n̂db eigenvalues located

at 0. Therefore, since (2.66) is asymptotically stable, it follows that (2.79) is asymp-

totically stable. Furthermore, since (2.76), (2.77) is a nonminimal representation of

(2.64), (2.65), it follows that, with e(k) ≡ 0, for all initial conditions φ∗∗(0) and xw(0)

and all k ≥ no + n̂db = k0, it follows that y∗(k) = 0. Thus, we have verified (i).
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To show (ii), consider the change of basis







Ã∗ BCc

0 Anil






=







I 0

−I I













A BCc

BcC Ac













I 0

I I






, (2.80)







B

−B






=







I 0

−I I













B

0






, (2.81)

[

C 0

]

=

[

C 0

]







I 0

I I






. (2.82)

Since (2.79) is asymptotically stable and Anil is nilpotent, it follows from (2.80) that

Ã∗ is asymptotically stable, verifying (ii).

To show (iii), we compute the closed-loop Markov parameters H̃y∗e,i from the

pseudo-input e to the performance variable y∗ using a state-space realization of the

closed-loop system and a transfer function matrix representation of the closed-loop

system. First, consider the nonminimal state-space realization (2.76) and (2.77). For

i = 1, 2, . . ., define the Markov parameters

H̃y∗e,i
△
=

[

C 0

]







A BCc

BcC Ac







i−1 





B

0







=

[

C 0

]







Ã∗ BCc

0 Anil







i−1





B

−B







= CÃi−1
∗ B +

i−1
∑

j=1

−CÃj−1
∗ BM∗i−j , (2.83)

where M∗i = CcAi−1
nil B for i = 1, 2, . . . , nc and M∗i = 0 for all i > nc.
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Next, consider the transfer function matrix representation of the open-loop system

y∗ = Gyu(z)u+Gyw(z)w

= Gyu(z)u∗ +Gyu(z)e+Gyw(z)w

= Gyu(z)Ĝpc(z)Ĝdb(z)y∗ +Gyu(z)e+Gyw(z)w, (2.84)

which implies that the closed-loop system is

y∗ = G̃yee+ G̃yww, (2.85)

where

G̃ye
△
= [Il −Gyu(z)Ĝpc(z)Ĝdb(z)]

−1Gyu(z)

= [Il − α(z)−1zm−dHdM̂(z)−1N̂(z)]−1α(z)−1β(z)

= [α(z) − zm−dHdM̂(z)−1N̂(z)]−1β(z)

= D̃(z)−1M̂(z)H−1
d β(z), (2.86)

G̃yw
△
= [Il −Gyu(z)Ĝpc(z)Ĝdb(z)]

−1Gyw(z)

= D̃(z)−1M̂(z)H−1
d γ(z), (2.87)

and D̃(z)
△
= M̂(z)H−1

d α(z) − zm−dN̂(z). Notice that D̃(z) can be written as

D̃(z) = zm+n̂dbH−1
d + zm+n̂db−1D̃1 + · · · + D̃m+n̂db

, (2.88)

where, for i = 1, 2, . . . , m + n̂db, D̃i ∈ R
l×l. Since (2.63) is nilpotent, it fol-

lows that the poles of G̃ye and G̃yw are located at zero; in particular, det D̃(z) =

zl(m+n̂db)det H−1
d . In fact, it follows from (2.88) that the coefficients of the deadbeat
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controller M̂(z)−1N̂(z) can be chosen so that D̃1 = · · · = D̃m+n̂db
= 0, and thus

G̃ye(z) =
[

zm+n̂dbH−1
d

]−1
Ñ(z) = z−m−n̂dbHdÑ(z), (2.89)

where

Ñ(z)
△
= M̂(z)H−1

d β(z) = zm+n̂dbÑ0 + · · · +Nm+n̂db
(2.90)

and

Ñi =























0, 0 ≤ i < d,

Il, i = d,

H−1
d βi +

∑i−d

j=1 M̂jH
−1
d βi−j , d < i ≤ m+ n̂db.

(2.91)

Therefore, it follows from (2.71) that

Ñi =























0, 0 ≤ i < d,

Il, i = d,

−M∗i−d, d < i ≤ m+ n̂db.

(2.92)

It follows from (2.89) that the closed-loop Markov parameters H̃y∗e,i from the pseudo-

input e to the performance variable y∗ are H̃y∗e,i = HdÑi for i = 1, 2, . . . , m+ n̂db and

H̃y∗e,i = 0 for i > m+ n̂db, which implies

H̃y∗e,i =



































0, 0 ≤ i < d,

Hd, i = d,

−HdM∗i−d, d < i ≤ m+ n̂db,

0, i > m+ n̂db.

(2.93)

Then property (iii) follows from comparing the expressions for H̃y∗e,i given by (2.83)
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and (2.93). More specifically, since (2.93) implies that H̃y∗e,1 = · · · = H̃y∗e,d−1 = 0,

it follows from (2.83) that CB = CÃ∗B = · · · = CÃd−2
∗ B = 0. Next, since

CB = CÃ∗B = · · · = CÃd−2
∗ B = 0 and H̃y∗e,d = Hd (using (2.93)), it follows

from (2.83) that CÃd−1
∗ B = Hd. Now, since CB = CÃ∗B = · · · = CÃd−2

∗ B = 0,

CÃd−1
∗ B = Hd, and H̃y∗e,d+1 = −HdM∗1 (using (2.93)), it follows from (2.83) that

CÃd
∗B = 0. Lastly, since CB = CÃ∗B = · · · = CÃd−2

∗ B = 0, CÃd−1
∗ B = Hd, CÃd

∗B = 0,

and H̃y∗e,d+2 = −HdM∗2 (using (2.93)), it follows from (2.83) that CÃd+1
∗ B = 0. Con-

tinuing this analysis yields CB = CÃ∗B = · · · = CÃd−2
∗ B = 0, CÃd−1

∗ B = Hd, and

CÃd
∗B = CÃd+1

∗ B = · · · = 0.

2.5 Error System

We now construct an error system using the ideal fixed-gain controller and a

controller whose gains are updated by an adaptive law. By assumption (A11), the

controller order nc given by (2.51) is unknown. However, since m ≤ n and no ≤ lm,

it follows that no +m+ 2lnw − d ≤ (l + 1)n̄+ 2ln̄w − d. Therefore, if

nc ≥ (l + 1)n̄+ 2ln̄w − d, (2.94)

then nc satisfies (2.51). Assumptions (A3), (A6), and (A9) imply that the lower

bound on nc given by (2.94) is known.

The closed-loop system consisting of (2.20)-(2.25) with the ideal feedback (2.45)

is

φ∗∗(k + 1) = Ã∗φ∗∗(k) + D1W (k), (2.95)

y∗(k) = Cφ∗∗(k) + D2W (k), (2.96)

where, by (ii) of Theorem 2.4.1, Ã∗ is asymptotically stable.
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Next, consider the controller

u(k) =

nc
∑

i=1

Mi(k)u(k − i) +

nc
∑

i=1

Ni(k)y(k − i), (2.97)

where, for all i = 1, . . . , nc, Mi : N → Rl×l and Ni : N → Rl×l are given by the

adaptive law presented in the following section. The control can be expressed as

u(k) = θ(k)φ(k), (2.98)

where

θ(k)
△
=

[

N1(k) · · · Nnc
(k) M1(k) · · · Mnc

(k)

]

. (2.99)

Inserting (2.98) into (2.20) yields

φ(k + 1) = Aφ(k) + Bθ(k)φ(k) + D1W (k). (2.100)

Next, defining

θ̃(k)
△
= θ(k) − θ∗, (2.101)

and substituting θ(k) = θ̃(k) + θ∗ into (2.100), the closed-loop system consisting of

(2.20), (2.21) with the time-varying feedback (2.98) becomes

φ(k + 1) = Ã∗φ(k) + Bθ̃(k)φ(k) + D1W (k), (2.102)

y(k) = Cφ(k) + D2W (k). (2.103)

Now, we construct an error system by combining the ideal closed-loop system

39



(2.95), (2.96) with the closed-loop system (2.102), (2.103). Define the error state

φ̃(k)
△
= φ(k) − φ∗∗(k), (2.104)

and subtract (2.95), (2.96) from (2.102), (2.103) to obtain

φ̃(k + 1) = Ã∗φ̃(k) + Bθ̃(k)φ(k), (2.105)

ỹ(k) = Cφ̃(k), (2.106)

where

ỹ(k)
△
= y(k) − y∗(k). (2.107)

Note that the Markov parameters of the error system (2.105), (2.106) are given by

(iii) of Theorem 2.4.1.

The following proposition shows that y(k) is linear in the estimation error θ̃(k).

This proposition is essential for developing the adaptive law and analyzing the sta-

bility of the error system.

Proposition 2.5.1. Consider the error system (2.105) and (2.106). For all k ≥ k0,

ỹ(k) = y(k) = Hdθ̃(k − d)φ(k − d). (2.108)

Proof. Substituting (2.105) into (2.106) yields

ỹ(k) =

k
∑

i=1

CÃi−1
∗ Bθ̃(k − i)φ(k − i). (2.109)

It now follows from (iii) of Theorem 2.4.1 and (2.109) that ỹ(k) = Hdθ̃(k−d)φ(k−d).

Furthermore, it follows from (i) of Theorem 2.4.1 that, for all k ≥ k0, y∗(k) = 0, that
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is, ỹ(k) = y(k). Hence, for all k ≥ k0, (2.108) holds.

2.6 Adaptive Controller and Stability Analysis

We now present the adaptive law for the controller (2.98), (2.99) and analyze the

properties of the closed-loop error system. Consider the cost function

J (k)
△
=

1

2
ỹT(k)ỹ(k). (2.110)

Substituting (2.108) into (2.110), the gradient of J (k) with respect to θ̃(k − d) is

given by

∂J (k)

∂θ̃(k − d)
= HT

d y(k)φ
T(k − d). (2.111)

Since, by assumption (A11), Hd is unknown, we replace Hd in (2.111) with H̄d, and,

in place of (2.111), we use the implementable gradient

G(k)
△
= H̄T

d y(k)φ
T(k − d). (2.112)

Note that the implementable gradient (2.112) can be used in practice due to assump-

tions (A3), (A5), and (A7).

Now, consider the adaptive law

θ(k + 1) = θ(k − d) − η(k)G(k), (2.113)

where η : N → [0,∞) is a step-size function. Note that if G(k) = 0 then η(k) is

irrelevant. In accordance with assumptions (A10) and (A11), the adaptive control

law (2.113) does not require a measurement of the exogenous signal w(k) and does

not use knowledge of the exogenous dynamics (2.4), (2.5).
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Subtracting θ∗ from both sides of (2.113) yields the estimator-error update equa-

tion

θ̃(k + 1) = θ̃(k − d) − η(k)G(k). (2.114)

The closed-loop error system is thus given by

Y (k + 1) = AY Y (k) + BY y(k), (2.115)

θ̃(k + 1) = θ̃(k − d) − η(k)G(k), (2.116)

...

θ̃(k − d+ 1) = θ̃(k − 2d) − η(k − d)G(k − d), (2.117)

where

AY
△
= Nl(nc+d), BY △

=







Il

0l(nc+d−1)×l






, Y (k)

△
=













y(k − 1)

...

y(k − nc − d)













.

(2.118)

Theorem 2.6.1. Consider the open-loop system (2.1), (2.2) satisfying assumptions

(A1)-(A11) and the adaptive feedback controller (2.94), (2.98), (2.99), (2.108), and

(2.113). Furthermore, for all k ≥ k0, let ζ(k) ∈ R be such that

0 < ζl
△
= infj≥k0ζ(j) ≤ ζ(k) ≤ ζu

△
= supj≥k0ζ(j) < 2. (2.119)
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Finally, for all k ∈ N such that G(k) 6= 0, let η(k) ∈ [0,∞) satisfy

η(k) = 0, if k < k0, (2.120)

η(k) = ζ(k)ηopt(k), if k ≥ k0, (2.121)

where

ηopt(k)
△
=

‖y(k)‖2
2

‖G(k)‖2
F

. (2.122)

Then, for all initial conditions x(0) and θ(0), θ(k) is bounded, u(k) is bounded,

limk→∞ y(k) = 0, and x(k) satisfying (2.1) is bounded. If, in addition, the open-loop

dynamics matrix A is asymptotically stable and u(k) = 0 for all k = 0, . . . , k0 − 1,

then, for all xw(0), the zero solution of the closed-loop error system (2.115)-(2.117)

is Lyapunov stable.

Proof. Let k ≥ k0 so that, by Proposition 2.5.1, ỹ(k) = y(k). Consider the

quadratic function

J(Y )
△
= Y TPY, (2.123)

where P > 0 satisfies the discrete-time Lyapunov equation

P = AT
YPAY + Q + αI, (2.124)

where Q > 0 and α > 0. Note that P exists since AY is asymptotically stable.

Defining

∆J(k)
△
= J(Y (k + 1)) − J(Y (k)), (2.125)
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it follows from (2.115) that

∆J(k) = Y T(k + 1)PY (k + 1) − Y T(k)PY (k)

= − Y T(k) (Q + αI)Y (k) + Y T(k)AT
YPBY y(k)

+ yT(k)BT
YPAY Y (k) + yT(k)BT

Y PBY y(k)

≤ − Y T(k) (Q + αI)Y (k) + yT(k)BT
YPBY y(k) + αY T(k)Y (k)

+
1

α
yT(k)

[

BT
YPAYAT

YPBY
]

y(k)

≤ − Y T(k)QY (k) + σ1y
T(k)y(k), (2.126)

where σ1
△
= λmax

(

BT
Y PBY + 1

α
BT
YPAYAT

YPBY
)

.

Now, consider the positive-definite, radially unbounded Lyapunov-like function

V (Y (k), θ̃(k), . . . , θ̃(k − d))
△
= ln

(

1 + a1Y
T(k)PY (k)

)

+ a2

d
∑

i=0

‖θ̃(k − i)‖2
F

= ln (1 + a1J(Y (k))) + a2

d
∑

i=0

‖θ̃(k − i)‖2
F, (2.127)

where a1 > 0 and a2 > 0 are specified below. The Lyapunov-like difference is thus

given by

∆V (k)
△
= V (Y (k + 1), θ̃(k + 1), . . . , θ̃(k − d+ 1))

− V (Y (k), θ̃(k), . . . , θ̃(k − d)). (2.128)

Evaluating ∆V (k) along the trajectories of the closed-loop error system (2.115)-
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(2.117) yields

∆V (k) = ln
[

1 + a1Y
T(k + 1)PY (k + 1)

]

− ln
[

1 + a1Y
T(k)PY (k)

]

+ a2η
2(k)‖G(k)‖2

F − 2a2η(k)
[

tr
(

θ̃(k − d)GT(k)
)]

= ln [1 + a1J(Y (k)) + a1∆J(k)] − ln [1 + a1J(Y (k))] + a2η
2(k)‖G(k)‖2

F

− 2a2η(k)
[

tr (θ̃(k − d)φ(k − d)yT(k)H̄d)
]

= ln [1 + a1J(Y (k)) + a1∆J(k)] − ln [1 + a1J(Y (k))] + a2η
2(k)‖G(k)‖2

F

− a2

(

2η(k)φT(k − d)θ̃T(k − d)HT
d H̄dθ̃(k − d)φ(k − d)

)

= ln [1 + a1J(Y (k)) + a1∆J(k)] − ln [1 + a1J(Y (k))] + a2η
2(k)‖G(k)‖2

F

− a2η(k)φ
T(k − d)θ̃T(k − d)

[

HT
d H̄d + H̄T

d Hd

]

θ̃(k − d)φ(k − d).

(2.129)

By assumption (A5) and using (2.108), we have

∆V (k) ≤ ln

(

1 +
a1∆J(k)

1 + a1J(Y (k))

)

+ a2

[

−2η(k)φT(k − d)θ̃T(k − d) ×

HT
d Hdθ̃(k − d)φ(k − d) + η2(k)‖G(k)‖2

F

]

= ln

(

1 +
a1∆J(k)

1 + a1J(Y (k))

)

+ a2

[

−2η(k)‖y(k)‖2
2 + η2(k)‖G(k)‖2

F

]

= ln

(

1 +
a1∆J(k)

1 + a1J(Y (k))

)

− 2a2η(k)‖y(k)‖2
2 + a2η

2(k)
‖y(k)‖2

2

ηopt(k)

= ln

(

1 +
a1∆J(k)

1 + a1J(Y (k))

)

− 2a2η
2
opt(k)

η(k)

ηopt(k)

‖y(k)‖2
2

ηopt(k)

+ a2η
2
opt(k)

(

η(k)

ηopt(k)

)2 ‖y(k)‖2
2

ηopt(k)

= ln

(

1 +
a1∆J(k)

1 + a1J(Y (k))

)

− a2η
2
opt(k)

[

2ζ(k) − ζ2(k)
]

‖G(k)‖2
F

≤ ln

(

1 +
a1∆J(k)

1 + a1J(Y (k))

)

− a2κη
2
opt(k)‖G(k)‖2

F

= ln

(

1 +
a1∆J(k)

1 + a1J(Y (k))

)

− a2κ
‖y(k)‖4

2

‖G(k)‖2
F

, (2.130)
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where κ is defined by

κ
△
= infj≥k0

[

2ζ(j)− ζ2(j)
]

= min{2ζl − ζ2
l , 2ζu − ζ2

u}. (2.131)

Since 0 < ζl ≤ ζu < 2, it follows that κ is positive.

Since, for all x > 0, ln x ≤ x− 1, using

‖G(k)‖2
F ≤ σ2

max(H̄d)‖y(k)‖2
2‖φ(k − d)‖2

2 (2.132)

and (2.126) we have

∆V (k) ≤ a1
∆J(k)

1 + a1J(Y (k))
− a2κ

yT(k)y(k)

σ2
max(H̄d)‖φ(k − d)‖2

2

≤ − a1
Y T(k)QY (k)

1 + a1Y T(k)PY (k)
+ a1σ1

yT(k)y(k)

1 + a1Y T(k)PY (k)

− a2κ
yT(k)y(k)

σ2
max(H̄d)‖φ(k − d)‖2

2

. (2.133)

Furthermore, defining

U0(k)
△
=













u(k − 1)

...

u(k − nc)













, Y0(k)
△
=













y(k − 1)

...

y(k − nc)













, (2.134)

it follows from ‖φ(k − d)‖2
2 = ‖Y0(k − d)‖2

2 + ‖U0(k − d)‖2
2 that

∆V (k) ≤ − a1
Y T(k)QY (k)

1 + a1Y T(k)PY (k)
+ a1σ1

yT(k)y(k)

1 + a1λmin (P) ||Y (k)||22
− a2κ

yT(k)y(k)

σ2
max(H̄d)

[

||Y0(k − d)||22 + ||U0(k − d)||22
] . (2.135)

Assumption (A2) implies that the invariant zeros of the system (2.1)-(2.5) from
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u to y are asymptotically stable. Thus, it follows from Theorem 2.10.1 with p = nc

that there exist b1 > 0 and b2 > 0 such that

||U0(k − d)||22 ≤ b1 + b2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣













y(k − 1)

...

y(k − nc − 1)













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣







Y0(k)

y(k − nc − 1)







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

≤ b1 + b2
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∣

∣

∣

∣

∣

∣

∣

∣
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∣
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∣
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

























Y0(k)

y(k − nc − 1)

y(k − nc − 2)

...

y(k − nc − d)

























∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

= b1 + b2 ||Y (k)||22 . (2.136)

Therefore, since ‖Y0(k − d)‖2
2 ≤ ‖Y (k)‖2

2, it follows that

∆V (k) ≤ − a1
Y T(k)QY (k)

1 + a1Y T(k)PY (k)
+ a1σ1

yT(k)y(k)

1 + a1λmin (P) ||Y (k)||22
− a2κ

yT(k)y(k)

σ2
max(H̄d)

[

b1 + ||Y0(k − d)||22 + b2 ||Y (k)||22
]

≤ − a1
Y T(k)QY (k)

1 + a1Y T(k)PY (k)
+ a1σ1

yT(k)y(k)

1 + a1λmin (P) ||Y (k)||22
− a2κ

yT(k)y(k)

σ2
max(H̄d)

[

b1 + (b2 + 1) ||Y (k)||22
]

= − a1
Y T(k)QY (k)

1 + a1Y T(k)PY (k)
+ a1σ1

yT(k)y(k)

1 + a1λmin (P) ||Y (k)||22
− a2κ

b3y
T(k)y(k)

1 + b4 ||Y (k)||22
, (2.137)

where b3
△
= 1

σ2
max(H̄d)b1

and b4
△
= b2+1

b1
.
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Next, letting a1
△
= b4

λmin(P)
and a2

△
= a1σ1

b3κ
, it follows that

∆V (k) ≤ −W (Y (k)), (2.138)

where

W (Y (k))
△
= a1

Y T(k)QY (k)

1 + a1Y T(k)PY (k)
. (2.139)

To show that θ̃(k) and Y (k) are bounded, summing (2.138) from k0 to k − 1, where

k0 ≤ k − 1, yields

V (Y (k), θ̃(k), . . . , θ̃(k − d)) = V (Y (k0), θ̃(k0), . . . , θ̃(k0 − d)) +

k−1
∑

j=k0

∆V (j)

≤ V (Y (k0), θ̃(k0), . . . , θ̃(k0 − d)) −
k−1
∑

j=k0

W (Y (j))

≤ V (Y (k0), θ̃(k0), . . . , θ̃(k0 − d)). (2.140)

Thus, V (Y (k), θ̃(k), . . . , θ̃(k − d)) is bounded. Since V (Y (k), θ̃(k), . . . , θ̃(k − d)) is

positive definite and radially unbounded, it follows that θ̃(k) and Y (k) are bounded.

Thus, θ(k) = θ̃(k) + θ∗ is bounded.

Now, we show that limk→∞ Y (k) = 0. Since V is positive definite, it follows from

(2.138) that

0 ≤ lim
k→∞

k
∑

j=k0

W (Y (j))

≤ − lim
k→∞

k
∑

j=k0

∆V (j)

= V (Y (k0), θ̃(k0), . . . , θ̃(k0 − d)) − lim
k→∞

V (Y (k), θ̃(k), . . . , θ̃(k − d))

≤ V (Y (k0), θ̃(k0), . . . , θ̃(k0 − d)), (2.141)
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where all three limits exist. Thus, limk→∞W (Y (k)) = 0. Next, note that

0 ≤ υ(‖Y (k)‖) ≤ W (Y (k)), (2.142)

where

υ(‖Y (k)‖) △
=

a1λmin(Q)‖Y (k)‖2
2

1 + a1λmax(P)‖Y (k)‖2
2

. (2.143)

Thus limk→∞ υ(‖Y (k)‖) = 0. Rewriting (2.143) as

‖Y (k)‖ =

√

υ(‖Y (k)‖)
a1 (λmin(Q) − υ(‖Y (k)‖)λmax(P))

, (2.144)

it follows that limk→∞ Y (k) = 0, and thus limk→∞ y(k) = 0. Finally, it follows from

(2.136) that u(k) is bounded. Thus, φ(k) is bounded. Since φ(k) is the state of

the nonminimal state-space realization (2.20)-(2.25) of the time-series representation

(2.13) for the original state-space system (2.1), (2.2), it follows that x(k) is bounded.

