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CHAPTER I

Introduction

1.1 Motivation and overview

1.1.1 p-adic local Galois representations

Since the pioneering work of Wiles on the modularity of semi-stable elliptic curves
over Q, many classes of 2-dimensional (mod p or p-adic) global Galois representations
are known to “come from” modular forms. One of the main difficulties of proving
modularity lies in the study of local deformation problems with various p-adic Hodge
theory conditions, for which one needs to understand Galois-stable Z,-lattices in
(potentially) semi-stable p-adic representations and their reductions mod p"™. On the
other hand, “integral p-adic Hodge theory” is much more delicate than “classical”
p-adic Hodge theory, which makes it hard to study deformations satisfying various
p-adic Hodge theory conditions.

This paper introduces a new technique of using the norm fields to study defor-
mations and mod p reductions in p-adic Hodge theory, which is explained below.
Let 2 /Q, be a finite extension. Choose a uniformizer @ € 04, and consider an
infinite Kummer-type extension J# o, := 2 (*3/7). We put G = Gal(# /X))
and G = Gal(# /¥ ). Kisin [52] showed that the restriction to G of a

semi-stable G y-representation with Hodge-Tate weights in [0, h] is so-called a G 4 __-



representation “of height < h.”' The precise definition will be given later in Defini-
tion 5.2.8. The point is that integral theory for G »_ -representations “of height < h”
is much simpler than integral p-adic Hodge theory, and that we lose no information
by restricting crystalline G ,-representations to G »_.? See §2.4 for a summary of
Kisin [52].

In order to study (or even, to define) deformations “of height < h” one needs
to define and study torsion representations “of height < h,” which is carried out in
§8-89 of this paper. One of the main results of this paper is the existence of universal

G v -deformation rings “of height < A” for any positive integer h:

Theorem (11.1.2). LetF be a finite extension of F,, and let po, be an F-representation

of Gx.. of finite dimension. Then there exists a complete local noetherian W (F)-

0,<h
Poo

algebra R with residue field F and a framed deformation of ps, over REo’fh
which s universal among all the framed deformations of ps. with “height < h.”
IfEndg,,_(pss) = F then there exists a complete local noetherian W (F)-algebra R§£
with residue field F and a deformation of ps, over R;f: which is universal among all

the deformations of ps with “height < h.”

The existence of such G, _-deformation rings is surprising because the usual
‘unrestricted’ G »__-deformation functor has a infinite-dimensional tangent space (so
‘unrestricted’ G »__-deformation rings do not exist in the category of complete local
noetherian rings); see §11.7.1 for the proof of this claim. Note that G _ does not
satisfy the cohomological finiteness condition that is usually used to prove the finite-

dimensionality of the tangent space of interesting Galois deformation functors.

1Later in this paper, we use the terminology P-height instead of height where P(u) is an Eisenstein polynomial
over the maximal unramified subextension %o of % such that P(w) = 0. This is to avoid confusion with the
analogous notion of height which uses the p-adic cyclotomic extension instead of an infinite Kummer-type extension.

2There is a semi-stable analogue of this statement. Roughly speaking, it says that by restricting the G -action
of a semi-stable representation to G __, we only lose the monodromy operator of the corresponding filtered (¢, NV)-
module.



Let p be a finite-dimensional F-representation of G , such that plg = po. Then

0O,<h
Poc

“restricting the G ,-action to G »_ 7 defines natural maps from R constructed
in the above theorem into crystalline/semi-stable framed deformation rings® of p
with Hodge-Tate weights in [0, h]. (If Endg,_(ps) = F then we obtain the same
result for deformation rings without framing.) By using these maps and analyzing

the structure of G »_-deformation rings constructed above, we obtain the following

results on crystalline/semi-stable deformation rings.

e The “ordinary” condition cuts out a union of connected components in (the Q,-
fiber of ) a crystalline or semi-stable (framed) deformation ring with Hodge-Tate
weights in [0, k] (where the crystalline and semi-stable deformation rings are as

defined by Kisin [55] and Tong Liu [59]). This is done in Proposition 11.4.18.

e Assume dimyp p = 2. Let RE "V be the quotient of the flat framed deformation ring
with the property that the determinant of the action of the inertia group I, is
equal to the p-adic cyclotomic character*. Kisin gave a complete description of
the connected components of Spec RIE ’V[%], which is used as the main technical
ingredient for the proof of his modularity lifting theorem [51, 53]. Assuming
p > 2, the author gives a new proof of Kisin’s description of the connected
components of Spec RE ’V[%], which was crucially used in Kisin’s modularity
lifting theorem [51, 53]. The idea is to “resolve” Spec RE "V using the Breuil-Kisin
classification of finite flat group schemes. This paper presents another method
to resolve Spec RE v using G . -deformation rings, so we eliminate the Bruil-
Kisin classification from the proof of Kisin’s modularity theorem. The virtue

of this new method is that it works more uniformly in the case p = 2 (after

3A crystalline/semi-stable (framed) deformation ring “over Q,” was defined by Kisin [55], and later Tong Liu [59]
defined it without inverting p We will use Tong Liu’s definition, which recovers Kisin’s ring after inverting p.
4This condition can be thought of as fixing a p-adic Hodge type.



minor modifications), while the Breuil-Kisin classification of finite flat group
schemes is quite problematic when p = 2. Kisin needs a separate paper [53] to
prove the classification of connected finite flat group schemes over a 2-adic base,
which uses Zink’s theory of windows and displays, and the full proof of Serre’s
conjecture by Khare-Wintenberger uses the modularity of 2-adic Barsotti-Tate

liftings. See §11.6 for more details.

We digress to record the following result of separate interest, which is obtained as
a byproduct of the study of torsion representations “of height < h.” Observe that a
semi-simple mod p representation of G » can be uniquely recovered from its restriction
to Gy . Indeed, since any semi-simple mod p representation of G, is tame, this
assertion follows from the fact that the extension % /% does not have any non-
trivial tame subextension. By studying restrictions to G »__, we thereby obtain an
explicit description of mod p crystalline characters with Hodge-Tate weights in [0, ]
for any positive h. (See Proposition 9.4.8 for the case when the residue field of ¢
is big enough. The author plans to generalize this results to accommodate “descent
data for a tame extension” in a subsequent work.) Even the case h = 1 (i.e., finite
flat mod p characters) is interesting. Savitt [70] obtained the same result for the case
p > 2 and h = 1 via elaborate computations with Breuil modules, but the author’s
argument is much simpler and works in the case p = 2 as well (in addition to allowing
any h > 1).

This result is a first step towards understanding the reduction mod p of crystalline
G »-representations up to semisimplification, since any absolutely irreducible mod p

representation of G , arises as an “unramified induction” of a character.



1.1.2 Equi-characteristic analogue

There exists an equi-characteristic “analogue” of Kisin’s theory [52], which his-
torically came first as initiated by Genestier-Lafforgue [35] and Hartl [39, 41] in an
attempt to find an equi-characteristic analogue of Fontaine’s theory of crystalline
representations. To explain this we first introduce some notations. We fix a formal
power series ring I [[mo]], which will play the role of Z, (and m, will play the role
of p). We also fix a finite field k, a complete discrete valuation ring oy = k[[u]]
with the fraction field K = k((u)) and a local map F,[[m]] — o0x which makes ox
a finite F,[[mo]]-module. In particular, this specifies an embedding F, — k. Let
Gk denote the absolute Galois group for K. Genestier-Lafforgue and Hartl studied
IF,[[mo]]-representations of G which can be viewed as analogues of crystalline repre-
sentations, and their theory bears an incredible resemblance with the class of p-adic
G .. -representations “of finite height.”

Before we discuss the work of Genestier-Lafforgue [35] and Hartl [39, 41], let
us explain why their theory can be regarded as an equi-characteristic analogue of
Fontaine’s theory of crystalline representations. (The idea presented below is also
found in Hartl’s work [39, 41].) If one wants to find a class of F,[[m]]-representations
of Gk which can be viewed as an “analogue” of crystalline representations (or
Barsotti-Tate representations), then the natural candidate is the mp-adic Tate mod-
ule of a “my-divisible group” G over ox. But it turns out that in order to get a
nice theory we need more assumptions on the my-divisible groups. We say that a

mo-divisible group G is of “finite height™ if the Verschiebung of G vanishes® and

SHartl calls it a divisible Anderson module in [41, §3.1]. A mo-divisible formal Lie group of height < 1 is also
known as a Drinfeld formal Fg[[mo]]-module, and these have been widely studied since being introduced by Drinfeld
in [25].

6The mo-divisible group associated to a Drinfeld module or to any mg-divisible formal Lie group has vanishing
Verschiebung, so this is not a restrictive assumption. See [34, Ch.I, Prop 2.1.1] for the case of m-divisible formal Lie
groups.



the induced F,[[m]]-action on the Lie algebra satisfies a certain natural assumption.
We say a G g-representation over F[[m]] is of finite height if it is isomorphic to the
mo-adic Tate module of a my-divisible group of finite height. See [41, §3.1] or §7.3 of
this paper.

An amusing fact is that whereas the p-adic Tate module of a Barsotti-Tate group
always has its Hodge-Tate weights in [0, 1], the mp-adic Tate module of a m-divisible
group of finite height can have any non-negative “weights.” To illustrate, consider
the Lubin-Tate character x,7 of Gg, which can be thought of as a representation
of “weight 1.” Then for any positive number h, the character x%, comes from the
mo-adic Tate module of a certain 1-dimensional my-divisible formal Lie group over
ox of “height h.” It is reasonable to regard G i-representations of finite height as
the equi-characteristic analogue of crystalline representations of non-negative Hodge-
Tate weights.

The “Dieudonné-type classification” for finite flat group schemes with trivial Ver-
schiebung [73, 3, Exp VII,, 7.4]" induces a classification of m-divisible groups of
finite height. This result was first announced by Hartl in [40], and is surely well-
known to experts. Since the proof was not available to the author, we work out a
proof in §7 of this paper.® The Frobenius modules which occur as the “Dieudonné
module” of such my-divisible groups were studied by Genestier-Lafforgue [35] and
Hartl [39, 41]°, and their theory exhibits many features that are remarkably similar
to Kisin’s theory [52] of Frobenius &-modules which classify G _-representations
“of finite height.”

Although G i-representations of finite height have properties akin to those of

"For readers’ convenience, we reproduce the proof in §7.2 of this paper.

8The classification of Drinfeld formal Fq[[mo]]-modules (i.e., mo-divisible formal Lie groups of height < 1) is also
proved in [34, §1].

9Such Frobenius modules are exactly the same as effective local shtukas in [35, 39, 41] (since ox is noetherian).
See Proposition 7.1.9 of this paper.



G v -representations of finite P-height, it still makes sense to regard them as the
equi-characteristic analogue of crystalline representations of the full Galois group
G » (with non-negative Hodge-Tate weights) for the following reason. In a field of
characteristic p, adjoining a pth root induces a purely inseparable extension and so
does not change the absolute Galois group. Therefore the gap between G and the
absolute Galois group of any infinite Kummer-type extension K| 73/u] collapses since
char(K) =p > 0.

The analogy between Kisin’s theory and its equi-characteristic analogue is fur-
ther strengthened by the following theorem proved by the author, which is also a
very useful tool in applying the theory of Genestier-Lafforgue and Hartl to Galois

representations.

Theorem (5.2.3). The my-adic Tate module functor from the category of my-divisible
groups over ox of finite P-height to the category of lattice F,[[mo]]-representations of

finite height is fully faithful.

The statement of the above theorem is clearly reminiscent of Tate’s theorem of the
full faithfulness of the p-adic Tate module functor on Barsotti-Tate groups [75, §4.2].
For the proof, we use the “Dieudonné-type classification” to translate the theorem
into a statement about Frobenius modules. The proof is completely analogous to that
of [52, Proposition 2.1.12], except the following two modifications. First, we need to

710 instead of

work with “isocrystals with weakly admissible Hodge-Pink structures
weakly admissible filtered isocrystals (or weakly admissible filtered (¢, V)-modules).
Second, we need to eliminate the use of logarithmic connections over the open unit

disk from the proof of [52, Proposition 2.1.12], which have no good equi-characteristic

analogue.

10See Definition 2.3.1 and §2.3.7 for the definition.



Our modified argument works verbatim in the p-adic case and thus gives a variant
of Kisin’s proof of the p-adic version of Theorem 5.2.3; i.e., [52, Proposition 2.1.12].
In particular, we construct an analogue of weakly admissible Hodge-Pink structures
in the Z,-coeflicient case, and this is often useful. For example, one can give an
explicit criterion, in terms of such “mixed characteristic” Hodge-Pink structures,
to figure out whether an explicitly given 9)?[]%] € Mg(go)[i] comes from a weakly
admissible filtered isocrystal. See Remark 3.2.4 and Proposition 5.2.13 of this paper.

Thanks to the similarity between Z,-linear representations of G “of finite
height” and F,[[m]]-linear representations of Gy of finite height, any discussion be-
low for one adapts to the other. In particular, the same proof of Theorem 11.1.2
gives the existence of the universal deformation and framed deformation rings in the

equi-characteristic setting, even though Gy has infinite p-cohomological dimension

in the equi-characteristic case.

1.2 Structure of the Paper

Since most of the results and proofs for p-adic G __-representations “of finite
height” and their equi-characteristic analogues are completely parallel, in §1.3 we
give conventions to simultaneously discuss both cases simultaneously.

In §1-§7, we introduce various semilinear algebra objects which are used in the
study of p-adic G -representations “of finite height” and their equi-characteristic
analogues, and settle the relations between them (e.g. equivalences of categories).
The following two results are the main theorems proved in §1-§7, which are crucially
used in the study of deformations. First, we give another proof of the theorem of
Genestier-Lafforgue [35, Théoreme 3.3] which asserts the equivalence of categories

between the category of local shtukas and the category of isocrystals with weakly



admissible Hodge Pink structure. The argument presented in this paper is more
akin to arguments of Kisin [52, §1.3] and also proves the analogous statement in the
classical p-adic setting. (In the p-adic setting, “Kisin modules,” or (¢, &)-modules of
finite height, play the same role as effective local shtukas. See Definitions 2.2.1 and
2.3.1 for the relevant definitions.) Second, we show the full faithfulness of natural
functors from various categories of semi-linear algebra objects into the category of
suitable Galois representations (Theorem 5.2.3). The p-adic case of this theorem was
proved by Kisin [52, Proposition 2.1.12].

In §2, we define various semilinear algebra objects which are used to study p-adic
G v -representations “of finite height” and their equi-characteristic analogues. In
§2.4, we outline the results of Kisin [52] in order to “preview” the discussions to
follow.

In §3, we construct equivalences of categories between the category of isocrystals
with “effective” Hodge-Pink structures and the category of certain vector bundles
over the open unit disk with Frobenius structure. (We will define these objects in
§2 for both the p-adic and equi-characteristic cases.) This chapter is “modeled”
after [52, §1.2], except that we work with Hodge-Pink structures instead of filtered
(¢, N)-modules.

In §4, we show the equivalence between the weak admissibility of an isocrystal
with Hodge-Pink structure and the property that the corresponding vector bundle
with Frobenius structure is pure of slope 0 in the sense of Kedlaya (in the p-adic
setting) and Hartl (in the equi-characteristic setting). The key ingredient is the
theory of slopes, which is due to Kedlaya in the p-adic case and due to Hartl in the
equi-characteristic case. This chapter is “modeled” after [52, §1.3] except that we

have to work solely with the Frobenius structure and eliminate the use of logarithmic
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connections on vector bundles over the open unit disk.

In §5.1, we review Fontaine’s theory of étale p-modules and develop its equi-
characteristic analogue, which allows us to define natural functors from various cat-
egories of Frobenius modules we study into the category of suitable Galois represen-
tations. In §5.2, we finally prove the full faithfulness of these functors, using all the
results in the previous chapters.

In §6, we prove the equi-characteristic analogue of Kedlaya’s matrix factorization
lemma [46, Prop 6.5] which was used in §4. This chapter could be replaced by the
following single sentence: the same argument that proves the p-adic statement as
appears in [46, §6] also proves the equi-characteristic analogue.

The main result of §7 is the equivalence of categories between the category “effec-

tive local shtukas” !

and the category of my-divisible groups of finite height (Theorem
7.3.2). This result serves as an equi-characteristic analogue of the Breuil-Kisin classi-
fication of Barsotti-Tate groups [52, Theorem 2.2.7], which is also stated as Theorem
2.4.11(1) in this paper. This result was announced by Hartl [40], but since the proof
was not available to the author, we work out the proof here.

The next two chapters §8-69 develop the theory of torsion G -representations
of finite height and its equi-characteristic analogue. In §8, we introduce torsion
Frobenius modules which give rise to torsion Galois representations. In §9, we prove
various results which play the same role in the study of deformations “of finite height”
as Raynaud’s theory [69] does in the study of flat deformations. As a byproduct,

we obtain an explicit description of mod p crystalline G ,-characters by studying

mod p characters of G with finite height. See Proposition 9.4.8 for the precise

HThe definition we use (Definition 7.1.1) slightly differs from Hartl’s, which is the reason why this term is in
quotes: we modify the definition in order to be able to show the equivalence of categories with mg-divisible groups.
If either the base is locally noetherian or the image of mp is locally topologically nilpotent in the base, then our
definition and Hartl’s definition coincide (Proposition 7.1.9).
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statement.
In the remaining chapters §10-§12, we apply all of the preceding results to study

2

of deformations “of height < h.” Since we work with the language of deformation
groupoids instead of deformation functors, we provide a chapter (§10) to recall def-
initions and prove some basic properties that are needed. The discussion would be
familiar to experts in stacks, except that we do not use a Grothendieck topology*2.
In §11.7, we show the existence of (framed) deformation rings for G » __-representations
“of height < h” as well as for their equi-characteristic analogue (Theorem 11.1.2).
In §11.1, we imitate the discussion in [51, (2.1)] to construct an analogue of Kisin’s
moduli space of finite flat group schemes over the (framed) deformation rings “of
height < h.” Here, we use the moduli of “G-lattices of height < A” in place of
finite flat group schemes. In §11.2, we show that this auxiliary space we constructed
over a deformation ring “of height < A” has generic fiber isomorphic to the generic
fiber of the deformation ring (Proposition 11.2.6). This result crucially uses the full
faithfulness of the natural functors from various categories of p-modules into Galois
representations (Theorem 5.2.3). Using this, we show that the generic fibers of de-
formation rings of “height < h” are formally smooth (Corollary 11.2.10). In §11.3,
we define “types” on the generic fiber of a (framed) deformation ring “of height < h”
and show that (under a suitable “separability” assumption which is automatic in the
p-adic case) fixing a type cuts out a equi-dimensional union of connected compo-
nents in the generic fiber. We also compute the dimension of the dimension in terms

b

of a fixed “type.” The discussion of this section is akin to [55, §3], except that we
work with isocrystals with weakly admissible Hodge-Pink structure instead of weakly

admissible filtered (y, N)-modules.

120r rather, one can view a category cofibered in groupoids as a stack by giving the “silly” Grothendieck topology
on the base where only isomorphisms are coverings
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The remaining sections are devoted to the study of connected components of the
generic fibers of various (framed) deformation rings. In §11.4, we show that the “or-

)

dinary” condition cuts out a union of connected components in the generic fiber of
a (framed) deformation ring “of height < h” for any positive h, and in the case of
2-dimensional representations we give a complete description of all connected com-
ponents with a certain fixed “type.” In the p-adic case we use the natural map into
crystalline/semi-stable (framed) deformation rings to show that the “ordinary” con-
dition cuts out a union of connected components in the Q,-fiber of crystalline/semi-
stable (framed) deformation rings.

In §11.5, for 2-dimensional representations (under a suitable “separability” as-
sumption which is automatic in the p-adic case) we determine the connected com-
ponents of (framed) deformation rings “of height < 1”7 and of a certain fixed “type,”
using Deligne-Pappas local models for Hilbert-Blumenthal modular surfaces (and its
equi-characteristic analogue). Since the “moduli of finite flat group schemes” and
the “moduli of G-lattices of height < 1”7 are defined in a very similar manner, Kisin’s
argument [51, (2.4), (2.5)] applies with few modifications to show that if p > 2 then

“restricting to G "

induces an isomorphism from the Q,-fiber of a framed G »_ -
deformation ring “of height < 1”7 to the Q,-fiber of a framed flat deformation ring;
we explain this in §11.6. The point is that this allows us to reduce the connected
component analysis of flat deformation rings to that of G »__-deformation rings “of
height < 1,” which was carried out in §11.5. For the case p = 2, we prove a weaker
statement which is good enough for the application to Kisin’s modularity theorem for
2-adic potentially Barsotti-Tate representations [53]. The proof uses Breuil’s theory

of strongly divisible modules (§XII). We use strongly divisible lattices to produce

some Z,-lattice crystalline representations with Hodge-Tate weights in [0, 1] whose
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restriction to G »__ is naturally isomorphic to a specified one.
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1.3 Notations/Definitions

We define a o-ring to be a pair (R, og) where R is aring and o : R — R is aring
endomorphism. For example (R,idg) is a o-ring. We say (R, og) is o-flat if o is flat.
For two o-rings (R,or) and (R',or ), we say that (R',or/) is defined over (R,oR)
if R’ is an R-algebra and op is og-semilinear. In this paper, op usually has an
interpretation as a Frobenius endomorphism (or a partial Frobenius endomorphism)
on R.

Let o¢ be either Z, or F,[[mo]]. We set mp := p if 09 = Z,,. Let Fy := 00[7}0] be
the fraction field; i.e., Fy = Q, or Fy = F (7). We view them as o-rings by setting
o :=id. All the o-rings (R, or) that appears in this paper are defined over (oy,id).
We let ¢ denote the size of the residue field of 0y, so ¢ = p if 0g = Z,,.

Let K be a complete discretely valued field of characteristic p. Let ox be its
valuation ring and let k be its residue field. We assume that % is perfect if 0y = Z,,
and that k has a finite p-basis and contains F, if op = F,[[m]]; i.e., k is a finite-
dimensional kP-vector space. In both cases, the ¢gth power map on k (and hence, on

K) is finite. We fix a uniformizer u € oy, so we often identify ox with k[[u]]. We

fix a separable closure K and set Gx := Gal(K*P/K). We would like to study a
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certain class of G -representations over og, Fy, or finite algebras thereof.

1.3.1 Motivating examples

We first describe some motivating examples of G g-representations with p-adic
and equi-characteristic coefficient. By letting oy denote either Z, or F,[[m]] and
developing a consistent set of notations for each choice, we shall study p-adic and

equi-characteristic G g-representations simultaneously.

1.3.1.1 The case 0y = F,[[mo]]

Let us fix an injective local map 0y < o0x. We are interested in ogp-linear repre-
sentations of Gx which are obtained as the mg-adic Tate modules of a certain class of
mo-divisible groups over ok, namely “my-divisible groups of finite height” (Definition

7.3.1).

1.3.1.2 The case 0y =7,

Let %2 be a finite extension of Q,, and ", the maximal unramified subfield of
H (le., H o= W(k:)[]%] where k is the residue field of .%"). Let us fix a uniformizer
m € 0, and an Eisenstein polynomial P(u) € 04,[u] such that P(r) = 0. Pick
7™ € 0 for n > 0 so that 7® = 7 and (7" = 7(*). Set ¥, := Unso H (™)
as subfields of a fixed algebraic closure .#. The theory of norm fields provides a
natural isomorphism G 5 — Gy (call norm-field isomorphism) where K = k((u)).
See §1.3.2 below for more discussions, and [78] for a complete exposition on norm
fields.

We are interested in a certain class of p-adic representations of G, which are
called semi-stable representations. Kisin [52] observed that while the study of G -
stable Z,-lattices in semi-stable representations is very subtle in general, their G »_ -

stable Z,-lattices are much more accessible.



15

1.3.2 Norm-field isomorphism

In the case 0y = Z, we give a useful description of the norm-field isomorphism
G ».. — G, which will be used later in §9.4.

Consider the following ring R := lim o5/(p) of characteristic p > 0. By [78,

oP

Théoreme 4.1.2], R is a complete valuation ring for the valuation vg defined as
follows: for any z := {z,}nz0 € R, define vy(z) := ord, (lim,_oo(Z,)"") Where
I, € oc,, is any lift of x, € 05/(p) = oc,/(p). (One can easily check that
the sequence {(Z,)?" }, always converges in oc ,, and its limit is independent of the
choice of lifts #,,.) We have a natural surjection R — k given by sending {, },>0 € R
to xp mod m—. This surjection has a natural section k — SR which sends a € k to
{[a?”"] mod p},>0, where [a? "] € oc,, denotes the Teichmiiller lift of a? . We view
R a k-algebra via this map. Now, consider an element 7 := {7 mod Prnso € R,
and clearly we have vp(m) = 1. So we obtain a continuous k-algebra embedding
ox = k[[u]] — M via u — m, and we view R as a complete ring extension of ox by
this map. Note that G » continuously acts on fR via its natural action on each factor
0-/(p), and the embedding ox — R is stable under the G »_-action on the target.

By [78, Corollaires 3.2.3, 4.3.4], there exist a natural isomorphism G, — Gy
(called norm-field isomorphism), and a natural og-isomorphism oc, — R which

“respects” the natural actions of G »_ on the source and G on the target (where

G .. and Gk are identified via the norm-field isomorphism).

1.3.3

We start with introducing some o0g-algebras over which various semilinear algebra

objects shall be defined.
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W or o, if 09 = Z,,, then W := W (k) is the ring of Witt vectors of k
with the p-adic topology;
if 09 = F,[[mo]], then W := 0o@p, k = k[[mo]]
with the mp-adic topology.
H o= W][X] the fraction field of .
S :=W](u]]  with the natural op-algebra structure from the one on W.
0¢ the my-adic completion of G[%] (i.e., formal Laurent series
> apu”™ with a, € W, a, — 0).
&= Og[ﬂ_io] the fraction field of og.

Note that og is a complete discrete valuation ring with m, generating the maximal
ideal and the residue field K = Ek((uw)). Thus, og is a Cohen ring for K if og = Z,,.
If o9 = F,[[m0]], then under the identification ox = k[[u]] we have & = oy[[m]] =
00®@r,0x. Similarly, we have og 2 K[[m]] 2 0p®p, K. In particular, we are given
inclusions o <— & and K — o¢ in the equi-characteristic case.

We define a Frobenius endomorphism o for each of above rings as follows. If
09 = Zy, then let oy : W — W be the usual Witt vector Frobenius endomorphism.
If op = F,[[mo]], then define oy by o(m) = mp and o(a) = a? for all a € k. We
extend it by continuity to & by setting os(u) = u?, where ¢ = p if 09 = Z,. This rule
defines a unique endomorphism for each of rings defined above, which is finite and
flat. (In the case 0y = F[[mo]], we need the assumption that k has a finite p-basis
in order to show that o is finite.) We always view above rings as o-rings by this
construction of o. This o lifts the usual ¢th power map modulo 7y and fixes the
image of 0g. In other words, all the above o-rings are defined over (o, id).

Now, we fix an element P(u) € & which will play an important role throughout

the paper, as follows.
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The case 0y = Z,. We view Wu] as a subring of &. Let P(u) € W[u] be an Eisen-
stein polynomial, and let e be the degree of P(u). We normalize P(u) so that

P(0) = p = m."* Note that P(u) = p mod u and P(u) = cu® where c € W*.

The case 0y = Fy[[mo]]. Fix a nonzero element uy € mg (or equivalently, fix a
continuous injective F,-map 0y — ox and let uy be the image of my). Put

P(u) :=m — ug € & and let e := ord,, (ug).

Remark 1.3.4 (The case 0g = F,[[m]]). We give another interpretation on the element
P(u) := mo—up. Within this remark, we give & the mg-adic topology, and we give the
natural valuation topology to 0p and 0x. Then we have an isomorphism & = 00<§>]Fq0 K
as a topological F,-algebra. Now, fix a “structure morphism” Spf ox — Spf oy as in
§1.3.1.1, and let v : Spf ox — Spf & = Spf 0¢ Xgpecr, SPf 0k be the graph morphism.
Then, 7 is a closed immersion defined by the (closed) ideal P(u)-&.

Since &/(P(u)) = ok is a ring extension of W which induces the trivial extension
on the residue field, we see that P(u) is a &*-multiple of some Eisenstein polynomial

in u over W with degree e. This explains the notations.

Remark 1.3.5 (The case oy = Fy[[mo]]). As observed by G. W. Anderson [3] and
Hartl [39], it is good to distinguish two roles of a uniformizer of oy by using different
notations: a uniformizer 7, of the “coefficient ring” o0y of a Gx-representation (and
hence, a uniformizer of W), and the image ug of 7y in the “base ring” ox. To
illustrate, let us consider an og-linear representation coming from a “my-divisible
group” over ox. Then 7y is an “operator” acting on the my-divisible group and uy is
the function on the base scheme. They both act on the Lie algebra of the my-divisible

group, but a prior: they have nothing to do with each other. The situation is quite

13The definition of Tate objects &(h) (Definition 2.2.6) depends on the choice of a specific polynomial P(u), not
just on the ideal P(u)-S&. Our normalization P(0) = p will be used later in §4.3.6 and §5.2.14.
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different if 0oy = Z,. For a p-divisible group G over a p-adic ring o0, the action of

p € Z, on G induces the multiplication by p € 0 on the Lie algebra of G.



CHAPTER II

Frobenius modules and Hodge-Pink theory

2.1 Rigid-analytic objects

2.1.1 Rigid-analytic rings

We now introduce more notations from rigid-analytic geometry. We review some
background in rigid-analytic geometry in Appendix §6.1, for the sake of completeness.
We normalize the absolute value |- | on J#y = Frac W and on any algebraic field
extension of it so that |my| = ¢~'. (Recall that ¢ is the cardinality of the residue field
of 0g.) Let Cy, be the completion of a fixed separable closure K. Let I C 0,1)
be a subinterval, and we always assume that all radii of disks and endpoints of I lie

in ¢@<¢, even if not stated.

A the rigid-analytic open unit disk over J#( with u as a “coordinate.”
Concretely, its points  satisfy |u(z)| < 1.

A;  the subdomain of A whose points satisfy |u(z)| € I, where I C [0, 1)
is a subinterval (allowing I = {r}) whose endpoints lie in ¢@<°.

Oa  the ring of rigid-analytic functions on A (or the structure sheaf of A).

Oa, the ring of rigid-analytic functions on A; (or the structure sheaf of Aj).
Concretely, an element of Oa, is f(u) = ), oy anu”™ with a, € 2 such that

f(z) converges for any « € C 4, with |z| € I. We occasionally use the notation Oa,

to denote the structure sheaf on A; — for more detail, see §6.1. We point out that

19
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the construction of Oa, relies on the fact that K is discretely valued, since we use
a uniformizer v of K. In the case 0y = F,[[m]], one can take a different approach
which allows K to be non-discretely valued (e.g. algebraically closed complete non-
archimedean field); see §2.1.5 for more details.

.z a;u" be a rigid-analytic

Fix r € ¢, and put vy := —log,r. Let f(u) =)
function which converges in Ajp,.,; ie., [ € OA[m-]' Note that OA[m-] contains Oa,

if rel.
I fll, The sup-norm on Ay,,j.Concretely, || f||, := max;{|a;| '}

wy(f) The additive valuation: w,(f) := —log, || fl|, = min;{v(a;) + v-i}.

We recall the following well-known properties of Oa,, which will be used later.

1. The ring Oa,,, is complete with respect to [|-[[,, hence is a Banach -

algebra. The ring OA[T _, 1s complete with respect to a submultiplicative norm

]
max{||-||,,| - |-}, hence is a Banach J# (-algebra. If I is not closed then Oa,
is not a Banach algebra, but it is a Fréchet space for the (countable family of)
norms || - ||, where r € I N g%<0. Concretely, this means that any sequence {f,,}

in Oa, converges if and only if {f,} is Cauchy with respect to the norm || - ||,

for each r € I N ¢@<o.

2. The ring O4, is a principal ideal domain if (and only if) I is a closed subinterval.
In general, Oa, does not even have to be noetherian. But since the base field JZ"
is discretely valued, the ring O4, is a Bézout domain for any /; i.e., any finitely
generated ideal of Q4 is principal. (This follows from the work of Lazard [57].)
Finitely presented modules over a Bézout domain behave like finitely generated
modules over a principal ideal domain. See §6.2.7 for an overview of where

these properties come from, and [46, §2.4] or [48, §2.9] for more detail about the
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Bézout properties.

For f(u) := Y, czanu™ € Oa, where a, € X, one can check that g(u) :=
> onez Oxo(an)u? € Oa . where 1'% C [0,1) is the subinterval whose endpoints
are gqth root of the endpoints of I. So we obtain a 0 ,-semilinear ring morphism
0:0a, — OAII/q by setting o(f(u)) := g(u). Note that ¢ is flat because O4, is a
Bézout domain and o makes OA]l ,, nto a torsion-free Oa,-module. Furthermore,
one can check that ¢ is a finite map, granting that the ¢th power map on k is a
finite map (which we assumed at the very beginning of §1.3). Since we have I = /4
when I =1[0,1) or I = (0,1) (and not otherwise), o is an endomorphism of Oa and
Onag.-

Since 0 : Oa, — OAII/q is not J g-linear but o ,-semilinear, it does not give
rise to a morphism A, — Ay in the sense of classical rigid-analytic geometry!.
Instead, we should linearize o to obtain A, — J}OA ; the map induced on the
rigid-analytic spaces, where 0%, A is the scalar extension of A; under o, in the
sense of [8, §9.3.6]. The geometric map A — ¢% A is not an endomorphism on A,
whereas o is an endomorphism of Oa (over 0.,). This is not a serious problem but
causes some annoying expository issues. We will avoid using rigid-analytic geometry
when this issue comes up. Alternatively, one may handle this issue by identifying
0%, A with A; in other words, by identifying an OJ}O a-module with a sheaf on
A where Oa-multiplication has been twisted by aj}lo (for which we need to assume
that k is perfect when oy = F,[[mo]]) — under this identification, ca becomes an
endomorphism of A and induces the continuous % y-algebra map defined by u +— u?

on the global sections. We do not take this point of view.

Definition 2.1.2. The Robba ring R is the rising union of the rings of rigid-analytic

1This issue is resolved if we are willing to use Berkovich spaces, which has better functorial properties.
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functions on some open annulus with outer radius 1. The bounded Robba ring R"
is the rising union of the rings of rigid-analytic functions bounded near the outer
radius. In other words,

R = lim D(Ap., Oa)

r—1-
RY = lim I(Ap.1), 0a)™,

r—1-

where I'(Ap.y), Oa)" denotes bounded rigid-analytic functions on Ap .

The Robba ring R is not noetherian, but is a Bézout domain (being a rising union

of Bézout domains). The subring R" is a field with the following discrete valuation:

(2.1.2.1) vgea(f) = lim w,(f), for f € R™,
y—00
where w,(f) := —log, || f]|, is the additive valuation.

Let ogsa be the valuation ring. One can check that mg € oxzea is a uniformizer,
k((w)) is the residue field, and ozea = 0¢ where the completion on the left-hand side
is with respect to the my-adic topology. We also remark that oa : Oa, — OAIW
induces “Frobenius” endomorphisms of R, R, and osxea.

It is immediate that:
(2.1.2.2) S[1/m) = Oa NR™.

In particular, & = Oa N 0ba.

2.1.3

Let P(u) € &(= W{[u]]), as defined in §1.3.3. Recall that P(u) is a &*-multiple
of an Eisenstein polynomial in W[u] (and in fact, is an Eisenstein polynomial if
09 = Zyp). Therefore o™ (P(u)) is also a &*-multiple of an Eisenstein polynomial in

W u], and in particular generates a maximal ideal in 6[7%0]
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Denote by z,, € A the unique point where ¢"(P(u)) vanishes. Note that if the
residue field J#(zg) at zq is separable over % g, then the residue field J o(x,) is

separable for all n > 0. Now we define a convergent infinite product

(2.1.3.1) A= (Zgg;) |

n>0

which is a rigid-analytic function on A and has simple zeroes exactly at {z,},>0 and

no other zeroes. From the construction, we have

P(0)

(2.1.3.2) o(\) = Pla)

In particular, Oa[1/)] is stable under o inside Frac(Oa).

Let Oa,, be the ring of germs of rigid-analytic functions at z,, € A, which is
known to be a discrete valuation ring [8, §7.3.2]. Since Oa ., is faithfully flat over
Oa,, we may study analytic local properties of a coherent sheaf at x,, € A via
completed stalks at z,,. In fact, Oa,, can be thought of as the o™ (P(u))-adic
completion of Oa, or equivalently, the 0" (P(u))-adic completion of (‘5[7%0]; for the
proof, we take the global sections of the short exact sequence of coherent sheaves

o"P(u)t
0 Oa (u)

Oa OA/(O'WP(U))ZHO

and use that the global sections functor I'(A, ) is exact on coherent sheaves. As a
consequence of this argument, the residue field J#o(x,) at =, € A is isomorphic to
Oa/(0"P(u)) < &[=]/(0"P(u)). We often write " := # o(x0) = S[]/P(u).
We have a canonical . -algebra isomorphism OX ., = J# o(z,)[[c"(P(u))]] lifting
the residue field identification, when J¢"/. %" is separable. But if oy = F,[[m]] then
such an isomorphism can fail to exist, so in general we avoid using this isomorphism.
For n,m > 0, the Frobenius endomorphism ¢ : Oa — Oa induces, on completed

local rings, local injections

(2.1.3.3) 0" Oauy = Oaayim s



24

which are o"-semilinear inclusions of Oa-algebras carrying the uniformizer o™ (P (u))
to the uniformizer o"*™(P(u)). By linearizing it over Oa, we obtain the following

isomorphism:
(2134) ’yn,m . OA ®0‘”,OA OX,xm l) Ogyxn-&-m :

That this natural map is isomorphism uses that ¢ : Oa — Oa is finite and flat.
Recall that in the case when oy = F,[[m]], the finiteness of o follows from the
assumption that k has a finite p-basis.

We also obtain ¢, -semilinear inclusions 0" : # o(2m) < H# o(Tnym) by reducing
the map (2.1.3.3) modulo maximal ideals. When ¢ /% is separable then via the
canonical isomorphism ORa ,, = ()0 P(u)]] for each m we can view the
map (2.1.3.3) as 0" : Ho(xm)[[0™(P(uw))]] = & o(Tnim)[[o™TP(u)]] which restricts
to the natural map o” : Fo(xy,) — H o(pim) on coefficients and o™ (P(u)) —
o™ (P(u)). We do not us this later, since it is not available when ¢ /¢ is not

separable.

Remark 2.1.4 (The case 0oy = Z,). Using the notations from §1.3.1.2, if n > 0 then
H o(z,) and # o(7™) do not not have to be isomorphic extensions of .#. The
former is generated over £ o bya root of the irreducible polynomial ¢"(P(u)), while
the latter is generated over % by a root of P(u”"). We have ¢%, P(u?") = o"P(u),

where o, acts on the coefficients.
2.1.5 “Conversion” from Hartl’s Dictionary
We momentarily assume that oy = F,[[mo]]. Then we may consider the rigid-

analytic open unit disk over K and use 7, as its “coordinate.”? This open unit disk

will be denoted, in this paper, by Ak, to emphasize that the disk is defined over

2This has no “geometric” analogue for o9 = Zj, but (’)Rt(o b can be thought of as an analogue of Oa, -
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K. For a subinterval J C [0,1) with endpoints in ¢%< U {0}, we let A ; denote
the subdomain of Ak whose points = satisfy mo(x) € J. For f(m) 1= Y ., 7y €
OAy., Where a,, € K, one can check that g(m) := >, ., ()i7g € OAK’ﬂ/q’ where
JY4 c [0,1) is the subinterval whose endpoints are gth root of the endpoints of

J. So we obtain a ox-semilinear ring morphism o : Oa, , — OAK /a by setting

/
o(f(m)) := g(m). Since we assumed that K has a finite p-basis, the gth power map
ok : K — K is finite and flat so o is finite and flat. In [39, 41], Hartl works with
Ay instead of A.

Put [ := [¢~%,¢""] and J := [¢~'/", ¢~/¥] for some positive rational numbers 7, s.
The K-algebra Oa, , naturally sits inside of the K-vector space K|[m, ﬂ—lo]], which
naturally sits in the k-vector space k[, 7%0, u, 1]] of 2-variable infinite-tailed formal
Laurent series over k. On the other hand, the ¢ (-algebra Oa, sits inside of the
JH g-vector space A o[[u, ;]], which naturally sits in the k-vector space k[[mo, =, u, +]].
One can see that Oa, and Oa, , define the same subspace of k[m, W—lo,u, 1], and
has the same multiplication law. (Indeed, one can characterize the .# (-subspace
Oa, C K o[[u, 1] via some “growth condition” of the coefficients as worked out in
§6.1.2, and one has a similar description of the K-subspace Oa, , C K{[m, W—lo]]
Then, one directly checks that they define the same k-subspace of k[[m, 7%0, u, 1]].)
From this, one can also see that the functions bounded near the boundary of A

correspond functions which have an isolated pole at the origin of Ak, and vice

versa. In particular, one can recover Oa, the Robba ring, and the bounded Robba



26

ring using Ag.

Oa = {Zamé & F(AK;OAK)|GZ' € 0g, \V/Z}
€L
R = lim I'(Ak 0. Oax)
r—0+

. 1
RYM = lim D(Ag 04, Oag)[—],

r—0+ 7o
where Ay is the punctured open unit disk over K with coordinate 7.

The advantage of using Hartl’s A g over using A is that K does not have to be
discretely valued.®? (The right sides of above equations make sense even if K is not
discretely valued.) Ome can even replace K by any affinoid K-algebra and develop
the theory for “families”, which makes the argument in [39, §3] work. It is very useful
to allow K to be an algebraically closed ground field. For example, using Ac¢, we

can give natural definitions for the following analytic rings, which are also defined in

§6.1.10:

(2.1.5.1) R¥ = lim [(Acy ), Oac, )
r—0t
. 1

(2.1.5.2) R = lim T(Acy 00), Onc, ) [=]
r—0+ 7o

These rings play a crucial role in “Dieudonné-Manin type” classification (Theorem

4.1.2).

2.2 ¢-modules of finite P-height

Let (R,0) be a o-ring, and we always assume o-flatness unless stated otherwise.
For any R-module M, we write 0*M := R®, g M. A finitely presented R-module M
equipped with an R-linear map ¢ : 0*M — M is called a (p, R)-module, or simply

a p-module if there is no risk of confusions. A morphism (M, py) — (N, py) of

31n fact, Hartl proves Theorem 4.3.4 of this paper allowing more general K than discretely valued ones, with the
statement modified if K is not discretely valued.
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p-modules is an R-linear map f : M — N such that f o ¢y = oy oo*f. For two
w-modules (M, ¢pr) and (N, ¢y), the tensor product M ®g N is again a p-module
via o @ ON.

From now on, assume further that (R, o) is defined over (&, 0), so P(u) is viewed

as an element of R. We further assume that my and P(u) are not zero-divisors in R.

The main examples of such R are &, og, £, Oa, R, and RY.

Definition 2.2.1 (¢-module of finite P-height). We call a (p, R)-module (M, ¢)
is of finite P-height if M is a locally free* R-module and coker ¢ is killed by some
power of P(u). We say that (M, ) is of P-height < h if P(u)"-cokerp = 0. We
let Mody(¢) denote the category of ¢-modules over R of finite P-height, and let
Mod,(p)S" denote the full subcategory of Mody() whose objects are of P-height

< h.

If P(u) € R* (for example, if R = 0g, R, R*), then a p-module (M, pys) is of
finite P-height if and only if y,; is an isomorphism. Hence we make the following

definition.

Definition 2.2.2. An ¢-module (M, ) over R is étale if ¢ is bijective. The category
of étale p-modules over R is denoted by Mod%(gp) taking morphisms to be those of
¢-modules. We denote by Mod%™*(¢) the full subcategory of étale p-modules whose

eg,tor<

underlying R-modules are free. We denote by Mod ¢) the full subcategory of

étale p-modules whose underlying R-modules are annihilated by some power of 7.

Since torsion étale p-modules play important roles in proofs (even though state-
ments may only concerns finite free étale p-modules), we do not require R-freeness

in the definition of étale p-modules.

4A locally free module is always assumed to be of constant rank.
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2.2.3 Injectivity of ¢
The following lemma can be useful to prove the injectivity of ¢ in many cases.

Lemma 2.2.3.1. Let (R, 0) be a o-ring over (&, 0g) and let (M, ¢pr) be a o-module
over R. Suppose that there exists an R-algebra R’ (not necessarily a o-ring) such
that the natural maps M — R @gr M and idrp @pp - R @r (0*M) — R @r M are

wnjective. Then, the map @y is injective.

Proof. 1t follows from chasing the diagram below.

c*M—— R ®p (0*M)
cle idpr ®par

M(—>RI ®RM

]

Corollary 2.2.3.2. Assume that P(u) € R is not a zero-divisor (as assumed at the
beginning of the chapter). For any M € Modgp(p),5 the map pon : o*M — M is

mjective.

Proof. Since P(u) € R is not a zero-divisor, the free R-module M has no non-

trivial P(u)-torsion. So we obtain the corollary by applying the above lemma to

R = R[], O

2.2.4 Formal Properties

Here we record some immediate properties, which mostly follow from o-flatness

of R.

(1) For a short exact sequence 0 — M' — M — M"” — 0 of p-modules, if two of

them are étale (respectively, of finite P-height and all three terms are free), then

5We write M € Mod% () to mean M € Ob(Mod$% (¢)). We keep this convention throughout the paper.
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so is the third. If M is of P-height < h, then M’ and M" are also of P-height
< h. To verify the claims on P-height, we use the injectivity of ¢ (Corollary

2.2.3.2).

(2) (scalar extension)® Let (R, o) ERN (R',0") be a morphism of o-flat rings where o
lies over o; i.e., 0’ o f = foo. Let M be a (¢, R)-module. Then, the “scalar
extension” R’ ®g M is naturally a (¢, R')-module via R’ ® ¢: this makes sense

as a Frobenius structure, using

R ®pp (R @ M) 2R @pp (R@er M) 25 R @pp M

Moreover, if M is of finite P-height (respectively, étale), so is R’ @ r M.

(3) The condition of being of finite P-height (respectively, étale) is stable under
®-product. The rank-1 free module R together with the linearization of ¢ :=
idgr ®o defines the “neutral object” among p-modules in the sense that it is the
“left and right identity” under ®-product. (Under the identification R®pg , R =
Rby > a; ®b; — > a;o(b;), the map ¢ = idg ®o induces idg : R — R.) We

often let R denote this neutral object.
Etale ¢-modules enjoy further nice properties.

(4) Internal Hom is defined in Mod%¥(¢): since Homg(o* M, 0*M") 2 o* Hompg(M, M)
for finitely presented R-modules M and M’, we define (Homg(M,M'), f —

o o fopyt) € Mod%(), where f € o* Homg(M, M') = Hompg(o* M, o*M").

(5) On finite free objects M € Mod%"*(p), one can define the duality functor
M* = Homg(M, R) by taking the internal hom into the “neutral object”

(R, ldR ®O’)

6We do not have to require o-flatness for these claims, except for the étaleness assertion.
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(6) Duality for torsion étale p-modules is not a good concept in general. But if R is
a discrete valuation ring, we may show that M* := Hompg (M, Frac(R)/R) with a
natural ¢+ is a good duality functor. More specifically, we essentially interpret
this as in (4) except Frac(R)/R is not an object of Mod%'"(¢). Nonetheless,
all R-linear morphism from M into Frac(R)/R factors through some finite sub-
module m;"R/R C Frac(R)/R for N >> 0 since M is of finite length, so there

is no problem.

Remark 2.2.5. To give a natural p-module structure on Homg(M, M’) in (4), we need
to invert pr. If we try to carry out the same construction for non-étale ¢-module
M of finite P-height, then the @-structure on the internal Hom Hompg (M, M) will
pick up a “pole” at the ideal P(u)R. (At the beginning of the chapter, we assume

that P(u) is not a zero divisor in R.)

Next, we define Tate objects and Tate twist.

Definition 2.2.6. For n € Z>, the Tate object R(n) is the p-module
R(n) := (R, P(u)"-(idg ®0)).

For (M, ¢n) € Modg(p), the Tate twist M(n) is the tensor product M(n) :=

M ®@p R(n) = (M, P(u)" o).

It is clear that R(n) = R(1)®". For n > 0, we write M(—n) := (M, P(u)" )
if P(u)~™-ypr is well defined, which is always the case if P(u) € R*. It follows that
(M(n))(n') = M(n + n') whenever both sides are well-defined.

Note that the definition of R(n) depends upon the specific element P(u) € R, not
just upon the ideal P(u)-R. In the case 0y = Z,, our normalization P(0) = p will

play a role in §4.3.6 and §5.2.14.
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2.2.7 Isogeny

Recall that Mody(¢) denotes the category of (¢, R)-modules of P-height < h
(Definition 2.2.1). A morphism f : M — M’ in Mody(y) is called an isogeny if
[ is injective and coker f is killed by some power of m, say by 7. Then, there
exists a unique g : M’ — M such that fog=n) and go f = 7}, by the following

commutative diagram

M*f>M’*>>COkerf

Here the uniqueness of g follows from our assumption that m is not a zero divisor in
R. Hence we can define the isogeny category M_odR(go)[ﬂiO] by formally inverting m
on morphisms.

The natural functor MR(@[%] — MR[%](@) which sends M to M[%O] is fully
faithful. Using this, we identify the isogeny class containing M with M [%] This
functor does not have to be essentially surjective unless R = R[W—lo] For example, if

R = G or o¢ then the functor is not essentially surjective.

2.2.8 Vector Bundle on A with Frobenius Structure

We will see later (in §6.1.5) that one can view Mod, () as the category of vector

bundles on A equipped with a certain nice Frobenius structure in the following sense.

—_——

For M € Mod (¢), let M and (0*M) be the vector bundles over A with global
sections M and o* M, respectively. Then ¢ : ¢*M — M corresponds to a map
P o*M — M of coherent Oa-modules, and this is an isomorphism outside x5 € A
(which is the point cut out by P(u) = 0).

By the discussion of §2.2.4, the scalar extension 9 — Oa ®g MM defines a func-

tor Modg(¢) — Moda (¢) that factors through the isogeny category of the source
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category, so we obtain a functor

(2:28.1) Modo()[--] — Moda ().

We will see, after some nontrivial work, that the essential image of this functor is
precisely the objects pure of slope 0 in the sense of Kedlaya (for the case oy = Z,)
and Hartl (for the case oy = F,[[mo]]). This is proved in Proposition 4.3.3 of this
paper.

2.2.9 Hodge-Pink type

We now work with the case R = 6[%0] or Oa. Since Oa is a Bézout domain
and 6[%0] is a principal ideal domain, we have a structure theorem for finitely pre-
sented R-modules. Furthermore, the natural inclusion G[ﬂio] — Oa induces an
isomorphism between P(u)-adic completions; in particular, we have an isomorphism
6[7%0]/77(u)w = Oa/P(u)¥ for any w > 0.

A Hodge-Pink type v is a collection of integers m,, for each non-negative integer
w, such that only finitely many m,, are nonzero. We call n := ) m,, the rank of
v. If my, = 0 for all w ¢ [0, h], we say v is of P-height < h, and we then define a
quotient AY of (R/P(u)")®" as follows.

AV ~~ 6[7%0] mwﬁ OA e
(2291) A ‘@<<P<u>w>> =D (<P<u>w>) |

w>0 0<w<h

Although the term for w = 0 does not influence AV, my may be positive and in
(2.2.9.1) we are viewing AV as a quotient of (R/P(u)")®". Any R/P(u)"-module
which can be generated by n elements is isomorphic to AV for a unique v with rank
n and P-height < h.

Let M be a (¢, R)-module of P-height < h. Assume furthermore that rank M =

n. Then the cokernel of ., being annihilated by P(u)", is isomorphic to AV for a
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unique Hodge-Pink type v of rank n (and necessarily of P-height < h). We say M
is of Hodge-Pink type v if rank M = rank v and coker ¢y = AV as R-modules. We
say w € Z>g is a Hodge-Pink weight of M if m,, # 0, and we call m,, the multiplicity
of w for M.

The following equivalent formulation can be useful. Keeping the notations as
above, M is of Hodge-Pink type v if and only if there exists a choice of R-basis for

M which induces the following commutative diagram:

(2.2.9.2) (R/P(iu)h)@” = M/P(f)h'/\/l
AV E coker ¢

For 9 € Modg()S", the cokernel of pgp can be a non-trivial extension among
S/P(u)"s, so inverting g is crucial to obtain the simple form as above. The point

is that 6[7%0] is a principal ideal domain while & is not.

Remark 2.2.10. In due course, we discuss the relationship between the notion of
Hodge-Pink type/weights and the notion of Hodge-type/Hodge-Tate weights for crys-

talline G y-representations in the case 0y = 7Z,,.

2.2.11 Generalized p-module of finite P-height

As previously, assume that R be a G-algebra with no non-zero P(u)-torsion (i.e.,
we have R C R[%]) This condition is satisfied if R is a domain and P(u) # 0

in R. Then we can make the following generalization of Mody(¢) by allowing ¢ to

have a “pole” at P(u)-R. Consider a finitely generated locally free R-module M,

equipped with a R[=t~]-linear map ¢ : (6*M)[5t~] — M[5-]. We call such a pair

P(u) P(u) P(u)

(M, p) a generalized (p, R)-module of finite P-height or a generalized (¢, R)-module
if P is understood. If P(u) € R*, then they are just étale p-modules. In general,

the category of generalized p-modules of finite P-height contains Mod () as the
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full subcategory of objects (M, ¢) such that ¢ restricts to a map o*M — M, and is
thereby equivalent to Modg(¢) if P(u) € R*. For any N > 0 (depending on M),
the map P(u)" - ¢ restricts to o*M — M, so (M, P(u)™ ) € Modg().

We can extend all the natural operations on Mody(¢) as in §2.2.4 to generalized
p-modules. For example, we can define duals and internal homs for generalized -
modules of finite P-height, as suggested earlier at Remark 2.2.5. In particular, we can
define the Tate objects R(n) for all n € Z, so R(—n) = R(n)*. For any generalized
p-module (M, p), the Tate twist M(n) := M ®g R(n) for n > 0 becomes an actual
p-module.

Most of our results on Modg(p) can extend to generalized p-modules by Tate
twist, and some results and definitions can be stated more neatly using generalized
p-modules. But we do not crucially use this notion. For oy = F,[[m]], the definition
of generalized p-module over & is exactly that of a local shtuka over og. (See

Definition 7.1.1.)

