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ABSTRACT

Some Topics in Missing Data and Adaptive Confidence Intervals

by
Yan Zhou

Co-Chairs: John D. Kalbfleisch and Roderick J. Little

When data are missing at random, the missing-data mechanism can be ignored

but this assumption is not always intuitive for general patterns of missing data. In

part I, we consider maximum likelihood (ML) estimation for a non-ignorable mecha-

nism which is called almost missing at random (AMAR). We examine in some detail

the case of two multinomially distributed categorical variables X and Y, for which X

is missing completely at random and Y is MAR given the value and missingness of X.

In this case, although ML can be fitted using the EM algorithm, we find non-iterative

ML estimates sometimes exist, with some data being excluded for estimating the pa-

rameters of interest. A variation of this type of mechanism is also discussed. We

apply the AMAR models to data from the Muscatine Coronary Risk Factor Study

(Woolson and Clark, 1984).

In part II, we consider one extension of AMAR. Besides two variables with miss-

ing values, there is an additional fully observed covariate. Specifically, we consider

randomized clinical trials when there is non-compliance with the assigned treatment

and subsequent non-response. We build a connection between AMAR and latent

ignorability (Frangakis and Rubin, 1999). To identify the model, we further specify

two assumptions for principal compliance and two assumptions for missingness of
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the outcome. In each of four scenarios defined by combinations of these assump-

tions, we derive ML estimates by using the EM algorithm, as well as non-iterative

ML estimates by implementing pattern-mixture models with covariates (Little and

Wang, 1996). The later approach shows that, under certain conditions, the method-

of-moments estimates are also ML estimates. We show that the models for principal

compliance determine which type of analysis is used to estimate treatment efficacy,

per-protocol analysis or IV estimation with the treatment assignment indicator as the

instrumental variable. On the other hand, we show that the assumptions for missing

outcome determine whether non-iterative ML estimates exist or not. We apply our

methods to data from a double-blinded randomized clinical trial with clozapine vs.

haloperidol for patients with refractory schizophrenia. (Rosenheck et al, 1997).

In part III, we consider the combination of bootstrap and Bayes inferences. In

the case of independent identically distributed samples, the simple bootstrap yields

confidence limits that are asymptotically correct to the first order but have less

reliable confidence coverage in small samples. Bayesian credibility intervals based on

the posterior distribution of the model parameters tend to perform better for small

samples, but are more dependent on modeling assumptions than the bootstrap. A

discrepancy statistic based on the difference of model and bootstrap estimates of

variance is developed to combine bootstrap and Bayesian inferences. Our goal is to

achieve a compromise that combines the advantages of those two methods, yielding

intervals that combine robustness with good small-sample confidence coverage. We

assess properties of our method by some simple simulation experiments which show

some promise for the proposed method.
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CHAPTER I

Introduction

In observational studies and clinical trials, missing data may arise for many

reasons. For example, in a cross-sectional study relying on a survey, subjects may

refuse to participate in the entire study or may not answer certain questions in the

questionnaire. In a longitudinal study, participants may drop out from follow-up

data collections. In a clinical trial testing the efficacy of a new drug, patients may

not continue the trial due to severe side effects or other reasons. To yield efficient

estimators and valid inferences, it is important to take account of the missing data

in the analysis.

Many methods have been developed to deal with missing information. A simple

approach is complete case (CC) analysis, which deletes units with any missing values,

and therefore loses the information contained in the deleted cases. CC analysis is a

default option in many statistical packages, however, it is inefficient and potentially

biased, especially if the subjects included in the analysis are systematically different

from those excluded in terms of one or more key variables. Another ad hoc approach

is available case (AC) analysis, where restricts the analysis to the cases with variables

of interest present. AC analysis uses all the available cases, its disadvantage is that

the sample base changes from variable to variable according to the pattern of missing

data.

1
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With the loss of information contained in the deleted cases, both CC analysis

and AC analysis yield less efficient estimators. To make full use of observed infor-

mation, parametric approaches can be developed to deal with missing data, such as

the maximum likelihood (ML) method, fully Bayesian (FB) method, and multiple

imputation (MI). Unlike ad hoc approaches, parametric methods require an addi-

tional specification of a distribution for variables with missing values and/or the

specification of the mechanisms that generate the missing values.

The ML method is based on the likelihood constructed from the observed in-

complete data. This method has a long history: the earliest reference seems to be

McKendrick (1926), where an algorithm similar to the Expectation-Maximization

(EM) algorithm (Dempster, Laird and Rubin, 1977) is used to obtain estimates from

a sample with missing values. The EM algorithm is a popular approach to max-

imizing the observed data likelihood. Each iteration of EM consists of an E step

(expectation step) and an M step (maximization step). Each step has a direct sta-

tistical interpretation and is easy to construct conceptually and computationally.

The EM algorithm is shown to converge reliably, in the sense that under general

conditions, it converges to a local maximum or saddle point of the loglikelihood of

the observed data, however, its convergence rate can be painfully slow when there

is a large proportion of missing values. Another disadvantage of the EM algorithm

is that the M step has no closed form in some problems. When the M step of the

EM algorithm is iterative, several methods have been developed to modify the M

step, such as the ECM (Expectation Conditional Maximization) algorithm (Meng

and Rubin, 1993), the ECME (Expectation Conditional Maximization Either) algo-

rithm (Liu and Rubin, 1994) and the AECM (Alternating Expectation Conditional

Maximization) algorithm (Meng and van Dyk, 1997). A detailed discussion of the

ML method and the EM algorithm can be found in Little and Rubin (2002). The
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EM algorithm has broad applications. For example, it is useful to fit contingency

tables with supplemental margins (Chen and Fienberg, 1974; Fuchs, 1982; Baker

and Laird, 1985; Fay, 1986; Rubin, Stern and Vehovar, 1996; Little and Rubin, 2002,

Section 15.7).

The FB method for missing data involves specifying priors for all parameters in

the modeling as well as specifying the distribution for variables with missing values.

The missing variables are then sampled from their posterior predictive distributions

via Markov Chain Monte Carlo (MCMC) method or Gibbs’ sampler. Compared to

the case without missing variables, FB with missing variables needs to incorporate an

extra layer in the Gibbs step. Thus, the Bayesian method can easily accommodate

missing data without requiring new techniques for inference. The ML method is

actually connected with the FB method, in that, ML can be viewed as a large sample

Bayesian method and the Bayesian method using uniform priors on all parameters

leads to ML estimates as modal Bayesian estimates.

MI originates from the Bayesian method. It involves creating multiple complete

data sets by filling in values for the missing data. Then, each filled-in data set is

analyzed as if it were a complete data set. The inferences for the filled-in data sets

are then combined into one result by Rubin’s combination rules (Rubin, 1978, 1987,

1996; Rubin and Schenker, 1986; Barnard and Rubin, 1999).

All these approaches need certain assumptions about why data are missing. The

missing-data mechanism concerns whether and/or how the missingness depends on

the values of variables in the data set. Let Z = (Zij) denote a rectangular n×p data

set; the ith row is Zi = (Zi1, . . . , Zip), where Zij is the jth variable for subject i. Let

M = (Mij) be a missing data indicator matrix with the ith row Mi = (Mi1, . . . ,Mip),

such that Mij is 1 if Zij is missing and Mij is 0 if Zij is present. We assume that
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(Zi,Mi), i = 1, . . . , n are independent throughout the paper. Rubin (1976a) treated

M as a random matrix and described the missing-data mechanism by the conditional

distribution of M given Z, say f(M |Z, ψ), where ψ denotes unknown parameters.

When missingness does not depend on the values of the data Z, missing or observed,

that is, if

f(M |Z, ψ) = f(M |ψ) for all Z, ψ,

the data are called missing completely at random (MCAR). If missingness depends

only on the observed values Zobs, and not on the missing values Zmis. That is,

f(M |Z, ψ) = f(M |Zobs, ψ) for all Zmis, ψ,

then the missing-data mechanism is called missing at random (MAR). If the distri-

bution of M depends on the missing values in the data matrix Z, then the data are

called not missing at random (NMAR). It is useful to distinguish the missing-data

mechanism and the missing-data pattern, defined by M , which describes which val-

ues are observed and which values are missing in the data matrix. Many methods of

handling missing data assume missingness is MCAR or MAR. If this is assumed, the

missing-data mechanism can be ignored and we only need the observed data Zobs to

derive inferences. However, these inferences are subject to bias when the data are

not MAR. In the dissertation, we consider the ML method for a NMAR mechanism

we call almost missing at random (AMAR), which is close to MAR and realistic in

some settings.

There are two ways to specify the joint distribution of Z and M . Selection

models specify

p(Z,M |θ, ψ) = p(Z|θ)p(M |Z,ψ)

where p(Z|θ) and p(M |Z, ψ) represent the models for complete data and the missing-

data mechanism respectively, and θ is the parameter of interest. Pattern-mixture
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models specify

p(Z,M |ϕ, π) = p(Z|M,ϕ)p(M |π)

where Z is conditionally distributed on the missing-data pattern M , and (ϕ, π) are

unknown parameters. Noting that the resulting marginal distribution of Z is a mix-

ture of distributions, Glynn, Laird and Rubin (1986, 1993) used the term “mixture”

for this kind of model, while Little (1993, 1994) used term “pattern-mixture” to re-

flect these models, where “pattern” is added to make the nature of the mixing more

explicit. When data are MCAR, these two specifications are equivalent if θ = ϕ and

ψ = π. When data are not MCAR, they can yield different models providing addi-

tional assumptions are added. ML for selection models requires numerical methods

such as EM algorithm, whereas additional conditions are often needed to identify

pattern-mixture models.

For missing data with a monotone pattern, where variables can be arranged

so that Zj+1, . . . , ZP are missing for cases with Zj missing, for all j = 1, . . . , P − 1,

the definition of MAR is intuitive. For example, in longitudinal studies collecting

information on a set of subjects repeatedly over time, a common reason for missing

data is attrition, where subjects drop out prior to the end of the study and do not

return. The missing-data mechanism is MAR provided the missingness of Zj depends

only on the previous recorded history, that is on observed values of (Z1, ..., Zj−1) (and

fully observed baseline covariates, if they exist). Methods for handling monotone

missing data can be easier than methods for general patterns, as shown in Little and

Rubin (2002, Chapter 7) where inferences are made from factored likelihood methods.

When the data do not have a monotone pattern, many existing analyses assume

MAR, thus they do not need to additionally model the missing-data mechanism to

derive the inferences (Ibrahim, 1990; Ibrahim, Chen and Lipsitz, 1999; Lipsitz and

Ibrahim, 1996; Lipsitz, Ibrahim, and Fitzmaurice, 1999; Stubbendick and Ibrahim,
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2003). However, it is less intuitive to define MAR for general pattern missing data.

For example, in longitudinal data with two variables Z1 and Z2, where Z1 is recorded

followed by Z2, and both of two variables have missing values, MAR assumes that

missingness of Z2 given that Z1 is observed depends only on Z1 and missingness of

Z1 given that Z2 is observed depends only on the value of Z2. Since the missingness

of Z1 depends on Z2 measured at a later time, it is not intuitive from a causal

perspective (Little and Rubin, 2002, Example 1.13). In the dissertation, we consider

an interesting missing-data mechanism that is NMAR but is similar in some respects

to MAR mechanisms for two variables with a general missing-data pattern. We

assume Z1 is MCAR, and the missingness of following Z2 depends on the value of

Z1 and on whether Z1 is missing or not. Since the missingness of Z2 can depend

on the value of Z1 even when it is not observed, this missing-data mechanism is

NMAR. If Z1 were fully observed, it would be MAR. For this reason, we refer to this

missing-data mechanism as almost MAR, or AMAR.

There appears to be very little existing literature on missing-data mechanisms

of the type considered here; most of the work on NMAR mechanisms concerns the

situation where missingness depends directly on outcomes of interest, or on latent

variables such as the slope of a repeatedly measured variable (e.g. Little and Rubin

2002, chapter 15). Perhaps the closest work to that presented here is latent ignorable

missing-data mechanisms proposed by Frangakis and Rubin (1999) to model missing

data in a randomized clinical trial with noncompliance to the treatment assignments.

Non-compliance is a common issue in randomized clinical trails involving human

subjects. It is often associated with the effects of treatments, and may vary accord-

ing to participant characteristics. For example, in psychiatric trials, subjects’ mental

health conditions may affect their ability or willingness to comply with study pro-

tocols. A standard intention-to-treat (ITT) analysis compares the difference in out-
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come distributions based on treatment assignments (T ). By ignoring non-compliance

information, it only provide a valid measurement of the effect of the treatment assign-

ment, not treatment efficacy which is the effect of the treatment itself. To estimate

treatment efficacy, information of non-compliance has to be incorporated into the

analysis. Here we consider principal compliance instead of observed compliance,

which concerns only whether a participant complied with the treatment assignment.

Principal compliance (C) is a special case of principal stratification (Frangakis and

Rubin 2002), where individuals are stratified according to the values of the post-

treatment variable (such as compliance) under both treatments, rather than simply

under the treatment actually assigned. Principal compliance stratifies the population

into three groups. Compliers who take their assigned treatment, never-takers who

take the control treatment no matter which treatment they are assigned, always-

takers who take the active treatment whether they are assigned the active or control

treatment. We assume there are no defiers who take the opposite to the treatment

assigned. In the two-arm (active treatment vs. control treatment) randomized clini-

cal trials we consider, participants in the active treatment group may switch to take

the control treatment, therefore, they are observed to be either principal compliers or

never-takers. On the other hand, participants in the control group don’t have access

to the active treatment, and whether they are principal compliers or never-takers is

not observed/unknown. Besides missing principal compliance for those in the control

group, analyzing randomized clinical trials may be further complicated with conse-

quent missing outcomes due to loss to follow-up or non-response. Researchers have

only recently started to develop methods for handling both non-compliance and sub-

sequent nonresponses in the same study (Frangakis and Rubin, 1999; Levy, O’Malley

and Normand, 2004; O’Malley and Normand, 2005; Peng, Little and Raghunathan,

2004; Zhou and Li, 2006). Under assumptions of latent ignorability (outcomes are

missing at random conditional on latent compliance status and treatment assign-
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ments) and compound exclusion restrictions (the missingness and potential values of

outcomes are independent of treatment assignments for never-takers), Frangakis and

Rubin (1999) proposed a method-of-moments (MOM) estimator. Under the same

assumptions, Zhou and Li (2006) derived ML estimates when the outcome is binary

and O’Malley and Normand (2005) obtained ML estimators for normal distributed

outcomes using an EM algorithm.

In chapter II, we examine in some detail a special case of AMAR for bivariate

categorical data assumed to have a multinomial distribution. EM can always be

implemented to seek the ML estimates, however, when the number of levels of Z1 is

equal to or greater than that of Z2 and the closed form ‘estimates’ of certain nui-

sance parameters lie inside their admissible range [0, 1], non-iterative ML estimates

(obtained from the pattern-mixture model) exist, with some data being excluded for

estimating the parameters of interest. We also introduce a restricted version of the

AMAR model where the missingness of Z2 depends on Z1 but not on the missingness

of Z1. We present some numerical examples to illustrate when explicit ML estimates

exist for the parameters in the AMAR models and apply the AMAR models to data

from the Muscatine coronary risk factor study (Woolson and Clark, 1984).