To prove the last statement of Theorem 2.6.1, let xw(0) be given and let

X (k)
△
=



















Y (k)

θ̃(k − d)

...

θ̃(k − 2d)



















(2.145)

be the state of the closed-loop error system (2.115)-(2.117). Since V is positive defi-

nite and, by (2.138), ∆V is negative semidefinite, it follows from [77, Lemma A.3.12]

that the zero solution of the closed-loop error system is Lyapunov stable starting at

k0. Therefore, given ε0 > 0, there exists δ0 > 0 such that, if ‖X (k0)‖ < δ0, then

‖X (k)‖ < ε0 for all k ≥ k0.

Now, assume that the open-loop dynamics matrix A is asymptotically stable and
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that u(k) = 0 for all k < k0. Then, it follows that there exists δ1 > 0 such that,

if ‖X (0)‖ < δ1, then ‖X (k)‖ < δ0 for all k = 0, . . . , k0 − 1. Consequently, for all

ε0 > 0, there exists δ1 > 0 such that, if ‖X (0)‖ < δ1, then ‖X (k)‖ < ε0 for all

k ≥ 0. Therefore, the zero solution of the closed-loop error system (2.115)-(2.117) is

Lyapunov stable starting at k = 0.

The step size ηopt(k) given by (2.122) has the following interpretation. Note that

(2.130) can be written as

∆V (k) ≤ ln

(

1 +
a1∆J(k)

1 + a1J(Y (k))

)

+ a2

[

(η(k) − ηopt(k))
2 − η2

opt(k)
]

‖G(k)‖2
F.

(2.146)

Since the quadratic function (η(k) − ηopt(k))
2 − η2

opt(k) achieves its minimum at

η(k) = ηopt(k), it follows that the upper bound for ∆V (k) given by (2.146) is mini-

mized by η(k) = ηopt(k).

An analogous optimal step size is constructed in [127], where an ideal (not neces-

sarily deadbeat) controller is assumed to exist. However, in the present chapter, an

ideal deadbeat internal model controller is proven to exist and have the properties

given by Theorem 2.4.1 and Proposition 2.5.1. Hence, for all k ≥ k0, ỹ(k) = y(k) is

known, and thus ηopt(k) is computable.

In [127], ỹ(k) = y(k) − y∗(k) is unknown since y∗(k) is unknown, and thus the

optimal step size is not computable in [127]. To obtain a computable step size in

[127], several implementable step sizes are defined. We can construct an analogous

step size ηimp(k). Specifically, ηimp(k) defined by

ηimp(k)
△
=

1

ε+ σ2
max(H̄d)‖φ(k − d)‖2

2

, (2.147)
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where ε ≥ 0, satisfies

ηimp(k) ≤ ηopt(k). (2.148)

Theorem 2.6.1 holds with (2.121) replaced by

η(k) = ζ(k)ηimp(k). (2.149)

However, (2.147) is not needed in the present chapter since ỹ(k) = y(k) is known for

all k ≥ k0 and thus ηopt(k) is computable and thus implementable.

Let {ψ(k)}∞k=k0 satisfy

ζu
2
< supj≥k0ψ(j) <∞, (2.150)

and define ζ̂(k)
△
= ζ(k)

ψ(k)
. Then, if (2.119) holds for {ζ(k)}∞k=k0, then it also holds with

{ζ(k)}∞k=k0 replaced by {ζ̂(k)}∞k=k0. The term ψ(k) can be viewed as a tuning variable

relating to the magnitude of the bound H̄d representing the accuracy with which Hd

is modeled. In particular, by defining the time-varying bound

H̄d,k
△
=
√

ψ(k)H̄d, (2.151)

H̄d can be replaced with H̄d,k in assumption (A5) and (2.112). The example in the

next section shows that the transient response is directly related to ψ(k) and thus

ζ(k). Therefore ψ(k) and ζ(k) are indirectly related to the conservatism of the bound

H̄d on the first nonzero Markov parameter.
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2.7 Mass-Spring-Dashpot Example

Consider the 3-mass structure with all possible spring and dashpot connections

given by

Mq̈ + Cq̇ +Kq = µ













0

u

0













+ µ













w1

w2

w3













, (2.152)

where

M
△
= diag(m1, m2, m3), (2.153)

C
△
=













c1 + c1,2 + c1,3 −c1,2 −c1,3
−c1,2 c1,2 + c2 + c2,3 −c2,3
−c1,3 −c2,3 c1,3 + c2,3 + c3













, (2.154)

K
△
=













k1 + k1,2 + k1,3 −k1,2 −k1,3

−k1,2 k1,2 + k2 + k2,3 −k2,3

−k1,3 −k2,3 k1,3 + k2,3 + k3













, (2.155)

q
△
=

[

q1 q2 q3

]T

, (2.156)

u is the control, and w1, w2, and w3 are disturbances. For this example, the masses

are m1 = 0.01 kg, m2 = 0.02 kg, m3 = 0.01 kg; the damping coefficients are c1 = 5

kg/sec, c2 = 3 kg/sec, c3 = 4 kg/sec, c1,2 = 0.1 kg/sec, c1,3 = 0.2 kg/sec, c2,3 = 0.3

kg/sec; and the spring constants are k1 = 11 kg/sec2, k2 = 12 kg/sec2, k3 = 13

kg/sec2, k1,2 = 70 kg/sec2, k1,3 = 60 kg/sec2, k2,3 = 30 kg/sec2. The input gain

µ = 104 is used for numerical conditioning.

The control objective is to reject the disturbances w1, w2, and w3 while forcing

the position of m2 to follow the command w4. Thus the performance variable is given
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by y = q2 −w4. We assume that the command and disturbance signals are generated

by a Lyapunov-stable discrete-time linear system whose spectrum is unknown.

The continuous-time system (2.152)-(2.156) is sampled at 100 Hz with input pro-

vided by a zero-order hold. It follows from [20] that the resulting sampled-data

system is minimum phase from u to y. Thus assumption (A2) is satisfied. Further-

more, the sampled-data system has a delay d = 1, and the first nonzero Markov

parameter is H1 = 0.3. Let the bound on the first nonzero Markov parameter be

H̄1 = 1.5H1 = 0.45, which satisfies assumption (A5). Thus the mass-spring-dashpot

sampled-data system satisfies assumptions (A1)-(A11).

The unknown disturbance signals are discrete sinusoids with frequency ω1 = 5

Hz, and the unknown command signal is a discrete sinusoid with frequency ω2 = 13

Hz plus a constant bias. More specifically, the unknown disturbance and command

signals are

w1(k) = sin 2πω1Tsk, (2.157)

w2(k) = −1.5 sin 2πω1Tsk, (2.158)

w3(k) = 2 sin 2πω1Tsk, (2.159)

w4(k) = sin 2πω2Tsk + 7, (2.160)

where the sample time is Ts = 0.01 sec. The open-loop system is given the initial

conditions q(0) =

[

1 2 0

]T

m and q̇(0) =

[

−1 −2 0

]T

m/s. Figure 2.2 is

a time history of the performance variable y. The system is allowed to run open

loop for 5 seconds. Then the adaptive controller (2.98) and (2.113) with nc = 20,

d = 1, H̄1 = 0.45, and η(k) = ηopt(k) is implemented in feedback with the initial

condition θ(0) = 0. The performance variable y converges to zero, which implies that

the position q2 asymptotically follows the command w4 and rejects the disturbances

w1, w2, and w3. In particular, Figure 2.3 shows that the controller places poles at

53



0 5 10 15
−20

−15

−10

−5

0

5

10

15

Time (sec)

y

Figure 2.2 The adaptive controller with η(k) = ηopt(k) (that is, ζ(k) ≡ 1) is implemented
in the feedback loop after 5 seconds. The performance variable y converges to zero.

the disturbance frequencies ω1 = 5 Hz and ω2 = 13 Hz. Note that k0 = 21, which

corresponds to 0.21 sec.

The controller’s transient performance has significant peaks, as shown in Figure

2.2. This transient behavior is due in part to the bound H̄1 on the first nonzero

Markov parameter H1. However, the speed of adaptation and thus the transient

performance are directly influenced by ζ(k). Specifically, the controller adapts more

slowly when ζ(k) is small and more quickly when ζ(k) is large. To demonstrate this

effect, consider the adaptive controller (2.98) and (2.113) with η(k) = 1
5
ηopt(k). After

the system is allowed to run open loop for 5 seconds, the adaptive controller (2.98)

and (2.113) with nc = 20, d = 1, H̄1 = 0.45, and η(k) = 1
5
ηopt(k) is implemented in

feedback with the initial condition θ(0) = 0. Figure 2.4 shows that the performance

variable y converges to zero with improved transient performance, but at the expense

of convergence time. Equivalently, setting ζ(k) ≡ 1, ψ(k) ≡ 5, and replacing H̄1 with

H̄1,k ≡ 0.45
√

5 = 1.0 yields the same result. In this case, the transient performance is
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Figure 2.3 Bode magnitude plot of the adaptive controller at t = 15 sec. The adaptive
controller places poles at the disturbance frequencies ω1 = 5 Hz and ω2 = 13 Hz. The con-
troller magnitude |Gc(e

ωTs)| is plotted for ω up to the Nyquist frequency ωNyq = π
Ts

= 314
rad/sec.

viewed as a consequence of how well the bound H̄1,k models the first nonzero Markov

parameter H1.

For this mass-spring-dashpot example, slower adaptation can reduce peaks in the

transient performance, but faster adaptation causes faster convergence. In fact, these

observations hold for many open-loop stable systems; however, if the system is open-

loop unstable, then the effects of adaptation speed differ. For the open-loop stable

mass-spring-dashpot system, one might consider using slower adaptation when the

controller is initially turned on, then increasing the adaptation speed. In particular,

let ζ(k) = exp(−3/k). Figure 2.5 shows a time history of the performance variable y.

The system is allowed to run open loop for 5 seconds. Then the adaptive controller

(2.98) and (2.113) with nc = 20, d = 1, H̄1 = 0.45, and η(k) = exp(−3/k)ηopt(k)

is implemented in feedback with the initial condition θ(0) = 0. The performance

variable y converges to zero with improved transient performance and good conver-
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Figure 2.4 The adaptive controller with η(k) = 1
5ηopt(k) (that is, ζ(k) ≡ 1

5) is imple-
mented in the feedback loop after 5 seconds. The performance variable y converges to zero
with improved transient performance but much slower convergence compared to Figure 2.2.

gence time. Equivalently, setting ζ(k) ≡ 1, ψ(k) = exp(3/k), and replacing H̄1 with

H̄1,k = 0.45
√

exp(3/k) yields the same result.

2.8 Conclusion

We considered adaptive stabilization, command following, and disturbance rejec-

tion for multi-input, multi-output, linear, time-invariant, minimum-phase, discrete-

time systems where the command and disturbance signals are generated by a linear

system with unknown dynamics. The adaptive controller requires limited model in-

formation, specifically, knowledge of the open-loop system’s relative degree and a

bound on the first nonzero Markov parameter. We considered command and distur-

bance signals generated by Lyapunov-stable linear systems. Thus, the command and

disturbance signals are combinations of discrete-time sinusoids and steps. We proved
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Figure 2.5 The adaptive controller with η(k) = exp(−3/k)ηopt(k) (that is, ζ(k) =
exp(−3/k)) is implemented in the feedback loop after 5 seconds. The performance vari-
able y converges to zero with improved transient performance compared to figures 2.2 and
2.4. Furthermore, the performance converges almost as quickly as in Figure 2.2 and more
quickly than in Figure 2.4.

global asymptotic convergence for command following and disturbance rejection.

2.9 Appendix: Deadbeat Internal Model Control

Theorem 2.9.1. Consider the discrete-time system

x̂(k + 1) = Âx̂(k) + B̂u(k) + D̂1w(k), (2.161)

y(k) = Ĉx̂(k) + D̂2w(k), (2.162)

where x̂(k) ∈ Rn̂, y(k) ∈ Rl̂y , u(k) ∈ Rl̂u, w(k) ∈ Rlw , and assume that the following
conditions hold.

(i) (Â, B̂, Ĉ) is controllable and observable.

(ii) l̂u ≥ l̂y.
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(iii) The exogenous signal w(k) is generated from the output of the linear system

x̂w(k + 1) = Âwx̂w(k), w(k) = Ĉwx̂w(k), (2.163)

where x̂w(k) ∈ Rn̂w , (Âw, Ĉw) is observable, for all λ ∈ spec
(

Âw

)

, λ is not a

transmission zero of G(z) = Ĉ(zI − Â)−1B̂, and normal rank G = min(l̂u, l̂y).

Furthermore, consider the linear time-invariant controller

x̂c(k + 1) = Âcx̂c(k) + B̂cy(k), u(k) = Ĉcx̂c(k), (2.164)

where x̂c(k) ∈ Rndb so that the closed-loop system is given by

xcl(k + 1) = Aclxcl(k) +Dclw(k), (2.165)

y(k) = Cclxcl(k) +D2w(k), (2.166)

where

Acl
△
=







Â B̂Ĉc

B̂cĈ Âc






, Dcl

△
=







D̂1

B̂cD̂2






, Ccl

△
=

[

Ĉ 0

]

, xcl
△
=







x̂

x̂c






.

(2.167)

Then, for all ndb ≥ n̂+2n̂w l̂y, there exists (Âc, B̂c, Ĉc) such that Acl is nilpotent. Con-

sequently, for all initial conditions xcl(0) and x̂w(0), and, for all k ≥ 2
(

n̂+ n̂w l̂y

)

,

y(k) = 0.

Proof. A straightforward extension of the arguments used in Section 2.2 to show

that Aw can be chosen to have distinct eigenvalues shows that, without loss of general-

ity, Âw can be assumed to be cyclic. We consider the open-loop system (2.161)-(2.162)

connected in cascade with an internal model of the exogenous dynamics

x̂1(k + 1) = AW x̂1(k) +BW y(k), (2.168)
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where AW
△
= Il̂y ⊗ Âw, BW

△
= Il̂y ⊗ B̂w, and B̂w ∈ Rn̂w is chosen such that (Âw, B̂w)

is controllable [14, Fact 5.12.6] or [15, Fact 5.14.7]. Note that the dynamics (2.168)

contains l̂y copies of the exogenous dynamics Âw. The cascade (2.161), (2.162), and

(2.168) is







x̂(k + 1)

x̂1(k + 1)






=







Â 0

BW Ĉ AW













x̂(k)

x̂1(k)







+







B̂

0






u(k) +







D̂1

BW D̂2






w(k), (2.169)







y(k)

x̂1(k)






=







Ĉ 0

0 I













x̂(k)

x̂1(k)






+







D̂2

0






w(k). (2.170)

Now, we show that the augmented system (2.169), (2.170) is controllable and

observable. First, define the stable region

S △
= {λ ∈ C : |λ| < 1}, (2.171)

and the unstable region U △
= C\S. Let z ∈ U and λ ∈ spec

(

Âw

)

⊂ U . Since (Â, B̂)

is controllable, it follows that

rank







Â− zI B̂ 0

BW Ĉ 0 AW − zI






≥ rank







Â− λI B̂ 0

BW Ĉ 0 AW − λI







≥ rank



















In̂ 0 0

0 BW AW − λI



















Â− λI B̂ 0

Ĉ 0 0

0 0 Il̂y n̂w

























. (2.172)
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Conditions (ii) and (iii) imply that rank













Â− λI B̂ 0

Ĉ 0 0

0 0 Il̂yn̂w













= n̂+ l̂y+ l̂yn̂w, which

is full row rank. Therefore,

n̂+ l̂yn̂w ≥ rank







Â− zI B̂ 0

BW Ĉ 0 AW − zI






≥ rank







In̂ 0 0

0 BW AW − λI






.

(2.173)

Since (AW , BW ) is controllable, rank







In̂ 0 0

0 BW AW − λI






= n̂ + l̂yn̂w, and thus

rank







Â− zI B̂ 0

BW Ĉ 0 AW − zI






= n̂+ l̂yn̂w. (2.174)

Hence













Â 0

BW Ĉ AW






,







B̂

0












is controllable. Since, in addition, (Â, Ĉ) is ob-

servable, it follows that













Â 0

BW Ĉ AW






,







Ĉ 0

0 I












is observable. Thus, there

exists an observer-based controller that stabilizes the augmented system (2.169)-

(2.170) and yields a closed-loop system with nilpotent dynamics. It follows that,

for all ndb ≥ n̂+ 2n̂w l̂y, there exists a linear time-invariant controller (2.164) of order

ndb, such that the equilibrium of the closed-loop system (2.165)-(2.167) is asymptot-

ically stable, where Acl is nilpotent and, for all initial conditions xcl(0) and x̂w(0),

limk→∞ y(k) = 0.

The closed-loop system (2.165)-(2.167) with exogenous input w(k), can be written
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as

xs(k + 1) = Asxs(k), y(k) = Csxs(k), (2.175)

where

As
△
=







Acl DclĈw

0 Âw






, Cs

△
=

[

Ccl D̂2Ĉw

]

, (2.176)

and xs
△
=







xcl

x̂w






. Since limk→∞ y(k) = 0 and Acl is asymptotically stable, it follows

from [40, 44, Lemma 2.1] there exists S ∈ R
2(n̂+n̂w l̂y)×n̂w such that

AclS − SÂw = DclĈw, (2.177)

CclS = D̂2Ĉw. (2.178)

Now define Q
△
=







I −S

0 I






, and consider the change of basis

Ās
△
= Q−1AsQ =







Acl 0

0 Âw






, C̄s

△
= CsQ =

[

Ccl 0

]

. (2.179)

Then, we have y(k) = C̄sĀ
k
sQ

−1xs(0) = CclA
k
cl [xcl(0) + Sx̂w(0)]. Since Acl ∈

R
2(n̂+n̂w l̂y)×2(n̂+n̂w l̂y) is nilpotent, it follows that, for all initial conditions xcl(0) and

x̂w(0) and for all k ≥ 2
(

n̂+ n̂w l̂y

)

, y(k) = 0.
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2.10 Appendix: Inverse System Bounds

Consider the discrete-time system (2.1), (2.2), where y(k) ∈ R
l, u(k) ∈ R

l. To

derive the inverse system, we increment (2.2) by d steps, yielding

y(k + d) = Cx(k + d) +D2w(k + d) (2.180)

= CAdx(k) +Hdu(k)

+

[

D2 CD1 · · · CAd−1D1

]













w(k + d)

...

w(k)













, (2.181)

where Hd
△
= CAd−1B is the first nonzero Markov parameter from u to y. It follows

from (2.181) and assumption (A4) that

u(k) = −H−1
d CAdx(k) +H−1

d y(k + d)

−H−1
d

[

D2 CD1 · · · CAd−1D1

]













w(k + d)

...

w(k)













.

The inverse system is thus given by

x(k + 1) = ARx(k) +BRyd(k) +D1RWd(k), (2.182)

u(k) = CRx(k) +DRyd(k) +D2RWd(k), (2.183)

where

AR
△
= A− BH−1

d CAd, BR
△
= BH−1

d ,

CR
△
= −H−1

d CAd, DR
△
= H−1

d ,
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D1R
△
=

[

−BH−1
d D2 −BH−1

d CD1 · · · −BH−1
d CAd−2D1 D1 −BH−1

d CAd−1D1

]

,

D2R
△
=

[

−H−1
d D2 −H−1

d CD1 · · · −H−1
d CAd−1D1

]

,

yd(k)
△
= y(k + d), Wd(k)

△
=













w(k + d)

...

w(k)













. (2.184)

Since, by assumption (A1), (A,B,C) is minimal, it follows from [125, Proposition

4.2] that the eigenvalues of AR consist of the invariant zeros of (A,B,C) as well as

n − d eigenvalues equal to 0. Therefore, by assumption (A2), AR is asymptotically

stable.

Theorem 2.10.1. Consider the system (2.1), (2.2) and its inverse (2.182), (2.183).

Let p be a positive integer. Then, subject to assumptions (A1), (A2), (A4), and (A8),

there exist c1 > 0 and c2 > 0 such that

‖Ũ(k − d)‖2
2 ≤ c1 + c2‖Ỹ (k)‖2

2, (2.185)

where

Ũ(k)
△
=













u(k − 1)

...

u(k − p)













, Ỹ (k)
△
=













y(k − 1)

...

y(k − p− 1)













. (2.186)
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Proof. By successive substitution,

u(k) = CRA
k
Rx(0) +DRyd(k) +D2RWd(k)

+
k
∑

i=1

CRA
i−1
R BRyd(k − i) +

k
∑

i=1

CRA
i−1
R D1RWd(k − i).

Taking the norm of both sides yields

‖u(k)‖2 ≤ 5
{

‖CR‖2‖AkR‖2‖x(0)‖2 + ‖DR‖2‖yd(k)‖2 + ‖D2R‖2‖Wd(k)‖2

+

[

k
∑

i=1

‖CR‖‖Ai−1
R ‖‖BR‖‖yd(k − i)‖

]2

+

[

k
∑

i=1

‖CR‖‖Ai−1
R ‖‖D1R‖‖Wd(k − i)‖

]2






,

where ‖ · ‖ is the Euclidean norm. Since AR is asymptotically stable, it follows that

there exist λ ∈ [0, 1) and c > 0 such that, for every positive integer k, ‖AkR‖ ≤ cλk.

Therefore, there exists c3 > 0 such that

‖u(k)‖2 ≤ c3



λ2k + ‖yd(k)‖2 +

(

k
∑

i=1

λi−1‖yd(k − i)‖
)2

+‖Wd(k)‖2 +

(

k
∑

i=1

λi−1‖Wd(k − i)‖
)2


 .

Since, by assumption (A8), w(k) is bounded for all k, it follows that ‖Wd(k)‖2 is

also bounded, that is, there exists ρ > 0 such that ‖Wd(k)‖2 ≤ ρ for all k. Thus,

there exists c4 > 0 such that

‖u(k)‖2 ≤ c4

[

ρ+ λ2k + ‖yd(k)‖2 +

(

∞
∑

i=1

λi−1

)

×
(

k
∑

i=1

λi−1‖yd(k − i)‖2

)

+

(

ρ

∞
∑

i=1

λi−1

)2


 .
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Since |λ| < 1, it follows that
∑∞

i=1 λ
i−1 = 1

1−λ
, where 00 △

= 1. Thus, it follows that

there exist c5 > 0 and c6 > 0 such that

‖u(k)‖2 ≤ c5

[

c6 + ‖yd(k)‖2 +
k
∑

i=1

λi−1‖yd(k − i)‖2

]

. (2.187)

Summing both sides of (2.187) from k − p to k − 1 yields

k−1
∑

j=k−p

‖u(j)‖2 ≤ c5

[

c7 +
k−1
∑

j=k−p

‖yd(j)‖2 +
k−1
∑

j=k−p

j
∑

i=1

λi−1‖yd(j − i)‖2

]

, (2.188)

where c7 > 0. Introducing τ
△
= j − i yields

k−1
∑

j=k−p

‖u(j)‖2 ≤ c5

[

c7 +

k−1
∑

j=k−p

‖yd(j)‖2 +

k−2
∑

τ=k−p

k−1
∑

j=τ+1

λj−τ−1‖yd(τ)‖2

]

≤ c8

[

c7 +
k−1
∑

j=k−p

‖yd(j)‖2 +
k−2
∑

τ=k−p−1

‖yd(τ)‖2

]

≤ c1 + c2

k−1
∑

j=k−p−1

‖yd(j)‖2, (2.189)

where c8 > 0. Decrementing (2.189) by d steps and using the definitions of yd(k),

Ũ(k), and Ỹ (k) from (2.184) and (2.186), (yields 2.185).
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Chapter 3

Adaptive
Retrospective-Cost-Based

Full-State Feedback

In the previous chapter, we developed a gradient-based adaptive control algorithm

for stabilization, command following, and disturbance rejection of multi-input, multi-

output, linear, time-invariant, minimum-phase, discrete-time systems. A seemingly

obvious extension would be to use the theory and methods developed in Chapter 2 to

generalize the adaptive control algorithm for handling nonminimum-phase systems.