2.3 Hodge-Pink structure

In this section, we define the objects (so called, isocrystals with Hodge-Pink struc-
ture) which are the equi-characteristic replacement for “filtered isocrystals”. In §3.2
we will see how these objects arise from Mod A () and me(gp)[%]. This section is
written based on [39, §2.2].

We call an étale p-module over £ an isocrystal, or more precisely a isocrystal
over k. Recall that o € A is the point cut out by P(u) = 0, and we denoted by
A the residue field at zp € A. In §2.1.3 we have seen that there is a canonical
isomorphism O ., = #[[P(u)]] as # ¢-algebras when ¢ /. % is separable, and in

general P(u) is a uniformizer of Oa 4, -



35

Definition 2.3.1. For a finite-dimensional .# (-vector space D, we put’ ﬁvo =

I

Oawy @0 D. A Hodge-Pink structure® on D is a Oa 4, -lattice A inside ﬁxu[ﬁ]

OA [ﬁ] ®x, D. A Hodge-Pink structure A on D is effective if A contains the
standard lattice 73930. An effective Hodge-Pink structure A is of P-height < h if A is
contained in P(u)*h-ﬁxo.

Let A and A’ be Hodge-Pink structures on D and D', respectively. We say that

a K o-linear map f : D — D’ respects Hodge-Pink structures if id®f : 73330[73(1“)] —

ﬁi’m[ﬁ] takes A into A’, where 13;0 = O0a, Quy D'

An isocrystal with Hodge-Pink structure (respectively, with effective Hodge-Pink
structure) is a tuple (D, ¢, A), where (D, ¢) is an isocrystal and A is a Hodge-Pink
structure (respectively, an effective Hodge-Pink structure) on the underlying % o-
vector space D. We denote by HP k() the category of isocrystals with Hodge-Pink
structure, where a morphism is a % ¢-linear map on the underlying vector spaces
which is p-compatible and respects Hodge-Pink structures. We denote by HP?{O(QO)

(respectively, HP[[%h](gp)) the full subcategory of isocrystals with effective Hodge-

Pink structure (respectively, with Hodge-Pink structures of P-height < h).

Remark. Originally, Hodge-Pink structures were defined by Pink [67] in the case

0o = Fy[[m0]], as a “correct” analogue of Hodge structures in function field arithmetic.

2.3.2

Let D := (D,¢,A) and D' := (D', ¢/, ') be objects in HPk(p). The category

HPk(p) is equipped with the ®-product

(D, o, )@ (D', ¢, N') := (D @y, D', o @ ¢, A @0z, N)

"Later, we will put D := Oa ®oy D, so ﬁmo is the completed stalk of D at zg € A.

8The usual definition of a Hodge-Pink structure is a OA 4, -lattice A inside (OA z, )[ﬁ] ® o*D. But via the
isomorphism ¢ : 0*D — D one can pass between this definition and the usual one - including all the statements
involving “Hodge-Pink structure.”
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and the internal hom via the identification Hom 4, (c*D, 0*D’) = o* Hom 4, (D, D’):
Hom((D,A), (D', ")) := (Hom_,(D,D"), f— ¢ o fo gpfl,Hom@&wO (A, A)),

which satisfy all the expected properties. One can check that 1 := (¢, id ®c0, X, )
is the “neutral object” in HP i (¢) and the contravariant functor (D, A) — (D*, A*) =
Hom((D, A), 1) defines a duality. The category HPZ’ () is stable under @-product,
but not under internal hom or duality.

For any integer n, we define the Tate object 1(n) to be:
(2.3.2.1) 1(n) := (HF oe, p(o*e) = mie, P(u) " Or . )-

For any (D,A) € HPk(p), we define the n-fold Tate twist to be (D,A) ® 1(n) =
(D, P(u)~™A). Clearly for any Hodge-Pink structure (D, A) € HP (), the Hodge-
Pink structure (D, A) ® 1(n) = (D, P(u)~™-A) is effective for n > 0.

A subobject (D', A') C (D, A) in HPk(p) simply means that the natural inclusion

is a morphism of HPx(p); i.e., D' C D is y-stable and A’ C AN (13;0[ L ]) We

say that a subobject (D', A’) C (D, A) is saturated® if A’ = AN (ﬁiﬂo[ﬁw holds,

where the intersection is taken inside ﬁxo[ﬁ] Similarly, a quotient (D", A") of

(D, A) means that D" is a quotient of D as a £ ¢-vector space and that A” coincides
with the image of A under the map ﬁxo[ﬁ] —» ﬁgo[ﬁ] induced by the natural
projection. For any saturated subobjects (D', A’) C (D, A), we can form the quotient
(D/D’;A/N), and the kernel (D', A’) of the natural projection (D,A) — (D", A")
onto a quotient is a saturated subobject such that the natural projection induces an
isomorphism (D/D', A/A') = (D", A").

A short ezact sequence in HP g (p) (HPZ" (), respectively) is defined as a short

exact sequence of underlying J# (-vector spaces which induce a short exact sequence

91n [39, §2.2], saturated subobjects are called “strict subobjects.” We chose to call them “saturated” because a
subobject (D', A") C (D, A) is saturated if and only if A’ C A is saturated.
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on the Hodge-Pink structures (i.e., on (X, -lattices A’s). The left/right flanking term
is a saturated submodule/quotient of the middle term, and conversely, any saturated

submodule or quotient can be placed in a short exact sequence in an evident manner.

2.3.3 Hodge-Pink type and Hodge-Pink structures

Let v be a Hodge-Pink type; i.e., a collection of non-negative integers m,, for each
integer w, such that only finitely many m,, are nonzero. In §2.2.9 we only considered
m,, when w is non-negative. Now we are allowing “negative weights.”

Now we associate such a v to a Hodge-Pink structure A on a J# (-vector space

D. First, we define a decreasing filtration on 73360 from the Hodge-Pink structure as

follows:
(2.3.3.1) Fil (ﬁxo) = (Dyy) N (P(w)” - A)  for w € Z
where the intersections are taken inside 6360[%] In turn, we obtain a separated

and exhaustive filtration Fil* D on Dy := J# ®_, D by taking the image of this
filtration Fil} (ﬁm) under the natural projection map 135,;0 —» ﬁxo / P(u)ﬁxo =Dy

Note that gr* D := P Dx — () for w < 0 and for w > 0.

T FiYtT D, T
Definition 2.3.3.2. Let v := {m,, := dim 4 (gr*(Dx))}. Wesay (D, A) is of Hodge-
Pink type v. The Hodge-Pink weights for (D,A) are w € Z such that m,, # 0, and
we call m,, the multiplicity of w. The Hodge-Pink type for an isocrystal (D, p, A)

with Hodge-Pink structure means the Hodge-Pink type for (D, A).

If (D, A) is of Hodge-Pink type v = {my, }wez, then >, m,, equals dim » (. ® 4,
D = dimy, D. Clearly a Hodge-Pink structure (D, A) is effective (respectively, of

P-height < h) if and only if m,, = 0 for all w < 0 (respectively, m,, = 0 for all

w ¢ [0, h]).
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The following proposition shows the behavior of Hodge-Pink types/weights under

the natural operations, such as duality, tensor product, and internal Hom.

Proposition 2.3.4. Consider (D,\) € HPk(yp) which has Hodge-Pink weights

{wy, -+ ,ws} and each weight w; has multiplicity m,;.

1. The dual (D*,A*) has Hodge-Pink weights exactly {—ws, -+, —ws} and each
weight —w; has multiplicity m;; i.e., the duality inverts the signs of the Hodge-

Pink weights.

2. Assume (D',\') € HPk(p) has Hodge-Pink weights {w}, - ,wl,} and each
weight w!, has multiplicity m,. Then the tensor product (D® D', A®A\") induces
the tensor product filtration on Oa », @, (D ® D'). In particular the Hodge-
Pink weights for the tensor product are {w;+w}, }i=1.... 5.i=1.... s and each weight
w has multiplicity 3, . m; +m, where the summation is over (j, j') such that
w = wj + wj.

3. For the Tate twist (D,A) ® 1(n) = (D, P(u)""A), we have that Filé;(u),nA =

Filj(”; i.e., the Tate twist shifts the filtration. In particular, the Hodge-Pink

weights for the twist (D, P(u)""A) are exactly w; +n with multiplicity m;.

Using (1) and (2), we can obtain the filtration, Hodge-Pink weights, and multi-
plicities for the internal hom, which is left to the reader.
The following easy lemma shows how to recover the Hodge-Pink structure A from

the filtration Fil} defined by A.

Lemma 2.3.5. Let (D,A) € HPx(y), and let Fil¥(D,,) be the filtration on D,

associated to the Hodge-Pink structure A. Then,

A= Z <P(u)‘“’ . Fil}’((ﬁxo)) = Fil’ <15x0[1/73(u)]) ,

WEZ
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~

where the last term is the Oth filtration for the tensor product filtration on 75,,30 [ﬁ]

OA 2 [ﬁ] ®OR 4y Daos where we put the P(u)-adic filtration on Oa 4 [P(lu)].

Let v := {my, }wez be a Hodge-Pink type, and assume that m,, = 0 for all w < 0.
In §2.2.9, we associated to v a G[K—lo]—rnodule AY killed by some power of P(u) which
recovers all m,, except mg. The following corollary shows how AV is related to any

Hodge-Pink structure A on D of Hodge-Pink type v.

Corollary 2.3.6. Consider an effective Hodge-Pink structure (D,A) € HPZ (y)

that is of Hodge-Pink type v := {my}, so m,, =0 for all w < 0. Then we have
" D\ Pwe)

In §2.2.9, we also defined the notion of Hodge-Pink type on Modg(¢)[~]. Later in

™0

§3.2.6, we will define a functor H : Modg(go)[ﬂlo] — HPZ"(p) which preserves Hodge-

Pink types, so the notion of Hodge-Pink type for these two categories is compatible.

2.3.7 Weak admissibility

Let (D,¢,A) € HPk(p) be of rank 1; i.e., D is a 1-dimensional vector space
over . Necessarily, A = P(u)™"-D,, C ﬁxo[ﬁ] for a unique h € Z. We define
the Hodge number for (D, ¢, A) to be tg(D,A) := h. We often write ty(D) if A is
understood. For any .#o-basis e € D, there is a nonzero element ae € £ such
that p(c*e) = e - e. Note that ord,,(ae) is independent of the choice of basis
though a, is not. We define the Newton number for the isocrystal (D, ) to be
tn(D) = ord,, ().

Since the category HP k() has an obvious notion of exterior products (using ®-
products and quotients), we define Hodge and Newton numbers for any (D, ¢, A) €

HPk(p) as follows: ty(D) := ty(det D) and ty(D) := ty(det D). Now, we can

define “weak admissibility” for Hodge-Pink structures.
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Definition 2.3.7.1. An object (D,A) € HPk(p) is called weakly admissible if the

following properties hold:
1. tg(D) =ty(D).
2. For any subobject (D', A’) C (D, A), we have tg(D',\') < tn(D").
The full subcategory of isocrystals D with a weakly admissible Hodge-Pink structure

A will be denoted by HP% (). We similarly define HPY*> () and Hqu(a’[o’h] () as

full subcategories in HPZ" () and HP[I%h] () consisting of weakly admissible objects.

Lemma 2.3.7.2. Condition (2) in Definition 2.3.7.1 is equivalent to:
(2) For any saturated subobject (D', ') C (D, A), we have ty(D',\") < tn(D’)

In particular, an isocrystal (D,A) of rank 1 is weakly admissible if and only if

tu(D) =ty (D).

Proof. 1t is enough to show (2)" implies (2). By passing to the determinant of (D', A’),

we may assume that D" has rank 1. Let (D', AL ;) be the “saturation” of (D', A); i.e.,

sat

/
Asat

P(u)
of subobject, so we have ty (D', AL,,) >ty (D', A’). But the Newton numbers of both

sat

=AN (73;60 [LD The saturation AL, necessarily contains A’ by the definition

subobjects are the same because they only depend on the underlying isocrystals, not
on the Hodge-Pink structure. Therefore, the inequality ty (D', A') < tx(D’) follows

if it holds for the saturation (D', AL,,). O

sat

Proposition 2.3.8. The full subcategory HPR (p) of HPk(p) is closed under the
formation of tensor, symmetric and exterior products, internal homs and duality,
extensions and direct sums. A direct sum (D,\) ® (D', \') is weakly admissible if
and only if both factors are weakly admissible. Moreover, HPW(¢) is an abelian

category.

A direct proof of this proposition is presented in [67, §4,85]. (Note that Pink uses
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the terminology “semistability” to mean our weak admissibility.) The direct proof is
rather tedious but elementary except the assertion about tensor products which can
be proved by adapting Totaro’s argument for weakly admissible filtered p-modules
[76]. Tt is also possible to deduce these using the rigid-analytic interpretation of weak
admissibility (Theorem 4.3.4) and the theory of slopes.

Since Tate objects 1(n) are weakly admissible for any n € Z, an isocrystal with
weakly admissible Hodge-Pink structure (D, A) is weakly admissible if and only if its
Tate twist (D, A)(n) is weakly admissible for some n, by the previous proposition.
One can also directly see this since the Tate twist (D, A)(n) increases ty and tg by
n for all subobjects and quotient objects. We also note that if the residue field k is
algebraically closed, then any rank-1 isocrystal with weakly admissible Hodge-Pink
structure is isomorphic to 1(n) for some n € Z. As mentioned in Remark 4.1.3, this

is a direct consequence of the Dieudonné-Manin classification (Theorem 4.1.2).

2.4 Filtered isocrystals, crystalline G ,-representations, and resumé of
[52]

We assume that oy = Z, throughout the section and follow the notations from
§1.3.1.2. We fix the uniformizer my = p of Z,. The main purpose of this section is to
explain the relationship between crystalline G ,-representations and the semilinear
algebra objects introduced so far, which will motivate the later discussions. Most of
the results in this section are proved in [52]. We assume some basic knowledge of
crystalline and semi-stable representations (and p-adic Hodge theory), for which we

refer to [32, 33].
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2.4.1 Filtered isocrystals

A filtered isocrystal is (D, p, Fil* D ), where (D, ¢) is an étale po-module!® which
is finite-dimensional over J¢ (i.e., an isocrystal) and Fil® D is a decreasing sep-
arated and exhaustive filtration on Dy = # ® 4, D by J¢ -linear subspaces. We
also define a filtered (¢, N)-module to be (D, ¢, N,Fil* D ) where (D, p,Fil* D )
is a filtered isocrystal and N : D — D is a (necessarily nilpotent) J# o-linear en-
domorphism such that Ny = ppN. We call N a monodromy operator. We view a
filtered isocrystal as a filtered (¢, N)-module by setting N = 0. We let MF (o)
denote the category of filtered isocrystals, and MF » (p, N) the category of filtered
(¢, N)-module with the obvious notions of morphisms. We have natural definitions of
subobjects and quotients; direct sums; tensor products; internal homs; and duality.
We leave the exact formulation to readers, or refer to [33].

Recall that a “Hodge-Pink type” in the sense of §2.3.3 is a collection v of non-
negative integers m, for each integer w € 7Z such that only finitely many m,,
are nonzero. We say v := {m,, = dimy (g Dy)} is the p-adic Hodge type for
(D, ¢, N,Fil* D), or Hodge type for (D,p, N,Fil* D) in short. Note that the
numerical datum v determines the decreasing separated and exhaustive filtration
Fil* D of D, by its £ -subspaces, uniquely up to £ -automorphism of D . We
call w for which m,, # 0 a Hodge-Tate weight for (D, p, N,Fil* D), and m,, the
multiplicity of w. Note that the definitions of Hodge type, Hodge-Tate weights, and
their multiplicities have nothing to do with ¢ and N but only use Fil* D . We let
MF7(p) (vespectively, MF _[}Og’h](go)) denote the full subcategory of filtered isocrys-
tals such that all the Hodge-Tate weights are non-negative (respectively, are in [0, h]).

We make similar definitions for MF~2(p, N) and MF g’h](@? N).

10Following the usual convention, ¢ is a o-semilinear endomorphism throughout this section.
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We now define the Hodge and the Newton numbers for D := (D, ¢, N, Fil®* D ).
We first assume that D is 1-dimensional. Then we define the Hodge number ty (D) =
tg(D,Fil®* D) to be the unique Hodge-Tate weight. To define the Newton number
tn, choose a basis D = Jge so ¢(e) = aee for some a, € # ;. The Newton
number tn(D) = ty(D, ) is ordy(e). If D is of arbitrary dimension, we define
tg(D) := ty(det D) and ty(D) := ty(det D). Note that the Hodge number only
uses the filtration, while the Newton number only uses the Frobenius structure.

A filtered (@, N)-module (D, ¢, N, Fil* D ) is called weakly admissible if t (D) =
tn(D) and the inequality tg(D’) < tx(D’) holds for any ¢-stable subspace D' C D
where D', is given the subspace filtration. We let MF%%(¢) (respectively, MF%>(p),
MF wffl’m’h](gp)) denote the full subcategory of weakly admissible filtered isocrystals
(respectively, weakly admissible filtered isocrystals with the conditions on Hodge-
Tate weights). We similarly define MF%(p, N) , MF“Z°(¢, N), and Mff;”;’[o’h] (o, N),
where now D’ C D ranges over ¥ g-subspace stable under ¢ and N.

From Fontaine’s “period ring formalism,” we obtain a contravariant functor D7 . :

=cris

RepG*(G.») — MF4 (), and another contravariant functor Vi, from MF 4 (p)

—~—cris

to such (not necessarily finite-dimensional) Q,[G »|-modules. Similarly we get D, :
Repg, (G.x) — MF (@, N) and Vi from MF g (p) to (not necessarily finite-dimensional)
Q,]G »|-modules such that G » acts continuously on any G ,-stable subspaces of fi-
nite Q,-dimension. See [33] for the definitions. There are at least four proofs of the

following fundamental theorem: [18], [17], [5], and [52].

Theorem 2.4.2 (Colmez-Fontaine). The contravariant functor DY, (respectively,

D2 ) is an anti-equivalence of categories, and V7. .. (respectively, V7, ) restricted to

~cris

weakly admaissible objects is its quasi-inverse.

For each n € Z, the Tate object 1p7(n) is a filtered isocrystal defined as follows:
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the underlying isocrystal is (£ e, p(e) = p™e) and the associated grading is concen-
trated in degree n. Clearly, 1#(n) is weakly admissible. For any filtered isocrystal
D, we put D(n) :== D ® 1pm#(n) and call it the n-fold Tate twist of D. One can
check without difficulty that a filtered isocrystal D is weakly admissible if and only
if its Tate twist D(n) for some n € Z is weakly admissible. Later in Remark 4.1.3,
we will see that if the residue field & is algebraically closed, then any rank-1 weakly
admissible filtered isocrystal is isomorphic to some Tate object 1(n). This follows

from Dieudonné-Manin classification (Theorem 4.1.2).

2.4.3 Filtered isocrystals and isocrystals with Hodge-Pink structure

For a Hodge-Pink structure on a finite dimensional % y-vector space D, we ob-
tain a filtration on 73% = Oaq, ®@x, D, as discussed in §2.3.3. And by reducing
the associated filtration Fil} ﬁxo on ﬁxo modulo P(u) - ﬁxo, we obtain a filtration
Fils D) on Dy since Dy = D, /P(u)D,,. More precisely,

(2.4.3.1)

S Fil¥ D,, Dy, N P(u)"A c D,,
v = = = = = =
A Fil¥ D,, N P(u)-Dyy  P(u)Day N Pu)*A  P(u) Dy,
F

= Dy.

The assignment (D, p,A) — (D, p,Fil} D) defines a functor HPk(p) —
MF x ().

This functor F has a “section” res : MF »(p) — HPk(p), in the sense that there
exists a natural isomorphism F o res = idyr,, (5). Namely, for (D, ¢, Fil* Dy) €
MF 4 (p), we put res(D, p,Fil* D ) := (D, ¢, A), where

A:=Fil’ (D ® ¢ ORa [1/P(w)]) =Y (FilY Dy) @ (P(t) " ORay )-

wWEZ

The natural isomorphism F ores = idyr,, () is immediate from the construction.
Here is the motivation for introducing the functor res. By Theorem 2.4.2, the

category MF () is equivalent (or anti-equivalent) to the category of crystalline
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representations of G . On the other hand, we will see later in Corollary 5.2.4 that
there exists a fully faithful (contravariant) functor V3,» : HPE*(¢) — Repg, (Gr .. )-
Kisin’s work [52, §2.1] shows that the functor D} oreso Vi : Repap(g;{) —
Repg, (G.#..) induced by res is naturally isomorphic to the functor obtained by re-
stricting the G y-action to G »_ . (See §5.2.12 for more discussion.)

We now record some properties of F and res which directly fall out of the def-
inition. The functors F and res commute with quotients, tensor products (hence,
symmetric and alternating products), internal homs, and duality. Clearly, both
functors F and res preserve the Newton numbers ¢ on both sides, since each does
nothing on the underlying isocrystal (D, ¢). They also preserve the Hodge numbers
ty on both sides. In fact, the functors F and res, by construction, “respect” Hodge
type for MF 4 (¢) and Hodge-Pink type for HPk(p) in the following sense: for a
fixed v := {my}, if (D, p, Fil® D) is of Hodge type v, then res(D, ¢, Fil* D ) is of
Hodge-Pink type v and similarly for F.

Now we show that the functors F and res take weakly admissible objects in one
category to weakly admissible objects in the other. One can directly show that F
takes a saturated subobject in HPk(p) to a saturated subobject in MF 4, (¢). In
other words, for a Hodge-Pinks structure (D, A) and a J# j-subspace D', the Hodge-

Pink structure A’ := AN YS;O[P(lu)] for D’ induces the subspace filtration Fily, D', =

D', NFily D, for each w. Since F preserves Hodge and Newton numbers, we have
that (D, ¢, A) € HPk(p) is weakly admissible if and only if (D, ¢, A) is. The claim
for res also follows from the natural isomorphism F ores = ida iz, (4)-

Even though F and res are not quasi-inverse equivalences of categories in general,
they are quasi-inverses on rank-1 objects. Indeed, a Hodge-Pink structure on 1-

dimensional J# y-vector space is uniquely determined by its Hodge number, and the
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same holds for a filtration on 1-dimensional . -vector space. Note also that this
functor HPk(¢) — MF »(¢) sends the Tate object 1(n) in HPk(¢) to 1pz(n) in
MUF (). This explains our notations for Tate objects in HP k() and Tate objects

in MF »(p).

2.4.4

For the rest of this section, we outline the results from [52] which are relevant to

this work. Let Ny = —u\-2

a0, a A g-linear derivation on Oa. We have an equality

Ny oo = pzﬁgg (0 o Ny). For a vector bundle M on A (i.e., a finite free Oa-

module M), a differential operator N&' : M — M over Ny is a J# ¢-linear map
such that for any f € Oa and m € M we have the “Leibnitz rule” N&(f-m) =
Ny(f)-m + f-N&(m). Giving such an Ng! is equivalent to giving a logarithmic
connection VM : M — M ®o, Qal-5], as follows: for a given N&*, set VM(m) =

N (m) @ (—2); for a given VM, define
NM M T M @0, Qall/u)] L2 g,

where Ny : QA — Oa denotes the map w +— —wAZ- induced from the derivation
Ny = —u)\% by the universal property of Qa.

Now, we consider M € Mod (¢) equipped with a differential operator N&* :
M — M over Ny which satisfies N&' o o = p% (pm 0 N&Y); or equivalently,
a logarithmic connection VM which commutes with .. Now, it follows from the
“Leibnitz rule” that N&'(u-m) € u-M for any m € M, so the reduction of N&!
modulo u- M makes sense. We put N := N&'mod u-M, and clearly it satisfies
Nop = ppoN, where ¢ : M/uM — M/uM is the reduction of ¢ modulo uM.
Let Moda (p, Ny) be the category of such “(¢, Ny)-modules” (M, o, N&1), and

Mod (¢, Ng; N = 0) the full subcategory of Mod (¢, Nv) whose objects satisfy
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N = 0. In terms of the logarithmic connection, N = 0 means that the pole of VM

at v = 0 can be removed.

Theorem 2.4.5. [52, §1.2] There exist quasi-inverse equivalences of ®-categories
MM M}_fé)(% N) — Mod (¢, Ny) and DM* Mod, (¢, Ny) — M}-?go(%N)y
which restricts to equivalences of categories M™7 /\/l]:fgg(go) — Mod (¢, Ny; N =
0) and D% : Moda (¢, Ny; N = 0) — MF(p). Under these equivalences of
categories, filtered (p, N)-modules (respectively, filtered isocrystals) with Hodge-Tate
weights in [0, h] corresponds to the (¢, Ny )-vector bundles (respectively, with N = 0)

of P-height < h.

In order for this equivalence of categories to be useful, we need to be able to
identify the essential image of weakly admissible objects in Mod (¢, Ny; N = 0)

and Mod s (¢, Nv).

Theorem 2.4.6. [52, §1.3] A filtered (@, N)-module D € MF72(p, N) is weakly

admissible if and only if there exists M € Modg () such that Oa @M = MM (D).

The proof makes a crucial use of Kedlaya’s slope filtration theorem. The proofs
can be found in [46], [48], and [49]. The notion of slope for an étale p-module over
R is reviewed in §4.1 below.

One can improve the statement of the theorem, using the following results.

1. The functor Modg(cp)[%} — Mod (), M - MR OAa is fully faithful (and the
essential image exactly consists of the object which are “pure of slope 0”7 in the
sense of Kedlaya). In other words, the ¢-stable G-lattice!* 9 in M € Mod A (¢)

is unique up to isogeny if exists. See [52, Lemma 1.3.13], which is also proved

in Proposition 4.3.3 in this paper.

H1n this paper, a lattice is always assumed to be locally free of constant rank.
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2. The forgetful functor Mod (¢, Ny; N = 0) — Moda (¢); (M, o, N&Y) —
(M, ppr) is fully faithful, and the essential image has a description in terms
of a certain singular connection given by a concrete formula being logarithmic.
See [52, Lemma 1.3.10] for the proof. We comment on this in more detail later

in §5.2.12.
Combining above results, we obtain the following corollary.

Corollary 2.4.7. Let D be a weakly admissible filtered (v, N)-module with non-
negative Hodge-Tate weights, and let M(D) := Sﬁ[%] where M is a @-stable S-lattice
in MM (D), whose existence is guaranteed by Theorem 2.4.6. This assignment
defines a functor of ®-categories M : Mfﬂj;go(gp, N) — M_ode(gp)[%], which restricts
to a fully faithful functor on MF“Z"(¢).

Furthermore, I induces an equivalence of categories between objects of rank 1

and between objects “of Barsotti-Tate type,” i.e., Mfwxa’[o’l](gp) = Mode(go)gl[%].

The failure of the full faithfulness of 9% on MF%>>°(p, N) is exactly because 90
“forgets” the monodromy operator N. See [52, Corollary 1.3.15]. The failure of the
essential surjectivity, if it occurs, comes from the step where we forgets the differen-
tial operator N&'. In fact, it is hard to expect to have any more general essential
surjectivity result than the above corollary.'? But the essential image of MF'/ ’>O(w)
under 9 has a simple discription. See [52, Lemma 1.3.10] and Proposition 5.2.13 of
this paper.

While it is hard to associate to a filtered isocrystal (or a filtered (¢, N)-module)

an integral structure which corresponds to a G y-stable Z,-lattice in a crystalline

representation, an object in the target category Modg(go)[%] has an obvious notion

128ee §11.3.13 which indicates that G ¢ . -deformation spaces of P-height < h usually have bigger dimension than
crystalline or semi-stable deformation spaces with Hodge-Tate weights in [0, h].
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)

of “integral structure,” namely a choice of p-stable G-lattice 91 in the isogeny class
ﬂﬁ[z—l?] € Mode(go)[%]. To interpret the meaning of this integral structure, we now

return to the “Galois representation” side. We first need the following result.

Proposition 2.4.8. [52, proposition 2.1.12] The functor Modg(p) — Mod,_ (@),

defined by M +— 0 @a M, is fully faithful.

The proof of this innocent-looking proposition requires all the equivalences of
categories we discussed above.

We have an anti-equivalence of categories T'c from the category of étale p-modules
free over o¢ into the category of finite free Z,-modules with continuous G »_ = G-
action. (See [31, §A.1.2] or Proposition 5.1.7 of this paper.) So we can associate
to M € Modg(p) a lattice G -representation Tg(M) = Te(og @ M). The

previous proposition shows that the contravariant functor T'g(91) : Modg(¢) —

Let Repfpo(g #..) denote the essentially image of Modg(¢) under the fully faith-
ful functor T's, and Repgg(g #.) denote the isogeny category of Repi?(g Koo )i
i.e., the category of Q,-representations V' of G such that there exists a G »_ -
stable lattice T € Repi?(g,;gm). Clearly, we have an anti-equivalence of cate-
gories Vi : M_odg(go)[%] — Repgg(g%w). It can be seen, with some work, that
if Ve Repgg(g%w), then any G _-stable lattice in V' belongs to RepZ)(ngoo).
More precisely, we have the following proposition which is proved in Proposition

5.2.9.

Proposition 2.4.9. IfV = Z’é(ﬁﬁ)[%], then the set of G -stable lattices T" in V

is naturally in inclusion reversing bijection with p-stable &-lattices M C Qﬁ[%], and

M is automatically of P-height < h if I is.
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We now discuss applications of Corollary 2.4.7 to semi-stable and crystalline G -

representations. Consider the composition of functors

(2.4.9.1) Repgy”*(G.x) e MFU (o, N) —2> Mod(9)[1/7]

Repg (Gr..)—= Repg, (G.r..),

where Repafo(g,;{/) is the category of semistable representations with non-negative
Hodge-Tate weights, and the second arrow 901 is as defined in Corollary 2.4.7. All

~

1'* when we replace DY, by D7 .. : Repais’>0(gx) —

—cris

the arrows become fully faithfu
M]-“f;’>0(go), hence the composition is a fully faithful functor Repais’>0(g%) —
Repg, (G ..)-

On the other hand, we also have another functor Repafo(g(%/) — Repr(gt;gm)

obtained by restricting a semi-stable G ,-representation to a G »_ -representation.

Theorem 2.4.10. [52, Proposition 2.1.5] The two functors

one of which is the restriction to G . and the other of which is the composition of
functors from (2.4.9.1), are naturally isomorphic. In particular, the functor obtained
by restricting to a G »__-representation is fully faithful on Reprf;s(g ). Furthermore,

the restriction to G »_, of a semi-stable Q,-representation of G » with non-negative

Hodge-Tate weights belongs to Repgj(g%o).

To digress, note also that Theorem 2.4.2 follows from above; it has been well-
known that the proof of Theorem 2.4.2 reduces to showing that a certain inequality

of dimensions is in fact an equality, which directly follows from above.

131t is not a deep theorem that D*

D7 and D% are fully faithful; the hard part is the essential surjectivity, which
requires Theorem 2.4.2
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Let D be a weakly admissible filtered (, N)-module with non-negative Hodge-
Tate weights, and choose M € Modg(¢) so that Sﬁ[%] = M(D)(Corollary 2.4.7).
The above theorem, combined with Proposition 2.4.9, tells us that the choice of 901
exactly corresponds to the G _-stable Z,-lattice of the semi-stable representation
Vi(D).

In using the fully faithful functor 9% : MF“4>(p) — Mg(@)[i] to study
crystalline representations, we face two major roadblocks. First, 91 is not essentially
surjective. Second, a choice of M € Modg(y) in the isogeny class zm[%] = M(D)

*
cris

corresponds to a G »_ -stable lattice of (D) which is not necessarily G -stable.
On the other hand, for crystalline G ,-representations with Hodge-Tate weights in
[0, 1], we have the following result which completely removes these roadblocks when

p> 2.
Theorem 2.4.11. [52, §2.2/

1. (Kisin’s classification of Barsotti-Tate groups) If p > 2, then there exists an
anti-equivalence of categories G* from Modg(p)S to the category of Barsotti-
Tate groups over 0. Furthermore, for any 9 € Mods(p)S' we have a G 4 -

equivariant isomorphism T, (G*(9M)) = T(M).

2. There exists an anti-equivalence of categories between the isogeny category of
Barsotti-Tate groups over 0 and Mg(go)gl[%]. Furthermore, for an object
93([%] € M_OdG(go)@[%] and an isogeny class [G] containing a Barsotti-Tate group
G0, which correspond to each other under the anti-equivalence of categories G™,
we have a Gy -equivariant isomorphism V,(G) = K%(Sﬁ[%]) In particular, for

any crystalline G ,-representation V', there exists a Barsotti-Tate group G,

such that V =2 V,(G) as a G x-representations.
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One also has a covariant version of Kisin’s classification, by taking duality on
Barsotti-Tate groups (or equivalently, by taking suitable duality on Modg(¢)S!,
which will be defined in Definition 8.3.2). Theorem 2.4.11(1) was originally con-
jectured by Breuil in [11] for all primes p including p = 2. For p > 2 Kisin [52,
§2.2, § A] proved the conjecture. Allowing p = 2, Kisin [53] proves this conjecture
for connected Barsotti-Tate groups using a certain full subcategory of Modg(¢)S;
his proof rests on Zink’s theory of windows and displays. (Under the contravari-
ant correspondences, G*(9M) is connected if poy is “topologically nilpotent.”) It is
conjectured that Kisin’s classification of Barsotti-Tate groups should hold for p = 2
without the connectedness assumption.

As a consequence, if p > 2 then any G _-stable Z,-lattice of crystalline rep-
resentation with Hodge-Tate weights in [0, 1] is G y-stable. Therefore Modg(¢p)S!
classifies G y-stable Z,-lattices crystalline representations with Hodge-Tate weights

in [0,1].

2.4.12 Overview of §3—-§7

In this work, we shall study Rep@)(g #..), which is classified by M_odg(gp)[i]. As
stated above, we have a fully faithful functor Me(gp)[%] — Mod, (), defined by
the scalar extension & — Oa, where the essential image is the full subcategory of
p-vector bundles “pure of slope 0” in the sense of Kedlaya. At the first part of what
follows, we shall prove results analogous to [52, §1], but without using the differential
operator N&' (which is not available in the equi-characteristic case).

The role of N&! is quite limited in [52, §1]. There are two places where N&1 is
used, one of which is avoidable and the other not. One place where N&! is used is

the “Dwork’s trick” argument in the proof of Theomem 2.4.6. We carry out this step

only using the Frobenius map ¢; see Proposition 4.2.1. (An analogous situation can
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be found in [47], which carries out the “Dwork’s trick” step [20] in the proof of de
Jong’s theorem only using the Frobenius structure.)

Kisin [52, (1.2)] crucially used N&! in order to show that D7 and M™7 are
quasi-inverse equivalences of categories between MF~2(p) and Moda (¢, Ny; N =
0). In fact, we should not get equivalences of categories between Mod, (¢) and
MFZ2(), because the forgetful functor Mod (¢, Ny; N = 0) — Mod (¢) is not
an equivalences of categories. On the other hand, the construction of D does not
involve N&!' (more precisely, the construction only uses that N&' mod u-M = 0),
and the construction of the filtration from M € Mod A () suggests that one may be
able to factor D7 as Modx (¢) — HPZ(¢) %, MFZ?() where the second map
is defined in §2.4.3. See [52, (1.2.7)] for the construction. In fact, this idea works
and we obtain quasi-inverse equivalences of categories D and M between HPZ" ()
and Mod A (). This is proved in Propositions 3.2.1 and 3.2.5.

Next, we will interpret the weak admissibility of (D, ¢, A) € HP7 () in terms
of M(D, p,A) being pure of slope 0 in the sense of Kedlaya [46, 48, 49]. But recall
that this full subcategory of pure slope 0 objects is equivalent to M_odg(go)[%], SO we
obtain an equivalence of categories H : HPY">(p) & M_Odg(go)[l—l)]. By composing
with the anti-equivalence of categories T : MG(@)[%] — Repgg(g(;goo) we obtain
an anti-equivalence of categories Vi,p : HPY?(p) = Repgg(g;goo). This anti-
equivalence of categories plays an important role in the study of deformations later
in §XI.

Having eliminated the differential operators N4, we now have a reasonable ana-
logue for oy = F,[[mo]] by replacing various ¢-modules with the analogous construc-
tions for 0y = Z,. In fact, most of the proofs work in this equi-characteristic ana-

logue with few modifications. This equi-characteristic theory may be thought of as
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an “equi-characteristic analogue of Fontaine’s p-adic Hodge theory,” as observed by

Genestier-Lafforgue [35] and Hartl [39, 41].

Remark 2.4.13 (The case oy = Fy[[mo]]). Instead of considering Hodge-Pink struc-
tures, one might want to consider the filtration on D ® 4, .# obtained by reducing
(2.3.3.1) modulo P(u), as in the p-adic case. In fact, one obtains the same Hodge-
Pink weights and multiplicities using this filtration on D ® », #". With the absence
of the differential operator N&' as in [52], however, it turns out that the category of
isocrystals D with filtration on D, does not have enough information to build an
equivalence of categories with Mod 4 (¢). See also [39, Rmk 2.2.3] for more discussion

on the inadequacy of “filtered p-module” in the equi-characteristic setting.



CHAPTER III

Hodge-Pink theory and rigid analytic ¢-vector bundles

In this chapter, we give construct a vector bundle over the open unit disk from an
isocrystal with Hodge-Pink structure. The construction is closely related to Kisin’s
work [52, (1.2)] which was motivated by Berger’s work [5, §II, III] in the (¢, I')-
module setting. Our construction differs from Kisin’s in that we work with Hodge-
Pink structures instead of filtered (¢, N)-modules (hence the theory works in the
equi-characteristic setting), and we use Frobenius structure but avoid differential

structure.
3.1 Construction

Let D := (D, ¢, A) € HPZ"(¢) throughout this chapter; i.e., we assume that all
the Hodge-Pink weights for D are non-negative. We would like to construct a vector

bundle M(D) € Mod, () such that M(D)/uM(D) = D and M(D),, = A.

We state the following classical lemma without proof, which will be useful:

Lemma 3.1.1. Let I C [0,1) be a sub-interval, M be a finite free Oa,-module and

N C M be an Oa,-submodule. Then N° C M s closed if and only if N is finite

free.

Proof. The hard part is “only if” direction, which is reduced to the case when M

95
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is free of rank 1 by [46, Lemma 2.4]. This case is handled by [57, (7.3)]. The proof
crucially uses that O, is a Bézout domain, which uses the discrete valuation of 2"

(or more generally, the spherical completeness). O

3.1.2

By §2.2.4, the scalar extension Oa ®., D is an étale p-module over Oa. For

each non-negative integer n, define

id®ps" ~ *N
b 0 Oa®xy D —F Op @, (0°"D) — O, @y (0°"D)

= OX@" ®J",O£,IO (OX,SEO ®<1/0 D)’

where 0™ : Oa »y = Oa, is induced by 0" : Oa — Oa, as discussed at (2.1.3.3).
We set D := Oa @4, D.

Now we extend ¢, to the following map:
(3.1.2.1) tn : D[1/A] = OR, [1/N] @105, Day-

The target of this map carries the tensor product filtration, where the second factor
ﬁvo carries the filtration coming from the Hodge-Pink structure A, as defined in
(2.3.3.1), and the first factor (X, [5] has a decreasing filtration defined by \*-(X,, =
(6"P(u))" - Oa, - Also, observe that the target of this map is naturally isomorphic
to ﬁzn[i] using ;" : D = o*nD over #q (i.e., not respecting how D “naturally”

sits in each if n > 0), where ﬁxn is the completed stalk of D at z,, € A.

3.1.3
Set

M, (D) = (1) (FiI(D,,[1/)]))

M(D) = (M,(D)={zeD[1/\]: 1,(x) € Fil’"(D,,[1/)]), ¥n > 0},

n>0
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Let h be the maximum among Hodge-Pink weights for (D, A). Then we have
D c M(D)c M, (D) cC (A"D). Clearly each M, (D), hence M(D), is closed in
A~".D, so by Lemma 3.1.1,both M, (D) and M(D) are finite free Oa-modules.

The inclusions induce isomorphisms D[5] — M(D)[5] = M, (D)[3]. In other
words, D, M, (D), and M(D), viewed as coherent sheaves on A, are naturally
isomorphic outside the zero locus {z,},>0 of A. To study the local behavior of
M(D) near z,,, we look at the completed stalks and make use of the following fact:

the inclusion M(D) C M,, (D) induces an isomorphism near z,, and ¢, induces the

isomorphism below, which can be seen from the definition.

~

(3.1.3.1) M(D); 5 M, (D)s = Fil%(D,, [1/A]).

In particular M(D),, = A inside of ﬁfro[%]v by Lemma 2.3.5.

By §2.2.4(2), the natural p-module structure on D := Oa ® 4, D is étale since
D is an étale p-module. So the Oa-linear isomorphism ¢p : 0*D — D induces an
Oal[3]-linear isomorphism ¢p[3] : (6*D)[3] = D[5]. We will prove that the Oa-

submodule M(D) C D[5] is ¢p-stable; i.e., o*(M(D)) is carried into M(D). Once

1
p)
this is done, we show that the induced ¢-structure on M(D) over Oa is of finite

P-height by “analytic-local” argument.

3.1.4 Rank-1 example

Before we move on, let us work out M(D, A) when D is of rank 1 and the Hodge-
Pink structure A is effective. We choose a J# j-basis e € D, and write p(c*e) = ae-€
for some o € . Since A = P(u)~"D,, for some h > 0, we obtain M, (D, A) =
(6™(P(u)))™" D for all n > 0. Therefore, M(D,A) = A~"D, which is stable under

] on M(D,A) = \7"D for the

Yo U*D[i] — D[%] We can also compute goD[i
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Oa-generator A~"e, as follows (using the definition of X in §2.1.3):

(3.1.4.1) o(o*(A\7"e)) = ae (zggg) (A"e).

If dimy, D > 1, then it may be much harder to compute M(D,A) explicitly;

M(D, ) may not have a simple expression such as A™"D.

~

Proposition 3.1.5. Let D := (D, ¢p,A) € HPZ (). Then, op[t] : (0*D)[1] =

Dls] restricts to ¢ : 0*M(D) — M(D). Furthermore, we have an isomorphism

(3.1.5.1) coker p = A/(ﬁwo) = @(OX@O JP(u)?)™,

w>0

where the right side is a finite direct sum.

Upon verifying the proposition, we would obtain a functor M : HP?(O(@) —
Mod, () because one can check that if a J g-linear map f : D — D’ respects
Hodge-Pink structures on both sides then Oa[5] ® f : D[5] — D'[3] takes M, (D)
into M, (D’) for each n > 0, hence M(D) into M(D'). The proposition also says
that we can recover the Hodge-Pink type of an effective Hodge-Pink structure D

from M(D), since coker p = A/D,,. (See Corollary 2.3.6.)

Proof. When oy = Z,, this proposition can be read off from the proof of [52, Lemma
1.2.2]. The same argument goes through with few modifications when oy = F,[[m]].
The statement can be checked locally at each point on A. Having that D[%] =
M (D)[%}, it is enough to verify the result locally at x,,, for each n > 0.

Let h be the maximum of the Hodge-Pink weights for D so that we have M(D) C
M. (D) C A" D. In (2.1.3.4) we have seen that 0 : Oa — Oa induces an Oa-
isomorphism 7,1 : 0*Oa ., — OAz,.i» Where 0°Op ., = Oa @500 OAg, - We

have the following commutative diagram which shows how ¢, and ¢ interact.
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(3.1.5.2) A (D) — T (U"P(u))—h-(og,xn ®.74 (0*”D)))
ep=id®¢p |~ (o™ P(u))~h- ((J*O&xn) Q0 (0*"D))
Ni'yml@id

A hD et (0n+173(u))—h, <U*n+1 (OX,an &, D))

Choose an interval [, so that A; contains xz, but does not contain x,, for
m # n. We can further assume that ([n)l/q = I, for all n > 0, so that we have
0 :On,, — Oa, , for cach n. Then, since (A" - D)/ M, (D) is supported on the

(discrete) zero locus of A, we have the following exact sequence

("P@)™ D,
Fil(D..,[1/))

(3.1.5.3) 0— M, (D), 2 "D

Indeed, the cokernel of 3, is supported at z, from the choice of I,, so the right
exactness follows from the isomorphism (3.1.3.1) and the definition of A. Let us
denote by @),, the cokernel of 3,.

Combining (3.1.5.2) and (3.1.5.3), we obtain the following commutative diagram

of coherent sheaves on Aj, :

0—> ("M, (D)), —— ()\_h-(a*D))In"*L) (0*Qu)1,py —> 0
EN (SDD)InHJ/N Y1 ®id |~

0—— '/\—/ln(D)In+1 )\_h "DITL+1 S (Qn)[n+1 —0

Hence, the left vertical arrow induced by @D[i] exists and is an isomorphism. Since
the inclusion M(D) C M, (D) induces an isomorphism at z,, (as may be seen on
completed stalks using (3.1.3.1)), we conclude that ¢p : 0*(A""D) — A\~"D restricts

to an isomorphism ¢, ., : (60*M(D)),,. ., — M(D),, ., for all n > 0.
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Now, it is left to verify the lemma at 2. From the isomorphism D[5] = M(D)[3]
induced by the natural inclusion, we obtain (U*D)[ﬁ] = (U*M(D))[ﬁ] Since
o(A) does not vanish at g € A (by definition or by (2.1.3.2)), the natural map

(0*D)yy — ("M (D))xo induced by the natural inclusion is an isomorphism. So we

have the following maps:

S
9

(0" M(D)),,, == (0" D)y "= (D)sy = M(D)y,

R

0

This proves that ¢p[3] : (6*D)[5] — D3] restricts to a map ¢ : 0*M(D) — M(D),

and that

coker o — M(D)z, /ﬁxo = A/ﬁloﬁ

where the second isomorphism follows from n = 0 case of (3.1.3.1) and from Lemma

2.3.5. This proves the isomorphism (3.1.5.1). O

Proposition 3.1.6. The functor M : HPZ"(p) — Moda () is an exact functor of

®-categiries. In other words, M satisfies the following properties.

1. M commutes with ®-products.

2. M takes a short exact sequence of the source category into that of the target

category.

Proof. Since M(D) is a coherent sheaf on A, it suffices to check these properties on
completed stalks at each point of A. We also have D[5] = M(D)[5].

For D, D' € HP7’(¢), we obtain a natural map M(D) ® M(D') — M(D ® D')
from the universal property of ®-product, which is clearly an isomorphism outside
{z,}. Now we use (3.1.3.1) to conclude that this natural map is an isomorphism at
x,, for each n.

For a short exact sequence 0 — (D', A') — (D,A) — (D", A") — 0 in HPZ" (),
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one gets a sequence of maps 0 — M(D') — M(D) — M(D") — 0. It is enough to

check the exactness completed stalks at x,,, for which we use (3.1.3.1). O]

3.2 Equvalence of categories

In this section, we construct a functor D : Moda (p) — HP7 (), which will
shown to be a quasi-inverse to the functor M constructed in the previous section.

Let M € Mod (¢); ie., a (¢, Oa)-module of finite P-height, and consider the
p-module M /uM, which is an isocrystal (i.e., an étale p-module over ) since
P(0) is a unit in #y. Hence the scalar extension Oa ®», (M/uM) is an étale

p-module on A by §2.2.4(2). We set
(3.2.0.1) D(M) = (0Oa Q@ (M/uM), Oa @ )

To give a Hodge-Pink structure on M /uM, we need the following lemma. The
case 0y = Z, can be extracted from the proof of [52, Lemma 1.2.6] (except the
functorial property; i.e., (2) in the statement below). The same proof also works if

09 = Fy[[mo]].

Proposition 3.2.1. For M € Mod (p), there exists a unique O -linear “p-compatible
section” £ : D(M) — M. In other words, there exists a unique & which reduces to the
identity map modulo u and commutes with p-structures on both sides. Furthermore,

& enjoys the following properties:

1. The section & induces an isomorphism D(M)[1/\] = MJ[1/)\]. Furthermore,
on any Ay which contains xo and does not contain x,, for n # 0, the images of

& and g coincide.

2. Consider M, M' € Mod(p). Let & and & be the unique p-compatible sec-

tions for M and M’, respectively. Then, for any morphism f : M — M’ of
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Mod (), the following diagram commutes:

DIM) = M

oet] |

DM') S M/,

(3.2.1.1)

where f: M/uM — M’ JuM'’ is the reduction of f modulo u.

Remark 3.2.2. Before we begin the proof, let us discuss a consequence of the lemma.
We view M\xo as an effective Hodge-Pink structure for the isocrystal M /uM. We

define a functor D : Mod (¢) — HPZ (), as follows:
(3.2.2.1) D(M, pp) = (M/uM, o mod UM, /\7) ,

The functor D carries a morphism f : M — M’ of Mod 4 () to a morphism (f mod
uM) : M/uM — M’ JuM’. This defines a morphism of HP7'(¢) (i.e., takes the
Hodge-Pink structure of the source into that of the target) essentially because of the

functoriality of the ¢-compatible section (Proposition 3.2.1(2)).

3.2.3 Rank-1 Example

Before we prove Proposition 3.2.1, we work out the rank-1 case. Let M €
Mod, (@) be of rank 1 over O and set D := M/uM equipped with ¢ := o mod
uM. We choose a Oa-basis e € M, and denote by € € D the image of e under the
natural projection. Since pa((c*e) spans P(u)" M for a suitable h > 0, we may write
om(ore) = ae <%)h-e for some ae € ;. Then we have @(c*€) = ae-€. There-
fore, we have prq(0*(A"-€)) = ae-(\-e), and A\(0) = 1 (or rather, A = 1 mod u), so
e reduces to @ modulo uM. This shows that € — M'e induces a p-compatible map
§:0a®x,D — M. By Proposition 3.2.1, this is the unique such map. Following the

recipe of Remark 3.2.2, we obtain a Hodge-Pink structure A = )\_hﬁm = P(u)_hﬁxo.

This defines D(M) € HP7’ () of rank 1.
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From the above discussion and §3.1.4, it is not difficult to show that M and D
are quasi-inverse equivalences between categories of rank-1 objects. The equivalence

will be generalized to an arbitrary rank later in Proposition 3.2.5(3).

Proof of Proposition 3.2.1. We proceed in four steps.
(1) existence of &
Recall that Oa is a Fréchet space with respect to norms || -||, for r € ¢%<°. See
§2.1.1 for the definition of the norms. By choosing a Oa-basis {e;};—1..q for M, one
can define a norm || - ||, on M by taking the maximum of || - ||, on coefficients, which
makes M a Fréchet space. The topology on M generated by || - ||, is independent of
the choice of basis for M. Likewise, 0*" (M) is a Fréchet space for all n > 0.
Starting from any J#-linear section sq : M/uM — M, which does not have
to be p-compatible, we would like to construct a new section s : M/uM — M
such that so @ = pu 0 0*s. Here we give a formula for s, and will show that it is
well-defined.

(3.2.3.1)

S := 89+ E ((pj\—;l o 0.*2+180 o) @—(i-ﬁ-l) _ 905\/1 o0*is 0 @—z) _ o« 111120(903\/1 00*sy0 @—z) ”
—
>0

Since ¢ : o*(M/uM) — M/uM is bijective, ! makes sense. If the right side is
well defined, then it clearly satisfies s o @ = w0 0*s. Since M is a Fréchet space,
it is enough to check the convergence for each norm || - ||,.

We have uniquely g (o¥e;) = Zle a;je; where o*e; '= 1 ® e; € o*(M/uM)
and a;; € Oa. Take a non-negative integer b such that ¢® > max; ;{[|a;;||,}. (Note
that b depends on r.) Then we have [[or(c¥e;)]l, < ¢°|leill,, and it follows that
lom(o*m)l, < ¢ ml], for any m € M by using the inequality [lo(f)ll, = [I/]ls >

| f]l, (which follows from the maximum modulus principle).
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Take any o0_,-lattice £ C M /uM. Increase b so that we have ¢~ '(£) C 75°(c*L).
(So now, b depends on both r and £.) Since im (o0 0*sg0 @t —59) C uM, we
set £ :=u""(ppm o0 sgo @t —s9) (L) C M. Now we have

||(%0§\t11 o (O_*)i+180 o @*(iJrl) . 903\/1 o (O_*)iso o @4) (£>Hr

Sqib uqiwi\A((a*)iz) Squbrqi cl,
where HZH = sup,,.z1/|m||,}, which is clearly finite. (We normalized the ab-
solute value so that |my| = %) Observe that ¢**r? — 0 as i — oo for any

r € (0,1) and any non-negative b (hence for any choice of £). For any z € M /uM,
choosing £ to contain x proves that the formula for s(x) makes sense. Now let

€ :=id®s: 0a ®x, ( M/uM) — M.

(2) uniqueness of £ and diagram (3.2.1.1)
Consider M, M’ € Mod, (¢) and an Oa-linear p-compatible map f : M — M’
Let f : M/uM — M'/uM’ be the reduction of f modulo u. Consider some -
compatible sections s : M/uM — M and s’ : M'/uM' — M’ and we show that
fos=s"of. This shows the commutative diagram (3.2.1.1), and the uniqueness of
¢ also follows from the case when M = M’ and [ = id .

Observe that both f o s and s’ o f are @-compatible map M /uM — M’ such
that the post-composition of both with the natural projection M’ — M’/uM'’is f.

So we have im(f os — s’ o f) C uM’. From the @-compatibility, we obtain:
Phro (0 (fos—sof))=(fos—s0of)og

for any positive integer 7. Since ¢ : 0*(M/uM) — M /uM is an isomorphism, we

deduce from above equality that im(f os — s' o f) C u?’ M’ for any positive integer
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i, s0 we have fos—s' o f =0.

(3) claims on im(§)
Since £ is an isomorphism modulo u, £ induces an isomorphism on stalks at the
origin, so it is an isomorphism on some neighborhood of the origin. Let A, denote
the rigid analytic closed disk of radius r centered at 0 over J# . Take r such that
A, contains xy and not x,, for n # 0, and choose ¢ such that £ <ot 15 AN isomorphism.

Since £ is p-compatible, we have the following commutative diagram

o*D(M) o* M
S
D(M) M

If i > 1, the right vertical arrow is an isomorphism on A <rai—! by the finite P-
height condition. So we get that & <rai-1 1S an isomorphism. And when ¢ = 1, the
above diagram exactly tells that the image of £, coincides with the image of Y <,
Hence the cokernel of &, is killed by some power of P(u), say P(u)".

By repeating this argument for A <ra— With n > 0, we obtain that the cokernel

h
of &y n is Killed by (1‘[;;0 o—i(”@)) for all n > 0. Therefore, coker ¢ is killed by

AP O

Remark 3.2.4. In this remark, we show that (D,¢p,A) := D(M) can be easily
computed if @n is explicitly given (with respect to a basis). The only possibly
non-trivial part is to compute the Hodge-Pink structure A, which can be done as
follows.