In chapter III, we consider one extension of AMAR. Besides two variables with

missing values, there is an additional fully observed covariate. Specifically, we con-

sider randomized clinical trials with non-compliance to the treatment assignments

and subsequent non-response (Y ). We build a connection between latent ignorabil-

ity and AMAR. To identify the model, we further specify two models for principal

compliance, ER (exclusion restriction which indicates there is no effect of T on the

distribution of Y for never-takers) or NCEC (none compliance effect in controls

which implies the distribution of Y is same for compliers and never-takers in the

control group), and two models for missing outcome, ER (there is no effect of T
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on missingness of Y for never-takers) or NCEC (there is no effect of C on missing-

ness of Y for participants in the control group). We consider all four combinations

for a clinical trial with a categorical outcome. Both complier average causal effect

(CACE) or ITT estimands can be viewed as outputs from these models. By ap-

plying the pattern-mixture model with covariates (Little and Wang, 1996), we show

non-iterative ML estimates sometimes exist in each combination. We find the mod-

els of principal compliance determine which analysis is used to estimate treatment

efficacy, such as per-protocol analysis or IV estimation with the treatment assign-

ment indicator as the instrumental variable, whereas the models of missing outcome

decide whether non-iterative ML estimates exist or not. We apply our methods to

analyze the data from a double-blinded randomized clinical trials with clozapine vs.

haloperidol (Rosenheck et al, 1997).

In chapter IV, we consider a different topic in adaptive confidence intervals.

By eliminating the routine but tedious theoretical calculations usually associated

with precision assessment, Bootstrap methods (e.g. Efron, 1979, 1981, 1982) provide

tools that can be used to set confidence intervals in complex problems. However,

they yield confidence limits that are asymptotically correct to the first order, there-

fore perform poorly in some small sample problems, such as setting a confidence

interval for the variance (Schenker, 1985). Bayesian credibility intervals based on

the posterior distribution of the model parameters tend to perform better for small

samples, but are more dependent on modeling assumptions than the bootstrap. In

this chapter, based on the difference of model and bootstrap estimates of variance,

we introduce a discrepancy statistic and construct a function of its posterior predic-

tive p-value (Guttman, 1967; Rubin, 1981, 1984) to combine bootstrap and Bayesian

inferences. The goal is to achieve a compromise that combines the advantages of

those two methods, yielding intervals with robustness and good small-sample con-



10

fidence coverage. We assess properties of our method by some simple simulation

experiments. We conclude the dissertation with a short discussion and future work

in chapter V.



CHAPTER II

Likelihood Method for Data with Almost MAR Mechanisms

Abstract EM is a simple and intuitive algorithm for maximum likelihood estima-

tion for contingency tables with missing data. The missing data mechanism can be

ignored when the data are missing at random, but this assumption is not always in-

tuitive for general patterns of missing data. We consider maximum likelihood (ML)

estimation for a nonignorable mechanism we call almost missing at random (AMAR),

which is close to missing at random and realistic in some settings. We examine in

some detail the case of two multinomially distributed categorical variables X and Y,

for which X is missing completely at random and Y is MAR given the value and miss-

ingness of X. In this case, ML can be fitted using EM when ML estimates are at the

boundary of the parameter space, but otherwise (rather surprisingly) non-iterative

ML estimates exist, with some data being excluded for estimating the parameters

of interest. Extensions of this type of mechanism are also discussed. We apply the

AMAR models to data from the Muscatine coronary risk factor study.

keywords: missing data, EM algorithm, categorical data, almost MAR mechanism.

11
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2.1 Introduction

Missing values arise in empirical studies for many reasons, including the un-

availability of the measurements, survey nonresponse, respondents refusing to answer

certain items on a questionnaire, and attrition in longitudinal studies. Complete case

(CC) analysis, which omits information in the cases with missing values, is inefficient

and potentially biased, especially if the subjects included in the analysis are system-

atically different from those excluded in terms of one or more key variables. Ap-

proaches that incorporate information in the incomplete cases include nonresponse

weighting (Little and Rubin 2002, chapter 3); multiple imputation (MI), where miss-

ing values are replaced by several plausible values (Rubin 1987; Little and Rubin

2002, chapter 5); weighted estimating equation (WEE) methods (Lipsitz, Ibrahim

and Zhao, 1999); and methods based on the likelihood for a model for the data, such

as maximum likelihood (ML) or fully Bayes modeling. We focus here on the ML

approach.

The performance of alternative missing-data methods depends on the missing-

data mechanism, which concerns why values are missing, and in particular, whether

the missingness depends on the values of variables in the data set. Rubin (1976a)

formalized the concept of missing-data mechanisms by treating the missing-data

indicators as random variables and assigning them a distribution. Let Z = (Zij)

denote a rectangular n × p data set; the ith row is Zi = (Zi1, . . . , Zip), where Zij is

the jth observation for subject i. Let M = (Mij) be a missing data indicator matrix

with the ith row Mi = (Mi1, . . . , Mip), such that Mij is 1 if Zij is missing and Mij is

0 if Zij is present. We assume that (Zi, Mi), i = 1, . . . , n are independent throughout

the paper. The missing-data mechanism is then characterized by the conditional

distribution of M given Z, say f(M |Z, ψ), where ψ denotes unknown parameters.

When missingness does not depend on the values of the data Z, missing or observed,
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that is, if

f(M |Z, ψ) = f(M |ψ) for all Z, ψ,

the data are called missing completely at random (MCAR). With the exception

of planned missing-data designs, MCAR is a strong assumption, and missingness

often depends on the observed (or unobserved) data. Let Zobs denote the observed

component of Z and Zmis the missing component. A less restrictive assumption is

that missingness depends only on the observed values Zobs, and not on the missing

values Zmis. That is,

f(M |Z, ψ) = f(M |Zobs, ψ) for all Zmis, ψ..

The missing-data mechanism is then called missing at random (MAR). The mecha-

nism is called not missing at random (NMAR) if the distribution of M depends on

the missing values in the data matrix Z.

In general, the actual observed data consist of the values of the variables

(Zobs,M) and the distribution of the observed data is obtained by integrating Zmis

out of the joint density of Z = (Zobs, Zmis) and M . That is,

f(Zobs,M |θ, ψ) =

∫
f(Zobs, Zmis|θ)f(M |Zobs, Zmis, ψ)dZmis. (2.1)

where θ is the vector of parameters in the distribution of Z to be estimated. The

full likelihood of θ and ψ is any function of θ and ψ proportional to (2.1):

Lfull(θ, ψ|Zobs,M) ∝ f(Zobs, M |θ, ψ).

If the missing mechanism is ignorable, that is, if the mechanism is MAR and θ and

ψ are distinct, in the sense that (θ, ψ) ∈ Θ×Ψ where Θ and Ψ are parameter spaces,

then likelihood based inferences for θ from Lfull(θ, ψ|Zobs,M) will be the same as

likelihood based inferences for θ from Lign(θ|Zobs), the likelihood of θ based on the

observed data Zobs (Rubin, 1976a). Many methods of handling missing data assume
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missingness is MCAR or MAR. If this is assumed, the missing-data mechanism can

be ignored and we only need the observed data Zobs to derive the likelihood-based

inferences for θ. However, these inferences are subject to bias when the data are not

MAR.

The focus of this chapter is on ML methods for categorical Z where the complete

cases form a p-way contingency table, and the incomplete cases form supplemental

margins (see for example Little and Rubin 2002, Chapter 13). The EM algorithm, the

topic of this special issue, is particularly appealing for incomplete categorical data,

since the natural distributions for modeling count data, the Poisson and multinomial

distributions, yield complete data loglikelihoods that are in the exponential family

and are linear in the cell counts. Consequently, the E step of EM consists of replacing

the complete-data cell counts by conditional expectations given the observed data, in

effect distributing the supplemental margins into the full table according to current

estimates of the cell probabilities. The M step of EM is the same as complete-data ML

estimation based on the data filled in by the E step. This approach to estimation for

count data with some grouped counts was first established as ML by Hartley (1958).

The application to a (2x2) table with supplemental margins was considered by Chen

and Fienberg (1974), and extended to the general class of loglinear models by Fuchs

(1982).

When the M step of EM is iterative, standard EM involves a double iteration,

with the M step being achieved by the Deming Stephan algorithm, otherwise known

as iterative proportional fitting (e.g. Bishop, Fienberg and Holland, 1975). If the

M step is restricted to just one iteration of Deming-Stephan, the likelihood function

is increased, and hence the result is an example of the ECM algorithm (Meng and

Rubin, 1993), a form of generalized EM algorithm that shares similar theoretical

properties to EM with a single iterative loop. EM is also useful for fitting nonignor-
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able models for contingency tables (Baker and Laird, 1985; Fay, 1986: Rubin, Stern

and Vehovar, 1996; Little and Rubin, 2002, Section 15.7). In this article we present

ML results for some interesting missing data mechanisms that are nonignorable but

are similar in some respects to MAR mechanisms. ML for these models is sometimes

noniterative, but can be fitted using EM when ML estimates are at the boundary of

the parameter space.

The definition of MAR is intuitive for monotone patterns, where variables can

be arranged so that Zj−1 is observed whenever Zj is observed, for all j = 1, . . . , p. An

important example is longitudinal data subject to attrition, where the mechanism is

MAR provided the missingness of Zj depends only on the previous recorded history,

that is on observed values of (Z1, ..., Zj−1) (and fully observed baseline covariates, if

they exist). The point of departure for our work is the observation that when the data

do not have a monotone pattern, the MAR definition is less intuitive. For example,

consider longitudinal data on two variables Z1 and Z2, where Z1 is recorded and then

Z2, and both Z1 and Z2 have missing values; MAR corresponds to the assumption

that missingness of Z2 given that Z1 is observed depends only on Z1 and missingness

of Z1 given that Z2 is observed depends only on the value of Z2. The latter is not

intuitive from a causal perspective, since it implies that missingness of Z1 depends

on a variable measured at a later time (Little and Rubin, 2002, Example 1.13).

Other mechanisms may correspond more closely to our intuitive notion of ran-

dom missingness. In particular, we consider here the situation, again with bivariate

data (Z1, Z2) where Z1 is MCAR, and missingness of Z2 depends on the value of Z1

and on whether Z1 is missing. Although this mechanism seems MAR-like, it does not

meet the formal definition of MAR, since missingness of Z2 can depend on the value

of Z1 even when it is not observed. For want of a better label, we call this mechanism

“almost MAR”(AMAR), since it would be MAR if Z1 were fully observed, and the
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missing values of Z1 are themselves MCAR.

In section 2.2, we consider ML estimation for this AMAR mechanism, for the

special case of bivariate categorical data assumed to have a multinomial distribution.

The results are surprising. In particular, we show that in many situations, explicit

ML estimates are available that exclude the data with Z1 missing and estimate the

parameters of the joint distribution of (Z1, Z2) from the resulting monotone pattern.

However, when the closed form ‘estimates’ of certain nuisance parameters lie outside

their admissible range [0, 1], the data with Z1 missing enter into the estimation! In

section 2.3, a restricted version of the AMAR model is introduced where missingness

of Z2 depends on Z1 but not on whether Z1 is missing. Some numerical examples

are presented in section 2.4 to illustrate when explicit ML estimates exist for the

parameters in the AMAR models. A real data example is given in section 2.5, and

some concluding remarks on extensions of this AMAR model are made in section

2.6.

2.2 Unrestricted AMAR model

We consider data where X and Y are categorical variables respectively with J

and K categories. Both X and Y may be missing, so there are four missing-data

patterns. Let r = 0, 1, 2, 3 index the missing-data patterns and let Pr denote the set

of sample cases with pattern type r, r = 0, . . . , 3 (see Table 2.1). Let nr denote the

number of cases in the sample with pattern r and n =
∑

r nr denote the total sample

size.

For categorical X and Y with J and K levels, data in P0 can be arranged as a J ×K

contingency table, and the data in P1 and P2 form supplemental J × 1 and 1 × K

margins. Let n(0),jk be the count of complete cases with X = j, Y = k, n(1),j+ be the
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Table 2.1: Missing-Data Pattern for Two Variables

Pattern
P0

P1 ?
P2 ?
P3 ? ?

count of cases with X = j and Y missing, n(2),+k be the count of cases with Y = k

and X missing, and n(3),++ be the count of cases with both X and Y missing. The

data are displayed in Table 2.2. Note that n0 =
∑J

j=1

∑K
k=1 n(0),jk, n1 =

∑J
j=1 n(1),j+,

n2 =
∑K

k=1 n(2),+k, and n3 = n(3),++.

Table 2.2: Notation for a J×K Table with Supplemental Margins for Both Variables

Y
1 2 ... ... K missing

1 n(0),11 n(0),12 ... ... n(0),1K n(1),1+

2 n(0),21 n(0),22 ... ... n(0),2K n(1),2+

X
...

...
...

...
...

...
...

J n(0),J1 n(0),J2 ... ... n(0),JK n(1),J+

missing n(2),+1 n(2),+2 ... ... n(2),+K n(3),++

The parameters of interest are θ = {θjk}, where θjk = P (X = j, Y = k) with

∑J
j=1

∑K
k=1 θjk = 1. The MAR assumption for these data implies that

P (MX = MY = 1|X = j, Y = k) = υ,

P (MY = 1, MX = 0|X = j, Y = k) = υ
(0)
j ,

P (MX = 1,MY = 0|X = j, Y = k) = υ
(1)
k ,

P (MX = MY = 0|X = j, Y = k) = 1− υ − υ
(0)
j − υ

(1)
k .

where 1 ≤ j ≤ J, 1 ≤ k ≤ K (See Little and Rubin 2002, Example 1.19). In this

case, υ = {υ, υ
(0)
j , υ

(1)
k } represent nuisance parameters for the missing-data mecha-

nism. Under MAR, the likelihood factors into distinct components of θ and υ; ML

estimation of θ under MAR involves all the observed data and requires an iterative

algorithm such as EM (Little and Rubin 2002, Chapter 13).
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We consider as an alternative to MAR the following AMAR model, which

incorporates the assumption that X is MCAR and missingness of Y depends on X

and MX :

P (MX = 1|X = j, Y = k) = φ,

P (MY = 1|MX = 0, X = j, Y = k) = φ
(0)
j ,

P (MY = 1|MX = 1, X = j, Y = k) = φ
(1)
j . (2.2)

where 1 ≤ j ≤ J, 1 ≤ k ≤ K. Here ψ = {φ, φ
(0)
j , φ

(1)
j } are nuisance parameters

corresponding to the missing-data mechanism. The number of the parameters in

this model is JK + 2J , whereas the degrees of freedom of the data are JK + J + K,

which comprises JK for the complete cases, plus J for the supplemental margin on

X, plus K for the supplemental margin on Y , plus 1 for the number of cases with

X and Y both missing, minus 1 for the total which is considered fixed at n. When

J = K, the model has the same number of parameters as degrees of freedom in the

data; otherwise, the model has more parameters for J > K or fewer for J < K.

Note that if φ
(1)
j = φ(1) does not depend on j, this reduces to a restricted MAR

model in which X is MCAR and missingness of Y may depend on the observed

values of X and MX . A likelihood ratio test could be used to test this restricted

MAR assumption against the more general AMAR model. Another submodel of

interest is discussed in Section 3.