Unfortunately, the same method of proof used in the previous chapter will not work

for nonminimum-phase systems. Specifically, the development of the ideal fixed-gain

controller in Section 2.4 requires a precompensator to exactly cancel the zeros of the

open-loop plant. If nonminimum-phase zeros were present, this would cause unsta-

ble pole-zero cancellation in the loop. Even though the ideal fixed-gain controller is

never implemented in practice, it must be shown to exist for the development of the

adaptive control algorithm. In addition, the stability and convergence analysis of the

adaptive controller in Section 2.6 requires that the control inputs u be bounded by the

performance measurements y. For minimum-phase systems, this follows from Theo-

rem 2.10.1, but the same is not true in general for systems with nonminimum-phase

zeros.
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To overcome nonminimum-phase zero restrictions, lifting techniques [4, 10–12, 71],

which transform a high-rate nonminimum-phase system into a low-rate minimum-

phase system, were explored. Lifting is able to transform a nonminimum-phase system

into a minimum-phase system by forcing the system to run open loop, that is u = 0,

over a periodic window of time. However, when operating the system open loop, the

performance measurement y will not converge to zero if there are additional com-

mands and/or disturbances driving the plant. The same is true for systems that are

open-loop unstable.

This chapter marks a shift in the focus of this dissertation from gradient-based

adaptive control to retrospective-cost-based adaptive control. In particular, this

chapter investigates full-state-feedback stabilization in multi-input, linear, time-

invariant, discrete-time systems. The results of this chapter support and motivate

the retrospective-cost-based adaptive controllers developed in Chapters 4 and 5 by

providing a basis for retrospective cost optimization. Retrospective cost optimization

[127] is a measure of performance at the current time based on a past window of

data and without assumptions about the command or disturbance signals. In par-

ticular, retrospective cost optimization acts as an inner loop to the adaptive control

algorithm by modifying the performance variables based on the difference between

the actual past control inputs and the recomputed past control inputs based on the

current control law.

The novel features of this chapter include a Lyapunov-based stability and conver-

gence proof for a special case. We also present numerical examples to illustrate the

robustness of the algorithm under conditions of Markov parameter uncertainty. The-

oretical and numerical results suggest that the converged adaptive controller has a

downward adaptive gain margin of 6 dB and an infinite upward adaptive gain margin,

which is reminiscent of continuous-time fixed-gain LQR control.
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3.1 Introduction

Modern control engineering primarily focuses on state-space methods. Of these

approaches, the full-state-feedback stabilization problem is perhaps the most well

known. Given a linear, time-invariant system, the full-state-feedback problem is to

find a stabilizing static feedback gain such that the closed-loop system with state

feedback is asymptotically stable. Under certain conditions, namely controllability of

the pair (A,B), it is possible to arbitrarily assign the closed-loop system’s eigenvalues

by appropriate feedback of the system state x. Further details are discussed in [6, 97].

The most well-developed approaches to the full-state-feedback problem are to use

pole-placement or eigenvalue-assignment schemes. For a scalar-input plant, a stabiliz-

ing feedback gain can be found graphically through root locus or Nyquist techniques.

Alternatively, a stabilizing feedback gain K can be obtained directly by constructing

a desired closed-loop characteristic equation det(sI − A + BK) [6]. Another well-

known approach is to use a linear quadratic regulator (LQR) for full-state-feedback.

Instead of directly assigning closed-loop eigenvalues, LQR places the closed-loop poles

based on the optimization of a cost function. One drawback of these approaches is

that they all depend on an accurate model of the system. Since adaptive controllers

can accommodate (to an extent) inaccurate models of the system and adapt online

to the true system, this motivates the use of adaptive control for full-state-feedback

stabilization.

The goal of this chapter is to present a discrete-time, adaptive, full-state-feedback

control law that is effective for systems that are multi-input and/or unstable. The

algorithm is developed in discrete time based on a discrete-time plant model ob-

tained by either plant discretization or discrete-time system identification so that the

controller can be implemented directly as embedded code without an intermediate

controller discretization step.

The results of this chapter support and motivate the retrospective-cost-based
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adaptive controllers developed in Chapters 4 and 5 by providing a basis for retro-

spective cost optimization. This method is used to adapt dynamic compensators for

disturbance rejection, adaptive stabilization, adaptive command following, and model

reference adaptive control in [113, 127]. Retrospective cost optimization is a measure

of performance at the current time based on a past window of data and without

assumptions about the command or disturbance signals. In particular, retrospective

cost optimization acts as an inner loop to the adaptive control algorithm by modify-

ing the performance variables based on the difference between the actual past control

inputs and the recomputed past control inputs based on the current control law. We

prove Lyapunov stability of the closed-loop error system for a special scalar case.

We present numerical examples to illustrate the algorithm’s effectiveness in han-

dling systems that are unstable to provide insight into the modeling information

required for controller implementation. This information includes a limited num-

ber of Markov parameters, and in many cases, only a bound on the input matrix

B need be known. For full-state feedback, these numerical results suggest that the

retrospective-cost adaptive controller has downward and upward gain margins of 6

dB and ∞ dB, respectively, which is reminiscent of continuous-time fixed-gain LQR

control.

3.2 Problem Formulation

Consider the discrete-time system

x(k + 1) = Ax(k) +Bu(k), (3.1)

where x(k) ∈ Rn, u(k) ∈ Rm, A ∈ Rn×n, B ∈ Rn×m, and k ≥ 0. We assume that

(A,B) is controllable and that measurements of x are available for feedback. Our

goal is to develop an adaptive full-state-feedback controller such that x converges to
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zero.

For a nonnegative integer r, we define the extended state vector X(k) ∈ Rnr and

the extended input vector U(k) ∈ Rmr by

X(k)
△
=













x(k − r + 1)

...

x(k)













, U(k)
△
=













u(k − r + 1)

...

u(k)













. (3.2)

Note that (3.1) can be rewritten as

X(k + 1) = AX(k) + BU(k), (3.3)

where A ∈ Rnr×nr and B ∈ Rnr×mr are given by

A △
=



















A 0 · · · 0

A2 ...
...

...
. . .

Ar 0 · · · 0



















, B △
=



















H1 0 · · · 0

H2 H1
. . .

...

...
. . . 0

Hr Hr−1 · · · H1



















, (3.4)

where, for all i > 0, the Markov parameters Hi ∈ Rn×m of the system (3.1) are

Hi
△
= Ai−1B. (3.5)

In particular, H1 = B.
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3.3 Retrospective Cost Optimization

Let

u(k) = K(k)x(k), (3.6)

where K(k) ∈ Rm×n is the gain matrix. From (3.6), it follows that the extended input

vector U(k) can be rewritten as

U(k) =
r
∑

i=1

LiK(k − i+ 1)x(k − i+ 1), (3.7)

where

Li
△
=













0(r−i)m×m

Im

0(i−1)m×m













∈ R
mr×m. (3.8)

Next, for K ∈ Rm×n, define the retrospective state vector X̂(K, k) ∈ Rnr by

X̂(K, k + 1)
△
= AX(k) + BÛ(K, k), (3.9)

where Û(K, k) ∈ Rmr is the recomputed input vector, given by

Û(K, k) △
=

r
∑

i=1

LiKx(k − i+ 1). (3.10)

Subtracting (3.3) from (3.9) yields

X̂(K, k + 1) = X(k + 1) − B
[

U(k) − Û(K, k)
]

. (3.11)
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Note that

Û(K, k) = E(k)vec K, (3.12)

where

E(k)
△
=

r
∑

i=1

xT(k − i+ 1) ⊗ Li ∈ R
mr×mn, (3.13)

vec is the column-stacking operator, and ⊗ represents the Kronecker product. Fur-

thermore,

X̂(K, k + 1) = f(k) +D(k)vec K, (3.14)

where

f(k)
△
= X(k + 1) − BU(k) ∈ R

nr, (3.15)

D(k)
△
= BE(k) ∈ R

nr×mn. (3.16)

Now consider the retrospective cost function

J(K, k) △
= X̂T(K, k + 1)R1(k)X̂(K, k + 1) + α(k)tr

[

(K −K(k))T (K −K(k))
]

,

(3.17)

where, for all k ≥ 0, R1(k) ∈ Rnr×nr is positive semidefinite and the learning rate

α(k) ∈ R satisfies

0 < α(k) ≤ αu
△
= sup

j≥0
α(j) <∞. (3.18)
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Substituting (3.14) into (3.17) yields

J(K, k) = c(k) + bT(k)vec K + (vec K)TM(k)vec K, (3.19)

where

M(k)
△
= DT(k)R1(k)D(k) + α(k)Imn, (3.20)

b(k)
△
= 2DT(k)R1(k)f(k) − 2α(k)vec K(k), (3.21)

c(k)
△
= fT(k)R1(k)f(k) + α(k)tr

[

KT(k)K(k)
]

. (3.22)

Since M(k) is positive definite, J(K, k) has the strict global minimizer K(k+1) given

by

K(k + 1) = −1

2
vec−1

[

M−1(k)b(k)
]

. (3.23)

Since K(k + 1) depends on x(k + 1) through the dependence of b(k) on X(k + 1), it

follows that u(k + 1) = K(k + 1)x(k + 1) can be implemented at step k + 1.

Note that M(k) and b(k) depend on D(k) and f(k), which in turn depend on the

Markov parameter matrix B. Since B may not be known in practice, we replace B by

an estimate B̂ in D(k), f(k), and K(k+1). Therefore, for all k ≥ 1, the implemented

control gain K̂(k) depends on B̂, that is,

u(k) = K̂(k)x(k), (3.24)

K̂(k + 1)
△
= −1

2
vec−1

[

M̂−1(k)b̂(k)
]

, (3.25)
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where

M̂(k)
△
= D̂T(k)R1(k)D̂(k) + α(k)Imn, (3.26)

b̂(k)
△
= 2D̂T(k)R1(k)f̂(k) − 2α(k)vec K̂(k), (3.27)

and

f̂(k)
△
= X(k + 1) − B̂U(k), (3.28)

D̂(k)
△
= B̂E(k), (3.29)

B̂ △
=



















Ĥ1 0 · · · 0

Ĥ2 Ĥ1
. . .

...

...
. . . 0

Ĥr Ĥr−1 · · · Ĥ1



















, (3.30)

where, for all i = 1, . . . , r, Ĥi is an estimate of Hi. For convenience, we specialize

(3.20)–(3.22) and (3.26), (3.27) with R1(k)
△
= Inr.

The learning rate α(k) affects the convergence speed of the adaptive control al-

gorithm. As α(k) is increased, convergence speed is lowered. Likewise, as α(k) is

decreased, convergence speed is raised. By varying α(k), we study tradeoffs between

transient performance and convergence speed.
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3.4 Closed-loop System

For all k ≥ 0, the closed-loop system is given by

X(k + 1) =

























0 In 0 · · · 0

...
. . .

. . .
. . .

...

...
. . .

. . . 0

... 0 In

0 · · · · · · 0 A+BK̂(k)

























X(k), (3.31)

vec K̂(k + 1) = −1

2
M̂−1(k)b̂(k), (3.32)



















vec K̂(k)

vec K̂(k − 1)

...

vec K̂(k − r + 2)



















=



















Imn 0 · · · · · · 0

0
. . .

. . .
...

...
. . .

. . . 0 0

0 · · · 0 Imn 0





































vec K̂(k)

vec K̂(k − 1)

...

vec K̂(k − r + 1)



















. (3.33)

Note that the order of the closed-loop system is (m+ 1)nr.

Let m = 1 so that E(k) =
∑r

i=1 Lix
T(k − i+ 1). Then, for all k ≥ 0, (3.32) can

be written as

vec K̂(k + 1) =

vec

([

α(k)K̂(k) −XT(k + 1)B̂E(k) +
r
∑

i=1

xT(k − i+ 1)K̂T(k − i+ 1)LT
i B̂TB̂E(k)

]

·
[

α(k)In + ET(k)B̂TB̂E(k)
]−1
)

. (3.34)
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3.5 Closed-Loop Error System (m = r = 1)

Let m = r = 1. Then, for all k ≥ 0, the closed-loop system with gain matrix

K̂(k) is given by

x(k + 1) =
[

A+ BK̂(k)
]

x(k), (3.35)

K̂(k + 1) = K̂(k) − xT(k + 1)B̂

α(k) + B̂TB̂xT(k)x(k)
xT(k). (3.36)

Let K∗ ∈ Rm×n be a gain matrix that renders the ideal closed-loop system nilpo-

tent, that is,

x∗(k + 1) = Nx∗(k), (3.37)

where x∗(k) ∈ Rn, and the matrix N △
= A+BK∗ ∈ Rn×n is nilpotent. Consequently,

for all k ≥ n, x∗(k) = 0. Define the error states x̃(k) ∈ Rn and K̃(k) ∈ Rm×n by

x̃(k)
△
= x(k) − x∗(k), (3.38)

K̃(k)
△
= K̂(k) −K∗. (3.39)

Thus, for all k ≥ n, x̃(k) = x(k). Therefore, for all k ≥ n, substituting

K̂(k) = K̃(k) +K∗ into (3.35) and (3.36) yields the closed-loop error system

x(k + 1) =
[

N +BK̃(k)
]

x(k), (3.40)

K̃(k + 1) = K̃(k) − xT(k + 1)B̂

α(k) + B̂TB̂xT(k)x(k)
xT(k). (3.41)

By substituting (3.40) into (3.41), the closed-loop error system can be rewritten
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for all k ≥ n as

x(k + 1) =
[

N +BK̃(k)
]

x(k), (3.42)

K̃T(k + 1) = A(k)K̃T(k) − B̂TNx(k)

α(k) + B̂TB̂xT(k)x(k)
x(k), (3.43)

where

A(k)
△
= In −

B̂TB

α(k) + B̂TB̂xT(k)x(k)
x(k)xT(k). (3.44)

The multispectrum of A(k) is given by

mspec [A(k)] =

{

1, . . . , 1, 1 − B̂TBxT(k)x(k)

α(k) + B̂TB̂xT(k)x(k)

}

. (3.45)

Proposition 3.5.1. Assume that BTB < 2B̂TB and consider (3.45). Then, for all

k ≥ n,

1 − BTB

B̂TB
< 1 − B̂TBxT(k)x(k)

α(k) + B̂TB̂xT(k)x(k)
≤ 1. (3.46)

Furthermore,

∣

∣

∣

∣

1 − BTB

B̂TB

∣

∣

∣

∣

< 1. (3.47)

Proof. Let k ≥ n. Since BTB < 2B̂TB, we have

0 <
BTB

B̂TB
< 2,
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and thus,

∣

∣

∣

∣

1 − BTB

B̂TB

∣

∣

∣

∣

< 1.

Now, since 0 < α(k)BTB, we have

0 ≤ B̂TBB̂TBxT(k)x(k) < α(k)BTB + B̂TBB̂TBxT(k)x(k).

Therefore,

0 ≤ B̂TBB̂TBxT(k)x(k) < BTB
[

α(k) + B̂TB̂xT(k)x(k)
]

,

and thus,

0 ≤ B̂TBxT(k)x(k)

α(k) + B̂TB̂xT(k)x(k)
<
BTB

B̂TB
,

which implies

1 − BTB

B̂TB
< 1 − B̂TBxT(k)x(k)

α(k) + B̂TB̂xT(k)x(k)
≤ 1.

It follows from Proposition 3.5.1 that the singular values of A(k) are given by

σ [A(k)] =

{

1, . . . , 1,

∣

∣

∣

∣

∣

1 − B̂TBxT(k)x(k)

α(k) + B̂TB̂xT(k)x(k)

∣

∣

∣

∣

∣

}

. (3.48)

3.6 Special Case (n = m = r = 1)

Let n = m = r = 1 and define K∗ △
= −A/B, which yields x∗(k) ≡ 0 for all k ≥ 1.

Consequently, for all k ≥ 1, x̃(k) = x(k). Therefore, for all k ≥ 1, it follows from

(3.42), (3.43) that the closed-loop error system is
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x(k + 1) = BK̃(k)x(k), (3.49)

K̃(k + 1) = Γ(γ(k)x2(k))K̃(k), (3.50)

where, for λ ≥ 0,

Γ(λ)
△
=

1 + ηλ

1 + λ
, (3.51)

η
△
= 1 − 1/δ, δ

△
= B̂/B, and γ(k)

△
= B̂2/α(k). Note that Γ(0) = 1, Γ(λ) → η as

λ→ ∞, and Γ(λ) is a decreasing function of λ on [0,∞). Also, note that η ∈ (−1, 1)

if and only if δ > 1
2
.

Further simplification is possible when B is known. In particular η = 0 if and

only if B̂ = B. In this case, (3.49), (3.50) simplify to

x(k + 1) = BK̃(k)x(k), (3.52)

K̃(k + 1) =
1

1 + γ(k)x2(k)
K̃(k). (3.53)

Lemma 3.6.1. Assume that δ > 1
2

and consider (3.49), (3.50). Then, for all

k ≥ 1, η < Γ(γ(k)x2(k)) ≤ 1. Furthermore, for all k ≥ 1 such that x(k) 6= 0,

η < Γ(γ(k)x2(k)) < 1, and thus |Γ(γ(k)x2(k))| < 1.

Proof. Let k ≥ 1. Since η ∈ (−1, 1), it follows that

η < 1 ≤ 1 + (1 − η) γ(k)x2(k).

Therefore,

η
[

1 + γ(k)x2(k)
]

< 1 + ηγ(k)x2(k) ≤ 1 + γ(k)x2(k),
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and thus,

η < Γ(γ(k)x2(k)) ≤ 1.

Furthermore, for all k ≥ 1 such that x(k) 6= 0, it follows that −1 < η <

Γ(γ(k)x2(k)) < 1.

Theorem 3.6.2. Assume that n = m = r = 1, assume that δ > 1
2
, and consider the

open-loop system (3.1) and the adaptive feedback controller (3.24), (3.25). Then, for

all initial conditions x(0) and K̂(0), the following statements hold:

(i) K̂(k) is bounded.

(ii) limk→∞ x(k) = 0.

(iii) {|K̃(k)|}∞k=1 is nonincreasing.

(iv) limk→∞ |K̃(k)| < 1/|B|.

(v) There exists k0 ≥ 1 such that {|x(k)|}∞k=k0 is decreasing.

(vi) The zero solution of the closed-loop error system (3.49), (3.50) is Lyapunov
stable.

Proof. Let k ≥ 1 so that x̃(k) = x(k). Consider the positive-definite, radially

unbounded Lyapunov candidate

V (x, K̂)
△
= ln

(

1 + γ0x
2
)

+ aK̃2, (3.54)

where γ0
△
= B̂2/αu > 0 and a > 0 is specified below. The Lyapunov difference is thus

given by

∆V (k)
△
= V (x(k + 1), K̂(k + 1)) − V (x(k), K̂(k)). (3.55)
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Evaluating ∆V (k) along the trajectories of the closed-loop error system (3.49), (3.50)

yields

∆V (k) = ln
(

1 + γ0x
2(k + 1)

)

− ln
(

1 + γ0x
2(k)

)

+ a
(

K̃2(k + 1) − K̃2(k)
)

= ln
(

1 + γ0B
2K̃2(k)x2(k)

)

− ln
(

1 + γ0x
2(k)

)

+ a

[

(1 + ηγ(k)x2(k))
2

(1 + γ(k)x2(k))2
K̃2(k) − K̃2(k)

]

= ln

[

1 + γ0B
2K̃2(k)x2(k)

1 + γ0x2(k)

]

+ a

[

1 + 2ηγ(k)x2(k) + η2γ2(k)x4(k)

(1 + γ(k)x2(k))2 − 1

]

K̃2(k)

= ln

[

1 +
γ0B

2K̃2(k)x2(k) − γ0x
2(k)

1 + γ0x2(k)

]

+ a

[

2(η − 1)γ(k)x2(k) + (η2 − 1)γ2(k)x4(k)

(1 + γ(k)x2(k))2

]

K̃2(k)

= ln



1 +

(

B2K̃2(k) − 1
)

γ0x
2(k)

1 + γ0x2(k)





+ a

[

2(η − 1)γ(k)x2(k) + (η2 − 1)γ2(k)x4(k)

(1 + γ(k)x2(k))2

]

K̃2(k). (3.56)

Defining b1(k)
△
= 1 + γ0x

2(k) and b2(k)
△
= 1 + γ(k)x2(k), it follows that

∆V (k) = ln



1 +

(

B2K̃2(k) − 1
)

γ0x
2(k)

b1(k)





+ a

[

2(η − 1)γ(k)x2(k) + (η2 − 1)γ2(k)x4(k)

b22(k)

]

K̃2(k). (3.57)
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Since, for all z > 0, ln z ≤ z − 1, we have

∆V (k) ≤

(

B2K̃2(k) − 1
)

γ0x
2(k)

b1(k)

+ a

[

2(η − 1)γ(k)x2(k) + (η2 − 1)γ2(k)x4(k)

b22(k)

]

K̃2(k)

=
(B2K̃2(k) − 1)γ0b

2
2(k)x

2(k)

b1(k)b22(k)

+
2a(η − 1)γ(k)b1(k)x

2(k)K̃2(k) + a(η2 − 1)γ2(k)b1(k)x
4(k)K̃2(k)

b1(k)b22(k)

=
[B2γ0b

2
2(k) + 2a(η − 1)γ(k)b1(k) + a(η2 − 1)γ2(k)x2(k)b1(k)] x

2(k)K̃2(k)

b1(k)b22(k)

− γ0b
2
2(k)x

2(k)

b1(k)b22(k)

=
[2a(η − 1)γ(k) +B2γ0 + (a(η2 − 1) +B2) γ0γ

2(k)x4(k)]x2(k)K̃2(k)

b1(k)b22(k)

+
[(2B2γ0 + 2a(η − 1)γ0 + a(η2 − 1)γ(k)) γ(k)x2(k)] x2(k)K̃2(k)

b1(k)b
2
2(k)

− γ0b
2
2(k)x

2(k)

b1(k)b22(k)
. (3.58)

Letting a
△
= B̂2

2δ−1
> 0 and noting that, for all k ≥ 0, γ0 ≤ γ(k), it follows that

∆V (k) ≤ −b3γ0 [1 + γ(k)x2(k)]x2(k)K̃2(k) − γ0b
2
2(k)x

2(k)

b1(k)b22(k)
, (3.59)

where b3
△
= B2

2δ−1
. Thus,

∆V (k) ≤ −W (x(k), K̃(k)), (3.60)

82



where

W (x(k), K̃(k))
△
=
b3γ0 [1 + γ(k)x2(k)] K̃2(k) + γ0b

2
2(k)

b1(k)b22(k)
x2(k)

=

[

1 + b3K̃
2(k)

]

γ0x
2(k) +

[

2 + b3K̃
2(k)

]

γ0γ(k)x
4(k) + γ0γ

2(k)x6(k)

1 + [2γ(k) + γ0] x2(k) + [2γ0 + γ(k)] γ(k)x4(k) + γ0γ2(k)x6(k)
.