Choose M € Mod, (¢) and fix an Oa-basis {e, - ,e,} of M. We let e; also
denote its image in A := ./\//Txo. Let €; to denote the image of e; in D := M /uM

and view it as an element in D,,. We want to give a basis of A in terms of Exo (€;).
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So Proposition 3.2.1(1) shows that the Exo (e;) and the pr(c*e;) generate the same

submodule in A, so 3, '€, (e;) generates A, where (a) = (a;;)~" with (a;;) €

GLn(OA[P(lu)]) is the matrix representation of ¢ for the chosen basis; i.e., e; =

*

> a7om(0%e;).
Having defined M : HPZ"(p) — Modu () and D : Mod, (¢) — HP7(p), it is

quite straightforward to check the following:

Proposition 3.2.5. The functor D : Mod (p) — HP7 () is an exact equivalence

of ®-categories. More precisely, we have the following properties:
1. D commutes with ®-products.

2. D takes a short exact sequence of the source category into that of the target

category.

3. M and D are quasi-inverse to each other.

Since the functors M and D commute with ®-products (in particular, with Tate
twists), we can extend them to quasi-inverse equivalences of ®-categories between

HPr(p) and generalized gp-modules over Oa defined at §2.2.11.

Proof. First two claims are straightforward from Proposition 3.2.1, especially from
the uniqueness of £. By construction, the underlying isocrystal for (Do M)(D, A) is
naturally isomorphic to D. That this isomorphism takes the Hodge-Pink structure
for (Do M)(D, A) isomorphically onto A follows from the isomorphism (3.1.3.1) and
Lemma 2.3.5. This shows the natural isomorphism D o M = id.

Recall that (M o D)(M) is constructed as a submodule of D[1/)\], where D :=
Oa @, (M/uM). We view M as a submodule of D[1/\] via M C M[1/)\] <
D[1/)] where the isomorphism is induced from the unique ¢-compatible section & :

D — M (Proposition 3.2.1). To obtain a functorial isomorphism (Mo D)(M) = M,
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we show that both sides defines the same Oa-submodule of D[1/)]. It is enough to
check locally at x,, for each n.

The completed stalks of both at z define the same €K, -lattice A inside Dy, [1/].
So for A, which contains zy but not z, for n # 0, we have an equality (M o
D)(M) < = Mg, inside D(M),[1/A]. By pulling back (M o D)(M)g, = Mg, by
o™, we obtain (a”(MoQ)(M))grl/qn = (0" M) u/qan. Since M is of finite P-height,
¢ is an isomorphism outside xy and the same holds for (M o D)(M). Therefore
we have (M o D)(M) = M. O

3.2.6 Relation with (¢, 6)-modules of finite P-height

Let us define the following functor of ®-categories:
(3.2.6.1)

H : Modg(¢)[1/m0] = HPZ' (),  H(M[1/m]) = D(Oa @efi/ny) ML/ m0))-

One can directly see that the functor H preserves the Hodge-Pink type; more
precisely, ﬂﬁ[%] € Mg(w)[%] is of Hodge-Pink type v if and only if ﬂ(ﬂﬁ[%]) is of
Hodge-Pink type v. This follows from the definitions of Hodge-Pink type, together
with Proposition 3.1.5. (Note that G[W—lo]/(P(u)w) = Oa/(P(uw)?).)

In next chapter, we show that H is fully faithful (or equivalently, the scalar ex-
tension functor Modg(p) [ﬂio] — Mod () is fully faithful) and the essential image is
exactly the full subcategory of weakly admissible objects. Similarly, we may extend
H to a fully faithful functor from the isogeny category of generalized p-modules over
Oa to HPk(p), with an essential image HPR* ().

For the case 0y = F,[[mo]], it is proved by Genestier-Lafforgue [35, Lemma 2.8]

that H induces an equivalence of categories Modg(go)[wio] — HPY(p). (A proof

can be found in Hartl [39, Theorem 2.5.3].) In the next chapter, we give a slightly
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different proof which is closely related to Kisin’s proof for [52, Thm 1.3.8]. Our proof
also works for the case of 0oy = Z,, which has not been studied as far as the author

is aware of.



CHAPTER IV

Weakly admissible Hodge-Pink structure

In this chapter, we prove that the functor H : Mg(go)[ﬂio] — HP7(¢) defined
in (3.2.6.1) is fully faithful and that the essential image is exactly HP%“*>"(¢). (See
Theorem 4.3.4 for the precise statement.) The key step is to show that weak admis-
sibility on HP?(O(@) is equivalent to the “pure-of-slope-0” condition on Mod (¢),
under the equivalences of categories M and D. The main technical ingredient for
the key step is the slope filtration theorem, which was proved by Kedlaya [46, 48, 49]
in the case of 0y = Z,, and by Hartl [39, Theorem 1.7.7.] in the case of 0y = F,[[m]].
Below we review the theory of slopes and state relevant properties without proof.

The idea of relating the “pure-of-slope-0” condition and weak admissibility of
filtered (p, N)-modules originally came from Berger [5, §IV]. Our approach is more
akin to Kisin’s variant [52, (1.3)]. In the p-adic setting, the difference with Kisin’s
approach and ours is that Kisin used a logarithmic connection [52, Lemma 1.3.5]
for the “Dwork’s trick” step, while we solely work with Frobenius structure so the
same argument works in the analogous equi-characteristic setting; see Proposition
4.2.1. Note that there is no good analogue of the logarithmic connections in the

equi-characteristic setting.
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4.1 Review of slopes

For completeness of the exposition, we give a definition of slope and state the slope
filtration theorem of Kedlaya in the p-adic setting and Hartl in the equi-characteristic
setting.

4.1.1 Simple objects

We define the slope using the “Dieudonné-Manin classification” over R*#. (See
§6.1.10 for the definition of R™8.) For these, we need to define basic “building
blocks.”

Let k/k be an algebraic closure, and recall that Fyy := 00[7?10]~ Let R be an Fp-
algebra, equipped with an endomorphism ¢ : R — R that fixes Fj. In the intended

applications R will be one of the following:

1. (The case 0y = Z,) a complete field extension % o(k) over & o where & o(k) :=

W(k)[}%], equipped with the Witt vector Frobenius endomorphism o.

2. (The case oy = F,[[mo]]) a complete field extension . o(k) over ¢, where
K o(k) == k((m)), equipped with the unique continuous endomorphism o such
that o(my) = 7 and o(a) = a? for all @ € k. (If k is not perfect, which is

allowed when oy = IF[[m]], then ¢ (k) is not the completion of the maximal

unramified extension of J#.)

3. the Robba rings R*® and R*&* equipped with the natural Frobenius endomor-

phism o, introduced in §6.1.10.
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We define the following étale p-module (Mg, p) € Mod% () for any d,n € Z:

n

Mg, = EB(R-eZ-)

i=1

plo’e) = ey, i#£n
o(o*e,) = 7l e

In particular, since o(m) = m, for any m € My, we have ¢"(c*"m) = 7d - m. (We
define slopes and slope filtrations so that My, is “pure of slope d/n.”) Observe that

M, has a nontrivial proper ¢-stable subobject if d and n are not coprime.

Theorem 4.1.2 (Dieudonné-Manin Classification). Let (R, o) be either (# o(k), o)
or (R¥8, ). Then any M € Mod$"™ () is isomorphic to a direct sum D1 Mg, ;)
where d;j € Z and n; € Zsq satisfy (d;,n;) = 1 for each j. The pairs (dj,n;) are

uniquely determined up to permutation.

Proof. If 0y = Z,, then Kedlaya [48, Theorem 4.5.7] proves the theorem simultane-

ously for both R = #o(k) = W(k)[}] and R = R¥#. Simpler proofs for the case

1

P
R = W(l;:)[%] can be found in [23], [61], [44], and [46, Theorem 5.6]. If 0y = IFy[[mo]],
then the theorem for R = ¢ o(k) = k((m)) is proved in [56, §A 2.1]. The theorem

for the case R = R¥# is proved in to [42, Theorem 11.1, Corollary 11.8]. ]

Remark 4.1.3. We record the following special case of the theorem: for any rank-1

d

étale p-module D € Mod®"™*(), one can find a basis e € M so that p(c*e) = 7l e

2298 (k)

for some d € Z. This gives a classification of rank-1 isocrystals with weakly admissible

Hodge-Pink structure, and rank-1 weakly admissible filtered isocrystals if 0y = Z,,.
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4.1.4 Slope

Let M be an étale p-module of rank n over R*&. The degree! of M, which is
denoted by deg(M), is the unique integer d such that det M = M, which is always
well-defined by Theorem 4.1.2. The ratio sl(M) := d/n of d := deg(M) and n :=
rankg (M) is called the slope of M. In more concrete terms, if M = @ 1 M)
then we have deg(M) = >, d; and sl(M) = (EJ dj) / (23 nj). Clearly, we have
deg(M) = sl(det M).

We say that M is pure® of slope s = d/n, where d/n is a reduced fraction, if
M= Mfg; for some c¢. The full subcategories of étale p-modules pure of slope s will
be denoted by ModSyas ().

For a ¢-module M free over a base ring contained in R*# (for example, over
Ralebd RRYM or Oa), the degree and the slope of M are defined to be the degree
and the slope of R*& @ M, respectively. One can check that the degree for M €
Modgua(p) or M € Modgasa(p) coincides with the valuation of the determinant of
any Frobenius matrix.

We say that M is pure of slope s if R*& @ M is so. We use superscript sl = s
to denote the full subcategories of étale p-modules pure of slope s, for example,
Mod3~* (), Modisss (), Modx~*(¢0), and so on.

We state the following proposition without proof, which will be used later in

proving Theorem 4.3.4.

Proposition 4.1.5. The @-modules My, over R™€ satisfy Hom, (Mg, My ) =0

if and only if d/n > d'/n'. In particular, any p-submodule of Mg, has slope < d/n.

If 09 = Z,, then the proposition is just [48, Proposition 4.1.3(a)]. If 0 = F,[[m0]],

IThis definition of degree differs by sign from Hartl’s definition [39, Def 1.5.1]. As Hartl remarked, Hartl’s
definition follows the “geometric” convention whereas this definition follows the “arithmetic” convention.
2Sometimes, it is called isoclinic of slope s.
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then by a standard argument (e.g. [39, Proposition 1.4.1]) we are reduced to [42,
Proposition 8.5].

For any M®*& € Modgp.(¢), we have an isomorphism M8 = @7 (M, ,, )"
from the Dieudonné-Manin decomposition. By re-indexing if necessary, one can
arrange to have dy/n; < dy/ng < --+ < d./n.. The following filtration is called the
slope filtration for M™s:

(4.1.5.1)

0=M¥c M®BcC...c MM =M where M?lg = @ (M)

i<y

If M € Modg(p), then the following (very difficult) theorem asserts that the

slope filtration for R® ®z M descends over R.

Theorem 4.1.6 (Slope Filtration Theorem).

1. The scalar extension functor Modis (p) — Mod% *(¢) is an equivalence of

sl=s

categories. In particular, any M € Mody *(p) uniquely descends to M" €

Modyss ()

2. For any M € Modyg(y), there exists a unique and canonical filtration (called
the slope filtration) 0 = My C My C --- C M, = M by saturated @-stable
R-submodules such that each subquotient M;/M;_1 is pure of slope s; and s; <
Sg < -+ < 8o Furthermore, the slope filtration for R¥& @z M is exactly

{Ralg KR ./\/lz}

Proof. 1f 0y = Z,, then the first part is [48, Theorem 6.3.3] and the second part is
[46, Theorem 6.10]. If og = IFy[[mo]], then the first part is [39, Corollary 1.7.6] and

the second part is [39, Theorem 1.7.7]. O

For the future reference, we give a useful characterization of étale p-module (over

R or R) pure of slope 0.
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Lemma 4.1.7. An étale p-module M finite free over R is pure of slope 0 if and
only if there exists a @-compatible isomorphism M = Rbd®%bd M for some étale
w-module M™ over ogea. Similarly, an étale p-module M finite free over R is pure
of slope 0 if and only if there exists a @-compatible isomorphism M = R ®,_, M™

Rbd

for some étale p-module M™ over ogsa.

Proof. The claim for étale (i, R)-modules is reduced to the claim for étale (¢, R)-
modules by Theorem 4.1.6(1). Let M" € Mod¢ () be pure of slope 0 and of

Rb-rank n. By definition, we have a ¢-compatible isomorphism
Malg,bd — Ralg,bd ®Rbd Mbd o~ (MO,l)@n :

where M is the simple object over R*&% defined in §4.1.1. In particular, M?&bd
has a @-stable 0gaisa-lattice M3 which is an étale p-module over 0gaisra. (Indeed,
this claim holds for M ;, hence for any finite direct sum thereof.) We put M™ :=
Masnt N AP where the intersection is taken inside M35 Clearly, M™ is a ¢-
stable ogea-lattice of M. Furthermore, M™ is an étale -module over ogzea, which
can be seen by taking the faithfully flat scalar extension ogaspa ®,_,, M™ = Malgint,

Conversely, assume that we have a ¢-compatible isomorphism M = R®o,, Mt
for some étale p-module M™ over ogzea. Let M; be the smallest non-zero slope
filtration of M =R o pa M which is pure of slope d;/n; where d; and n; are
coprime. We put M := M; N M™ where the intersection is taken inside M.
Then MI™ is a @-stable étale ogaisa-lattice in M?lg, which cannot happen if the
slope s; is negative. This shows that any successive quotient M;/M,_; of the slope
filtration for M is pure of some slope s; > 0 for each j > 1. On the other hand,
the top exterior power det M is pure of slope 0, since R*® @ det M = M, for

some d > 0 and admits an étale ogaigea-lattice ogaga ®,_,, det M (Note that
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M1 admits an étale ogaigsa-lattice only when d = 0.) Since we showed that each
successive quotient M;/M;_; of the slope filtration is pure of some non-negative
slope, that det M is pure of slope 0 implies that M is pure of slope 0 (so in turn,

Mb is pure of slope 0). ]

4.2 “Dwork’s trick” for p-modules

The aim of this section is to prove the following: for any M € Mod A (¢), the slope
filtration for R ®p, M extends uniquely to a filtration of M by @-stable saturated
Oa-submodules of M. The crucial difference with [52, Lemma 1.3.5] is that our
proof only uses the Frobenius map ¢, not a logarithmic connection. The argument
works for both cases 0y = Z, and 0y = F,[[mo]]. A similar situation can be found
in the proof of de Jong’s theorem: Dwork’s trick [20, Prop 6.4] can be carried out
without a connection. See [47, §5].

Let R be a Bézout domain, and let M be a finite free R-module. We say that
an R-submodule N C M is saturated if N is finitely presented (or equivalently,
finite free) and the quotient M /N has no nontrivial R-torsion. Since flatness and
torsionfree-ness coincide over a Bézout domain, it is equivalent to require that M /N
is free over R. In particular, if N C M is saturated, then an R-basis of N extends

to an R-basis of M.

Proposition 4.2.1. Let M € Moda(¢), and let Nrg C Mg be a p-stable saturated
submodule over R. Then there exists a @-stable saturated submodule N C M such

that R Koa N = N3.

Corollary 4.2.2. Let M € Moda(¢) and 0 = Mgy C Mgy C -+ C Mp,.= Mg
be the slope filtration for Mg = R ®o, M. Then for each Mg ;, there ezists a

saturated p-stable submodule M; C M such that R ®p, M; = Mg ;.
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Proof of Proposition. We show the existence of N in the following steps (4.2.3)—

(4.2.6).

4.2.3 Uniqueness

Let I be either (r,1) or [r,1) for some 0 < r < 1, and assume that there exists a
saturated submodule N; C M/ such that R®0A, N7 = N3 as a submodule of Mx.
Then we have an equality N7 = M;NNx inside Mg. This can be seen, for example,
by choosing a Oa,-basis for N7 and extending it to a Oa,-basis for M;. Therefore,
such N7 is unique if exists. By taking I = [0, 1), we obtain the uniqueness assertion

of the proposition.

4.2.4 Reduction to the case when rankg(Ng) =1

This can be done by the following well-known trick. If the proposition holds for
rank-1 submodules, then det N of extends to “det N7 over Oa. (Note that N is
finite free since it is closed in M.) Now one can check that N := {m € M|m A x =
0, Vo € “det N} extends Nx.

From now on, assume that rankz(Ng) = 1 and let I be either (r,1) or [r,1) for
some 0 < r < 1. Consider the submodule N7 := M; NNz in M;, which can be
seen to be saturated inside Mg. Therefore we have R ®o, N; = Nx if and only if

N1 # {0}. In particular, if N':= M NNz # {0}, then R o, N = Nx.

Claim 4.2.5. There exists a unique saturated submodule Ng1y C M o), such that

R ®(9A< ./\/'(071) = NR

0,1)
This claim is exactly [52, Lemma 1.3.4] if oy = Z,, and the same proof works
for 09 = IF[[mo]]-case. We give a proof below, closely following the argument of [52,

Lemma 1.3.4].
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Since Ny is finitely presented, there exists r € (0,1) and a saturated Ong

submodule N’(nl) C M;,1) such that R ®0A( . N’(nl) = Nz. The Frobenius map ¢

)
on Nz induces ¢ : 0*(N1)) — ./\/(rl/q71), where 0*(N,,1)) is the scalar extension by
g . OA(TJ) — OA(rl/q,l).

We set N(ya1) := M1y N N1y, which is a saturated submodule of M,q 7). As
mentioned in §4.2.4, in order to show that R ®OA(,q N -/\[(qu) = /\/(M), it is enough

to show that N(q 1y is non-zero. For this, we look at the following diagram with left

exact rows.

0—=0" (Nyay)) —= 0" (Mgayy) ® 0" (Niy)) —=0" (M)

@l oor) @l

0 Mr,l) M(T,l) 69~/\/‘(7"1/‘1,1) M(Tl/‘?,l)a

where the left horizontal maps are diagonal inclusions and the right horizontal maps
are defined by (a,b) — a — b. The top row is left exact since o is flat. (Recall
that a torsion free module over a Bézout domain is always flat.) Furthermore, the
central and right vertical maps are injective, so the cokernels of both maps are torsion
modules. It follows that the cokernel of the left vertical map is also torsion, which
proves that N4 1) is nonzero.

By repeating this process, we obtain a vector bundle J\/'(rqn’l) of rank-1 for each n,
which glues to give a vector bundle N 1) of rank-1. By construction, N1y C M)
is saturated and we have R ®0A<o,1) N,y = Nr. The uniqueness of such Nqy)
follows from (4.2.3). (Here, we identify a vector bundle of rank n on A; with its
global sections, which is necessarily a free O ,-module of rank n. See §6.1.5 for more

discussions.)
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4.2.6 Extending N 1) to N

1]-submodule

This is the key step. Roughly speaking, we extend a saturated Oa , ,, [
Noplz] € Menls] to a saturated Oal5]-submodule N3] € M(3], and glue
N3] and N 1) to obtain N. The point is that we have the ¢-compatible section
€:0a @, (M/uM) — M, whose cokernel is killed by some power of A (Proposi-
tion 3.2.1). We use this to find a basis for M|[5] which makes the “p-matrix” very
simple.

Let €y, - , €, be a £ basis for M /uM, and we put e; := {(1®¢;). Then {e;} is
a Oal5]-basis for M[]. By construction, the matrix for @[] with respect to the
basis {e;} is the same as the matrix for ¢ := @aq/upm With respect to the basis {e;}.
In particular, all the entries of this matrix lie in J#%. (In fact, if p(o*e;) = >, wi;€;
with a;; € # g, then we have p(o*e;) = £ (p(o*€;)) =D, ayje;.)

Let A ;&) be the open unit disk over K o(k), and let M oy denote Oa o ®o,
M. By the Dieudonné-Manin decomposition over % o(k) (Theorem 4.1.2), we can
find a o(k)-basis {&}} for My ) /uM iy = Ho(k) @, (M/uM) so that
" (0*"e)) = ngé;. We put €] := &) (1 ® €)), where {3y = Oa,, o ®E By
construction the bases {€}} and {e;} are related by GL,(#o(k)). Since &,y is
p-compatible by construction, the matrix for ¢, ” (E)[i] with respect to the basis
{e}} is in GL,(#(k)) by the same argument as above.

Let A, &),0,1) be the punctured open unit disk over £ o(k). Choose a On o r.00)

basis e € N(g 1), and express it as a linear combination of e; as follows:

1< 1 ¢
e= QZfiei = ;Zf{eé, fi:9 € Ong
i=1 i=1

where ¢ divides < a for a > 0. We choose f; and g so that f; and A\ generate the

unit ideal in Oa,,,. As above, f] € OAxo(xz),(o,l) are £ o(k)-linear combinations of
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fi and conversely. Then the proposition can be reduced to the following claim.
Claim 4.2.6.1. There exists f' € On iy 00) SUch that fj = ¢j-f" where c; € Ho(k).

Let us grant the claim for a moment. Since f; are #o(k)-linear combinations of
7, we can write f; = ¢ - f for ¢/ € A o(k). Hence, the ratio for nonzero f; and f;
satisfies fi/f; = ¢} /¢] € A o(k) N Frac(Oa,,,) = #0, so we may write f; = ¢; - [,

for some ¢; € # o and some f € Oa.,, that is coprime to A by our choice of f;. Set

1 1 <
€) . — —e = — c;€;.
fg ;

Observe that ey is an element in N 1y = ./\/’(071)[%] ﬂ/\[(o,l)[i] and generates N(g 1) over
Oa.,,- Farthermore, ey belongs to M = M[i] N M,). Now, N := Oa-€g C M
is the submodule which extends N%.

It is left to prove Claim 4.2.6.1. Let a € Oa,,, be such that p"(0c™"e) = «e,

where n is the rank of M. Since ¢"(0™"€}) = ng e}, we obtain, for each j,

Here, the divisions are performed inside Frac ((’)A o0 1)). So we get that ac”(g)-

fi= ﬂgjg-a"(f;). Hence, for any pair of nonzero f; and f, we have a”(f—é) =% ;—:
J J

By lemma 4.2.6.3, we are reduced to the following claim:

Claim 4.2.6.2. Let [ =, , a,u™ € A o(k)[[u, 1]}, and assume that ©§o™(f) = f

1€Z

for some d € Z. Then d =0 and f € # o(k), which is fized by ™. (In other words,

f S W(Fpn) Zf 0p = Zp, and f € Fqn((’ﬂ'())) Zf 0g = Fq[[’ﬂ'o]])

The equation Y, , mGo™(a,)ut™ = 3", , a,u™ forces that a, = 0 for n # 0. Since

o K o(k) — Ho(k) preserves my-order, d = 0 and 0™ (ag) = ay.
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To complete the proof of the proposition. it is left to show the following lemma:

O

Lemma 4.2.6.3. Let F' be a complete discretely valued field with residue charac-
teristic p. For any subinterval I € [0,1) with endpoints in {0} U p@<o, let Ap;
be the subdomain of the open unit disk over F with coordinate uw which is defined
by the “suitable” boundary condition corresponding to I. Then the natural map
Frac(Oa,.,) — F|[u, 1]] of F-vector spaces, which sends a “meromorphic” function

f to its formal infinite-tailed Laurent expansion in u, is injective.

Note that F[[u, £]] does not have a natural ring structure; the expression

O )OO Bud) =) (> iy’

i€z JEZ neZ i+j=n

for v, B; € F' does not make sense without any convergence assumption on (possibly

infinite) sums a;3; for each n € Z. Therefore the natural inclusion Oa,, —

i+j=n
F[u, £]] does not imply the lemma.
Proof. Choose f,g € Oa,,, so that the formal Laurent expansion of f/g is zero.
Then we want to show that f = 0. We first handle the case when I = [r, | for some
r € p¥so. Then for any point © € Ag,,j such that g(z) # 0, (f/g)(x) makes sense
and is zero. In particular, f(x) = 0 for all but finitely many points x € Ap,,). But
since the zero locus of f is a “closed” affinoid subdomain, f(z) = 0 for any point
r € Apjry. Therefore f =0 (since the sup norm on Apry is a norm, not just a
semi-norm. )

Now assume that [ has a non-zero length. Then we can find a closed subinterval
J C I such that g does not vanish in A ;. This implies that g is a unit in Oa,,
by Remark 6.2.3(1) and Proposition 6.2.6.1 (or by some direct computation), so f/g

is a rigid-analytic function on Ap ;. But since the natural map Oa,., — F|[u, =]] is

T u
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injective, w in f =0in Oa,.,. Sin natur restriction” m AL —
ective, we obta 0 in Oa, ,. Since the natural “restriction” map Oa,,

Oap, is injective, so f =0 1in Oay,- O

4.3 -vector bundle pure of slope 0 and weak admissibility

Recall that Modx™"(¢) € Moda (@) denotes the full subcategory of @-vector
bundles pure of slope 0; i.e., M such that R¥ @, M is pure of slope 0. We
first show that the scalar extension functor induces an equivalence of categories
M_odg(gp)[ﬂio] = Modx™(¢), up to a certain technical lemma whose proof will be
given later in §6.3. Next, we show that the weak admissibility on HP?{O(QO) is
equivalent to the “pure-of-slope-0” condition on Moda (¢) under the equivalences
of categories M and D. The proof uses the slope filtration on M € Mod () by
p-stable saturated Oa-submodules (Corollary 4.2.2). Combining these two results,
we see that the functor H, defined in (3.2.6.1), induces an equivalence of categories
Modg(p)[=] = HPE(¢).

We start with the following well-known lemma, which we call the “extension

lemma.”

Lemma 4.3.1. Let M be a finite free G|-=]|-module®, and M a finite free og-module

1
o)
such that there exists an E-isomorphism a : € Qg1 M= E @, M. Then there
0

exists a finite free G-module M, and isomorphisms (3 : 6[—0] Re M = M and

1
7o ®e I = M over 6[7%0] and og, respectively, such that oo 3 = ~y; the triple
(O, 5,7) is unique up to unique isomorphism.

If M and M® are p-modules over their respective base rings and o is a -

compatible isomorphism, then one can give a unique @ structure on M so that

and 7y are p-compatible. If, furthermore, M is an étale o-module and the cokernel of

3We use the notation M®¢ because 6[7%0] is the ring of bounded global rigid-analytic functions on the open unit
disk.
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O 2 MO — MY s annihilated by P(u)" then the cokernel of pop @ oI — M

is annihilated by P(u)"; i.e., M € Modg(p)S".

Therefore, the above lemma can be viewed as an analogue of the result that on a
smooth surface, a vector bundle defined outside a closed point uniquely extends over

the point.

Proof. Let us first handle the case without p-structure. Let &, ) be the localization
of &[1] at the prime ideal m&[1]. Note that og is the mp-adic completion of & ).

We first observe the following general fact whose proof is immediate:

Claim. Let R be a discrete valuation ring with maximal ideal mpg, and R the mg-adic
completion of R. Let F' := Frac R and F:=FracR. Let V be a finite-dimensional
vector space over I'. Then there exists a natural bijective correspondence between
the set of R-lattices M in V' and the set of R-lattices M in F ®pr V, as follows:

M— R Qr M and M — V 0 M where the intersection is taken inside F RFpV.

Applying this claim to R = G, and V := Frac& ®6[%] MP | we obtain a
unique &, )-lattice M) in V' such that o D& (ry) My = M in & ®6[%] Mbd.
(Note that we view M as an og-lattice in & ®6[%] M via the isomorphism a :
& D] MY = € ®,, M.) Now M,y “smears out” to a vector bundle over some
open neighborhood of () € Spec &[1]. Gluing this with M* (a vector bundle on
Spec 6[7%0]) we obtain a vector bundle 9t on (Spec &) — V(mg) where V(mg) is
the closed point of Spec&. By [73, 2, Exp XI, Corollaire 3.8] we obtain a unique
vector bundle 9 on Spec & which extends 9*). By construction, we are naturally
given isomorphisms (3 : 6[7?10] ®e M = M and 7 : 0 ®s M = M over 6[7?10] and
0¢, respectively, as asserted in the statement. Furthermore, we have by construction

that 90 = M N M inside £ @1 M (which is identified with € ®,, M via a).
0
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Let us prove the claim regarding ¢-structure. Clearly, 9t = MY N M is a p-stable
G&-submodule of both M® and M. Now, assume that M is an étale p-module and
P(u)h annihilates the cokernel of e : 0* M — M. Using 3, oon : oM — M
has cokernel killed by P(u)" after inverting my. But coker o™ vanishes after scalar

extention to S,y = 0g due to 7, so coker oy has no nontrivial m-torsion. In other

words, coker pgy is killed by P(u)". O

We need another auxiliary lemma, which we call a “gluing lemma” or “matrix

factorization lemma.” We give the full proof later in §6.3.

Proposition 4.3.2. For any A € GL,(R), there exists U € GL,(Oa) and V €

GL,(R") such that A=UV.

Proof. 1f 0g = Z,, then the proposition is exactly [46, Prop 6.5]. The discussion in
46, §6] carries over word-by-word to the case of 0oy = F,[[m]]. For interested readers,

see §6.3 of this paper. O
Now we are ready to prove the following:

Proposition 4.3.3. The scalar extension 9)?[7%0] = Oa ®g[ 9)?[7%0] induces an
0

equivalence of ®-categories M_odg(go)[ﬂio] = ModN™(¢). Furthermore, a three-term
complex () : 0 — Dﬁ’[ﬂio] — fm[%] — sm"[ﬂio] — 0 is short exact in M_odg(gp)[ﬂ—lo} if
and only if Oa ® (1) is short evact in Modx™(¢).

Proof. For any M € Modg(yp), the scalar extension Oa ®g M is necessarily pure
of slope 0. In fact, ogee @ M is an étale p-module since P(u) € (ogea)™, and is
a p-stable opsi-lattice of R @g M. Now, the claim follows from the discussion in
Lemma 4.1.7. The exactness assertion follows since Op is faithfully flat over 6[7%0]

by Proposition 6.2.8.
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Fix any M € Modx™(y), free of rank n. By Theorem 4.1.6(1), there exists
Mapa € Modisd () such that R ®gea Mg = Mp. Hence My carries two R-
bases: one from Oa-basis for M and the other from R"-basis for Mzwi. They are
related by a matrix in GL,(R), but the preceeding “gluing lemma” (Proposition
4.3.2) implies that one can modify the chosen bases so that they coincide in Mg.

Let M% be the &[]+ -]-span of this common basis. Since S[- -] = RY N Oa, we
have an equality M% = Mz N M as a submodule of Mz. Therefore M is a -
stable 6[7%0]—submodule of both Mgea and M. Now we obtain the full faithfulness as
follows. Assuming M = Oa ®g M for some M € Modg(p), the construction above
gives MY = EDT[W—IO] And thanks to Theorem 4.1.6(1), any morphisms 9 ®g Oa —
M @s Oa of Mod, () restrict to mt[ﬂ—lo] — zm'[ﬂ—lo]

For the essential surjectivity, the “extension lemma” (Lemma 4.3.1) produces the
p-stable G-lattice M of both M and og ®gea Mpsa, which is of P-height < h if
Mb is. On the other hand, if M = Oa ®6 /\/lbd is of P-height < h, then so is

M by the faithful flatness of Oa over 6[;0] (Proposition 6.2.8). O

Theorem 4.3.4. Let D € HP7’(p). Then D is weakly admissible if and only if

M(D) is pure of slope 0. In particular, H : Sﬁ[ﬂi] — D ((’)A ReL] 9)?[7%0]) induces
™0

an equivalence of categories Mode(go)[ﬂ—o] — HPY"?(p). Furthermore, a three-term

complex () : 0 — im’[wio] — fm[%] — Sﬁ"[%] — 0 is short exact in Modg(go)[wio} if

and only if H(1) is short ezact in HPLZ"(y).

Proof. Granting that D is weakly admissible if and only if M(D) is pure of slope 0,

it, follows from Propositions 4.3.3 and 3.2.5(3) that H : Modg(¢)[=-] — HPZ () is

wa, >0( )

fully faithful with essential image HP The exactness assertion follows from

Propositions 3.1.6(2) and 3.2.5(2), and the exactness assertion of Proposition 4.3.3.
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We first verify that
(4.3.4.1) deg(M(D)) =tn(D) — tg(D)

Since M(+) commutes with ®-product (Proposition 3.1.6), one can replace D with
its determinant and reduce the verification of the equality (4.3.4.1) to the rank-1
case. In the rank-1 case, (4.3.4.1) can be directly read off from the computation of
M(D) which is done in §3.1.4, especially from (3.1.4.1). This verifies (4.3.4.1), and
proves the theorem for the rank-1 case.

Now, assume that M(D) is pure of slope 0 and of any rank. Then for any
subobject D', we have deg(M(D')) > 0. In fact, this can be checked after extending
scalars to R*8, and then the claim follows from Proposition 4.1.5. By (4.3.4.1), it
implies that D is weakly admissible.

Now, assume that D is an isocrystal with weakly admissible effective Hodge-Pink
structure. By Corollary 4.2.2, we have the following “slope filtration” for M(D) by

p-stable saturated modules on A:
O=MyCcM;C---CM.=M(D)

Let s; be the unique slope for M;/M;_; and n; be the rank of M;/M;_;. Put D; :=
D(M;). By extending scalars to R*# and applying the Dieudonné-Manin classifica-
tion (Theorem 4.1.2), one can see that deg(M(D)) = > s;n; and deg(M;) = s1n;.
The weak admissibility implies ) s;n; = deg(M(D)) = tn(D) — tg(D) = 0 and
deg(My) = ty(Dy) —ty(Dy) > 0, s0 s; > 0. But since s; < s; for any i # 1, we

must have ¢ = 1 and s; = 0; i.e., M(D) is pure of slope 0. ]

Remark 4.3.5. Since H commutes with ®-products (in particular, with Tate twists),
we may immediately extend the above theorem, as follows: there exists an equiva-

lence of categories H from generalized p-modules over G as in §2.2.11 to isocrystals
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with weakly admissible Hodge-Pink structures, which commutes with all the natural

operations, such as ®-products, internal homs, and duality.

4.3.6 Rank-1 example

Let D be a rank-1 isocrystal with weakly admissible effective Hodge-Pink struc-
ture, and we put ﬁxo = Oau ®@x, D. We choose a J# p-basis e € D and write
op(o*e) = (arh)-e for some o € W* and h > 0. By weak admissibility the Hodge-
Pink structure is A = P(u)*hﬁ%.

In §3.1.4, we have seen that M(D) = A™"D C D[5], where D := Oa Qz, D =

O e by choosing a .# -basis e for D. We choose the following O -basis € := A\~"e

M(D) of M(D), so we have by (3.1.4.1) that prp)(c*e’) = an <7;Eg)))he’ =
aP(u)"e’, using our normalization P(0) = m.

Clearly 9 := &-€’ is a p-stable G-lattice in M(D). By Proposition 4.3.3, such
a G-lattice M is unique up to isogeny. Therefore ﬂ(fm[ﬂio]) = D where M = Ge’
with pon(c*e’) = (aP(u)")-e’ and D is as above. Applying this to the case a = 1,
we obtain ﬂ(@(h)[ﬂ—lo]) = 1(h) where &(h) is the Tate object as defined in Definition
2.2.6 and is the Tate object 1(h) as defined in (2.3.2.1). Note that we used the
normalization P(0) = m for getting H(S(h)) = 1(h); otherwise, the formula would

involve some suitable “unramified twist” corresponding to P(0)/mg € W*.



CHAPTER V

mo-adic G g-representation of finite P-height

Let Rep, (Gx) denote the category of finitely generated (not necessarily free)

op-modules with continuous linear G g-action, with the obvious notion of morphism.

tor
00

We also let Rep™©(Gr) (respectively, Rep

00

(Gk)) denote the full subcategory of
Rep,, (Gx), whose objects have free (respectively, torsion) underlying oo-modules.
We have obvious notions of ®-product, internal hom, and duality for this category.
In this chapter, we construct a contravariant functor Tg : Modg () — Repa(Gx),
and show that it is fully faithful. The construction of T uses Fontaine’s theory of
étale p-modules (or its variant for oy = F,[[m]]). To show the full faithfulness, we

use equivalences of categories discussed in §III-§IV. The essential image of T will

be the main object of study in the later part of our work.

5.1 Etale p-modules and my-adic representations of Gy

Fontaine’s theory of étale p-moduless [31, §A1.2] gives a classification of Z,-lattice
G k-representations via étale p-modules over og¢; in other words, an equivalence of
categories between Rep, (G ) and M_odﬁtg(gp) when oy = Z,. But in fact, Fontaine’s
argument carries over to prove the “same” equivalence of categories for 0y = Fy[[m]].
In this section, we reproduce [31, §A1.2] in a way that works for both cases 0y = Z,

and 09 = IF,[[mo]]. In this section (§5.1), we do not assume that K has a finite p-basis.

87
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This will come up later in §8.1.12.

5.1.1 More Rings

We first define some more rings we need. Recall that K = k((u)) where k is a field

of characteristic p > 0.

ogur  the maximal unramified extension (i.e., strict henselization) of og¢
EM  the fraction field of ogur
oguw  the mp-adic completion of ogur

£ fraction field of Ogur

By the universal property of strict henselization, there exists a unique map o :
Ogur — Ogur OVEr 0 : 0¢ — 0g which reduces to the gth power map on the residue field
K*®°P. Since this o on ogu is an isometry for the valuation topology, it continuously
extends to 0 : 0gur — 0guw . Using this o, all the rings above become o-flat.

If 09 = F,[[mo]], we can write oguw = K*P[[m]] and £ = [P ((7,)), and o acts as
the gth power on the coefficients of mp-adic expansions (i.e., on K*P) and the identity
on .

The natural action of Gx = Gal(E™/E) on ogw extends to ogw and ™ via
isometry, and this action commutes with the Frobenius o (by the universal property
of the strict henselization). Also, we have (ogw )9% = og; this can be seen from
Krasner’s lemma (or by noting that Gy acts only on “coefficients” in the p-adic
Teichmiiller expansions if 0g = Z,, or in the formal power series expansion via ogur =
KP[[mo]] if 00 = Fg[[mo]])-

5.1.2 Duality
The categories Rep, (Gx) and M_odf;tg(gp) are equipped with ®-products and in-

ternal homs which satisfy all the “natural” compatibilities. We also have “duality”

for these categories, but since we allowed torsion objects we need to treat free ob-
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jects and torsion objects separately. We define duality on free and torsion objects in

Rep,, (G k) as follows:

o ) Homa(Too), for T € Rep*(Gie)

Hom,, (T, Fy/0o), for T € Repy' (Gk),
where 0y and Fy/0g are given the trivial G g-action. Even though Fj /0y is not finitely
generated (hence not an element of Rep, (Gx)), any op-linear map from a torsion
object T into Fy/o0g factors through some finite submodule #00/00 C Fy/og for
N > 0 depending on T. So T™ can always be written as some internal hom, whether

T is torsion or free.

Similarly, we define duality on free and torsion objects in Mod¢! (i):

M* = HOmog (T7 05)7 for M € M_Od,e;?free(gp)
Hom,, (T, € /og), for M € Mitg,tor((p)7

where the ¢-module structures on og and €/0g are given by linearizing the o on og
and &, respectively. Again, even though & /o¢ is not finitely generated, any og-linear
maps from any torsion object M into £/o0g¢ factor through some finite submodule
%%/05 C £/og for N > 0. So M* can be written as some internal hom, whether
M is torsion or free.

For the rest of this section, we will construct quasi-inverse equivalences between
Rep,,(Gx) and Mi‘;(go), which respects all the natural operations, such as ®-

products, internal homs, and duality.

5.1.3

For T' € Rep,, (Gk), we define

(5.1.3.1) De(T) = (0gw ®,, T)9%,
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where G acts on the both factors of T'®,, ogur . Since o and the natural G g-action
on ogw commute, the ®-product Frobenius structure ¢ : J*(ogur Qoo T) — 0gur Qo, T’
restricts to ¢ : 0*De(T) — Dg(T). The following lemma tells that D¢(V) is in fact

an étale p-module over og.

Lemma 5.1.4. For any T € Rep,,(Gk), the natural map
(5.1.4.1) ogur Qo De(T) — 0gur ®p, T’

1s a G i -equivariant isomorphism of w-modules.

Remark 5.1.5. Before we begin the proof, let us discuss formal consequences of the
isomorphism (5.1.4.1), together with the faithful flatness of oz over og. All the
properties below can be checked after some faithfully flat scalar extension, namely

by applying oguw ®,, (-), and then one can use the isomorphism (5.1.4.1).

1. D¢(T) is a finitely generated og-module, so it is an étale g-module. In particular,

we obtain a functor D : Rep, (Gx) — M?g ().

2. A 0¢[Gk|-module T is free of og-rank n (respectively, a finite torsion 0g-module

of length n) if and only if D¢(T) is so as an og-module
3. A complex (*) in Rep, (G ) is exact if and only if Dg(*) is exact in Modii ().

4. Forany T',T" € Rep,,(G ), the natural map D¢ (T)®o, De(T") — De (T @4, T")

is a ¢-compatible isomorphism.
5. For any T, T" € Rep,, (Gk), the natural map
D¢ (Hom,, (T, 1)) — Hom,, (Dg(T), De(T"))

is a @-compatible isomorphism. In particular, trivially Dg(0g) = o0g (respec-

tively, with the natural G -action and g-structure) and Dg(Fy/09) = E/og (or
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rather, D, sends the direct system {=-0g/0s} to {=-00/00}), we conclude that
0 0

the natural map Dg(T*) — (Dg(T))" is a p-compatible isomorphism.

Using the duality we can define a contravariant version of the functor Dz(-), which

is often more useful. But for this, we need to treat torsion and free cases separately:

Homgg, (T, £V /ogur), for T € Rept™ (G )

00

(5.15.1) D(T):= De(T") =
Hom, g, (T, 0gu ), for T € Rep™©(Gx).

00
Since Dy commutes with the duality by (5) above, we have D% (T) = (D¢(T))". One
can also formulate Lemma 5.1.4 using Dg(-), and show the properties listed above
assuming that all 09[G i |-modules involved are either all finite free over o or all finite

torsion 0g-modules.

Proof of Lemma 5.1.4. First, it can be seen that the map (5.1.4.1) is G x-equivariant
and ¢-compatible, so we only need to show it is an isomorphism as og-modules.

If 7, - T =0, then the map (5.1.4.1) being an isomorphism basically follows from
classical Galois descent theory. If 7)Y -7 = 0, then we use the induction on N;
consider the exact sequence 0 — w5 'T — T — T/a) T — 0, and since the
statement is true for the flanking terms, it is true for the middle term.

For the general case, we use the “dictionary” between og-modules M and projec-
tive systems {M/myM},, (Proposition 7.4.1). For any T' € Rep,,(Gk), observe that
lim D¢ (T/m5T) = D¢ (T'); in other words, the natural map (@n (0gu /70 @ T) 75 —
lim | ((0gw/mg) @ T )ox ] is an isomorphism which can be seen directly by the explicit
description of G k-action on lim (ogu/7q) ® T

Since we proved Lemma 5.1.4 for torsion representations, it follows from Remark

5.1.5 that the functor D, is exact for torsion representations. So we have the following
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right exact sequence for any integers n and N:
De(T/my™NT) Zo De(T/mT) — De(T/mT) = 0.

(One can check the exactness after applying ogw ®,,. (+), and then use that the
natural map (5.1.4.1) is an isomorphism for torsion G g-representation, which we
have already proved.) In particular, each transition map induces an isomorphism
(0g/78) @ De(T/my*'T) = Dg(T/7BT). Moreover, we have already seen that
D (T/myT) is finite-dimensional over og /(7). Therefore by passing to the projective
limit over N, we conclude that D.(7T) is finitely generated over og such that the nat-
ural map (0g/7() ®o, De(T) — Do (T/myT) is an isomorphism. We finally conclude
the map (5.1.4.1) is an isomorphism by the “dictionary” between o0guw -modules M
and projective systems {M/mj M },. (See Proposition 7.4.1.)

The étale-ness can be checked after a faithfully flat scalar extension ogu ®,, (+),

and the target of the isomorphism (5.1.4.1) is clearly an étale p-module. O

5.1.6

Next, we construct a functor T'¢(+) : Modi'fe (¢) — Rep,, (G ), which will be shown

to be a quasi-inverse to the functor D,. For any M € Modii(gp), we let
(5.1.6.1) Te(M) = (05w Qo M7~ = {2 € 0gw @o, M| o(c*z) = x}.

The G k-action on ogu ®,, M via the the first factor restricts to an action on T’ (M)
since the Frobenius map and G x-action commute.
As previously, we can use the duality to define a contravariant version of the

functor T’ (M), for which we should treat torsion and free cases separately:

Hom,, ,(M,E™ /oguw), for M e Modét,tor(sp)
(5162) _Z(M) = L(M*) _ 0g,p o
Hom, (M, ogur ), for M e Modit;,free (),
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In fact, we will see below that T'; will also commute with the duality; i.e., there exists
a natural isomorphism T'c(M*) = (T'-(M))". We leave it to readers to formulate the
next proposition (Proposition 5.1.7) using the contravariant functor T and assuming

that all étale p-modules involved are either all finite free over og¢ or all finite torsion

og-modules.

Proposition 5.1.7.

1. For any M € Moditg(go) the natural map
(5171) Og‘\ur ®00 T_g(M) — Oé‘\ur ®°S M

is a G g -equivariant isomorphism of p-modules. In particular, T (M) is finitely
generated as an 0g-module, and M 1is free of og-rank n (respectively, a finite

torsion og-module of length n) if and only if Tc(M) is so as an og-module.

2. The functors D¢ and T¢ are quasi-inverse anti-equivalences between Mods, (¢)
and Rep, (Gk), which are evact and commute with ®-products, internal homs,
and duality. Moreover, D¢ and T'¢ restrict to quasi-inverse anti-equivalences
between Modﬁ?ﬁee(gp) and Rep™(Gr) (respectively, between Modii’tor(gp) and

Repe (Gk))-

The proposition for the case 0y = Z,, is proved in [31, A, §1.2]. When oy = F,[[m0]],

the proposition for objects killed by my can be obtained from [45, Proposition 4.1.1].

Proof. Using the same argument as before, one can show (1) implies (2), aside from
the quasi-inverse claim. In order to construct a natural isomorphism 7'z o D = id,
it is enough to show the image of the Gg-equivariant injective map T — oguw ®,, T’
is exactly (ogur ®,, 7)?=1. Since this inclusion has an oy-linear section (as 0y — 0gur

does, via successive approximation) and the image is contained in (0gu ®,, T)?=,
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it is enough to show (ogw ®,, T)¥~! = T as abstract og-modules (i.e., forgetting
their embeddings into ogur ®,, 7). By the structure theorem for finitely generated
modules over a principal ideal domain, we are reduced to showing (ogu )?=! = 0
and (ogu /(7rg))¢:1 = 00/ (7). The other natural isomorphism D, o T = id can be
obtained by applying (-)9% to the natural isomorphism (5.1.7.1).

Now, let us give a proof of (1). By the same argument as in the proof of the Lemma
5.1.4, it is enough to handle the case when my - M = 0, which we assume from now
on. (For the limit argument, we have liin(M/WgM)“azl = (@n M/7T8M> - by
the og-linearity of ¢, and so the rest of tﬁe argument goes unchanged.)

Let M be an étale p-module over K = o0g/(m). We would like to show that the

natural map

K @, Te(M) — K** @ M

is a G g-equivariant isomorphism of p-modules. This statement for ¢ = p is proved
in [31, A, Proposition 1.2.6], which carries over for any ¢, as follows.
We will in fact prove the contravariant version of the statement, namely for g -

M = 0, the natural map
(5.1.7.2) K*" @p, Te(M) — K*P @ M* = Hompg (M, K*P),

is a G g-equivariant isomorphism of ¢-modules, where M* is the dual étale p-module
in the sense of §5.1.2.

Define
Symy (M )

Ay =
M e — p(o*m)|Vm € M)’

which is clearly a finite étale algebra over K of rank g% ™ Observe that T (M) =
Homgg /i (A, K5P). So by counting, we conclude that dimg, T3 (M) = rankg M.

(In fact, one can naturally give Spec Ay a structure of group scheme with o0q/(m)-
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action in such a way that (Spec Ay )(K*P) = T:(M) is a Gg-equivariant isomor-
phism of 0g-modules. See §7.2 for more discussions.)

Now since the both sides of (5.1.7.2) have the same K*P-dimension, it is enough
to show the injectivity. Assume myq,---,m, € T&(M) are linearly independent over
F, but not over K*®. Assume, furthermore, that r > 1 is the minimum cardinality
of a set with this property. We may assume Y ;_, ¢;m; = 0 for some ¢; € K5 with
q

¢1 = 1. By applying ¢, we also obtain Y '_, ¢

i—q cim; = 0, so by subtracting we get a

K*P-linear dependence relation ). , (¢! —¢;)m; = 0 with fewer than r elements. By
our choice of r we get ¢] = ¢; for all ¢, which contradicts to the F,-linear independence

5.1.8 Contravariant Theory

It is often much more convenient to work with the contravariant functors 7'z and
D%. It is a formal consequence of Lemma 5.1.4 and Proposition 5.1.7 that Tz and D¢
are quasi-inverse exact anti-equivalences of categories between suitable source and
target categories; commute with ®-products, internal homs, and duality; and satisfy
various other properties as asserted in Lemma 5.1.4 and Proposition 5.1.7.

When working with these contravariant functors, one often needs the fact that
Tz and D “commute” with the reduction mod n}. The following lemma shows
that this is indeed the case, but it is not completely trivial because the functors are

defined differently for torsion and finite free objects.

Lemma 5.1.9. Let f : M’ — M be an “isogeny” of étale p-modules finite free

over 0g; i.e., f[wio] : M’[Wio] — M[%] is an isomorphism. Then we have a natural
isomorphism T (coker ) = coker(L:(f)), where Te(f) : Te(M) — Te(M') is the

map induced from f. In particular, if M is an étale p-module finite free over og then
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we have a natural isomorphism (0¢/7l) @y Le(M) = Te((00/78) Qo M).
Similarly for any isogeny f : T" — T of og-lattice G -representations, we have a

natural isomorphism D (coker f) = coker(Dg(f)).

Proof. We view both M’ and M as submodules of M’ [7%0] via the isomorphism f [7%0],
and replace f with the natural inclusion. We also view T%:(M) and T:(M') as
submodules of Homogw(M’,gur) via the natural inclusion 0gw — EY = ofu [ﬂio]

Then T5(f) is the natural inclusion T (M) — Tz(M'), whose cokernel is isomorphic

to Hom,, o,(M/M',E" Jogu). The same argument also shows the claim for Dy. [

5.1.10

We comment on the classifications of Fy-representation of Gx. Let Rep FO(Q K)
be the category of finite-dimensional Fy-vector spaces with continuous G g-action.
For any (p,V) € Repp, (Gk), there exists an Gx-stable og-lattice T C V. (This
follows from the compactness of Gg.) In other words, the category Repp (Gx)
is equivalent to the isogeny category Rep,, (G K)[ﬂ—lo] >~ Repu(G K)[ﬂio] Therefore,
the quasi-inverse equivalences of categories T'c and D, induce quasi-inverse equiv-
alences of categories Vi : Mitg’ﬁee(go)[ﬂio] = Repp, (Gk) and Dg : Repy, (Gk) —

Modigfree(gp)[;—o]. The same statement holds for the contravariant versions, so we

obtain quasi-inverse anti-equivalences of categories Vz and Dz.

5.2 Main theorem and G g-representations of finite P-height

Consider the functor Modg(¢) — Modf’;tg’free(go) defined by scalar extension 901 —
0g @s M. In this section, we show that this functor is fully faithful (Theorem 5.2.3).
Since the target category has an anti-equivalence of categories with Rep™(Gy)

00

via T'¢, this implies the full faithfulness of the contra-variant functor T’y : 9 —

T3 (0 @) from Mod () to Rep™(G ). This theorem was first proved by Kisin

00
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[52, Proposition 2.1.12] for oy = Z,, and our proof is closed related to his. In the
case of 09 = IFy[[mo]], it is known that Modg(y) and Mod,_ (¢) classify certain kind of
mo-divisible groups over o and K, respectively. (See §7.3 for the precise statement
and a proof.) Therefore, the full faithfulness of Modg(¢) — Mod, () can be viewed

as an equi-characteristic analogue of Tate’s theorem [75, §4.2].

5.2.1

For M € Modg(¢), we associate a 09|G x]-module

Te(M) =Tz (0 ®s M) = Home ,(M, 0gur ),

free
00

which defines a contravariant exact functor T's : Modg () — Rep, *(G k) compatible
with ®-products.

We need one more lemma for the proof of the main theorem. Compare with [52,

Lemma 2.1.9].

Lemma 5.2.2. Let f : 9 — 9 be a morphism in Modg(p) such that 0g @ f :

0 Qe M — 0g Re M’ is an isomorphism. Then f is an isomorphism.

Proof. Since f is a morphism of free G-modules of same (finite) rank, it is an iso-
morphism if its determinant is. Hence, we may assume that 9t and 90U are free of
rank 1. Since o¢ ® f is an isomorphism in Mitg’ﬁee(gp) and og is the my-adic com-
pletion of 6[%], it is enough to show that f is an isogeny — in other words, f is an
isomorphism in Mg(go)[ﬂlo]. For this claim, we use the equivalence of categories
H : Modg(¢)[5] — HPY"?(p) (Theorem 4.3.4)".

We set (D, A) := H(M) and (D', A") := H(9'). Note that H(f) is a non-zero
morphism of isocrystals with weakly admissible Hodge-Pink structures. Since D

and D’ are 1 dimensional, H(f) : D — D’ induces an isomorphism of isocrystals,

'In fact, we only need the full faithfulness of the functor H : Mod (¢)[ =] — H’/’%‘l’>0(np).

ko)
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so ty(D) = ty(D'). Let h denote this common Newton number. By the weak
admissibility, we have h = t5(D) = tg(D’). Hence A = P(u)™" (Oar, @xy D)
and ' = P(u)™"- (Oa., @xy D'), so H(f): A — A’ is visibly an isomorphism in

HPY"?°(p), which shows that f is an isogeny. O

Now we are ready to prove the main theorem. Compare with [52, Proposition

2.1.12].

Theorem 5.2.3. The functor Modg(p) — Modf’;tg’free(ap) defined by M — 0g @M is
fully faithful. Equivalently, the contravariant functor T : Modg () — Rep™(Gx)

00

15 fully faithful.