2.2.1 EM algorithm

The likelihood for the above model has the form:

L(θ, ψ|Xobs, Yobs,M) =
∑
Xmis

∑
Ymis

{
n∏

i=1

p(Xi, Yi|θ)p(MX
i |Xi, Yi, φ)

p(MY
i |MX

i , Xi, Yi, φ
(0)
j , φ

(1)
j )

}
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=
∑
Xmis

∑
Ymis

{
n∏

i=1

J, K∏

j, k=1

θ
I(Xi=j,Yi=k)
jk φI(MX

i =1)(1− φ)I(MX
i =0)

J∏
j=1

φ
(0)
j

I(MX
i =0,Xi=j,MY

i =1)
(1− φ

(0)
j )I(MX

i =0,Xi=j,MY
i =0)

J∏
j=1

φ
(1)
j

I(MX
i =1,Xi=j,MY

i =1)
(1− φ

(1)
j )I(MX

i =1,Xi=j,MY
i =0)

}
.

where I(.) is the indicator function and MX
i ,MY

i are the missing indicators for

variable X and Y in case i respectively.

As for the general MAR mechanism, one approach to ML estimation is to

apply the EM algorithm (Dempster, Laird and Rubin, 1977). To define the E step

of EM, let (θ
(t)
jk , φ

(1)
j

(t)
) denote the parameter estimates at iteration t, and n

(t)
(r),jk be

the estimate of cell frequency for X = j, Y = k in pattern Pr. The E step distributes

the partially classified observations into the table according to the corresponding

probabilities:

n
(t)
(1),jk = n(1),j+ ·

θ
(t)
jk

θ
(t)
j+

,

n
(t)
(2),jk = n(2),+k ·

(1− φ
(1)
j

(t)
)θ

(t)
jk

∑J
j=1(1− φ

(1)
j

(t)
)θ

(t)
jk

,

n
(t)
(3),jk = n(3),++ ·

φ
(1)
j

(t)
θ

(t)
jk

∑J
j=1 φ

(1)
j

(t)
θ

(t)
j+

.

The M step calculates new parameters as:

θ
(t+1)
jk =

n(0),jk + n
(t)
(1),jk + n

(t)
(2),jk + n

(t)
(3),jk

n
,

φ(t+1) =

∑n
i=1 I(MX

i = 1)

n
=

n2 + n3

n
,

φ
(0)
j

(t+1)
=

∑n
i=1 I(MX

i = 0, MY
i = 1, Xi = j)∑n

i=1 I(MX
i = 0, Xi = j)

=
n(1),j+

n(1),j+ + n(0),j+

,

φ
(1)
j

(t+1)
=

∑
k n

(t)
(3),jk∑

k n
(t)
(2),jk +

∑
k n

(t)
(3),jk

.
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The E-step and M-step alternate until the parameter estimates converge.

Note that φ and {φ(0)
j } are estimable directly and are unchanged throughout

the EM algorithm. Complete-case estimates or estimates arising from the monotone

pattern P0 and P1 can be chosen as the starting values of {θjk}, and the estimates of

{φ(0)
j } or any constant in (0, 1) can be taken as initial values of {φ(1)

j }. When J > K,

the model has more parameters than degrees of the freedom in the data. Multiple

maxima may exist in this case. Depending on starting values, the algorithm can

converge to different estimates. This case will be discussed further below.

2.2.2 Non-iterative ML estimates

When J ≥ K, non-iterative estimates of the parameters can sometimes be

obtained using the factored likelihood method (Little & Rubin 2002, chapter 7). We

transform the parameters (θjk, φ, φ
(0)
j , φ

(1)
j ) to:

α(0),jk = P (X = j, Y = k|MX = MY = 0),

α(1),j+ = P (X = j|MX = 0, MY = 1),

α(2),+k = P (Y = k|MX = 1,MY = 0),

π0 = P (MX = 0,MY = 0), π1 = P (MX = 0,MY = 1),

π2 = P (MX = 1,MY = 0), π3 = P (MX = 1,MY = 1). (2.3)

where 1 ≤ j ≤ J, 1 ≤ k ≤ K and the following constraints apply:

J∑
j=1

K∑

k=1

α(0),jk = 1,
J∑

j=1

α(1),j+ = 1,
K∑

k=1

α(2),+k = 1,
3∑

r=0

πr = 1.

These parameters correspond to a pattern-mixture factorization (Little, 1993):

f(Xobs, Yobs,M |α, π) = f(Xobs, Yobs|M, α)f(M |π).

where α = (α(0),jk, α(1),j+, α(2),+k), and π = (πr).
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The components of (θ, ψ) = (θjk, φ, φ
(0)
j , φ

(1)
j ) can be expressed in terms of the

new parametrization (2.3) as follows:

θjk =
α(0),jk

α(0),j+

· π0α(0),j+ + π1α(1),j+

π0 + π1

,

φ = 1− π0 − π1 ,

φ
(0)
j =

π1α(1),j+

π0α(0),j+ + π1α(1),j+

, (2.4)

and {φ(1)
j , j = 1, ..., J} is a solution to the K simultaneous equations

J∑
j=1

(1− φ
(1)
j )θjk = P (MY = 0, Y = k|MX = 1) =

π2

1− π0 − π1

α(2),+k .

where α(0),j+ =
∑K

k=1 α(0),jk.

Under pattern-mixture factorization, the likelihood can be written as

L(ϕ, π|Xobs, Yobs,M) =
n∏

i=1

p(MX
i ,MY

i )
∏
i∈p0

p(Xi, Yi|MX
i = 0,MY

i = 0)

×
∏
i∈p1

p(Xi|MX
i = 0,MY

i = 1)
∏
i∈p2

p(Yi|MX
i = 1,MY

i = 0)

=
3∏

r=0

πnr
r

J, K∏

j, k=1

α
n(0),jk

(0),jk

J∏
j=1

α
n(1),j+

(1),j+

K∏

k=1

α
n(2),+k

(2),+k .

Maximizing the four terms in this likelihood yields

α̂(0),jk =
n(0),jk

n0

, α̂(1),j+ =
n(1),j+

n1

, α̂(2),+k =
n(2),+k

n2

, π̂r =
nr

n
. (2.5)

where 1 ≤ j ≤ J, 1 ≤ k ≤ K and 0 ≤ r ≤ 3. Estimates of θjk, φ and φ
(0)
j can then be

obtained by substituting the above estimates of (α, π) = (α(0),jk, α(1),j+, α(2),+k, πr)

into the equations (2.4). This yields:

θ̂jk =

(
n(0),jk

n(0),j+

)(
n(0),j+ + n(1),j+

n0 + n1

)
, (2.6)

φ̂ = 1− π̂0 − π̂1 , (2.7)

φ̂
(0)
j =

π̂1α̂(1),j+

π̂0α̂(0),j+ + π̂1α̂(1),j+

, (2.8)
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Estimates of {φ(1)
j , j = 1, ..., J} can be obtained as solutions of the following K

simultaneous equations, provided they are in the parameter space:

J∑
j=1

(1− φ̂
(1)
j )θ̂jk =

π̂2

1− π̂0 − π̂1

α̂(2),+k . (2.9)

This approach yields ML estimates, providing the estimates lie within the

parameter space, that is the probabilities lie between zero and one. The expressions

for θ̂jk, φ̂ and φ̂
(0)
j always yield estimates in [0, 1]. The equations in (2.9), however,

may or may not yield solutions for {φ(1)
j } that lie in [0, 1]. If they do, then estimates

from this approach are ML estimates. If not, this approach fails to yield ML estimates

of the parameters of interest. The EM algorithm can still be used. The solution set

for (2.9) depends on whether J = K or J > K. When J = K there are J equations

for J unknowns. Provided the J × J matrix, Θ̂ = (θ̂jk), is non-singular, these

equations yield a unique solution that may or may not lie in the parameter space.

When J > K and Θ̂ has rank K ′, the solution set is a linear subspace of dimension

J−K ′. If the solution space intersects the parameter space [0, 1]J , then this approach

yields the whole class of ML estimates. For example, consider the case where J = 3,

K = 2 and Θ̂ is of full rank K, the solution set to (2.9) is a straight line. When

it intersects with the unit cube which is the parameter space, this approach yields

unique ML estimates of θjk, φ and φ
(0)
j , although there are multiple ML estimates for

{φ(1)
j }. However, when the straight line does not intersect with the unit cube, the

EM algorithm can be implemented to find ML estimates, that may or may not be

unique.

The closed-form estimates (2.6) of θ are simply the product of the estimated

conditional probabilities of Y = k given X = j from the complete cases and the

marginal probabilities of X = j from the cases with X observed. Remarkably, they

do not involve the data for Y from the pattern with Y observed and X missing, which
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one would expect to provide information for the marginal distribution of Y . However,

under the model, the distribution of Y for cases in this pattern is different from the

marginal distribution of Y overall. Dropping these cases and using just patterns P0

and P1 with a MAR analysis yields estimates that are ML, and hence asymptotically

consistent and efficient, under the assumed model provided the solutions of Eq. (2.9)

are interior to the parameter space.

2.3 A restricted AMAR Model

In the unrestricted AMAR model (2.2), the missingness of Y is allowed to

depend not only on the value of X but also on whether X is missing or not. If, given

the value of X, the probability of Y being missing is assumed the same for the cases

with X observed and missing, we then have the restricted AMAR model:

P (MX = 1|X = j, Y = k) = φ ,

P (MY = 1|MX = l, X = j, Y = k) = φj . (2.10)

where l = 1, 2 and 1 ≤ j ≤ J, 1 ≤ k ≤ K. The number of the parameters in

this model is JK + J which is always less than the degree of freedom JK + J + K

in the data. The explicit estimates in (2.6) are no longer ML estimates of {θjk},

and EM is needed to obtain ML estimates of the parameters. In the E step, the

partially classified observations are effectively distributed into the table according to

the corresponding estimated probabilities:

n
(t)
(1),jk = n(1),j+ ·

θ
(t)
jk

θ
(t)
j+

,

n
(t)
(2),jk = n(2),+k ·

(1− φj
(t))θ

(t)
jk∑J

j=1(1− φj
(t))θ

(t)
jk

,

n
(t)
(3),jk = n(3),++ ·

φj
(t)θ

(t)
jk∑J

j=1 φj
(t)θ

(t)
j+

.
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In the M step, new estimates are calculated as:

θ
(t+1)
jk =

n(0),jk + n
(t)
(1),jk + n

(t)
(2),jk + n

(t)
(3),jk

n
,

φ(t+1) =
n2 + n3

n
,

φj
(t+1) =

∑
k n

(t)
(1),jk +

∑
k n

(t)
(3),jk

n(0),j+ +
∑

k n
(t)
(1),jk +

∑
k n

(t)
(2),jk +

∑
k n

(t)
(3),jk

.

The E-step and M-step alternate until the parameter estimates converge. Since

φ is estimable directly and is unchanged throughout the EM algorithm, starting val-

ues are only needed for {θjk} and {φj}. Complete-case estimates or pooled estimates

arising from the monotone pattern P0 and P1 can be selected as the starting values

of {θjk}, and the estimates of {φ(0)
j } in (2.8) or any constant in (0, 1) can be taken

as initial values of {φj}.

With φ
(0)
j = φ

(1)
j , the restricted AMAR model (2.10) is a submodel of the

unrestricted AMAR model (2.2). A likelihood ratio test can be applied to test the

restricted AMAR assumption against the more general unrestricted AMAR model.

2.4 Numerical examples

2.4.1 Examples with J = K = 2

In Table 2.3, 3A gives data for a 2 × 2 table with supplemental margins.

Estimates of {φ(1)
j } from (2.9) lie in the parameter space, so there are closed form

ML estimates under the unrestricted AMAR model (Table 2.4). For data in table

3B, ‘estimates’ of {φ(1)
j } from (2.9) are not in the parameter space and ML estimates

under the unrestricted AMAR model can be obtained from the EM algorithm (Table

2.5).
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2.4.2 Examples with J = 3,K = 2

In Table 2.6, 6A and 6B give data for the case J = 3, K = 2. In these cases,

the solution set to (2.9) is a straight line and the parameter space for {φ(1)
j } is a unit

cube as displayed in Figures 2.1 and 2.2. For the data in 6A, the solution line does

not intersect the cube (Figure 2.1), and ML estimates in the unrestricted AMAR

model are obtained iteratively (Table 2.7). For the data in 6B, the solution line

intersects the cube (Figure 2.2). The non-iterative estimates in table 2.8 obtained

from the patterns in which X is observed are the unique ML estimates of {θjk} in

the unrestricted AMAR model, although there are multiple ML estimates for {φ(1)
j }.

Table 2.6: 3× 2 Tables with Supplemental Margins for Both Variables

6A: Y
1 2 missing

1 100 50 30
X 2 75 75 60

3 32 67 20
missing 28 60 50

6B: Y
1 2 missing

1 50 150 30
X 2 75 75 60

3 32 67 20
missing 28 60 50
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2.5 Muscatine Coronary Risk Factor Study

The Muscatine Coronary Risk Factor Study (MCRF) is a longitudinal study of

obesity in 4856 school children. Five cohorts (ages 5-7, 7-9, 9-11, 11-13, 13-15) of boys

and girls were measured for height and weight between 1977 and 1981. Children with

relative weight greater than 110 percent of the median weight for their age-gender-

height group were classified as obese and at any time point about 20 percent of the

children were obese. We are interested in estimating obesity rates over time and

evaluating whether or not these rates differ by gender. The study was first presented

by Woolson and Clarke (1984), and further analyses can be found in, e.g., Baker

(1995), Ekholm and Skinner (1998), Lipsitz, Parzen and Molenberghs (1998) and

Birmingham and Fitzmaurice (2002).

The analysis is complicated by the study design. Both cross-sectional and

longitudinal information about age trends in obesity rates were presented in the data.

Due to cohort effects, cross-sectional age trends in obesity rates may be different from

longitudinal trends. Ekholm and Skinner (1998) found no statistical cohort effects.

Therefore, in our analyses, cohort effects are assumed negligible and data are pooled

across five age-group cohorts. The data for 1977 and 1981 are given in table 2.9.

Table 2.9: Tables of data from Muscatine Coronary Risk Factor Study

girls: 1981
1 2 missing

11 701 98 497
1977 2 59 111 183

missing 408 139 174

boys: 1981
1 2 missing

1 699 98 566
1977 2 72 116 141

missing 473 125 196

The analysis is further complicated by the substantial non-response. Only

40 percent of children provided complete records in 1977 and 1981. In addition to

the complete records, there are three non-response patterns, specifically, two patterns

11 = not obese, 2 = obese.



30

with one missing response and one pattern with two missing responses. Baker (1995)

reported there were two main reasons for non-response: (1) no parental consent form

was received and (2) the child was not in school on the examination day. For girls,

the missingness of obese status in 1981 is found to depend on the missingness in

1977 using a Chi-square test (p-value < 0.0001). Furthermore, girls measured and

classified as obese in 1977 were more likely to have missing data in 1981 than those

classified as non-obese (p-value < 0.0001 based on a chi-square test). The estimates of

girls’ obesity rates and missing probabilities in the AMAR model discussed above are

presented in table 2.10. For the unrestricted AMAR model, the estimate from (2.9) of

{φ(1)
1 , φ

(1)
2 } is (0.274, 0.121) which is in the parameter space, so closed form estimates

of the parameters are available. A bootstrap approach was used to estimate standard

errors. If a bootstrap sample leads to ‘estimates’ of {φ(1)
j } that lie outside of the

parameter space, the EM algorithm is used to obtain the ML estimates. Among the

1000 bootstrap samples, 23.2% samples yield ‘estimates’ of {φ(1)
j } that are outside

of the parameter space.