(3.61)

To show (i), summing (3.60) from 1 to k − 1 and noting that, for all k ≥ 0,

W (x(k), K̃(k)) ≥ 0, yields

V (x(k), K̃(k)) = V (x(1) +

k−1
∑

j=1

∆V (j), K̃(1))

≤ V (x(1) −
k−1
∑

j=1

W (x(j), K̃(j)), K̃(1))

≤ V (x(1), K̃(1)). (3.62)

Thus, V (x(k), K̃(k)) is bounded. Since V (x(k), K̃(k)) is positive definite and radially

unbounded, it follows that x(k) and K̃(k) are bounded. Thus, K̂(k) = K̃(k) +K∗ is

bounded.

Now, we show (ii). Since V is positive definite, it follows from (3.60) that

0 ≤ lim
k→∞

k
∑

j=1

W (x(j), K̃(j))

≤ − lim
k→∞

k
∑

j=1

∆V (j)

= V (x(1), K̃(1)) − lim
k→∞

V (x(k), K̃(k))

≤ V (x(1), K̃(1)), (3.63)

where all three limits exist. Thus limk→∞W (x(k), K̃(k)) = 0. It now follows from
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(3.61) that limk→∞ x(k) = 0.

We now show (iii). Since, by Lemma 3.6.1, −1 < Γ(γ(k)x2(k)) ≤ 1 for all k ≥ 1,

it follows from (3.50) that {|K̃(k)|}∞k=1 is nonincreasing. Let κ
△
= limk→∞ |K̃(k)|, and

note that κ ≥ 0 and, for all k ≥ 1, |K̃(k)| ≥ κ.

To show (iv), suppose that κ ≥ 1/|B|. Then, for all k ≥ 1, it follows that

|x(k + 1)| ≥ κ|B||x(k)| ≥ |x(k)|. Consequently, {|x(k)|}∞k=1 is nondecreasing. There-

fore, if x(1) 6= 0, then {|x(k)|}∞k=1 does not converge to zero. Hence κ < 1/|B|.

We now show (v). Since {|K̃(k)|}∞k=1 is nonincreasing and κ < 1/|B|, it fol-

lows that there exists k0 ≥ 1 such that, for all k ≥ k0, |K̃(k)| < 1/|B|, and thus

|BK̃(k)| < 1. Consequently, it follows from (3.49) that {|x(k)|}∞k=k0 is decreasing.

Finally, to show (vi), let

X (k)
△
=







x(k)

K̃(k)






(3.64)

be the state of the closed-loop error system (3.49), (3.50). Since V is positive definite

and, by (3.60), ∆V is negative semidefinite, it follows from [77, Lemma A.3.12] that

the zero solution of the closed-loop error system is Lyapunov stable.

A discussion about generalizations of this scalar proof is presented in Section 3.8.

3.7 Full-State-Feedback Examples

In each example below, the adaptive controller gain matrix K̂(k) is initialized to

zero.

Example 3.7.1 (Scalar input and plant, unstable plant). Consider the unstable scalar
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plant

x(k + 1) = 2x(k) − 0.1u(k), (3.65)

with pole located at {2}. Taking α(k) ≡ 1, the closed-loop response is shown in Figure

3.1 for x0 = −4.3. The state approaches zero within 6 time steps. �
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Figure 3.1 Closed-loop response for an unstable, scalar-input plant with α(k) ≡ 1. The
state approaches zero within 6 time steps.

Example 3.7.2 (Scalar input, asymptotically stable plant). Consider the stable plant

x(k + 1) =













−0.1 0.4 0.45

1 0 0

0 1 0













x(k) +













0

0

1













u(k), (3.66)

with poles located at {−0.5±0.5, 0.9}. To demonstrate the effect of the learning rate,

we take either α(k) ≡ 1 or α(k) ≡ 1000. The open and closed-loop responses are

shown in Figure 3.2 for x0 = [−4.3,−16.7, 1.3]T. With α(k) ≡ 1, x approaches zero

within 10 time steps, while, with α(k) ≡ 1000, x approaches zero within 20 time steps.
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Figure 3.2 Closed-loop responses for a stable, scalar-input plant. To demonstrate the
effect of the learning rate, we take either α(k) ≡ 1 or α(k) ≡ 1000. With α(k) ≡ 1, x
approaches zero within 10 time steps, while, with α(k) ≡ 1000, x approaches zero within
20 time steps.

To develop a gain-margin metric, and thus demonstrate robustness of the adaptive

control algorithm to knowledge of the input matrix B̂, we take α(k) ≡ 1 and B̂ = λB,

where λ ∈ (0.5, 5] is a scale factor and B̂ is the scaled input matrix to be used with

the adaptive control algorithm. We define the performance metric

min
k

1

5

5
∑

i=1

‖x(k − i+ 1)‖ < 0.1, (3.67)

which represents the minimum number of time steps for the average of the norm of the

previous five state values to be below 0.1. A plot of the performance metric is shown

in Figure 3.3. These results suggest that the converged adaptive control algorithm has

a downward adaptive gain margin of 6 dB and an upward adaptive gain margin of at

least 14 dB. This is consistent with the results of Theorem 3.6.2 for the case n > 1.

�
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Figure 3.3 Performance metric to demonstrate robustness of the adaptive control algo-
rithm to knowledge of the input matrix B̂ for a stable, scalar-input plant. We take α(k) ≡ 1
and B̂ = λB, where λ ∈ (0.5, 5] is a scale factor and B̂ is the scaled input matrix to be used
with the adaptive control algorithm. These results suggest that the converged adaptive
control algorithm has a downward adaptive gain margin of 6 dB and an upward adaptive
gain margin of at least 14 dB.

Example 3.7.3 (Scalar input, unstable plant). Consider the unstable plant

x(k + 1) =













−0.38 0.46 1.03

1 0 0

0 1 0













x(k) +













0

0

1













u(k), (3.68)

with poles located at {−
√

2/2±
√

2/2, 1.03}. To demonstrate the effect of the learning

rate, we take either α(k) ≡ 1 or α(k) ≡ 1000. The open and closed-loop responses

are shown in Figure 3.4 for x0 = [−4.3,−16.7, 1.3]T. With α(k) ≡ 1, x approaches

zero within 10 time steps, while, with α(k) ≡ 1000, x approaches zero within 20 time

steps.

To further develop a gain-margin metric, and thus demonstrate robustness of the

adaptive control algorithm to knowledge of the input matrix B̂, we take α(k) ≡ 1 and
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Figure 3.4 Closed-loop responses for an unstable, scalar-input plant with either α(k) ≡ 1
or α(k) ≡ 1000. With α(k) ≡ 1, x approaches zero within 10 time steps, while, with
α(k) ≡ 1000, x approaches zero within 20 time steps.

B̂ = λB, where λ ∈ (0.5, 5] is a scale factor and B̂ is the scaled input matrix to be

used with the adaptive control algorithm. A plot of the performance metric (3.67) is

shown in Figure 3.5. These results suggest that the converged adaptive control algo-

rithm has a downward adaptive gain margin of 6 dB and an upward adaptive gain

margin of at least 14 dB. This is consistent with the results of Theorem 3.6.2 for the

case n > 1. �

3.8 Algorithm Limitations

Although the retrospective-cost-based full-state-feedback adaptive control algo-

rithm has been shown to work well with r = 1 in certain cases, there are situations

that may require r > 1. We explore these cases through example.
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Figure 3.5 Performance metric to demonstrate robustness of the adaptive control algo-
rithm to knowledge of the input matrix B̂ for an unstable, scalar-input plant. We take
α(k) ≡ 1 and B̂ = λB, where λ ∈ (0.5, 5] is a scale factor and B̂ is the scaled input matrix
to be used with the adaptive control algorithm. These results suggest that the converged
adaptive control algorithm has a downward adaptive gain margin of 6 dB and an upward
adaptive gain margin of at least 14 dB.

Example 3.8.1 (Scalar input, unstable plant). Consider the unstable plant

x(k + 1) =







0 1

0 −1.05






x(k) +







1.05

1






u(k), (3.69)

with poles located at {0,−1.05}. The closed-loop response is shown in Figure 3.6 for

α(k) ≡ 1, r = 1, K̂(0) = 0, and B̂ = B. The state x does not go to zero, in fact,

the closed-loop system is unstable. To understand what is happening, consider the

closed-loop equations (3.35), (3.36) for m = r = 1. Letting K̂(0) = 0, the equations
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Figure 3.6 Closed-loop response for an unstable, scalar-input plant with α(k) ≡ 1, r = 1,
K̂(0) = 0 and B̂ = B. The closed-loop system is unstable.

can be written as

x(1) = Ax(0), (3.70)

K̂(1) = − xT(1)B̂

α(0) + B̂TB̂xT(0)x(0)
xT(0), (3.71)

which further simplify to

x(1) = Ax(0), (3.72)

K̂(1) = − xT(0)ATB̂

α(0) + B̂TB̂xT(0)x(0)
xT(0). (3.73)

Since B lies in the null space of AT and B̂ is a scalar multiple of B, it follows that

ATB̂ = 0, and hence, K̂(1) = 0. In this case, the adaptive control algorithm doesn’t

compute a stabilizing feedback gain K̂(k) before B̂Tx(k + 1) = 0. Therefore, since

the open-loop system is unstable, the adaptive control algorithm does not stabilize the

plant.
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Now, we let r = 2 while keeping α(k) ≡ 1, K̂(0) = 0, and B̂ = B. The closed-loop

response is shown in Figure 3.7, where, now the state x does go to zero. In this case

B̂Tx(k+ 1) → 0 as k → ∞, but a stabilizing feedback gain K̂(k) is reached before the

adaptive control gains converge. �
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Figure 3.7 Closed-loop response for an unstable, scalar-input plant with α(k) ≡ 1, r = 2,
K̂(0) = 0, and B̂ = B. The closed-loop system is stabilized.

Other cases can be constructed with similar properties to those of Example 3.8.1.

It is found that B̂Tx(k+1) → 0 as k → ∞ whether or not K̂(k) is stabilizing. There-

fore, in the cases where adaptation stops before a stabilizing feedback gain K̂(k) is

computed, we must increase r. Based on numerical testing, Table 3.1 gives lower

bounds on r, based on certain properties of the dynamics matrix A, that were found

to stabilize all systems. In all cases, r = n + 1 was found to stabilize the open-loop

system, though in many cases, r = 1 was sufficient. Although r = n+1 requires more

knowledge of the Markov parameters than with r = 1, it is still less information than

required to reconstruct a system model through techniques such as the eigenstructure

realization algorithm (ERA), which generally requires 2n Markov parameters.
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A Stable Unstable

Singular r ≥ n + 1 r ≥ n+ 1

Nonsingular r = 1 r ≥ n+ 1

Table 3.1 Guidelines for choosing r based on the properties of the dynamics matrix A to
reach a stabilizing closed-loop feedback gain. In all cases, r = n+1 stabilizes the open-loop
system, though in many cases, r = 1 is sufficient.

3.9 Conclusion

We presented a discrete-time, adaptive, full-state-feedback control algorithm based

on retrospective cost optimization. We demonstrated the algorithm’s effectiveness

through numerical examples. We thus developed rules of thumb for choosing the

parameters necessary for controller implementation.

A Lyapunov-based stability and convergence proof was presented for a special

scalar case. Theoretical and numerical results suggest that the converged adaptive

controller has a downward adaptive gain margin of 6 dB and an infinite upward adap-

tive gain margin. Future work includes extending the Lyapunov-based stability and

convergence proof to the more general case to include multi-input, multi-dimensional

plants with r > 1.
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Chapter 4

Adaptive
Retrospective-Cost-Based Static

Output Feedback

The previous chapter considered retrospective-cost-based adaptive stabilization

for systems with full-state feedback. In this chapter, we generalize those results to

static-output-feedback stabilization. Specifically, this chapter considers retrospective-

cost-based adaptive control for multi-input, multi-output, linear, time-invariant,

discrete-time systems with knowledge of the sign of the high-frequency gain and a

sufficient number of Markov parameters to approximate the nonminimum-phase ze-

ros (if any). No additional information about the poles or zeros need be known. We

also present numerical examples to illustrate the robustness of the algorithm under

conditions of Markov parameter uncertainty. The results and methods of this chapter

are published in [111].

4.1 Introduction

Given a linear, time-invariant system, the static-output-feedback problem is to

find a stabilizing static feedback gain such that the closed-loop system with output

feedback is asymptotically stable. While seemingly simple, this subject remains an
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open problem in systems and control theory [13]. For full-state-feedback, as detailed

in the previous chapter, a stabilizing feedback gain exists if the system is stabilizable.

In the general output-feedback case, however, the conditions are much more subtle

and further complicated by MIMO plants and the presence of transmission zeros.

These issues are discussed in [121]

For a SISO plant, a stabilizing feedback gain can be found graphically through

root locus or Nyquist techniques. Papers addressing MIMO static output feedback

often require a minimum-phase assumption and/or a restriction on the plant’s rela-

tive degree [121]. The minimum-phase assumption, while already not applicable to

several real systems, added to a restriction on the plant’s relative degree often leads

to a strictly-positive-real (SPR) assumption, which is unrealistic and often impossible

to prove in practice.

The most well-developed approach to the static-output-feedback problem is to

use a pole-placement scheme, such as the algorithm in [105]. Other well-known

approaches include eigenstructure assignment and the use of LQR for static-output-

feedback [121]. Inverse linear quadratic approaches, such as [126], solve a modified

LQR problem, but finding a solution to these problems can be difficult. Applying

structural constraints [100] or coupled linear matrix inequalities (LMI) with quadratic

Lyapunov functions [52] both lead to non-convex optimization problems, where iter-

ative algorithms do not guarantee solution convergence.

The use of adaptive control for the static-output-feedback problem is motivated

from the notion that this subject is still an open problem in systems and control theory

[13]. The goal of this chapter is to present a discrete-time, adaptive, MIMO, static-

output-feedback controller that is effective for systems that are unstable, nonsquare,

and/or nonminimum-phase. The algorithm is developed in discrete time based on

a discrete-time plant model obtained by either plant discretization or discrete-time

system identification so that the controller can be implemented directly as embedded
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code without an intermediate controller discretization step.

The adaptive controller presented in this chapter is based on retrospective cost

optimization. This method is used to adapt dynamic compensators for disturbance

rejection, adaptive stabilization, adaptive command following, and model reference

adaptive control in [113, 127]. Retrospective cost optimization is a measure of perfor-

mance at the current time based on a past window of data and without assumptions

about the command or disturbance signals. In particular, retrospective cost opti-

mization acts as an inner loop to the adaptive control algorithm by modifying the

performance variables based on the difference between the actual past control inputs

and the recomputed past control inputs based on the current control law.

We present numerical examples to illustrate the algorithm’s effectiveness in han-

dling systems that are unstable and/or nonminimum phase and to provide insight

into the modeling information required for controller implementation. This informa-

tion includes a sufficient number of Markov parameters to capture the sign of the

high-frequency gain as well as to approximate the nonminimum-phase zeros (if any).

These examples are intended to provide motivation for future proofs of stability and

convergence.

4.2 Problem Formulation

Consider the MIMO discrete-time system

x(k + 1) = Ax(k) +Bu(k), (4.1)

y(k) = Cx(k), (4.2)

z(k) = E1x(k), (4.3)
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where x(k) ∈ R
n, y(k) ∈ R

ly , z(k) ∈ R
lz , u(k) ∈ R

lu , and k ≥ 0. We assume that the

open-loop system (4.1)-(4.3) is controllable and observable and that measurements

of y and z are available for feedback. Our goal is to develop an adaptive static-

output-feedback controller for performance stabilization, that is, convergence of the

performance variable z to zero.

For a positive integer r, we define the extended performance vector Z(k) ∈ Rlzr

and the extended input vector U(k) ∈ Rlur by

Z(k)
△
=



















z(k − r + 1)

z(k − r + 2)

...

z(k)



















, U(k)
△
=



















u(k − r)

u(k − r + 1)

...

u(k − 1)



















.

Note that Z(k), U(k), and x(k) are related by

Z(k) = Γx(k − r) + HU(k), (4.4)

where Γ ∈ Rlzr and H ∈ Rlzr×lur are given by

Γ
△
=



















E1A

E1A
2

...

E1A
r



















, H △
=



















H1 0 · · · 0

H2 H1
. . .

...

...
. . . 0

Hr Hr−1 · · · H1



















,

and, for i = 1, 2, . . ., the Markov parameters Hi of the system (4.1)–(4.3) from u to z

are

Hi
△
= E1A

i−1B. (4.5)
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Let d denote the relative degree of (A,B,E1), that is, the smallest positive integer i

such that the ith Markov parameter Hi is nonzero. Note that, if r < d, then H = 0.

Therefore, we assume that r ≥ d.

4.3 Retrospective Cost Optimization

Let

u(k) = K(k)y(k), (4.6)

where K(k) ∈ Rlu×ly is the gain matrix. From (4.6), it follows that U(k) can be

rewritten as

U(k) =

r
∑

i=1

LiK(k − i)y(k − i), (4.7)

where

Li
△
=













0(r−i)lu×lu

Ilu

0(i−1)lu×lu













∈ R
lur×lu . (4.8)

Next, for K ∈ Rm×n, define the retrospective performance vector Ẑ(K, k) ∈ Rlzr

by

Ẑ(K, k) △
= Γx(k − r) + HÛ(K, k), (4.9)

where Û(K, k) ∈ Rlur is the recomputed input vector, given by

Û(K, k) △
=

r
∑

i=1

LiKy(k − i). (4.10)

97



Subtracting (4.4) from (4.9) yields

Ẑ(K, k) = Z(k) −H
[

U(k) − Û(K, k)
]

, (4.11)

and hence,

Ẑ(K, k) = f(k) +D(k)vec K, (4.12)

where

f(k)
△
= Z(k) −HU(k) ∈ R

lzr, (4.13)

D(k)
△
=

r
∑

i=1

yT(k − i) ⊗ (HLi) ∈ R
lzr×luly , (4.14)

vec is the column-stacking operator, and ⊗ represents the Kronecker product.

Now consider the retrospective cost function

J(K, k) △
= ẐT(K, k)R1(k)Ẑ(K, k) + α(k)tr

[

(K −K(k))T (K −K(k))
]

, (4.15)

where, for all k ≥ 0, R1(k) ∈ Rlzr×lzr is positive semidefinite and α(k) > 0 is the

learning rate. Substituting (4.12) into (4.15) yields

J(K, k) = c(k) + bT(k)vec K + (vec K)TM(k)vecK, (4.16)

where

M(k)
△
= DT(k)R1(k)D(k) + α(k)Iluly , (4.17)

b(k)
△
= 2DT(k)R1(k)f(k) − 2α(k)vec K(k), (4.18)

c(k)
△
= fT(k)R1(k)f(k) + α(k)tr

[

KT(k)K(k)
]

. (4.19)
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Since M(k) is positive definite, J(K, k) has the strict global minimizer K(k+1) given

by

K(k + 1) = −1

2
vec−1

[

M−1(k)b(k)
]

. (4.20)

Note that M(k) and b(k) depend on D(k) and f(k), which in turn depend on the

Markov-parameter matrix H. Since H may not be known in practice, we replace H by

an estimate Ĥ in D(k), f(k), and K(k+1). Therefore, for all k ≥ 1, the implemented

control gain K̂(k) depends on Ĥ, that is

u(k) = K̂(k)y(k), (4.21)

K̂(k + 1)
△
= −1

2
vec−1

[

M̂−1(k)b̂(k)
]

, (4.22)

where

M̂(k)
△
= D̂T(k)R1(k)D̂(k) + α(k)Iluly , (4.23)

b̂(k)
△
= 2D̂T(k)R1(k)f̂(k) − 2α(k)vec K̂(k), (4.24)

and

f̂(k)
△
= Z(k) − ĤU(k), (4.25)

D̂(k)
△
=

r
∑

i=1

yT(k − i) ⊗ (ĤLi), (4.26)

Ĥ △
=



















Ĥ1 0 · · · 0

Ĥ2 Ĥ1
. . .

...

...
. . . 0

Ĥr Ĥr−1 · · · Ĥ1



















, (4.27)

where, for all i = 1, . . . , r, Ĥi is an estimate of Hi. For convenience, we specialize
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(4.17)–(4.19) and (4.23), (4.24) with R1(k)
△
= Ilzr.

The learning rate α(k) affects convergence speed of the adaptive control algorithm.

As α(k) is increased, convergence speed is lowered. Likewise, as α(k) is decreased,

convergence speed is raised. By varying α(k), we study tradeoffs between transient

performance and convergence speed.

4.4 Static-Output-Feedback Examples

We now present numerical examples to investigate the effect of r and α(k) as well

as the accuracy of Ĥ on the adaptive control algorithm. The adaptive controller gains

are initialized to zero, that is K̂(0) = 0. Unless otherwise noted, we take z(k) = y(k).

Example 4.4.1 (SISO, minimum-phase, asymptotically stable plant). Consider the

asymptotically stable, minimum-phase plant

x(k + 1) =













−0.4 0.33 0.76

1 0 0

0 1 0













x(k) +













1

0

0













u(k), (4.28)

y(k) =

[

0 1 −0.25

]

x(k), (4.29)

with poles {−0.65 ± 0.65, 0.9} and zero {0.25}. The first 25 Markov parameters are

shown in Figure 4.1.

We investigate the effect of r on the closed-loop response. Table 4.1 lists the roots

of the Markov parameter polynomial pr(q) (as defined in (A.10)) as a function of r.

Note that, since d = 2, we must choose r ≥ 2, and, as r increases, pr(q) contains

spurious roots, none of which approximates the zero. We consider r = 2, r = 3, or

r = 4 with α(k) ≡ 50. The open and closed-loop responses are shown in Figure 4.2 for

x(0) = [−4.3,−16.7, 1.3]T. In each case, the adaptive controller reduces z faster than
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Figure 4.1 First 25 Markov parameters for the asymptotically stable, minimum-phase
plant in Example 4.4.1.

r roots(pr(q))

2 {·}
3 {0.65}
4 {0.33±0.69}
5 {-0.34,0.50±0.82}

Table 4.1 Roots of pr(q) as a function of r for the asymptotically stable, minimum-phase
plant in Example 4.4.1.

the open-loop response. As r increases from 2 to 3, the adaptive controller reduces z

faster, but no additional performance is gained by increasing r from 3 to 4. �

Example 4.4.2 (SISO, nonminimum-phase, asymptotically stable plant). Consider

the asymptotically stable, nonminimum-phase plant

x(k + 1) =













−0.4 0.33 0.76

1 0 0

0 1 0













x(k) +













1

0

0













u(k), (4.30)

y(k) =

[

0 1 −2

]

x(k), (4.31)
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Figure 4.2 Closed-loop response for the asymptotically stable, minimum-phase, SISO
plant in Example 4.4.1 with α(k) ≡ 50 and either r = 2, r = 3, or r = 4. In each case,
the adaptive controller reduces z faster than the open-loop response. As r increases from
2 to 3, the adaptive controller reduces z faster, but no additional performance is gained by
increasing r from 3 to 4.

with poles {−0.65 ± 0.65, 0.9} and zero {2}. The first 25 Markov parameters are

shown in Figure 4.3.