Proof. Let My be a finitely generated torsion-free (not necessarily free) G-module
equipped with a map gy, : "My — My such that coker(pgy,) is killed by P(u)"
for some h. Then, we can “saturate” My to get another p-module M, which is
finite free over & and contains My with coker payear killed by P(u)". Indeed, define
P2t .= (ﬁﬁo[%]) N (0g ®e M) with its evident p-structure, where the intersection
is taken inside £ ® g M. Both 0 @My and imo[ﬂ—lo] are torsion-free, hence free over
og and 6[7}0], respectively. By the proof of Lemma 4.3.1, I is finite free over &
and it recovers Dﬁo[ﬂio] and og ®g Mp. Lemma 4.3.1 also shows that since coker oy,
is killed by P(u)", the same holds for coker Dot -

Now suppose that 2, and 9y are in Modg(p) and put M; = og ®g M; for
¢t = 1,2. Given a morphism f : M; — M, in M_od‘i?free(go), we would like to show
that it restricts to 20t — Mo

Let us first handle the case when M = M; = M, and f =id; i.e., M; (i = 1,2)
are ¢-stable G-lattices in M and we seek to prove 9, = M, if they are both of finite

P-height. Clearly 9t; + 915 defines a p-stable submodule of M of finite P-height,
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sat

and it is finitely presented over &, so the inclusion M; — (M +M,)%* is an equality
by Lemma 5.2.2. Therefore 90t; = M.

Now we handle the general case. By replacing f by (1, f) : My — M; & M, and
M, by M; & M,, we may assume that f is injective, so we can regard 9; (i = 1,2)
as (o, 6)-submodules of M,. As in the special case treated above, (9, + My)%* €
Modg(¢p) is another p-stable G-lattice of My, so the inclusion My — (M + My )¢

is an equality by Lemma 5.2.2. Therefore, 9t C (90t + 9My)%* = M. O

Corollary 5.2.4. The contravariant functor Vi : ModG(go)[TrlO] — Repp, (Gk) s
fully faithful, and there exists a fully faithful exact functor Vip @ HPR(p) —
Repr, (Gk) which commutes with ®-products and such that we have a natural iso-

morphism Vg = Vip o H of functors M@(‘P)[%@] — Repp, (k).

Proof. The first claim directly follows from the above theorem. In order to prove the
second claim, consider the following contravariant functor VisoH ™' : HPY»Z(p) —
Reppr, (G k) which commutes with ®-products (in particular, with Tate twists), where
H' . HPY(p) — Modg(p)[£] is a quasi-inverse of H defined by H™'(D) =
93?[7%0] where Dﬁ[w—lo] is the unique @-stable 6[%0]—1attice of finite P-height in M(D).
Now, we set Vip(D) = (Vo H ') (D(N))) (—N) with N big enough so that D(N)

is effective. This definition is independent of N, and the functor V3, satisfies all

the desired properties. O

Lemma 5.2.5. A three-term complex D*: 0 — D' — D — D" — 0 of isocrystals
with weakly admissible Hodge-Pink structures is short exact if and only if V3,5(D*®)
is short exact in Repp, (Gk).

Similarly, a three-term complex IM* : 0 — M — M — M” — 0 in Modg(p) is

short exact if and only if T's(OM®) is short exact in Rep™°(Gr).

00
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Proof. By Proposition 5.1.7(2) and S-flatness of o¢, T'g is an exact functor (i.e., T'g
takes a short exact sequence in Modg(¢) to a short exact sequence in Repp*(Gr)).
Using the exactness assertion of Theorem 4.3.4, V73, is an exact functor. So it
suffices to prove the “if” assertions.

Now let us assume that V3,,(D?®) is short exact in Repp, (Gx) and show that D*
is short exact. By assumption, we have dim ,, D = dim », D' +dim ,, D" since V3,
is rank-preserving. It immediately follows that D® is short exact for the underlying
isocrystals (without Hodge-Pink structures).

Let A/, A, and A” be the (weakly admissible) Hodge-Pink structures for D', D,

and D", respectively. It remains to show that the natural inclusions A’ — (A’)%* :=

ANOA 4 [P(lu)] Qo D' and A/A" — A" of Hodge-Pink structures on D" and D",
respectively, are isomorphisms. This claim can be checked after passing to the deter-
minants. Let us first replace D’ with its determinant and put A’ := t(D’). By weak
admissibility, A’ = P(u)*hlﬁgo where 13;0 = K2y O, D'y and (A)% = P(u)’hgﬁ’m
for some b, > h' (since A’ C (A’)®"). On the other hand, by weak admissibil-
ity of (D,A) we have h), < ty(D’) = h'. This shows that D* is left exact. Now
we replace D" with its determinant and put h” := ty(D"). Since both A/A" and
A" are weakly admissible by Proposition 2.3.8 and by assumption, we obtain that
AN = A = P(u)_h”ﬁgo. This shows that D*® is exact.

Now let show the lemma for T'g. Assume that TE(91°) is a short exact sequence.
It follows from Corollary 5.2.4 that we have V3 5 (ﬂ(ﬂﬁ'[ﬂ%])) =~ zg(ivr)[%o], and
that H(90*[~-]) is a short exact sequence in HPY"?°(p). By the exactness assertions
of Theorem 4.3.4, 931'[%0] is a short exact sequence, so 91* is left exact. Furthermore,

the natural map /9 — 9" is an isomorphism since the natural map T'g(M”) —

ker[Tg(OM) — Tg(M')] is an isomorphism and T is fully faithful (Theorem 5.2.3).
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Note that we have a natural isomorphism T'g(9/9) = ker[Tg(IM) — Ts(M)]. O

Remark 5.2.6. Since the functor T'g commutes with ®-products (in particular, with
Tate twists), we may extend T'g to a functor on generalized p-modules over & (see
§2.2.11), and the theorem implies that this T is fully faithful. Unlike Mods(p), the
category of generalized ¢-modules have duality and internal hom. It is not hard to

show that the functor T’y commutes with these operations.

5.2.7

From now on, we focus on the essential image of T : Modg(yp) — Reph™(Gr).
But this subcategory is not stable under the natural duality in Repforoee(g k), while
any “good” class of representations should be stable under the natural operations
such as ®-product, duality, and internal hom. So we consider a slightly larger full
subcategory which is stable under all these operations.

As suggested in Remark 5.2.6, one possible solution is to consider the essential
image of generalized p-modules over & under I'g. This full subcategory has the
following alternative description. We put og(r) := T(&(r)) if r > 0 and oy(r) :=
(o(=r))" if r < 0. For any T € Rep, (Gx), we put T(r) := T Qq, 0o(r). If 0g =
Z, then G » acts on 0g(1) by the restriction of the p-adic cyclotomic character to
Gr. = Gk; and if o9 = Fy[[mo]] then G » acts on 0¢(1) by the Lubin-Tate character;

i.e., the character obtained by the Lubin-Tate formal group (as is verified in Example

7.3.7(3)).

Definition 5.2.8. A oy-lattice Gx-representation T € Repf;je(g k) is of finite P-
height if for some r € Z, there exists MM € Modg(p) such that T'(r) = Tg(M). We
say that T is of P-height < h if there exists 9 € Modg(p)S" of P-height < h, such

that T = T%5(90).
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We say that V' € Repp, (Gk) is of finite P-height if there exists a Gg-stable oo-
lattice T C V' which is of finite P-height. Similarly, we say that V is of P-height
< h if there exists a G g-stable og-lattice T' C V' which is of P-height < h.

We let Repi” (G ) and Reph, (G ) denote the full subcategories of G x-representations
of finite P-height. We let Rephe~"(Gr) and Rep%(g k) denote the full subcate-

gories of representations of P-height < h.

The full subcategories Repg)ee’P(g x) and Repl, (Gr) are stable under ®-product,
duality, and internal hom of the ambient categories. But the P-height < h condition
is not stable under any of these operations. Note also that Rep?o(g k) is exactly the
essential image of HPY"(¢) by Vip.

The following proposition says that for an Fy-representation of P-height < h, any

G k-stable og-lattice is of P-height < h. Compare with [52, Lemma 2.1.15].

Proposition 5.2.9. Let V = zg(sm)[ﬂ-t], and assume that M is of P-height < h.
Then the map IM' +— T&(M') is a bijection between p-stable S-lattices M’ C 9)?[7%0]
which are of P-height < h and G -stable lattices T' C V.

Proof. We need to produce, for a given Gg-stable lattice 7" C V, a p-stable &-
lattice 9 C im[ﬂ—lo] which is of P-height < h. By Proposition 5.1.7, we have a
p-stable og-lattice M' C €& ®g M such that T¢(M') = T'. Now, it follows from the
proof of Lemma 4.3.1 that there exists a common ¢-stable G-lattice 9" of both M’
and ﬁﬁ[ﬂ—lo], which is of P-height < h. O

We digress to study the case of P-heights < 0.

Proposition 5.2.10. Any T € Repﬂroee(g;() 1s unramified if and only if there ex-

ists an étale (@, S)-module M such that T = TE(M) as Gk-representations. In
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particular, any unramified og-lattice Gk -representation is of P-height < h for any

h > 0.

This proposition can be thought of as an analogue of the fact that a p-adic G -
representation V' is crystalline of Hodge-Tate weight 0 if and only if V' is unramified.
From this together with [52, Proposition 2.1.5] one can also deduce the proposition

for the case 0oy = Z,. (Note that G»_/Lv.. — Gx/Lx.)

Proof. First, assume that 7' € Reph®(Gx) is unramified and we seek an étale &-

lattice in the étale p-module Dg(T") := Homg,g, (T, 0gw ). Since I acts trivially

I

on T, any 09|Gx]-map [ : T — ogu factors through (ogu )% = (W\Sh[[u]][%])/\
05<§>W/I/I75h, where 6 denotes the my-adic completion and W*h denotes the mo-adic
completion of the strict henselization of W. (Recall that W = W (k) if 0oy = Z,,, and

W = E[[mo]] if 09 = F,[[mo]].) So we have a natural isomorphism of ¢-modules:
(5.2.10.1) Di(T) = 0g@wU(T) & 0g @w UN(T),

where U*(T') := Homg g, (7, /WSh) equipped with the @-structure induced from the
natural Frobenius endomorphism o : W*" — W92 We can deduce from the first
isomorphism in (5.2.10.1) that U*(7T') is finitely generated over W since it is mo-
adically separated and complete, so we obtain the second isomorphism in (5.2.10.1).
Furthermore, it follows from (5.2.10.1) that U*(T) is an étale (¢, W)-module (using
that og is fully faithful over W). So MM := & @y U*(T) is an étale (p, S)-module,
and we have T = T(9) by construction.

Now, let us show that Tg(91) is unramified if 9 is an étale (¢, &)-module. Con-
sider an étale (¢, W)-module 9t/uf where the ¢-structure is given by the reduc-

tion @ of ¢ : ™M — M modulo uIM. We first show that the natural projection

2The Frobenius endomorphism o : Wsh — Ws" can be obtained by restricting o : ogur — ogur . By the universal
property of strict henselization, ¢ is a unique endomorphism o : W3 — Ws" which extends ¢ : W — W and reduces
to the gth power map o : k5°P — k5°P modulo 7g.
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M — M /uM has a unique p-compatible section, so it gives a natural isomorphism
M — SRy (M/uM) of p-modules. The proof is analogous to Proposition 3.2.1 (but
easier). Let so : 9M/udt — 9 be a section which is not necessarily @-compatible,
and consider

(5.2.10.2)

1—00
7,>0

If the right side is well-defined, then it clearly satisfies s o @ = p 0 0*s. Since sg is a

section, the image of @ oo*sgo @ ! — s¢ is contained in uM. By induction we obtain
(5.2.10.3) im(p™tt o 0¥ sy 0 7Y — i o g*sy 0 g C ud' M.

Therefore the right side of (5.2.10.2) converges (u-adically). The proof of uniqueness
is identical as in the proof of Proposition 3.2.1.

Now, let us consider I’é(im)[ﬂ—lo] = Hom)govw(D,gur) where D = (Qﬁ/uim)[wio]
(Recall that 2y = W[W—lo]) We claim that any @-compatible map [ : D — E™ factors
through W\Sh[ﬂio] (This shows that T(90) is unramified since Iy acts trivially on
WSh.) To show the claim, it is enough to show that any map [ : W*" @y D — gur

of (¢, WSh[ -])-modules factors through WSh[ -]. In the case 09 = F,[[mo]], we may
further assume that the residue field &% of W*h is algebraically closed; if any -
compatible map k(7)) @, D — (k((w)) " (o)) factors through k((m)) then any
p-compatible map k%P((m)) ® 5, D — KP((m)) factors through £*P((m)), because
k(mo)NE™ = WSh[ -] where the intersection is taken inside (k)™ ((m0)- (Recall
that Wsh k5P [[mo]] and £ = K5°P (m).)

Now, we rename WSh[ -] as X, Weh[ L -]®., D as D, and Eas & if oy = Z,; and
we rename k(o)) as o, k(7o) @, D as D, and (k(w)))™" (mo)) as & if 09 = Fy[[mo]].

By Dieudonné-Manin decomposition (Theorem 4.1.2), we can find a J# ¢-basis {e;}
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for D such that ¢p(c*e;) = e; for each i. For any ¢-compatible map [ : D — &,
l(e;) € & satisfies o(l(e;)) = l(e;) for each i (i.e., l(e;) € 00[7%0] for each i), so clearly
the image of [ lies in . n

We record the following corollary of the proof. Define an 0y[Gx/Ix]-module
Ty, U) = (/WSh @w U)#=! and T3, (U) := Ty (U*) for any finite free étale (i, W)-
module U; and (¢, W)-modules U(T) := (W @y T)9% and U*(T) := U(T*) for

any unramified ogp-lattice G g-representation.

Corollary 5.2.11. The assignments Ty, and U define quasi-inverse rank-preserving
exact equivalences of categories between Repffoee(gK/IK) and the category of finite

free étale (@, W)-modules which respects ®-products, internal homs, and duality.

Furthermore, we have a natural isomorphism Dg(T) = 0g @uw U(T') of étale (¢, 0¢)-

free

o (Gr/Ik) and a natural Gk -equivariant isomorphism

modules for any T € Rep
Ty (U*) =2Ts(6 @w U) for any finite free étale (@, W)-module U.

5.2.12 Relation with Weakly Admissible Filtered Isocrystals

This subsection is a continuation of §2.4; throughout this paragraph, we assume
that 0 = Z, and we identify Gx with G »__. In §2.4.3, we defined a functor res :
MFi(p) — HPx(p). We extend this functor to res : MF (o, N) — HPx(p) so
that res(D) is weakly admissible if and only if D is weakly admissible. We define
this functor via the rigid analytic technique we discussed in §III-§IV. By theorem
of Colmez-Fontaine (Theorem 2.4.2) and Corollary 5.2.4, the natural functors V7 :
MFg(p, N) — Repg, (G.r) and Vip : HPR(¢) — Repg, (G.r..) are fully faithful
with expected essential images. We interpret the functor res in terms of the associated
Galois representations.

We have the following diagrams of functors which commute up to natural isomor-
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MFE(p, N) == Moda(p.Ne)  HPE(p) == Mod (¢)
MM [ J M j
MF (o, N) = =Moda(p, Nv)  HPR(p) =, = Moda(p)
The first commutative diagram was obtained by Kisin [52, §1], and the second com-
mutative diagram was obtained from the results in §III-§IV. The top row of the first
square restricts to equivalences of categories MF %7’ (¢) = Modx~" (¢, Ny; N = 0)
and similarly for the bottom row.

Now, by passing to the ¢- or (¢, Ny)- vector bundles on A using the equiva-
lences of categories, we can define the covariant functor res : /\/lfwj’>o(g0, N) —
HP}'?ZO(@) as the composition across the top in the following diagram which com-
mutes up to isomorphism:

(5.2.12.1)

>0 MMF sl=0 D 20
@:M?EX/(@,N)TMA(@?NV)%MA (90) o~ HPI/( (@)7

] J

res : MF3 (i, N) —=Mod™(p, Ny) —— Mody*(p) —— HP}"(¢)

CTTw— &

Modg(¢)[1/p]

where the functors in the middle in both rows are defined by forgetting the differential

IR

operator Ny, and 9 is defined in Corollary 2.4.7. The natural isomorphism in the
left in the second row was obtained by Kisin [52, Theorem 1.3.8] (see also Theorem
2.4.6 and the discussion that follows), and the natural isomorphism in the right
in the second row is obtained from Theorem 4.3.4. (In particular, for any D €
MF(p,N), res(D) is weakly admissible if and only if D is weakly admissible.)
Since each arrow commutes with ®-products (in particular, with Tate twists), we can

extend it to res : MF » (o, N) — HPk(p). One can check without difficulty that
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the restriction res to the objects with NV = 0 coincides with the functor MF k(¢) —
HPx(¢) that is defined in §2.4.3, by unwinding the construction of M™7. (See
the beginning of [52, (1.2)] for the construction of M™% ) Furthermore, the functor
res : MFP(p) — HPY (¢) is fully faithful by Kisin’s theorem (stated in Corollary
2.4.7).

The functor res : MF » (¢, N) — HPxk(p) is exact and commutes with all the
natural operations, such as ®-products, internal homs, and duality. Also, res pre-
serves the Newton number ¢y and the Hodge number t5. (It is enough to check
on rank-1 objects, so N = 0 and the claim follows from §2.4.3.) Furthermore, for
D € MF% (o, N) and for a collection v := {my, }yez of non-negative integers, D
is of Hodge type v if and only if res(D) is of Hodge-Pink type v. This can be seen
from [52, Lemma 1.2.1].

Recall that we have the following anti-equivalences of categories:

Vi + MFY(p,N) = Repg, (Gr),
Vi © MF(0) = Repg*(Gr)

Vip @ HPE(p) = Repg, (Gur.)-

(See Theorem 2.4.2 and comments to it for the statement and the bibliographic
note for the former, and Corollary 5.2.4 for the latter.) Thus res : MF (¢, N) —
HPR () induces a functor Repy (Gr) — Repgp(gl/m), which is naturally isomor-
phic to the functor obtained by restricting the G »-action to G »__ by [52, Corollary
2.1.14). Furthermore, this functor is fully faithful when restricted to the full subcat-

egory of crystalline representation. We summarize the discussion by the following



108

diagram of functors which commutes up to isomorphism.

(5.2.12.2)
MF >, N) —————HP(p)  MF™ (o) —————HP(¢)
H
\ / k ,
v Modg (¢ “Vip  Vie|r Mode(@)[]]  =|vi
zg_ v
Repg;™(G.r) Repg)(Gr..) Repl™>*(G ) Repg)(G.r.)

We end this discussion by giving a criterion for a given weakly admissible Hodge-
Pink structure to be in the essential image of MF%*(¢) by the functor res. Let
M € Moda(p) and set D := Oa ®, (M/uM). Recall from Proposition 3.2.1

that we have a @-compatible isomorphism ¢[5] : D[3] = M([5], and the target is

equipped with a natural connection which commutes with ¢ as follows:
idpjum @da : (M/uM) @5, Oall/A] = (M/uM) @, Qall/A],

where da is the “universal derivation” on Oa. Transporting through the isomor-
phism £[$], we obtain a singular connection VM : M — M ®0, Qa[l/A] which
commutes with . By the construction of M7 (or by [52, Lemma 1.3.10]), M is
in the essential image of the forgetful functor Mod A (¢, Nv; N = 0) — Mod, () if
and only if this specific construction of N&* on M[] maps M into M (so (M, N&*)
is an object in Mod (¢, Ny; N = 0)); or equivalently, if and only if the connection
VM M[5] = M ®@Qal5] corresponding to N&* (as defined in §2.4.4) has at most a
simple pole at {z, },>0. But since this VM commutes with ¢, it is enough to check
that the pole of VM at z( is of order at most 1. (Indeed, by transporting by ¢",
we see that the order of pole or VM at x,, is equal to order of pole of VM at xq.)
The order of pole of VM at xy can be checked after passing to the completed stalk

M\xo = A. Now the following proposition follows.
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Proposition 5.2.13. Let Ny = —u)\% :Oazy — Oa ., be the X y-linear differen-
tial operator. Then (D, A) € HP7 () is in the essential image of res : MF 72 (¢) —
HPZ'(p) if and only if the lattice A in D,, [3] is stable under the differential operator
Ny : ﬁwo[i] — 73330[%] Moreover, if (D,\) is weakly admissible and stable under

Ny, then it is in the essential image of res : MF'7%(p) — HPYZ" ().

Let (D,A) := ﬂ(im[%]) for some im[%] € M_odg(go)[%]. If the matrix representation
of gy for some S-basis of M is known, then one can write a basis of A in terms of a
H o-basis of D (viewed as a basis of ﬁmo), whose computation just involves inverting
the pop-matrix (Remark 3.2.4). So the above proposition gives a computable criterion
to check whether Dﬁ[%] comes from a weakly admissible filtered isocrystal. On the
other hand, even when 93?[]%] = IM(D) for some weakly admissible filtered isocrystal,
the choice of MM € Modg(p) does not have to correspond to G ,-stable Z,-lattice of

+s(D), but just a G »_ -stable lattice.

Finally, we comment on the functor F : HPY(¢) — MF(¢) that we defined
earlier in §2.4.3. Recall that res is a “section”® to F, in the sense that there is a
natural isomorphism F ores = id 7, (). By the equivalence of categories with Ga-

lois representations, we obtain a “mysterious” functor Repgp(g o) — Reprf;s(g )

which has the restriction to G »__-functor res as a “section.”

5.2.14 Rank-1 examples: Tate objects

Consider the Tate object &(h) for some h > 0 as defined in Definition 2.2.6; i.e.,
GS(h) = &-e equipped with p(c*e) = P(u)"e. In the case oy = F[[mo]], we will show
later in §7.3.7 that T*(&(h)) = x%, for any h > 0, where y.r is the Lubin-Tate

character. We now show an analogue of this fact for the case 0y = Z,: identifying

3In general, res o F = idyp (o) does not hold, so res and F cannot be quasi-inverse (unless we restrict to
“Barsotti-Tate” objects or rank 1-objects.)
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Gk with G as in §1.3.1.2, we have T5(6(h) = x.|g,... for any h > 0, where
Xeye 15 the p-adic cyclotomic character.

Recall that x2 . = Vi (1yz(h)) where 1y#(h) is the Tate object in MF g (p);
i.e., 1p#(h) is the weakly admissible filtered isocrystal with the underlying isocrystal
(H oe, p(c*e) = ple). (By weak admissibility, the associated grading to the filtration
is concentrated in degree h.) We have seen in §2.4.3 that res(1ypx(h)) = 1(h)
where 1(h) is the Tate object in HPx(p) as defined in (2.3.2.1). Therefore we
have Vi (Amz(h))|g. = Vip(1(h)) by (5.2.12.2). On the other hand, we have
seen that H(G(h)[%]) = 1(h) in §4.3.6 so by definition of V3, (Corollary 5.2.4)
we have V3,p(1(h) = Ig(@(h))[%] This shows that the desired G »_ -isomorphism

Ts(8(h) = Xeyelg o, for any h > 0.



CHAPTER VI

Some non-archimedean functional analysis

The aim of this chapter is to prove Proposition 4.3.2. When oy = Z,,, Proposition
4.3.2 is proved in [46, Prop 6.5], and the same proof also works in the case 0y =
IF,[[m0]]. We also review basic properties of the analytic rings Oa, R, etc., and the

theory of Newton polygons which will be used in the proof of Proposition 4.3.2.

6.1 Rigid-analytic disks

In this section, we review basic properties of Oa and R, and give a precise defi-

nition of R,

Definition 6.1.1. For each r € ¢%<°, we define the following multiplicative' norm

11y

on 6[71_—0, a]

(6.1.1.1) 171, = max {add '} = max{ /()] }

where f(u) = >, au’ € 6[7%0, 1] and the second maximum is taken among

x € C, such that |z| = r.

By taking logarithm, we obtain the following valuation w. for (‘5[7%0]:

(6.1.1.2) wy(f) = min{v(a:) + - i} = min{v(f(2)) },

IThis is obviously submultiplicative, and can be seen to be multiplicative. See [48, Lemma 2.1.7], for example.

111
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where v = —log, r and all the other notations are as above.
If fe 6[7}0], then by the maximum modulus principle ||f]|, is the maximum

among | f(x)| for all x € Cy, which satisfy || <.

6.1.2 Closed disks and annuli

Let T, be the following affinoid % y-algebra:

(6.1.2.1) Te = {Z a;u’ € Ho[[u]], such that |a;|r* — 0 asi— oo},
>0

(In the valuation language, the above condition translates to v(a;) + v-i — oo as
i — 0o, where v = —log, 7.) This condition is nothing but convergence on the closed
disk of radius r in C . One can check without difficulty that T, is the completion
of G[W—lo] with respect to the norm || - ||, and with this norm 7, becomes an affiniod
J o-algebra. Note that |||, is precisely the “sup norm” over the closed disk of
radius 7 (by the maximum modulus principle). We set Ag, := Sp (T,), and call it
the rigid-analytic closed disk of radius r.

Let [ :=[ry,73] C (0, 1) be a closed subinterval away from 0 and 1, with endpoints
in q© (allowing r; = r5), and let T} be the following affiniod .# y-algebra:

(6.1.2.2)

Ty ) =1 g a;u' € K o[[u,—]], such that lim |a;|r] =0 and lim |a;| 75 = 0}.
u 1——00 1—00
i€z

One can check without difficulty that 77 is the completion of 6[%, ﬂlo] with respect
to the following submultiplicative “sup norm”:

g a;u’

i>—N

(6.1.2.3)

= max{la;|ry, |a;|ry} = max{|If],, . ], }

[r1,72]

By maximum modulus principle, this is same as the maximum of | f(z)| for z € C 4,

with |z| € [r1, ro], and with this norm 77 becomes an affiniod % j-algebra. We define
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the rigid-analytic closed annulus Ay := Sp(Ty). (If r := r; = ry then we get a
rigid-analytic circle of radius r.)

To allow I := [0,7], we often write Ty, := T, and Ay, = Ag. It is well
known that T}, for any closed subinterval I C [0, 1) with endpoints in ¢% U {0}, is a

principal ideal domain. We make a further remark on this later at §6.2.7.

6.1.3 Open disks, annuli and punctured disks

As before, the endpoints of any subinterval I C [0, 1) that we consider are always
assumed to lie in ¢¥<0U{0}. For any subinterval I C [0, 1), we define a rigid-analytic
space Ay = J;c; Ay with {A} e as an admissible affinoid chart, where J is a
set of closed subintervals J C I with endpoints in ¢@<0 U{0}, such that (J,., J = I.
Concretely, the set of C, points of A; is exactly {x € C, : |z| € I}, and the
structure sheaf Oa, is obtained by “gluing” Oa,. We call A, := Ajg,) the rigid-
analytic open disk of radius r, and we denote by A := A_; the rigid-analytic open
unit disk. We write A := A(o,1) to denote the rigid-analytic punctured open unit
disk. Note that distinct choices of J yield the same rigid-analytic space [8, 9.1]. In
particular, if I is already a closed interval, then the above construction yields the
affinoid variety A; := Sp(77). If I = [0,r), then we may choose J := {[0,7'] : 7' <
r} so we regard A_, as a rising union of closed disks Ag,s for 0 <7’ < r. Similarly,
if 0 ¢ I, then we may choose a suitable J so that A; is a rising union of closed
annuli. From now on, we always choose such J.

For closed subintervals J' C J C [0,1), we have the natural continuous inclusion
T; — T of affinoid J# y-algebras. Furthermore, if both J and J’ contain 0, then the
inclusion has the dense image since 7'y contain 6[7}0} which is dense in T'y,. The same
holds if both J and J' are away from 0, since T’y contains 6[7%0, %] which is dense in

T;:. So choosing J for A; as above, we obtain a projective system {7} ;c7 such
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that each transition map is continuous with dense image?, which can be thought of as
the “Mittag-Lefller” condition for Banach modules. Now applying the sheaf axioms,
we obtain that the ring of global sections is I'(Oa,) = lim,_T; (=Myes Ts), where
the transition maps are as above. This is a Fréchet space? for the topology generated
by the sup-norms on A for J € J. (Recall that J is always countable.) It follows
from the denseness of the image of each transition map that the image of the natural
map ['(Oa,) — T has a dense image.?

The rings of rigid analytic functions I'(Oa,) naturally sits inside J¢[[u, %]] as a
J g-subspace, and we have that f(u) € #g[[u, +]] is an element of T'(O4,) if and
only if f(z) converges for any x € C 4, with |z| € I. so an element of I'(Oa,) can be
characterized by the absolute values of the coefficients of its (infinite-tailed) Laurent
expansion in u. We leave the precise formulation to interested readers.

Lastly, it is well-known that I'(Oa,) is a Bézout domain for any subinterval /. It
also follows that the Robba ring R (Definition 2.1.2) is a Bézout domain. We make

a further remark on this later at §6.2.7.

Remark 6.1.4. As remarked earlier, I'(Oa_,) contains 6[7%0] as a dense subring, so
it can be constructed as the Fréchet completion of G[W—IO] for the sup-norms || - ||, for
0 <" < r. Similarly, I'(Oa,) for 0 ¢ I can be constructed as the Fréchet completion
of 6[7%0, 1] for the sup-norms || - || ; on A, for J € J. This “purely analytic” point of
view also works when constructing such analytic rings as R (if oy = Z,,) for which

it is hard to give a precise geometric meaning. (If 0op = F,[[mo]], then see §2.1.5 for a

“geometric” interpretation of R, )

2This says that the rising union A; = UjeJ A, where J is as above, is a (non-archimedean analogue of) “Stein
exhaustion” relative to Oa; in the sense of [36, IV.§1, Definition 6].

3Concretely, this means that any sequence {fn} in ['(A7,Oa,) converges if and only if {f,} is Cauchy with
respect to the norm ||- ||, for each r € I N ¢Q%<0.

4This can be seen from the containment 6[%] CcTI'(Oa.,), and C‘-fw[ﬁ—lo7 %] CI(Oa,;)if0¢gI.
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6.1.5 Coherent sheaves and vector bundles

For the definition of coherent sheaves on A; (or rather, coherent sheaves on any
rigid-analytic space), we refer to [8, §9.4]. We say a coherent sheaf M on A; (or
rather, on any rigid-analytic space) if M becomes a finite free module over some
admissible covering.

For a coherent sheaf M on Aj, we can express the global sections of a coherent
sheaf M on A as the following projective limit I'(A;, M) = lim _ ;M. Further-
more, each transition map has a dense image since My =T @p, M for A; D Ay
with Ty dense in Ty. (Thus the projective system M satisfies the “Mittag-Leffler”
condition for Banach modules.) So the global sections functor M +— I'(M) is an
exact and fully faithful functor from the category of coherent sheaves on A to the
category of I'(Oa, )-modules and induces an equivalence between vector bundles of
rank n over A; and (locally) free I'(Af, Oa)-modules of rank n.> A quasi-inverse
from the essential image to the category of coherent sheaves is given as follows: if
M = T'(A;, M) for some coherent sheaf M then associate the projective system
{M ®r©o ap 1] irr] rcr Tecovers M. See [38, §V] which gives a proof over an open
polydisks (in particular, an open disk), but the argument can be adapted to A;. The
upshot is that we can recover a coherent sheave M from its global sections I'(M).

From now on, we do not strictly distinguish a coherent sheaf M from I'(M).
6.1.6 Remark on Frobenius morphism
We define (the standard) Frobenius map o : T, — T[Tl/qﬂﬁ/l/q] over oy, 1 H o —

H o by o(u) = u?. (Recall that ¢ = p if 09 = Z,.) By passing to the inverse limit, we

also get 0 : Oa, = Oa,,,. where [ /4. [0,1) is the subinterval whose endpoints

5The global section T'(M) for a coherent sheaf M may not be finitely generated modules. It takes an extra work
to show that if M is a vector bundle on Ay then I'(M) is finite locally free over I'(Oa ;). See [38, §V, Théoreme 1].
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are gqth root of the endpoints of I. This construction actually gives endomorphisms
0:0a — Oa and 0: O — O4.

Since o : T}, — T[Tl/qmq/q] is not J (-linear but o 4 ,-semilinear, we need to take
its linearization o*T,. . — 1,174 ,1/q) t0 get a map on affinoid spaces o : Ap1/q 1/0) —
0" A over . Similarly, one gets the Frobenius map o : A1y — 0" A by gluing
these.

For a coherent sheaf M on A/, (or for its global sections), the Frobenius
structure, or the p-structure is a Oa , , -linear map ¢ : 0" (Mla,) — M|a,,,

where 0* (M|a,) == OAjl/q ®o,04, (Ma,)-

6.1.7

We define the following subalgebras of bounded (respectively, “integral”) functions

in OA[M):
08 = {f() € Oay, ¢ f(@)] < C, for all & € Ay and for some C}
OiAnt[Tg) = {f(u) € OA[,J) D)< forallw € Ay}

Clearly we have (’)Zd[r b= Oiﬁt[ [7%0] It is useful that Oigtlr , lsa complete normed W-

r,1)
algebra with respect to the norm || - ||, (or equivalently, with respect to the valuation
w, where 7 = —log, r). Furthermore, the above rings are principal ideal domains by
[48, §2.6]. We make further comments on this later in §6.2.7.

If 09 = F,[[mo]], we have an interesting alternative description of Oigt[r : namely,

1)°
we have an equality C’)igtm) = Oa, _,, of k-subspaces of k([[u, mo, %, ﬂio]], where Ag <
is a rigid-analytic closed disk of radius ' = ¢~%/7 over K with coordinate my. One
can check that the sup-norm on Oa, _, is exactly ||- Hi/ 7 on OK‘EH). The “addi-

tive” version of this claim is that the valuation corresponding to the sup norm on

Oa,. _., is exactly %wv(-), which we will verify. Take an element f = >, , au' =
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ol - ) g
Zz‘eZ,jeZZO ciju'my, where a; = > ciymg € W and ¢;; € k. Then we can check by

hand that

mm {ord <Z CijU ) (1/v)-5 } = Crrjl;r(l) {i+(1/y)5}= miin {i+ (1/7)-ordy (a;) }

where the term on the left end is the definition of the valuation on Oa K[0] and
the the term on the right end is visibly %-wv( f). (In fact, the normalization of this
partial valuation used in [48, §2] is %-wv(f), not w,(f).) Also, for such f € Oa 1)
the condition |f(x)| < 1 for all » < |z| < 1 says |a;|p' < 1 for all r < p < 1 and
i € Z, which forces |a;| <1 for all i (i.e., a; € W).

6.1.8 More analytic rings

Roughly speaking, we repeat all the above constructions of analytic rings with K
replaced by Cg. To provide intuition, we start with the case when oy = F,[[m]].
As pointed out in §2.1.5, we could carry out all the previous constructions using the
rigid-analytic open unit disk Ax over K with coordinate my. Then we repeat the
constructions of the analytic rings (such as R) with A replaced by Ac,. In the
case when oy = Z,, we should give a purely analytic construction due to the lack of
the “open unit disk over Cj with coordinate p,” working with the valuation ord,,(-)
on Ck induced from the normalized valuation on K = k((u)).

If 09 = Z,, then set G2 := W (o¢,, ) and 0%® := W (Ck), where W(-) is the ring of
Witt vectors®. Let o be the Witt vector Frobenius map on &€ and 0. Similarly if
00 = F,[[mo)], then set &% := og, [[m]] and 028 := Ck[[mo]]. Let o be the continuous
“partial g-Frobenius endomorphism,” i.e., o(my) = mp and o () = o for any o € Ck.

Note that in both cases G¥2/(nf) — 0¥¢ /() is injective for all n > 1. (In fact, it

6Identlfymg K with the field of norms for # o /. # as discussed in §1.3.1.2, we have an isomorphism R 2 0Cy
where R = hm 0% /(p). The readers who are familiar with the p-adic Hodge theory may recognize the ring

zp%z

G218 > W (R). See, for example, [78, §4.3] and [32].
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suffices to check the case n = 1, which is obvious.)

We have a natural o-compatible embedding o¢ — o?g which restricts to & —
G, If og = F,[[m]] then it is clear. If oy = Z, then the completed direct limit
of {og % 0g = ---} induces the system of p-power maps on k((u)) modulo p, or
equivalently the tower of fields {k((w))? "}, so this completion is naturally isomorphic
to W (KPt). We define the J# y-linear map og — oglg using the functoriality of the
Witt vector ring construction. Furthermore, since o(u) = u” the image of u in
W (KPet) is “p-divisible” (in the multiplicative sense) it is the Teichmiiller lift of the
image of its reduction in KP*. Hence u € og maps to the Teichmiiller lift [u] € 0%®
of u € Cg. This shows that & lands in &8, Using these natural embeddings, we
view &, G2 and og as subrings of 0%%.

For any a € Cg, we denote by [o] € o?g the Teichmiiller lift if 0oy = Z,, and
the image of o under the natural inclusion Cr < 0%% if 0, = F,[[m]]. (In both
cases [a] € (0%8)% if a # 0.) Any element f € oalg[W—O] can be uniquely expressed as
f= Zj>>700[04j]7787 where o; € Cg, and one can directly check that f € Galg[%o] if
and only if all a; are in oc, (i.e., ord,(e;) > 0 for all j.); and f € &¥&[L [i] if and

only if the ord,(c;)’s are bounded below.

Now let us extend the valuations w,(-) from &[-- -] to Sle[ L %] for v € Qs as
follows:
(6.1.8.1) w(f) := min{j + v - ord,(;)},
j
where f = Zj>>_oo[ozj]7r0 Galg[ ﬁ] This a priori sub-multiplicative valuation

w., is in fact multiplicative, by [48, Lemma 2.1.7]. Note also that w, (o (f)) = we (f).

Remark 6.1.9. To prove properties on w, such as the strict triangule inequality

and multiplicativity, the following “coordinate-free” description of w, can be useful,
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especially when oy = Z,. For f € 0%® (] and n € Z, we define
w(f;n) :=min{i € Z|u" f € GY8[1/m] + i+ 0¥}

More concretely, if f = > [a;]7), then w(f;n) = min,<,{ord,(a;)} (which

Jj>—o0
could be infinite even if f # 0). Now, we can see that whenever w,(f) is defined, we
have w,(f) = min,{n + v - w(f;n)}. In fact, if w,(f) = n + v-ord,(a,) for some n,
then we have w(f;n) = ord,(a,).

As a corollary of this alternative definition of w., we can check that w, restricted
to 6[?107 1] coincides with the previous definition of w, for 6[7%0, 1], which is defined

in (6.1.1.2).

6.1.10 More Robba rings

For a subinterval I C [0, 1) with 0 € I, we define OaAlgI to be the Fréchet completion
of Galg[%] for w, with ¢~ € I. Similarly for a subinterval I C (0,1), we define (’)aAlgI
to be the Fréchet completion of Galg[%, ﬁ] for w, with ¢77 € I. For any two

. . .. . 1 1 .
subintervals I’ C I, we have a natural continuous injective map OaAgI — OaA“f,, which

has a dense image if the subintervals either both contain 0 or are both away from

0. If I = [0,r], then (’)aAlg@ is complete for the valuation w, where v := —log,r.
Similarly if I = [rq, 75, then OaAlgI is complete for the submultiplicative valuation
wy(+) = min{w,, (-), w,,(-)}, where 7; ;= —log,7;. So if I is closed, then (’)aAlgI is a

Banach % y-algebra. We leave the verification to readers.

One can directly check that the Frobenius endomorphism o : Galg[wio, ﬁ] —
Galg[%, [—i]], introduced in §6.1.8, continuously extends to a map o : (’)Zlgl — (’)igﬂ/q,

where I'/9 C [0, 1) is the subinterval whose endpoints are gth root of the endpoints

of I.
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For 0 <r <1 and v := —log, 7, we put
; 1
OaAlg[T’bi = { Z [a;]7) € 0¥8[ =], such that j + - ord,(a;) — oo as j — oo}
’ J>—o0 o
ORE™ = Z[oz |7l € 0¥, such that j + v - ord,(a;) — oo as j — oo
Ay 7170 E J Y u\Wy J .
>0

For r = 0, we put Oii;bi = Galg[%o] and OaAlg[’im = G&¥&. (Note that Galg[%] =

0,1)

ORENORE™ and this convention is consistent with G[L] = O%.) For any 0 < r < 1,
[r,1) T

we have OR8" = OREF™[L] and ORX¥™ is complete for the valuation w. where
[r.1) [r.1) t70 [r.1) v
v = —log,r. Also, o : (921% — OaAlgl/ restricts to the subalgebras of bounded
1/qa

functions (respectively, integral functions).

Now, we are ready to define the Robba rings:

. 1
R = lim O3®
— [r,1)
T
algbd . 1 alg,bd
R T hLQOA[T,l)
T
0 = lim Q%™
Ralg,bd — h—— A['r,l)
T

Just as RY, R2ebd has the discrete my-adic valuation ord,, for which oRagsa is the

valuation ring. In other words, for f = > [a;]m), we define ordy,(f) as the

J>—00

minimal j such that a; # 0. We leave to readers the verification that this is a
valuation. And precisely the same argument that shows that ozwa is a discretely
valuation ring with a uniformizer p shows the same claim for ogagsa. (See [20, §4.3]
for more details.)

Since the inclusion G[X, 1] — G#lg[L [—}L]] respects all w, (Remark 6.1.9), we

1
T u o ?
obtain a continuous embedding Oa, — OaAl% and R — R™¢, and similarly for their

bounded counterparts. It turns out that all of them are faithfully flat ring extensions,

by Proposition 6.2.8.

g alg

. 1 . . .
The Frobenius maps o : (’)aA[ by O\ y induce a Frobenius endomorphism o
[(r1/4.1)
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on each of R¥&, R¥&bd and o0gassa. With this choice of o, these “Robba rings” are
o-rings over (S, 0).
The following table is for those who would like to compare this exposition with

(48, §2].

Notations in [487 §2] r Fl/ry Fcon Fan,l/’y Fan,con

int

Notations from this paper | og¢ (’)A[”) ogea | Oay | R

The superscript (-)*8 has the same meaning in both sets of notations. Kedlaya [48,
§2] normalizes the additive valuation differently; he works with (1/v)w, instead of

We -

6.2 Newton polygon

The Newton polygon for a rigid-analytic function is often useful in the study
of rigid-analytic functions. For example, the theory of Newton polygons play an
important role in Lazard’s work [57], and in the proof of Proposition 4.3.2 which will
be seen in the next section. From now on, we will primarily work with w, instead
of || -,; the graphs of piecewise linear functions are easier to handle than those of
piecewise exponential function.

Even though we introduce the theory only for subrings of (’)aAlgI , the original paper

[48, §2] handles more general analytic rings.
6.2.1 Newton polygon for a polynomial
In order to provide intuition for our discussion, let us first discuss the following

simple case, which will be generalized later. Let f(u) = Y5, , a;u’ € Jg[u] be a

nonzero polynomial of degree d.

Definition 6.2.1.1. The Newton polygon for f(u) is the lower convex hull of the

set of points (i,v(a;)), where v(-) = ord,,(-) is the normalized valuation on ¢ .
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The slopes of f(u) are the negatives of the slopes of the (line segments of) Newton
polygon for f(u). For a slope v of f(u), we define the multiplicity of the slope v as the
difference of the x-coordinates of the end points of the line segment with slope —v in
the Newton polygon. If v does not occur as a slope, then we define the multiplicity

for v to be zero.

This notion of slopes has nothing to do with the slope of a ¢-module introduced in
4.1.4. Also, the Newton polygon here is not directly related to the Newton polygon”

for a ¢p-module over R (which we do not define), or anything of this sort.

Remark 6.2.1.2. Let {a;} be the set of zeroes of f(u) in a splitting field for f(u) over
o (or in C ). Then one can show that the set of slopes for f(u) coincides with
the set {ord,,(a;)}. The multiplicity for the slope s is exactly the number of zeroes

a; (counted with multiplicities) such that ord,(a;) = s.

Ezxample 6.2.1.3.

1. Let f(u) = (u—mp)? (u—72) = v® + (=279 — 72)u? + (72 + 273)u — 73. Then
the Newton polygon for f(u) is {(3,0), (1,2), (0,4)}. The slope 1 appears with
multiplicity 2 and the slope 2 with multiplicity 1. (We get the same result even

in characteristic 2.)

2. Let f(u) = u? — 8w + m,. The Newton polygon for f(u) is {(p,0), (0,1)},
so the unique slope 1/p appears with multiplicity p in the Newton polygon. It
is also possible to see directly that all the zeroes of f(u) have m-order 1/p.
For example, if @ € Cy, is a zero of f(u), then a + i-my for i € F, are also

zeroes of f(u). In order for their product to have mp-order 1, a should satisfy

ord,, (o) = 1/p.

"Hartl [39, Definition 1.5.5] calls it the Harder-Narasimhan polygon.
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Remark 6.2.1.4. Let f(u), g(u) € # olu] be nonzero polynomials. Let NW; (respec-
tively, NW,) be the set of all the vertices in the Newton polygon for f(u) (respec-

tively, for g(u)). Then the following statements are immediate:

1. The Newton polygon for f(u)+ g(u) “lies over” the lower convex hull of NW,U

NW,,

2. It is possible to describe NWy, in terms of NW; and NW,. (We will carry this
out in more general setup later.) The set of slopes for f(u)-g(u) is the union of
the set of slopes for f(u) and the set of slopes for g(u), and the multiplicities

add up.

For v € Qs, we call f(u) € H#o[u] pure of slope 7 if the Newton polygon for
f consists of one line segment with slope «. It follows that if f(u) is pure of slope
7, then the multiplicity for the slope 7y is necessarily equal to the degree of f(u).
Lazard [57, §4, Théoréme 1] showed that if the base field is discretely valued then
any f € Oa, can be expressed as a convergent product f = g-u®-([[, P,), where
g € O, and P, is a polynomial pure of slope v with P,(0) = 1. (c.f. Weierstrass
factorization theorem for entire functions.) See §6.2.7 for further discussions.

6.2.2 Newton polygon for a rigid-analytic function

Fix a subinterval I C [0,1), and let f = Zjez[aj}ﬂé € (92%, where «; € Ck.

Assume always that f is nonzero. Set [, :={y € R : ¢ € I} C R.,.

Definition. The Newton polygon NW; for a nonzero f € (’)aAlgI is the sub-polygon
of the lower convex hull of the set of points (ord,(c;), ), which consists of all line
segments whose slopes lie in —1,. Equivalently, NW; is the sub-polygon of the
lower convex hull of the points (w(f;n),n) with the same condition on the slopes of

line segments. The slopes of f are the negatives of the slopes of the line segments
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of Newton polygon for f. (The slopes belong to I, by the definition of the Newton
polygon.) For a slope v of f, we define the multiplicity of the slope 7 as the difference
of the x-coordinates of the end points of the line segment with slope v of the Newton
polygon. If v does not occur as a slope (for example, when 7 ¢ 1,), then we say that

the multiplicity for ~ is zero.

For a nonzero rigid-analytic function f(u) € Oa,, we can give the following

equivalent definition of the Newton polygon: write f(u) = Y. , a;u’ where a; € ¥,

i€z
then NW} coincides with the sub-polygon of the lower convex hull of the points
(7,v(a;)) which consists of the line segments whose slopes lie in —I,. This polygon is

the same as the sub-polygon of the lower convex hull of the points (w(f;n),n) with

the same slope condition.

Remark 6.2.3.

1. We can make a correspondence between mg-orders of the zeroes of f(u) € Oa,
in A; and the slopes of the Newton polygon for f(u), and can interpret the
multiplicity of a slope in terms of zeroes as in Remark 6.2.1.2. We will make a

precise statement in §6.2.7.

2. Let f(u) € A [u] be a nonzero polynomial. Then the Newton polygon for f(u)
viewed as a section of O, (or an element of (’)aAlgI ) can be obtained by truncating
the line segments of slope outside I, from the previous Newton polygon for a
polynomial f(u). The factors of f(u) which contribute to the slopes outside I,
have no zeroes in Aj, and in fact are units in Oa, as we will see later, so it

makes sense to ignore the contribution from these factors.

3. If I C [0,1) is closed on the left (respectively, on the right), then the Newton

polygon for any f € OaAlgI is bounded on the left (respectively, on the right).
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In particular if I is closed, then any Newton polygons are finite (i.e., any New-
ton polygons consist of finitely many vertices and line segments). This follows
from the explicit description of OaAlgI in terms of valuation of coefficients of the

“Laurent expansion”. (We leave the verification to readers.)

As a consequence, the zero locus of f € Oa, is “discrete” (so finite if I is a closed
subinterval). In fact, for any closed subinterval J C I the Newton polygon for f
viewed as an element in O, is finite, and we use the correspondence between
the zeroes of f in A; and the Newton polygon for f € Oa, (as explained above

in (1)) to conclude that the zero locus of f in A is finite.

On the other hand, the Newton polygon does not have to be finite if I is not
a closed interval. For example, the rigid-analytic function A € Oa, defined in
§2.1.3, has the following Newton polygon: {(0,0), (ge, —1), (ge +q%e,—2),--- },
where e is the degree of the point xg € A cut out by P(u). The set of slopes is
{ﬁ}nezzo and the slope que appears with multiplicity ¢"e. Furthermore, if Aj
is a punctured open disk or an open annulus, then one can also find an example

such that the Newton polygon is unbounded on both sides.

: lg.bd
. The nonzero elements of the subrings (’)bAd[ , € Ony,, and OXF"
T, T T,

C (’)aAlg[M) are
exactly those with finite Newton polygon. This can be seen as follows. Let
f= Zjez[aj]ﬂg € Oiil), where a; € Cg. By (3), the Newton polygon for f
is always bounded on the left, and it is bounded on the right if and only if the
y-coordinates of the Newton polygon are bounded below by some integer N,
which means that a; = 0 for all j < N (ie., f € ozlg[ﬂlo]) so . Furthermore, if
f is bounded, then the y-coordinates of the lower right endpoint of the Newton

polygon for f is precisely the minimum among j such that o; # 0.
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6.2.4 Newton polygons and the valuation w,

For f = Zjez[aj]ﬂé € (’)aAI% and for v € I, (i.e.,, ¢77 € I), we have defined the

following valuation earlier in (6.1.1.2)

wy () = minfj +7-ordu0;)}.

alg

We can also show that for f € O,° as above, we have j + 7-ord,(a;) — oo as

j — doo. For a nonzero f, we define,

N,(f) = max{ord,(e;) such that w,(f) = j+ vy-ord,(a;) }
n,(f) := min{ord,(e;) such that w.(f) = j + v-ord,(e;) }.

The following proposition is immediate.

Proposition 6.2.5.

1. Assume that N.(f) # ny(f). Then, N,(f) (respectively, n.(f)) is the x-
coordinate of the right end point (respectively, the left end point) of the line
segment with slope v in the Newton polygon for f. In particular, v is a slope

for f with multiplicity N,(f) —n,(f) > 0.

2. Assume that N,(f) = n,(f). Then the Newton polygon for f does not contain
any line segment of slope —v (i.e., 7y is not a slope for f), and N,(f) = n,(f)
is the x-coordinate of the vertex of the Newton polygon whose adjacent line

segments have one slope larger than —v and the other slope smaller than —-.

In either case, the multiplicity for v is No(f) — n(f)

We sketch the idea of proof. For fixed v consider a family of lines [, : y+~v-x = w
where the parameter w is chosen so that [,, passes through some vertex of the Newton

polygon (ord,(c;), 7). Then the smallest value among those w occurs exactly when
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the vertex (ord,(a;), j) that [, passes through lies in the line segment of slope —y
of the Newton polygon if v is a slope for f, or when (ord,(a;), j) is the vertex as
described in (2) of the proposition if 7 is not a slope. Proposition 6.2.5 follows from

this consideration.

Proposition 6.2.6. Let f, ' € OaAlgI be non-zero elements and let us fixy € 1, (i.e.,
g 7el) Let N:= N,(f), N :=N,(f") and n :=n,(f), n' :=n,(f), and let NW;
(respectively, NWp: ) be the set of vertices of the Newton polygon for f (respectively,

for f').

1. The Newton polygon for f + f', if nonzero, “lies over” the lower convex hull of

NW;UNW;.

2. We have N, (ff') = N+N'" and n,(f-f') = n+n'. Furthermore, if (n, jn), (N, jn)
are the vertices of NWy and (n', j,), (N', jnr) are the vertices of NWy as in
Proposition 6.2.5, then (n+n', j, + ju), (N + N', jn + jnv) are the vertices of

NWepr as in Proposition 6.2.5.
In particular, the (a priori submultiplicative) valuation w. is multiplicative.

The proof is quite elementary. See [48, Lemma 2.1.7] for the proof in the case
09 = Z,, which also works in the case oy = IF[[m]].
As a corollary, we have the following interesting criterion for f &€ (’)aAlgI to be a

unit in terms of its Newton polygon.

Corollary 6.2.6.1. The Newton polygon for f € OaAlgI consists of a single vertex if
X
and only if f = [u]®-g for some ¢ € Q and g € (Oi%) . (If f € Oa,, then c is an
X X
integer.) Furthermore, if 0 ¢ I (so [u] € ((92%) ), then elements in ((92%) are

exactly those whose Newton polygons consist of a single vertex.
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X
Proof. Let f = [u]®-g for some g € (Oi%) . By applying Proposition 6.2.6(2) to

1 =1, we know that the Newton polygon for g consists of a single vertex (since

99
the constant function 1 has this property.) And because the Newton polygon for
[u]¢ consists of a single vertex, we conclude that the product [u]¢-g has the Newton
polygon which consists of a single vertex, by Proposition 6.2.6(2).

For the “if” direction, assume that the Newton polygon for f = Zjez[ajhg
consists of a single point (¢,n). In particular, we have ord,(a,) = ¢, so a, # 0.
First, we reduce to the case when (¢,n) = (0,0), and oy = 1. If 0 ¢ I, we can do
this by multiplying f by ([a,]73)~!. If 0 € I, then we show that [u]¢ divides f. If
there exists a; # 0 such that ¢ := ord,(a;,) < ¢, then the point (co, jo) appears in
the Newton polygon for f. But this contradicts to the assumption that the Newton
polygon for f is a single point (¢,n). Therefore, we may replace f by ([a,]78)~ ! f
in call cases.

Now, it is enough to show that if the Newton polygon for f is {(0,0)} and ag = 1,
then f is a unit. By assumptions and the proposition in (6.2.5), we have w.(f —1) >
0, so w,((f —1)") — oo as i — oo, for any v € I, N Q=p. On the other hand, OaAlgI is

a Fréchet space for the valuations w, for v € I, N Q. Therefore, the infinite sum

> icz., (f—1)" converges in Ozlgl, and we have (14 (f —1))-(YXiez. (f=1)) = 1. O

The following is a corollary to both the statement and the proof of Corollary

6.2.6.1, and will be used in the proof of Proposition 4.3.2.

Corollary 6.2.6.2. Let I C (0,1) be a subinterval (so we have u € Oy ). Then, for
any f(u) € OR,, there exists a unit g € (OX )* such that the Newton polygon for

g-f consists of a single vertex {(0,0)} and w,(g-f —1) >0 for all v € I,.