Likelihood ratio tests can be utilized to test the two submodels discussed above

against the more general unrestricted AMAR model. Denote the unrestricted AMAR

model as M1, the restricted AMAR model as M2 and the restricted MAR model

in section 2.2 as M3, and let lmax present maximum loglikelihood. We find that

−2(lmax(M2) − lmax(M1)) = −2(−4569.823 + 4535.292) = 69.062, which yields

a p-value < 0.0001 when compared to χ2
2. There is strong evidence that the re-

stricted AMAR model does not fit the data. On the other hand, lmax(M3) is close

to lmax(M1), we can’t differentiate the restricted MAR model from the unrestricted

AMAR model.

Similarly for the boys, the estimate from (2.9) of {φ(1)
1 , φ

(1)
2 } in the unrestricted

AMAR model is (0.228, 0.325) which is in the parameter space, closed form estimates
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of the parameters are available. Among 1000 bootstrap samples, there are 2.8%

samples with {φ(1)
j } outside of the parameter space. For the likelihood ratio tests,

−2(lmax(M2) − lmax(M1)) = −2(−4748.480 + 4713.027) = 70.906 > χ2
2(0.05), the

restricted AMAR model does not fit the data. While lmax(M3) is close to lmax(M1),

we can’t differentiate the restricted MAR model from the unrestricted AMAR model

(Table 2.11).

Note that, for the boys, φ̂
(0)
1 and φ̂

(0)
2 are nearly the same which suggests a

MCAR mechanism. For girls, however, these estimates are quite different, suggesting

the fact that girls measured and classified as obese in 1977 are less likely to be present

and measured in 1981 than those measured and classified as non-obese in 1977. This

is also noted by Ekholm and Skinner (1998).

2.6 Discussion

The main goal of the current chapter is to illustrate a non-MAR model that

incorporates features that we tend to associate with “randomly missing” data. This

“almost MAR” model is considered in the case of bivariate categorical data, and

it is shown that ML estimates have interesting features, including the discarding of

data that would at first glance appear to contain information about the parameters

of interest.

There appears to be very little existing literature on missing data mechanisms

of the type considered here; most of the work on NMAR mechanisms concerns the

situation where missingness depends directly on outcomes of interest, or on latent

variables such as the slope of a repeatedly measured variable (e.g. Little and Rubin

2002, chapter 15). Perhaps the closest work to that presented here concerns the

“latent ignorable” missing data mechanisms proposed to model missing data in the
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presence of noncompliance with a treatment (Frangakis and Rubin, 1999; Peng, Little

and Raghunathan, 2004). In these cases, there is a binary compliance variable that

indicates whether an individual would comply with a treatment if assigned to it. In

a clinical trial, this indicator is fully observed for cases in the active treatment group,

but is completely missing for cases in the control group, since those cases do not have

an access to the active treatment. The latent ignorable model assumes MAR within

subpopulations defined by the compliance indicator.

Some extensions of the ideas discussed here include the following:

(A) Models for bivariate data involving continuous or ordinal variables, with the

same pattern and mechanism as that described here.

(B) The additional of fully observed covariates to the data structure considered here.

The latent ignorable mechanism for missing data when there is noncompliance

with a treatment is a special case of this structure.

(C) Extensions to two sets of variables, where some variables can be assumed to be

MCAR, and other variables would be MAR if variables in the other set were

fully observed.

(D) extensions of (C) to more than two blocks of variables; a variety of extensions

seem possible.

We plan to pursue these extensions in future work.
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CHAPTER III

Estimating Treatment Effects in Randomized Clinical Trials
with Non-compliance and Missing Outcomes

Abstract We analyze randomized trials with active treatment verses control treat-

ment, where treatments are subject to all-or-none compliance and outcomes have

missing values. In addition to latent ignorability (Frangakis and Rubin, 1999), we

further specify two assumptions for principal compliance and two assumptions for

missing outcome to identify the model. In each of four scenarios defined by combina-

tions of these assumptions, we derive maximum likelihood (ML) estimates by using

the EM algorithm, as well as non-iterative ML estimates by implementing pattern-

mixture models with covariates (Little and Wang, 1996). This shows that, under

certain conditions, the method-of-moments (MOM) estimates are ML estimates. We

show that the models of principal compliance determine which type of analysis is

used to estimate treatment efficacy, per-protocol analysis or IV estimation with the

treatment assignment indicator as the instrumental variable. On the other hand, we

show that the assumptions for missing outcome determine whether MOM estimates

are ML estimates or not. We apply our methods to data from a double-blinded

randomized clinical trials with clozapine vs. haloperidol for patients with refractory

schizophrenia.

keywords: causal inference; non-compliance; non-response; per-protocol analysis;

instrumental variables; maximum likelihood; EM algorithm.
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3.1 Introduction

Analysis of randomized clinical trials involving human subjects is often com-

plicated by non-compliance to treatment assignments and missing outcomes. Com-

pliance is often associated with the effects of treatments, and may vary according to

participant characteristics. For example, due to severe side effects in a clinical trial

to test the efficacy of a new drug, some participants may not comply with the assign-

ment of new drug and will switch to take the conventional drug. In psychiatric trials,

subjects’ mental health condition may affect their willingness or ability to comply

with study protocols. We consider a clinical trial involving random assignments to an

active treatment or a control treatment and assume the active treatment is subject

to all-or-none compliance. This is in contrast to an alternative situation of partial

compliance (Baker 1997).

Ignoring non-compliance information, a standard intention-to-treat (ITT) anal-

ysis compares the difference in outcome distributions based on treatment assign-

ments. It provides a valid measurement of treatment effectiveness (the effect of the

treatment assignment), but is potentially biased for estimating treatment efficacy

(the effect of the treatment itself), which is more often the main interest. By com-

paring the difference in outcome distributions between treatments actually received,

the as-treated (AT) analysis attempts to directly estimate the effect of the treat-

ment itself, but is subject to selection bias since the randomization is not preserved.

A more recent approach to estimating treatment efficacy in randomized trials with

non-compliance is to treat the randomization as an instrumental variable (IV), in

economic parlance. Based on certain assumptions on outcomes for non-compliers in

both treatment groups, the IV estimator corrects the ITT estimator for noncompli-

ance. That is, it estimates the treatment effect among the compliers. This approach

maintains the properties of randomization and yields a direct estimate of treatment
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efficacy.

Principal compliance is a special case of principal stratification (Frangakis and

Rubin 2002), where individuals are stratified according to the values of the post-

treatment variable under both treatments, rather than simply under the treatment

actually assigned, since the post-treatment variable is compliance. Principal com-

pliance differs from observed compliance. Participants are said to be never-takers if

they take control treatment no matter which treatment they are assigned, and par-

ticipants are compliers if they comply with their assignments. In randomized clinical

trials we consider here, participants in the active treatment group may switch to take

the control treatment, while those in the control treatment group don’t have access

to the active treatment. Participants in the control group take their assignments and

therefore are observed compliers, however whether they are never-takers or principal

compliers is unknown. Besides missing principal compliance for those in the control

group, analyzing randomized clinical trials may be further complicated with miss-

ing outcomes due to loss to follow-up or non-response. Some methods have recently

been developed for an IV estimator by accounting for non-compliance and subsequent

non-responses in clinical trials. Under assumptions of latent ignorability (outcomes

are missing at random conditional on latent compliance status and treatment assign-

ments) and compound exclusion restrictions (the missingness and potential values

of outcomes are independent of treatment assignments for never-takers), Frangakis

and Rubin (1999) proposed a method-of-moments (MOM) IV estimator which is

asymptotically valid. Under the same assumptions, Zhou and Li (2006) developed

maximum likelihood (ML) estimates when the outcome is binary and O’Malley and

Normand (2005) obtained ML estimators for normal distributed outcomes using an

EM algorithm.
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Another approach to estimating treatment efficacy is per-protocol (PP) anal-

ysis, which restricts analysis to observed compliers. By classifying participants ac-

cording to treatments they actually received, PP analysis is subject to selection bias,

since participants observed complying with a treatment may be a biased sample of

participants randomized to that treatment. Although the bias may be reduced by

adjusting for covariates, it remains a concern. In practice, to compare treatments in

randomized clinical trials, a choice has to be made among AT, IV and PP analyses.

Little, Long and Lin (2008) compared these analyses when there is noncompliance

in clinical trials under various assumptions and examined their design implications.

In this chapter, we consider two-arm clinical trials with a categorical outcome

subject to both noncompliance and missing outcome. To identify the model, we

specify two assumptions for principal compliance, ER (exclusion restriction which

indicates the outcome is independent of treatment assignments for never-takers) or

NCEC (none compliance effect in controls which implies the distribution of the out-

come is same for principal compliers and never-takers in the control group), and two

assumptions for missing outcome, ER (there is no effect of treatment assignments on

missingness of the outcome for never-takers) or NCEC (there is no effect of principal

compliance on missingness of the outcome for participants in the control group). In

each of four scenarios defined by combinations of these assumptions, we derive ML

estimates by using the EM algorithm, as well as non-iterative ML estimates by im-

plementing pattern-mixture models with covariates (Little and Wang, 1996), which

shows that, under certain conditions, the MOM estimates are ML estimates. We find

the assumptions of principal compliance determine which type of analysis is used to

estimate treatment efficacy, PP analysis or IV estimation, whereas the assumptions

of missing outcome decide whether MOM estimates are ML estimates or not. Both

complier average causal effect (CACE) or ITT estimands can be viewed as outputs
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from these models.

The chapter is organized as follows. Section 3.2 presents notations and as-

sumptions. The MOM estimator and likelihood-based methodology are developed

in section 3.3 where ER is assumed for missing outcome. EM algorithm based on

the selection model and closed-form estimators based on the pattern-mixture model

are both given there. Section 3.4 gives the MOM estimator and likelihood-based

methodology where NCEC is assumed for missing outcome. In section 3.5, applica-

tions of our proposed methods are illustrated in a real study. Conclusions are made

and future work are given in section 3.6. Some technical details of our methods are

provided in appendix.

3.2 Notation and Assumptions

Notation: we consider a randomized trial where participants are assigned to either

active treatment (T = 1) or control (T = 0). C represents the participant’s principal

compliance, with C = 1 denoting compliers and C = 0 denoting never-takers. Par-

ticipants in the active treatment group may comply with their treatment assignments

(C = 1) or switch to take the control treatment (C = 0). The compliance status of

those in the control group is unknown. We consider an outcome Y with K levels.

Due to loss to follow-up or dropout, some participants have missing values (Table

3.1). Let MY denotes the missing-data indicator for Y such that MY is 1 if Y is

missing and MY is 0 if Y is observed. It is worth noting that treatment assignment T

implies the missingness of compliance status C. For participants in active treatment

group (T = 1), we know their compliance status, while for those in control group

(T = 0), the compliance status is missing. Let MC denote the missing-data indicator

for compliance status C with 1 and 0 representing missing and observed respectively,

then we have MC = 1− T .
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Table 3.1: Randomized Clinical Trials with Non-compliance and Non-responses

T C Y
1 n(0),1k

1 ? n(1),1+

0 n(0),0k

? n(1),0+

0 ? n(2),+k

? n(3),++

According to whether C and Y are observed or missing, there are totally four missing-

data patterns. let Pr denote the set of sample cases with pattern type r, r = 0, . . . , 3.

Let n(0),jk be the count of complete cases with C = j, Y = k, n(1),j+ be the count

of cases with C = j and Y missing, n(2),+k be the count of cases with Y = k and

C missing, and n(3),++ be the count of cases with both C and Y missing. Then

n0 =
∑1

j=0

∑K−1
k=0 n(0),jk, n1 =

∑1
j=0 n(1),j+, n2 =

∑K−1
k=0 n(2),+k, n3 = n(3),++ are the

number of cases in each pattern and n =
∑3

r=0 nr is the total sample size.

Parameters of Interest: the parameters of interest are θ = {θ(t)
jk }, where θ

(t)
jk =

P (C = j, Y = k|T = t) with
∑1

j=0

∑K−1
k=0 θ

(t)
jk = 1. Treatment efficacy can be

measured in functions of θ.

Missing-data Mechanism: with compliance status and outcome having missing

values, a missing-data mechanism has to be specified to make valid inferences. As

we state before, the missingness of C is decided by treatment assignment T :

P (MC = 1|T, C, Y ) =





0 T = 1

1 T = 0

For missingness of the outcome Y , we assume latent ignorability as defined in Fran-

gakis and Rubin (1999). Thus, we assume that

P (MY = 1|T = t, C = j, Y = k) = φ
(t)
j (3.1)



41

where t = 0, 1; j = 0, 1; k = 0, 1, . . . , K − 1. Given the fact that MC = 1 − T , the

missingness of Y depends on MC and C, but not on the value of Y , which is exactly

the same as AMAR defined in chapter 2. Thus, the missing-data mechanism for Y

is ignorable conditional on the latent variable C.

For the data in the active treatment group, the degrees of freedom are 2K + 1,

which comprise K for complete cases with C = 1 plus 1 for those with missing Y ,

plus K for complete cases with C = 0 plus 1 for those with missing Y , minus 1 for

the total which is considered fixed at T = 1. For the data in the control treatment

group, the degrees of freedom are K, which comprise K for supplemental margin on

Y , plus 1 for cases with missing C and Y , minus 1 for the total which is considered

fixed at T = 0. Therefore, the total degrees of freedom in the data are 3K +1, which

is less than the total number of parameters 4K + 2. To identify the modeling, we

specify a number of further assumptions, and later the results of assuming selecting

various subsets of these to hold:

Assumption 1: Stable unit treatment value assumption (SUTVA) (Rubin,

1978), which implies that compliance and potential outcomes for individuals are not

affected by treatment assignments and outcomes of other individuals in the sample.

Assumption 2: Randomization. As an attribute of participants, principal com-

pliance is viewed as being determined before assignments of treatments and it is a

covariate where value is fixed at baseline. By the property of randomization, com-

pliance is independent of treatment assignment. This implies that C has the same

distribution in the active treatment group as in the control treatment group.

P (C = j|T = 1) = P (C = j|T = 0) (3.2)

Assumption 3: ER for Y . Never-takers actually receive the control treatment no

matter which treatment they are assigned. According to this assumption, there is
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no effect of the treatment assignment on the distribution of their outcome Y . That

is,

P (Y = k|T = 1, C = 0) = P (Y = k|T = 0, C = 0) (3.3)

Assumption 3 is closely related to exclusion restriction assumptions in the traditional

instrumental variable approach (Durbin, 1954; Goldberger, 1972; Angrist et al, 1996)

and biomedical applications (Baker and Lindeman, 1994, Sommer and Zeger, 1991).

This assumption may not hold in all studies, for example, in an unblinded study

where the failure to complying with an assigned treatment may have a lingering

psychological effect on the patient that affects the outcome. In a double-blind trial

where the treatment assignment is not known for both the patient and the physician,

the exclusion restriction for the outcome is reasonable.

Assumption 4: NCEC for Y . The distribution of Y is assumed to be same for

principal compliers and never-takers in the control group.