We demonstrate the effect of r for this nonminimum-phase plant. Table 4.2 lists

the roots of the Markov-parameter polynomial pr(q) as a function of r. It is seen that

the roots of the Markov parameter polynomial include an estimate of the nonminimum-

phase zero of the transfer function from u to z. As r increases, this approximation

improves. For each value of r, the remaining roots play no role in the stability and

convergence of the adaptive control algorithm, but what is important is the need to

choose r sufficiently large to adequately approximate the nonminimum-phase zeros.

Note that, as r increases, the nonminimum-phase zero at z = 2 is more accurately

modeled, but pr(q) also contains spurious roots, although these roots have no effect

on the adaptive controller. For r ≤ 3, the closed-loop simulation fails. We thus take

r = 4, r = 5, or r = 6 with α(k) ≡ 50. The open and closed-loop responses are shown
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Figure 4.3 First 25 Markov parameters for the asymptotically stable, nonminimum-phase
plant in Example 4.4.2.

r roots(pr(q))

3 {2.4}
4 {0.81,1.59}
5 {0.27±0.46,1.86}
6 {-0.55,0.46±0.92,2.04}

Table 4.2 Roots of pr(q) as a function of r for the asymptotically stable, nonminimum-
phase plant in Example 4.4.2. As r increases, the nonminimum-phase zero at z = 2 is more
accurately modeled.

in Figure 4.4 for x(0) = [−4.3,−16.7, 1.3]T. In each case, the adaptive controller

reduces z faster than the open-loop response. In addition, as r increases, and thus the

nonminimum-phase zero is more accurately modeled, the adaptive controller reduces

z even faster. �

Example 4.4.3 (SISO, nonminimum-phase, unstable plant). Consider the unstable,
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Figure 4.4 Closed-loop response for the asymptotically stable, nonminimum-phase, SISO
plant in Example 4.4.2 with α(k) ≡ 50 and either r = 4, r = 5, or r = 6. In each case, the
adaptive controller reduces z faster than the open-loop response. In addition, as r increases,
and thus the nonminimum-phase zero is more accurately modeled, the adaptive controller
reduces z even faster.

nonminimum-phase plant

x(k + 1) =













−0.36 0.48 1.05

1 0 0

0 1 0













x(k) +













1

0

0













u(k), (4.32)

y(k) =

[

0 1 −4

]

x(k), (4.33)

z(k) =

[

1 1 −6

]

x(k), (4.34)

with poles {−
√

2/2±
√

2/2, 1.05}, zeros {2,−3} from u to z, and zero {4} from u to

y. Table 4.3 lists the roots of the Markov-parameter polynomial pr(q) as a function

of r. Note that, as r increases, the nonminimum-phase zeros are more accurately

modeled, but pr(q) also contains additional spurious roots. For r ≤ 3, the closed-loop

simulation fails. We thus take r = 4 and set α(k) ≡ 100. The open and closed-loop
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r roots(pr(q))

3 {2.1,-2.74}
4 {0.73,1.6,-2.97}
5 {0.274±0.72,1.91,-3.03}
6 {-0.49,0.43±0.94,2.0,-3.01}

Table 4.3 Roots of pr(q) as a function of r for the unstable, nonminimum-phase plant in
Example 4.4.3. As r increases, the nonminimum-phase zeros are more accurately modeled.

responses are shown in Figure 4.5 for x(0) = [−4.3,−16.7, 1.3]T. The adaptive con-

troller stabilizes the plant. �
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Figure 4.5 Closed-loop response for the unstable, nonminimum-phase, SISO plant in
Example 4.4.3 with α(k) ≡ 100 and r = 4. The adaptive controller stabilizes the plant.

These results, along with those of Example 4.4.2, suggest that, for nonminimum-

phase plants, the adaptive controller requires a sufficient number of Markov pa-

rameters to capture the approximate locations of any nonminimum-phase zeros. In

particular, Examples 4.4.2 and 4.4.3 require r ≥ n+1. This bound is consistent with

the numerical results of Chapter 3, and, in particular, Table 3.1. Furthermore, as seen

from Tables 4.2 and 4.3, as the order of the Markov-parameter polynomial increases,
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and hence r increases, the accuracy of all nonminimum-phase zeros improves.

Example 4.4.4 (SISO, non/minimum-phase, unstable plant). Consider the unstable

plant with both minimum-phase and nonminimum-phase zeros, given by

x(k + 1) =













−0.36 0.48 1.05

1 0 0

0 1 0













x(k) +













1

0

0













u(k), (4.35)

y(k) =

[

0 1 −2

]

x(k), (4.36)

z(k) =

[

0 1 −0.1

]

x(k), (4.37)

with poles {−
√

2/2 ±
√

2/2, 1.05}, zero {0.1} from u to z, and zero {2} from u to

y. Note that the transfer function from u to y contains a nonminimum-phase zero

while the transfer function from u to z is minimum phase. We take α(k) ≡ 500

and r = 2. The open and closed-loop responses are shown in Figure 4.6 for

x(0) = [−4.3,−16.7, 1.3]T. The adaptive controller stabilizes the plant. �
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Figure 4.6 Closed-loop response for the unstable, non/minimum-phase, SISO plant in
Example 4.4.4 with α(k) ≡ 500 and r = 2. The adaptive controller stabilizes the plant.
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Example 4.4.5 (SISO, minimum-phase, Lyapunov-stable plant). Consider a discrete-

time model of a laboratory process obtained using identification techniques [70]. A

state-space model for this system sampled at Ts = 0.08 sec is given by

x(k + 1) =



















1.2885 1 6.555 0

−0.4065 0 4.383 0

0 0 1 1

0 0 0 0



















x(k) +



















0

0

0

1



















u(k), (4.38)

y(k) =

[

1 0 0 0

]

x(k). (4.39)

This system is minimum phase and Lyapunov stable. A root locus plot is shown in

Figure 4.7, where the range of stabilizing output-feedback gain is −3.7×10−3 < K < 0.

We take α(k) ≡ 108 and r = 3. The open and closed-loop responses are shown in Fig-

ure 4.8 for x(0) = [−0.43,−1.67, 0.13, 0.29]T. The adaptive controller stabilizes the

plant, and the output-feedback gain converges to the steady-state value −1.5 × 10−3.

�

4.5 Conclusion

We presented a discrete-time, adaptive, static-output-feedback control algorithm

based on retrospective cost optimization. We demonstrated the algorithm’s effective-

ness in handling nonminimum-phase zeros through numerical examples illustrating

the response of the algorithm under conditions of uncertainty. We thus developed

rules of thumb for choosing the parameters necessary for controller implementation.

These numerical studies serve as motivation for future development of Lyapunov-

based stability, robustness, and convergence proofs of the adaptive control algorithm.
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Figure 4.7 Root locus plot for the Lyapunov-stable, minimum-phase, SISO plant in Ex-
ample 4.4.5. The range of stabilizing output-feedback gain is −3.7 × 10−3 < K < 0.
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Figure 4.8 Closed-loop response for the Lyapunov-stable, minimum-phase, SISO plant
in Example 4.4.5 with α(k) ≡ 108 and r = 3. The adaptive controller stabilizes the plant,
and the output-feedback gain converges to the steady-state value −1.5 × 10−3.

108



Chapter 5

Adaptive
Retrospective-Cost-Based Dynamic

Compensation

The previous two chapters considered retrospective-cost-based adaptive stabiliza-

tion for systems with static feedback. In this chapter, we generalize the results to

dynamic compensation for stabilization, command following, disturbance rejection,

and model reference adaptive control (MRAC). Specifically, this chapter considers

retrospective-cost-based adaptive control for multi-input, multi-output, linear, time-

invariant, discrete-time systems with knowledge of the sign of the high-frequency gain

and a sufficient number of Markov parameters to approximate the nonminimum-phase

zeros (if any). No additional information about the poles or the zeros need be known.

The adaptive control algorithm presented in this chapter is based on the adap-

tive control algorithm developed in [127]. The algorithm developed in [127] uses a

gradient-based update with a fixed step-size. In contrast, the algorithms presented

in Chapters 3-5 of this dissertation utilize an adjustable learning-rate parameter α

which allows us to develop Newton-step-based adaptive update laws. In addition,

this chapter further develops the theoretical link between Markov parameters and

nonminimum-phase zeros. The development and analysis of this link is detailed in

Appendix A. We also develop preliminary metrics for analyzing the gain and phase
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margins for discrete-time adaptive systems. Finally, we present numerical examples to

illustrate the robustness of the algorithm under conditions of uncertainty. The adap-

tive control algorithm is shown to be effective for systems that are unstable, MIMO,

and/or nonminimum phase. The results and methods of this chapter are published in

[113, 114]. In [117], the adaptive control algorithm developed in this chapter is used

to identify multi-input, multi-output, linear, time-invariant, discrete-time systems.

5.1 Introduction

Unlike robust control, which fixes the control gains based on a prior, fixed level

of modeling uncertainty, adaptive control algorithms tune the feedback gains in re-

sponse to the true plant and exogenous signals, that is, commands and disturbances.

Generally speaking, adaptive controllers require less prior modeling information than

robust controllers, and thus can be viewed as highly parameter-robust control laws.

The price paid for the ability of adaptive control laws to operate with limited prior

modeling information is the complexity of analyzing and quantifying the stability and

performance of the closed-loop system, especially in light of the fact that adaptive

control laws, even for linear plants, are nonlinear.

Stability and performance analysis of adaptive control laws often entails assump-

tions on the dynamics of the plant. For example, a widely invoked assumption in

adaptive control is passivity [90], which is restrictive and difficult to verify in practice.

A related assumption is that the plant is minimum phase [33, 45], which may entail the

same difficulties. In fact, sampled-data control may give rise to nonminimum-phase

zeros whether or not the continuous-time system is minimum phase [8]. Beyond these

assumptions, adaptive control laws are known to be sensitive to unmodeled dynamics

and sensor noise [9, 104], which motivates robust adaptive control laws [50].

In addition to these basic issues, adaptive control laws may entail unaccept-
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able transients during adaptation, which may be exacerbated by actuator limitations

[60, 98, 135]. In fact, adaptive control under extremely limited modeling information

such as uncertainty in the high-frequency gain [64, 69] may yield a transient response

that exceeds the practical limits of the plant. Therefore, the type and quality of the

available modeling information as well as the speed of adaptation must be consid-

ered in the analysis and implementation of adaptive control laws. These issues are

discussed in [5].

Adaptive control laws have been developed in both continuous time and discrete

time. In the present chapter we consider discrete-time adaptive control laws since

these control laws can be implemented directly in embedded code without requiring

an intermediate discretization step with potential loss of phase margin. Although

discrete-time adaptive control laws are less developed than their continuous-time

counterparts, the literature is substantial and growing [3, 32, 33, 35, 55, 77].

The goal of this chapter is to present a discrete-time adaptive control law that is

effective for nonminimum-phase systems. In [33], a discrete-time adaptive control law

with stability guarantees was developed under a minimum-phase assumption. Exten-

sions given in Chapter 2 based on internal model control [44] and Lyapunov analysis

also invoke this assumption. To circumvent the minimum-phase assumption, the zero

annihilation periodic control law [10] uses lifting to move all of the plant’s zeros to

the origin.

The present chapter is motivated by the adaptive control laws given in Chapter

2, [45], and [127]. The control law given in [127] lacks a proof of stability, but is

known numerically to be effective on nonminimum-phase plants without recourse to

lifting. Accordingly, we present an adaptive control law based on [45] and [127] for

systems that are unstable, MIMO, and/or nonminimum phase. The adaptive control

algorithm provides guidelines concerning the modeling information needed for imple-

mentation. This information includes a sufficient number of Markov parameters to
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capture the sign of the high-frequency gain as well as the nonminimum-phase zeros

(if any). No additional information about the plant need be known.

The novel feature of this adaptive control law is the use of a retrospective cor-

rection filter (RCF). The RCF provides an inner loop to the adaptive control law by

modifying the sensor measurements based on the difference between the actual past

control inputs and the recomputed past control inputs based on the current control

law. This technique is inherent in [127] in the use of the estimated performance

variable, but is more fully developed in the present chapter.

The goal of the present chapter is to develop the RCF adaptive control algorithm

and demonstrate its effectiveness in handling nonminimum-phase zeros. We thus

present several numerical examples to illustrate the response of the algorithm under

conditions of uncertainty in the relative degree and Markov parameters, measurement

noise, and actuator and sensor saturations. To this end we systematically consider a

sequence of examples of increasing complexity, ranging from SISO, minimum-phase

plants to MIMO, nonminimum-phase plants, including stable and unstable cases. We

then revisit these plants under off-nominal conditions, that is, with uncertainty in

the required plant modeling information. In each case, we illuminate the role of the

weighting parameter α, which governs the rate of convergence. Our goal is thus to

develop rules of thumb for choosing α based on the level of model fidelity.

5.2 Problem Formulation

Consider the MIMO discrete-time system

x(k + 1) = Ax(k) +Bu(k) +D1w(k), (5.1)

y(k) = Cx(k) +D2w(k), (5.2)

z(k) = E1x(k) + E0w(k), (5.3)
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where x(k) ∈ R
n, y(k) ∈ R

ly , z(k) ∈ R
lz , u(k) ∈ R

lu , w(k) ∈ R
lw , and k ≥ 0. Our

goal is to develop an adaptive output feedback controller under which the perfor-

mance variable z is minimized in the presence of the exogenous signal w. Note that w

can represent either a command signal to be followed, an external disturbance to be

rejected, or both. For example, if D1 = 0 and E0 6= 0, then the objective is to have

the output E1x follow the command signal −E0w. On the other hand, if D1 6= 0 and

E0 = 0, then the objective is to reject the disturbance w from the performance mea-

surement E1x. The combined command following and disturbance rejection problem

is addressed when D1 and E0 are block matrices. More precisely, if D1 =

[

D̂1 0

]

,

E0 =

[

0 Ê0

]

, and w(k) =







w1(k)

w2(k)






, then the objective is to have E1x follow the

command −Ê0w2 while rejecting the disturbance w1. Lastly, if D1 and E0 are empty

matrices, then the objective is output stabilization, that is, convergence of z to zero.

We assume that the open-loop system (5.1)-(5.3) is controllable and observable and

that measurements of y and z are available for feedback.

Model reference adaptive control (MRAC) is a special case of (5.1)–(5.3) where

z
△
= y1 − ym is the difference between the measured output of the plant G and refer-

ence model Gm. For MRAC, the exogenous command w is available to the controller

as an additional measurement variable y2, as shown in Figure 5.1.

- Gm

Gc
- G -

-

-
m?

@
@

@
@

@
@

@@I
−+

w

y1u

ym

y2 = w

z
△
= y1 − ym

Figure 5.1 Model reference adaptive control problem.
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5.3 Time-Series Modeling

Consider the time-series representation of (5.1)–(5.3) from u to z, given by

z(k) =

n
∑

i=1

−αiz(k − i) +

n
∑

i=d

βiu(k − i) +

n
∑

i=0

γiw(k − i), (5.4)

where α1, . . . , αn ∈ R, βd, . . . , βn ∈ R
lz×lu , γ0, . . . , γn ∈ R

lz×lw , and the relative degree

d is the smallest positive integer i such that the ith Markov parameter Hi
△
= E1A

i−1B

is nonzero.

Replacing k with k − 1 in (5.4) and substituting the resulting relation back into

(5.4) yields a 2-MARKOV model. Repeating this procedure r − 1 times yields the

r-MARKOV model of (5.1)–(5.3)

z(k) =

n
∑

i=1

αr,iz(k − r − i+ 1) +

r
∑

i=d

Hiu(k − i) +

n
∑

i=2

βr,iu(k − r − i+ 1)

+

r
∑

i=0

Hzw,iw(k − i) +

n
∑

i=2

γr,iw(k − r − i+ 1), (5.5)

where Hzw,0
△
= E0, for all i > 0, Hzw,i

△
= E1A

i−1D1, and, for i = 1, . . . , n, the

coefficients αr,i ∈ R, βr,i ∈ Rlz×lu , and γr,i ∈ Rlz×lw are given by

α1,i
△
= −αi, β1,i

△
= βi, γ1,i

△
= γi,

...
...

...

αr,i
△
= αr−1,1α1,i + αr−1,i+1, βr,i

△
= αr−1,1β1,i + βr−1,i+1, γr,i

△
= αr−1,1γ1,i + γr−1,i+1,

...
...

...

αr,n
△
= αr−1,1α1,n, βr,n

△
= αr−1,1β1,n, γr,n

△
= αr−1,1γ1,n.

(5.6)

Note that Hr = βr,1 and Hzw,r = γr,1.

For a positive integer p, we define the extended performance vector Z(k) ∈ Rplz

114



and the extended control vector U(k) ∈ R
pclu by

Z(k)
△
=













z(k)

...

z(k − p+ 1)













, U(k)
△
=













u(k)

...

u(k − pc + 1)













. (5.7)

where pc
△
= n + r + p− 1. Then, (5.4) can be written in the form

Z(k) = Wzwφzw(k) +BzuU(k), (5.8)

where

Wzw
△
=



















−αr,1Ilz · · · −αr,nIlz 0lz · · · 0lz Hzw,0 · · ·

0lz
. . .

. . .
. . .

... 0lz×lw
. . .

...
. . .

. . .
. . . 0lz

...
. . .

0lz · · · 0lz −αr,1Ilz · · · −αr,nIlz 0lz×lw · · ·

· · · Hzw,r γr,2 · · · γr,n 0lz×lw · · · 0lz×lw
. . .

. . .
. . .

. . .
. . .

...

. . .
. . .

. . .
. . .

. . . 0lz×lw

· · · 0lz×lw Hzw,0 · · · Hzw,r γr,2 · · · γr,n



















,

Bzu
△
=



















0lz×lu · · · 0lz×lu Hd · · · Hr βr,2 · · · βr,n 0lz×lu · · · 0lz×lu

0lz×lu
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

...
. . .

. . .
. . .

. . .
. . .

. . .
. . . 0lz×lu

0lz×lu · · · 0lz×lu 0lz×lu · · · 0lz×lu Hd · · · Hr βr,2 · · · βr,n



















,
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and

φzw(k)
△
=

































z(k − r)

...

z(k − r − p− n + 2)

w(k)

...

w(k − r − p− n+ 2)

































. (5.9)

5.4 Controller Construction

In this section we formulate an adaptive control algorithm for the general control

problem represented by (5.1)–(5.3). We use a strictly proper time-series controller of

order nc, such that the control u(k) is given by

u(k) =

nc
∑

i=1

Pi(k)u(k − i) +

nc
∑

i=1

Qi(k)y(k − i), (5.10)

where, for all i = 1, . . . , nc, Pi(k) ∈ Rlu×lu and Qi(k) ∈ Rlu×ly . The control (5.10) can

be expressed as

u(k) = θ(k)φ(k), (5.11)

where

θ(k)
△
=

[

Q1(k) · · · Qnc
(k) P1(k) · · · Pnc

(k)

]

∈ R
lu×nc(lu+ly) (5.12)
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is the controller gain matrix, and the regressor vector φ(k) is given by

φ(k)
△
=

































y(k − 1)

...

y(k − nc)

u(k − 1)

...

u(k − nc)

































∈ R
nc(lu+ly). (5.13)

From (5.11), it follows that the extended control vector U(k) can be written as

U(k) =

pc
∑

i=1

Liθ(k − i+ 1)φ(k − i+ 1), (5.14)

where

Li
△
=













0(i−1)lu×lu

Ilu

0(pc−i)lu×lu













∈ R
pclu×lu . (5.15)

Next, we define the retrospective performance vector Ẑ(θ̂, k) ∈ Rplz by

Ẑ(θ̂, k)
△
= Wzwφzw(k) +BzuU(k) − B̄zu

[

U(k) − Û(θ̂, k)
]

, (5.16)

where θ̂ ∈ Rlu×nc(lu+ly), B̄zu ∈ Rplz×pclu is the surrogate input matrix, and

Û(θ̂, k)
△
=

pc
∑

i=1

Liθ̂φ(k − i+ 1) (5.17)
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is the recomputed extended control vector. In the special case B̄zu = Bzu, we have

Ẑ(k) = Wzwφzw(k) +BzuÛ(k). (5.18)

Substituting (5.8) into (5.16), yields

Ẑ(θ̂, k) = Z(k) − B̄zu

[

U(k) − Û(θ̂, k)
]

. (5.19)

Taking the vec of B̄zuÛ(θ̂, k) yields

Ẑ(θ̂, k) = f(k) +D(k)vec θ̂, (5.20)

where

f(k)
△
= Z(k) − B̄zuU(k), (5.21)

D(k)
△
=

pc
∑

i=1

φT(k − i+ 1) ⊗
(

B̄zuLi
)

, (5.22)

and ⊗ represents the Kronecker product.

Now, consider the retrospective cost function

J(θ̂, k)
△
= ẐT(θ̂, k)R1(k)Ẑ(θ̂, k) + ûT(θ̂, k + 1)R2(k)û(θ̂, k + 1)

+ tr

[

R3(k)
(

θ̂ − θ(k)
)T

R4(k)
(

θ̂ − θ(k)
)

]

, (5.23)

where R1(k) = RT
1 (k) ≥ 0, R2(k) ≥ 0, R3(k) = RT

3 (k) > 0, R4(k) = RT
4 (k) > 0, and

û(θ̂, k)
△
= θ̂φ(k). (5.24)
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Substituting (5.20) into (5.23) yields

J(θ̂, k) = c(k) + bT(k)vec θ̂ +
(

vec θ̂
)T

M(k)vec θ̂, (5.25)

where

M(k)
△
= DT(k)R1(k)D(k) +

[

φT(k)φ(k)
]

⊗ R2(k) +R3(k) ⊗ R4(k), (5.26)

b(k)
△
= 2DT(k)R1(k)f(k) − 2 [R3(k) ⊗ R4(k)] vec θ(k), (5.27)

c(k)
△
= fT(k)R1(k)f(k) + tr

[

R3(k)θ
T(k)R4(k)θ(k)

]

. (5.28)

Since M(k) is positive definite, J(θ̂, k) has the strict global minimizer θ(k + 1) given

by

θ(k + 1) = −1

2
vec−1

[

M−1(k)b(k)
]

. (5.29)

For all future discussion, we specialize (5.26)–(5.28) with

R1(k)
△
= Iplz , R2(k)

△
= 0lu , R3(k)

△
= α(k)Inc(lu+ly), R4(k)

△
= Ilu , (5.30)

where α(k) > 0 is a scalar, yielding

M(k) = DT(k)D(k) + α(k)I, (5.31)

b(k) = 2DT(k)f(k) − 2α(k)vec θ(k), (5.32)

c(k) = fT(k)f(k) + α(k)tr
[

θT(k)θ(k)
]

. (5.33)

The weighting parameter α(k) introduced in (5.30) is called the learning rate since

it affects convergence speed of the adaptive control algorithm. As α(k) is increased,

a higher weight is placed on the difference between the previous control coefficients

119



and the current control coefficients, and, as a result, convergence speed is lowered.

Likewise, as α(k) is decreased, converge speed is raised. By varying α(k), we study

tradeoffs between transient performance and convergence speed.