Proof. By Corollary 6.2.6.1, we know that the Newton polygon for f(u) =", , a;u’
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consists of a single point, say {(j,j)}. Now take g(u) := (a;u?)~'. Then clearly the
Newton polygon for ¢-f is {(0,0)}. And since the constant term for g-f is 1, we have

seen in the proof of Corollary 6.2.6.1 that w.,(g-f — 1) > 0 for all v € I,. O

In fact, we will prove the GL,, version of this corollary by induction on n. Hence,
this corollary serves as the base case to initiate the induction.

We digress to record nice corollaries to Corollary 6.2.6.1.

Corollary 6.2.6.3. All the units of Oa,, ,, and Oiil) are bounded for any 0 <r < 1;
% 1 x Ig,bd \
= (ObAd[T 1)) and (OaAg[,,l)> = (OaAg{; 1)) . In particular,
X X X
we have O = (6[%]) , ((’)aAlg> = <Galg[7r—10]> , R* = (RM)" and (R¥¢)" =

(Ralg,bd) X ]

. X
i.e., we have OA[M)

Proof. Since OX = &[] and OB = &ole -], it is enough to prove the first two
equalities. One inclusion is obvious, so we prove (’)Z[M) C (O%[m)x' For f € (’)ZW),
the Newton polygon for f(u) is a single point by Corollary 6.2.6.1, in particular finite.
But as remarked earlier (Remark 6.2.3(4)), it follows that f € O%[M). Since f~! also
has the Newton polygon consisting of a single point as well, we have f~! € O%

[r,1)"

1 L
The case of OaA% , 1 similar. ]

6.2.7 Remarks on Bézout property

We record the following proposition which gives an interpretation of slopes and
multiplicities analogous to Remark 6.2.1.2 and Remark 6.2.3(1). The statement can
be regarded as a version of “Weierstrass preparation”, and the proof as an analogue
of “Weierstrass division algorithm” and “approximate Euclid’s algorithm.” See [57,

§2,3| for a proof. We will not use this proposition later.

Proposition 6.2.7.1. [57, §3, Proposition 2] Let f(u) € Oa,, and assume that f(u)

has a slope v with multiplicity d. Then there exists a polynomial P,(u) € J¢ o[u] of
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degree d and pure of slope v which divides f(u). Furthermore, f(u)/P,(u) does not
have v as its slope, and P,(u) is unique up to scalar multiple (so it is unique if we

require P(0) =1).

If we write f(u) = P,(u)-g(u), then 7 is not a slope for g(u), by Proposition
6.2.6(2). Therefore, we can immediately deduce the following statement by induction
on the number of slopes: if I C [0,1) is a closed subinterval (so the Newton polygon
is finite), then any f(u) € Oa, can be written as a product of a polynomial and
a unit in Oy . In particular, O4, is a principal ideal domain if I is closed. With
more work, we can prove the following for any subinterval I C [0,1): any f € Oa,
can be expressed as a convergent product f = g-u“-(H7 P,), where the (possibly
infinite) product is over all slopes v of f(u), P, is a polynomial pure of slope v with
P,(0) = 1, and g € OR,. Moreover, Ox, is a Bézout domain. (See [57, §4] for a
proof. The key step is to prove the convergence of certain infinite products, which
can be handled if the base field is discretely valued.)

Recall that the ring (’)igtw) is a complete with respect to || - ||,. A similar argument
which proves that O, is a principal ideal domain when I is closed shows that Oigtm)
is a principal ideal domain. See [48, §2.6] for more details. If 0g = IF,[[m]], this is
easier to prove due to the identity (’)iﬂtm) = Oa, _,, as a subspace of k[[m, u, ﬂio, ]
with the same ring structure, where Ak <, is the closed disk over K = k((u)) with

coordinate m, of radius ' = ¢~/1°8") To summarize, we have the following propo-

sition:
Proposition 6.2.7.2.

1. For a closed interval I C [0,1), the ring Oa, is a principal ideal domain.

2. For any interval I C [0,1), the ring Oa, is a Bézout domain.
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3. The ring of bounded functions (’)iAnt[ s a principal ideal domain.

r,1)
We end this section by the following faithful flatness result.

Proposition 6.2.8. The natural inclusions 6[%] — Oa and Galg[ﬂ—lo] — O%8 are

faithfully flat. The natural continuous maps Oa, — OaAl% and R — R™8 are faith-

fully flat.

Proof. First of all, note that the source of any map in the statement is a Bézout
domain by Proposition 6.2.7.2. The flatness is clear since for modules over a Bézout
domain, flatness is equivalent to having no nonzero torsion. To see the faithful
flatness, we first observe any non-unit element in the source cannot become a unit
in the target, which is clear from Corollaries 6.2.6.3 and 6.2.6.1. The following claim
asserts that this suffices to show the full faithfulness of ring extensions of Bézout

domains.

Claim. Let A be a Bézout domain and B a flat A-algebra. Then B is faithfully flat

over A if and only if any non-unit element a € A does not become to a unit in B.

The “only if” direction is trivial. Now, assume that any non-unit element in A
does not become a unit in B, and show that any map of A-module M’ — M is
injective if and only if B&4 M’ — B®4 M is injective. For this, it is enough to show
that the composite (m') < M’ — M is injective for any m’ € M’, since by flatness
B®a(m'y — B®4 M’ is injective. By replacing M’ with (m’) and M with the image
of (m'), it is enough to handle the case when both M’ and M are generated by one
element and the map M’ — M is surjective.

Now we can write M’ =2 A/J and M = A/I for (not necessarily finitely generated)
ideals J C I of A. Since B®@4 M’ = B ®4 M, we have JB = IB. We are reduced

to showing that J = I. Assume that J C [ and choose an element z € I\ J.
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Then x = Y1 byy; for b € B and y; € J. Let J' C A be the ideal generated by
{y1,--- ,yn} and I' C A the ideal generated by {y1, - ,yn, z}. Since A is a Bézout
domain, J’ and I’ are principally generated. Let ¢/ € J' and 2/ € I’ be principal
generators, respectively, and we have 2’|y’. Since J' C I’ by construction, y//z’ is
a non-unit element in A. On the other hand, we have J'B = I’ B by construction,
which implies that y'/2’ is a unit in B. This contradicts to our assumption that any

non-unit element in A does not become a unit in B. O
6.3 Proof of Proposition 4.3.2

Now we are ready to prove Proposition 4.3.2. For a subinterval I C [0,1) and
r € I\ {0}, we extend the norm |- ||, to n x n matrices A = (A4;;) € Mat,(Oa,)
by ||All, = max;;{||A4;|,}. Similarly, define the additive valuation w.,(A) :=
min; j{w,(A;;)}. This satisfies the strict triangular inequality and the submulti-
plicativity:

e w,(A+ B) > min{w,(A),w,(B)} and the equality holds if w,(A) # w,(B).

o w,(AB) = w,(A) + w,(B).

o If w,(A) > 0 then w,(det(4)) > 0. Similarly if w,(A —Id,) > 0, then

wy(det(A) — 1) > 0. (Indeed, write A = Id, +X for some X = (x;;) with

w(x;;) > 0, and det A —1 can be written as a sum of terms only involving ;;.)
Now let us restate Proposition 4.3.2 as follows:

Proposition 6.3.1 (Proposition 4.3.2 restated).

1. For any A € GL,(R), there exists U € GL,(Oa) and V € GL,(R") such that

A=UV.
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2. If A € GL,,(Oa,,,,) with0 <r <1 and if w,(A—1d,) > 0 for v = —log,r, then
there exist matrices U € GL,(Oa) and V € GLn(O%[H)) such that A = UV.

This pair U and V' is can be chosen to satisfy the following additional conditions:

e U —1d, nvolves only positive powers of u and V' involves no positive powers
of u.

e We have w.(U —1d,) > 0 and w,(V —1d,) > 0.

e Ve GLn(OiA“t[m)).

Such U and V' are unique and also satisfy inequalities w.,(U—1d,,) > w,(A—1d,)

and w,(V —1d,,) > w,(A —1d,).

For the proof, we closely follow [46, Prop 6.5]. The proof is roughly divided into

two steps:
Step 1: Reduce (1) to (2)
Step 2: Produce the unique matrices U and V in (2) by approximation.
The following lemma takes care of Step I:

Lemma 6.3.2. Fiz v € Qs and let r = ¢7. Then for any A € GL,(Oa,,,),
there exists an invertible matriz B € GLn(ObAd[H)) such that w,(AB — 1d,) > 0.

Furthermore, if w,(det(A) — 1) > 0, then we may choose B such that det(B) = 1.

To handle Step 1, first apply this lemma to A € GL,(Oa,,,,), to obtain AB €
GL.(Oa,,,,) with B € GLn((’)bAd[m)) and w,(AB —1d,) > 0. Granting both the
lemma and Proposition 6.3.1 (2), one can apply Proposition 6.3.1 (2) to AB to
get a factorization AB = UV. This gives a factorization A = U-(VB™!) where
U e GL,(0Oa) and (VB™) € GLn((’)bAd[ryl)). Now, for any A € GL,,(R) there exists

some r € (0,1) such that A converges on Aj.;). Take this r and let v := —log, 7.
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Then the above factorization A = U-(VB™') proves Proposition 6.3.1 (1), so the

lemma completes Step 1.

Remark. With little extra work, one can prove this lemma with v replaced by any
closed sub interval I, C R-y. Compare with [48, Lemma 2.7.1] and [46, Lemma 6.2].

We do not need this generalization.

Proof of Lemma 6.5.2. The case n = 1 is handled by Corollary 6.2.6.2. Also from
n = 1 case, we can find a unit g € ((’)"Ad[m))X so that w,(g-det(4) — 1) > 0.
Therefore by replacing A by Adiag(g, 1,---,1), for example, we may and will assume
that w,(det(A) — 1) > 0. We will carry out the induction on n with this extra
hypothesis on the determinant. We assume by induction (with n > 1) that for
any A € GL,-1(Oa,,,,) such that w,(det(A) — 1) > 0, there exists a matrix B €
SLn_l(ObAd[r’l)) such that w,(AB —1d,) > 0.

Let us outline the strategy of the proof:

1. For any A € GL,(Oa,,,,), find By € SLn((’)bAd[Tl)) such that the upper left
(n—1) x (n—1)-minor of ABj satisfies the induction hypothesis. The induction
hypothesis produces B; € SLn((’)bAd[nl)) such that |[(ABoBi)ij — 0i;]] > 0 for

1 <14,5 <n—1, where ¢;; is the Kronecker delta.

2. Find a series of elementary column operations so that n-th column and n-th

row satisfy the same inequality.

(1) Finding By and applying the induction hypothesis.
Let ¢; denote the ni-cofactor of A, so we have det(A) = " ¢+ Ay, and ¢ =
(A7) det(A). If we put oy := det(A) ' A,;, then we have Y "' | aj¢; = 1. In order

to get an idea for how to find By, let us assume that we have By € SLn((’)ﬁAd[r .,) such

)

that the nn-cofactor ¢, of ABy satisfy w,(c,, — 1) > 0 (so ¢}, is necessarily a unit by
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our criterion via Newton polygon: Corollary 6.2.6.1).

The cofactor ¢/, satisfies:

~

d, = (By'A™Y),, det(A)

- Z(Bo_l)m-(/l_l)m det(A)

= D By e

=1

= 1+ Z ((By i — )i

Let 3; := (By )i € ObAd[M). Then {0;} generates a unit ideal in O%[m) since By
is invertible. Conversely, if we can find {f;} which generates the unit ideal and
satisfies w,(f; — o) > —w,(¢;) for all i, then we can find By that works; indeed,

since n > 1 and ObAd[r is a principal ideal domain (Proposition 6.2.7.2), one can

1)

find an invertible matrix B, ! € SLn(OZd[M)) whose n-th row is (3;), and the above
calculation shows that this By works.

To find such {3;}, we first take 3, € O%m) such that w. (8] —a;) > —w,(¢;) for all
1. This is possible because ObAd[M) C Oa,,,, is a dense subalgebra. But {3/} may not
generate the unit ideal, so we modify (3, as follows. Observe that the elements {3/, +

7 . . . . oy . . bd
m)}; are pairwise coprime (i.e., any two elements generate the unit ideal) in O Apr)

If 7 > 0 (namely, if j > —w,(¢;)), then we still have w. (5], + 7r6 —ay) > —wy(c).

Since O%[ is a principal ideal domain, the ideal generated by {3}, -+, 0.} is

r,1)
principal, say generated by (3. Since (3 cannot have infinitely many prime factors
(being an element in a principal ideal domain), we conclude that there exists an
integer j > 0 such that {3,---,3._,,0, + m)} generates the unit ideal and the

inequality w. (0, 4+ 7} — an) > —w,(c;) holds. We set 3, := 3. + 7 for the above

choice of j, and ; := g} for i # n.
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To summarize, if we choose a matrix By ' € SLn(O%[T ) whose n-th row is (5;),

1)
then the upper left (n — 1) x (n — 1)-minor of AB, satisfies the induction hypoth-
esis. Then the induction hypothesis gives a B} € SLn_l(O’Xl[M)) which “works”
for the upper left (n — 1) x (n — 1)-minor of ABy. Now, extend this matrix to
B, € SLn(ObAd[r’l)) by setting (B1)nn = 1, (B1)in = (B1)ni = 0 for i # n and the

upper left (n —1) x (n— 1)-minor of B; to be equal to Bj. Then AByB; still satisfies

the following:

e our running hypothesis w,(det(AByB;) — 1) = w,(det(A) — 1) > 0, (because
g nyp » (det( v )

the determinant of By and B; are both 1)
® Wy ((ABoBl)z] — (513) >0forl< Z,j <n-—1.

Since it is enough to prove the statement for AByB;, we rename AByB; to be A.

Now that we have the inequalities w, (A;; —d;;) > 0 for 1 < 4,7 < n —1 (so
wy(A;;) > 0 for 1 <i,j <n—1), our next goal is to perform elementary column
operations on A (which correspond to multiplying A by elementary matrices on the
right) so that in the resulting matrix, the same inequalities hold for all + and j. This
process will look like Gaussian elimination, except that instead of eliminating the
off-diagonal terms in n-th row and column we make them close to 0. For this reason

we may call this process “approximate Gaussian elimination”.

(2) “Clearing” the nth column

We first “clear” off-diagonal entries from the nth column. Let A©® := A and put
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At = A®). B where

Omij j<norj=m=n
(Béh))mj = ] h
—Aﬁn% j=nandm<n
Concretely, we subtract A" times the mth column from the nth column for each

m = 1,---,n — 1. (Note also that det A"*) = det A" = det A for any h > 0.)

Therefore we have:

(h) ,
A+ Aij J<n

ij - :
A =S AR AR =

At each step, the minimum valuation minlgign_l{wv(Agz))} increases by at least
min; <; j<n—1{w,(A;; — d;;)} which is positive and independent of h. To see this, we

just rewrite AEZH) for i < n:
n—1
AR = AR Y A AT
m=1

in

= AR = A) = Y A AR

m#i,n
=AY (0 — Ai) = Y (i — Gim)- AL,
m#£i,n

and the claim is immediate from the last expression.
Since minlgign_l{wy(/lgz))} increases at each step by at least some fixed positive

number, we may choose h > 0 so that the following inequality holds:

wW(AEZ)) > max {O, max {—wy(Ag;)) } } (i=1,---,n—1)

1<j<n—1
(Recall that Ag}) = A,;, so the right side is independent of h.) Therefore we have

wA,(Ag;l)) > 0 for all ¢ < n and all j; and wW(A(h)-A(h-)

in " Apj) > 0forany 1 <i,j <n-—1

Because det(A) = det(A™), we still have the inequality w.,(det(A®) — 1) > 0.
Furthermore, we also have wv(A,(fZ) — 1) > 0. To see this, it follows from the

inequality wW(AEZ) -Ag;)) >0 for 4,7 < n and ov(Al(-;L)) = w,(A;;) for all 4,5 < n that



138

w, (Z itn cg»h)A,(Z»)> > (0 where cg-h) is the nj-cofactor of A™. But since det(A®) =
> i1 cﬁh)Ag;) and w, (det(AM) — 1) > 0, we get w, <c£lh) A — 1) > 0. But Ag?) =
A;j for i,j < n, so by our initial arrangements for A we have wv(cq(@h) —1) >0 (so
wv(cﬁbh)) = 0). Since oAl —1 = cgh)-(A,(z]Z) —-1)+ (c%h) —1), we deduce wW(AZ(-;L) -1)

as claimed.

Let us list all (relevant) properties we have arranged for A™ to satisfy:
e w,(det(AM) — 1) > 0.

o w,(AY —6;)>0if1<i,j<n—1lorifj=n.

o wW(AEZ)~A$)) >0forany 1 <i,j <n-—1.

(3) “Clearing” the off-diagonal entries in the nth row

Now that A% satisfies the desired inequality wW(A,([ﬁL) —1) > 0, we can “clear” the

remaining entries in the nth row. Starting from A®, define AUY .= A(l)-Bél) for

[ > h, where

0ij t<nori=j=n

I ij

(By) = l
—Af”). t=nandj<n

Concretely, we subtract ASJ) times the nth column from the jth column for each
AD —AD.AY G <n

nj

(+1)  _
A= o | .
A j=n

First, observe that for j < n, the valuation wy(Aff;) increases by at least ww(Ag;) —
1) which is a positive number independent of h. (Note that AP = Aﬁf%, so the

above statement is clear from the recursive formula.) Thus for [ > h, we have the

inequalities
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Now, we need to check that these column operations preserve the inequality wv(Ag-) —
§i;) > 0 for 1 <i,j <n—1,so0 it suffices that w, (A} -AV) > 0for 1 <i,j <n—1

and all [ > h. In fact, we have wV(A(h)-AEZ-)) >0for1<ij<n-—1,and A" =AY

in

while wV(A(l).) > wv(Ag;.)) for I > h (since w, (1 — AN = wo (1 — ALY > 0 for all

nj

[ > h), hence the claim is clear.

l

To sum up, we have the inequality wV(AEj) —6;;) > 0 for all 7 and j, in other words

w, (AW —1d,,) > 0. This finally concludes the proof of the lemma. O

We have reduced the Proposition 6.3.1 to proving the second part of its state-
ment.This follows from the lemma below, which roughly says that one can uniquely
factor a matrix A over A, ;) into a “holomorphic part” U and a “polar part” V,

with some “boundedness” condition if A is close enough to Id,:

Lemma 6.3.3. Assume that A € Mat,,(Oa,,,,) satisfies w,(A —1d,) > ¢ for some
v = —log,r € Qso, and ¢ > 0. Then there exists a unique pair of malrices
U =1dy+3 s, Uit! € Mat,(Oa) and V =37, Viu™ € Mat, (O | ), where
U;,V; € Mat, (), such that A = UV, w,(U —1d,,) > 0 and w,(V —1d,) > 0.

Moreover, these matrices U and V' satisfy w, (U —1d,,) > ¢ and w,(V —1d,) > c.

Since Oigt“ 5 is a complete normed algebra for the valuation w,, it follows from

w,(det(V') — 1) > 0 that det(V) is invertible, so V' & GLn(@iXtm))'

Reduction of Proposition 6.3.1 (2) to Lemma 6.3.3. Assuming that A is invertible in
addition to all the hypotheses in the lemma, it is enough to show that U and V' given
from the lemma are invertible. This statement only involves the determinants of U
and V', hence we are reduced to n = 1 case.

Assume that A € (’)Z[M) satisfies w,(A — 1) > 0. Then by lemma, we obtain

) X
U € Oa with constant term 1 and V' € ( ﬁ‘;ﬂ)) in 1+ u !¢ [[u"]] such that
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A = UV. (This is not the end of the proof because we need U to be invertible
in Oa, not just in Op,.) Since A™' also satisfies w,(A™!' — 1) > 0 (because
wy(A(A™t = 1)) > 0 and w,(A) = 0), we also have A~ = U'V’. Since V and V"' are
invertible, we obtain U-U" = (V-V’)™!, which is an element of Oa N OiAmW) = 6.

But U-U’ has the constant term 1, therefore is a unit in &. This shows U € Ox. O
Proof of Lemma 6.5.3. We first make the following observations:

L If f(u) € Oa,,.,, has no nontrivial “principal part” (i.e., no nonzero terms with
negative powers of u) in its Laurent expansion, then f(u) can be extended to a

section of Ox.

2. If the Laurent expansion of g(u) € Oa,,,, has no terms with positive powers
of u, then g(u) is automatically bounded; in fact, g(+) is bounded on A 1
because g(%) has no negative powers of u so it extends to the closed disk A1.

Furthermore, if w,(g) > 0 where v = —log, r, then g(u) € (’)Rt[

r,l)'

Now, let A be as in the statement of the lemma. It can be seen from the obser-
vations above that once we find the factorization A = UV for U,V € Matn(OA[nl))

where U = Id,, + Y Uu' and V = 3 Viu™ with w, (U — 1d,) > 0 and

i€Zs0 €50 Vi

w,(V —1id,) > 0, then automatically U and V' belong to where they should: i.e.,
U € Mat,(Oa) and V € Mat,,( iﬁt[m)).

We first show the uniqueness. Assume that there exist two desired factorizations
A = UV = U'V'. Since we required all these matrices to be “close” to Id, with
respect to the valuation w, (i.e., w,(A—Id,) > 0, w,(U—1d,) > 0, etc.) they become
invertible over On, ;. (The inequalities forces w,(det(A) —1) > 0, etc., and that
Oa,.,, is the completion of On, ,; with respect to w,.) So we have (U")~'U = V'V~

in GL,(Oa,,,). But (U')"'U —1d, has only terms with positive powers of u while

]
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V'V~! —1d, has no terms with positive powers of u. This can happen only when
(U")"'U =1d,, and V'V~! =1d,, from the beginning.

Now we show the existence of such a factorization. We define a sequence of
invertible matrices {V"},cz_, over (’)iﬁtw) by the following recursion formula. Let
VO :=1d,. Given V" we set A(VW)~1 = pW 4+ H®) where H™ consists of terms
with positive powers of u and P" consists of terms with non-positive powers of u.
By the second observation made at the beginning of the proof, P € Matn(OiXtm))
for all h > 0. Define VD .= PMWY (M and we need to show that P™ lies in
GL, (0%, ), hence in turn V{+1) s, Since ORA.,,, is complete with respect to w,,
it suffices to show w,(P" —1d,,) > 0.

Observe first that w, (A(V®)~' —1d,) = min {w, (P —1d,),w,(H™)} be-
cause we defined P and H™ by “chopping” the Laurent series for A(V)~!. So

it is enough to show w, (A(V")™' —1d,) > c¢. If h = 0 then we have w,(A —

Id,) > ¢ by assumption, so it follows that w.,(P©® —1Id,) > ¢ and w,(H®) >
c. Now assume that we have w, (A(V"W)~' —1d,) > ¢, hence w,(P" —1d,) >
c and w,(H™) > ¢. In particular P® is invertible and w,((P™)~! —1d,) >

w,(Id, —P™) + w, (P™)~1) > ¢. Now the claim for i + 1 follows since

AWVBENYL _1q, = AWV®)=L(PMHYT! —1d,,

= (AW —1d,)(P™) ! 4+ ((PM) ™! —1d,,).

We now digress to prove the following stronger estimates:

Claim 6.3.3.1.
Low, (H®D — H®) > (b +2)e

2. w,(P® —1d,) > (h+1)c
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We begin with the following observation:

(PMD _1d,) + HMD = Ay )= 14,
= AWV®)~(pM)~l _1d,
_ H(h)(_p(h)>—1

= H® 4 g®W(pM) =t _1d,).

Now observe that (P*"*+) —1d,,) + (H"*+) — gy = gW((PM)~1 —1d,,), and that
PO+ _1d,, involves only negative powers of u and H"®+t) — H® involves only

positive powers of u. Therefore, we have
min {w, (P —1d,), w,(H"D — HM)} = w, (H® (P™M)™! —1d,)) .

Claim 6.3.3.1(2) for the case h = 0 is clear since by construction of P(®) and H(©
we have min{w,(P©® —id,), w,(H®)} = w,(A —id,) > ¢. To prove 6.3.3.1(2), we

proceed by induction on h. Assuming w,(P"™ —1d,) > (h + 1)c, we have

min {w, (P"™ —1d,), w,(H"™) — HM} = w, (H®) +w, (P™)! —1d,)

> c+(h+1)c

As a byproduct, we also get w,(H ") — H®) > (h42)c. This proves Claim 6.3.3.1.

Now we can conclude the proof of the lemma. It follows from Claim 6.3.3.1 that
w,(V® —1d,) > ¢ for h > 1. (The case h = 1 is clear since VY = PO, Now
use induction on h and V) —1d, = (P —1d,)V® + (VW —1d,).) We have
also seen that (9”1t " is complete with respect to the valuation w.,, so the estimate
w,(P®™ —1d,,) > (h + 1)c implies that P — 1d,, in Matn(OiXt[nl)) as h — oo. The

convergence of {V(} in Matn(OiXt[r 1)) follows from the estimate:

w, (VD — vy >4 (VWY 4 (PP —1d,) > (h+ 1)c
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Let V' denote the limit. Then, V involves no positive powers of u and satisfies
w,(V —id,) > ¢ because all V" have these properties.

Furthermore HW = A(VW)~1 — P® converges to AV ™! —1d,, as h — oo for the
topology generated by the valuation w.,. So AV~ —1Id,, only involves positive powers
of u and satisfies w,(AV ' —1d,) > ¢; we can check these properties by viewing the
matrices as elements of Matn(OAW]) which is the completion of Matn(OA[m)) for
the valuation w,, and all H (M) have these properties. So U := AV~ and V satisfy

all the desired properties. O



CHAPTER VII

Effective local shtukas and my-divisible groups

Throughout this chapter, we put oy := F,[[mo]]. Recall our setup in this case:
ox = k[[u]] where k contains F, and has a finite p-basis, and we fix a local injection
09 — 0 which sends 7 to ug # 0 (and we put P := my®1 — 1®uq € 00®]qu;< ~O).
One of the main purposes of this chapter is to show that in the case of 0g := F,[[m0]],
(i, &)-modules of finite P-height naturally come up as the semi-linear algebra struc-
ture that classifies a certain type of my-divisible groups over ox, namely my-divisible
groups of finite P-height (Definition 7.3). In fact, this classification works not just
over ox but over any base (formal) scheme over Spf oy, in which case the relevant
semi-linear algebra structures called “effective local shtukas” were introduced and
studied by Genestier-Lafforgue [35] and Hartl [39, 41]. See Theorem 7.3.2 for a more
precise statement, and for now we content ourselves with mentioning that the state-
ment resembles contravariant Dieudonné theory for Barsotti-Tate groups. This jus-
tifies viewing G k-representations of finite P-height as equi-characteristic analogues
of crystalline representations. This result was announced by Hartl [40], but since the

proof was not available to the author, we work out the proof here.
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Convention

Let S be a scheme, and 9 a sheaf on S. By f € 9, we mean f € I'(U,IM) for

some open U C S.

7.1 Local shtukas

Throughout the section, S is either a scheme over Spec 0y or a formal scheme over
Spfog! and g : S — S is the absolute g-Frobenius endomorphism (i.e., og induces
identity on the underlying topological space and gth power map on the structure
sheaf). We let ug € I'(S, Og) denote the image of my under the structure morphism
0o — I['(S, Og). The examples to keep in mind are S = Spf ok, Spec oy, and Spec K.

On Ogl[mo]] = (’)5@qu0, we use the partial Frobenius endomorphism o := og®oy :
OS@F(IOO — Os@)u?qﬂo- Concretely, for a section f := Y, a;my where a; € T'(U, Og)
for some open U C S, we define o(f) := >, almi. If S = Specox or S = Spec K,

this recovers the natural ¢ on & and o¢, respectively.

Definition 7.1.1. A local shtuka of rank n over S is a pair (9, ¢) where 9 is a sheaf

of (topological) Os®p,00 = Og[m]]-modules together with a Og[[mo]][=—L—]-linear

o —Uo

map ¢ : o*M[——] = M|

TOo—Uo

| such that the following condition holds.

TO—U0

e There exists a Zariski covering {U} of S such that M|y is a free Oy[[mo]]-
module of rank n for each U. Equivalently, by Corollary 7.4.3, 91 is a locally

free Ogl[[mo]]-module.
e There exists an integer N such that ¢(c59) C (7o — ug) VN,

We call tkor, 9 the rank of the shtuka 9.

In Hartl’s original definition, the base S is assumed to be a formal scheme over Spf 0, in which case our definition
of local shtukas (Definition 7.1.1) will coincide with Hartl’s, thanks to Proposition 7.1.9. But since it is convenient
to include the case S = Spec K, we allow S to be any scheme over Spec og.
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A local shtuka 90t is called effective if one can take N = 0. In other words, an
effective local shtuka is nothing but a p-module of finite P-height which is locally
free over Og|[mg]]. An effective local shtuka 91 is called étale (respectively, strict, or
of P-height < h) if ¢ is an isomorphism (respectively, if (g — wug)-coker ¢ = 0, or if
(7o — )" coker ¢ = 0).

We let Sh, () denote the category of local shtukas over S with the obvious notion
of morphisms. Let ShZ°(S), She'(S), Sh$', and Sh$" denote the full subcategories

of effective local shtukas, étale local shtukas, strict local shtukas, and local shtukas

of P-height < h, respectively.

Example 7.1.2. If uy € T'(S, Og) is invertible, then any local shtuka over S is étale.
In particular, if K =2 k((u)) is a field extension of F,((m)) via my + ug, then local
shtukas over Spec K is precisely étale p-modules free over oz = K|[m]].

We can also see that effective local shtukas over og are precisely (p, &)-modules
of finite P-height. (Recall that & = o[[mp]].) More generally, local shtukas over oy
are precisely generalized (y, &)-modules as in §2.2.11. Then Theorem 5.2.3 asserts
that the base change for local shtukas by oy <— K is fully faithful. This can be
generalized, by the argument given in [75, §4.2], to the following statement: for a
connected normal noetherian F,[[uo]]-scheme S such that uy € I'(Og) is not zero,
associating the generic fiber defines a fully faithful functor from the category of local

shtukas over S to the category local shtukas over the function field of S.

Example 7.1.3. Let C be a (geometrically integral) curve over some finite field F
of characteristic p. Pick a closed point P € C and let O¢ p be the completed local
ring at the place P. By choosing a uniformizer my € O¢ p at P, we identify O¢ p =
F(P)[[mo]], where F(P) is the residue field at P. Let S be a formal scheme over

Spf(Oc.p ), and let ug € I'(S, Og) be the image of my. (So ug is locally topologically
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nilpotent.) Under this setting, local shtukas over S can arise from the following

sources:

“Localization” of a (global) “shtuka” over S Let &, & be vector bundles over

C xp 8, equipped with the following structure:

t
either (i) / , or (ii) /
o*& & ——o*&

J

where 0 = id¢ Xog is the partial ¢-Frobenius and the following conditions are

satisfied.

e t and j are injective.

e The support of cokert is exactly the graph I'y; C C' Xy S of the morphism
0o:8 — Spf(Ocp) — C, where the first map is the structure morphism

and the second is the natural map. (Compare with Remark 1.3.4.)

e The support of coker j is the graph of some morphism oo : S — C and is

disjoint from the graph of o.

e The sheaves coker t and coker j are invertible? over their respective supports.

This gives an example of a right shtuka over S in the case of (i) (respectively,
a left shtuka over S in the case of (ii)). Now let 9 = & be the completion
of & at T',, and view it as an Og[[mg]]-module via the isomorphism Og[[m]] =
Ocxsr, = Ogl[mo—upl], defined by 7y +— ug+ (mo—up). (This makes sense since
S is a formal scheme over Spf(O¢ p) so ug is locally topologically nilpotent.)

Now set @ := j "ot : o*MM — M if & is a right shtuka; and set ¢ : t o5~ if

& is a left shtuka, respectively. Observe that j becomes an isomorphism after

2The example still works fine if we just assume coker t and coker j are locally free of finite rank over their respective
support, but the definition of Drinfeld’s shtuka [26, §I] requires them to be invertible.
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completion because coker j is supported disjointly from I',, and that coker o =
cokert is an invertible sheaf on I',, which is cut out by m9 — ug. So (9, ¢) is an

effective local shtuka over S.

mo-divisible group associated to a Drinfeld module Let oo € C be a closed
point distinct from P, and let A be the coordinate ring for the affine curve
C\ {oo}. We let P also denote the maximal ideal of A which corresponds to
the closed point P € C'. For a Drinfeld A-module £ over S, one can associates
“a mo-divisible group” G := lim L[P"|s. Since the Verschiebung for L[P"]s

n

vanishes for each n, one has the “Dieudonné-type” anti-equivalence

G~ Homs(G,G,) = lim A om(L[P"]s,G,) =: M.

n

(See Theorems 7.2.6 and 7.3.2 for the precise statement.) Under the Frobenius
structure ¢gy induced from the relative Frobenius on G, 9 becomes a strict

local shtuka. This example is worked out later in §7.3 with more generality.

7.1.4 Formal properties
Let (9, ¢) and (M, ¢') be local shtukas over S.

1. (Base Change) Let S’ L S bea morphism of (formal) schemes over 0y. We
set f*IM := Og[[m0]] @ p-1(04(m f~ I together with the induced Frobenius

structure f*¢ := Og|[mo)] ® f~'¢, which makes sense as below:
* * ~ k[ % I e
o (FI) = [ () 1%

Then the “pullback” (f*9, f*p) is again a local shtuka over S’. Moreover, if 9t
is effective, of P-height < h, strict, or étale, respectively, then so is its pullback

1M,
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2. The tensor product (M e[ M, p® ') is again a local shtuka; ¢ ® ¢’ makes
sense as a Frobenius as shown below: o% (9 @ M) < (c5M) @ (cLIMN') LN
M@ M.

Let £5 be a local shtuka whose underlying module is Og|[[m]}e with the “natural”

choice of the Frobenius structure ¢, i.e., ¢(c*e) = e. Then Lg is the “left and

right identity” for ®-product.

3. Internal hom is defined in local shtukas. We put N := S o0mo[p) (M, M),

and define a Frobenius structure g : (ag‘ﬂ)[mi%] = ‘ﬁ[ﬂoiw], as follows:

on(f) == @' o fopt € N where f € (65N)[=L—] is viewed as a map f :

T —UQ

(agzm)[ﬁ] — (059)[=—]. One can directly check that (91, o) is a local

O —U0

shtuka over S.
4. One can define duality by 9 := I om o, (M, £5) on Sh, (5).
Now we define Tate objects and Tate twists.

Definition 7.1.5. For any integer n, the Tate object £5(n) is a local shtuka whose
underlying sheaf is Og[[mg]]-e, and the Frobenius structure is defined by ofe +—
(mo — up)"-e. For a local shtuka (9, ), the Tate twist M(n) by n is the local shtuka

M(n) :=M Qo [[mo]] Ls(n) = (M, (1o — up)™ ).
We record some immediate properties:

1. For any positive integer n, we have £¢(n) = £5(1)®". For any integer n, we

have £g(—n) = L£5(n)*, so we also have (M(n))* = M*(—n).

2. For a local shtuka 9 over S, let N be an integer such that ¢(c*9M) C (79 —

1) VM. Then the Tate twist M(N) is an effective local shtuka.
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3. Any rank-1 local shtuka (9, ) over S is, Zariski-locally on S, a Tate twist
of a rank-1 étale shtuka. Indeed, by restricting to some Zariski-open of S, we
may assume that 9 is a free Og[[mp]]-module of rank 1. Let us take a basis e €
['(S,91). Then by definition, p(c*e) = ax(my—ug)™ for some o € T'(S, Os[[mo]]*)
and n € Z.

7.1.6 Isogenies of local shtukas

A morphism of local shtukas f : 9t — 9 is called an isogeny if f is injective and

coker f is killed by some power of my, say by 7". Then, there exists g : 9 — M

such that fog =7} and go f = 7)¥; consider the following commutative diagram

m S M — coker f

v
N s N
™ \L /g lﬂo lO
»

m — M — coker f.

Therefore, we can define isogeny categories Sh, (S)[=-], Sh>O(S)[7%O], and Sh$(S)[1]

1
mod? =00 T

by formally inverting 7y in the morphisms.

7.1.7

Our definition of local shtukas (Definition 7.1.1) slightly differs from Hartl’s orig-
inal definition in [39, §2.1]: Hartl additionally required that the quotient (my —
ug) VM /p(aEM) is locally free over S for any N > 0. We show that this additional
assumption is automatic if either uy € T'(S,Og) is locally topologically nilpotent
(i.e., S is a formal scheme over Spfog) or S is locally noetherian. For this we first

need the following lemma.

Lemma 7.1.8. Let S be a (formal) scheme over oy which satisfies one of the following
assumptions: (1) S is locally noetherian; (2) uy € I'(S,Og) is locally topologically

nilpotent (i.e., S is a formal scheme over Spfoy)); or (3) the natural map Og —
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O L mjective (1.e. ’LUhen Ug 1S nowhere a zero di’UiSOT on S or exram l@ wh@n
S ’ 0 ’
uQ

S s integral). Then for any effective local shtuka I over S, the Frobenius map

Yon : 05(M) — M is injective.

Proof. The claim is local in S — more precisely, the claim is local in the relative
formal spectrum Spfg Og|[m]] which shares the underlying topological space with
S. So we may assume S = Spec R for some og-algebra R, or S = Spf R for some
admissible og-algebra R [27, O, 7.1.2].

Let us consider the case (3) first. We may formulate the problem purely alge-
braically using R-modules (i.e., working over Spec R, not Spf R). If the natural map
R — R[uio] is injective, then the natural map 9T — R[u—lo] [[70]] @ Rime)) M is injective.
So by Lemma 2.2.3.1, we are reduced to the case when wug is a unit in R. Let us
assume this. Then my — ug is a unit in R[[m]], so it follows that any local shtuka over
R is an étale p-module over R[[m]]; i.e., ¢ is an isomorphism.

Let us consider the other two cases. First, it is enough to handle the case when
S is a scheme; i.e., S = Spec R where R is either noetherian or such that ug € R is
nilpotent. In fact, if S = Spf R where R is an admissible og-algebra and {I,} is a
fundamental system of open ideals in R, then it is enough to verify the lemma for
R/1, for each a (by the left exactness of inverse limit). So we rename R/, as R.

Second, we can even assume that R is local; indeed, once the lemma is known
when R is local, then since the natural map R[[m]] — [] (Rg|[m0]]) is injective (as
B varies over Spec R) we may apply Lemma 2.2.3.1.

To summarize, it is enough to consider the case when S = Spec R where R is local

and such that either (1) R is noetherian; or (2) uy € R is nilpotent.

Now, we show that the natural map R[[mo]] — R[[mo]]] ] is injective; once

o —U0

this is shown, it follows from the R|[[m]]-flatness of M that the natural map MM —
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sm[ﬂoiuo] is injective, so we can use Lemma 2.2.3.1 to conclude the proof.

If up € R is invertible then my — uy € R[[mo]] is invertible, so we may assume that
uy € mg where mp is the maximal ideal of R. We want to show that if f € R|[[m]]
satisfies (mg — up)-f = 0 then f = 0. Since R][[m]] injects into R[[ﬂg]][ﬂio], we may
regard f as an element of RHWO]HW_IO] in order to show f =0 in R[[m]].

If up € R is nilpotent then 7y — ug is a unit in R[TI’OH%O] (hence in R[[?To]][ﬂ—lo]),
since the infinite series ﬂio(l + 20 4 (2)? 4 .. ) is a finite sum and gives the inverse
of mg — uyg.

Now, consider the remaining case where R is a noetherian local ring. The assump-

tion (7o — up)-f = 0 implies that f = “.f in R[[?TOH[%O], so we have f = (u_o)”f

0
o ™0

for any positive integer n. Therefore, f € (7,5, <“°>H-R[[7T0]][ L] = {0}, by Krull’s

intersection theorem. O

Proposition 7.1.9. Let S be a formal scheme over oy, and assume that either (1)
S is locally noetherian; or (2) uy € Og is locally topologically nilpotent (i.e., S is a
formal scheme over Spfog). Let 9 be a local shtuka over S. Then for any N > 0,
the quotient (o — uo) VM /p(asM) is locally free over S. In particular, if M is an

effective local shtuka, then coker(y) := M/ p(c*IM) is locally free over S.

Proof. Let N be a positive integer such that the N-fold Tate twist (V) of M
(Definition 7.1.5) is effective. Observe that (mo — ug) N9/ p(c§M) = coker(pom(n)),
so the first claim follows from the second claim. In order to show the second claim,

consider the following short exact sequence
0 — o*(M) 25 M — coker(p) — 0,

which remains exact after the base change to arbitrary closed (formal) subscheme of

S, thanks to Lemma 7.1.8. Since the first two terms are flat over S, we can deduce
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that the last term is flat over S, from [9, Ch.I §2.5 Prop 4] or from an argument
using Tor;. The following exact sequence for h > 0 shows that coker(y) is finitely

presented over S (and hence is locally free):
0 — (™M) /(7o — up)"M — M/ (7o — up)"M — coker(p) — 0.

]

Example 7.1.10. The following example due to Urs Hartl shows that Lemma 7.1.8
is false without assumptions on the base S. Let R := E[[ug]][to, 1, - -]/ (uoto, t; —
uptiy1|t = 0,1,--+). Let M := R[[mo]]-e equipped with po(c*e) = (7 — up)-e. Then
9 is an effective local shtuka, but gy is not injective since (.2, ;7)) (0*e) is in
the kernel. The proof of Lemma 7.1.8 fails because my — ug is not a regular element

in R|[[m]].

7.2 Classification of finite locally free group schemes with trivial Ver-
schiebung

We digress to discuss the “Dieudonné-type” classification of finite locally free

commutative group schemes with trivial Verschiebung. This is the main technical

tool for the rest of this chapter. Most of the results in this section are also proved

in [73, 3, Exp VII,, §7], where statements differ from ours by Cartier duality. The

discussion of this section is also inspired by Abrashkin’s study of Faltings’s strict

modules [1, §2], although we take a slightly different approach.

7.2.1 Preliminaries on group schemes
Let S be a scheme of characteristic p and let o : S — S be the (absolute) p-

Frobenius. Let G be a finite locally free group scheme over S. Let Ay denote the

push-forward of Og by the structure sheaf, and Z; C Ag the augmentation ideal.
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Put "G := G x5, S and let Fi;/5 : G — 0*G be the relative Frobenius map, which
is a group homomorphism thanks to the functorial properties of the Frobenius map.

In addition to this, there is a canonical S-group map Vg/g @ 0*G — G (called
Verschiebung) which is functorial in G, commutes with base changes, and makes the
following diagram commute:

[p]

G——C(C

. Fgys
Fgys

oG e oG
The Verschiebung map is defined in [73, 3, Exp VII,, 4.3], and in [73, 3, Exp V4,
4.3.3] it is shown that Vs = (Fjv s (where (-)" denotes Cartier dual). We will
later concentrate on finite locally free commutative group schemes with vanishing
Verschiebung.

Now, we associate to a finite locally free® group scheme G a finitely presented over

Og, which will be endowed with a Frobenius structure ¢, as follows:
WM(G) = Homgp (G, Ga) =S € Agl po(f) = fo1+1@ [}

where ug : G Xg G — G is the group multiplication map. The absolute Frobenius
endomorphism Fg, : G, — G, induces a og-semilinear endomorphism on 9t*(G).
(The same map can be obtained from the absolute Frobenius F; : G — G.) We
denote its linearization by ¢ : "9 (G) — M (G).

7.2.2 p-Lie algebras

Our next goal is to show that the p-module 9" (G) is isomorphic to the “p-Lie
algebra” of the Cartier dual GV of G (where the p-operation defines the p-structure).
We digress to recall the definition of p-Lie algebras, and later in in Lemma 7.2.3 we

show that it are isomorphic to I*(G) as a p-module.

3We always assume that the rank of a finite locally free module is constant, not just locally constant.
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We write wgv = €*Qgv = Fgv/F2, for the “co-Lie algebra” of GV. We let
Zies(GY) denote the “Lie algebra” of GV; i.e., Lies(GY) := Pers(Agv, Agv /o) =
Homog(wav,Og) where the isomorphism is given by the universal property of
Kahler differential.

The Lie algebra Zieg(G") is naturally equipped with an og-semilinear endomor-
phism [ — 1) for any | € Zies(GY), called the p-operation. We recall the definition.
For any | € ZLies(GY), consider the following Og-linear map:

NEV P 1®p

(7.2.2.1) 1P = Agv =&5 (Agv)®? — O,

where pfy + Agv — (Agv)®? is the p-fold comultiplication map. That () is an Og-
derivation is proved in [73, 3, Exp VII, 6.2]. (This can also be deduced from the
proof of Lemma 7.2.3.) For any a € Og and [ € Lies(G"), we have (al)®) = (aP)IP,
so the p-operation defines a og-semilinear endomorphism on Zieg(GY). We let ¢ :
0&(Lies(GY)) — ZLies(GY) denote the linearlzation of the p-operation. (Note also
that ZLies(GY) together with this p-operation defines a commutative p-Lie algebra

in the sense of [73, 3, Exp VIl,, 5.2].)
Lemma 7.2.3. We have a natural p-compatible isomorphism I*(G) = Lies(GY).

Proof. Since Ag is finite locally free Og-module, we view a section [ € T'(U, Ag) =
Homy (A4 |y, Op) over an open U C S as a Op-linear map [ : ALy — Oy, where

& = Homg(Ag, Og) is the Og-linear dual of Ag. Note that Af,, together with
the well-known Hopf algebra structure, is precisely Agv. The condition for [ to be
in T'(U, MM (G)) is exactly the Leibnitz rule: for any «, 8 € T'(U, Ag~), the definition

of M*(G) can be re-written as

la-B) =1((a®p)opa) = (uel) (a®P) = (1©1+101)(a® f) = ()5 + a-l(5),

where the first equality follows from the definition of multiplication a8 = (a®3)opug,.
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Now, we show the claim on ¢ on 9" (G). Viewing I*(G) as a submodule of Ag,
we have ¢(c*l) = [P for any | € 9" (G), where the p-th power takes place in Ag.
This is exactly the linearization of the p-operation of the p-Lie algebra Zieg(GY),

because for any o € I'(U, Ag+), we have
(a) = (97 (g ) = 17 (),
where [?) .= (I%P) o ug\),* is the p-operation as defined in (7.2.2.1). O

It follows from this alternative definition of 9t"(G) that the formation of IM*(G)
commutes with any base change: i.e., for any T' 1, S we have a natural isomorphism
M (Gr) «— f*(PM(Q)). In particular, the Frobenius structure ¢ : o*9*(G) —
M*(G), which was described earlier using Fg,/s : G4 — G,, can also be obtained

from the relative Frobenius map Fg/s : G — 0*G by functoriality.

7.2.4

Now we will “reverse” the construction of 9" (G) from G. Let 9 be a finite locally
free Og-module (of constant rank) endowed with an Og-linear map ¢ : o*9 — M.
From this, we define a finite locally free group scheme G*(9, p) = Specg Agn as

follows:

Sym M
(p(o*m) —m?| m € M)’

(7.2.4.1) Ay =

with the comultiplication map p*(m) := m® 1+ 1 ® m for any m € 9. From the
construction we have a natural ¢-compatible isomorphism (91, ) — I* (G* (M, ¢)),
which is induced from the natural map 97 — Agy. Also, the construction of G* (90, )
naturally commutes with any base change on S. By using a local Og-basis of 9t we

see that if 9t has Og-rank n then G* (9, ¢) is finite locally free with order p™, and
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M — Agy is a subbundle (i.e., an injection with image locally a direct factor) with
Asn/ I = Og @ coker oy where Sy is the augmentation ideal of Agy.

Moreover, the injective map 97 — Agy has a natural splitting (not just a local
splitting) which identifies 9% as a direct factor of Agy. We define this splitting locally
and show that the local splittings glue to a global splitting. Let us choose a local
basis ey, - - - , e, of M over some open U C S. Then {e’i1 coeein} for 0 <y, i, <
p — 1 form a Op-basis of Ag|y. Let My denote the submodule of Ag generated by
el' el with iy +--- +i, > 1. Clearly Ag|y = Oy ® M|y & Ny, and this direct
sum decomposition is independent of the choice of local basis and commutes with
localization in S. So we obtain Agy = Og @ MM & N by gluing these local splittings.
In particular, we obtain a natural injective map 9* — (Am)* = Ag+om,)v where
(1)* denotes the Og-linear dual.

Now, let us show that the Verschiebung for G*(9, ¢) vanishes. We can view
Spec(Sym 91) as a group scheme via the comultiplication map p*(m) := m@1+1@m
for any m € M = Sym' M. Then G*(M, ¢) C Spec(Sym M) becomes a closed sub-
group scheme. But Spec(Sym9) is, locally on S, isomorphic to the product of
rankg 9 copies of G, so the claim follows. In particular, G*(91, )" has vanishing
relative Frobenius map.

In fact, much more is true: any finite locally free group scheme G over S with
vanishing Verschiebung is isomorphic to G*(9M, ) for some locally free Ogs-module

M and ¢. To prove this, we need (the second part of) the following lemma.

Lemma 7.2.5 ([73, 3, Exp VII5, Thm7.2]). Let I be a finite locally free Og-module,
endowed with a Frobenius structure ¢ : o*9 — M. Put Gon := G* (M, ¢). Then Goy

satisfies the following properties:

1. For anyT — S, we have a natural group isomorphism Gop(T') = Homp , (M, Or),
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where the @-structure on Or is induced (by p-th power map o : Op — Or).

2. For any finite locally free commutative group scheme G over S, we have a natural

group isomorphism Homg, (G, Gan) = Homg (I, M*(G)).

Proof. We first give a proof of (2). Let us consider the following isomorphisms:

Homgp/s (G’ Gfm) = HomHopf/(’)s («49327 AG)
= {1 € Homs(9, Ag)| p(i(m)) = 1(m) 1+ 1 I(m),

I(m)P =1(e(c*m)),Ym € M}

But the last term is precisely Homg (90T, 9" (G)); the first condition for | means
that I[(m) € MM*(G) for any m € M, and the second means that [ : M — M (G)
commutes with the ¢’s since by the proof of Lemma 7.2.3 pgp-()(c*m’) = (m/)P for
any m’ € IM*(G) (where the pth power is taken inside Ag).

The proof of (1) is quite similar but simpler, so we leave the it to readers. ]
Theorem 7.2.6.

1. [78, 3, Exp VIs, 7.4] The functors MM*(-) and G*(+) induce quasi-inverse anti-
equivalences of categories between the category of locally free Og-modules M of
rank n together with an Og-linear map ¢ : c*IM — M and the category of finite
locally free commutative group schemes of order p™ with vanishing Verschiebung

(respectively, of order p™).

2. JM*(+) and G*(+) are “exact” in the sense that they send a short exact sequence

in the source category to a short exact sequence in the target category.

Proof. Let GG be a finite locally free group scheme over S with vanishing Verschiebung.

To prove (1) we need to prove that 9" (G) is locally free over Og, and that we have



159

functorial isomorphisms G = G* (D" (G)) and 9 = WM™ (G*(M)). By definition, the
Og-rank of M is n if and only if and the order of G is p™. So it remains to show that
IM*(-) and G*(+) are quasi-inverse anti-equivalences of categories.

For a ¢-module (9, @) which is locally free of rank n over Og, we put Goy :=
G*(OM) = Spec Agy where Agy is the Og-bialgebra defined in (7.2.4.1). Let 9" :=

JComoy (M, Og) be the Og-linear dual of M. We start with the following claim.

Claim 7.2.6.1. There exists a natural isomorphism Agy)v < Sym(9*)/{a?| a €

M) as augmented Og-algebras.

Observe that the natural projection Fgy v = Fam)v/ j(zam)v = 9" naturally
splits, which follows from dualizing the natural splitting of the natural injection
MM — Fon. The image of IM* in A(g,,)v by this natural splitting generates Agy,)v
as an Og-algebra, by Nakayama’s lemma. Furthermore, any o € .#(q,,)v satisfies
a? = ( since the relative Frobenius map for Gyy is trivial. So we get a surjection of
Og-algebras from the right side onto the left side. Since both terms are locally free
of the same finite rank we have the claim.

From Claim 7.2.6.1, it follows that w(g,,)v = M as Og-modules 50 w(gy,)v is
locally free of rank n over Og (since 9 is so). Furthermore, 9 = P* (G*(IM)) as
Og-submodules of Agy, where I (G*(9M)) C Agy is the submodule of elements m
such that g gn(m) =1®@m+m® 1 (c.f the proof of Lemma 7.2.3). In fact,
applying Claim 7.2.6.1, we obtain a natural isomorphism wg,,)v = 9" respecting
the surjections from %, )v, and apply the natural isomorphism 9" ((Gon)¥) =
(Wigm))" = ZLies((Gom)”) (Lemma 7.2.3).

Now, let us compare the @-structures on 9t and 9" (G*(9M)). By construction

of Agn, we have pgp(c*m) = mP for any m € 9t where the pth power is taken inside
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Asn. This coincides with the ¢-structure on I (G*(M)) 1= Homg, (G*(M), G,)
where the @-structure is induced from the (relative) Frobenius on G,. Therefore we
obtain a natural ¢-compatible isomorphism 9T = 9" (G*(9N)).

In order to prove the first part of the theorem, we proceed in two steps.

Step 1. Let G be a finite locally free commutative group scheme with vanishing
Verschiebung, such that wgv is locally free over Og. We put I := M*(G) =

(wgv)*. Then, there is a natural isomorphism G' = Gap.

Step 2. If G be a finite locally free commutative group scheme with vanishing Ver-

schiebung, then wgv is locally free over Og.

We carry out Step 1. Since 9 = (wgv)* by Lemma 7.2.3, we have a Og-
linear isomorphism wgv = 9" by double duality. By Lemma 7.2.5(2), we have
Homy, /S(G, Gon) = Homg, (91, 9). Therefore, we have a group homomorphism
f : G — Ggon which corresponds to idgy. To show that this is an isomorphism, it
suffices to show that the Cartier dual fV : (Ggy)Y — GV is an isomorphism.

The map v/ IE — I(Ga)/ J(ZGW)V induced by fV is exactly idgy- : 9* — 9
with the identification of the source and the target with 9* as discussed above.
Therefore by Nakayama’s lemma, Agv — A(gy,)v induced by fV is surjective. On
the other hand, since the relative Frobenius for GV is trivial by assumption, we have
a surjective map Ay, = Sym(9*) /(o = 0| a € M*) — Agv, which forces f¥ to
be an isomorphism on structure sheaves over Og and hence an isomorphism. Clearly,
this construction is functorial, so we complete Step 1.

Now, we carry out Step 2.* We may assume that S = Spec R where R is a
local ring with residue field k. Applying what we have just proved, we obtain an

isomorphism Gy = G* (IM*(Gy)). On the other hand, we have the following natural

4The idea for this argument is sketched in the footnote to the théoréme in [73, 3 Exp VII5 7.4].
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isomorphism IMM*(G) = M*(G) Rg k since M*(-) commutes with any base change.