P (Y = k|C = 1, T = 0) = P (Y = k|C = 0, T = 0) (3.4)

This is a strong assumption and widely viewed as unacceptable, since in the control

group, principal compliers and never-takers may have different characteristics that

are related to the outcome. White (2005) argues that NCEC may be plausible in

double-blinded prevention trials if noncompliance relates to treatment discontinu-

ation and the active agent has low rates of adverse events. Although NCEC can

be weakened by adjusting for covariates, it remains a questionable assumption that

needs to be carefully examined.

Assumption 5: ER for MY . Similar to Assumption 3, this specifies that there is

no effect of randomized treatment assignments on MY for never-takers. Thus,

P (MY = 1|T = 1, C = 0) = P (MY = 1|T = 0, C = 0) (3.5)
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This assumption is stronger than Assumption 3. Never-takers always end up taking

the control treatment, however, their treatment assignments may be more likely to

affect their missingness. Although it is impossible to test this assumption, we can

develop a sensitivity analysis to evaluate its influence on the estimators of treatment

efficacy. We will use the term “compound ER” for the combined Assumptions 3 and

5.

Assumption 6: NCEC for MY . Similar to Assumption 4, this specifies that there

is no effect of principal compliance on MY for participants in the control group. That

is,

P (MY = 1|C = 1, T = 0) = P (MY = 1|C = 0, T = 0) (3.6)

This is also a strong and questionable assumption that needs to be critically evalu-

ated, since the compliance status of individuals in the control group may affect their

missingness. A sensitivity analysis can be developed to evaluate the influence of this

assumption on the estimators of treatment efficacy. We will use the term “compound

ER” for the combined Assumptions 4 and 6.

If, in addition to latent ignorability, Assumption 5 is also assumed, Y is still

not missing at random (NMAR) since MY depends on C, which is missing in the

control group. But if Assumption 6 is specified instead, Y will then be missing at

random (MAR), since MY is independent of the missing C in the control group.

To estimate CACE, δ = E(Y |T = 1, C = 1) − E(Y |T = 0, C = 1) =

µT=1,C=1 − µT=0,C=1, under Assumptions 1 and 2, we consider all four combinations

of assumptions for Y (ER or NCEC) and MY (ER or NCEC). In section 3, MOM

and ML estimators are obtained when Assumption 5 is added to the assumption of

latent ignorability. In section 4, these estimators are obtained when the missing-data

mechanism of Y is MAR as the additional Assumption 6 is applied to MY .
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3.3 Estimation when ER is assumed for MY

3.3.1 ER is assumed for Y

MOM estimator. Frangakis and Rubin (1999) proposed an estimator for CACE

using the observed data. By Assumption 2, the probability of compliance P (C = 1)

is estimated by the proportion of participants in the active treatment group who take

the active treatment. Under latent ignorability, participants with Y observed are a

random sample of those with same treatment T and compliance C, therefore, the

mean of outcomes for principal compliers in the active treatment group µT=1, C=1 can

be estimated using the mean of observed outcomes for those in the active treatment

group who take their assignments. In summary,

P̂ (C = 1) =
n(0),1+ + n(1),1+

n0 + n1

(3.7)

µ̂T=1, C=1 =
K−1∑

k=0

k
n(0),1k

n(0),1+

(3.8)

Since the principal compliance status for participants in the control group is unknown,

we can apply the observed information in the control group and those for never-

takers in the active treatment group to represent µT=0, C=1, the mean of outcomes

for compliers in the control group. By Bayes’ theorem and Assumptions 2, 3 and 5,

we have:

µT=0, C=1

=
µT=0, MY =0P (MY = 0|T = 0)− µT=1, C=0P (MY = 0|T = 1, C = 0)P (C = 0)

P (MY = 0|T = 0)− P (MY = 0|T = 1, C = 0)P (C = 0)

(3.9)

which subtract never-taker outcomes from the overall observed outcomes in the con-

trol group, while never-taker outcomes are represented by outcomes of never-takers

in the treated group. Thus (3.9) can be directly estimated from the observed data:
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µ̂T=0, C=1

=
µ̂T=0, MY =0P̂ (MY = 0|T = 0)− µ̂T=1, C=0P̂ (MY = 0|T = 1, C = 0)P̂ (C = 0)

P̂ (MY = 0|T = 0)− P̂ (MY = 0|T = 1, C = 0)P̂ (C = 0)

=
K−1∑

k=0

k
n(2),+k(n0 + n1)− n(0), 0k(n2 + n3)

n2(n0 + n1)− n(0), 0+(n2 + n3)
(3.10)

By using estimators in (3.8) and (3.10), we then can estimate CACE as the following:

δ̂IV = µ̂T=1, C=1 − µ̂T=0, C=1

=
K−1∑

0

k · ( n(0),1k

n(0),1+

− n(2),+k(n0 + n1)− n(0), 0k(n2 + n3)

n2(n0 + n1)− n(0), 0+(n2 + n3)
) (3.11)

which is sometimes termed the IV estimator, since the randomization indicator is

used as the instrumental variable.

EM algorithm. The likelihood for our modeling has the form:

L(θ, φ|T,Cobs, Yobs,M
C ,MY )

=
∑
Cmis

∑
Ymis

{
n∏

i=1

p(Ci, Yi|Ti, θ)p(MC
i |Ti, Ci, Yi)

p(MY
i |MC

i , Ti, Ci, Yi, φ
(0)
j , φ

(1)
j )

}

=
∑
Cmis

∑
Ymis

{
n∏

i=1

1∏
j=0

K−1∏

k=0

θ
(1)
jk

I(Ci=j,Yi=k|Ti=1)
θ

(0)
jk

I(Ci=j,Yi=k|Ti=0)

1∏
j=0

φ
(1)
j

I(Ti=1,Ci=j,MY
i =1)

(1− φ
(1)
j )I(Ti=1,Ci=j,MY

i =0)

1∏
j=0

φ
(0)
j

I(Ti=0,Ci=j,MY
i =1)

(1− φ
(0)
j )I(Ti=0,Ci=j,MY

i =0)

}
.

where I(.) is the indicator function and φ = {φ(1)
j , φ

(0)
j }.

To define the E step of EM, let (θ
(1)
jk

(t)
, θ

(0)
jk

(t)
, φ

(1)
j

(t)
, φ

(0)
j

(t)
) denote the parameter

estimates at iteration t, and n
(t)
(r),jk be the estimate of cell frequency for C = j, Y = k
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in pattern Pr. The E step distributes the partially classified observations into the

table according to the corresponding probabilities:

n
(t)
(1),jk = n(1),j+ ·

θ
(1)
jk

(t)

θ
(1)
j+

(t)
,

n
(t)
(2),jk = n(2),+k ·

(1− φ
(0)
j

(t)
)θ

(0)
jk

(t)

∑1
j=0(1− φ

(0)
j

(t)
)θ

(0)
jk

(t)
,

n
(t)
(3),jk = n(3),++ ·

φ
(0)
j

(t)
θ

(0)
jk

(t)

∑1
j=0 φ

(0)
j

(t)
θ

(0)
j+

(t)
.

Under the constraints θ
(1)
0k = θ

(0)
0k , k = 0, . . . , K − 1 implied by Assumptions 2 and

3 and φ
(1)
0 = φ

(0)
0 implied by Assumption 5, the M step calculates new parameter

estimates as:

θ
(0)
0k

(t+1)
= θ

(1)
0k

(t+1)
=

n(0),0k + n
(t)
(1),0k + n

(t)
(2),0k + n

(t)
(3),0k

n
,

θ
(0)
1k

(t+1)
=

n
(t)
(2),1k + n

(t)
(3),1k

n
(t)
(2),1+ + n

(t)
(3),1+

·
n(0),1+ + n(1),1+ + n

(t)
(2),1+ + n

(t)
(3),1+

n
,

θ
(1)
1k

(t+1)
=

n(0),1k + n
(t)
(1),1k

n(0),1+ + n(1),1+

·
n(0),1+ + n(1),1+ + n

(t)
(2),1+ + n

(t)
(3),1+

n
,

φ
(1)
0

(t+1)
= φ

(0)
0

(t+1)
=

n(1),0+ + n
(t)
(3),0+

n(0),0+ + n(1),0+ + n
(t)
(2),0+ + n

(t)
(3),0+

,

φ
(1)
1 =

n(1),1+

n(0),1+ + n(1),1+

,

φ
(0)
1

(t+1)
=

n
(t)
(3),1+

n
(t)
(2),1+ + n

(t)
(3),1+

.

The E-step and M-step alternate until the parameter estimates converge.

Note that φ
(1)
1 is estimated directly and is unchanged throughout the EM al-

gorithm. Complete-case estimates can be chosen as the starting values of {θ(t)
jk } and

frequency estimates of {φ(1)
j } in the data can be taken as initial values of {φ(t)

j }.
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As a result, CACE can be estimated by:

δ̂IV = µ̂T=1, C=1 − µ̂T=0, C=1

=
K−1∑

0

k · ( θ̂
(1)
1k

θ̂
(1)
1+

− θ̂
(0)
1k

θ̂
(0)
1+

)

Non-iterative ML estimates. After applying K + 1 constraints implied by As-

sumption 2 and compound ER in Assumptions 3 and 5, θ
(1)
0k = θ

(0)
0k , k = 0, . . . , K − 1

and φ
(1)
0 = φ

(0)
0 , our model can be exactly identified. So non-iterative ML estimates

may exist. To find non-iterative ML estimates, the likelihood function can be fac-

torized into the pattern-mixture components. The parameters corresponding to the

pattern-mixture model can be defined as:

α(0),jk = P (C = j, Y = k|T = 1,MC = MY = 0),

α(1),j+ = P (C = j|T = 1,MC = 0, MY = 1),

α(2),+k = P (Y = k|T = 0,MC = 1, MY = 0),

π0 = P (MX = 0,MY = 0|T = 1), π1 = P (MX = 0,MY = 1|T = 1),

π2 = P (MX = 1,MY = 0|T = 0), π3 = P (MX = 1,MY = 1|T = 0). (3.12)

where 0 ≤ j ≤ 1, 0 ≤ k ≤ K − 1 and the following constraints apply:

1∑
j=0

K−1∑

k=0

α(0),jk = 1,
1∑

j=0

α(1),j+ = 1,
K−1∑

k=0

α(2),+k = 1,
3∑

r=0

πr = 1.

These parameters can be expressed in terms of (θ, φ) as follows:

α(0),jk =
(1− φ

(1)
j )θ

(1)
jk∑1

j=0(1− φ
(1)
j )θ

(1)
j+

α(1),j+ =
φ

(1)
j θ

(1)
j+∑1

j=0 φ
(1)
j θ

(1)
j+

α(2),+k =

∑1
j=0(1− φ

(0)
j )θ

(0)
jk∑1

j=0(1− φ
(0)
j )θ

(0)
j+
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π0 =
1∑

j=0

(1− φ
(1)
j )θ

(1)
j+ , π1 = 1− π0

π2 =
1∑

j=0

(1− φ
(0)
j )θ

(0)
j+ , π3 = 1− π2 (3.13)

Letting (α, π) represent the parameters in (3.12), then the likelihood can be written

as

L(α, π|T, Cobs, Yobs,M
C ,MY )

=
n∏

i=1

p(MC
i ,MY

i |Ti)
∏
i∈p0

p(Ci, Yi|Ti = 1,MC
i = 0,MY

i = 0)

×
∏
i∈p1

p(Ci|Ti = 1,MC
i = 0,MY

i = 1)

×
∏
i∈p2

p(Yi|Ti = 0,MC
i = 1,MY

i = 0)

=
3∏

r=0

πnr
r

1∏
j=0

K∏

k=1

α
n(0),jk

(0),jk

1∏
j=0

α
n(1),j+

(1),j+

K−1∏

k=0

α
n(2),+k

(2),+k . (3.14)

After substituting the transformations in (3.13), we can find closed-form ML estima-

tors for (θ, φ) by maximizing (3.14) under the constraints θ
(1)
0k = θ

(0)
0k , k = 0, . . . , K−1

and φ
(1)
0 = φ

(0)
0 . We obtain:

θ̂
(1)
jk =

n(0),jk

n(0),j+

· n(0),j+ + n(1),j+

n0 + n1

,

θ̂
(0)
0k = θ̂

(1)
0k ,

θ̂
(0)
1k =

(n0 + n1)n(2),+k − (n2 + n3)n(0),0k

(n0 + n1)n2 − (n2 + n3)n(0),0+

· n(0),1+ + n(1),1+

n0 + n1

,

φ̂
(1)
j =

n(1),j+

n(1),j+ + n(0),j+

,

φ̂
(0)
0 = φ̂

(1)
0 ,

φ̂
(0)
1 =

n3

n2+n3
− n(1),0+

n0+n1

n(0),1++n(1),1+

n0+n1

.
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This approach yields ML estimates, providing the estimates lie within the

parameter space, that is the probabilities lie between zero and one. The expressions

for {θ̂(t)
jk , φ̂

(1)
j , φ̂

(0)
0 } always yield estimates in [0, 1]. The estimate φ̂

(0)
1 given above,

however, may or may not fall in [0, 1]. If it does, then estimates from this approach

are ML estimates. If not, this approach fails to yield ML estimates of the parameters

of interest. In this case, the EM algorithm can still be used. Furthermore, when

φ̂
(0)
1 ∈ [0, 1], using the closed form estimates of (θ, φ) stated above, the estimate of

CACE is:

δ̂IV = µ̂T=1, C=1 − µ̂T=0, C=1

=
K−1∑

0

k · ( θ̂
(1)
1k

θ̂
(1)
1+

− θ̂
(0)
1k

θ̂
(0)
1+

)

=
K−1∑

0

k · ( n(0),1k

n(0),1+

− n(2),+k(n0 + n1)− n(0), 0k(n2 + n3)

n2(n0 + n1)− n(0), 0+(n2 + n3)
) (3.15)

which is the same as the MOM estimator in (3.11) proposed by Frangakis and Rubin

(1999). Therefore, Frangakis and Rubin’s MOM estimators are ML providing the

estimate of nuisance parameter φ
(0)
1 lies in the parameter space.

3.3.2 NCEC is assumed for Y

MOM estimator. Under the same missing-data mechanism as that specified in sec-

tion 3.3.1, the estimator of the mean of outcomes for compliers in the active treatment

group µT=1, C=1 can still be estimated by (3.8). However, estimating µT=0, C=1 is dif-

ferent from (3.10), as NCEC is assumed for Y . Under NCEC, the distributions of

Y for compliers and never-takers do not differ in the control group, so that P (Y =

k|C = 1, T = 0) = P (Y = k|C = 0, T = 0) = P (Y = k|T = 0), k = 0, . . . , K − 1,

and the mean of observed outcome in the control group can be used to estimate

µT=0:

µ̂T=0, C=1 = µ̂T=0, C=0 = µ̂T=0 = µ̂obs
T=0 (3.16)
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As a result, we have the per-protocol estimator of the CACE which is restricted to

participants who follow the protocol:

δ̂PP = µ̂T=1, C=1 − µ̂T=0

=
K−1∑

0

k · ( n(0),1k

n(0),1+

− n(2),+k

n2

) (3.17)

Non-iterative ML estimates. As in section 3.3.1, we can also find non-iterative

ML estimates. After applying θ
(0)
jk = θ

(0)
j+ · θ(0)

+k implied by Assumption 4, θ
(0)
j+ = θ

(1)
j+

implied by Assumption 2 and φ
(1)
0 = φ

(0)
0 implied by Assumption 5, the closed-form

estimators can be expressed as following:

θ̂
(1)
jk =

n(0),jk

n(0),j+

· n(0),j+ + n(1),j+

n0 + n1

,

θ̂
(0)
jk =

n(2),+k

n2

· n(0),j+ + n(1),j+

n0 + n1

,

φ̂
(1)
j =

n(1),j+

n(1),j+ + n(0),j+

,

φ̂
(0)
0 = φ̂

(1)
0

φ̂
(0)
1 =

n3

n2+n3
− n(1),0+

n0+n1

n(0),1++n(1),1+

n0+n1

Except for θ̂
(0)
jk , these estimates are exactly the same as those obtained when ER

is assumed for Y , and the corresponding estimate of the CACE is given by (3.17).