In the particular case z = y, using the retrospective performance variable ẑ in

place of y in the regressor vector (5.13) results in faster convergence. Therefore, for

z = y, we redefine (5.13) as

φ(k)
△
=

































ẑ(k − 1)

...

ẑ(k − nc)

u(k − 1)

...

u(k − nc)

































. (5.34)

The novel feature of the adaptive control algorithm (5.11), (5.29) is the use of the

retrospective correction filter (RCF) (5.19), as shown in Figure 5.2 for p = 1. The

RCF provides an inner loop to the adaptive control law by modifying the extended

performance vector Z(k) based on the difference between the actual past control in-

puts U(k) and the recomputed past control inputs based on the current control law

Û(θ̂, k).

5.5 Smith-McMillan-Based Update

If information about the plant’s nonminimum-phase zeros is available, we can use

that information to construct B̄zu for the adaptive control algorithm. We first rep-

resent Gzu (as given by (A.12) in Appendix A) in Smith-McMillan form. We then

define the surrogate transfer function matrix Ĝzu to be identical to Gzu in Smith-

McMillan form except that the minimum-phase transmission zeros of Gzu are replaced
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x(k + 1) = Ax(k) +Bu(k) +D1w(k)
y(k) = Cx(k) +D2w(k)
z(k) = E1x(k) + E0w(k)

Gc

-

-

m?

�

@
@

@
@

@
@

@
@I

Û(θ̂, k) =
∑pc

i=1 Liθ̂φ(k − i+ 1)

�
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- U(k) - - B̄zu

6
θ̂

w

u y

z

ẑ

Û

U

y

y

u

u

u

Figure 5.2 Closed-loop system including adaptive control algorithm with the retrospec-
tive correction filter (dashed box) for p = 1.

by transmission zeros at the origin. Thus Ĝzu has the form

Ĝzu(z)
△
=

1

zn + α1zn−1 + · · ·+ αn

(

β̂dz
n−d + β̂d+1z

n−d−1 + · · ·+ β̂n

)

, (5.35)

where β̂d, . . . , β̂n ∈ Rlz×lu are the surrogate numerator coefficients and β̂d
△
= Hd.

Then, using the numerator coefficients of Ĝzu(z), the Smith-McMillan-based con-
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struction of B̄zu is given by

B̄zu
△
=















0lz×lu · · · 0lz×lu β̂d · · · β̂n 0lz×lu · · · 0lz×lu 0lz×lu · · · 0lz×lu

0lz×lu

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

0lz×lu · · · 0lz×lu 0lz×lu · · · 0lz×lu β̂d · · · β̂n 0lz×lu · · · 0lz×lu















.

(5.36)

In the SISO case, this construction of B̄zu requires knowledge of the relative degree

d, the first nonzero Markov parameter Hd, and the location of nonminimum-phase

zeros, if any. The MIMO case is more subtle, but still requires knowledge of the

relative degree, first nonzero Markov parameter, and the location of any nonminimum-

phase transmission zeros. The advantage in using the surrogate numerator coefficients

β̂d, . . . , β̂n of Ĝzu as opposed to the actual numerator coefficients βd, . . . , βn of Gzu is

faster convergence.

5.6 Markov Parameter-Based Update

In many cases, the number and location of any nonminimum-phase zeros may be

difficult or even impossible to obtain. Therefore, an alternate construction of B̄zu is

available that makes use of Markov parameters. It is shown in Appendix A that there

exists a theoretical connection between Markov parameters and nonminimum-phase

zeros. Details of this connection are available in Section A.3.

Using the methods developed in Appendix A and the numerator coefficients of
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(A.20), it follows that the Markov parameter-based construction of B̄zu is given by

B̄zu
△
=















0lz×lu · · · 0lz×lu Hd · · · Hr 0lz×lu · · · 0lz×lu 0lz×lu · · · 0lz×lu

0lz×lu

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

0lz×lu · · · 0lz×lu 0lz×lu · · · 0lz×lu Hd · · · Hr 0lz×lu · · · 0lz×lu















.

(5.37)

The leading zeros in the first row of B̄zu account for the nonzero relative degree d. The

advantage in constructing B̄zu using the Markov parameters Hi, i = d, . . . , r, as op-

posed to using all of the numerator coefficients of (A.15) is faster convergence and ease

of identification. The algorithm places no constraints on either the value of d or the

rank of Hd or B̄zu. Unless otherwise noted, we will use the Markov-parameter-based

construction of B̄zu given by (5.37) in the following examples.

5.7 Numerical Examples - Nominal Case

We now present numerical examples to illustrate the response of the RCF adaptive

control algorithm under nominal conditions. We consider a sequence of exam-

ples of increasing complexity, ranging from SISO, minimum-phase plants to MIMO,

nonminimum-phase plants, including stable and unstable cases. Each plant can

be viewed as a sampled-data discretization of a continuous-time plant sampled at

Ts = 0.01 sec. All examples assume z = y and the adaptive controller gain matrix

θ(k) is initialized to zero.

Unless otherwise noted, each example is taken to be a disturbance rejection sim-

ulation, that is, E0 = 0, with unknown sinusoidal disturbance given by

w(k) =







sin 2πν1kTs

sin 2πν2kTs






, (5.38)
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where ν1 = 5 Hz and ν2 = 13 Hz. The RCF adaptive control algorithm requires no

information about w. With each plant realized in controllable canonical form, we

take D1 =







I2

0






, and, therefore, the disturbance is not matched.

Example 5.7.1 (SISO, Nonminimum Phase, FIR Plant). Consider an FIR plant of

order n = 8 and zeros {0.3 ± 0.7,−0.7 ± 0.3, 2 ± 0.5}. We take nc = 15, p = 2,

r = 8, and α(k) ≡ 25. The closed-loop response is shown in Figure 5.3. The control

is turned on at t = 2 sec, and the performance variable reduces to zero within 3 sec.�
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Figure 5.3 Closed-loop disturbance rejection response for an FIR, nonminimum phase,
SISO plant. The control is turned on at t = 2 sec. The controller order is nc = 15 with
parameters p = 2, r = 8, α(k) ≡ 25.

Example 5.7.2 (SISO, Minimum Phase, Stable Plant). Consider a plant with poles

{0.5±0.5,−0.5±0.5,±0.9,±0.7} and zeros {0.3±0.7,−0.7±0.3, 0.5}. We take

nc = 15, p = 1, r = 3, and α(k) ≡ 25. The closed-loop response is shown in Figure

5.4. The control is turned on at t = 2 sec, and the performance variable reduces to

zero within 1 sec. The control algorithm converges to an internal model controller

with high gain at the disturbance frequencies, as seen in Figure 5.5. �
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Figure 5.4 Closed-loop disturbance rejection response for a stable, minimum phase, SISO
plant. The control is turned on at t = 2 sec. The controller order is nc = 15 with parameters
p = 1, r = 3, α(k) ≡ 25.
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Figure 5.5 Bode magnitude plot of the adaptive controller at t = 10 sec. The adaptive
controller places poles at the disturbance frequencies ν1 = 5 Hz and ν2 = 13 Hz. The con-
troller magnitude |Gc(e

ωTs)| is plotted for ω up to the Nyquist frequency ωNyq = π
Ts

= 314
rad/sec.
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Example 5.7.3 (SISO, Nonminimum Phase, Stable Plant). Consider a plant with

poles {0.5± 0.5,−0.5± 0.5,±0.9,±0.7} and zeros {0.3± 0.7,−0.7± 0.3, 2}. We

take nc = 15, p = 1, r = 7, and α(k) ≡ 25. Note that the Markov parameter

polynomial used to construct B̄zu is given by

p7(q) = q
4 − 1.2q3 − 0.96q2 − 0.56q− 0.75,

with corresponding roots {0.01±0.71,−0.77, 1.94}. The closed-loop response is shown

in Figure 5.6. The control is turned on at t = 2 sec, and, after a slight transient, the

performance variable reduces to zero.
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Figure 5.6 Closed-loop disturbance rejection response for a stable, nonminimum phase,
SISO plant. The control is turned on at t = 2 sec. The controller order is nc = 15 with
parameters p = 1, r = 7, α(k) ≡ 25.

Alternatively, consider the Smith-McMillan-based construction of B̄zu given by

(5.36), which is constructed using the first nonzero Markov parameter H3 = 1 and

the location of the nonminimum-phase zero at z = 2. We take nc = 15, p = 1,

r = 1, and α(k) ≡ 25. The closed-loop response is shown in Figure 5.7. The control

is turned on at t = 2 sec, and, after a transient, the performance variable reduces to
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zero. Note that the simulation using the Markov-parameter-based construction of B̄zu

(Figure 5.6) yields a better transient response than the simulation using the Smith-

McMillan-based construction of B̄zu (Figure 5.7). �
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Figure 5.7 Closed-loop disturbance rejection response for a stable, nonminimum phase,
SISO plant using the Smith-McMillan-based construction of B̄zu. The control is turned on
at t = 2 sec. The controller order is nc = 15 with parameters p = 1, r = 1, α(k) ≡ 25.

Example 5.7.4 (SISO, Minimum Phase, Unstable Plant). Consider a plant with

poles {0.5±0.5,−0.5±0.5,±1.04, 0.1±1.025} and zeros {0.3±0.7,−0.7±0.3, 0.5}.

We take nc = 15, p = 1, r = 10, and α(k) ≡ 25. The closed-loop response is shown

in Figure 5.8. The control is turned on at t = 2 sec, and, after a transient, the per-

formance variable reduces to zero. �

Example 5.7.5 (MIMO, Minimum Phase, Stable Plant). Consider a two-input,

two-output plant with poles {−0.5±0.5, 0.9,±0.7,−0.5±0.5, 0.9,±0.7} and trans-

mission zeros {0.3 ± 0.7, 0.5, 0.5}. We take nc = 15, p = 1, r = 10, and α(k) ≡ 1.

The closed-loop response is shown in Figure 5.9. The control is turned on at t = 2 sec,
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Figure 5.8 Closed-loop disturbance rejection response for an unstable, minimum phase,
SISO plant. The control is turned on at t = 2 sec. The controller order is nc = 15 with
parameters p = 1, r = 10, α(k) ≡ 25.

and the performance variable reduces to zero. �
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Figure 5.9 Closed-loop disturbance rejection response for a stable, minimum phase, two-
input two-output plant. The control is turned on at t = 2 sec. The controller order is
nc = 15 with parameters p = 1, r = 10, α(k) ≡ 1.
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Example 5.7.6 (MIMO, Nonminimum Phase, Stable Plant). Consider a two-input,

two-output plant with poles {−0.5 ± 0.5, 0.9,−0.5± 0.5, 0.9} and transmission zero

{2}. We take nc = 20, p = 1, r = 6, and α(k) ≡ 1. The closed-loop response is shown

in Figure 5.10. The control is turned on at t = 2 sec, and, after a slight transient, the

performance variable reduces to zero. �
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Figure 5.10 Closed-loop disturbance rejection response for a stable, nonminimum phase,
two-input two-output plant. The control is turned on at t = 2 sec. The controller order is
nc = 20 with parameters p = 1, r = 6, α(k) ≡ 1.

Example 5.7.7 (MIMO, Nonminimum Phase, Unstable Plant). Consider a two-

input, two-output plant with poles {−0.5 ± 0.5,±0.7, 0.1 ± 1.025,−0.4, 0.9} and

transmission zeros {0.5, 2}. We take nc = 10, p = 1, r = 10, and α(k) ≡ 1. The

closed-loop response is shown in Figure 5.11. The control is turned on at t = 2 sec,

and, after a slight transient, the performance variable reduces to zero. �

Example 5.7.8 (Ex. 5.7.2 with Command Following and Disturbance Rejection).

We consider a combined step-command following and disturbance rejection problem
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Figure 5.11 Closed-loop disturbance rejection response for an unstable, nonminimum
phase, two-input two-output plant. The control is turned on at t = 2 sec. The controller
order is nc = 10 with parameters p = 1, r = 10, α(k) ≡ 1.

with command and disturbance given by

w(k) =







w1(k)

w2(k)






=







sin 2πν1kTs

5






. (5.39)

With the plant realized in controllable canonical form, we take D1 =







1 0

0 0






and

E0 =

[

0 −1

]

. Therefore, w1 is the disturbance to be rejected, while w2 is the

command to be followed.

We take nc = 20, p = 1, r = 3, and α(k) ≡ 50. The closed-loop response is

shown in Figure 5.12. The control is turned on at t = 2 sec, and the performance

variable reduces to zero, that is, the disturbance w1 is rejected while the command w2

is followed. �

Example 5.7.9 (Command Following with Unstable Plant). We consider a dou-
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Figure 5.12 Closed-loop response for a stable, minimum phase, SISO plant with a step
command and sinusoidal disturbance. The control is turned on at t = 2 sec. The controller
order is nc = 20 with parameters p = 1, r = 3, α(k) ≡ 50.

ble integrator plant with command given by w(k) = 1. With the plant realized in

controllable canonical form, we take D1 = 0 and E0 = −1.

The SISO plant is unstable and minimum phase with poles {0.5 ± 0.5,−0.5 ±

0.5, 1, 1} and zeros {0.3± 0.7, 0.5}. We take nc = 10, p = 5, r = 10, and α(k) ≡ 5.

The closed-loop response is shown in Figure 5.13. The control is turned on at t = 2 sec,

and, after a transient, the performance variable reduces to zero, that is, the step-

command w is followed. �

5.8 Numerical Examples - Off-nominal Cases

We now present numerical examples to illustrate the response of the RCF adaptive

control algorithm under conditions of uncertainty in the relative degree and Markov

parameters, measurement noise, and actuator and sensor saturations. Therefore, we
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Figure 5.13 Closed-loop response for an unstable, minimum phase, SISO plant with a
step command. The control is turned on at t = 2 sec. The controller order is nc = 10 with
parameters p = 5, r = 10, α(k) ≡ 5.

revisit examples from the previous section under off-nominal conditions, that is, with

uncertainty in the required plant modeling information. In each case, we illuminate

the role of the learning rate α, which governs the rate of convergence. Our goal is thus

to develop rules of thumb for choosing α based on the level of model fidelity. Each

example is taken to be a disturbance rejection simulation with z = y, as presented

in Section 5.7. In each example below, the adaptive controller gain matrix θ(k) is

initialized to zero.

Example 5.8.1 (Ex. 5.7.3 with Relative Degree Error and Unknown Latency - Phase

Margin). Consider model error in the relative degree. The system has relative degree

d = 3.

First, for controller implementation, we use the erroneous d̂ = 2. We take nc = 15,

p = 1, r = 10, and α(k) ≡ 1000. The closed-loop response is shown in Figure 5.14.

The control is turned on at t = 2 sec, and the performance variable reduces to zero.

Now let d̂ = 4. We take nc = 15, p = 1, r = 10, and α(k) ≡ 1000. The closed-
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Figure 5.14 Closed-loop disturbance rejection response for a stable, nonminimum phase,
relative degree d = 3 SISO plant where the controller is created assuming the plant has
relative degree d̂ = 2. The control is turned on at t = 2 sec. The controller order is nc = 15
with parameters p = 1, r = 10, α(k) ≡ 1000. To compensate for uncertainty in the relative
degree d, α is increased to slow down the adaptation.

loop response is shown in Figure 5.15. The control is turned on at t = 2 sec, and the

performance variable converges to zero.

These simulations show that the adaptive controller is sensitive to errors in rela-

tive degree, which is equivalent to an unknown latency, that is, implementation delay.

However, the effect of a known latency of l steps can be addressed by simply replacing

d by d + l in the construction of B̄zu. These simulations suggest that it is a natural

extension to use relative degree error and latency as potential metrics for analyzing

phase margins of discrete-time adaptive systems. �

Example 5.8.2 (Ex. 5.7.2 with Uncertain Hd - Gain Margin). We now assess the

algorithm’s robustness to knowledge of the first nonzero Markov parameter Hd. The

first nonzero Markov parameter is H3 = 1.

We first assume that the first nonzero Markov parameter is Ĥ3 = 0.05H3. We take

nc = 15, p = 1, r = 3, and α(k) ≡ 25. The closed-loop response is shown in Figure
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Figure 5.15 Closed-loop disturbance rejection response for a stable, nonminimum phase,
relative degree d = 3 SISO plant where the controller is created assuming the plant has
relative degree d̂ = 4. The control is turned on at t = 2 sec. The controller order is nc = 15
with parameters p = 1, r = 10, α(k) ≡ 1000.

5.16. The control is turned on at t = 2 sec, and the performance variable converges

within 6 sec. In this case, the Markov parameter scaling is equivalent to at least a 26

dB downward adaptive gain margin.

Now, we assume that the first nonzero Markov parameter is Ĥ3 = 20H3. We take

nc = 15, p = 1, r = 3, and α(k) ≡ 25. The closed-loop response is shown in Figure

5.17. The control is turned on at t = 2 sec, and the performance variable converges

to zero. In this case, the Markov parameter scaling is equivalent to at least a 26 dB

upward adaptive gain margin.

In the case where the sign of the first nonzero Markov parameter is wrong, that

is, Ĥ3 = −H3, the simulation fails. As the fidelity of Hd decreases, convergence is

slowed. From these results it is seen that increasing error in Hd is equivalent to in-

creasing α, and thus slowing down the convergence. These simulations suggest that

it is a natural extension to use linear Markov parameter scaling as a potential metric
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Figure 5.16 Closed-loop disturbance rejection response for a stable, minimum phase,
SISO plant with Hd = 1 where the controller is created with Ĥd = 0.05. The con-
trol is turned on at t = 2 sec. The controller order is nc = 15 with parameters
p = 1, r = 3, α(k) ≡ 25. With Hd underestimated, the closed-loop converges more slowly
than in the nominal case.

for analyzing gain margins of discrete-time adaptive systems. �

Example 5.8.3 (Noisy Markov Parameters). We investigate model error in the

Markov parameters.

First, consider Example 5.7.2. The system has relative degree d = 3 with H3 = 1.

For controller implementation, we perturb each Markov parameter Hi, i = 1 . . . r, by

adding zero-mean Gaussian white noise with standard deviation σ = 0.25. We take

nc = 15, p = 1, r = 3, and α(k) ≡ 25. The closed-loop response is shown in Figure

5.18. The control is turned on at t = 2 sec, and the performance variable reduces to

zero.

Next, consider Example 5.7.3 with model error in the Markov parameters. The

system has relative degree d = 3 with H3 = 1. For controller implementation, we

perturb each Markov parameter Hi, i = 1 . . . r, by adding zero-mean Gaussian white

noise with standard deviation σ = 0.25. We take nc = 15, p = 1, r = 10, and
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Figure 5.17 Closed-loop disturbance rejection response for a stable, minimum phase,
SISO plant with Hd = 1 where the controller is created with Ĥd = 20. The control is turned
on at t = 2 sec. The controller order is nc = 15 with parameters p = 1, r = 3, α(k) ≡ 25.
With Hd overestimated, the closed-loop converges more slowly than in the nominal case.

α(k) ≡ 25. The closed-loop response is shown in Figure 5.19. The control is turned

on at t = 2 sec, and the performance variable reduces to zero.

These simulations show that the adaptive control algorithm is robust to errors in

the Markov parameters. �

Example 5.8.4 (Ex. 5.7.2 with Noisy Measurements). To assess the performance of

the adaptive algorithm with added sensor noise, we modify the sensor equation (5.2)

by

y(k) = Cx(k) +D2w(k) + v(k), (5.40)

where v(k) ∈ Rly is zero-mean Gaussian white noise with standard deviation σ = 0.1.

We take nc = 15, p = 1, r = 3, and α(k) ≡ 25. The closed-loop response is

shown in Figure 5.20. The control is turned on at t = 2 sec, and the performance

variable is reduced to the level of the additive sensor noise v(k). Analogous results
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Figure 5.18 Closed-loop disturbance rejection response for a stable, minimum phase,
relative degree d = 3, SISO plant where the controller is created with Markov parameters
perturbed by zero-mean Gaussian white noise with standard deviation σ = 0.25. The con-
trol is turned on at t = 2 sec. The controller order is nc = 15 with parameters p = 1, r = 3,
and α(k) ≡ 25.

are obtained for sinusoidal sensor noise and measurement bias, that is, constant mea-

surement noise. Bursting was not observed in any of the simulations. �

Example 5.8.5 (Ex. 5.7.2 with Actuator and Sensor Saturation). In addition to the

issues discussed above, physical systems are constrained by actuator and sensor lim-

itations. In particular, we consider the performance of the adaptive algorithm under

actuator and sensor saturation.

The control input u(k) is subject to saturation at ±1.5, while the sensor measure-

ment y(k) is subject to saturation at ±2. We take nc = 15, p = 1, r = 3, and

α(k) ≡ 25. The closed-loop response is shown in Figure 5.21. The control is turned

on at t = 2 sec, and the performance variable is reduced to a level consistent with what

the saturated control can provide. �
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Figure 5.19 Closed-loop disturbance rejection response for a stable, nonminimum phase,
relative degree d = 3, SISO plant where the controller is created with Markov parameters
perturbed by zero-mean Gaussian white noise with standard deviation σ = 0.25. The con-
trol is turned on at t = 2 sec. The controller order is nc = 15 with parameters p = 1, r = 10,
and α(k) ≡ 25.

Example 5.8.6 (Ex. 5.7.2 Command Following with Actuator Saturation). We con-

sider a command given by w(k) = 1. With the plant realized in controllable canonical

form, we take D1 = 0 and E0 = −1.

First, consider the case with no actuator saturation. We take nc = 15, p = 1,

r = 3, and α(k) ≡ 25. The closed-loop response is shown in Figure 5.22. The control

is turned on at t = 2 sec, and, after a transient, the performance variable reduces to

zero, that is, the step-command w is followed.

Now, consider the case with actuator saturation at ±0.1. We take nc = 15, p = 1,

r = 3, and α(k) ≡ 25. The closed-loop response is shown in Figure 5.23. The control

is turned on at t = 2 sec, and the performance variable reduces to a level consistent

with what the saturated control can provide. �
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Figure 5.20 Closed-loop disturbance rejection response for a stable, minimum phase,
SISO plant with random white noise added to the measurement. The control is turned on
at t = 2 sec. The controller order is nc = 15 with parameters p = 1, r = 3, α(k) ≡ 25. The
performance variable y(k) is reduced to the level of the additive sensor noise v(k).
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Figure 5.21 Closed-loop disturbance rejection response for a stable minimum phase
SISO plant where the actuator is saturated at ±1.5 and the sensor is saturated at ±2.
The control is turned on at t = 2 sec. The controller order is nc = 15 with parameters
p = 1, r = 3, α(k) ≡ 25. The saturations reduce overall steady-state performance.
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Figure 5.22 Closed-loop response for a stable, minimum phase, SISO plant with a step
command. The control is turned on at t = 2 sec. The controller order is nc = 15 with
parameters p = 1, r = 3, α(k) ≡ 25.
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Figure 5.23 Closed-loop response for a stable, minimum phase, SISO plant with a step
command subject to actuator saturation at ±0.1. The control is turned on at t = 2 sec.
The controller order is nc = 15 with parameters p = 1, r = 3, α(k) ≡ 25.
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5.9 Numerical Examples - Model Reference Adap-

tive Control

We now present numericals example to illustrate the response of the RCF adap-

tive control algorithm for model reference adaptive control (see Figure 5.1). Unless

otherwise noted, the adaptive controller gain matrix θ(k) is initialized to zero.