Now consider a p-module (9, ¢") which is finite free over R, such that there
is a surjective p-compatible map 9 — 2" (G) which reduces to an isomorphism
M @k — M(G) @r k. By Lemma 7.2.5(2), the map 9 — 9M*(G) corresponds to
an S-group map G — G*(9', ¢'), which induces an isomorphism Gy, — G*(9, @' )i
at the closed fiber. Hence by Nakayama’s lemma, we conclude that G = G* (90, ¢').
This completes Step 2 by the consequence of Claim 7.2.6.1 recorded above, hence
the proof of the first part of the theorem.

For the second part of the theorem, we need to prove that any short exact se-
quence (x): 1 — G; — G5 — G3 — 1 induces a short exact sequence MM (%) : 0 —
M (G3) — WM (Gy) — M (G1) — 0 and conversely. The exactness of (x) (respec-
tively, 91" (x)) is equivalent to the exactness of fibers at each s € S by the fiberwise
flatness criterion [27, IV3, (11.3.11)] Thus, we are immediately reduced to the case
when S = Spec k where k is a field.

Let n; be the k-rank of 9" (G;). Assuming (x) is exact, it is clear from the con-
struction that we have the left exactness of D" (), since M*(G;) = H omy(way, k) =
Zieg(GY). But since Og = k is a field, the equality ny = nj+ns forces the exactness

of M* (). The same numerology proves the converse. O
We record the following useful corollary:

Corollary 7.2.7. Let G be a finite locally free commutative group scheme with trivial

Verschiebung. Then naturally wg = coker(pam(c)) as Ogs-modules.

Proof. By the above theorem, we know that G = G* (I*(G)), and we have an

explicit description of the coordinate ring of the right side, namely (7.2.4.1). O
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7.3 Effective local shtukas and 7j-divisible groups

Let S be either a scheme over Specoy or a formal scheme over Spf oy, and let
uy € I'(S,Og) be the image of 7y under the structure morphism oy — I'(S, Og).
(An example to keep in mind is S = Specok.) In this section, we define a special
kind of ind-representable fppf-sheaves of og-modules (namely, mo-divisible groups of
“finite P-height”), which play the same® role in the equi-characteristic setting as

Barsotti-Tate groups do in the p-adic setting.

Definition 7.3.1. Let G be an fppf-sheaf of og-modules over S. We say that G is a

mo-divisible group of finite P-height if the following conditions are satisfied.
1. G is mg°-torsion; i.e., G = lim G[n}].
—n

2. G is mp-divisible; i.e., my : G — G is an epimorphism. Granting (1) and (2), the

mo-divisibility is equivalent to the exactness of

7.3.1.1) (f)mn - 1 — Q"] — Grit™ ﬂGW” — 1, VYn,m >1,
; 0 0 0

where the first map is the natural inclusion. (For a proof, one can adapt the

argument presented in [65, I, §2].)

3. G1 := G|my] is representable by a finite locally free group scheme. (Assuming
(2), this is equivalent to requiring that G, := G[r{}| are representable for all

n>1.)

4. The Verschiebung map for G vanishes (or rather, the Verschiebung map for G,

vanishes for all n > 1).

5While Barsotti-Tate groups over a p-adic integer ring only give rise to crystalline representations with Hodge-
Tate weights in {0, 1}, mo-divisible groups of finite P-height over ox give rise to “crystalline representations” of any
non-negative “Hodge-Pink” weights.
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5. The action of F, on wg 1= @n wg, via functoriality of the Og-module structure

on G is given by the “scalar multiplication” via the structure morphism F, —

I'(S, Og).

6. There exists a constant h € Zsq, such that (my — ug)" acts trivially on wg =
@n W

We say that G is of P-height < h if (mg — ug)"-wg = 0. A m-divisible group of

P-height 0 or < 1 is called étale or strict, respectively. One can check that a -

divisible group G is étale if and only if all G[x{}] are étale, and is strict if and only if

o acts via scalar multiplication by uy on wg.

The following theorem is the motivation for the above definition. This theorem
can be viewed as an analogue of contravariant Dieudonné theory for my-divisible

groups of finite P-height.

Theorem 7.3.2. There exist quasi-inverse anti-equivalences of categories M, and
G, between the category of mo-divisible groups of P-height < h over S and the
category of effective local shtukas of P-height < h over S. The functors M, and G

enjoy the following additional properties.

1. The formation of M, and G, commute with any base change. More precisely,
for any my-divisible groups G5 of P-height < h and any S" — S, we have a

natural isomorphism N, (Gg) = M, (G)g; and similarly for G, .

2. Let (x) : 0 - G' — G — G" — 0 be a sequence of morphisms of mo-divisible
groups of P-height < h. Then (x) is evact if and only if M, (*) is exact. A

similar statement is true for G, .

8. The rank of M, (G) is n if and only if the order of G[mo] is of ¢ (or equivalently,

the order of G[r}] is of g™ for all ).
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We prove the theorem later in §7.3.5-§7.3.6. After we prove the theorem, we will

usually suppress the subscript (-),, since 0y will be fixed throughout the discussion.

0
(In the proof we need to vary the coefficient ring o0y, hence we specify this in the
notation.)

Assume that g is a unit in I'(S, Og). The main example is S = Spec K. Then it

follows that mg — ug is a unit in I['(S; Og|[m]]), so all local shtukas over S are étale.

Combining this with Theorem 7.3.2, we obtain the following corollary.

Corollary 7.3.3. If ug is a unit in T'(S,Og), then any my-divisible group of finite

P-height over S is étale.

Now, set S = Specog. Recall that effective local shtukas over ox are exactly
(¢, &)-modules of finite height, where & = og|[[[m]]. For any effective local shtuka
M over o, we shall show that the og-linear G g-representation T'g(91) is isomorphic
to the mp-adic “Tate module” of the associated mo-divisible group G (9). We first
define the mp-adic Tate module T, (G) where G is a my-divisible group of finite P-

height over o, in a similar fashion as one defines the Tate module for a Barsotti-Tate

group:

(7.3.3.1) 70, (G) = lim G, (K*P),

n
where the transition maps are [m] : G,11 — G,. The following proposition essen-

tially follows from Lemma 7.2.5(1).

Proposition 7.3.4. For each effective local shtuka M over og, there exists a natural

0g-linear G ik -equivariant isomorphism
Ty, (Ge, () 2 T(9) = Home (M, 05 ),

where ogu = K*P[[my]] is the mo-adic completion of the strict henselization of og =
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K{[mo]]. In particular, any og-lattice Gk -representation of P-height < h comes from

the mg-adic Tate module of some my-divisible group of P-height < h.

Proof. We have the following og-linear G g-equivariant maps, which commute with

the natural inclusions which define the direct system {G,, },:

Go(K*P) = Hom,, (M (G,), K*%P)

t

<—T HomUK[[ﬂ'O”v‘P (%* (Gn)v gur/05“r>

~

— HomaK[[wo]],¢(ﬂ*(Gn)a ogur/(77)),

where o acts on Hom,, (9" (G,,), K°P) through IM*(G,,). The first isomorphism
is from Lemma 7.2.5(1) and the second map tr is induced by the “trace map” tr :
S amyt = > a;. One can construct the inverse of tr as follows: for a given
f € Hom,, ,(MM*(G,,), K5P), define recursively a;(f;m) := f(xy~'m) — f(wim) for
i=n,,1, and check that (tr=f)(m) := > a;(f;m)m;" works. Now by taking
the projective limit, the proposition follows. O

7.3.5 Proof of Theorem 7.3.2: the case ¢ = p.

We first assume ¢ = p, and we will use this case to handle general ¢q. If ¢ = p,
then the og-action on G[r{] is determined by the action of 7y, and we do not have
to worry about the action of F, = F,,.

Let G be an ind-group scheme which satisfies (1), (3) and (4) of Definition 7.3.1.
We put G,, := G[r}]. Let us extend the construction of 9*(G) to such ind-group

schemes G as follows:
I <—

(7.3.5.1) M (G) = lim M* (G,,),

where the transition maps are induced from the natural inclusions G,, — G, 1. By

the universal property of direct limit, we have a natural ¢-compatible isomorphism
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M (G) = 5 omg, (G, G,), where the right side means the sheaf of F,-linear homo-
morphisms of fppf-sheaves. By functoriality, oo = IF,[[m]] acts on 2" (G), which
makes it into a module over Og®g,00 = Og[[mo]]. We define ¢ : o*M*(G) — M*(G)
by taking the limit of ¢, : o*I*(G,) — M*(G,,), where 0 = 540y : (’)5(§>1Fp00 —
(’)g@ypoo. Alternatively, one can directly construct ¢ out of the absolute Frobenius
endomorphism Fg, : G, — G, just as we did in §7.2.1.

Applying 9*(-) to the exact sequence (1), for the my-divisibility (i.e., the se-
quence (7.3.1.1) in (2) of Definition 7.3.1) is equivalent to the following exact sequence

of Og|[my]|]-modules with Frobenius structure ¢:

(7.3.5.2) DM (D s 0 — IM(Gy) 0L

M (Grym) — WM (Gr) — 0

for each m,n > 1, identifying 9" (G,,) with M (G,41n)/(7g"). It is a standard
fact that having the exact sequences 9" ()., is equivalent to the local freeness of
M (G) over Og|[mo]], and the Og[[mo]]-rank of IM*(G) is precisely the Og-rank of
M (G4). (See Proposition 7.4.2, for example.) To summarize, the my-divisibility of
G is equivalent to the local freeness of 9" (G) over Og|[mo)].

For ind-group schemes G over S satisfying (1)—(4) of Definition 7.3.1, 9" (-) satis-
fies the following properties. First, 9t*(-) takes an exact sequence of such ind-group
schemes into an exact sequence of (¢, Og[[mo]])-modules, since the projective system
{M*(G,,)} satisfies the Mittag-Leffler condition over open affines in S. Second, the
formation of 9M*(-) commutes with the base change in the following sense. For any

map f: T — S, we have a natural isomorphism

WM (Gr) = Lm M ((Gy)r) = lim (D (G)) = Or[[mol] @5-104(moy £ (G,

n n

where the last isomorphism uses that 9 is locally free of finite rank over Og|[m]].

Recall that for local shtuka 9t over S and a map f : T — S, we defined in §7.1.4(1)
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the pullback as f*90 := Or|[m]] @ -104(mp f M.

Now, Corollary 7.2.7 asserts that we = lim _coker(pan-(c,)) = coker(pa-(q)). So

h annihilates

condition (6) of Definition 7.3.1 is equivalent to requiring that (7o — )
coker (oo (g)); i.e., M*(G) is an effective local shtuka. Observe that the condition
(5) of Definition 7.3.1 is automatic if ¢ = p. We put Mg . == M".

For any effective local shtuka 9, we define Gy (1,(90) as follows.

(7.3.5.3) G, (fmoy) (D) := lim G™ (/7 O),
nz

—_

where the limit is taken as a fppf-sheaf of IF,[[mo]]-modules with respect to transition
maps induced by the natural projections 9t/my 'O — /7P, Observe that
G*(M/75 M) — G, (o)) (M) 1s an isomorphism onto the 7g-torsion of the target. By
construction, Gy (1, (9) satisfies the conditions (1), (3), and (4) of Definition 7.3.1.
The mo-divisibility (i.e., the condition (2) of Definition 7.3.1) is satisfied because
we have the short exact sequence (7.3.5.2) by the Og[[mg]]-local freeness (of finite
rank) for 91, which is in turn equivalent to the short exact sequence (7.3.1.1). The
condition (6) of Definition 7.3.1 is satisfied thanks to Corollary 7.2.7. This shows
that G (1, (") is a m-divisible group of finite P-height. That M, and G (., are
quasi-inverse and satisfy all the desired properties follows from Theorem 7.2.6. This

completes the proof of Theorem 7.3.2 for the case ¢ = p.

7.3.6 Proof of Theorem 7.3.2: the case ¢ =p".

Put ¢ =p". Let 0 : § — § be the absolute Frobenius and o, := ¢” the absolute
g-Frobenius. Let G be a my-divisible group of P-height < h with the action of
0o = F,[[mo]]. We can restrict the action of 0y to F,[[m]] to view G as a my-divisible
group of P-height < h with the action of F,[[m]], so by the discussion of §7.3.5 we

obtain an effective local shtuka D := M . 1 (G) with Fy[[mo]]-coefficients equipped
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with an action of F, which commutes with ¢ and m-action. So we have the isotypic

decomposition

m= @ m,

i€Z /7T
where y; = X’Si, and xo : FyY — I'(S,0s)* is obtained by restricting the structure
morphism F, — I'(S, Og). (The isotypic components for other characters y : Fy —
['(S, Os)* vanish since the F)-action on 90 is given by X0|F; )

The natural p-Frobenius structure ¢on on 9 restricts to pop; : 0*(M,,) — M.,
for each i. So the g-Frobenius map ()" := ((6""1)*popo -0 d*pmo o) :
o9 — M restricts to ¢, : o7 (M,,) — M,,, which gives a g-Frobenius structure on
My,. We put D (G) = (M, q)-

Recall that wg = coker(pgn), where wg = e*GQé /s is the co-Lie algebra for G. So

the condition (5) of Definition 7.3.1 implies that ¢gp; : o*(9M,,) — IM,,,, is surjective

Xi+1
unless i + 1 = 0 mod r, and that coker(psm) = coker [¢, : 0 (M,,) — M,,|. This
shows that 91, (G) is an effective local shtuka with og-coefficients. The exactness
and base change assertions of the theorem (i.e., the claims (1) and (2) of Theorem
7.3.2) follow because the isotypic decomposition behaves well under base change and
exact sequences.

In order to show that 97 is an anti-equivalence of categories, we need the fol-

lowing claim.

Claim A. The map pon; : 0*(M,,) — M

xir1 18 bijective unless 1 +1 =0 mod r.

This claim implies the rank assertion of the theorem (i.e., claim (3) of Theorem
7.3.2). In order to prove Claim A, we can assume S is local. Since we already
showed that pgy; is a surjective map between finite locally free Og|[m]]-modules

unless ¢ + 1 = 0 mod r, it is enough to show the source and the target have the
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same rank. But this immediately follows because my — ug is not nilpotent in Og[[m]]

and pop[——] : (¢"9M) [=1—~] — M[—L—] is an isomorphism, so pan | is an

O —Uo O —Uo O —Uo O —Uo

isomorphism.

Claim B. One can recover M = Mg .. 1(G) with its Fy-action from D, (G) =

(M, pq) functorially and uniquely up to unique isomorphism.

Combining this claim with the theorem for the case ¢ = p, it follows that Dy is
an anti-equivalence of categories.
To prove Claim B, first observe that by Claim A, (¢g)" : (07)*9 — 9 induces

an 7 -equivariant isomorphism
7\ * ~
(0") My, — Iy,

for each 0 < < r. Let us put M := o' (M (G)) and M’ := @) M. We define
a p-Frobenius structure @oy : o™ — 9N by idgy | : o™ = DM, — D, for
i+1#7rand ¢, ™M | = o7 M — MG, where p, is the g-Frobenius structure
on My := M, (G). One can directly see that 9t and M’ are naturally isomorphic as
w-modules. This proves Claim B.

For any effective local shtuka 9, (i.e., a finite locally free Og[[m]]-module equipped
with a g-Frobenius structure ¢, : 079, — 9, ) let us define G (M) as follows. Fol-
lowing the recipe in Claim B, one obtains an effective local shtuka 9t with F,[[m]]-
coefficients equipped with an Fg-action which is compatible with the p-Frobenius
structure @o : 0,9 — M. Therefore, by functoriality F, acts on the my-divisible
group G iz (M) (which a priori comes equipped with F[[m]]-action). Clearly,
the F-action and mp-action commute, so 09 = F,[[mo]] acts on Gg 1,(97), and this

action satisfies the condition (5) of Definition 7.3.1. In other words, G§

(M) is

mo]]

a my-divisible group of finite height with o¢-coefficients. We let G (9) denote this
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mo-divisible group. Claims A and B, together with the case ¢ = p proved in §7.3.5,
show that 1, and G are quasi-inverses and satisfy all the desired properties. This

completes the proof of Theorem 7.3.2. [J

7.3.7 Examples of my-divisible groups of finite P-height

At first glance, the definition of my-divisible groups of finite P-height involves
many technical conditions such as having trivial Verschiebung. But the examples
below show that strict m-divisible groups (i.e., mo-divisible groups of P-height < 1)
occur quite naturally. One may regard the non-strict ones as a generalization to

higher Hodge-Pink weights.

mo-divisible group associated to a Drinfeld module: let SpecA = C'\ {oo},
where C' is a smooth projective geometrically connected curve over some finite
field of characteristic p. Fix a closed point P € Spec A (also view P as a maximal
ideal of A) and choose a local parameter my at P. Let S be a scheme over A\p,
and L/s a Drinfeld A-module®. Then the “mq-divisible group” G := lim L[P"]

associated to L is a strict mp-divisible group.

Strict formal F,[[mo]]-module: Let S be a og-scheme on which ug (i.e., the image
of mp in I'(S, Og)) is locally nilpotent (or more generally, a formal scheme over
Spfog). Let G/g be a formal Lie group’, equipped with an action of 0. It
follows from the Cartier theory that a formal Lie group which is killed by p
always has trivial Verschiebung [34, Ch.I, Prop 2.1.1]. If we further assume
that my — uo acts trivially on wg, then G is automatically 73°-torsion by the

argument similar to [65, Ch.II, Lemma 4.2] or [75, (2.4) Lemma 0]. So if G is

6For the definition, see Drinfeld’s original article [24] or Deligne-Huseméller [21].
7i.e., a formally smooth, ind-infinitesimal group with tangent space finitely generated over Og. See [65, II, (1.1)].
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a formal Lie group with og-action, then G is a strict my-divisible group if and
only if G is mp-divisible and 0y acts on wg via “scalar multiplication” through

the structure morphism oy — I'(S, Og).

Lubin-Tate formal group: Now, we define the “Lubin-Tate formal group” L7 g
which corresponds to the local shtuka £5(1) via the anti-equivalence in Theorem
7.3.2. (See Definition 7.1.5 for the definition of £¢(1).) This computation is also

done in Hartl’s dictionary [41, §3.4].

Let LT g be (G:l = Spfq Og[[X]] as a formal Lie group, equipped with mg-action
given by [mo]*X = uoX + X9. Clearly, L7 g is a strict mp-divisible group.
Now we compute MM (LT) = H#omr,(LT,G,). The right side is a rank-1
free module over &ndp, (@;) ~ Og{{7}}, where 7 € Endyq((/G:L) is defined by
7(X) = X?and 7-a = a? 7 for a € Og. Also, Ty acts on MM (LT) via the
natural action of (ug + 7) € gnqu(@;), and ¢ : o} (M(LT)) — MH(LT) is
given by ¢(o;m) = 7-m = (m — ugp)-m for any m € M (LT). This shows that
(L) = £5(1).

Now we work over S = Specog and let oo(1) := T,,(L7) be the rank-1
lattice representation of G given by the “Lubin-Tate character”. Then we

have TE (L, (1)) = T, (LT ) =: 0¢(1) by Proposition 7.3.4, hence the notation

Lop (1).
Motivated by the example, we make the following definition:

Definition 7.3.8. We define ﬁT?h for a non-negative integer h to be the my-divisible
group which corresponds to the Tate object £g(h) via the anti-equivalence in Theo-

rem 7.3.2
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For S = Spec ok, we have
Ty (LT®") 2 T(Loyc (h)) = T (Lo (1)) = Ty (LT)*" = 09 (h)

by Proposition 7.3.4, hence the notation.

7.3.9 Duality

We now define a duality operation for local shtukas of P-height < h for any h > 0,

or equivalently for my-divisible groups of P-height < h.

Definition 7.3.9.1. For an effective local shtuka 991 of P-height < h, the Faltings
dual of P-height h is the effective local shtuka 9" := 9*(h) of P-height < h.

For a my-divisible group G of P-height < h, the Faltings dual of P-height < h is
the mo-divisible group GV which corresponds to 9" (G)Y via the anti-equivalence in

Theorem 7.3.2.

One can check that Faltings dual is an exact anti-equivalence of categories which
commutes with any base change and satisfies all the usual axioms for a good duality
theory. The Faltings duality depends on the choice of the P-height bound &, though

we do not specify this in the notation.

7.3.10 Lubin-Tate type my-divisible group of P-height < h

Note that the constant étale mo-divisible group Fy/og and LT ®h are each other’s

Faltings dual (of P-height < h). Thus, by working on geometric fibers we get:

Lemma 7.3.10.1. Let G be a my-divisible group of P-height < h. Then the following

are equivalent.

1. The geometric fiber G5 at each geometric point 5 of S is isomorphic to (LT ®")®"

for some n.
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2. The Faltings dual of P-height < h for G is étale.

We call a my-divisible group G is of Lubin-Tate type of P-height h if G satisfies the
equivalent conditions of the lemma. Lubin-Tate type my-divisible groups of P-height
h play the same role, in the equal characteristic arithmetic, as Barsotti-Tate groups

of multiplicative type do in the mixed characteristic arithmetic.

7.4 Some commutative algebra over an adic ring

In this section, we state some standard facts about commutative algebra over an
adic ring, which are used in this chapter (and elsewhere). Readers may skip this
section and use this as the “reference sheet” for the standard facts when they are
used.

Let A be an “a-adic ring”, in other words, A = lim A/a™ for some finitely gen-
erated ideal a C A. The example to keep in mind is A = R[[t]] for any ring R and

a=tA.

Proposition 7.4.1. [37, Prop 7.2.10PF The functors M — {M/a"}, and {M, }, —
liLnn M, are quasi-inverse equivalences of categories between the category of finitely
generated A-modules and the category of projective systems {9M,, },>1 where each M,
is an A/a™-module, M, is a finitely generated A/a-module and each transition map
induces My 1 @ Afa™ = IM,. Moreover, M is locally free of finite A-rank if and

only if each M/a™ is locally free of finite A/a™-rank.

Now, we specialize to the case when A = R][t]] endowed with the t-adic topology.

In this case, we have a simpler criterion for the local freeness over R[[t]].

8This proposition is also stated in [27, I, Prop 7.2.9], except the local freeness assertion. But local freeness can be
read off from [27, I, Cor 7.2.10], because locally free modules of finite rank are exactly finitely generated projective
modules.
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Proposition 7.4.2. Let M be a finitely generated R[[t]]-module (or more generally,
t-adically separated and complete topological R][t]]-module). Then I is finite locally
free over R[[t]] if and only if M has no nontrivial t-torsion and M/t is finite locally

free over R = R|[t]]/(t).

Sketch of the Proof. The “only if” direction is obvious, so we sketch the “if” direc-
tion. The t-adic separatedness and completeness assumption implies by successive
approximation? that 91/¢"90 is finitely generated over R[[t]]/(t") for each n, so in
turn it implies that 90 is finitely generated over R[[t]].

Since there is no nontrivial t-torsion, we have the short exact sequences
0 — M/E"M L5 M/ — M /£ — 0,

for each m,n > 1. Then it follows from the local flatness criterion!® that 90t/t"90 is

a flat R[[t]]/(t")-module for each n. This implies our claim by Proposition 7.4.1. [

We record the following interesting consequence, which roughly says that any

finite locally free R[[t]]-module can be trivialized by “localizing” R.

Corollary 7.4.3. Let MM be finite locally free over R|[[t]]. Then there exists a (fi-

nite) Zariski-open covering {R[1/f]} of R such that M & (R[1/f])[[t]] is free over

(R[L/ D] for each f.

Proof. Take an open covering { R[1/f]} which trivializes 0t/t90t. This covering works,

by successive approximation and the proof of the previous proposition. O

The following statement and the proof are taken from [34, Lemma 2.2.8].

Lemma 7.4.4. Let M be a locally free R[[t]]-module of rank r. Let MM C M be an

R|[t]]-submodule which satisfies the following properties:

9or by “Nakayama’s lemma” for nilpotent ideals
10See, for example, [62, Thm 22.3], especially the equivalence of (1) and (4’). Since the ideal (t) C R[[t]/(t™) is
nilpotent, we can apply the local flatness criterion without requiring R be noetherian.
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1. There exists an integer N such that tV9N C I C M.
2. The quotient M /M’ is locally free over R.

Then M’ is finite locally free as an R][t]]-module.

Proof. Note that 9 /N9 = ker[DN/tVON — OM/M'| where M/ — M/ is a
surjection between finite locally free R-modules, so 9/t is finite locally free as
an R-module. Hence M is R|[[t]]-finite since M is. Thus by Proposition 7.4.2, to
show that 9 is finite locally free over R|[[t]] it is necessary and sufficient to show that
9 has no nontrivial ¢-torsion and that 9 /t9 is locally free as an R-module. But
being a submodule of M, M’ is torsionfree, so it remains to show the local freeness
of M/t

For any integer n > N, we have the following short exact sequence.
(%) 0 — M /"IM — M/t"M — M/M' — 0

Since M/M’ is locally free (so projective) over R, this exact sequence is split and
R’ ®p (%) remains exact for any R-algebra R'. In particular, 9V /t"90 is finite locally
free over R for any n > N.

Now, we have the following short exact sequence.
(+x) 0 — M/t S V9N — M/t — 0

The exactness follows from the injectivity of 9 /tV 9 Lo /N9t and the exactness
of (%). Similarly, R’ ®p (**) remains exact for any R-algebra R, using the exactness
of R ®p (*) . This implies, by standard facts about flatness', that 9 /¢9 is flat
over R. It is clear from the exact sequence (kx) that 9/t is finitely presented

over R. O
M See, for example, [9, Ch.I §2.5 Prop 4].
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The following lemma is a “partial converse” to the previous lemma.

Lemma 7.4.5. Let M and I be locally free R|[t]]-modules of the same finite con-
stant rank. Assume that we have R|[[t]]-linear map f : M — M such that the image

of f contains tNIM for some integer N. Then coker(f) is locally free over R.

Proof. Note first that f is necessarily injective, since f [%] is surjective and hence an
isomorphism. Similarly, for any ideal I C R, the reduction (f mod I) : I /IO —
M/ IO is injective.

Now, consider the following short exact sequence.
1) 00— L M — coker(f) — 0

The R-flatness of coker(f) follows because () mod ¢ is short exact and for any
ideal I C R containing Vv, the right exact sequence (1) mod I is left exact. (Recall
that any R'-module M’ is flat provided Tor® (I, M’) = 0 for all ideals I of R.)
Furthermore, coker(f) is finitely presented over R, thanks to the right exact sequence

() mod (£"). O



CHAPTER VIII

Torsion G g-representations of P-height < A

In this chapter, we introduce “torsion (yp,S)-modules” of P-height < h, which
play a central role for the rest of this work. For the purpose of studying defor-
mation theory in §XI, it is useful to consider torsion (¢, &)-modules with various

7

“coefficients,” which will be made precise and studied in §8.2.

8.1 Torsion p-modules and torsion G y-representation of P-height < h

We begin with defining a torsion (¢, &)-module of finite P-height. One can imme-
diately verify that a (¢, &)-module obtained as a cokernel of an isogeny in Modg(¢)
satisfies the following definition. (In fact, we will also prove its converse in Proposi-

tion 8.1.4.)

Definition 8.1.1. A (¢, &)-module M is called a torsion (¢, S)-module of finite

P-height if the following conditions are satisfied.
1. There exists an integer N such that 7)Y9)t = 0.
2. As a G-module, M is of projective dimension < 1.
3. There exists an integer h > 0 such that P(u)"-coker(pam) = 0.

We say that such 9 is of P-height < h if P(u)"-coker(pgn) = 0. We let (Mod /&)

denote the category of torsion ¢-modules over & of finite P-height, and (Mod /&)S"

177
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the full subcategory of (Mod /&) whose objects are of P-height < h. We let
(ModF1 /&) denote the full subcategory of (Mod /&) whose objects are isomorphic to
P,(S/m;'S) as G-modules!, and (ModFI /&)S" the full subcategory of (ModFI /&)

whose objects are of P-height < h.

In the case 0y = Z,, basic properties of torsion (¢, &)-module of P-height < 1 are
studied in [51, §1.1], and this is easily adapted to the equi-characteristic case, as we
now show.

In Definition 8.1.1, the condition on the projective dimension can be “simplified”

as follows.

Proposition 8.1.2. Let MM be a finitely generated S-module such that 7Y 9 = 0 for

some N. Then the following are equivalent.
1. As a S-module, M is of projective dimension < 1. (So we allow M = 0.)
2. There exists one element o € mg\myS such that M has no nonzero a-torsion.

3. For any element a € mg \ 19+ S, M has no nonzero a-torsion. In particular,

M has no nonzero u-torsion and P(u)-torsion.

For the case og = F[[mo]] (so & = ok|[mo]]), M is of projective dimension < 1 as a

&-module if and only if M is finite free over ok .

Proof. The last claim for the case 0y = F,[[m]] follows from the equivalence between
(1) and (3) (using o = u). The implication (3)=-(2) is trivial, and the equivalence
(2)<(1) is just the theorem of Auslander-Buchsbaum [62, Thm 19.1]. In order to
show (1)=(3), assume that 9t has nonzero a-torsion for some o € mg \ 19-S. Then

there exists an element x € 9 whose annihilator is exactly mg, since (7, @) is an

I The notation (ModFI /&) stands for “Modules & Facteurs Invariants.”
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mg-primary ideal. Then we have a short exact sequence

l—ax

0—=6&/mg——=M——M/(z) —0.

Since the projective dimension of & /mg is exactly 2 and the projective dimension of
M/ (x) is at most 2 (by the homological criterion of regularity and the fact that & is
a regular local ring of dimension 2), we conclude that 9 is of projective dimension

2. O

Next, we show that any 9 € (Mod /&)S" can be written as a cokernel of some

isogeny f: 9y — My in Mod (). We first need the following lemma.

Lemma 8.1.3. For M € (Mod /&), the Frobenius structure ¢ : o™ — M is

mjective.

Proof. By Proposition 8.1.2, the natural map 9t — Sﬁ[%] Y 0 ®g MM is injective.
Now apply Lemma 2.2.3.1 for R = & and R’ = og, keeping in mind that oz ®g I is

an étale p-module. O

Proposition 8.1.4. For M € (Mod /&), there exist My, M € Modg(0)S" and

an isogeny f : My — My, such that M = coker(f) as a p-module.

Sketch of Proof. In the case oy = Z,, this proposition is exactly [52, Proposition
2.3.4] which can be adapted to the case 0y = F,[[mo]]. We sketch the proof.

It is enough to find My € Mods () and a surjective map My — M of p-modules.
In fact, the kernel 901, of this map is automatically free over & since the projective
dimension of 9 is < 1, and we have P (u)"-coker(pgy, ) = 0 thanks to the injectivity
of pgn and the snake lemma. The construction of 9 is identical to the one given in

the proof of [52, Prop 2.3.4]. ]
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8.1.5

From now on, we write (ModFI /og)® to denote torsion étale p-modules over og,
which used to be denoted as Migtor(gzp). From §5.1, we have quasi-inverse anti-
equivalences of categories Di and T between (ModFI /o¢)®" and Repy (G x).

Since the scalar extension og ®g () induces a functor (Mod /&) — (ModFI /og)%,
we can define a functor T'g : (Mod /&) — Repy (G ) by Tg(IM) 1= Ti(0s Qe M) =
Homg ,,(9M, £ /0gur) for M € (Mod /S). Note also that M — o0g ®e M = M[1]
is injective by Proposition 8.1.4(3). The functor T4(-) may not be fully faithful on
torsion objects.

To define T for M € (Mod /&)S", we can use a “smaller” ring than " /ogur

with “integral” structure. We first introduce more rings:

G&"  the integral closure of & inside ogur .

S the closure of &Y C ogw under the mg-adic topology.

The endomorphism o : ogur — o0guw restricts to flat endomorphisms of &" and
G&™. The Galois group G acts by isometries (with respect to the mp-adic norm) and

commute with o.
Lemma 8.1.6. For MM € (Mod /&), the natural map
Homeg , (9, ¥ [1/m] /&™) — Homeg (M, EY /ogur) =: Ts (M),

which 1s induced by the natural inclusion of the second argument, is an G i -isomorphism.

For M € Mods(p), the natural map
Home , (M, 6") — Home,,(M, ogw ) = T5(9M),
which 1s induced by the natural inclusion of the second argument, is a G i -isomorphism.

Proof. The statement for 9 € Modg(p) follows from the statement for 90t/my9MN,

thanks to Lemma 5.1.9. Therefore it is enough to prove the lemma for MM €
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(Mod /&). If oy := Z,, then this follows from [31, §B. Propositions 1.8.3]. We
give a proof when o0y = IF[[m]], so ogu = KP[[m]] and S 2 0 jsen [[mo]].

For any f € Home (9, E" /ogw), the image f(9) is finitely generated over
S and is stable under o : €Y /o — E"/ogw. Now, consider an element o :=
Yo aﬂro_i € & /ogu where a; € K*P. If not all of a; are in 0gser, then the G-
span of {o7(a)};50 cannot be finitely generated over &. Therefore, in order to have

a € f(M), all a; must lie in oer. This shows that a € ™ [=]/&™. O
Now we can make the following definition:

Definition 8.1.7. Let M € (ModFI/og)¢*. By a G-lattice of P-height < h in
M we mean a p-stable &-submodule 9 C M such that 9 € (Mod /&)S" and
0 Qg M = M.

We say that T' € Repe (G ) is of P-height < h if there exists 9 € (Mod /&)S" of
P-height < h such that T'= T(9M), or equivalently, if Dz (7") admits a S-lattice of
P-height < h. We say that T' € Repl'(Gk) is of finite P-height if for some 7, h € 7Z,

00

the Tate twist 7'(r) is of P-height < h. We let Rept?”(Gx) and Rep'™~"(G)

denote the categories of torsion representations of finite P-height and of P-height

< h, respectively.

By Proposition 8.1.4, a torsion G g-representation 7' is of finite P-height if and
only if T is isomorphic to the cokernel of some isogeny 77 — T of op-lattice G-
representations of finite P-height, and T is of P-height < h if and only if one can
find such Ty and 77 which are of P-height < h.

Unlike the case of free étale p-modules (c.f. Theorem 5.2.3), G-lattices of P-
height < h in M € (ModFI /og)® do not have to be unique. See §9.3 for more

discussion. We will see later that if for T € Rep™(G ), T/miT is of P-height < h

00
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for all n > 1, then D*(T) has a (necessarily unique) G-lattice of P-height < h, so T
is of P-height < & in the sense of Definition 5.2.8. (The converse is trivial.) This is
not entirely trivial since the G-lattice in Definition 8.1.7 (applied to D*(T'/#{T)) is
not unique, and this is proved in Proposition 9.2.6.

Consider M € (ModFI /og)®. In order for a ¢-stable &-submodule M C M
to be a G-lattice of P-height < h, 991 has to be of projective dimension < 1 as
a G-module, in addition to the condition P(u)" coker(¢|on) = 0. But in fact, the
projective dimension condition is satisfied thanks to Proposition 8.1.2; because 901 is
a submodule of M which has no nontrivial u-torsion (so the same is true for 9t). So

we obtain the following lemma.

Lemma 8.1.8. Let M be a finitely generated torsion og-module and 9N C M be a
finitely generated G-submodule. Then IM is of projective dimension < 1 as a G-

module.

Remark 8.1.9. A striking result is that once we formulate a deformation problem for
G k-representations of P-height < h, the tangent space of the deformation functor is
finite-dimensional if k is finite. This allows us to prove the existence of the universal
deformation ring for G g-representations of P-height < h (Theorem 11.1.2), similar
to the classical theorem by Mazur for absolute Galois groups for a finite extension
of Q or Q, [63, 64]. Note that without the P-height < h condition, the deformation
functor has an infinite-dimensional tangent space even when k is finite, so there is
no (complete noetherian) universal deformation ring. See §11.7.1.

Let 09 = Fy[[mo]]. We saw in §7.3 that there exists a “Dieudonné-type” anti-
equivalence of categories between Modg(p) and certain kinds of mp-divisible groups
over ox. Under this anti-equivalence, the functor T'g was interpreted as associating

the “Tate module”. (See Theorem 7.3.2 and Proposition 7.3.4.) For this reason, the
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representations of finite P-height can be viewed as an equi-characteristic analogue

of crystalline representation.

We digress to study the case of P-heights < 0.

Proposition 8.1.10. Any T € Repg‘ér(g[{) is unramified if and only if there exists a
g -torsion étale (¢, &)-module M of projective dimension < 1 such that T = Tg(ON)
as G g -representations. In particular, any unramified og-torsion G i -representation

1s of P-height < h for any h > 0.

Proof. We first show that for any mi°-torsion étale (¢, &)-module 9, Tg(M) is
unramified. Choose a “minimal” finite free G-module 9, equipped with an G-linear
surjection My — M (i.e., the surjection induces a k-isomorphism 9y /meMy =
M /meM). Since M is of projective dimension < 1, My := ker[My — M| is also
finite free over &. Choose any lift ¢g : 09y — My of p : *IM — M, and by
Nakayama’s lemma ¢, is an isomorphism. This makes 21; into an étale (p, S)-
module. By Lemma 5.1.9 we have Tg(9M) = Ts(M)/Ts(My), and the right side is
unramified by Proposition 5.2.10.

Now, assume that T' € Repg (G ) is unramified and we seek an étale S-lattice
in the étale p-module Dg(T) := Homgyg, (T, E" /oguw). The idea of the proof is
similar to the case when 7' is an unramified og-lattice G g-representation (Proposition
5.2.10). Since I acts trivially on T, any 0¢[Gk|-map [ : T — £ /0w factors through
(E™ /ogu ) K = 0g @y (Frac Weh /W*") where W denotes the strict henselization
of W. (Recall that W = W (k) if 09 = Z,, and W = k[[mo]] if 0o = F,[[m0]].) So we

have a natural isomorphism of ¢-modules:
(8.1.10.1) D(T) = og @w U*(T),

where U*(T) := Homy, (g, | (T, Frac W*" /W *") equipped with the @-structure induced
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from the natural Frobenius endomorphism o : Frac W /Wh — Frac Wsh /W 2
Since og is faithfully flat over W, we can deduce from (8.1.10.1) that U*(T’) is (finitely
generated over W and) a m{°-torsion étale (¢, W)-module. So M := S @y U*(T) is

a mg°-torsion étale (¢, &)-module, and we have T = T'5(9) by construction. O

We record the following corollary of the proof, which will be used later in the

proof of Proposition 11.4.2. Let us define an 0¢[G i /I x]-module

Tw(U) :== (W @y U)¢= and T, (U) := Hom,, (U, Frac W*" /")
for any finite torsion étale (¢, W)-module U; and (¢, W)-modules

U(T) :== (W*" @w T)9% and U*(T) := Homoy(gy /1s] (T, Frac W /W*")
for any unramified 7§°-torsion G x-representation.

Corollary 8.1.11. The assignments Ty, and U define quasi-inverse length-preserving
exact equivalences of categories between Repf;zr(g ix/Ik) and the category of finite

torsion étale (@, W)-modules which respects ®-products, internal homs, and dual-

ity. Furthermore, we have a natural isomorphism D¢(T) = o @w U(T) of étale

tor

o (Gr/Ix) and a natural Gk -equivariant isomor-

(p, 0¢)-modules for any T € Rep
phism Ty, (U*) 2 T&(6 @w U) for any finite torsion étale (p, W)-module U, where
U* := Homy (U, # o /W) is the dual torsion étale (@, W')-module.

8.1.12

We now show that the notion of P-height < h for op-torsion G g-representations
is insensitive to unramified extension of K (i.e., it only depends on the action of I ).
We first set up some notations. Let K" 2 k*P((u)) denote the completed maximal

unramified extention of K. For any complete “unramified” extension K’ := k'((u))

2The Frobenius endomorphism o : Frac Ws" /W** — Frac W*" /W 5" can be obtained by restricting o : £/0gur —
&/ogur. Equivalently, one can obtain o from the universal property of strict henselization.
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of K (with & perfect if oy = Z,), we let Gg+ and og,, denote rings defined in a
similar way to & and og with K and k replaced with K’ and k’. We also define
endomorphisms 0 : &g — Ggs and 0 : 0g,, — 0g,, in a similar way we defined o
on & and o¢. So (&g, 0) and (o¢,,,0) become o-rings over (&, 0).

In the case 0y = F,[[m0]], we do not necessarily assume that K’ has a finite p-basis,
since we want to allow K’ = K" and this does not have a finite p-basis unless k
is perfect. Note that the theory of étale p-modules (as discussed in §5.1 does not
use the assumption of having a finite p-basis, and the definitions of (Mod /& g/ )S"
and I*esK, make sense as defined without assuming that K’ has a finite p-basis. We
say a og-torsion representation T' of Ix = Gp.. is of P-height < h if there exists

Mz € (Mod /6., )S" such that T = T -, (Mz..) as G p..-representations.

Proposition 8.1.13. An og-torsion Gy -representation T' is of P-height < h in the
sense of Definition 8.1.7 if and only if its restriction to Ik is of P-height < h in the

above sense.

Proof. The “only if” direction is trivial; if T = T'g(9M) as Gk-representations for

some M € (Mod /&)S", then we have a natural isomorphism 7" = T o (G ®eM)

ur

as I-representations and clearly &z, ®¢ MM € (Mod /G 5. ).

tor
0o

To show the “if” direction, we assume that T € Rep,. (Gx) is isomorphic to

T (Mpw) as an Ig-representation for some Mz, € (Mod /S5, )S". Let M :=

Kur

D3 (T) denote the étale (¢, 0¢)-module corresponding to 7', and we have a natural

1] = 0g.

isomorphism (M ) [, Pur

®oe M of étale p-modules. Let M := M N Mz,
where the intersection is taken inside 082 ®og M. Since 91 is a G-submodule of

M = im[%] and has no non-zero infinitely u-divisible element, 9 is finitely generated

over G. Clearly, we have 9MM[] = M and M € (Mod /&)<". O
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The following theorem serves as a motivation for introducing torsion -modules

and G g-representations of finite P-height.

Theorem 8.1.14 (Kisin [52]). Let o9 = Z,,, and follows the notations as introduced

in §1.3.1.2.

1. Let T be a torsion G -representation which can be obtained as a cokernel of an
1sogeny of Galois-stable lattices in semi-stable representations with Hodge-Tate

weights in [0,h]. Then T as a representation of G »_ = G is of P-height < h.

2. (Breuil-Kisin classification of finite flat group schemes) If p > 2, then there
exists an anti-equivalence of categories G* from (Mod /&)S! to the category of
finite flat group schemes of p-power order over o0, . Furthermore, for 9 €

(Mod /&)S! we have a G » _ -equivariant isomorphism G*(9M)(H) = Ts(IM).

3. [15, Theorem 3.4.53] If p > 2, then “restricting the G »-action to G . 7 defines
an equivalence of categories from the category of finite flat G » -representations
(i.e., torsion G 4 -representations which are obtained from the generic fibers of fi-

nite flat group schemes over 0 ) to the category of torsion G __-representations

of P-height < 1.

Proof. The claim (1) follows from Proposition 8.1.4 and the fact that any Galois
stable lattice in a semi-stable representation with Hodge-Tate weights in [0, h] is
automatically of P-height < h as a representation of G - = G (Proposition 2.4.9
and Theorem 2.4.10).

The claim (2) follows from Proposition 8.1.4, Kisin’s classification of Barsotti-Tate
group (Theorem 2.4.11(1)), and Raynaud’s theorem [6, Theorem 3.1.1] which asserts
that any finite flat group scheme over 0 can be written as the kernel of an isogeny

of Barsotti-Tate groups over o .
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The essential surjectivity of the claim (3) follows from the second statement of
the theorem. We sketch the proof of the full faithfulness, which can be found in [15,
Theorem 3.4.3]. Let T, T5 be finite flat G ,-representations and let f : T} — T3 be
a G -equivariant map. Taking the anti-equivalence of categories D, we obtain a
map v : My — M; of torsion étale p-modules, and we can find some G-lattices of
P-height < 1, say M; C M;, such that v takes My into M. (Compare with §9.2.3.)
By the claim (2) of the theorem, 7 corresponds to a map of finite flat group scheme

models for T} and T5, so f is G y-equivariant. O

Theorem 8.1.14(2) was originally conjectured by Breuil in [11] for all primes p
including p = 2, and he proved the special case when p > 2 and the finite flat group
schemes killed by p. The case p > 2 (i.e., Theorem 8.1.14(2)) was proved by Kisin
[52, (2.3)]. For p = 2, Kisin [53] proved the classification of connected finite flat
group schemes using his classification of connected Barsotti-Tate groups. (Under
the contravariant correspondences, the connectedness of finite flat group schemes

corresponds to the condition that pgy is “topologically nilpotent.”)

Remark 8.1.15. For the case 0y = Z,, one can think of (Mod /&)S" as a “higher-
weight analogue” of finite flat group schemes. Torsion étale p-modules can be thought
of as an “analogue” of the generic fibers, and G-lattices of P-height < h plays a role
analogous to finite flat group scheme models or prolongations of a generic fiber.
This point of view is supported by the Breuil-Kisin classification of finite flat group
schemes for the case h = 1. On the other hand, torsion (¢, S)-modules of finite
P-height only give rise to G »__-representations, and for A > 1 it seems to be hard to
handle the gap between torsion semi-stable (or crystalline) G ,-representations and

their restrictions to G »__.
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8.1.16 -nilpotent objects

A torsion ¢-module 9 € (Mod /&)S" is called -nilpotent if ¢"(c*M) C mg-M
for all sufficiently large r, or equivalently, if for any = € 9t the sequence ¢"(c*"z)
converges to 0 for the mg-adic topology as r — oo. Note that this is the same as the
u-adic topology on 1.

The notion of y-nilpotentness for such 9 is “well-behaved” under subobjects,
quotients, extensions, direct sums and tensor products. More precisely, for a short
exact sequence 0 — M — M — M” — 0 of torsion p-modules, if two of them are
p-nilpotent then so is the third. If torsion p-modules 9 and 9 are p-nilpotent,

then so are their tensor product M ®e M’ and direct sum 9 N

8.1.17 Analogue of connected-étale sequence

For M € (Mod /&)S" we define the mazimal étale submodule MM C I as follows:
(8.1.17.1) M = () ¢ (o™ M).
r=1

By the theorem of Auslander-Buchsbaum, 9 is of projective dimension < 1 as a
G-module; we have seen that 991 has no non-trivial u-torsion, so the same is true
for M (using Lemma 8.1.3). Therefore, M € (Mod /&)S". Clearly, I is an
étale p-module which contains all étale submodules of 91, and any p-compatible
map [ : M — N in (Mod /&) takes M into M.

We now show that the quotient 99/9M¢ also lies in (Mod /&)S". Then we can
say that 91/9 is a maximal p-nilpotent quotient of 9. The issue is to show
that 91/9M is of projective dimension < 1 as a G-module. By the theorem of
Auslander-Buchsbaum, it is enough to show that 91/9 has no nonzero u-torsion.

Since ¢ : o*IM — M is an isomorphism, we obtain a surjective map @ :

o (M JuIMet) — ME /uIM® between modules of the same finite length, hence @ is
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an isomorphism. In particular, z € u-9t® if and only if ¢"(0*"z) € u- M.

Now, let y € 9 be such that uy € M. Since the sequence " (o*" (uy)) converges
to 0 in M as r — oo, the same is true in M by the Artin-Rees lemma. So there
exists an 7 such that ¢"(c*"(uy)) is a u-multiple of some element in 9, hence
y € M. This shows that M/M € (Mod /&)

Let us summarize what we have proved:

Proposition 8.1.18. For any M € (Mod /&)S", we have a short exact sequence in

(Mod /&)sh
(8.1.18.1) 0 — M — M — M/M* — 0,

where MM is mazimal amonyg étale submodules of M, and M/M is mazimal among
p-nilpotent quotients of M. The sequence (8.1.18.1) is functorial in M in the sense
that any map f : M — N in (Mod /&)S" takes M into M (hence induces

M /M — N/NE ). We call this exact sequence connected-étale sequence for 9.
We record the following facts.

1. Clearly, 9 € (Mod /&)S" is étale if and only if M = 9N, and M is p-nilpotent

if and only if M = 0.

2. If o9 = F,[[m]], then the connected-étale sequence for M exactly corresponds

to the connected-étale sequence for G*(9).

3. If o9 = Z, and h = 1, then we have the anti-equivalence of categories G*
from (Mod /&)S! to the category of finite flat group schemes of p-power order
over o, by the Breuil-Kisin classification (Theorem 8.1.14(2)). Under this
correspondence, M € (Mod /&)S! is étale if and only if G*(9M) is étale, and M

is p-nilpotent if and only if G*(9) is connected. Furthermore, for any 9t €
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(Mod /&)S!, one obtains the connected-étale sequence for G*(9) by applying

G™ to the connected-étale sequence for M (which justifies the name).

8.2 -modules with coefficients

For an og-algebra A, we introduce a class of p-modules “with A-coefficients,”
which will play an important role in deformation theory in §XI. Whenever possible
we avoid restricting our choice of A to complete local noetherian o0g-algebras, since

they actually occur in the arguments.

8.2.1

Let A be a continuous a-adic og-algebra (i.e., a C A contains some power of 7y and
A=lim A/a"). Two main examples which arise later are discrete 0g-algebras where
T is nilpotent and complete noetherian local ogp-algebras (in which case a = my).
We often do not specify a if there is no risk of confusion.

Let (A, a) be as above. For any og-algebra R, we set Ry := lim (A/a" ®,, R).
If Ais a discrete ogp-algebra where 7 is nilpotent, then Ry = A ®,, R. If Ais a
complete noetherian local 0p-algebra, then R4 = lim (A/m’ ®,, R). For any o-ring
(R, o) over (00,1d), we A-linearly extend og to Ra. In particular, if og is finite flat,
then so is og,. This is the case when R = & and R = o¢. (In the case 0y = F,[[m]]
we use the assumption that the residue field k of ox has a finite p-basis.)

We let (ModFI /&)S" denote the category of p-modules of P-height < h which
are finite locally free® over G&4. Similarly, we let (ModFI /og)é denote the cate-
gory of étale p-modules which are finite locally free over og 4. If A = o0y then
(ModFT/&)5" is just Modg(¢)S" and (ModFI /og)St is just Mﬁi’ﬁee(ap), because

Gy, = 6 and 0g o, = 0. If #(A) < 00 (i.e., if A is a finite artinian og-algebra), then

3A locally free module is always assumed to be of constant rank.
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an object of (ModFI /&)S" can be regarded, by forgetting A-action, as an object of
(ModFI /&)S". But coefficient rings A that are not artinian do appear in the later
arguments (see §11.1.5).

Let (A,a) and (B, b) be continuous adic op-algebras. Consider a continuous 0¢-
map A — B. Then, for M, € (ModFI/&)S", the “completed” scalar extension
BR M, = lim (B/b" ®@4My) = S s, My, together with the Frobenius struc-
ture defined by B-linearly extending @on, , is an object of (ModFI /&)§". This defines
the “change-of-coefficients” functors (ModFI /&)$" — (ModFI /&)5", and similarly
one can define (ModFI /og)% — (ModFI /og)%.

The following result can be obtained from Proposition 7.4.2: for a continuous
a-adic og-algebra A, the functors My — {A/a" @4 M}, and {M,}, — l&nn m,,
are quasi-inverse equivalences of categories between (ModFI / 6)A§h and the category
of projective systems {9, }, such that M, € (ModFI /6)§7a” and A/a" ®4 /g1
M, 1 — M, for each n. We often apply this result when (A, a) = (A,my) is a
complete noetherian local o0g-algebra.

The scalar extension 0g @ (-) = 0.4 ®s, () induces the functor (ModFI /&)5" —

(ModFI /og)é. We can immediately see that for any M, € (ModFI/&)S", the
Frobenius map pon, is injective, since we have a p-compatible injective map M4 —
0 ®e Ma.
Definition 8.2.2. Let A be a continuous a-adic og-algebra, and consider M €
(ModF1 /og)é. By a &a-lattice of P-height < h in M, we mean a ¢-stable & 4-
submodule M C M such that M € (ModFI/&)S" and 0 @ M = M.

Beware that for A = F,[e]/(e?) there is an example of M4 € (ModFI /og)% which

does not admit any & 4-lattice of P-height < h, whereas there exists a S-lattice of

P-height < h in M, viewed as a torsion étale ¢-module in the sense of Definition
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8.1.7. See Remark 11.1.7 for the example.

Proposition 8.2.3. Let A be a continuous a-adic 0g-algebra. For any object My €
(ModF1/&)S", the cokernel of pon, is a flat A-module. If the residue field k =
or /() is finite then coker(pom,) = Ma/p(c*MA) and @(c*M4) /P (uw)" M4 are finite

projective A-modules.

Proof. We showed that gy, is injective for any coeflicient ring A. Therefore, the
exact sequence

0— 0" My —24 My — coker(pon,) — 0

stays short exact after applying A/I ®4 (-) for any ideal I C A. Hence, the first
claim follows from standard facts about flatness (e.g. by [9, Ch.I §2.5 Prop 4], or by
an argument using Tor{.) If k = ox/(u) is finite then & 4/P(u)" is finite free over
A, so coker(pan, ) is finite and projective over A, and hence the following short exact

sequence of A-modules splits.

0— go(a*i)ﬁA)/P(u)hi)ﬁA — SJ?A/P(u)hEmA — coker(pgy,) — 0.

8.2.4 Etale ¢-modules with A-coefficients and A[G x]-modules

Assume #(A) < oo. For Ty € Repi™(Gx) (which can be viewed as a torsion G k-
representation by forgetting the A-action), we let D¢ 4(T'4) denote Dg(T) viewed as
an étale (¢, 0g 4)-module. Similarly, for M4 € (ModFI /og)§ (which can be viewed
as a torsion étale (¢, 0g)-module by forgetting the A-action), we write T 4(M4) to
denote T'¢(M,) viewed as an A[Gg|-module. From the definition it is clear that D 4

and T¢ 4 are exact and commute with ®-products, internal homs, and duality. (Note

that for M4 € (ModFI /o)¢, we have a natural isomorphism Hom,, , (Mg, 0 4) =
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Hom,, (M4, E/og) of étale (p, 0g 4)-modules, where the og 4-module of the right side
is induced from M. A similar statement holds for T4y € Repi®(Gx).) Furthermore,
one can directly check that Dg 4, and T , commutes with “change of coefficients”
for any finite A-algebra B; i.e., for T4 € Rep™®(G), we have a natural isomorphism
D¢ 4(Ta) ®4 B = D¢ (T4 ®4 B), and similarly for T¢ 4.