Therefore, the MOM estimator of the CACE from the per-protocol analysis is the

ML estimator providing φ̂
(0)
1 ∈ [0, 1]. When φ̂

(0)
1 is not in [0, 1], the EM algorithm

can be used to find ML estimates. The E-step is exactly the same in section 3.3.1,

while M-step is different because the new assumptions affect the M-step.

3.4 Estimation when NCEC is assumed for MY

In this section, we assume latent ignorability along with a different assumption

for MY . Under Assumption 6, missingness of Y in the treatment group could depend
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on the observed principal compliance C, whereas in the control group, where C is

missing, the missingness of Y does not depend on C. In this case, the missing-data

mechanism of Y is MAR.

3.4.1 ER is assumed for Y

MOM estimator. The missingness of Y in the active treatment group is not affected

by the NCEC assumption for MY , so µT=1, C=1 can still be estimated by (3.8) as in

section 3.3. But since Y is also missing at random in the control group, µT=0, C=1

has a different estimate. By Bayes’ theorem and Assumptions 2, 3 and 6, we have

µT=0, C=1 =
µT=0, MY =0 − µT=1, C=0P (C = 0)

1− P (C = 0)
(3.18)

which subtracts never-taker outcomes from the overall observed outcomes in the

control group. This expression makes use of the fact that never-taker outcomes are

represented by outcomes of never-takers in the treated group. All quantities in the

expression (3.18) can be directly estimated to obtain

µ̂T=0, C=1 =
µ̂T=0, MY =0 − µ̂T=1, C=0P̂ (C = 0)

1− P̂ (C = 0)

=
K−1∑

k=0

k

n(2),+k

n2
− n(0),0k

n(0),0+

n(0),0++n(1),0+

n0+n1

n(0),1++n(1),1+

n0+n1

(3.19)

By using estimates in (3.8) and (3.19), we then have for the CACE:

δ̂IV = µ̂T=1, C=1 − µ̂T=0, C=1

=
K−1∑

0

k · ( n(0),1k

n(0),1+

−
n(2),+k

n2
− n(0),0k

n(0),0+

n(0),0++n(1),0+

n0+n1

n(0),1++n(1),1+

n0+n1

) (3.20)

Non-iterative ML estimates. After applying K+1 constraints implied by Assump-

tions 2, 3 and 6, we have θ
(1)
0k = θ

(0)
0k , k = 0, . . . , K − 1 and φ

(0)
1 = φ

(0)
0 . Parameters
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in the model are just identified and the closed-form estimators are as following:

θ̂
(1)
jk =

n(0),jk

n(0),j+

· n(0),j+ + n(1),j+

n0 + n1

,

θ̂
(0)
0k = θ̂

(1)
0k ,

θ̂
(0)
1k =

n(2),+k

n2

− n(0),0k

n(0),0+

n(0),0+ + n(1),0+

n0 + n1

,

φ̂
(1)
j =

n(1),j+

n(1),j+ + n(0),j+

,

φ̂
(0)
j =

n3

n2 + n3

Unlike closed-form estimates in section 3.3, the estimate of nuisance parameter φ
(0)
1

is always in the parameter space [0, 1], while the estimate of θ
(0)
1k may or may not

lie in [0, 1]. Therefore, whether these closed-form estimates are ML estimates is

determined by the values of θ̂
(0)
1k . If all of θ̂

(0)
1k lie in [0, 1], then they are ML estimates,

and the estimate of CACE is:

δ̂IV = µ̂T=1, C=1 − µ̂T=0, C=1

=
K−1∑

0

k · ( θ̂
(1)
1k

θ̂
(1)
1+

− θ̂
(0)
1k

θ̂
(0)
1+

)

=
K−1∑

0

k · ( n(0),1k

n(0),1+

−
n(2),+k

n2
− n(0),0k

n(0),0+

n(0),0++n(1),0+

n0+n1

n(0),1++n(1),1+

n0+n1

) (3.21)

which is the same as the MOM estimate in (3.20). Otherwise, the EM algorithm

yields ML estimates. The E-step is exactly same as that in section 3.3, but the

M-step is different.

3.4.2 NCEC is assumed for Y

MOM estimator. Similar to section 3.3.2, when NCEC is assumed for Y , µT=0, C=1 =

µT=0, C=0 = µT=0, and the mean of observed outcome in the control group can be

used to estimate µT=0:

µ̂T=0, C=1 = µ̂T=0, C=0 = µ̂T=0 = µ̂obs
T=0 (3.22)



53

As a result, we have the per-protocol estimator of the CACE:

δ̂PP = ˆ̄YT=1, C=1 − ˆ̄YT=0

=
K−1∑

0

k · ( n(0),1k

n(0),1+

− n(2),+k

n2

) (3.23)

Non-iterative ML estimates. After applying θ
(0)
jk = θ

(0)
j+ · θ(0)

+k implied by Assump-

tion 4, θ
(0)
j+ = θ

(1)
j+ implied by Assumption 2 and φ

(0)
0 = φ

(0)
1 implied by Assumption

6, our model is exactly identified and closed-form estimators can be calculated as

follows:

θ̂
(1)
jk =

n(0),jk

n(0),j+

· n(0),j+ + n(1),j+

n0 + n1

,

θ̂
(0)
jk =

n(2),+k

n2

· n(0),j+ + n(1),j+

n0 + n1

,

φ̂
(1)
j =

n(1),j+

n(1),j+ + n(0),j+

,

φ̂
(0)
j =

n3

n2 + n3

Under compound NCEC implied by Assumption 4 and 6, the estimates of both

nuisance parameters and parameters of interest all lie in the parameter space, so

non-iterative ML estimates always exist. As the consequence, the estimate of CACE

can be computed as the following:

δ̂PP = ˆ̄YT=1, C=1 − ˆ̄YT=0

=
K−1∑

0

k · ( θ̂
(1)
1k

θ̂
(1)
1+

− θ̂
(0)
1k )

=
K−1∑

0

k · ( n(0),1k

n(0),1+

− n(2),+k

n2

) (3.24)



54

which is the same as (3.23). So the MOM estimate is always the ML estimate when

compound NCEC holds for Y and MY .

Summary of above analyses. Table 3.2 and 3.3 summarize all results under various

assumptions. First, when NCEC is assumed for Y , no matter which assumption is

applied for MY , NCEC or ER, we obtain the same non-iterative (or MOM) estimates

of CACE, namely those which result from the PP analysis. However, the assumptions

about MY determine whether or not the non-iterative (or MOM) estimate of CACE

is the ML estimate. When NCEC is assumed for MY , the non-iterative (or MOM)

estimate is always the ML estimate. When ER is assumed for MY , the non-iterative

(or MOM) estimate is the ML estimate if φ̂
(0)
1 ∈ [0, 1]. On the other hand, when ER

is assumed for Y , the different assumptions applied to MY result in different non-

iterative (or MOM) IV estimates of CACE. When NCEC is assumed for MY , the

non-iterative (or MOM) estimate is the ML estimate if all the estimates of parameters

of interest θ̂
(0)
1k fall in the interval [0, 1]; while when ER is assumed for MY , the non-

iterative (or MOM) estimate is the ML estimate if the estimate of nuisance parameter

φ̂
(0)
1 ∈ [0, 1].

3.5 Application

We calculate the PP and IV estimators for data from a double-blind clinical

trial comparing clozapine versus haloperidol, two antipsychotic medications, in pa-

tients with refractory schizophrenia. Several clinical trials have shown that clozapine

is more effective than other conventional antipsychotics, with fewer extrapyramidal

side-effects (eg. stiffness, tremors, and other involuntary muscle movements). How-

ever, clozapine is more expensive and unfortunately associated with potentially fatal

agranulocytosis which requires close monitoring and increases the cost. The current

trial was conducted to compare the effectiveness and cost of clozapine with those of
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haloperidol, a widely used conventional treatment. The primary outcomes are symp-

toms of schizophrenia, quality of life, days in the hospital for psychiatric reasons,

and costs.

We focus on analyzing the positive and negative syndrome score (PANSS), a

measure of symptoms of schizophrenia. With possible scores from 30 to 210, higher

values of PANSS indicate more severe symptoms. The trial has binary and con-

tinuous outcomes for PANSS. O’Malley and Normand (2005) calculated MOM and

ML estimates by using a continuous PANSS score at 1-year follow-up, whereas Levy,

O’Malley and Normand (2004) considered a covariate adjustment for a binary out-

come, a 20% reduction in PANSS score which is considered as a clinically important

improvement. Both of these papers computed the IV estimate of the ITT effect under

assumptions of latent ignorability and compound ER. We consider MOM and ML

estimates for PP and IV estimates of the CACE effect under varieties of assumptions,

such as compound ER or compound NCEC as described above.

Table 3.4 summarizes the characteristics of the sample with the restricted access

to clozapine. The 161 patients randomized to haloperidol did not have access to

clozapine and had to take haloperidol. On the other hand, among 144 patients

randomized to clozapine, there were 22 patients who switched to take haloperidol

because of severe side-effects, lack of efficacy and non-drug-related reasons such as

not wanting to continue the trial. Those who complied in the active treatment group

had no missing data whereas, among the 22 non-compliers, there was a very high

missingness rate of 60%.

Under various assumptions for both outcome and missingness of PANSS, esti-

mates of parameters of interest, nuisance parameters and CACE are listed in Table

3.5. Standard errors are estimated by a bootstrap with 1000 bootstrap samples. If a
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bootstrap sample leads to ‘estimates’ that lie outside of the parameter space, the EM

algorithm is used to obtain the ML estimates. With the ‘estimates’ of all parameters

between 0 and 1, MOM estimates are ML estimates under these four different sce-

narios. It is interesting to note that the estimates of parameters θ
(1)
jk and φ

(1)
j in the

clozapine group are exactly the same across four scenarios. Although these scenarios

put different constraints on the parameters θ
(0)
jk and φ

(0)
j in the haloperidol group and

therefore yield different estimates for them, θ
(1)
jk and φ

(1)
j can always be estimated

by using the observed data in their corresponding group, because the outcome of

PANSS will be completely missing at random given the observed compliance status

in the clozapine group. When NCEC is assumed for PANSS, which means both

compliers and never-takers in the haloperidol group have the same distribution of

PANSS, assumptions of its missingness do not affect the estimate of CACE. With the

information of never-takers in the clozapine group ignored, this estimate is the PP

estimate. On the other hand, when ER is assumed for PANSS, which means never-

takers in two groups have same distribution of PANSS, the information of all patients

is used to estimate CACE, and these estimates are IV estimates. Moreover, IV esti-

mates are influenced by the assumptions of the missingness of PANSS. Furthermore,

for the estimates of CACE, the ignorable missing-data mechanism of PANSS (when

NCEC is assumed) yields smaller standard errors than the non-ignorable missing-

data mechanism of PANSS (when ER is assumed).

With strong dependence of estimates of CACE on assumptions of both out-

come and missingness of PANSS, we advise caution and careful examination of these

assumptions when analyzing and interpreting the data. Since compliers and never-

takers have different rates of missing data and outcome distributions in the clozapine

group, NCEC for PANSS and its missingness maybe not plausible here. However,

it is still worth considering them, since they provide the foundation of PP and IV
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analysis.

3.6 Conclusions and future work

Analyzing randomized clinical trials involving human subjects is complicated

by non-compliance and subsequent non-response, since, in addition to specifying the

missing-data mechanism, we need to model both non-compliance and missing out-

comes to identify the model. In this chapter, we discuss various assumptions for

principal compliance and missing outcome in randomized clinical trials with a cate-

gorical outcome. We find the choice of PP and IV analysis depends on assumptions

made about principal compliance. If there is no effect of the treatment assignment

on the distribution of the outcome for never-takers, we can use IV analysis, while if

the distributions of the outcome are assumed to be same for principal compliers and

never-takers in the control group, PP analysis is used to estimate treatment efficacy.

Furthermore, the reasons why the outcome has missing values should also be care-

fully evaluated, since they determine whether MOM estimates are ML estimates or

not for each type of analysis.

We specify two assumptions for missing outcomes in randomized trials. Al-

though it is impossible to test these assumptions, sensitivity analyses can be devel-

oped to evaluate their influences on the estimators of treatment efficacy. For example,

for the ER assumption of missing outcome, sensitivity analysis can be carried out

by defining a nuisance parameter as the ratio of proportions of missing outcome for

never-takers between the active treatment group and the control group. The estima-

tors of treatment efficacy are then functions of this nuisance parameter. By varying

the nuisance parameter, we can assess the effect of violations of ER assumption for

missing outcome on the estimators of treatment efficacy.
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There are many possible generalizations and extensions of our methods:

(A) Models for data involving continuous or ordinal variables, with the same pattern

as that described here.

(B) Models for clinical trials with partial compliance and/or two active treatment

arms.

(C) Models for three-level principal compliance. Besides compliers and never-takers,

there are also always-takers in randomized trials.

(D) Models for the additional of fully observed covariates to the data structure con-

sidered here. Compliance maybe associated with some covariates and estimates

can then be obtained more precisely.