5.9.1 Boeing 747 longitudinal dynamics

Consider the longitudinal dynamics of a Boeing 747 aircraft, linearized about

steady flight at 40,000 ft and 774 ft/sec. The inputs to the dynamical system are

taken to be elevator deflection and thrust. The output of the dynamical system is

taken to be pitch angle. The continuous-time equations of motion are thus given by


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
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
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w, (5.42)

z = y1 − ym, (5.43)

where w is the exogenous command and ym is the output of the reference model

Gm(s) =
Ym(s)

W (s)
=

0.0131

s2 + 0.16s+ 0.0131
. (5.44)
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We discretize (5.41)–(5.44) using a zero-order hold and sampling time Ts =

0.01 sec. The reference command is taken to be a 1 deg step command in pitch angle.

The controller order is nc = 10 with parameters p = 1, r = 10, α(k) ≡ 40. The closed-

loop response is shown in Figure 5.24. The controller is turned on immediately and

the performance variable reduces to zero within about 20 sec.
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Figure 5.24 Closed-loop model reference adaptive control of Boeing 747 longitudinal dy-
namics. The controller order is nc = 10 with parameters p = 1, r = 10, α(k) ≡ 40. The
performance variable converges within about 20 sec.

5.9.2 Missile Longitudinal Dynamics

We now present numerical examples for MRAC of missile longitudinal dynamics

under off-nominal or damage situations. The basic missile longitudinal plant [89] is

derived from the short period approximation of the longitudinal equations of motion,
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given by
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where
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and λ ∈ (0, 1] represents the control effectiveness. Nominally λ = 1.

The open-loop system (5.45), (5.46) is statically unstable. To overcome this in-

stability, a classical three-loop autopilot [89] is wrapped around the basic missile

longitudinal plant. The adaptive controller then augments the closed-loop system to

provide control in off-nominal cases, that is, when λ < 1. The autopilot and adaptive

controller inputs are denoted uap and uac, respectively. Thus, the total control input

u = uap +uac. The reference model Gm consists of the basic missile longitudinal plant

with λ = 1 and the classical three-loop autopilot. An actuator saturation of ±30 deg

is included in the model, but no actuator or sensor dynamics are included.

Our goal is for the missile to follow a pitch acceleration command w consisting of

a 1-g amplitude 1-Hz square wave. The performance variable z is the difference be-

tween the measured pitch acceleration Az and the reference model pitch acceleration

A∗
z, that is, z

△
= Az −A∗

z. The closed-loop response is shown in Figure 5.25 for λ = 1.

Since the plant and reference model are identical in the nominal case, the adaptive

control input uac = 0.

All of the following examples use the same adaptive controller parameters. The

adaptive controller is implemented at a sampling rate of 300 Hz. We take nc = 3,

p = 1, and r = 20. A time-varying learning rate α is used such that, initially, con-
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Figure 5.25 Closed-loop model reference adaptive control of missile longitudinal dynam-
ics. The control effectiveness λ = 1, thus the plant and reference model are identical.
Therefore, the adaptive control input uac = 0.

troller adaptation is fast, and, as performance improves, the adaptation slows. The

learning rate is identical for each simulation. System identification using the Ob-

server/Kalman filter identification (OKID) algorithm [57] is used to obtain the 20

Markov parameters required for controller implementation. The offline identification

procedure is performed with a nominal simulation (λ = 1) by injecting band-limited

white noise at the adaptive controller input uac and recording the performance vari-

able z while the autopilot is in-the-loop. No external disturbances are assumed to be

present during the identification procedure.

Example 5.9.1 (75% Control Effectiveness). Consider λ = 0.75. First, Figure 5.26

shows simulation results with the adaptive controller turned off, that is, autopilot-only

control.

Now, with the adaptive controller turned on, that is, augmented autopilot plus

144



0 5 10
−0.4

−0.2

0

0.2

0.4

Time (sec)
P

er
fo

rm
an

ce
 V

ar
ia

bl
e 

(z
=∆

 A
z)

0 5 10
−0.4

−0.2

0

0.2

0.4

Time (sec)

P
itc

h 
R

at
e 

(r
ad

/s
)

Control Effectiveness = 0.75

 

 

q

q* 0 5 10
−1.5

−1

−0.5

0

0.5

1

1.5

Time (sec)

P
itc

h 
A

cc
el

er
at

io
n 

(G
‘s

)

 

 

A
z

A*
z

0 5 10
−0.05

0

0.05

Time (sec)

T
ot

al
 C

on
tr

ol
 In

pu
t (

u)

0 5 10
−1

−0.5

0

0.5

1

Time (sec)

A
da

pt
iv

e 
C

on
tr

ol
 In

pu
t (

u ac
)

0 5 10
−0.05

0

0.05

Time (sec)

A
ut

op
ilo

t C
on

tr
ol

 In
pu

t (
u ap

)

Figure 5.26 Missile longitudinal dynamics with control effectiveness λ = 0.75 and adap-
tive controller turned off, that is, autopilot-only control.

adaptive controller, simulation results are shown in Figure 5.27. After a small tran-

sient, the augmented controllers result in better performance than the autopilot-only

simulation. �

Example 5.9.2 (50% Control Effectiveness). Consider λ = 0.50. First, Figure 5.28

shows simulation results with the adaptive controller turned off, that is, autopilot-only

control.

Now, with the adaptive controller turned on, that is, augmented autopilot plus

adaptive controller, simulation results are shown in Figure 5.29. After a transient,

the augmented controllers result in better performance than the autopilot-only simu-

lation. �

Example 5.9.3 (25% Control Effectiveness). Consider λ = 0.25. With the adap-

tive controller turned off, that is, autopilot-only control, the simulation fails. With

the adaptive controller turned on, that is, augmented autopilot plus adaptive con-
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Figure 5.27 Closed-loop model reference adaptive control of missile longitudinal dy-
namics with control effectiveness λ = 0.75. The augmented controllers result in better
performance than the autopilot-only simulation.
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Figure 5.28 Missile longitudinal dynamics with control effectiveness λ = 0.50 and adap-
tive controller turned off, that is, autopilot-only control.
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Figure 5.29 Closed-loop model reference adaptive control of missile longitudinal dy-
namics with control effectiveness λ = 0.50. The augmented controllers result in better
performance than the autopilot-only simulation.

troller, simulation results are shown in Figure 5.30. After a transient, the augmented

controllers stabilize the system whereas the autopilot-only simulation fails.

Figure 5.30 shows that the total control input u reaches the actuator saturation

level of ±30 deg. To reduce the initial transient, a more finely tuned learning rate

can be implemented or the adaptive controller can be initialized with nonzero gains.

Therefore, we now initialize the adaptive controller with the converged control gains

θ from the 50% control effectiveness case. We use the gains of the 50% case since it

is a median starting point. Simulation results are shown in Figure 5.31. The initial

transient is reduced as compared with initializing the control gains to zero. In this

case, the actuator saturation level is never reached. �

5.10 Algorithm Limitations

For practical reasons such as sensor or actuator failure, control engineers can be

reluctant to use unstable controllers for the purpose of stabilization. It thus follows
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Figure 5.30 Closed-loop model reference adaptive control of missile longitudinal dynam-
ics with control effectiveness λ = 0.25. After a transient, the augmented controllers stabilize
the system whereas the autopilot-only simulation fails. Note that the system is stabilized
despite the total control input u reaching the actuator saturation level of ±30 deg.

that we are interested in plants that are strongly stabilizable [129]. A dynamical

system G is said to be strongly stabilizable if there exists a stable controller Gc that

stabilizes the open-loop system G. It is well known that a stable controller which

stabilizes the system exists if and only if the plant satisfies the parity interlacing

property [133]. In SISO continuous-time systems, a plant satisfies the parity inter-

lacing property if it has an even number of poles between each pair of zeros on the

positive real axis. Similar results apply for both discrete-time and MIMO systems.

After gain convergence, every simulation presented in this chapter resulted in a

stable adaptive controller. No simulations performed with the RCF adaptive control

algorithm have resulted in an unstable controller after gain convergence. Without

converging to an unstable controller, it follows that the simulation fails if the RCF

adaptive control algorithm is used to stabilize a plant that is not strongly stabilizable.

No other cases have been identified which cause the RCF adaptive control algorithm
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Figure 5.31 Closed-loop model reference adaptive control of missile longitudinal dynam-
ics with control effectiveness λ = 0.25. The adaptive controller is initialized with the
converged gains from the 50% control effectiveness case. The initial transient is reduced as
compared with initializing the control gains to zero. In this case, the actuator saturation
level is never reached.

to fail. Obtaining a linear bound of the control inputs u by the measurement variables

y (as required in Theorem 2.6.1) is not possible in general for nonminimum-phase

systems. However, this linear bounding condition does hold for systems that are

stabilized with a stable controller. Future work includes incorporating this strongly

stabilizing property into a Lyapunov-based stability analysis of the RCF adaptive

control algorithm.

Linear Quadratic Gaussian (LQG) techniques have been shown to work well with

broadband disturbances, but LQG controllers require complete knowledge of the sys-

tem parameters. In practice, reliable knowledge of the system parameters may be

impossible to obtain. Therefore, it is desirable to use adaptive controllers with min-

imal modeling requirements for broadband disturbance rejection. While the RCF

adaptive control algorithm was shown to work well with commands and disturbances

generated from Lyapunov-stable linear systems, that is, sums of discrete sinusoids

and steps, it has been found to provide only marginal performance improvements for
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broadband disturbance rejection applications. Future work includes the development

of a theoretical foundation for analyzing broadband disturbance rejection properties

of the controller.

5.11 Conclusion

We presented the RCF adaptive control algorithm and demonstrated its effective-

ness in handling nonminimum-phase zeros through numerical examples illustrating

the response of the algorithm under conditions of uncertainty in the relative degree

and Markov parameters, measurement noise, and actuator and sensor saturations.

We thus developed rules of thumb for choosing the learning rate α for stable response

and acceptable transient behavior. Bursting was not observed in any of the sim-

ulations. We also developed preliminary metrics for analyzing the gain and phase

margins for discrete-time adaptive systems. Future work includes the development

of Lyapunov-based stability and robustness analysis of the RCF adaptive control al-

gorithm as well as development of a theoretical foundation for analyzing broadband

disturbance rejection properties of the controller.
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Chapter 6

Indirect Retrospective-Cost-Based
Adaptive Control with RLS-Based

Estimation

In the previous chapter, we presented a direct adaptive control algorithm which

required a priori information about the sign of the high-frequency gain as well as

information about the locations of the nonminimum-phase zeros. In this chapter, we

augment the adaptive controller developed in Chapter 5 with recursive least-squares

estimation to form a discrete-time indirect adaptive control law that is effective for

systems that are multi-input, multi-output, and/or nonminimum phase. Recursive

least-squares estimation is used for concurrent Markov parameter updating. We

present numerical examples to illustrate the algorithm’s effectiveness in handling

nonminimum-phase zeros as plant changes occur. The results and methods of this

chapter are published in [112].

6.1 Introduction

Adaptive control algorithms can be classified as either direct or indirect, depend-

ing on whether they employ an explicit parameter estimation algorithm within the

overall adaptive scheme; see [32, 50, 77, 90]. Most direct adaptive control algorithms,
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with the exception of universal adaptive control algorithms [46, 47, 64, 79, 81, 86,

87, 96, 106, 130, 132], require some prior modeling information, such as the sign of

the high-frequency gain. By updating the required modeling information, perhaps

through closed-loop identification, a direct adaptive control algorithm can be con-

verted to an indirect adaptive control algorithm, which may have greater versatility

in practice.

The goal of the present chapter is to present an indirect discrete-time adaptive

control algorithm as an extension of the direct adaptive control algorithm developed in

Chapter 5. This algorithm, based on a retrospective correction filter (RCF), requires

prior estimates of the Markov parameters of the transfer function from the control in-

puts to the performance (error) variables. These Markov parameter estimates capture

the sign of the high-frequency gain as well as the locations of the nonminimum-phase

zeros (if any) in the relevant transfer function. Since no parameter estimation is

performed online, the algorithm developed in Chapter 5 is a direct adaptive con-

trol algorithm. In some applications, however, prior modeling or identification is not

possible, whereas, in other applications, the dynamics of the plant may change unex-

pectedly during operation. In both cases, the required Markov parameters must be

estimated online.

With this motivation in mind, the present chapter investigates the performance

of the RCF-based adaptive control algorithm with concurrent Markov-parameter es-

timation. The resulting adaptive control algorithm is thus indirect. For parameter

estimation we use a standard recursive least-squares (RLS) algorithm. The scenario

we consider begins with discrete-time RCF-based direct adaptive control with prior

estimates of the Markov parameters. The RLS identification algorithm operates con-

currently with the control adaptation to update the Markov parameters when a plant

change occurs.

We demonstrate the indirect RCF algorithm on several numerical examples. Of
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particular interest is the case in which a plant change occurs, in which a minin-

imum phase zero becomes nonminimum phase. These results are noteworthy since

nonminimum-phase zeros are known to be challenging for adaptive control algorithms

[5]. Numerical results show that the algorithm is able to update the Markov parame-

ters and maintain stabilization of the system. These numerical examples are intended

to provide motivation for future proofs of stability and convergence.

6.2 Recursive Least-Squares Markov Parameter

Update

To obtain the required Markov parameters for constructing B̄zu, we implement

the standard recursive least-squares algorithm as in [70] for the r-MARKOV plant

structure (5.5). A forgetting factor is not used since no benefit was observed by in-

cluding it. We initialize the parameter matrix to zero and the covariance matrix of

the parameter estimation error to the identity matrix. At each time step, we take

the computed Markov parameters Hi, i = 0, . . . , r, and construct B̄zu as in (5.37).

The identification input for RLS is taken to be the output of the adaptive controller,

that is, the control input u to the plant, while the identification output for RLS is

taken to be the performance variable z. The closed-loop system including the RCF

adaptive control algorithm with concurrent RLS identification for Markov parameter,

and thus B̄zu, updates is shown in Figure 6.1. No probing input is used to identify

the Markov parameters, and disturbances are assumed to be present while the online

identification takes place.

6.3 Numerical Examples

We now present numerical examples to illustrate the response of the RCF adaptive

control algorithm with concurrent RLS identification. We consider a sequence of ex-
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Figure 6.1 Closed-loop system including the RCF adaptive control algorithm with con-
current RLS identification for Markov parameter updates.

amples of increasing complexity. In each case, we start with a nominal plant in closed

loop with the RCF adaptive control algorithm and concurrent RLS identification. At

some time during the simulation, a plant change occurs, which requires updating the

Markov parameters for the adaptive controller. As RLS identification runs concur-

rently with the adaptive controller, the Markov parameters are updated in real time.

Each plant can be viewed as a sampled-data discretization of a continuous-time plant

sampled at Ts = 0.01 sec. All examples assume z = y and the adaptive controller gain

matrix θ(k) is initialized to zero.

For simplicity, each example, unless otherwise noted, is taken to be a disturbance

rejection simulation, that is, E0 = 0, with unknown sinusoidal disturbance given by

w(k) =







sin 2πν1kTs

sin 2πν2kTs






, (6.1)
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where ν1 = 5 Hz and ν2 = 13 Hz. The RCF adaptive control algorithm requires no

information about w. With each plant realized in controllable canonical form, we

take D1 =







I2

0






, and, therefore, the disturbance is not matched.

Example 6.3.1 (Change in control effectiveness). Consider a stable, minimum-

phase, SISO plant with poles {0.5 ± 0.5,−0.5 ± 0.5,±0.9,±0.7} and zeros {0.3 ±

0.7,−0.7 ± 0.3,±0.5}. We take nc = 15, p = 1, r = 3, and α(k) ≡ 25. The closed-

loop response is shown in Figure 6.2. The control is turned on at t = 5 sec, and the

performance variable reduces to zero within 2 sec. At t = 15 sec, the system suffers

a 75% loss of control effectiveness, that is, the control input u entering the plant is

multiplied by a scaling factor λ = 0.25. The Markov parameters are updated online,

and the adaptive control algorithm reduces the performance variable to zero within

2 sec. Figure 6.3 shows a time-history plot of the first 3 Markov parameters obtained

from online RLS identification. �
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Figure 6.2 Closed-loop disturbance rejection response for a stable, minimum-phase, SISO
plant. The control is turned on at t = 5 sec, and, at t = 15 sec, the system suffers
a 75% loss of control effectiveness. The controller order is nc = 15 with parameters
p = 1, r = 3, α(k) ≡ 25.
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Figure 6.3 Time history of the first 3 Markov parameters obtained from online RLS iden-
tification. The control is turned on at t = 5 sec, and, at t = 15 sec, the system suffers a 75%
loss of control effectiveness. The estimated Markov parameters are used in the adaptive
controller update law.

Example 6.3.2 (Change in zero characteristics). Consider a stable, minimum-phase,

SISO plant with poles {0.5±0.5,−0.5±0.5,±0.9,±0.7} and zeros {0.3±0.7,−0.7±

0.3,±0.5}. We take nc = 20, p = 1, r = 20, and α(k) ≡ 1000. The closed-loop

response is shown in Figure 6.4. The control is turned on at t = 5 sec, and the per-

formance variable reduces to zero. At t = 15 sec, the minimum-phase zero at z = 0.5

is changed to a nonminimum-phase zero at z = 2. After a transient, the adaptive

control algorithm reduces the performance variable to zero. �

Example 6.3.3 (Change in poles and zeros). Consider an order n = 8 FIR,

nonminimum-phase, SISO plant with zeros {0.3 ± 0.7,−0.7 ± 0.3, 0.5, 2}. We take

nc = 15, p = 1, r = 10, and α(k) ≡ 25. The closed-loop response is shown

in Figure 6.5. The control is turned on at t = 5 sec, and the performance vari-

able reduces to zero. At t = 15 sec, the nonminimum-phase zero at z = 2 is

changed to a minimum-phase zero at z = 0.5 and the plant’s poles are changed to
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Figure 6.4 Closed-loop disturbance rejection response for a stable, minimum-phase, SISO
plant. The control is turned on at t = 5 sec, and, at t = 15 sec, one of the plant’s minimum-
phase zeros is replaced with a nonminimum-phase zero. The controller order is nc = 20
with parameters p = 1, r = 20, α(k) ≡ 1000.

{0.5 ± 0.5,−0.5 ± 0.5,±0.7}. After a slight transient, the adaptive control algo-

rithm reduces the performance variable to zero. �

Example 6.3.4 (Change in relative degree). Consider a stable, nonminimum-phase,

SISO plant with poles {0.5±0.5,−0.5±0.5,±0.9,±0.7} and zeros {0.3±0.7,−0.7±

0.3, 0.5, 2}. We take nc = 15, p = 2, r = 10, and α(k) ≡ 50. The closed-loop

response is shown in Figure 6.6. The control is turned on at t = 5 sec, and the per-

formance variable reduces to zero. At t = 15 sec, the plant’s relative degree is changed

from d = 2 to d = 4 by adding two poles at the origin. The RLS algorithm identi-

fies the shifted Markov parameters due to latency and recovers performance. Without

RLS, the RCF algorithm is shown in [114] to be sensitive to unknown delays. �

Example 6.3.5 (Command following with change in zeros). We now consider a step-

command following problem with command given by a square wave of frequency 2πν1Ts
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Figure 6.5 Closed-loop disturbance rejection response for an FIR, nonminimum-phase,
SISO plant. The control is turned on at t = 5 sec, and, at t = 15 sec, the plant’s
nonminimum-phase zero is replaced with a minimum-phase zero and the plant’s poles are re-
located to stable poles away from the origin. The controller order is nc = 15 with parameters
p = 1, r = 10, α(k) ≡ 25.

cycles/sample, where ν3 = 0.1 Hz. With the plant realized in controllable canonical

form, we take D1 = 0 and E0 = −1.

Consider a stable, nonminimum-phase, SISO plant with poles {0.5 ± 0.5,−0.5±

0.5,±0.9,±0.7} and zeros {0.3± 0.7,−0.7± 0.3, 0.5, 2}. We take nc = 15, p = 2,

r = 25, and α(k) ≡ 250. The closed-loop response is shown in Figure 6.7. The

control is turned on at t = 5 sec, and the performance variable reduces to zero. At

t = 15 sec, the minimum-phase zero at z = 0.5 disappears from the plant, while the

nonminimum-phase zero at z = 2 is changed to a nonminimum-phase zero at z = 2.5.

After a transient, the adaptive control algorithm reduces the performance variable to

zero and follows the step command. �

Example 6.3.6 (MRAC for Missile Longitudinal Dynamics). We now present a nu-

merical example for MRAC of missile longitudinal dynamics under an off-nominal or

damage situation. The MRAC control architecture is shown in Figure 5.1. The basic

158



0 5 10 15 20 25

−20

−10

0

10

20

Time (sec)
P

er
fo

rm
an

ce
 V

ar
ia

bl
e 

z(
k)

0 5 10 15 20 25
−20

−10

0

10

20

C
on

tr
ol

 In
pu

t u
(k

)

Figure 6.6 Closed-loop disturbance rejection response for a stable, nonminimum-phase,
SISO plant. The control is turned on at t = 5 sec, and, at t = 15 sec, the plant’s relative
degree changes from d = 2 to d = 4. The controller order is nc = 15 with parameters
p = 2, r = 10, and α(k) ≡ 50.
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Figure 6.7 Closed-loop command following response for a stable, nonminimum-phase,
SISO plant. The control is turned on at t = 5 sec, and, at t = 15 sec, one of the plant’s
minimum-phase zeros is removed while the location of the plant’s nonminimum-phase zero
is changed. The controller order is nc = 15 with parameters p = 2, r = 25, α(k) ≡ 250.
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missile longitudinal plant of [89] is derived from the short period approximation of the

longitudinal equations of motion, given by

ẋ =







−1.064 1

290.26 0






x+ λ







−0.25

−331.4






u, (6.2)

y =







−123.34 0

0 1






x+ λ







−13.51

0






u, (6.3)

where

x
△
=







α

q






, y

△
=







Az

q






,

and λ ∈ (0, 1] represents the control effectiveness. Nominally λ = 1.

The open-loop system (6.2), (6.3) is statically unstable. To overcome this insta-

bility, a classical three-loop autopilot from [89] is wrapped around the basic missile

longitudinal plant. The adaptive controller then augments the closed-loop system to

provide control in off-nominal cases, that is, when λ < 1. The autopilot and adaptive

controller inputs are denoted uap and uac, respectively. Thus, the total control input

u = uap +uac. The reference model Gm consists of the basic missile longitudinal plant

with λ = 1 and the classical three-loop autopilot. An actuator saturation of ±30 deg

is included in the model, but no actuator or sensor dynamics are included.

Our goal is to have the missile follow a pitch acceleration command w consisting

of a 1-g amplitude, 1-Hz square wave. The performance variable z is the difference

between the measured pitch acceleration Az and the reference model pitch acceleration

A∗
z, that is, z

△
= Az − A∗

z. The adaptive controller is implemented at a sampling rate

of 300 Hz. We take nc = 3, p = 1, and r = 20. A time-varying learning rate α is

used such that, initially, controller adaptation is fast, and, as performance improves,

the adaptation slows.