We now show that D, 4 and Tz 4 are quasi-inverse equivalence of categories be-
tween Rep’™(Gr) and (ModFI /og)%. The only non-trivial part is to show that
D¢ 4(Ta) is free over og 4 for Ty € Rep*(Gk), and Te 4(My) is free over A for
My € (ModFI /og)%. We will only prove og s-freeness for D 4(T4), and A-freeness
of T¢ 4(M4) can be proved by essentially the same argument. It is enough to
handle the case when A is local (with #(A) < oo0). By applying the local flat-
ness criterion to the free A-module T4, one obtains an G g-equivariant isomorphism
gr* A @ ajmy (Ta/maTa) = gr* Ta, where we give my-adic filtrations on A and Ty,
By applying D, to this isomorphism, we obtain the similar isomorphism for Dg(74)
with myog 4-adic filtration. Since 0g 4/m, is a product of fields, the local flatness
criterion gives the og a-flatness of Dg 4(T4).

We define the contravariant version of functors by composing with suitable duality;
more precisely, D¢ 4(—) = Homgg,)(—;0ew) and T¢ 4(—) = Hom,, , o(—,0gu).
Clearly, D¢ 4 and T 4 are exact quasi-inverse anti-equivalence of categories between
Rep®®(Gk) and (ModFI /og)%, which commutes with ®-products, internal homs,
duality, and “change of coefficients” for any finite A-algebra B. (Note that duality
commutes with “change of coefficients.”)

Let A be a complete local noetherian og-algebra with finite residue field (so that

#(A/m’) < oo for each n). Using that Dg 4/ and g 4/pn commute with “change

of coefficients” for finite morphism, we define D¢ 4(T4) :=lim Dy 4 n (Ta®4A/m)
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and T¢ ,(Ma) = lim T¢ mn (Ma @4 Ajmy) for Ty € Repi®®(Gk) and M, €
(ModF1 /og)¥, where the transition maps are induced from the natural projection
A/mit — A/m%; and we similarly define Dj , and T% ,.* We similarly define
D¢ 4(Ta) and Tg 4(Ma).

By essentially the same “limit argument” as in the proofs of Lemma 5.1.4 and
Proposition 5.1.7, we can show that D¢ 4, and T , induce exact quasi-inverse equiv-
alences of categories between Rep’i®®(G) and (ModFI /og)é which commutes with
®-products, internal homs, duality, and “change of coefficients” for any A-algebra
B with #(B/mpg) < oo; and a similar statement holds for D¢ , and T ,. We leave
the details to readers.

One can repeat the above discussion for U and T, instead of Dy and T'¢ (us-
ing Corollary 8.1.11 instead of Proposition 5.1.7) and obtain quasi-inverse equiv-
alences of categories between Rep™®(Gx /Ix) and the category of finite free étale
(¢, W&, A)-modules (where A is a complete local noetherian 0g-algebra with finite
residue field) which commutes with ®-products, internal homs, duality, and “change
of coefficients” for any A-algebra B with #(B/mp) < co. We leave the details to

readers.

8.2.5 -nilpotent objects

We generalized the notion of @-nilpotent torsion w-modules to (ModFI/&)S"
where A is as in §8.2.1. Namely, M4 € (ModFI /G)jh is -nilpotent if for any
sufficiently large integer N, the image ¢ (oV"9,4) is contained in mg-M, (ie.,
¢ is topologically nilpotent for mg-adic topology on 9M4). If #(A) < oo, then
My € (ModFI/ 6)§h is y-nilpotent if and only if 9T, is ¢-nilpotent viewed as an

object of (Mod /&)S" in the sense of §8.1.16.

4 Alternatively, one may imitate the construction in §5.1, using ogur 4 = liinn(A/m’;x ®aoq Ogur ).
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Here we record some immediate formal properties.

1. For a short exact sequence 0 — 9, — My — M4 — 0 in (ModFI /&)S", if

two of them are ¢-nilpotent, then so is the third.

2. If My, M, € (ModFI/&)S" are both g-nilpotent, so are My e, M, and

My D E)ﬁ;‘

3. (change of coefficients) Let (A,a) — (B,b) be a continuous map of adic o0-
algebras (where a or b can be trivial), and consider M, € (ModFI /&)S". Tf M4
is @-nilpotent, then the “change of coefficients” B& M4 = liinn(B/b” ®a4My)
is also @-nilpotent. In particular, if A is complete local noetherian o0q-algebra,
then M, € (ModFI/&)S" is p-nilpotent if and only if A/m% @4 M, is -
nilpotent for each n.

8.2.6 Analogue of connected-étale sequence

For 9 € (Mod /&)S" we have discussed the maximal étale submodule 9 and
the maximal @-nilpotent quotient D™IP := M /M of M, which are in (Mod /&)S".
Now consider M, € (ModFI/&)§" for #(A) < oco. Viewing M, as an object in

(Mod /&)S", we obtain a short exact sequence
(8.2.6.1) 0— MY — My — MY — 0

where ¢ and M4™® are objects in (Mod /&)S". By functoriality of connected-
étale sequences (Proposition 8.1.18), the p-compatible A-action on M, induces -
compatible A-actions on 9% and zm;gﬂp. We will show later in Proposition 8.2.7 that
M 4 and MS® are finite locally free & 4-modules, so they are objects in (ModFI /&)$".
(This is not a priori clear.)

Consider a finite A-algebra B (in particular, #(B) < 00). Let Mp := Sp®e, Ma

for 9,4 € (ModFI/&)S". Let us grant that 9¢ and 9™ are finite locally free over
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G4, so objects in (ModFI /&)". By functoriality of connected-étale sequences in

(Mod /&)S" (Proposition 8.1.18), we obtain the following commutative diagram with

exact rows:
(8.2.6.2) 00— 65 ®e, M§ —Mp — G ®s, MY —0
R
0 Mt My P 0.

Note that G5 ®s, MY and Gz @e, MT are clearly étale and p-nilpotent objects in
(Mod /&)S", respectively, since they have no non-zero u-torsion. By diagram chasing,
the vertical arrow in the right end is surjective, but i)ﬁr];ﬂp is the “biggest” quotient
among @-nilpotent quotients of Mp. Therefore, the natural map G5 ®es, im;“p —
ﬂﬁglp is an isomorphism, so the natural map Gz ®g, MG — M is an isomorphism.
This shows that the formation of connected-étale sequence (8.2.6.1) commutes with
finite scalar extension.

Now, let A be a complete local noetherian op-algebra with finite residue field.

Using the connected-étale sequence for M, := M4 @4 A/m’; and the scalar extension

A/m = A/m7 for n > 1, we obtain an exact sequence of (i, & 4)-modules:
(8.2.6.3) 0— M — My — MY — 0,

where I = @n(mn)ét and MY = @n(imn)nﬂp. If #(A) < oo then the exact
sequence (8.2.6.3) recovers the connected-étale sequence for M4 viewed as an object
in (Mod /&)S" as in (8.2.6.1).

The next proposition shows that ¢ and szﬂp are finite locally free & 4-modules

(so they are objects in (ModFI /&)5") and satisfy various natural properties.

Proposition 8.2.7. Let A be a complete local noetherian og-algebra with finite
residue field. For M, € (ModFI /&)S", M and M /ME are finite locally free & 4-

modules. Furthermore, the exact sequence (8.2.6.3) is functorial in M4 and respects



197

any scalar extension under any local (therefore continuous) map A — B of com-
plete local noetherian og-algebras with finite residue fields (i.e., we have B® et =
(BRAMA) as a submodule of B& M4, where BR4(—) = lim B/m @4 (=) de-

notes the “completed” scalar extension).

This proposition will later be generalized for some o0yp-algebras A that are not

complete local noetherian. See Proposition 11.4.2 for the precise statement.

Proof. By §8.2.6, the proposition follows if we show that imﬁjlp is finite free over G4
(in which case 9% is forced to be finite free over G4). On the other hand, since

G4 = (W ®g, A)[[u]], Proposition 7.4.2 asserts that 901%™ is finite free over & 4 if and

nilp .

only if 9% has no nonzero u-torsion and 5P /ugNY™ is finite free over &4/ (u).

But 95" € (Mod /&)< implies that 9% has no nonzero u-torsion by Proposition
8.1.2, so it suffices to show that D% ®/ud™ is finite free over &4/ (u).

Consider M4 := M4 /uM, viewed as a p-module via P := pgn, mod u, and put

——nilp

ﬁit = (00, P (0" M4) and M, = ﬁA/ﬁj. Clearly ﬁe: is an étale submodule

of M4 which contains all étale subobjects of M4. We say a (¢, &4/ (u))-module

(M4, P) is @-nilpotent if P is the zero map for any r > 1. Clearly ﬁzﬂp is (-

nilpotent and any ¢-nilpotent quotient of M4 factors through Dﬁzﬂp.

In the proof of Proposition 8.1.18, we showed that M /udné ﬁj, so we have a

natural surjective ma zmmlp uzmmlp C im“‘ P But since MM /u9N™P is o-nilpotent
J p A A @-1p

and Sﬁzl " is “maximal” among ¢-nilpotent quotients of M4, MA® /uINy™ and zmﬁ{ Y

are the same quotients of M 4.

It is left to show that ﬁzﬂp is finite free over G4 /(u). Let F := A/my4 and consider

——nilp

the (p, 6r/(u))-module M, ®4 F. Since Sp/(u) = k ®F, F is a product of fields
and o : 6 — Gy permutes the orthogonal idempotents, ﬁzﬂp ®4 F is finite free

over ©p/(u). Now consider the natural map ﬁj @4 F — (M4 @4 F)*. (Note that
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P 0" My — My is A-linear.) So we have a natural map ﬁtiﬂp DAF — (M4 @, F)mIP
which is surjective by a diagram chasing similar to (8.2.6.2). Since ﬁzﬂp ®aF is ¢-
nilpotent and (M, ®4 F)"'P is maximal among @-nilpotent quotient of M4 @4 I,
the natural maps ﬁzﬂp @4 F — (M4 @4 F)™P and ﬁj RAF — (M4 @4 F) are
isomorphisms. It follows from Nakayama’s lemma and length consideration that

ﬁzﬂp is finite free over & 4/(u). O

8.3 Duality

For any h > 0, we define a duality theory for Modg(p)S", (Mod /&)S", and
(ModFI /&) for a continuous adic og-algebra A as in §8.2.1. For 0y = Z,, this
duality for (Mod /&)< is induced from the Cartier duality of finite flat group schemes
by the Breuil-Kisin classification, and similarly the duality for Modg()S! is induced
from the duality of Barsotti-Tate groups by the Breuil-Kisin classification. For oq =

[Fy[[mo]], our duality coincides with the Faltings duality of P-height i from §7.3.9.

8.3.1 mp-Verschiebung of P-height h

We consider 9 in in one of the following categories: Modg(¢)S", (Mod /&)S",
and (ModFI /&)$" for a continuous adic og-algebra A as in §8.2.1. Recall that 91 has
no nonzero P(u)-torsion®, and the image of gy contains P(u)"-9M by assumption.
Now one will show below that there exists a unique map V;, : 9 — ¢*9 which

makes the following diagram commute.

(8.3.1.1) oML ron) o (M)
N S,

5This is clear for MM € Modg (¢)S", and for M € (Mod /&)S" this follows from Proposition 8.1.2. For 9 €

(ModFI/G)jh7 we are reduced to showing that P(u) is & 4-regular, but the natural map &4 — og 4 is injective
and P(u) is a unit in og 4.
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We first give a formula for Vj, : I — o&(9M), as follows:
Vi(m) = ¢~ " (P(u)"m) for m € M.

This formula is well-defined since ¢ is injective by Corollary 2.2.3.2 and Lemma
8.1.3. Clearly, V}, is the unique map which satisfies the commutative diagram on
the right. To see that V}, satisfies the other commutative diagram, it is enough to
check @ oV}, 0 p = ¢ o P(u)"idy«gn since ¢ is injective. But both sides are equal to
P(u) (idgn o).

The (unique) &-linear map Vj, : MM — o5(M) which satisfies the commutative
diagrams (8.3.1.1) is called my- Verschiebung of P-height h. When oy = Z, and h = 1,
see [53, §1] for the relation between V; and the Verschiebung map of Dieudonné

crystals.

Definition 8.3.2. Let 90T be an object in one of the following categories: Mod ()",
(Mod /&)S", and (ModFI /&)S" for a continuous adic og-algebra A as in §8.2.1. We
define another p-module MY, as follows.

e The underlying module for MM is M*, where

(

Homg (9N, 6[7%0]/6), if M € (Mod /&)S"

M :={ Home, (M, S,), if M € (ModFI /&)S"

Homg (M, G), if M € Modg(p)S".
\

o Weset popv = (V)" : o (INF) = (a*IM)* — M, where V}, is the mp-Verschiebung

of P-height h which is defined above in §8.3.1. Alternatively, we can construct

ponv as follows. Consider gy : (a*i)ﬁ)[ﬁ] = im[ﬁ], and we view [ € o*(9*)

as a functional on o*Mt. Now we define

pane (1) = Lo (P(u)" gy ) € (M)[1/P(u)],
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which actually defines an element in 9t* since 91 is of P-height < h.

This p-module MY is called the dual of P-height h for M. This duality 9 depends

on h, even though we do not specify this in the notation.

It is straightforward that the duality of P-height < & for (ModFI /&)S" commutes
with the change of coefficients. If A is a finite artinian og-algebra, then this duality
for (ModFI /&)$" and (Mod /&)S" are compatible.

The following lemma, whose proof is immediate, may provide a motivation for the

definition.

Lemma 8.3.3. Let 9 be an object in one of the following categories: Modg(p)S?,
(Mod /&)<, and (ModFI/&)S" for a continuous adic og-algebra A as in §8.2.1.
Then we have a natural p-compatible isomorphism 0 ®g MY = (0g @ M)*(h),
where the right side is the Tate twist of the natural duality for (free or torsion) étale

w-modules.

For a torsion or free étale ¢-module over og, we put M := M*(h) where M* is
the natural duality, and call MY the dual of P-height h.
Although the duality of P-height h is defined separately for Modg(¢) and (Mod /&),

they are compatible in the following sense.

Lemma 8.3.4. For M € Modg(p)S", there exists a natural isomorphism MY =
lim (9/7g9N)", where (M/7gM)" is the dual as (Mod /&S, Furthermore, for any
isogeny O Lo in Modg(¢)S", there exists a natural isomorphism coker(f") =

(coker f)Y, where f¥ : MY — (IM')Y is the dual isogeny and (coker f)¥ is the dual

for (Mod /&)sh.

Proof. The first claim is clear from the definition. The second claim can be seen by

viewing both 9t* and (9M')* as submodules of Homg(9', S[=]) = Homg (M, S[=]).

L L
0 o
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(c.f. Lemma 5.1.9) O

8.3.5 Lubin-Tate type ¢y-modules and maximal Lubin-Tate quotients

Let 9 be an object in one of the following categories: Modg()S", (Mod /&)Sh,
and (ModFI /&)$" for a continuous adic 0g-algebra A as in §8.2.1. Then 90 is called
of Lubin-Tate type of P-height h if the following (obviously) equivalent conditions

are satisfied.
e The my-Verschiebung of P-height h for 91 is an isomorphism.
e The dual MY is étale (where ()Y denotes the duality of P-height h).

The notion of Lubin-Tate type ¢-modules of P-height h clearly depends on the choice
of h.

Assume that 9 is an object of one of the following categories: Modg(p)S",
(Mod /&)<, and (ModFI /&)5" where A is a complete local noetherian og-algebra
with finite residue field. From Propositions 8.1.18 and 8.2.7, there exists an maximal
étale subobject (9MV)é C MY. By passing to the duality of P-height h, we see that
IMMET = (MY4)Y is a quotient of M which is maximal among quotients which are of
Lubin-Tate type of P-height h. We call 97 the mazimal Lubin-Tate quotient (of
P-height h). Since the formation of both the maximal étale submodule and the dual-
ity of P-height h commute with the change of coefficients, the formation of maximal
Lubin-Tate quotient also commutes with the change of coefficients.

Later in Proposition 11.4.2, we show the existence of the maximal étale subobject
for more general p-modules 9 € (ModFI /&)$" than the case when A is complete
local noetherian. Our discussion of maximal Lubin-Tate quotient carries over word-

by-word in that case as well.
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8.3.6 Unipotent py-modules of P-height < h

Let 9 be an object in one of Modg ()", (Mod /&))", and (ModFI /&)S" for a
continuous adic og-algebra A as in §8.2.1. We say 9 € (ModFI /&)S" is unipotent

of P-height < h if the following (obviously) equivalent conditions are satisfied.

1. The mp-Verschiebung of P-height h for 901 is topologically nilpotent. In other
words, for any sufficiently large N, the composite VN = oV=1"(V},)o- - -00*(V},) 0

Vi, 0 I — oV has the image in mg- (V" M).
2. MY is @-nilpotent, where (-)¥ denotes the duality of P-height h.

3. (Under the extra assumption that A is a complete local noetherian o0g-algebra
with finite residue field if M € (ModFI /&)$") The maximal Lubin-Tate quo-

tient 9MET for M is trivial.

The conditions (1) and (2) are equivalent to the condition (3) whenever maximal
Lubin-Tate quotients are well-defined. (See Proposition 11.4.2 for more general case
when maximal Lubin-Tate quotients are well-defined.) The notion of unipotent ¢-
module (of P-height < h) clearly depends on the choice of h.

We emphasize that for a unipotent ¢-module M € (Mod /&)S" or M € Modg ()",
it is not true that the associated G g-representation Tg(9M) is unipotent (i.e., an ex-

tension of trivial representations).

Remark 8.3.7 (Formal Properties). Here we record some immediate formal proper-

ties.

1. Consider a short exact sequence 0 — 9 — M — M’ — 0 in Modg(p)S",

(Mod /&)<, or (ModFI/&)S". If two of them are of Lubin-Tate type of P-

height < h (respectively, unipotent of P-height < k), then so is the third.
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2. Let M and M are objects in Modg ()", (Mod /&)S", or (ModFI/&)S". If
both 90t and 9’ are of Lubin-Tate type of P-height < h (respectively, unipotent
of P-height < h), then so are their tensor product 9t @ M’ and direct sum

M e M.

3. (change of coefficients) Let (A,a) — (B,b) be a continuous map of adic o0-
algebras (where a and /or b is allowed to be trivial), and let M4 € (ModFI /&)5".
If M 4 is of Lubin-Tate type of P-height < h (respectively, unipotent of P-height
< h), then so is the “change of coefficients” BRM,y = @n(B/b” ®a4 My).
Furthermore, if A is complete local noetherian og-algebra with finite residue
field, then M4 € (ModFI /&)S" is of Lubin-Tate type of P-height < h (respec-
tively, unipotent of P-height < h) if and only if A/m’} ®4 M4 is so for each

n.

Remark 8.3.8. We explain where the names “Lubin-Tate type” and “unipotent” come
from. In the case 0y = Fy[[mo]], MM € Mod(¢) is of Lubin-Tate type of P-height h
if and only if the corresponding my-divisible group G*(90) is of Lubin-Tate type of
P-height h (i.e., G*(IMM) @, 0w is isomorphic to a product of copies of LT").
For the case 0g = Z, with p > 2, a g-module M € Modg(p)S! is of Lubin-
Tate type of P-height < 1 (respectively, unipotent of P-height < 1) if and only if the
corresponding Barsotti-Tate group G*(9) is multiplicative (respectively, unipotent).
Similarly, 91 € (Mod /&)S! is of Lubin-Tate type of P-height < 1 (respectively,
unipotent of P-height < 1) if and only if the corresponding finite flat group scheme
G* () is multiplicative (respectively, unipotent). A finite locally free group scheme
G is called multiplicative if the Cartier dual of GG is étale; and G is called unipotent

if the Cartier dual of GG is connected.
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Remark 8.3.9. Kisin [53] works with the covariant correspondence between (Mod /&)<
and the category of finite flat group schemes of p-power order, by post-composing the
Cartier duality to the contravariant correspondence G*, and similarly for Barsotti-
Tate groups. Under the covariant correspondence, unipotent torsion ¢-modules cor-
respond to connected finite flat group schemes, and similarly for formal (i.e., con-
nected) Barsotti-Tate groups. So in [53], unipotent p-modules are called “formal”

or “connected.”



CHAPTER IX

“Raynaud’s theory” for torsion p-modules

In this chapter, we develop the analogue of Raynaud’s theory [69] for torsion -
modules. If o = Z,, p > 2, and the P-height is < 1, then the discussions of this
chapter exactly recovers Raynaud’s theory for finite flat group schemes over o by

the Breuil-Kisin classification [52, Theorem 2.3.5].

9.1 Classification of rank-1 objects in (ModFI /&)s"

Fix a finite extension F/F, and put ¢¢ := #(F). (Recall that ¢ = p if 0y =
Z,.) We view F as an og-algebra such that mF = 0. In this section, we give a
classification of rank-1 objects in (ModFI /&)s" if k contains F. Just as in Raynaud’s
theory for group schemes of type (p,--- ,p), this classification is used to analyze the
semisimplification of the inertia action on torsion G g-representation of P-height < h,

later in §9.4. Compare with [69, §1].
9.1.1

We fix an embedding F — k. Let xo : F* = pg_1(0x) C k* C o be the
character which is obtained by restricting the fixed inclusion F — k. Put y; := Xgi,

for i € Z/dZ, which plays the same role as the fundamental characters in Raynaud’s

theory [69, §1.1]. In fact, y; are all the characters which can extend to a field

205
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embedding F — k, and different choices of the fixed embedding F < k result in a

cyclic permutation of the labeling of x;. (This can be seen from x;|r, = Xo|r, and

d

X§ = x; fori € Z/dZ.)

Choose M € (Mod /&)S", equipped with a p-compatible F-action. (In particular
To- M = 0, so automatically M € (ModFI /&)S".) Consider the following isotypic
decomposition of 91 for the F-action:

me= P m,
i€Z/dz
where [ acts on 9; via the character y;. Clearly, ¢ restricts to o*90; — IM;,1. It
follows that to give an 9t € (ModFI / 6)[§h is equivalent to give {9M;, 6; }icz/az, Where
each 9M; is finite free over &/(my) = ok, and the image of each ¢; : o*MM; — M4
contains u"-9M; 1. (Observe that P(u) = u® mod (m), if 0og = Z,; and P(u) =
—ug mod m where ord,(ug) = e, if 09 = F,[[m]].) From this, we obtain the following

lemma.

Lemma 9.1.2. For M € (Mod /&)S" equipped with a ¢-compatible F-action we have

M € (ModFI /6)]§h. In other words, M is finite free over Gp = ox Qp, F.

Proof. 1t is enough to prove that 9; for each i € Z/dZ is of the same ox-rank. But
since M is of P-height < h we have u®®- 9, C 0;(M;) C M4, and J; is injective

for any i because ¢ is. O]

Let us further assume that 9 is of Gp-rank 1, so each 9; is free of ox-rank-1.
By choosing a basis e; € 9; for each i, we may view the maps J; as elements in
ox such that ord,(d;) < he. Given {d;| ord,(d;) < he}icz/az, we can reconstruct I,
as follows. Put 9 = @iez/dz 0k -€;, and pon(o*e;) = 0;e;11. For a € F*, we put

lale; := xi(a)-e;.
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If we choose a different set of bases, say a;e; € 9M; where o; € o5, then 0; is
replaced by o, Jrlléia?. In particular, ord,(d;) is independent of the choice of bases.
Note also that for given {4;} and {d;} such that ord,(d;) = ord,(0}) for each i, the
solutions «; of the equations d; = «;_ Jrlléiocff lie in some unramified extension of og.

To summarize, we have proved the following:

Proposition 9.1.3. Assume that F can embed into k. Then the assignment I +—
{0i}iczyaz defines a bijection between the isomorphism classes of rank-1 objects in
(ModFI /&)s" and equivalence classes of {3;] ord,(0;) < he}iczjaz under the equiva-
lence relation {&;} ~ {a; 1 6:af} for a; € of. If, furthermore, o is strictly henselian,

then the assignment M — {n; = ord,(d;) }icz/az defines a bijection onto the families

of r integers 0 < n; < he.

We may improve our choice of 9; as follows. By modifying the basis, we can
arrange to have §; = u™ for all i # d — 1. Now write d4_1 := afu"¢-, where a € k™,
and § = 1 mod u. If we replace ey with Sey and modify the rest of the basis so that
d; = u™ for all 1 # d — 1 (i.e., replace e; with B9e; for all i € Z7./dZ), then 041 is
replaced with dﬁqd_lu"d—l. By repeating this process, we may assume that § = 1.
For the similar reason, & is unique up to (/fx)qdfl—multiples.

For each (@,n), where & € k% /()% and n = {ng,--- ,ng_1} with n; € [0, he],

we define M5 ), as follows.

gﬁ(&yﬂ) = @ 0K -€;

i€Z/dZ.
ploe;) = ulen, fi#d-—1
p(o*eq 1) = au ey
[ale; = xo(a)”-e;, VacF.

We have proved the following
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Corollary 9.1.4. Assume that F can embed into k with xo : F — k such an embed-
ding. Then for any M € (ModFI /G)?h of Gg-rank 1, there exists a € k* unique
up to (/{X)qd_l-multiple and uniquen = {ng,--- ,ng_1} with n; € [0, he], such that

M= Man)-

9.1.5 Duality, étale and Lubin-Tate type objects

Let M € (ModFI /6)]§h be of Gg-rank 1, which corresponds to {d;};cz/qaz under
the bijection given in Proposition 9.1.3. In other words, 9T = @iez/dz 0k -€; with

p(o*e;) = d;e;41. It is straightforward to verify the following claims:
Duality The dual 9" of P-height < h corresponds to {(P(u)" mod )/ }iezyaz-

Etale/Lubin-Tate type 9 is étale if and only if ord,(d;) = 0 for all 4; M is of

Lubin-Tate type of P-height A if and only if ord,(d;) = he for all 7.

9.2 G-lattices of P-height < h

In this section, we study &-lattices of P-height < h in a fixed M € (ModFI /og)%.
We also introduce an operation which plays a role similar to schematic closure of the
generic fiber of a finite flat group scheme over 0. As an application, we show that
T € Repi®*(G) is isomorphic to T (M) for some M € Modg(yp) if and only if for
each n > 0 there exists 9, € (Mod /&)S" killed by 7§ such that T/75T = T(9M,,)
in Repl (G ). Based on the analogy discussed in Remark 8.1.15, this can be thought

of as an analogue of [69, §2].
9.2.1 Analogue of schematic closure
Choose M, M" € (ModFI /og)® = Mod$"" () and a ¢-compatible og-linear sur-

jective map f : M — M’'. Let M € (Mod /&)S" be such that M = og @ IMN.

We obtain a @-compatible G-linear surjective map flon : 9 — f(9) which re-
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covers f by extending scalars to og (i.e., after inverting w, as 9t and f(9) are
killed by some power of 7). Furthermore, f(9) € (Mod /&)S" by Lemma 8.1.8,
so f(OM) C M’ is a G-lattice of P-height < h (Definition 8.1.7). Also, we have
that ker(f) € (ModFI /og)¢ and ker(f|m) C ker(f) is a &-lattice of P-height < h.
Using the analogy with finite flat group schemes discussed in Remark 8.1.15, the
p-compatible surjection f|oy : M — f(9N) plays the role of schematic closure of a
closed subgroup scheme of the generic fiber.

We record an immediate consequence for G g-representations of P-height < h.
Recall that Reptor’@(g k) denotes the category of torsion og-representations of Gx

00

with P-height < h.

to:

Proposition 9.2.2. The category Rep%rv@(g;{) is closed under finite direct prod-

ucts, subobjects, and quotients.

Proof. The direct product aspect is obvious. Let T' = Tg(9) for some M €
(Mod /&)Sh, and set M = 0¢ ®¢ I = Di(T). Any Gg-stable submodule 77 C T
corresponds to a p-compatible surjection f : M — M’ where M’ := D¢(T"). Then
f(OM) € M’ is a G-lattice of P-height < h by the discussions at §9.2.1, so T" is of
P-height < h. Similarly, De(T/T") = ker(f), and ker(f|om) C ker(f) is a G-lattice

of P-module < h. Thus, T/T" is of P-height < h. O

9.2.3 Partial ordering on G-lattices of P-height < h

We fix an étale ¢ module M € (ModFI /og)®. For any two G-lattices 90, MM, C
M of P-height < h, there exists a G-lattice 9T C M of P-height < h that contains
both — for example, 991 := 9y + M, does the job. Similarly, there exists a S-lattice
M C M of P-height < h that is contained in both — for example, 9 := 9, N M,

does the job. Therefore, one can define a partial ordering by inclusion on the set of
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G-lattices of P-height < h in M.

Lemma 9.2.4. Suppose that M € (ModFI /og)® has a &-lattice of P-height < h.
Then there exist a (mazimal) &-lattice MT of P-height < h which contains any
G-lattice of P-height < h, and a (minimal) S-lattice M~ of P-height < h which
is contained in any S-lattice of P-height < h. In particular, there are only finitely

many S-lattices of P-height < h in a fired M € (ModFI /og)®t.

Proof. The last claim follows from the existence of ' and 9, because the set of
G-lattice of P-height < h for M injects into the set of G-submodules of ™ /M~
which is of finite length since M [1] = M = M~[1]. In order to prove the lemma, it
is enough to show the existence of the maximal element, by the duality of P-height
h.

Let 9t C M be a G-lattice of P-height < h. We first assume that either oy =
F,[[mo]] or that p-M = 0 if 09 = Z,. In those cases, we can view 9 as a finite free

ox-module. Consider the following algebras

o Symg M o
(9.2.4.1) Ay = i P s ey M A=

Sym,, N
(ma — p(o*m) : m € M)’

Clearly, Ay is an étale K-algebra, and Agy is finite flat over ox with Agm®,, K = Ay
(Note that 91 is u-torsionfree, so is finite free over og.) If M O M is another &-
lattice of P-height < h, then Agy is finite over Agy and we have Agy ®,, K = Ap.
But the integral closure of Agy in A, is finite over Agy since Ay, is étalel, so the
set of G-lattices of P-height < h is bounded above. This proves the lemma when
0p = F,[[m0]], as well as when py = Z,, and p-M = 0.

Now, assume that oy = Z,. It is enough to show that for any two G-lattices

M C M C M of P-height < h, the length of 9V /9M has an upper bound that only

1Since A, is étale, the “generic trace pairing” Aj; ®x Apr — K is perfect. The integral closure of Agy is
therefore contained in the ox-linear dual of Agy embedded in Ap; via the “generic trace pairing”, and this is a finite
Agp-module.
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depends on M. We reduce to the settled case when p-M = 0, as follows. Consider

the following commutative diagram with exact rows.

(9.2.4.2) 0 — M[p| m M/M[p] —=0

]

0 —=9M'[p] — 9" ——= '/’ [p] —= O,
where 9[p| denotes the submodule of M that is killed by p. By the snake lemma,
we get a short exact sequence
Wip] M /I [p]

(9.2.4.3) 0— im—[p] o W — 0.

By repeating this process for the &-lattices 9t/M[p] C MM /9 [p| inside of M /M [p]
(see §9.2.1) and using the additivity of length on short exact sequences, we reduce

the lemma to the case when p-M = 0. But this case is already handled. O]

Remark 9.2.5. Consider M € (ModFI /og)® and a G-lattice M C M of P-height
< h. Assume that either oy = F [[m]] or p- M = 0, and let Agy and Ay be as in
(9.2.4.1). We can define comultiplications on Agy and Ay by m— m®1+1@m
for any m € 9t and m € M, respectively. Let Ggon := Spec Agny and Gy := Spec Ay
denote the corresponding finite flat group schemes over oy and K, respectively. (If
q = p then we have Goy = G*(IM) and Gy = G*(M), where G*(-) is as defined in
§7.2.4.)

Note that Ggy is a prolongation of GGj;, and the assignment 9 ~~» Ggy preserves
the natural partial orderings; i.e., if 9t and 9" are two S-lattices of P-height < h
in M, then 9V C 9 if and only if there exists a map Ggv — Gan which prolongs
the identity map on the generic fiber Gys. (See [69, Definition 2.2.1].) Therefore,
Lemma 9.2.4 for the case when either oy = IF[[m]] or p-M = 0 can be deduced from

the existence of maximal and minimal prolongations of a finite flat group scheme [69,

Corollaire 2.2.3].
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We digress to record the following interesting fact. For any a € o0g consider
[a]* : Asn — Agy and [a]* : Ay — Ap induced from m — a-m for any m € 9 and
m € M, respectively. This defines og-actions on Gon and Gy, respectively. (This
is also true when oy = Z, and p-M = 0. In particular, it follows that the group
schemes Gon and G are killed by p.) Therefore G (K3P) = Gop(K5P) is naturally
an og-torsion G g-representation. By an argument similar to the proof of Proposition

7.3.4, we can show that there exists a natural oyp-linear G g-equivariant isomorphism

G (K3P) = T:(M), and so Gan(K5P) = Ts(IMN).

Proposition 9.2.6. Let M be an étale p-module which is free over og, and suppose
that M, := M/n{ M has a G-lattice M(n) C M,, of P-height < h, for each n. Then
M has a S-lattice M of P-height < h. Furthermore, the &-lattice of P-height < h

1S UNLquUeE.

This proposition shows that a og-lattice G g-representation 7" is of P-height < h
(Definition 5.2.8) if and only if T'/7jT is of P-height < h (Definition 8.1.7) for all

n>1.

Proof. The proof will be quite similar to [69, Proposition 2.3.1], working with &-
lattices of P-height < h and the analogue of schematic closures (from §9.2.1) in
place of finite flat group scheme models and schematic closures. The uniqueness of
M follows from Theorem 5.2.3, so we only need to show the existence. We proceed

in several steps.

9.2.6.1

For each n, we may modify M(n) so that the natural projection pr,, : M, — M,
restricts to M(n) — M(n — 1). (We do not require this to be surjective.)

We recursively modify 9(n) with n increasing. Suppose that the claim is true for
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each 7 < n and we look for a &-lattice ﬁ(n) C M, of P-height < h such that pr,,
restricts to ﬁ(n) — M(n —1).

By the duality of P-height < h, we obtain pr) : M) , — M. Consider the
“graph morphism” pry ®id : MY ;, @ MY — M), and we let 91 be the image of
M(n —1)Y @ M(n)Y by this morphism. Then N C M, is a S-lattice of P-height
< h (containing M(n)¥) and prY induces M(n — 1)¥ — N. Now take M(n) := NV,

9.2.6.2

For i < n, let M(n); C M; be the image of M(n) under the natural projection
M, — M,;. Clearly, pr; : M; — M;_; restricts to M(n); — M(n);_; for all i <
n. We put ﬁgn) = ker[M(n); — M(n);_1] for 1 < i < n, which is viewed as a
submodule of M; via ﬁl@ C ker[pr; : M; - M,;_1] = M; (where the isomorphism
uses multiplication by 75~*). Then Wén) is a G-lattice of P-height < h for M.

Now, M(n + 1) — M(n) from the previous step produces a map ﬁﬁ”*” — ﬁgn)
for all n > 4, and this becomes the identity map on M; after tensoring with og. So for
each fixed ¢, we obtained a decreasing sequence {ﬁﬁ”)}@i of G-lattices of P-height
for M,. By Lemma 9.2.4, there is a minimal element 9, = ﬁﬁ’m) in the sequence,
so we have an equality ﬁﬁ”) =9, for all n > ngy for some ng = no(i) > .

9.2.6.3

We claim that the sequence {9;}; of S-lattices of P-height < h in M, is in-
creasing, so there exists an integer ig such that the equality 9M;, = M; holds for any
i > .

By the previous step and Lemma 9.2.4, it is enough to show that with n fixed
(and arbitrarily large), the sequence {Wtﬁ.”)}i@ is increasing in i. In fact, the -

multiplication map induces an injective map M; 1 < M;, hence M(n);_; — M(n);
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for each 7« < n. This induces a map ﬁl@l — ﬁﬁ”) on G-submodules which becomes

the identity map on M; after tensoring with og. The claim follows.

9.2.6.4

We are ready to conclude the proof. We may assume ig = 1 by replacing 9t(n)
with ker [9(n+1ip) — M (n-+ig)s,|. (Recall that 9 (n-+ig);, is the image of M(n+1o)
under the natural projection M, ;; — M;,.) So the previous step implies that the
map induced by mp-multiplication ﬁfﬁ)l — ﬁg"’ is an isomorphism for all ¢ and for
n > 0. (More precisely, n > ng = ny(i) will be enough, where ng, depending on i, is
as in §9.2.6.2.) We deduce that for fixed i and for n > 0 depending on i, we have

the following diagram with the horizontal sequence short exact:

(1) M(n)ita

F S

0——=M(n); ——=M(n)ip1 — M(n); —=0.
Indeed, the content is that the inclusion M(n); = m§") - Sﬁgﬂ = ker[MM(n);1 —
M(n);] is an equality for n > 0 (depending on 7), and this is a consequence of having
M; C M, the same for all j.

Now, for each n, let 91, be the minimal element of the decreasing sequence
Mn) DMn+1),D---DMn+r), D---

Since M, is torsion-free over &/ (my) = F,[[u]], it is free, and then by induction we
infer that each 9M,, is free over &/(75) with M, 11 /7FM, 1 — IM,. And from the
diagram (ft), we obtain the following diagram with the horizontal sequence short

exact:

My

AN

0 M; My j — M —0.
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Hence 9t = @n M, is a G-lattice of P-height < h in M. O]

We record the following interesting application of Proposition 9.2.6, which is anal-
ogous to the fact that a p-adic G ,-representation is crystalline (respectively, semi-
stable) if and only if its I ,-restriction is so. We use the same notations as in
§8.1.12. We say that an op-lattice representation T of Ix = G .. is of P-height < h
if there exists a finite free (¢, . )-module My, such that T' = T (M) as

Ic-representations and coker(@an_,, ) is annihilated by P(u)".

Proposition 9.2.7. An og-lattice G -representation T is of P-height < h in the
sense of Definition 5.2.8 if and only if its restriction to Ik is of P-height < h in the

above sense.

Proof. As in the proof of Proposition 8.1.13, the “only if” direction is trivial. Now,
assume that the restriction to I of T € Repff;e(g k) is of P-height < h. Clearly,
the restriction to Iy of T'/nyT is of P-height < h for each n > 1 in the sense of
§8.1.12. By Proposition 9.2.6, it is enough to show that 7'/n{T is of P-height < h

as an ogp-torsion G g-representation, which follows from Proposition 8.1.13. O

9.3 The case of small h and small ramification

In this section, we show that if he < ¢ — 1 then the scalar extension functor

(Mod /&)S" — (ModFT /og)® is fully faithful. The proof uses the classification of

rank-1 objects in (ModFI/ 6)]§h, proved in Proposition 9.1.3. For finite flat group

schemes, the corresponding theory is discussed in [69, §3.3].

9.3.1

Let T € Rep';zr(g k) be a semi-simple torsion G g-representation, where Gy acts

by p: Gx — Aut,, (7). This forces mp-T = 0. Under this assumption, we claim



216

that T' is tame; i.e., the wild inertia group I} acts trivially on 7. In fact, one may
assume 7' is simple. Since the cardinality of any /}-orbit is some power of p and the
zero element is fixed by ¥, the Gg-submodule Tk is non-trivial so it equals T' by
simplicity.

Now, we temporarily assume that oy is strictly henselian so that Gx = Ix where
Ik is the inertia group for K. Assume that T is simple. Then, the commutant
Endg,7,)(T) is a finite-dimensional division algebra over F,, so it is a finite field
extension of F,. We put F := Endp,7,)(T), and view T as an F-vector space via
the natural action of its commutant. Since I; is commutative, the image p(I;) is
contained in the commutant. Therefore, by simplicity 7" is a 1-dimensional F-vector
space and the Ix-action on T is given by a (tame) character p : [ — [, — F*.

To summarize, we have proved the following well-known proposition.

Proposition 9.3.1.1. If T be a semi-simple torsion G -representation, then T is
tame. If the residue field k of K is separably closed and T is simple, then there

exists a finite extension F/F,, which makes T' a 1-dimensional F-representation of

We stop assuming that k is separably closed. Let T be an F-representation of
P-height < h, and M := Dgp(T). Though it is not true in general that the (-
compatible F-action on M preserves any G-lattice 9T C M of P-height < h, it is
possible to find some S-lattices of P-height < h with this property, namely 91"
and 91~ from Lemma 9.2.4. Indeed, any automorphism of M restricts to an auto-
morphism of its maximal G-lattice 9+ of P-height < h, and the same is true for
I~ by duality of P-height h. Furthermore, by Lemma 9.1.2, any torsion ¢-module
with a @-compatible F-action is in (ModFI/&)s". We have proved the following

proposition.
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Proposition 9.3.1.2. Consider M € (ModFI /og)$ which has a G-lattice of P-
height < h. Then there ezists a Gg-lattice of P-height < h(e.g., the mazimal and

minimal S-lattice M and M~ of P-height < h).

The upshot of this discussion is that when o is strictly henselian (i.e., k is sepa-
rably closed), for any torsion representation 7" of P-height < h, each Jordan-Holder
constituent of T' comes from some rank-1 object in (ModFI/&)s" for some finite
F/F, (depending on the Jordan-Holder constituent). This is one of the motivations

for our classification of rank-1 objects in (ModFI /&)s".

9.3.2 Gy-lattices of P-height < h

Assume that there exists an Fj-embedding F — k and fix it. Consider an étale
p-module M € (ModFI /og)$ of ogp-rank 1 that admits a S-lattice of P-height
< h. We study its maximal and minimal G-lattices of P-height < h, using their ¢-
compatible F-action (Proposition 9.3.1.2) and our classification result (Proposition
9.1.3).

Let 9, 9 C M be Gp-lattices of P-height < h. We choose an o0x-basis {e;} for
M and {e,} for M, coming from the isotypic decomposition for F-action. Then we
have pon(0*e;) = die;41 and oy (0*€)) = dje]. | for some 6;, 8] € ok of u-order < he.
(See Proposition 9.1.3.)

By assumption, we have M ®,, K = M ®,, K = M, and by the choice of the
bases we have €] = o e; for some a; € K*. Since oy = @a[+] = @aw[1], we get the

following compatibility condition.
(9.3.2.1) 8 = o 0i-af

IO C M (e.g., M =M* or M = 9M") then «; € ok for all i. Assume that we are

in this case.
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We give a criterion for 9t to be maximal, in terms of {ord,(d;)}. We proceed in

the following steps.

Step (1)

If M is not maximal, then ord, (d;) > q—1 for some i. In particular, if he < g—1
then there exists at most one &-lattice of P-height < h in M.

The second claim follows from the first since ord,(d;) < he. To show the first
claim, we may assume that 0 2 9 (taking M = M*), so we have a; ¢ o for
some i. Choose iy € Z/dZ so that ord,(a;,) > 1 is maximal among ord,(«;). So by

(9.3.2.1), we know that ord,(d; ) > ¢ — 1.

Step (2)

Assume that for some 4, we have ord, (a;) > ord,(a;+1) (so necessarily, d > 1). For
such i, we have ord, (d;) > ¢ by (9.3.2.1). In particular, this case can occur only when
he > q. Conversely, starting with 9t such that there exists an iq with ord,(d;,) > ¢,
one may take a;, = u and o; = 1 for i # ig. Then d;, = u=90; , 6;,—1 = ud;,_; and

0; = 6, for i # ig,ip — 1 give the solution to the equations (9.3.2.1), hence another

Grp-lattice 9 C M of P-height < h which contains 2.

Step (3)

For any Sg-lattice M’ C M of P-height < h, there exists a Sg-lattice M C M of
P-height which contains M’ and satisfies that ord,(6;) < g — 1 for all i.

If d = 1 then we may take a; := u® where ¢ := L%J so that 6; = u=*@~1§) has
the u-order (strictly) less than ¢ —1. So we may assume that d > 1 and ord,(d;,) > ¢
for some ig. Asin Step (2), we may take a;, = u and «o; = 1 for i # ig. Furthermore,
one can check that ZieZ/dZ 0; < ZieZ/dZ o;. If ord, (6;) > ¢ for some i then we apply

this process to 9t (instead of 9'). This terminates after finitely many times because
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at each time the positive integer »_._, Jdz. 0; decreases, and the resulting Gg-lattice

M of P-height < h in M satisfies that ord,(d;) < g — 1 for all 7.

Step (4)

Take M := M™. By the previous step, we may assume ord, (d)) < ¢ — 1, for all i,
in which case all o; have the same valuation. Now, assume that the valuation of «; is
positive. Then by (9.3.2.1), this can only happen when ord, (o) = 1, ord,(d}) = ¢—1,
and ord,(d;) = 0, for all i. In other words, 91 is étale as a g-module.

In the special case when he = ¢—1, the equalities ord, (d;) = ¢—1 mean that 9 is
of Lubin-Tate type of P-height h. In fact, ord,(5}) = ¢ — 1 = he = ord,(P(u)" mod
mp); see §9.1.5.

We now state the following proposition. Compare with [69, Proposition 3.3.2].

Proposition 9.3.3. Consider M € (ModFI /og)$ of ogp-rank 1. Assume that M
admits a S-lattice of P-height < h. Let I be a Gy-lattice of P-height < h in M.

1. Consider a decomposition I := @Z/dz 0x-€; with p(o*e;) = d;€;1. Then M is

maximal among Sg-lattices of P-height < h in M if and only if ord,(6;) < g—1

for all i and this inequality is strict for some i.

2. If he < q — 1 then M admits at most one S-lattice of P-height < h, which is

always an Sg-lattice.

3. Assume that he = q—1. Then either M has a unique S-lattice of P-height < h,
or M has exactly two S-lattices of P-height < h where one of them is étale and
the other is of Lubin-Tate type of P-height h. In either case, any S-lattice of

P-height < h in M is also a Sp-lattice.

Proof. It remains to establish (3). Under the assumptions of (3), it follows from

Steps (1) — (4) above that if M does not have a unique S-lattice of P-height < h
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then 9T is étale and M~ is of Lubin-Tate type, where MM and 91~ are the maximal
and the minimal G-lattices of P-height < h. So it remains to show that if ™ is étale
and M is a G-lattice of P-height < h for M with 9T C 9M* (but M € (Mod /&)
may not a priori be a Sg-lattice in M), then it is of Lubin-Tate type. (Then the
inclusion M O M~ has to be an equality.) Note that this claim does not follow from
Steps (2) and (4) because we do not know whether 9t is a Gp-lattice of P-height
< hin M.

It follows from the assumption that 90U is ¢-nilpotent (i.e., MM = 0) since M
is not étale and is simple in (Mod /&)S". (See Proposition 8.1.18.) It suffices to
show 90 is of Lubin-Tate type after the scalar extension by ox — 03¢, where 03 is
the completion of the maximal unramified extension of o, since duality commutes
with such scalar extension (and the étale and ¢-nilpotent properties are insensitive
to such scalar extension). Thus, the proposition is reduced to showing the following

claim:

Claim. Assume that he = ¢ — 1 and k is separably closed. Assume that M™* is étale

and M is p-nilpotent. Then M is of Lubin-Tate type of P-height h.

First observe that G = I acts trivially on Te(M) = T g(9M"). Consider the

following finite flat group scheme G := Spec Agp+ over o, as follows:

Sym,, 9*

(9.3.3.1) A = (m? — @op+ (0*m) : m € M+’

where co-multiplication and co-action of 0 are induced from m — m® 1 +1® m
and m +— a-m for any m € M" and o € op. Since M™ is étale (ie., ¢, . is an
isomorphism), we can easily check that G is finite étale over o (with an action of
IF). Furthermore since oy is strictly henselian, G* is isomorphic to a constant étale

group scheme [ over og.
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From this, one can find a &/(mg)-basis {e;} for the étale p-module 9MM™ such
that ¢(c*e;) = e; for all i. We can see this as follows. Since GT is a constant
group scheme, G = Ik acts trivially on G*(K*P) which is isomorphic to Tz (M) as
noted in Remark 9.2.5. By choosing an Fg-isomorphism T (M) = F? (which is G k-
equivariant by giving the trivial G g-action on the right), we obtain an og¢ /(m)-basis
{e;} for M such that ¢(c*e;) = e, for all i. Clearly &/(m)-span of {e;} is a p-stable
étale G-lattice of M, so it has to equal MM™.

Now, consider a p-compatible projection f; : M — K -e; for each i. Since I C
L fi(9), it is enough to show that f;(9) is of Lubin-Tate type of P-height h for
each ¢; if we show this then [[, f;(9) is the minimal G-lattice M~ of P-height
< hin M as G-lattices in M (being of Lubin-Tate type of P-height < h), so the
inclusion M C [, f;(9) = M~ should be an equality. By replacing 9 with f;(9),
we may assume F =, (i.e., M is of ox-rank 1). Then we clearly see that 9, being

p-nilpotent, has to be of Lubin-Tate type of P-height h. O

Corollary 9.3.4. Assume that he < q — 1. Then for any torsion étale p-module

M € (ModFI Jog)®, there exists at most one S-lattice of P-height < h.

Proof. We need to show that for any two &-lattices 9%, 9" C M of P-height < h,
an inclusion 9t C 9 implies equality. This can be checked after a faithfully flat
scalar extension, so we may assume that the residue field is separably closed. By
considering Jordan-Holder series and using §9.2.1, one can reduce the claim to the
case when M is simple. Then by Proposition 9.3.1.1 and the previous proposition,

we are done. N

Corollary 9.3.5. Assume that he < q — 1. For M, M € (Mod /&)S", we put

M :=0s @M and M' := 0 @M. We view M and M’ as submodules of M and
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1. Any p-compatible morphism fx : M — M’ restricts to f: 9T — IN'. In other

words, the scalar extension functor M ~» M s fully faithful.

2. For any o-compatible morphism f : M — M in (Mod /&)S", ker(f) and
coker(f) are also objects of (Mod /&)S". In other words, (Mod /&)S" is an
abelian category.

3. Let ExtS"(9, M) be the group of extensions in (Mod /&), and let Ext® (M, M")

t

be the group of extensions in (ModFI /og)¢. The natural homomorphism

Ext$ (9, M) — Extge (M, M)
18 1njective.
Proof. Put C := coker(fx) and I := im(fx). Let € C C be the image of 9 under
the natural projection M’ — M'/f(M) = C, and let 3 C I be the image of I
under M — fx(M) = I. Then by §9.2.1 both J and ker[9" — €] are S-lattices of
P-height < h in I = ker[M’ — C], where the isomorphism is induced by fx. So

by Corollary 9.3.4, we have the isomorphism J = ker[9 — €] which extends the

isomorphism I = ker[M’ — C]. Now define f : 9 — 90 as follows:
f:M— TS ker[ N — €] — M.

Clearly, this morphism f extends fx, and ker(f) = ker[9t — J] and coker(f) = € are
objects in (Mod /&)S". This proves (1) and (2). Finally, (3) is a formal consequence

of (1). O

9.4 Torsion Galois representations

In this section, we describe the Gg-action associated to a rank-1 objects in

(ModFI /&)S". We can use this result to analyze the semisimplification of the inertia
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action on torsion G g-representation of P-height < h. For finite flat group schemes,

the corresponding theory is discussed in [69, §3.4].

9.4.1 Kummer theory

We assume that the residue field & contains I := F 4. This assumption is satisfied
for all d if K is strictly henselian.

Pick an element § € K* and let K C(la) /K be the Galois extension generated by
the roots of X4'~* — §. Pick a root &, € K((f) to this polynomial. Then we get a

continuous homomorphism
-0,
(9.4.1.1) &9 G pga_y (K); D)= LM vy e gy,

which is independent of the choice of 4.
Following §9.1.1, we let xq : IFqu = pga_1(k) = pga1(K) be a character which

extends to an F,-morphism of fields F,« — &, and we put x; = Xgi. Using the inverse

isomorphism ;' (not the inverse character), we obtain a character w((f) =Xy ogf;” :

Gk — F,. If we have used x; ', instead of x;', then we obtain (w((f))l/qi.

) is compatible with finite extension of K, as 5&5) is. For

any 0,0’ € K* one can directly check that %(1661) = wc(l‘s)wc(f/). By construction, wc(lé)

The formation of w((f

factors through the quotient Gal( K 5(16) /K), so wc(lé) is unramified if and only if § € oj.

We put wy = w((i”), and &; = ((iu). A priori, the character wy depend on the
choice of uniformizer u € ok, but wy|;, does not; more generally, one can check that
wff)hK = (wg)o 4|, . We call wy|r, a fundamental character of level d.

The formation of fundamental characters does not necessarily commute with fi-

nite extension of K (especially, ramified ones) because the construction involves a

)e(K//K

uniformizer u, but we have wg/xlr,., = (wa/k’ )| 1, for any finite extension

K'/K.
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9.4.2 1-dimensional F-representations of P-height < h

Choose & € k* /()7 ' and n = {ng, -+ ,ng_1} with n; € [0, he], and let M :=
Ma,n (Corollary 9.1.4). We put §; := u™ if i # d—1 and dq_1 := @u"** so that we
have pop(c¥e;) = dieiy1.

We would like to compute T'g(9) = Hom,, (9, K5P). Giving an element | €
T&(9M) is equivalent to giving l(e;) = xz; € K for each ¢ € Z/dZ, such that
! = §iwiy1. In turn, it is equivalent to giving an element xy € K*P such that
20" = Szo, where § = [T (00 = au® with n = Y0 ng? =" So by
identifying | € T&(IM) with zo = l(eg) € K*P, we will view Tg(9) as an F,-
submodule of K®P. Under this identification, the natural F-action translates to
la] : xg — xo(a)-zo for a € F*, and the Gk-action is via the natural action on K.

That is, for v € Gg, we have v-xg = 5&5) (7)-xo. This proves the first part of the

following proposition.

Proposition 9.4.3.

1. The Gg-action on the 1-dimensional F-vector space Ts(Man)) is given by the
character w((f), where 0 := au”™ and n = Zg:_ol n;q@ 1. In particular, Ix acts

on T&(OM) by the character (wq)".

2. In the case oy = Z,, the F-valued Iy -character (w1)®|r,,_ is the mod-p cy-
clotomic character restricted to Iy . In the case 0g = F,[[m]], the F-valued

Ik -character (wy)¢|1,. is the mod-my Lubin-Tate character restricted to If.

Proof. It remains to prove the second part of the proposition. The computation
in §9.4.2 shows that Gx acts on T'g(Gp, (1)) via wf’(“’). In the case 0p = Z,, it

follows from §5.2.14 that wYD(u)) is the G -restriction to the mod p cyclotomic
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character. In the case oy = F,[[m]], it follows from §7.3.7 that w§7"“)) is the mod

7o Lubin-Tate character. On the other hand, since ord,(P(u) mod my) = e we have

e P(u
Wflre = wi|r m

The following theorem gives a classification of F*-valued G g-characters of P-

height < h.