(E) Models for clinical trials with longitudinal setting considered by Peng, Little

and Raghunathan (2004).
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Table 3.4: Randomized Clinical Trials with Clozapine vs. Haloperidol

assigned clozapine assigned clozapine assigned assigned
took clozapine took haloperidol clozapine haloperidol

sample size: 122 22 144 161
missing rate: 0 0.60 0.10 0.30
fraction with 20% reduction
in PANSS at 1 year 0.40 0.10 0.40 0.30
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3.7 Appendix

A1: Proof of equation (3.9)

Under latent ignorability, the expectation of observed outcome in the control group

can be written as follows:

µT=0, MY =0

= E[Y |T = 0, MY = 0]

= E[Y |T = 0, MY = 0, C = 1]P (C = 1|T = 0, MY = 0)

+ E[Y |T = 0, MY = 0, C = 0]P (C = 0|T = 0, MY = 0)

= E[Y |T = 0, C = 1]P (C = 1|T = 0, MY = 0)

+ E[Y |T = 0, C = 0]P (C = 0|T = 0, MY = 0)

= µT=0, C=1P (C = 1|T = 0, MY = 0) + µT=0, C=0P (C = 0|T = 0, MY = 0)

So the expectation of compliers’ outcome in the control group can be expressed as:

µT=0, C=1 =
µT=0, MY =0 − µT=0, C=0P (C = 0|T = 0, MY = 0)

P (C = 1|T = 0, MY = 0)
(3.25)

While, for P (C = j|T = 0, MY = 0), under assumption 2, we have:

P (C = j|T = 0, MY = 0) =
P (MY = 0|T = 0, C = j)P (C = j|T = 0)

P (MY = 0|T = 0)

=
P (MY = 0|T = 0, C = j)P (C = j)

P (MY = 0|T = 0)
(3.26)

After applying (3.26) into (3.25), we have:

µT=0, C=1

=
µT=0, MY =0P (MY = 0|T = 0)− µT=0, C=0P (MY = 0|T = 0, C = 0)P (C = 0)

P (MY = 0|T = 0, C = 1)P (C = 1)

(3.27)
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On the other hand, under assumption 2, we have:

P (MY = 0|T = 0)

= P (MY = 0|T = 0, C = 0)P (C = 0|T = 0)

+ P (MY = 0|T = 0, C = 1)P (C = 1|T = 0)

= P (MY = 0|T = 0, C = 0)P (C = 0) + P (MY = 0|T = 0, C = 1)P (C = 1)

So, we have:

P (MY = 0|T = 0, C = 1)P (C = 1)

= P (MY = 0|T = 0)− P (MY = 0|T = 0, C = 0)P (C = 0) (3.28)

After plugging (3.28) into (3.27), we have:

µT=0, C=1

=
µT=0, MY =0P (MY = 0|T = 0)− µT=0, C=0P (MY = 0|T = 0, C = 0)P (C = 0)

P (MY = 0|T = 0)− P (MY = 0|T = 0, C = 0)P (C = 0)

(3.29)

Under assumption 3 and 5, finally we have:

µT=0, C=1

=
µT=0, MY =0P (MY = 0|T = 0)− µT=1, C=0P (MY = 0|T = 1, C = 0)P (C = 0)

P (MY = 0|T = 0)− P (MY = 0|T = 1, C = 0)P (C = 0)

(3.30)
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A2: Proof of equation (3.18)

Proof is similar to A1, except in (3.26), under assumption 2 and 6, we have:

P (C = j|T = 0, MY = 0) =
P (MY = 0|T = 0, C = j)P (C = j|T = 0)

P (MY = 0|T = 0)

=
P (MY = 0|T = 0, C = j)P (C = j)∑1

j=0 P (MY = 0|T = 0, C = j)P (C = j|T = 0)

=
P (MY = 0|T = 0)P (C = j)

P (MY = 0|T = 0)
∑1

j=0 P (C = j|T = 0)

=P (C = j) (3.31)

After applying (3.31) into (3.25), we have:

µT=0, C=1 =
µT=0, MY =0 − µT=0, C=0P (C = 0)

P (C = 1)

Under assumption 3, finally we have:

µT=0, C=1 =
µT=0, MY =0 − µT=1, C=0P (C = 0)

1− P (C = 0)



CHAPTER IV

Combining Bootstrap and Bayes Inferences via Discrepancy
Statistics

Abstract In the case of independent identically distributed samples, the simple

bootstrap yields confidence limits that are asymptotically correct to the first order,

but have less certain confidence coverage in small samples. Bayesian credibility in-

tervals based on the posterior distribution of the model parameters tend to perform

better for small samples, but are more dependent on modeling assumptions than the

bootstrap. A discrepancy statistic based on the difference of model and bootstrap

estimates of variance is used as a basis for combining bootstrap and Bayesian infer-

ences. The goal is to achieve a compromise that combines the advantages of those

two methods, yielding intervals that combine robustness with good small-sample

confidence coverage. We assess properties of our method by some simple simulation

experiments.

Keywords: Bayesian inference, robust inference, posterior predictive checks.
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4.1 Introduction

Bootstrap methods (e.g. Efron, 1979, 1981, 1982) provide tools that can be used

to set confidence intervals in complex problems. As the methods eliminate the routine

but tedious theoretical calculations usually associated with precision assessment,

they have increased the range of statistical problems that can be analyzed, and

reduced the assumptions of the analysis. However, they perform poorly in some small

sample problems, such as setting a confidence interval for the variance (Schenker,

1985). Bayesian credibility intervals based on the posterior distribution of the model

parameters tend to perform better for small samples, but are more dependent on

modeling assumptions than the bootstrap. In this article, a discrepancy statistic is

introduced to combine bootstrap and Bayesian inferences, yielding intervals that are

model robust with good small-sample confidence coverage.

4.2 Bootstrap confidence intervals

Let θ̂ be a consistent estimate of a scalar parameter θ based on a sample

S = {yi : i = 1, . . . , n} of independent observations. Let S(b) be a sample of size n

obtained from the original sample S by simple random sampling with replacement,

and let θ̂(b) be the estimate of θ obtained by applying the original estimation method

to S(b), where b indexes the drawn samples. Let
(
θ̂(1), . . . , θ̂(B)

)
be the set of estimates

obtained by repeating this procedure B times. The bootstrap estimate is

θ̂boot =
1

B

B∑

b=1

θ̂(b)

Large-sample precision can be estimated from the bootstrap distribution of θ̂(b), b =

1, . . . , B. In particular, the bootstrap estimate of the variance of θ̂ (or θ̂boot) is

V̂boot =
1

B − 1

B∑

b=1

(
θ̂(b) − θ̂boot

)2
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Under certain conditions, it can be shown that (a) the bootstrap estimator θ̂boot

is less biased than the original estimator θ̂, and under quite general conditions, (b)

V̂boot is a consistent estimate of the variance of θ̂ (or θ̂boot) as n and B tend to infinity.

If the bootstrap distribution is approximately normal, property (b) implies that an

approximate 100(1− α)% bootstrap confidence interval for θ can be computed as

I boot
norm(θ) = θ̂ ± Z1−α/2

√
V̂boot (4.1)

where Z1−α/2 is the 100(1− α/2) percentile of the standard normal distribution.

Alternatively, an approximate 100(1−α)% bootstrap confidence interval is given by

I boot
emp(θ) =

(
θ̂(b, l), θ̂(b, u)

)
(4.2)

where θ̂(b, l) and θ̂(b, u) are the empirical (α/2) and (1−α/2) quantiles of the bootstrap

distribution of θ̂. This interval may be preferable when the bootstrap distribution of

θ̂ is not close to normal.

Stable intervals based on (4.1) require bootstrap samples of the order of B =

200. Intervals based on (4.2) require much larger bootstrap samples, for example

B = 2000 or more (Efron, 1993).

Preliminary simulations for the situations we consider, concerning confidence

intervals for the logarithm of population variance, suggested that confidence intervals

based on (4.1) have better coverage probability than those based on (4.2), whether

or not the distribution of population is normal. So in the remainder of this article

we focus on bootstrap confidence intervals using (4.1).



69

4.3 Bayesian credibility intervals

The Bayesian analogue of a frequentist confidence interval (CI) is usually re-

ferred to as a credibility interval. Specifically, an interval I satisfying

P (θ ∈ I|y) =

∫

I

p(θ|y)dθ = 1− α

is called a 100(1−α)% credibility interval for θ. Integration is replaced by summation

for discrete components of θ. Unlike the frequentist confidence interval, this definition

provides direct probability statements about the probability that θ lies in I given

the observed data y, based on the observed likelihood and the prior π(θ).

In problems where θ has high dimension, the integrals involved in p(θ|y) may

be very difficult to compute. This problem has been greatly reduced by stochastic

simulation methods that take independent draws from p(θ|y). Let
(
θ(1), . . . , θ(D)

)

represent the drawn values from p(θ|y) where D is very large. A 100(1 − α)%

credibility interval for θ is

I bayes
emp (θ) =

(
θ(d, l), θ(d, u)

)
(4.3)

where θ(d, l) and θ(d, u) are (α/2) and (1−α/2) quantiles of the empirical distribution

of the draws θ(d), d = 1, . . . , D. If the posterior distribution is close to normal, an

approximate 100(1− α)% credibility interval for θ is

I bayes
norm (θ) = θ̃ ± Z1−α/2

√
Ṽbayes (4.4)

where θ̃ and Ṽbayes are the mean and variance of the simulated data θ(d), d = 1, . . . , D.

Suppose y1, . . . , yn is a random sample from a univariate normal distribution

with mean µ and variance σ2. With the conventional Jeffreys’ prior distribution

p(µ, σ2) ∝ 1/σ2
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the posterior distribution of µ and σ2 is

σ2|y ∼ nS2/χ2
n−1 (4.5)

µ|(y, σ2) ∼ N(µ̂, σ2/n) (4.6)

where µ̂ and S2 are maximum likelihood estimates of µ and σ2 based on y1, . . . , yn.

Furthermore, the posterior distribution of θ = log(σ2) is

θ|y ∼ log(nS2/χ2
n−1)

From preliminary simulation results, we found that the Bayesian credibility

intervals of θ = log(σ2) based on (4.3) have coverage probabilities similar to those

based on (4.4). For ease of comparison with the bootstrap confidence intervals from

(4.1), we focus on Bayesian credibility intervals from (4.4) in the remainder of this

chapter. Also, we assess the confidence coverage of the Bayesian credibility interval in

repeated sampling, so our assessment is frequentist. Some Bayesians may question

this tactic, but it does allow a direct comparison of the bootstrap and Bayesian

intervals, and is consistent with the “calibrated Bayes” perspective on inference

advocated by Box (1980), Rubin (1984) and others. For a recent discussion, see

Little (2006).

4.4 Posterior predictive assessment of model fit via discrepancies

Assessing the plausibility of an assumed model is always important to avoid

misleading inferences, so any meaningful inference should include a check that the

assumed model is in agreement with the data. A classical approach calculates a

tail-area probability under the assumed model to assess how extreme is the observed

value of a goodness-of-fit test statistic. For some problems, such as linear mod-

els, goodness-of-fit tests are easy to implement since the reference distribution of

the test statistic is known. Useful approximations to the null distribution of the
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test statistic can be found for other problems, but are not always available (see, for

example, McCullagh 1985, 1986). In the Bayesian framework, posterior predictive

model checking does not require known or approximately known reference distribu-

tions. Bayesian posterior predictive assessment was introduced in Guttman (1967),

applied in Rubin (1981) and given a formal Bayesian definition in Rubin (1984). The

idea is to measure departures of the observed data from the assumed model using

the posterior predictive distribution of discrepancy measures D(y). Gelman et al.

(1996) considered more general measures D(y, θ) that depend on parameters as well

as data.

Let y∗ be a future sample arising from the assumed model H given the observed

data y. With θ and y∗ varying according to their joint posterior distribution, we

compare D(y∗, θ) with D(y, θ) for the observed y. The more extreme is the value

of D(y, θ), the greater is the evidence against the assumed model. A convenient

summary measure of the discrepancy is the tail area probability

PD ≡ P [D(y∗, θ) ≤ D(y, θ)|y]

=

∫
P [D(y∗, θ) ≤ D(y, θ)|θ] p(θ|y) dθ

=

∫ ∫
ID(y∗,θ)≤D(y,θ)p(y∗|θ)p(θ|y) dy∗dθ

which is the classical p-value averaged over the posterior distribution of θ. This is

the p-value defined by Rubin (1984), which we term the posterior predictive p-value

(also see Meng, 1994 and Gelman et al, 1996) to contrast it with the prior predictive

p-value of Box (1980). Some authors (Robins, van der Vaart and Ventura, 2000;

Bayarri and Berger, 2000) have criticized the posterior predictive p-value since it

does not in general have a uniform distribution under H, but proponents argue that

it remains a valid measure from a Bayesian perspective; we make pragmatic use of

the measure here, without attempting to resolve that controversy.



72

It is straightforward to estimate the posterior predictive p-value by the following

simulations:

1. Draw θj from the posterior distribution of θ given y;

2. For given θj, draw a predicted value y∗, j from the sampling distribution P (y∗|θj);

3. Calculate D(y∗, j, θj) and D(y, θj);

A scatter plot of {(D(y∗, j, θj), D(y, θj)), j = 1, . . . , J} provides graphical assess-

ments, and PD is estimated by the proportion of the J pairs for which D(y, θj) ≥

D(y∗, j, θj).

4.5 Combining Bootstrap and Bayesian intervals

The confidence coverage of the bootstrap confidence interval for θ = log(σ2)

based on (4.1) can be compared with confidence coverage of the Bayesian credibility

interval based on (4.4), for the normal model N(µ, σ2) with a Jeffreys’ prior for

(µ, σ2). Theory suggests, and simulations confirm, that under a correctly specified

model, the Bayesian credibility intervals are similar to bootstrap confidence intervals

in large samples, and are superior for small samples. On the other hand when the

assumed model is far from the true model, Bayesian credibility intervals are inferior,

particularly in large samples when bias from model misspecification dominates. To

achieve a compromise that combines the best features of these two intervals, we define

a discrepancy statistic D(y) which is the ratio of model and bootstrap estimates of

variance

D(y) ≡ Ṽbayes(θ)

V̂boot(θ̂)

where Ṽbayes(θ) and V̂boot(θ̂) are Bayesian and bootstrap estimates of variance. If the

model is correctly specified, this ratio is around 1, in large samples; otherwise, it may

be smaller or larger than 1, depending on the form of model misspecification. By

comparing the observed value of the discrepancy D(y) with its posterior predictive
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distribution, we can assess whether the posited model fits the observed data set.

Given the observed data y and the posited model which is normal with Jeffreys’ prior,

the posterior predictive distribution of the discrepancy is constructed as described

before. For j = 1, . . . , J,

1. Draw σ2, j and µj from (4.5) and (4.6);

2. Given µj and σ2, j, draw a predictive data set y∗, j from N(µj, σ2, j);

3. For given y∗, j, find Ṽ ∗, j
bayes(θ) and V̂ ∗, j

boot(θ̂) , then calculate D(y∗, j);

Note Ṽ ∗, j
bayes(θ) is the estimated posterior variance of θ given the data set y∗, j; and

V̂ ∗, j
boot(θ̂) is the bootstrap estimate of variance for θ̂ based on the data set y∗, j.

Under the posterior predictive distribution of the discrepancy, we can calculate

a posterior predictive p-value to quantify how extreme is the observed value of the

discrepancy. If the observed value of the discrepancy D(y) does not fall in the tail of

the posterior predictive distribution, the posited model is deemed to fit the observed

data, and the Bayesian credibility interval is used for inference; if the observed value

of the discrepancy D(y) does fall in the tail of the posterior predictive distribution,

the posited model is deemed not to fit the observed data, and a confidence inter-

val is constructed by combining the bootstrap confidence interval and the Bayesian

credibility interval via a function of posterior predictive p-value PD. Specifically, we

define a weighted bootstrap/Bayes (WBB) 100(1 − α)% confidence interval for the

parameter of interest as follows

W (PD) ∗ I bayes
norm + [1−W (PD)] ∗ I boot

norm

where : W (PD) =





PD if PD < 0.05

1 if PD ≥ 0.05

PD = P (D(y∗) ≤ D(y)|y)
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We apply this approach to the problem of estimating the logarithm of vari-

ance θ = log(σ2) for data y = {y1, . . . , yn} sampled from a t distribution, when

the assumed model is normal with a Jeffreys’ prior. The assumed normal model is

deemed not to fit the data when the observed discrepancy falls in the left tail of its

posterior predictive distribution. To compare the performance of the WBB method

with the bootstrap confidence and Bayesian credibility intervals, a simulation study

was conducted for samples of size 15, 20, 25, 30 and 50. For each sample size, 10,000

data sets were simulated from a t distribution with degree of freedom 4 and true

θ = log(σ2) = 0.6931. In computing the bootstrap confidence interval, B = 200

bootstrap replications were used. For the stochastic simulation of posterior distri-

butions, D = 10, 000 draws were used and the posterior predictive distribution of

D(y∗) was simulated using J = 10, 000. For every simulated data set y, the left

tail-area probability PD was calculated to quantify the extremeness of the observed

value of the discrepancy. The 10, 000 simulated data sets were stratified into three

groups based on whether P (D) < 0.05, 0.05 ≤ P (D) ≤ 0.95 and P (D) > 0.95. The

average intervals and proportions of the intervals covering θ = log(σ2) = 0.6931 are

given in Table 4.1 for each stratum and overall.