Figure 6.8 shows closed-loop MRAC simulation results. Initially, λ = 1, and thus,
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the adaptive controller is not used. At t = 5 sec, we change λ = 0.5, but, to demon-

strate autopilot-only control, we do not turn on the adaptive controller. At t = 10 sec,

the adaptive controller is turned on. After a transient, the augmented controllers re-

sult in better performance than the autopilot-only control. �
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Figure 6.8 Closed-loop model reference adaptive control of missile longitudinal dynam-
ics. Initially, λ = 1. At t = 5 sec, we change λ = 0.5 but the adaptive controller remains
off. At t = 10 sec, the adaptive controller is turned on. After a transient, the augmented
controllers result in better performance than the autopilot-only control.

6.4 Conclusion

We presented the indirect RCF adaptive control algorithm and demonstrated

its effectiveness, through numerical examples, in handling nonminimum-phase ze-

ros while plant changes occur. The adaptive control algorithm requires a sufficient

number of Markov parameters to capture the sign of the high-frequency gain as

well as the nonminimum-phase zeros. Recursive least-squares estimation was used

for concurrent Markov parameter updating. Future work includes the development

of Lyapunov-based stability and robustness analysis for the RCF adaptive control

algorithm.
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Chapter 7

Conclusion

This dissertation presented advances in adaptive control of multi-input, multi-

output, linear, time-invariant, discrete-time systems. Chapter 2 focused on gradient-

based adaptive control, while Chapters 3-6 related to retrospective-cost-based adap-

tive control.

Chapter 2 provided an extension of the work presented in [36, Chapter VII],

where an adaptive controller was developed that requires limited model informa-

tion for stabilization, command following, and disturbance rejection for multi-input,

multi-output, linear, time-invariant, minimum-phase, discrete-time systems. Specifi-

cally, the controller requires knowledge of the open-loop system’s relative degree and

a bound on the first nonzero Markov parameter. Notably, the controller does not re-

quire knowledge of the command or disturbance spectrum as long as the command and

disturbance signals are generated by Lyapunov-stable linear systems. Thus the com-

mand and disturbance signals are combinations of discrete-time sinusoids and steps.

We proved global asymptotic convergence for command following and disturbance

rejection.

Chapter 2 incorporated a logarithmic Lyapunov function to prove Lyapunov stabil-

ity for systems whose exogenous dynamics are unknown and unmeasured. In addition,

the adaptive update law was constructed as a gradient-based adaptive control algo-
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rithm. Since an ideal deadbeat internal model controller was proven to exist, the

gradient-based construction allowed us to compute and implement an optimal gradi-

ent step size. Furthermore, the gradient-based construction provided a framework for

directly analyzing tradeoffs between transient performance and modeling accuracy.

Finally, an inverse system representation was derived for multi-input, multi-output,

minimum-phase systems which was necessary for the proof of Theorem 2.6.1.

Since the adaptive control method presented in Chapter 2 has been shown to

perform well in simulation on broadband disturbances that are not generated by

Lyapunov-stable linear systems, future work includes developing a theoretical foun-

dation for analyzing and proving the broadband disturbance rejection properties of

the controller.

Chapter 3 began the main topic of this dissertation. Since the method of proof

for the gradient-based adaptive control algorithm presented in Chapter 2 could not

be extended to nonminimum-phase systems, we focused on retrospective-cost-based

adaptive control. To review, retrospective cost optimization is a measure of perfor-

mance at the current time based on a past window of data and without assumptions

about the command or disturbance signals. In particular, retrospective cost opti-

mization acts as an inner loop to the adaptive control algorithm by modifying the

performance variables based on the difference between the actual past control inputs

and the recomputed past control inputs based on the current control law.

In particular, Chapter 3 investigated full-state-feedback stabilization in multi-

input, linear, time-invariant, discrete-time systems. The results of Chapter 3 sup-

ported and motivated the retrospective-cost-based adaptive controllers developed in

Chapters 4 and 5 by providing a basis for retrospective cost optimization. Specifically,

a retrospective-cost-based adaptive controller was developed for full-state-feedback

stabilization. Furthermore, Lyapunov stability of the closed-loop error system was

proven for a special case. Numerical examples illustrated the robustness of the algo-
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rithm under conditions of Markov-parameter uncertainty. Theoretical and numerical

results suggested that the converged adaptive controller has a downward adaptive gain

margin of 6 dB and an infinite upward adaptive gain margin, which is reminiscent of

continuous-time fixed-gain LQR control.

Although the retrospective-cost-based full-state-feedback adaptive control algo-

rithm developed in Chapter 3 was shown to work well in many cases with r = 1,

there were situations that required r > 1. However, in all cases, r = n+ 1 was found

to stabilize the open-loop system. Although r = n + 1 requires more knowledge of

the Markov parameters than with r = 1, it is still less information than required to

reconstruct a system model through techniques such as the eigenstructure realization

algorithm, which generally requires 2n Markov parameters. Future work includes ex-

tending the specialized Lyapunov-based stability and convergence proof to the more

general case to include multi-input, multi-dimensional plants with r > 1.

As an extension to the results of Chapter 3, Chapter 4 investigated static-output-

feedback stabilization in multi-input, multi-output, linear, time-invariant, discrete-

time systems with knowledge of the sign of the high-frequency gain and a sufficient

number of Markov parameters to approximate the nonminimum-phase zeros (if any).

No additional information about the poles or zeros need be known. In addition, a

theoretical link between nonminimum-phase zero information and Markov parame-

ters was developed and explored through simulation. Numerical examples illustrated

the robustness of the algorithm under conditions of Markov parameter uncertainty.

The results of Chapter 4 suggest that r = n + 1 was sufficient to stabilize the

open-loop system. However, future work includes the development of a Lyapunov-

based stability and convergence proof for the adaptive control algorithm presented in

Chapter 4. In addition, the theoretical link between nonminimum-phase zero informa-

tion and Markov parameters needs to be explored further, especially for multi-input,

multi-output systems, where the presence of transmission zeros complicates the anal-
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ysis.

Chapter 5 provided an extension to the work presented in [127] as well as Chap-

ter 3 and Chapter 4 of this dissertation. Specifically, Chapter 5 generalized the

results of Chapter 3 and Chapter 4 to dynamic compensation for stabilization, com-

mand following, disturbance rejection, and model reference adaptive control. A

retrospective-cost-based adaptive controller was developed for multi-input, multi-

output, linear, time-invariant, discrete-time systems with knowledge of the sign of

the high-frequency gain and a sufficient number of Markov parameters to approx-

imate the nonminimum-phase zeros (if any). No additional information about the

poles or the zeros need be known.

The adaptive control algorithms developed in Chapters 3-5 of this dissertation

incorporated an adjustable learning-rate parameter α which allowed us to develop

Newton-step-based adaptive update laws. In addition, Chapter 5 further developed

the theoretical link between Markov parameters and nonminimum-phase zeros. We

also developed preliminary metrics for analyzing the gain and phase margins for

discrete-time adaptive systems. Numerical robustness analysis with uncertainty in

the required modeling information was presented for plants that are multi-input,

multi-output, nonminimum phase, and possibly unstable. These numerical studies

showed that the adaptive control algorithm is effective for handling nonminimum-

phase zeros under minimal modeling assumptions. These numerical studies serve as

guidance with regard to the future development of system identification algorithms

that can estimate the required plant parameters with suitable accuracy.

Future work includes development of the learning-rate parameter α as a function

of the performance objective z as well as the development of Lyapunov-based stability

and robustness analysis for the retrospective-cost-based adaptive control algorithm

presented in Chapter 5. While the RCF adaptive control algorithm was shown to work

well with commands and disturbances generated from Lyapunov-stable linear systems,
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that is, sums of discrete sinusoids and steps, it was found to provide only marginal

performance improvements for broadband disturbance rejection applications. Future

work includes the development of a theoretical foundation for analyzing and proving

the broadband disturbance rejection properties of the adaptive controller presented

in Chapter 5.

Finally, Chapter 6 extended the results of Chapter 5. Specifically, the direct adap-

tive controller developed in Chapter 5 was augmented with recursive least-squares

estimation to form a discrete-time indirect adaptive control law that is effective for

systems that are multi-input, multi-output, and/or nonminimum phase. Recursive

least-squares estimation was used for concurrent Markov parameter updating. Nu-

merical examples illustrated the algorithm’s effectiveness in handling nonminimum-

phase zeros as plant changes occured. Numerical results showed that the algorithm

was able to update the Markov parameters and maintain stabilization of the system.
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Appendix A

Properties of the Markov
Parameter Polynomial

A.1 Problem Formulation

Consider the MIMO discrete-time system

x(k + 1) = Ax(k) +Bu(k), (A.1)

y(k) = Cx(k), (A.2)

z(k) = E1x(k), (A.3)

where x(k) ∈ Rn, y(k) ∈ Rly , z(k) ∈ Rlz , u(k) ∈ Rlu , and k ≥ 0. For a positive

integer r, we define the extended performance vector Z(k) ∈ R
lzr and the extended

input vector U(k) ∈ Rlur by

Z(k)
△
=



















z(k − r + 1)

z(k − r + 2)

...

z(k)



















, U(k)
△
=



















u(k − r)

u(k − r + 1)

...

u(k − 1)



















.
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Note that Z(k), U(k), and x(k) are related by

Z(k) = Γx(k − r) + HU(k), (A.4)

where Γ ∈ Rlzr and H ∈ Rlzr×lur are given by

Γ
△
=



















E1A

E1A
2

...

E1A
r



















, H △
=



















H1 0 · · · 0

H2 H1
. . .

...

...
. . . 0

Hr Hr−1 · · · H1



















,

and, for i = 1, 2, . . ., the Markov parameters Hi of the system (A.1)–(A.3) from u to

z are

Hi
△
= E1A

i−1B. (A.5)

Let d denote the relative degree of (A,B,E1), that is, the smallest positive integer i

such that the ith Markov parameter Hi is nonzero. Note that, if r < d, then H = 0.

Therefore, we assume that r ≥ d.

A.2 Markov Parameter Polynomial

From (A.4), the expression for z(k) is

z(k) = E1A
rx(k − r) +H1u(k − 1) +H2u(k − 2) + · · ·+Hru(k − r). (A.6)

In terms of the forward-shift operator q, (A.6) can be rewritten as

z(k) = E1A
rq−rx(k) +

[

H1q
−1 +H2q

−2 + · · ·+Hrq
−r
]

u(k). (A.7)
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Shifting (A.7) forward by r steps gives

z(k + r) = E1A
rx(k) + pr(q)u(k), (A.8)

where

pr(q)
△
= H1q

r−1 +H2q
r−2 + · · · +Hr (A.9)

is the Markov parameter polynomial. For r < d, note that pr(q) = 0, whereas, if

r ≥ d, then

pr(q) = Hdq
r−d +Hd+1q

r−d−1 + · · · +Hr. (A.10)

The Markov parameter polynomial contains information about the system’s relative

degree and sign of the high-frequency gain in the case lu = lz = 1.

The following fact states that, for SISO transfer functions, the roots of the Markov

parameter polynomial include an estimate of each nonminimum-phase zero of the

transfer function from u to z. As r increases, this approximation improves.

Fact A.2.1. Consider lu = lz = 1 and let p be a zero of the transfer function from u

to z. For each r, let Rr
△
= {pr,1, . . . ,pr,r−d} be the set of roots of pr(q). Then, there

exists a sequence {pr,ir}∞r=1 that converges to p as r → ∞.

A.3 Time-Series Modeling

Consider the time-series representation of (A.1) - (A.3) from u to z, given by

z(k) =
n
∑

i=1

−αiz(k − i) +
n
∑

i=d

βiu(k − i), (A.11)
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where α1, . . . , αn ∈ R and βd, . . . , βn ∈ R
lz×lu . The transfer function matrix

Gzu(z)
△
= E1(zI −A)−1B from u to z can be equivalently represented by

Gzu(z) =
1

zn + α1zn−1 + · · ·+ αn

·
(

βdz
n−d + βd+1z

n−d−1 + · · ·+ βn
)

. (A.12)

It follows that βd = Hd.

Replacing k with k− 1 in (A.11) and substituting the resulting relation back into

(A.11) yields a 2-MARKOV model. Repeating this procedure r − 1 times yields the

r-MARKOV model from u to z of (A.1) - (A.3)

z(k) =

n
∑

i=1

αr,iz(k − r − i+ 1) +

r
∑

i=d

Hiu(k − i) +

n
∑

i=2

βr,iu(k − r − i+ 1), (A.13)

where, for i = 1 . . . n, the coefficients αr,i ∈ R and βr,i ∈ Rlz×lu are given by

α1,i
△
= −αi, β1,i

△
= βi,

...
...

αr,i
△
= αr−1,1α1,i + αr−1,i+1, βr,i

△
= αr−1,1β1,i + βr−1,i+1,

...
...

αr,n
△
= αr−1,1α1,n, βr,n

△
= αr−1,1β1,n.

(A.14)

Note that Hr = βr,1.

Equation (A.13) can be equivalently represented as the r-MARKOV transfer func-

tion

Gr,zu(z) =
1

zr+n−1 + αr,1zn−1 + · · ·+ αr,n

·
(

Hdz
r+n−d−1 + · · ·+Hr−1z

n + βr,1z
n−1 + · · ·+ βr,n

)

. (A.15)
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This system representation is nonminimal, overparameterized, order n + r − 1, and

the coefficients of the terms zn+r−2 through zn in the denominator are zero. It follows

that (A.15) can be rewritten as

Gr,zu(z) =
(zr−1 + α1,1z

r−2 + · · ·+ αr−1,1) ·
(

βdz
n−d + βd+1z

n−d−1 + · · · + βn
)

(zr−1 + α1,1zr−2 + · · ·+ αr−1,1) · (zn + α1zn−1 + · · ·+ αn)

=
Rr(z)

Rr(z)
·Gzu(z), (A.16)

where

Rr(z)
△
= zr−1 + α1,1z

r−2 + · · ·+ αr−1,1 (A.17)

is the ring polynomial.

Fact A.3.1 (SISO, zeros and ring). Consider lu = lz = 1 and let P (z) and Q(z)

denote the polynomials whose roots are the minimum-phase and nonminimum-phase

zeros from u to z, respectively, of (A.1)-(A.3). Then

roots
[

Hdz
r+n−d−1 + · · ·+Hr−1z

n + βr,1z
n−1 + · · ·+ βr,n

]

= roots [P (z)] ∪ roots [Q(z)] ∪ roots [Rr(z)] . (A.18)
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The Laurent series expansion of Gzu(z) about z = ∞ is given by

Gzu(z) = E1(zI − A)−1B

=
1

z
E1(I −

1

z
A)−1B

=

∞
∑

i=1

1

zi
E1A

i−1B

=
1

z
E1B +

1

z2
E1AB + · · ·

=
1

z
H1 +

1

z2
H2 + · · ·

=
1

zd
Hd +

1

zd+1
Hd+1 + · · ·

=
∞
∑

i=d

z−iHi. (A.19)

Truncating the numerator and denominator of (A.15) is equivalent to the r-th order

Laurent series expansion about z = ∞, given by

Ḡr,zu(z) =
1

zr+n−1
·
(

Hdz
r+n−d−1 + · · ·+Hr−1z

n + βr,1z
n−1
)

=
1

zr+n−1

(

Hdz
r+n−d−1 + · · ·+Hr−1z

n +Hrz
n−1
)

=
1

zr
(

Hdz
r−d + · · ·+Hr−1z +Hr

)

=

r
∑

i=d

z−iHi. (A.20)

Note that the numerator coefficients of the truncated transfer function (A.20) are

identical to the coefficients of the Markov parameter polynomial (A.10). The follow-

ing example and conjectures remark that, as r is increased, some roots of the Markov

parameter polynomial pr(q), and hence, the numerator of the truncated transfer func-

tion Ḡr,zu(z), approximate the locations of any nonminimum-phase zeros from u to

z of (A.1)-(A.3). The remaining roots are either located at the origin or form an

approximate ring close to a circle with radius equal to the spectral radius of the
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r rootsnmp(pr(q))

6 {0.94,-1.54}
8 {1.17,-1.50}
10 {1.21,-1.50}
15 {1.24,-1.50}
20 {1.25,-1.50}

Table A.1 Approximate nonminimum-phase zero locations obtained as roots of pr(q) as
a function of r for the stable, nonminimum-phase plant in Example A.3.1. As r increases,
the nonminimum-phase zeros are more accurately modeled.

dynamics matrix A.

Example A.3.1 (SISO, Nonminimum Phase, Stable Plant). Consider a plant

with poles {0.5 ± 0.5,−0.5 ± 0.5,±0.95,±0.7} and zeros {0.3 ± 0.7,−0.7 ±

0.3, 1.25,−1.5}. Table A.1 lists the approximated nonminimum-phase zero locations

obtained as roots of pr(q) as a function of r. Note that as r increases, the approxi-

mation of the nonminimum-phase zero locations improves.

Figure A.1 shows the roots of p20(q). The dotted line denotes sprad(A) = 0.95.

Note that the approximated nonminimum-phase zero locations are close to the true

locations. The remaining roots are either located at the origin or form an approximate

ring close to a circle with radius equal to the spectral radius of the dynamics matrix

A. �

It follows from Example A.3.1 that, for each finite value of r, the roots of the

Markov parameter polynomial pr(q) contain an approximation to the nonminimum-

phase zeros of Gzu(z). For increasing r, this approximation improves. In addition,

Markov parameters may not be known exactly and therefore must be estimated.

Hence, the estimated Markov parameters will introduce further error into the ap-

proximation of the nonminimum-phase zeros of Gzu(z). Future work includes a study

of sensitivity of the nonminimum-phase zero information to the number of Markov

parameters in pr(q) as well as the Markov parameter estimation error.
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Figure A.1 Roots of p20(q) for the stable, nonminimum-phase plant in Example A.3.1.
The dotted line denotes sprad(A) = 0.95. Note that the approximated nonminimum-phase
zero locations are close to the true locations. The remaining roots are either located at the
origin or form an approximate ring close to a circle with radius equal to the spectral radius
of the dynamics matrix A.

Conjecture A.3.1 (SISO, stable, truncated polynomial). Consider lu = lz = 1,

‖λmax(A)‖ < 1, and let P (z) and Q(z) denote the polynomials whose roots are the

minimum-phase and nonminimum-phase zeros from u to z, respectively, of (A.1)-

(A.3).

If max(abs(roots [P (z)])) < ‖λmax(A)‖, then

lim
r→∞

roots
[

Hdz
r+n−d−1 + · · ·+Hr−1z

n + βr,1z
n−1
]

= roots [Q(z)] ∪ roots
[

R̄r(z)
]

∪ 0n−1, (A.21)

where R̄r(z) is a perturbed ring polynomial. The nonminimum phase zeros are

retained while the remaining roots are either located at the origin or form an ap-

proximate ring close to a circle with radius equal to the spectral radius of A. A total

of n− 1 roots are located at the origin.
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Otherwise, if max(abs(roots [P (z)])) > ‖λmax(A)‖, then

lim
r→∞

roots
[

Hdz
r+n−d−1 + · · · +Hr−1z

n + βr,1z
n−1
]

= roots [Q(z)] ∪ roots
[

P̄ (z)
]

∪ roots
[

¯̄Rr(z)
]

∪ 0n−1, (A.22)

where P̄ (z) is a subset of P (z) containing all roots pi of P (z) such that, for

i = 1 . . . np̄, ‖pi‖ > ‖λmax(A)‖, and ¯̄Rr(z) is another perturbed ring polynomial. The

nonminimum-phase zeros, as well as any minimum-phase zeros whose magnitude is

greater than ‖λmax(A)‖, are retained, while the remaining roots are either located

at the origin or form an approximate ring close to a circle with radius equal to the

spectral radius of A. A total of n− 1 roots are located at the origin.

Conjecture A.3.2 (SISO, unstable, truncated polynomial). Consider lu = lz = 1,

‖λmax(A)‖ > 1, and let P (z) and Q(z) denote the polynomials whose roots are the

minimum-phase and nonminimum-phase zeros from u to z, respectively, of (A.1)-

(A.3).

If max(abs(roots [Q(z)])) < ‖λmax(A)‖, then

lim
r→∞

roots
[

Hdz
r+n−d−1 + · · ·+Hr−1z

n + βr,1z
n−1
]

= roots
[

R̄r(z)
]

∪ 0n−1, (A.23)

where R̄r(z) is a perturbed ring polynomial. The nonminimum-phase zeros are not

retained. The roots are either located at the origin or form an approximate ring close

to a circle with radius equal to the spectral radius of A. A total of n − 1 roots are

located at the origin.
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Otherwise, if max(abs(roots [Q(z)])) > ‖λmax(A)‖, then

lim
r→∞

roots
[

Hdz
r+n−d−1 + · · ·+Hr−1z

n + βr,1z
n−1
]

= roots
[

Q̄(z)
]

∪ roots
[

¯̄Rr(z)
]

∪ 0n−1, (A.24)

where Q̄(z) is a subset of Q(z) containing all roots qi of Q(z) such that, for

i = 1 . . . nq̄, ‖qi‖ > ‖λmax(A)‖, and ¯̄Rr(z) is another perturbed ring polynomial. The

nonminimum-phase zeros whose magnitude is greater than ‖λmax(A)‖ are retained,

while the remaining roots are either located at the origin or form an approximate ring

close to a circle with radius equal to the spectral radius of A. A total of n − 1 roots

are located at the origin.

Conjecture A.3.3 (SISO, truncated ring polynomial). Consider lu = lz = 1 and

let R̄r(z) denote a perturbed ring polynomial, obtained as above. For each r, let

R̄r
△
= {zr,1, . . . , zr,r−1} be the set of roots of R̄r(z). Then, for each i = 1, . . . , r − 1,

the sequence {zr,i}∞r=1 converges to ‖λmax(A)‖ as r → ∞, that is, as r → ∞, the

radius of each root zr,i of the perturbed ring polynomial R̄r(z) approaches the spectral

radius of the dynamics matrix A.
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[8] K. J. Åström, P. Hagander, and J. Sternby. Zeros of sampled systems. Auto-
matica, 20:31–38, 1984.

[9] E. W. Bai and S. S. Sastry. Persistency of excitation, sufficient richness and
parameter convergence in discrete-time adaptive control. Sys. Contr. Lett., 6:
153–163, 1985.

[10] D. S. Bayard. Extended horizon liftings for stable inversion of nonminimum-
phase systems. IEEE Trans. Autom. Contr., 39:1333–1338, 1994.

[11] D. S. Bayard. Stable direct adaptive periodic control using only plant order
knowledge. Int. J. Adaptive Contr. Signal Processing, 10:551–570, 1996.

[12] D. S. Bayard and D. Boussalis. Noncolocated structural vibration suppression
using zero annihilation periodic control. In Proc. Conf. Contr. Appl., pages
141–146, Vancouver, B.C., 1993.

177



[13] D. S. Bernstein. Some open problems in matrix theory arising in linear systems
and control. Linear Algebra and Its Applications, 162-164:409–432, 1992.

[14] D. S. Bernstein. Matrix Mathematics. Princeton University Press, 2005.

[15] D. S. Bernstein. Matrix Mathematics. Princeton University Press, 2nd edition,
2009.

[16] R. R. Bitmead, M. Gevers, and V. Wertz. Adaptive Optimal Control: The
Thinking Man’s GPC. Prentice Hall, Victoria, Australia, 1990.
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