Comparing the bootstrap and Bayes intervals, we see that the overall cover-

age of the bootstrap intervals is below nominal, particular in small samples; this is

consistent with the results in Schenker (1985). The Bayes intervals also have poor

confidence coverage, particular for the larger sample sizes. An interesting feature

is that the bootstrap confidence coverages vary much more than those of the Bayes

intervals across the strata defined by the discrepancy statistic. This is related to the

fact that Bayes is more “conditional” and hence less sensitive to this ancillary statis-

tic. The intervals based on WBB have the best overall coverage rates of the three

methods, suggesting that WBB combines the advantages of bootstrap and Bayesian
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Table 4.1: 95% confidence interval and coverage probability for one tailed version of WBB when
model is misspecified

sample method left middle right overall
size tail area tail
15 (n=2403) (n=7389) (n=208) (n=10000)

bootstrap (-0.50, 2.34) (-0.42, 1.14) (-0.36, 0.57) (-0.44, 1.41)
97.54% 77.20% 40.38% 81.32%

bayes (0.22, 1.76) (-0.34, 1.20) (-0.59, 0.95) (-0.21, 1.33)
73.24% 81.77% 72.12% 79.52%

WBB (-0.50, 2.33) (-0.34, 1.20) (-0.59, 0.95) (-0.38, 1.47)
97.34% 81.77% 72.12% 85.31%

20 (n=2961) (n=6883) (n=156) (n=10000)
bootstrap (-0.30, 2.06) (-0.28, 1.06) (-0.26, 0.56) (-0.28, 1.35)

96.72% 77.57% 35.90% 82.59%
bayes (0.28, 1.59) (-0.21, 1.10) (-0.45, 0.85) (-0.07, 1.24)

74.64% 80.82% 70.51% 78.83%
WBB (-0.30, 2.06) (-0.21, 1.10) (-0.45, 0.85) (-0.24, 1.38)

96.72% 80.82% 70.51% 85.37%
25 (n=3473) (n=6431) (n=96) (n=10000)

bootstrap (-0.19, 1.87) (-0.20, 0.99) (-0.13, 0.62) (-0.19, 1.29)
96.75% 77.71% 42.71% 82.70%

bayes (0.30, 1.46) (-0.14, 1.02) (-0.29, 0.87) (-0.01, 1.17)
74.52% 78.46% 69.79% 77.01%

WBB (-0.19, 1.87) (-0.14, 1.02) (-0.29, 0.87) (-0.16, 1.31)
96.66% 78.46% 69.79% 84.70%

30 (n=4039) (n=5872) (n=89) (n=10000)
bootstrap (-0.11, 1.76) (-0.13, 0.96) (-0.10, 0.60) (-0.13, 1.28)

96.66% 74.63% 39.33% 83.21%
bayes (0.33, 1.38) (-0.08, 0.97) (-0.24, 0.81) (0.09, 1.13)

74.80% 76.26% 66.29% 75.58%
WBB (-0.11, 1.76) (-0.08, 0.97) (-0.24, 0.81) (-0.09, 1.29)

96.56% 76.26% 66.29% 84.37%
50 (n=5581) (n=4394) (n=25) (n=10000)

bootstrap (0.06, 1.45) (0.01, 0.86) (-0.05, 0.53) (0.03, 1.19)
95.72% 71.48% 28.00% 84.90%

bayes (0.37, 1.17) (0.05, 0.85) (-0.14, 0.66) (0.23, 1.03)
75.08% 71.78% 44.00% 73.55%

WBB (0.06, 1.45) (0.05, 0.85) (-0.14, 0.66) (0.05, 1.18)
96.66% 71.78% 44.00% 85.04%
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techniques. However, in this problem WBB does not achieve the nominal level of

95%. This is not surprising, given the deficiencies of two methods being combined:

the bootstrap is asymptotically valid only to the first order, and the Bayesian interval

is vulnerable to model misspecification. For those data with the observed discrepancy

falling in the left tail of the posterior predictive distribution (PD < 0.05), the boot-

strap intervals have better coverage rates than Bayesian credibility intervals since the

assumed model does not fit the data; while for those with the observed discrepancy

in the middle area and right tail (PD ≥ 0.05), the Bayesian credibility intervals per-

form better. The choice of the left tail of the posterior predictive distribution of the

discrepancy to assess whether the posited model matches the data assumes that the

analyst knows that potential departures from the normal distribution are in the form

of longer-tailed distributions. If longer or shorter than normal tails are entertained,

the WBB method could be defined to measure discrepancies in both tails, as follows:

An approximate 100(1− α)% confidence interval of θ = log(σ2) is

W (PD) ∗ I bayes
norm + [1−W (PD)] ∗ I boot

norm

where : W (PD) =





PD if PD < β

1 if β ≤ PD ≤ 1− β

1− PD if PD > 1− β

PD = P (D(y∗) ≤ D(y)|y)

Where β denotes the cut-off level to assess the extremeness of the observed value of

the discrepancy under its posterior predictive distribution.

To check the validity of this WBB method and decide the value of β, additional

simulations were done (Table 4.2). The value of β was taken as 0.025, 0.05, 0.10

and 0.15. As before, the intervals based on WBB have the best coverage rates.
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The coverage probabilities of WBB method do not depend much on the value of β.

Although the choice of β = 0.10 or β = 0.15 appears slightly better for the cases

considered, in subsequent simulations, we choose β = 0.10.

Methods were also compared for repeated samples of size 15 to 50 simulated

from the normal distribution N(0, 2) with θ = log(σ2) = 0.6931, to assess the per-

formance of WBB when the model is correctly specified. As one might expect, the

Bayes credibility intervals have the best confidence coverage in this situation, but

WBB is only slightly worse, and does substantially improve the performance of the

bootstrap confidence intervals in small samples.

Table 4.2: 95% confidence interval and coverage probability for two tailed version of WBB when
model is misspecified

method
sample bootstrap bayes WBB WBB WBB WBB

size (β=0.025) (β=0.05) (β=0.10) (β=0.15)
15 (-0.44, 1.39) (-0.22, 1.32) (-0.35, 1.43) (-0.37, 1.44) (-0.40,1.45) (-0.40, 1.45)

81.19% 81.03% 85.00% 85.36% 85.45% 85.19%
20 (-0.29, 1.34) (-0.07, 1.23) (-0.23, 1.36) (-0.24, 1.37) (-0.26,1.38) (-0.27, 1.38)

81.79% 77.66% 83.37% 84.02% 84.37% 84.32%
25 (-0.19, 1.30) (0.02, 1.17) (-0.13, 1.30) (-0.15, 1.31) (-0.17,1.32) (-0.18, 1.32)

82.20% 76.13% 83.12% 83.67% 84.15% 84.26%
30 (-0.12, 1.27) (0.09, 1.13) (-0.08, 1.27) (-0.09, 1.28) (-0.10,1.29) (-0.11, 1.29)

83.26% 75.65% 83.64% 84.14% 84.60% 84.75%
50 (0.03, 1.19) (0.23, 1.03) (0.07, 1.18) (0.05, 1.19) (0.04, 1.19) (0.04, 1.19)

84.49% 73.26% 83.60% 84.45% 84.98% 85.15%

Table 4.3: 95% confidence interval and coverage probability for two tailed version of WBB when
model is specified correctly

method
sample size bootstrap bayes WBB

(β=0.10)
15 (0.17, 1.63) (-0.07, 1.46) (-0.03, 1.52)

88.28% 95.02% 93.51%
20 (0.22, 1.46) (0.04, 1.35) (0.07, 1.39)

89.41% 95.18% 93.82%
25 (0.26, 1.35) (0.11, 1.27) (0.14, 1.29)

90.36% 94.74% 93.65%
30 (0.29, 1.29) (0.17, 1.22) (0.19, 1.24)

91.12% 95.54% 94.60%
50 (0.36, 1.14) (0.30, 1.10) (0.31, 1.11)

91.96% 94.97% 94.12%
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4.6 Discussion

We have proposed WBB as a method to combine bootstrap and Bayesian

inferences through a function of the discrepancy and its posterior predictive p-value.

For the problem of inference for the logarithm of variance, WBB generates intervals

with better confidence coverage than the bootstrap when the model is correctly

specified, and better confidence coverage than both bootstrap and Bayes when the

model is misspecified. Besides improved performance for small samples, WBB is also

asymptotically correct to the first order. Asymptotically under a misspecified model,

the observed discrepancy has a posterior predictive p-value that tends to zero, and

the WBB interval converges to the bootstrap interval.

In this chapter, we applied WBB to construct confidence intervals for the

logarithm of population variance, with discrepancy defined as the ratio of Bayesian

estimate of variance divided by bootstrap estimate of variance. The WBB can be

applied to build confidence intervals for any parameter, given a suitable discrepancy

(which might depend on parameters) to measure the differences of bootstrap and

Bayesian inferences. The further development and assessment of the performance of

WBB in other problems remains a topic for future research.

The weight function we considered here is one of many plausible choices, and

the cut-off point for the posterior predictive p-value was set based on simulation

results. More work is needed to evaluate other choices of weight functions and other

choices of cut-offs for the posterior predictive p-value.

The WBB method is a plausible compromise between two simple Bayesian

modeling and bootstrap strategies, and Bayesians and frequentists might both argue

that better approaches are available. In particular, the naive bootstrap might be

replaced by a more advanced bootstrap method, such as the BCα or ABC method, or
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the studentized estimating function bootstrap. From a Bayesian perspective, a more

principled approach when faced with an extreme value of the discrepancy statistic

would be to modify the model to improve the fit – in the problem discussed here,

replacing the normal model by the t model would obviously be the right approach,

although of course in real settings we do not know the family from which the data

are sampled. Such an approach requires more sophisticated modeling than our WBB

method, which can be implemented in a relatively automated manner. Comparisons

with these more sophisticated methods would also be of interest.



CHAPTER V

Conclusions and Future Work

The missing-data mechanism can be ignored when the data are MAR, but this

assumption is not always intuitive for general pattern missing data. We consider a

NMAR model, called AMAR, that is close to MAR and realistic in some settings.

In randomized clinical trials subject to noncompliance to the treatment assignments

and subsequent non-responses, we find AMAR is connected with latent ignorability

proposed by Frangakis and Rubin (1999).

We examine the AMAR model in chapter II, for the case of bivariate categorical

data and show that non-iterative ML estimates exist when ‘estimates’ of nuisance

parameters fall in the parameter space. Although some data are discarded, estimates

of the parameters of interest are still consistent and fully efficient. We also discuss

extensions of this type of mechanism and develop likelihood ratio tests for AMAR

and its nested models.

For randomized clinical trials with non-compliance and subsequent non-response

considered in chapter III, under AMAR (or latent ignorability), we discuss various

assumptions for the principal compliance and missing outcome. In each scenario de-

fined by combinations of these assumptions, we derive ML estimates by using the EM

algorithm, as well as non-iterative ML estimates by implementing pattern-mixture

models with covariates, and find MOM estimates sometimes are ML estimates. We
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find assumptions of principal compliance decide which analysis is used to estimate

the treatment efficacy. When ER satisfies, we use the IV analysis, while when NCEC

satisfies, PP analysis is used to estimate treatment efficacy. Assumptions of missing

outcome further determine whether MOM estimates are ML estimates or not.

Through a function of the discrepancy and its posterior predictive p-value, we

propose WBB as a method to combine bootstrap and Bayesian inferences in chapter

IV, to yield robust confidence intervals with good small-sample confidence coverages.

For inference for the logarithm of the variance, we show that, no matter whether

the model is correctly specified or not, WBB always generates intervals with better

confidence coverage than the bootstrap, and when the model is misspecified, WBB

generates better confidence coverage than Bayes. Besides improved performance for

small samples, WBB is also asymptotically correct to the first order. Asymptotically

under a misspecified model, the observed discrepancy has a posterior predictive p-

value that tends to zero, and the WBB interval converges to the bootstrap interval.

We consider the AMAR model for bivariate categorical data in chapter II and

III. In the future, it is worth extending models for bivariate data involving continuous

or ordinal variables, with the same pattern and mechanism as that described here.

It is also worthwhile to consider an extension that the first variable is binary and the

second variable is normal with different means depending on the first binary variable.

It remains an open question how to extend this type of model for data with more

than two variables.

We consider one extension of the AMAR model with a fully observed covari-

ate. Specifically, in the randomized clinical trials with non-compliance and non-

response, the treatment assignment is a fully observed covariate, besides missing

non-compliance and missing outcomes. If the AMAR model involves more than one
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fully observed covariates, the definition of AMAR should be carefully specified to

incorporate the information of these observed covariates.

We study the randomized clinical trials with two-level compliance, compliers or

never-takers, an extension to include always-takers is straightforward by modifying

the categorical distribution of compliance in the model.

The compliance we consider here is all-or-none compliance. We will carefully

extend our consideration to partial compliance as more restrictions are needed to

identify the parameters in the model.

We specify various assumptions for compliance and missing outcomes in ran-

domized trials. Although it is impossible to test these assumptions, sensitivity anal-

yses can be developed to evaluate their influences on the estimators of treatment

efficacy. For example, in the sensitivity analysis for the ER assumption of missing

outcome, we can define a nuisance parameter as the ratio of proportions of miss-

ing outcomes for never-takers between the active treatment group and the control

group. By varying this nuisance parameter, we can then assess the influences of the

ER assumption of missing outcome on the estimators of treatment efficacy.

We consider randomized trials with two treatments, active treatment verses

control treatment. Estimating treatment efficacy in randomized trials with more

than two treatments (such as two active treatments and one control treatment)

is more complicated, since it consists of more principal compliance categories and

involves more complicated identifiability assumptions. We will study this extension

in the future.

We build adaptive confidence intervals for the logarithm of population variance.

Actually, WBB can be applied to build confidence intervals for any parameter, given a
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suitable discrepancy (which might depend on parameters) to measure the differences

of bootstrap and Bayesian inferences. The further development and assessment of

the performance of WBB in other problems remains a topic for future research. The

weight function considered here is one of many plausible choices, and the cut-off point

for the posterior predictive p-value is set based on simulation results. More work is

needed to evaluate other choices of weight functions and cut-offs for the posterior

predictive p-value. We constructed WBB method based on two simple Bayesian

modeling and bootstrap strategies. In the future, it is possible to replace the naive

bootstrap by a more advanced bootstrap method, such as the BCα or ABC method,

or the studentized estimating function bootstrap, and modify the model to improve

the fit from a Bayesian perspective.
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