Theorem 9.4.4. Assume that F embeds into k, and let b be a F*-valued character
on Gg. Then 1) is of P-height < h (Definition 8.1.7) if and only if V|1, = (wa)",
where n = Zj:_ol niq? = for some 0 < n; < he for each i € Z/dZ. Equivalently, 1
s of P-height < h if and only if ¢ = w((f), where 6 = au™ for some & € k* and n as

above.

Proof. The “only if” direction is just Proposition 9.4.3(1). For the “if” direction, we
first observe that (wq)™ makes sense as a character of Gr. Soif ¥|,, = (wg)™, then we
can write 1) = " (wy)", where " is an unramified character. Since any unramified
0o-torsion G g-representation is of P-height < 0 (Proposition 8.1.10) it follows from
Corollary 9.1.4 and Proposition 9.4.3(1) that there exists @ € k*, well-defined up to
(/{:X)qd_l—multiple, such that " = sz&)- Therefore by Proposition 9.4.3(1), we have

) = W™ 2 T (Mo ), Where n = {ng, - ,ng 1}, O

Remark 9.4.5. Using Proposition 9.3.3, one can improve the numerical condition in
the statement as follows. an F*-valued character v is of P-height < h if and only if
|1, = (wa)™, where n = Zj:—ol n;q? =" for some 0 < n; < min{he,q — 1} for each
i € Z/dZ, and not all n; are ¢ — 1.

If k is finite, then we can remove the condition that [F embeds in £ by using local

class field theory, and obtain the following result. Let Fy be the maximal subfield of

[F that embeds in k, and put g% := #(Fy). Then a character ¢ on G is of P-height
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< hif and only if ¢|7, = (wg,)" where n = 300! n;q% =1~ for some n; € [0, he] for
each i € Z/dyZ. The “only if” direction is by Proposition 9.4.3(1) and local class
field theory, and the “if” direction follows from Proposition 8.1.13. (Alternatively,
note that v is of P-height < h if and only if ¢|g_, is so for some finite unramified

extension K'/K by Proposition 8.1.10).

9.4.6 Relation with torsion crystalline representations.

For this paragraph, we assume that 0y = Z,, (so ¢ = p). We have a norm-field
isomorphism G »_ = Gx as explained in §1.3.1.2, and we assume that F embeds in

k and fix an embedding o : F — k. We start with the following observation.

Lemma 9.4.7. The restriction of the G y-action to G defines an equivalence
of categories from the category of mod p semi-simple representations of G to the
category of mod p semi-simple representations of G . Moreover, any irreducible
mod p representation ps of G uniquely extends to a G -representation p which

18 necessarily irreducible.

Proof. By Proposition 9.3.1.1 any semi-simple mod p representation p, of G is
tame, and similarly, any semi-simple mod p representation p of G, is tame. On
the other hand, J# .,/ is linearly disjoint from any tame extension, so we have

I1Y-G .. = G . In particular, we have p(G»_. ) = p(G.»). The lemma follows. [

It follows from the lemma above that the character ¢ = w((f) from Theorem 9.4.4

can be extended to an F*-valued character of G . In fact, we can easily find a

candidate for it. Recall that 6 = au™ where & € k* and n = Zf;ol n;p?~ 1~ for some

0 < n; < he for each i € Z/dZ. Now, we put § := [a]z" € J#, where [a] denotes the

Teichmiiller lift and 7 is the fixed uniformizer for ¢ such that P(7) = 0. We define

(9)

an F*-valued character w;’ on G in the similar way that we defined w((f), but we
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use the (p? — 1)th root of § € %, instead of that of §. More precisely:

. L/ D) B <7.51/<pd1>

(9) . R X
(9.4.7.1) Wil T o X Ry ) eF*, VyegGy.

Let us first show that w((f)’g e = wc(f) under the norm-field isomorphism G, =

Gk. Recall from §1.3.2 that we have a natural embedding of ox = k[[u]] with its

image in R := lim 0-/(p) under the natural embedding which sends v to m :=
xP—x

{7™ mod p},>o and & € k to {[a” "] mod p},>o. Identifying oy with its image in

R, we have § = {[o# "]7™ mod p},>o € K. Now, choose a root d; of X4'~! —§ in

R; or equivalently, choose a root 5[(1") € 05 of X1 [@? "]x(™ for each n > 0 so

that (6™*+1)? = 5 We can directly see that for any v € G . we have

(047.2) W (3)80 =700 = { @) modpy = o (3)-0a

n>0
where the first equality is by definition of w((f) as in (9.4.1.1), the second equality
is obtained from computing G »__-action on 5&"), and the last equality follows since
we embed F in R via a — {[a” "] mod p}. (Here, we identify F* = pa (o) =
fpi—1(PR), where the isomorphisms are induced from the fixed embedding xo : F —

Furthermore, we can see that wc(la) can be obtained as the cokernel of some isogeny

of lattice crystalline representations with Hodge-Tate weights in [0, h]. Indeed, wc([s)

is the product of h characters which come from the generic fibers of some finite flat
group schemes over o0, by partitioning each n; into the sum of h integers between
0 and e and applying Raynaud’s theorem [69, §3.4]. We have proved the following

proposition.

Proposition 9.4.8. If F embeds into k, then any F*-valued character that is ob-

tained as a G -stable quotient of a lattice crystalline representation with Hodge-

n

Tate weights in [0, h] can be written as wc(lg) for some & = [a]7™, where a € k* and
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n= Zf:_ol nip? 1=t for some 0 < n; < he for each i € Z/dZ. This character w? s

the unique Gy -character whose G y__-restriction is wc(lé) =TsM@an))-

Remark 9.4.9. By taking § = u and § = 7, the computation (9.4.7.2) also shows that
Wilre . Lo — ]F;d is the I, _-restriction of a fundamental character of level d for
Iy

Remark 9.4.10. For p > 2, it is not difficult to compute the Breuil module corre-
sponding to M4 ) € (ModFI /&)S', so we can recovers the above results in [70, §2).
Furthermore, one can extend the results using torsion p-modules with “tame descent

datum” and obtain the higher-weight generalization of [70, §3].



CHAPTER X

Categories co-fibered in groupoids

The purpose of this chapter is to present the basic definitions and set up the
notations. We mostly follow [51, §A]. More detailed discussion can be found in [77,

§3], [73, 1, Exp VI] and the open source algebraic stack project [74, §4].

10.1 Basic definitions

Let & and .# be categories and let II = Ilz/s : # — & be a functor. For an
object A € Ob(&), we define the fiber of .# over A as the subcategory % (A) of .%#
such that Ob (#(A)) = {¢ € Ob(F) : 1(£) = A} (here, we do mean the equality
I1(¢) = A, not II(§) = A), and arrows £ — n in % (A) are the arrows in .% which
are mapped to idy via II. We say an object & € Ob(F) is over A € Ob(&) if
I1(&) = A; ie., if £ € Ob(.Z(A)). For objects £ € Ob(.Z#(A)) and n € Ob(F(B))
and a morphism f : A — B, we say a morphism «a : £ — n covers f : A — B if
I(ar) = f

The following definition is from §10 and (5.1) of [73, 1, Exp VI|, which is weaker

than [77, Def 3.1].

Definition 10.1.1. Consider £ € Ob(.%#(A)) and n € Ob(%(B)), for A, B € Ob(&).
Let f: A — B be a morphism of &. Then a morphism «, which covers f, is called

co-cartesian for II if for any ' € Ob(#(B)) and any morphism o' : £ — 7’ with

229
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II(«) = f, there exists a unique morphism [ : 7 — 7' such that o = foa. If IT is

understood, we say that f is co-cartesian.

i

n
7]/ glﬁ l
B

i

\

3
,£<fB

f
Definition 10.1.2. We say that .# is a category co-fibered in groupoids over & (or

a groupoid over &, or &-groupoid) if the following conditions are satisfied.
(G1) Every morphism in .% is co-cartesian
(G2) (Existence of enough co-cartesian lifts) For any £ € Ob(#(A)) and a mor-

phism f : A — B be a morphism of &, there exists a co-cartesian morphism

a : & — n which covers f.

£
A
Let .% be an &-groupoid and let .%#’ be a subcategory of .%. We say that .#’ is an

& -subgroupoid if F' has enough co-cartesian lifts.

As a trivial example, the identity functor ide : & — & is an &-groupoid.

Under the condition (G2), the condition (G1) holds if and only if all the fibers
F (A) are groupoids [77, Prop 3.22] — hence the terminology. In applications, the base
category & is a certain category of rings (with extra structures) and the condition
(G2) says that for any & over A and f: A — B, we can always “extend scalars” to
obtain 7.

A functor Il : . F — & is a category co-fibered in groupoids if and only if T1° :

F° — &°is a category “fibered in groupoids,” in the sense of [77, (3.1.1)]. The results
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for categories fibered in groupoids also apply to categories co-fibered in groupoids
by changing the direction of arrows.

Remark 10.1.3. Let .# be an &-groupoid. Then any morphism « : & — 7 in #

satisfies the following strong co-cartesian property:

Let f :=Tl(a) : A — B and g : B — C be morphisms in &. For any
¢ € Ob(F(C)) and a morphism 7 : £ — ( over go f, there exists a unique

morphism 3 : n — ¢ over g such that v = o a.

B S K78 0N

gof
A—f>/B/91

In fact, by the existence of enough co-cartesian lifts (Definition 10.1.2(G2)), there
exists a co-cartesian morphism 3’ : n — (' over ¢g. Since any morphism in .% are
co-cartesian, v : £ — ( and ' o« : & — (' are co-cartesian over g o f. So by the
definition of co-cartesian morphism, we have a unique isomorphism 6 : ¢ = ¢’ over
idc such that 6oy = ' oa. Now take 3 := ! o/, and the uniqueness is clear from
the construction

As a consequence, we can prove that if II : % — & is an &-groupoid and IT’ :
F' — F be an F-groupoid, then II' oIl : #' — & is an &-groupoid. The existence
of enough co-cartesian lifts is automatic, but to show that all morphisms in .#’ are
co-cartesian for II' o IT we need the strong co-cartesian property, which will be left

to readers.

Remark 10.1.4. The notion of &-groupoid can be viewed as a generalization of covari-

ant functor & — (Sets) in the following sense: a covariant functor F' : & — (Sets)



232

associates to each A € Ob(&) a set F/(A), but an &-groupoid .F “associates'” to each
A € Ob(&) a groupoid .Z (A). For an &-groupoid %, we may associate a covariant
functor |.#| : & — (Sets) which assigns to A € Ob(&) the set |.#(A)| of isomor-
phism classes in .#(A). To rephrase, an &-groupoid % retains the isomorphisms
between objects over A while the associated functor |.#| does not.

We can view a covariant functor & — (Sets) as a &-groupoid with some special

property, which is discussed in §10.2.1.

Now, we define “maps” between &-groupoids. The fact that fibers .#(A) are

groupoids, not just sets, introduces many technical complications.

Definition 10.1.5. For two groupoids Il : % — & and II' : . % — &, a functor
®: F — F'is called an I-morphism over & if ® “preserves the base”?. In other
words, we have an equality of functors II = II' o ¥, not just an isomorphism.

For two l-morphisms ®, ¥ : .% = %' we say that a natural transformation
v ® — Uis a 2-morphism over & if 1) is base preserving. In other words, for
any £ € Ob(#(A)), the arrow ¢ : ®(§) — V(&) is a morphism in .Z#'(A); i.e.,
II'(1p¢) = ida. Any 2-morphism is automatically an isomorphism and the inverse
=t U — @ is forced to be a 2-morphism. To emphasize this, we often call it a
2-isomorphism. We define a groupoid € omg(%,.%#') with 1-morphisms % — %’
over & as objects and 2-isomorphisms as morphisms.

We say that a l-morphism ® : % — %' is an I-isomorphism if there exists
another 1-morphism V¥ : .%’ — % such that we have 2-isomorphisms ¥ o & = id4

and ® o U = id /. We say that W is quasi-inverse of ®.

IMore precisely, this means the following. By choosing a preferred “co-cartesian lift” for each & € Ob(.Z(A))
under A — B, (which is called a cleavage [77, Definition 3.9]), one gets a so-called “pseudo-functor” A — Z(A) from
& to the “category” of groupoids. We will not work with pseudo-functors. For more discussion on pseudo-functors,
see [77, 3.1.2].

2In general, a “l-morphism” of co-fibered categories is also required to be co-cartesian, which means that it sends
a co-cartesian morphism to a co-cartesian morphism. Any 1-morphism between categories co-fibered in groupoids is
automatically cartesian.
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Any l-morphism ¢ : .# — .Z’ over & induces a functor ®(A) : F(A) — F'(A)
on fibers for each A € Ob(&’). The following proposition gives a useful fiber-criterion
for a 1-morphism to be fully faithful or 1-isomorphism. The proof can be found in

Prop 3.36 and Lemma 3.37 of [77].

Proposition 10.1.6. A I-morphism ® : . F — F' over & is a 1-isomorphism (re-
spectively, fully faithful as a functor) if and only if ®(A) is an equivalence of cate-

gories (respectively, fully faithful) for each A € Ob(&).

The equality of 1-morphisms is often too restrictive; it is more natural to allow
2-isomorphisms in place of equality. For example, we often need to consider 2-
commutative diagrams (instead of commutative diagrams) of 1-morphisms, which
means a diagram of l1-morphisms with a fized 2-isomorphism?® for each two paths
with the same source and target (in a “compatible” manner if there are more than
two different paths with the same source and target*). This often makes the precise
statements more complicated than the actual contents are.

We define 2-fiber product following [74, Def 2.2.7], which is different from the
fiber product (or 1-fiber product) of categories as defined in [73, 1, Exp VI, §3]

which requires the diagram below (10.1.7.3) to commute for a unique ®.

Definition 10.1.7. Let .#, .%#; and .%; be &-groupoids, and let ®; : .%;, — F for

1 = 1,2 be 1-morphisms over &. Then by 2-fiber product, we mean an &-groupoid

F1 X 7 Fo, equipped with 1-morphisms pr, : #; X 7 %y — #;, and a 2-isomorphism

w : @y o pr; — P, o pr,, which satisfies the following “2-universal property.”

(F1) For any &-groupoid ¢, 1-morphisms ¥, : ¢4 — .%, fori = 1,2, and 2-isomorphism

W &0V = Py 0 Wy, there exist a 1-morphism ¥ : 4 — %, X %, and 2-

3We always fix a 2-isomorphism between each pair of paths in a 2-commutative diagram, even though the 2-
isomorphisms will be omitted from the notations.
4We will not be precise on this, but the diagram (10.1.7.3) is an example of this.
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isomorphisms ¢; : ¥; — pr, oW for 4 = 1,2, which makes the following diagram

commute.
(10.1.7.1) d, 0V, Dy 0 Uy
“<I>10¢1”l l“q’zo(w”
®, o pry oW ®, o pry oW

“oolr”

Here, “®; 0 ¢;”: ®; o U; — &, o pr; oV is the 2-isomorphism induced from the

2-isomorphism ¢;, etc.

(F2) For any (WU, ¢y, ¢o) and (¥, ¢}, ¢5) which satisfies (F1), there exists a unique

2-isomorphism # : ¥ = ¥/, which makes the following diagrams commute for

1=1,2
(10.1.7.2) W, 2 pr, oW
& \L“pri 0§”
pr; oV’

The fiber product .#; X # %5 is unique up to l-isomorphism, which is unique up to

unique 2-isomorphism that makes the diagram (10.1.7.2) commute.

Roughly speaking, (F1) says that for each (¢, ¥, Uy,%) as in (F1), we have a
1l-morphism ¥ which makes the diagram below 2-commute in every possible way
and in every possible sense, and (F2) says that such a ¥ is unique up to unique
2-isomorphism which respects all the 2-isomorphisms between any two compositions

of 1-morphisms with the same source and target.

(10.1.7.3) %
S~ 0y
\\II\

BEN

%\\/1 X g Fo = F1
O | J{@l

\

2 F
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10.1.8

The 2-fiber product %7 X #.%5 always exists and provided by the following explicit

construction:

1. An object over A € Ob(&) is a triple (&1,&2, ) where & € Ob(#;(A)) for

i=1,2and a: ® (&) = $y(&) is a morphism in F(A).

2. A morphism (&, &, @) — (1,12, 3) is a pair (y; : & — 1;)i=1,2 such that o

D1 (1) = Pa(12) 0.

3. The functors pr; is (&1, &, ) — & and (71, 72) — ;. We define the 2-isomorphism

w: @y opr; = Py opry by Wi, gya) = .

Remark 10.1.9. We record an immediate property of 2-fiber product. If &, : %, — %
is a l-morphism which makes .#; an .%-groupoid (for example, if .# = &), then
pry @ F1 X g Fo — Fo is an Fo-groupoid. The proof uses the strong co-cartesian
property (Remark 10.1.3). Combining this with the last paragraph of Remark 10.1.3,
the functor .7, x 7 Ty —2 Fy I gisa groupoid over &.

It is also useful to note that if @y is fully faithful (respectively, 1-isomorphism)
then so is pr;. Indeed, for two objects (&1,&2, @), (m1,m2, ) of 1 Xz P and a
morphism 7, : & — 1 in %7, we can always find a unique morphism v = (v1,7) :
(&1,&, ) — (1,12, 3), so that pry(y) = 7, as follows: considering the following
diagram

P (&) —5= Da(&2)

|
@1(m1) | ﬂo@l(fyl)oa’1
Y

®1(m) %) D5(12)
and using the full faithfulness of ®5, we let v, : &, — 12 be the unique morphism in

F5 such that @y(v,) = o ®y(v1) o a™!. If, furthermore, @, is essentially surjective,
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then so is pr;: for any & € Ob(Z#(A)), we may find {& € Ob(F(A4)) and « :
D1 (&) = Dy(&) in F(A), so we have pry(&r, &, a) = &)

Remark 10.1.10. Consider two functors |.#; x # %| and | F| Xz |-F,| on &. We

have a natural transformation
(10.1.10.1) | T x5 Fo| — | F1| X7 [ F2l; [(€1, 62, )] = ([&1], [€2]),

which is seen to be surjective. But this natural transformation does not have to be
an isomorphism, that is to say, the formation of 2-fiber product does not commute
with the passage to the associated functor. This is why we work with “deformation
groupoids,” rather than deformation functors. This is observed by [51, (A.6)].

Here is an example when the natural transformation (10.1.10.1) is not an iso-
morphism. We start with a non-trivial group G, and we will construct a “uni-
versal G-torsor” over a fixed category & as follows. Define a category &/G by
Ob(&/G) = Ob(&) and Home (A, B) = Home(A, B) x G, and define a func-
tor Ilg)¢ : /G — & by the identity map on objects and the natural projection
Homg (A, B) x G — Homg(A, B) on morphisms. Clearly &/G is an &-groupoid.
Viewing & as an &-groupoid via the identity functor, we have a 1-morphism ¢ :
& — & /G defined by the identity map on objects and ®(f : A — B) = (f,eq) on
morphisms. Then both functors |&| and |£ /G| maps any object A € & to an one-
element set {A}, and |®| is the “identity natural transform” between these functors.
So |&| X|#/¢| |&| map any object A € & to an one-element set {A}.

Now, let us work out the 2-fiber product & x5, &. Using §10.1.8, objects of
a fiber (& xg/q &)(A) are of the form (A, A, a), where a is any element of G and
all the morphisms in (& xg,c &)(A) are identity morphisms. In other words, the

groupoid (& X, & )(A) is a set, and is in bijection with G. In particular the natural
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transformation |& Xs/q &| = & xs)c & — |&| X |56/ |€| cannot be an isomorphism

because (& Xs/q &)(A) =2 G and |&| (A) X |£/¢)4) |6] (A) is an one-element set.
Lastly, we remark that if either ®; or &, is fully faithful as a functor, then the

natural transformation |#1 x z Fo| — |F1| X2 |#2] is in fact isomorphism. This

can be read off from the discussion in Remark 10.1.9.

We define one more operation which will be needed soon.

Definition 10.1.11. Let &’ — & be any functor, which may not define a category
co-fibered over &. For an &-groupoid Il : . % — &, we define a category Zs as
follows: objects are pairs (£, A’) where £ € Ob(.%#) and A" € Ob(&”) map to the
same object in & (not just isomorphic ones), and morphisms (§, A’) — (n, B') are
pairs (¢ — n, A" — B’) which map to the same morphism in &. In [73, 1, Exp VI,
§3], this category is called the fiber product and denoted by .# x ¢ &”, but this is not

the 2-fiber product even if & happens to be co-fibered over &.

There are natural “projection functors” Fe — F and Fo — &', and it is
straightforward to check that the second projection makes %z an &’-groupoid. (This
is stated, without proof, in [73, 1, Exp VI, Prop 6.6].) We call this &”’-groupoid the
base change of .F over &".

In the special case when &” is a subcategory (respectively, a full subcategory),
one can show that %z can be viewed as a subcategory of .Z (respectively, a full
subcategory of %) by the first projection. In this case, we often write .#|s instead

of Z¢, and call it the restriction of .% over &”.

Remark 10.1.12. We end this section with a remark on “aesthetics.” By choosing
a cleavage [77, Def 3.9], in other words a preferred cartesian lift for each arrow in

&, we can associate to an &-groupoid Il : # — & a “pseudo-functor” A — % (A)
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from & to a “category” of groupoids. This is called a pseudo-functor because the
equalities in the axioms of functor are replaced by isomorphisms. The notions of
pseudo-functor on & and groupoids over & with (a fixed) cleavage are equivalent.’
See Prop 3.11 and §3.1.3 in [77].

This pseudo-functor description of &-groupoids may appeal as more satisfactory
one. For example to define a pseudo-functor, one just have to define a fiber .7 (A)
for each A € Ob(&) and specify how they “pull back.” On the other hand, unless an
&-groupoid .Z is co-fibered in sets §10.2.1 or split [77, Def 3.12], there is no canonical
or preferred choice of cleavage on .%. So we do not choose a cleavage, unless it does

not sacrifice concreteness.

10.2 The 2-Yoneda lemma and representibility

The goal of this section is to define representability for an &-groupoid. We first
explain how to view a functor & — (Sets) as an &-groupoid, and identify the class
of &-groupoids which come from functors. Then we may define the representability
of an &-groupoid using the representability of a functor.

For the purpose of completeness, we state without proof the 2-Yoneda lemma,
which plays the same role for &-groupoids as Yoneda lemma does for functors.
Roughly speaking, the 2-Yoneda lemma says that an object A € Ob(&) can be
viewed as an &-groupoid. Even though it is not technically necessary to discuss

2-Yoneda lemma¥, it offers conceptual clarification.

10.2.1 Functors and categories co-fibered in sets

We view a set as a groupoid” where all morphisms are identities. We say a

groupoid Il : .# — & is co-fibered in sets if the fiber .Z(A) for each A € Ob(&) is

5By the axiom of choice, any &-groupoid has a cleavage.
61t is possible to define the representablilty of a functor without stating the Yoneda lemma.
"We always assume that the objects of a groupoid form a set.
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a set. This is equivalent to requiring that for each £ € Ob(.Z#(A)) and f : A — B,
there exists only one (co-cartesian) arrow £ — n over f. See [77, Prop 3.25] for the
proof.

It is not hard to check that if IT : .# — & is co-fibered in sets, then the assignment
A — Z(A) defines a functor F' : & — (Sets). In fact, the converse is also true.
Namely, for a given functor F : & — (Sets), we can construct a category Il : # — &
co-fibered in sets with .#(A) = F(A) for each A € Ob(&). We give the construction
without proof. Define a category .%, so that an object is a pair (£, A) where £ €
F(A) and a morphism (£, A) — (n,B) is an arrow f : A — B in & such that
F(f): F(A) — F(B) takes ¢ into 1. By forgetting &, we obtain .# — & which is
co-fibered in sets.

From now, we often use the same letter F' to denote the category co-fibered in sets
which corresponds to a functor F' : & — (Sets). Note the groupoid € ome(F, F') of
1-morphisms of categories co-fibered in sets is a set. For any 1-morphism ¢ : F' — F”
of categories co-fibered in sets over &, one obtains a natural transformations of
functors F' — F’ by putting ¢4 : F(A) — F'(A) for each A € Ob(&). Conversely,
for given functors F, F’ : & — (Sets) and a natural transformation ¢ : ' — F’,
one obtains a l-morphism F' — F’ over & by putting (£, 4) — (¢¥a(§),A) and
(€A L .B)] = [@a(€), 4) L Ws(n), B)], where [ : (€4) = (1, B) means
the morphism defined by f : A — B. Therefore, we conclude that the notions of
category co-fibered in sets and functor are interchangeable, and the set S om(F, ")
of 1-morphisms is naturally in bijection with the set of natural transformations F' —
F’ of functors.

For each &-groupoid %, we have associated a functor |%#| (Remark 10.1.4). We

denote by the same notation |.#| the category co-fibered in sets which corresponds
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to the functor |.#|. Then we obtain a l-morphism .# — |.#| by associating to each

object ¢ the “isomorphism class” of & over I1(§).

10.2.2 Categories co-fibered in equivalence relations

The notion of category co-fibered in sets is not stable under 1-isomorphisms.
In this subsection, we identify the class of &-groupoids which are 1-isomorphic to
categories co-fibered in sets.

We say a groupoid % is an equivalence relation® if there exists at most one mor-
phism between any two objects of €. A groupoid % is an equivalence relation if and
only if the natural functor @ — |%’|, which associates to £ € Ob(%’) the isomorphism
class of &, is an equivalence of categories. In other words, an equivalence relation is
a groupoid which is equivalent to a set (viewed as a groupoid).

We say an &-groupoid % is co-fibered in equivalence of categories if for each
A € Ob(&), the fiber .#(A) is an equivalence relation. To rephrase, for any objects
&,n € Ob(F) and a morphism f : II(§) — II(n) in &, there exists a unique morphism
& — nover f. It follows from Proposition 10.1.6 that an &-groupoid .# is co-fibered
in equivalence relations if and only if the natural 1-morphism % — |Z] is a 1-
isomorphism. In other words, an &-groupoid .% is co-fibered in equivalence relations
if and only if it is 1-isomorphic to a category co-fibered in sets over &.

Now to each A € Ob(&), we associate a category (& /A) co-fibered in sets over &.

Definition 10.2.3. Let A € Ob(&). We denote by (& /A) the category co-fibered in
sets which correspond to the functor Homg(A, —) : & — (Sets). Explicitly, (&/A)

can be described as follows.

1. An object is an arrow f: A — Bin &.

8For an equivalence relation %, we obtain an “equivalence relation” on Ob(%) in the usual sense: £ ~ n for
&,m € Ob(%) if and only if Home (¢, 7) is non-empty. Conversely, for an “equivalence relation” R C X x X, we can
construct an equivalence relation ¥ with Ob(sC) = X, and for &,n € X, set Home (§,n) = {*} if and only if £ ~ 7.
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2. A morphism « : (A LR By) — (A EER By) is an arrow « : By — Bs such that

ao fi = fo

3. The functor I, : (/A) — & is defined by forgetting the morphism from A. In

other words, I14(A — B) = B and I, | (A — B)) % (A — BQ)] — (B, % Byl.

For any f : A” — A, we have a natural transformation Homg (A, —) =, Homg (A, —)
by pre-composing f. We let (&/f) : (§/A) — (&/A’) denote the correspond-
ing l-morphism. Explicitly, (&/f) : (A — B) — (A4 ERy/ - B) on objects
(A — B) € Ob(&/A).

The Yoneda lemma and the discussion in §10.2.1 implies that the morphisms
A — Bin & and the 1-morphisms (&/B) — (& /A) are in bijection. In fact, we have
the following stronger version of the “Yoneda lemma” for &-groupoids.

Let .# be an &-groupoid. Define a functor evy : Some((8/A), F) — F(A) by

“evaluating” at the universal object id4 € Ob(&/A). More precisely,

1. For any l-morphism ® : (&/A) — Z, we define evs(®) := ®(idy) € Ob(F(A))

by evaluating at the “universal object” (A 14, ) € Ob(&/A).

2. For two 1-morphisms ®, ¢’ : (§/A) — .# and a 2-isomorphism ¢ : & — &', we

put evs (1)) = ¥iq,, which is a morphism in % (A).

Proposition 10.2.4 (2-Yoneda lemma). The functor evs : 7 ome((£/A), F) —

F(A) is an equivalence of categories.

If % is co-fibered in sets then 2-Yoneda lemma recovers the usual Yoneda lemma for

functors.

Sketch of the proof. We indicate the idea how to construct a quasi-inverse of ev,.

For any object £ € Ob(.#(A)), we can define a 1-morphism @, : (§/A4) — Z so
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that ®¢(id4) = &, as follows. For any (A EN B) € Ob(&/A), take a co-cartesian lift
§ — nover f and put ®¢(A EN B) =n. If (A EN B) %L (A iR B’) is a morphism
in (&/A), then the strong co-cartesian property (Remark 10.1.3) gives a morphism
P (A 7, B) — ®¢(A LN B') over g, which we take as W¢(g). One can check that ®,

is well-defined and that  — ®, gives a quasi-inverse to eva. O]

Before we define the notion of representability for &-groupoids, we record the
following useful fact. Let II : .# — & be a groupoid, and let £ € Ob(.%(A)) for
A € Ob(&). We may define a groupoid (% /€) over .#, and by Remark 10.1.3,
(F/) — F I, & is a groupoid over &. On the other hand, the functor II induces
a l-morphism II|4 : (F/§) — (&/A) over & in an obvious manner. The functors
(F/€) Hla, (&/A) — & and (F /§) — F I, & are identical, hence give the identical
&-groupoid structure on (% /¢).

The following lemma is just a re-phrasing of the strong co-cartesian property

(Remark 10.1.3).

Lemma 10.2.5. The I-morphism Il|4 : (F/€) — (&/A) over & is always a 1-

1somorphism.

Definition /Proposition 10.2.6. An &-groupoid % is called representable if the
following equivalent properties hold.
(R1) For some A € Ob(&), there exists an 1-isomorphism ® : (§/A) = .Z. In
this case, we say that A represents %, and the object £ := ®(id4) € Ob(.Z (A))
is called the universal object.
(R2) For some & € Ob(.Z), there exists an 1-isomorphism @ : (.F /&) = .F over
&. In this case, we say that A := Ilz,¢(§) € Ob(&) represents %, and the

object £ is called the the universal object.
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Furthermore, the objects A and ¢ which satisfy one of (R1) and (R2), if exist, satisfy
the other. The representing object A € Ob(&) is unique up to canonical isomorphism

in &, and the universal object £ is unique up to canonical isomorphism in .7 .

Proof. The uniqueness aspect of the statement follows from 2-Yoneda lemma, like in

the case of functors, and the rest of the claims follow from Lemma 10.2.5. n

Recall that the &-groupoid (&/A) co-fibered in sets corresponds to the repre-
sentable functor Homg(A, —), therefore this notion, especially (R1), recovers the
usual representability for functors if .# is co-fibered in sets. Also (R2) (or Lemma
10.2.5) says that for some object £ € Ob(%), the &-groupoid (F /) is representable.

Even if .Z is representable, it does not have to be co-fibered in sets over & but
is necessarily co-fibered in equivalence categories. Conversely, the &-groupoid .Z is
representable if and only if the functor |#| is representable and % is co-fibered in

equivalence relations.

Definition 10.2.7.

1. A I-morphism ® : F' — F over & is called relatively representable® if for each
£ € Ob(F), the 2-fiber product F/ := (F /&) X 7o F', which is an &-groupoid

by Remarks 10.1.9, is representable over &.

2. Assume that & is a subcategory of the category of rings. Then ® is called
formally smooth if the associated natural transformation |®| : | F'| — |Z| is

formally smooth.

For a property P of objects of &, we say a representable &-groupoid .# has the

property P if the representing object A € Ob(&’) does. Similarly for a property P

9f .Z and .#’ are co-fibered in sets and ® is fully faithful as a functor (i.e., if ® is a monomorphism of functors
|Z'| — |#]), then this definition of relative representability coincides with seemingly more popular one, e.g. [64,
§19], by Schlessinger’s criterion.
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of morphisms in &, we say a relatively representable 1-morphism ® : .#' — % has
the property P if the morphism in & that represents &¢ := pry : F{ — (F /) has
the property P. (By assumption, both #{ and (% /§) are representable over &.) On
the other hand, we define formal smoothness for any 1-morphism ®, not necessarily
relatively representable.

One can check, from §10.1.8 and the definitions, that relative representability and

formal smoothness stable under “2-categorical base change.” More precisely, we have

Proposition 10.2.8. Assume that we have the following “2-cocartesian diagram”

g -2 g

L

T LQgZ ,
in other words, the natural 1-morphism ¢ — F' Xz 9, induced from the above

diagram by 2-categorical universal property, is a 1-isomorphism. Then the following

hold.
1. If ® is formally smooth, then so is ®'.

2. If ® is relatively representable, then so is ®'. Furthermore, if © € Ob(¥4(A))
maps to & € Ob(F(A)) by the I-morphism ¢ — .F, then the I-morphism
G, — F{ of (&/A)-groupoids induced by the 2-categorical universal property
is a 1-isomorphism, so the representing objects of both (&/A)-groupoids are

1somorphic.
10.3 Deformation and framed deformation groupoids
We now define groupoids whose objects correspond to “deformations” or “framed

deformations” of a residual G -representation. They are groupoids over the following

“base categories” & = AR,, Q/li)\‘io, 2ug,, QILTgO, which will now be defined.



245

10.3.1 Base categories

Let o be a local domain that is a finite extension of 0g with residue field F, and
put F':= Frac(o). Let AR, be the category of artin local o-algebras A whose residue
field is F (via the natural map). Similarly, let Q/LS)\%U be the category of complete local
noetherian o-algebras with residue field F.

We often need to consider “deformations” over a ring which is not a complete
local noetherian ring, so we introduce the category 2dug, of pairs (A, I) where A is
an o-algebra such that 7y is nilpotent in A, and I C A is an ideal containing m,A
such that IV = 0 for some N. Morphisms (A,I) — (B,J) in 2Aug, are o-algebra
maps A — B which send [ into J. Using the fully faithful functor AR, — 2Aug,,
A — (A,my), we regard 2R, as a full subcategory of 2ug,. Any o/m,-algebra A can
be viewed as an object in 2ug, by setting I = {0}. Also, A := (o/mY)[t] together
with [ := m,- A defines an object in 2Aug, that is not artinian with non-zero /. In
many cases, the nilpotent ideal I does not play an important role and can be replaced
by bigger nilpotent ideal, for example the nilradical of A if A is noetherian.

We may also define a category QTu\go of pairs (A, ) where A is an topological
o-algebra which is an admissible ring (so necessarily 7, is topologically nilpotent),
and [ is an ideal which contains m,A and such that //mJA C A/m] A is nilpotent
for each n. Morphisms (A,I) — (B, J) are continuous o-maps which send I into J.
We have a fully faithful functor Q/li)\%o — Q/lu\go, A (A,my) , so we regard Q/li)\‘ia as

a full subcategory of EZ/ILE‘;U. We will not use this category very often.

10.3.2 Deformation groupoid

Let Ty be a finite-dimensional F-vector space and let pr : Gx — GL(Tr) be a

continuous homomorphism. We define the category &, of deformations of pr, and
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the functor II : ,, — AR, which makes Z,, a groupoid over AR,, as follows.
An object over A € AR, is (pa, T, ta), where Ty is a finite free A-module with
a continuous A-linear action of G by pa, and ta : Tp — Th4 @4 (A/my) is a
G k-equivariant isomorphism over the natural isomorphism F = A/m4. Given a
morphism f: A — B in AR,, we define a morphism o : (pa, Ta,ta) — (05, Tg, )
over f to be an equivalence class of G -equivariant morphism 7'y — 717 over f which

respects 14 and tz; i.e., @ makes the following diagram commute:

(10.3.2.1) Th ®a (Afmy) ——=T} @p (B/mp)

' - o 7
where @ is induced by «, and two morphisms « and o' are equivalent if one is
a (1 + mp)-multiple of the other. Since any morphism over id, is necessarily an
isomorphism by Nakayama’s lemma, the the category Z,,(A) of objects over A and
morphisms over idy4 is a groupoid for any A € 2R,. Furthermore, if Endg, (pr) = F,
then for any deformation p4 we have Endg, (pa) = A by Nakayama’s lemma applied
to A — Endg,(pa). So the groupoid Z,,(A) is an equivalence relation for any
A € 2R, when Endg, (pr) = F.

One can check that the assignments (pa, Ta,t4) — A and a — f define a functor
II: 92, — 2ANR,, and the fiber over A € AR, is exactly Z,,(A). By the universal
property of tensor products, giving a morphism « in Z,, is equivalent to giving a
morphism Ty ®4 ¢ A = T}, in 9,,(A’). This shows that any morphism in %, is
co-cartesian, hence %, is a groupoid over ANR,.

We may repeat this construction by AR, replaced with Q/lfﬁo and requiring pa
to be continuous for the profinite topology on Gx and the my-adic topology on

Aut4(T4), obtaining a groupoid Il : .@W — AR, such that we have an “equality”

2

o = ApF lamm, of AMR,-groupoids. Later in §10.4.1, we give a general recipe to extend
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a groupoid over AR, to a groupoid over Q/li)\‘{o via “projective limit”, which recovers
.@W when applied to Z,,.

Now, we define another groupoid Il : épm — 2Aug, which “extends” II : &, —
AR, as follows. An object over (A, I) € Aug, is (pa,Ta,t(a,r)), where Ty is a free
A-module with a continuous action of G by pa (for the discrete topology on A), and
van T — Ta®a(A/I) is a G g-equivariant morphism over F — A/I which induces
an isomorphism Ty ®p (A/I) = Ta ®4 (A/I). A morphisms « : (pa,Ta,van) —
(P, T, g p) over f: (A1) — (B,J) is an equivalence class of Gx-equivariant
morphisms « : T4y — T over f which respect (4 ) and L,(B’ ) i.e., a makes the

following diagram commute:

(10.3.2.2) Ta®a (A/]) ——Tp @5 (B/J)
Lm 4;)
7~

where @ is induced from «. We say such oy and ay are equivalent if they are (14 J)-
multiples of each other.

For A € AR,, we have an “equality” of categories Z,,(A) = épF(A, my ), therefore
“equality” of ANR,-groupoids Z,, = épﬂg@qo. Later in §10.4.4, we give a general
recipe to extend a groupoid over 21R, to a groupoid over 2Aug, via a “direct limit,”

recovering @,,F when applied to Z,,.

10.3.3 Framed deformation groupoid

Let Tr and pg be as above, and we fix a framing Br : F* = Tr. We define the
category .@EF(: QPE’BF) of framed deformations of pg, and the functor IIV : QPDF —
AR, which makes .@EF a groupoid over AR,. (The groupoid '@‘P:]lF will depend on the

choice of framing fr, but we do not specify this in the notation unless necessary.)

Objects over A € AR, are tuples (pa,Ta,t,34) where (pa,Ta,t) is an object in
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Dpe(A), and B4 : A®" 5 Ty is a framing which lifts Sr via ta; i.e., 4 makes the

following diagram commute.

(10.3.3.1) (Afm )@ AEE) g ey (Afma)
ET ETLA
F@n ﬁ; TIF

Given a morphism f: A — A’ in AR,, we define a morphism a : (pa, Ta,ta, 54) —
(P'ars Ty Uary B'y) over f to be a G g-equivariant A-morphism TyraT",,, which respects
all the structures in the sense that we have the following commutative diagram in

addition to (10.3.2.1).

B,

(10.3.3.2) (AN 2,
N
Adn = T's

Now, we can repeat the previous discussion to obtain groupoids II7 : @EF — AR,,

e 75 — AR, and 117 ; @EF — QAug,. For (A, I) € Aug,, an object (pa, Ta, 4, Ba) €
D o . . . . .

2,.(A, I) additionally satisfies the following commutative diagram.

Ba®(A/I)

(10.3.3.3) (Af1yen 22N (AfT)
Fon :F Ty

The 1-morphism .@pDF — 9, defined by “forgetting the framing” is formally
smooth in the sense of Definition 10.2.7(2). Furthermore, it makes .@EF into a
@(n)—tomor over %,,, where @(n) is a functor @(n) A P/G\L(n,A) =
{g € PGL(n, A)| g mod my = Id,, } on AR, (or the corresponding category co-fibered

in sets)!?. More precisely, we have an 1-isomorphism

~

= : PGL(R) oy 22— 99 x5 7Y
= aun 2Aug, < pp pr " ZDop Zpp>

10Tn other words, P/G\L(n) is a formal completion of the linear algebraic group PGL(n), along the identity section.
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defined by Z(ga, (pa; Ta,ta,84)) = ((pa, Ta,ta, Ba), (04, Tastas Ba o (ga)™'),idr,)
for each g4 € P/G\L(n,A), where ga € (/}i(n,A) is a lift of g4. This 1-morphism
does not depend on the choice of lift g4 up to 2-isomorphism, since for any a €
1 +my we have an isomorphism ((pa, Ta, ta, 84), (pa, Ta,ta,Bao (a-ga)™t),ids,) =
((pa, Tayta,Ba), (pa, Ta,ta, Bao(ga)™t),aidr, ~idz,). One can directly check that
this 1-morphism is actually an 1-isomorphism.

As a consequence, the 1-morphism .@EF — 9, is relatively representable, namely
for any ¢ € 2,.(A), the groupoid '@/)DM is representable by @(n) 4. The same
properties hold for the deformation groupoids over 9/19\‘{0 and Aug,. We define

PGL(n) : (4,1) — {g € PGL(n, A)| g mod I = Id,} on Aug,

10.4 2-categorical limits

In this section, we give a general recipe to extend a groupoid over AR, to a
groupoid over Q/(i)\%o via a 2-projective limit (respectively, to a groupoid over 2dug, via
a 2-direct limit). For the AR -groupoids Z,, and @g, we have already constructed

.@,,F, .@,,F and 75, U

ey Zpe» Tespectively, which are 1-isomorphic to the groupoids we

obtain by the general recipe below. But the general recipe is needed when we work
with subgroupoids of %,, and .@EF which can be naturally described only over 2AR,,
for example the full subcategory of deformations of P-height < h, which is introduced
in Definition 11.1.1.

For concreteness, we work with the restrictive choice of base categories which
will come up in the application, but our definitions of 2-projective and direct limits
can generalize to arbitrary base categories. We do not attempt to “explain” our
definition, and refer to [73, 4, Exp VI, §6] for more general and complete discussions.

Since [73, 4, Exp VI] works with fibered categories, not co-fibered categories, we
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often have to change the directions of arrows to translate the results for co-fibered

categories.

10.4.1 2-projective limits

Recall that any functor on AR, can be uniquely extended to a functor on Q/li)\%o
by taking a projective limit. For a groupoid over 2AR,, the same idea works, except
that the definition of projective limit is more technical. Roughly speaking, to a
AR,-groupoid %, we associate the Q/lﬂ\‘io—groupoid Z so that the fiber 37\(14) over
A€ Q/li?io is the category of projective systems of objects in .#(A/m’;). We refer to
(73, 4, Exp VI, (6.10)] for interested readers.

For A € 52/19\%0, let Qliﬁf be the category where the objects are the o-algebras A/m’
for n > 0 and the morphisms A/m” — A/m" are the natural projections. Let ¢ be
a groupoid over Qli)‘if. For example, given a groupoid .# over AR, let ¥ := .7 ]ng;
be the sub-category of .# whose objects and morphisms are over those of Q(?Rf. Then
we define a 2-projective limit of 4 as follows:

(10.4.1.1) lim & (A/m}) := A omam, (AR, ,9),

where J# omeg, (-, ) is the category of base-preserving!! functors. “Evaluating at
A/m’” gives a functor lim & (A/m%) — & (A/m}) for each n, and we have a canon-
ical 1-morphism AR x lim ¢(A/m’) — ¢ of groupoids over AR, In fact, this
I-morphism is universal among 1-morphisms 919%? x C'— ¢ for any category C.
The groupoid lim %(A/m’) has the following explicit description. The objects
are projective systems {&,| &, € 4(A/m’})}, and morphisms {{,} — {n,} are collec-

tions {&, — 7, }» of morphisms in ¢ which are compatible with the transition maps,

HWe view 2[9‘3;4 as a category over 2R, via the natural inclusion functor. Base-preserving functors are de-
fined in Definition 10.1.5, and morphisms of base-preserving functors are also required to be base-preserving in the
sense of Definition 10.1.5. If 4 were a general co-fibered category, then we need to require that any functor in
S omgm, (919%;4, %) sends any arrow in QISR{;‘ to a cartesian arrow, but this is automatic since .# is a groupoid over
AR, .
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i.e., make the following diagram commute:

Env1 — Tnt1

]

& —— "I

If A is artin local with (m4)" = 0, then the functor {¢,} — &, defines an equivalence

of categories lim ¢(A/m’}) — ¢(A). We can check that

(10.4.1.2) lim & (A/m’y)

n

> lim [/] (A/m}).

n

In particular, for a category G co-fibered in sets (i.e. a functor), the 2-projective limit
lim G(A/m%) is equivalent to the set-theoretic projective limit of the G(A/m’).

Now, let .# be a groupoid over AR,. We now define a groupoid F over Q/lf)\%o,
as follows. For any A € AR, we set Q:(A) = lim #(A/m}). To a morphism
f:A— Bin AR,, we can naturally associate a functor f : AM? — ARZ. For
two objects £ € Ob(é:(A)) and 7 € Ob(;\\(B)), a morphism o : & — n over f is
a natural transformation & — no f. (We view £ and 7 as functors into .# via ¢ :
ARY — 7 lagpa — F and ARE - F laz — #.) More concretely, a morphism
{&.} — {nn} over f isa collection {&, — n,} of morphisms over f,, : A/m’} — B/m},
which are compatible with the transition maps.

This Q/lﬁ\%o—groupoid F extends F : i.e., we have a l-isomorphism jﬂm% = 7.
(This amounts to the fact that the natural “projection functor” lim 7 (A/m%) —
F(A) is an equivalence of categories for each A € AR,.) Conversely, let .F' be a
AR,-groupoid. We choose a cleavage (Remark 10.1.12) so that for any A — A/m’,
we obtain a functor .#'(A) — .#'(A/m’). Then we obtain a 1-morphism = : F#' —
%ﬂ of Q/lﬁ\%o—groupoids with cleavage, as follows: for each A € 2/19\%0, we define a
functor 4 : F'(A) — lim .F'(A/m) by sending & to {4/m, according to the choice

of cleavage.
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Definition 10.4.2. Let .#’ be an Q/lS\‘io—groupoid. We say that the formation of F'
commutes with 2-projective limits if for some choice of cleavage (equivalently, for any

—

choice of cleavage) on .#’', the l-morphism = : F' — F'|ym, is a l-isomorphism.

Here is an example. Let .# = %, and F# O— QEF7 and we already defined Q/li)\%o—
groupoids -@w and @g in §10.3. We show that their formation commute with 2-
projective limit. We first choose a cleavage so that .@W(A) — .@pF(A /m’) is given by
T — T/w T, and similarly for .@EF. Let Z and .ZU be the Q/[i)\%o—groupoids obtained

by the 2-projective limits construction discussed above. Then, that Z : 2, — 7

and =9 : .@Em =, 79 are 1-isomorphisms follows from Proposition 7.4.1.

Definition 10.4.3. We say that an AR,-groupoid % is pro-representable if T is

representable.

10.4.4 2-direct limits

In this subsection, we explain how to extend .# = ,, or F = .@EF over the bigger
category 2ug, by using a 2-direct limit.

For (A, ) € ug,, we form a category ARD of pairs (A', ja : A’ — A), where
A € AR, and ja : A" — A maps my into I. We require that morphisms respect
the injective map ja. We will often view A’ as a o-subalgebra of A via ja, and
will not mention j4 explicitly. For two objects A" and A” in QLS%E,A’I), we can find
another object Im[A’ ®, A”] which contains A’ and A” as a o-subalgebra of A. In
other words, the category AR is filtered '

To motivate the construction, consider a AR,-groupoid .# which is representable

by R € 52/[9\“‘10. Then for a noetherian o-algebra A where 7y is nilpotent, consider

the set of continuous o-maps Hom,(R, A). Since by continuity any R — A factors

121f the base category is not filtered then the 2-direct limit can be counter-intuitive. For a more precise statement,
see [73, 4, Exp VI, Exercice 6.8(1)].
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through some A’ € Qli}igA’I ) where I C A is the nilradical, we have a natural bijection

Hom,(R,A) =~ lim Hom,(R, A’") = lim .# (A"
— —
Arearith Al
For an arbitrary AR,-groupoid %, it will be natural to define (;5:(14, I) as the direct
limit of .7 (A’) over A" € AR But since .% (A’) does not have to be equivalent
to a set, we need to clarify what we mean by the “direct limit.” Roughly speaking,

to a AR,-groupoid #, we will associate the Aug,-groupoid # so that the fiber
:%JY(/L I) over (A, I) € 2ug, is the category of direct systems of objects in % (A’) for
A e AR,

Let ¢4 be a groupoid over 2[9{5,’4’[ ). For example, we may take 4 := .# |legA,I) for
some groupoid . over AR, as before. Define the 2-direct limit lim wreamAD G(A') as
the category obtained from ¢ by “formally inverting” all the co-cartesian morphisms,

G(A)

. . . A - .
hence all morphisms, in ¢. Since Qliﬁg ) is filtered, the category lim AreaRmAD
is a “localization” of ¢ in the following sense. The set of objects is exactly Ob(¥),

and the morphisms are equivalence classes of the following diagrams:

(10.4.4.1) Eu g

N

ne
where o and 3 are morphisms in 4. We write the above morphism as 37! o o, and
the equivalence relation is generated by 3~ 'oa ~ (y03) ' o(yoa) for any morphism
v :npr — npw in 4. To rephrase, the set of morphisms can be written as follows:

(10442) Homlgng(fA/,nB/) = ll_H)l Homg(fo,nBu).
npn €0b(Y /np/)

This gives a well-defined category (in particular, the composition of morphisms is

well-defined) since AR is filtered and there are enough co-cartesian lifts in &
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(Definition 10.1.2(2)). See [73, 4, Exp VI, Prop 6.5] for more details, up to reversing
the directions of arrows.

The natural inclusion define a functor ¥4 — @A/emmg an 9(A"). We denote the

image of & € Ob(¥) under this functor by {¢}. For A € AR, and a groupoid ¢

over ARW™) the natural inclusion ¥(A) — lim weanAma) ¢ (A’) is an equivalence
of categories since A € Qli)‘igA’mA) is the final object. In general, the 2-direct limit is

equivalent to the “category of direct systems” by associating to each {4 € Ob(¥) a

direct system which has €4/ in the A’-slot.'® From this, we can check that

(10.4.4.3) lim (A= lim |9](A).
f— f—
Areamit D Areamit D

In particular, for a category G co-fibered in sets (i.e. a functor), the 2-direct limit
lim o G(A) is equivalent to the set-theoretic direct limit of G(A’) over A’ €
Qli)‘igA’I). For more discussion of 2-direct limit, see [73, 4, Exp VI, §6], especially
Proposition 6.2 and the discussion which follows.

Now, we can extend any 2AR,-groupoid .# to a groupoid Z over 2ug, by declaring
:%JY(A,[) = @A/emmff"” F(A) for (A, I) € Aug,. A morphism {{a} — {np'} over
f: (A1) — (B,J) is defined in a similar fashion to (10.4.4.1). More precisely, we
consider B” € AR so that f(A') € B” and B’ C B" as o-subalgebras of B.
Then, a morphism {4} — {np/} over f means an equivalence class of diagrams of

the following form:

(10.4.4.4) Eu g

N

7’]B// s

where « is over f|a : A’ — B” and (3 is over the inclusion B’ < B” of o-subalgebras

of B. We write this morphism as 37! o a and the equivalence relation is generated

13The essential surjectivity is clear and the full faithfulness follows from (10.4.4.2).
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by Bt oa~ (yoB) to(yoa) for any v : ngr — npw over the inclusion B” — B"
of o-subalgebras of B. To rephrase, the set Hom¢({a '}, {np'}) of morphisms over
f:(AI)— (B,J) can be written as follows:

Homy({€a}, {np/}) := lim Homy,, (€4, 757)-
B/CB"

It can be checked that .Z is an ug,-groupoid.!

This Aug,-groupoid F extends .F :i.e., we have a l-isomorphism .# = %9[9%-

(This amounts to the fact that the natural “inclusion functor”

Y

(4) = lim  F(A)

Aregmitma)
is an equivalence of categories for each A € 2AR,.) Conversely, let %’ be a 2dug,-

groupoid. We choose a cleavage so that for any A’ € AR AI), we obtain a functor

F'(A") — F'(A,I). Then we obtain a l-morphism = : %'|gn, — F' of Aug,-
groupoids with cleavage, as follows: for each (A,I) € 2Aug,, we define a functor
E(A D) : lim,, F(A') — F'(A, 1) by sending {£} to ), according to the choice

of cleavage.

Definition 10.4.5. Let .#’ be an 2ug,-groupoid. We say that the formation of %'

commutes with 2-direct limits if for some choice of cleavage (equivalently, for any

choice of cleavage) on .#’, the 1-morphism = : .%'|qn, — #' is a l-isomorphism.
10.4.6
For # = 9,, and 5 = .@F’F we already defined Aug,-groupoids épF and .@DF

in §10.3. Let # 7 and .Z2 be the 2Aug,-groupoids obtained by the 2-direct limit

construction discussed above. In this subsection, we show that the formation of .@W

141f we view the 2-direct limit as a category of direct systems instead of a localization, and define Z accordingly,
then the set of morphisms {€4,} — {np/} of direct systems over f is lim,, ., lim_, ., Homy (&arrymprr), but
all the transition maps of the projective system are bijections, hence the notion of morphisms coincides.
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and @EF commutes with 2-direct limits, which provides l-isomorphism .# — 9,

and FH 5 .@EF.

157

The choice of cleavage is induced from the “choice ®” of tensor product Ty @4 A

among its isomorphism class. We make such a choice, and define 1-morphisms = :
F — .@pm and =0 ZU ég, according to the choice of cleavage.
Showing that = and =" are 1-isomorphisms is equivalent to showing that =(A )

and Z7(A, I) are equivalences of categories for each (A, I) € Aug,. We carry out the

proof as follows:

10.4.6.1

Z(A, 1) and ZP(A, I) are faithful. This is clear since Ty «— T}.

10.4.6.2

Z(A, 1) and Z5(A, I) are essentially surjective. Let A* be the preimage of F un-
der the natural projection A — A/I, so AT is local with nilpotent maximal ideal
INAT. We first remark that each of pa, T4, t4 and 34 “descends” to AT, since each
of them descends over F modulo I by definition. Now, by the compactness of Gx
and general properties of finitely presented modules and morphisms between them,
we can find a finitely generated (hence finite artin local) o-subalgebra A" of A* over

which each of pa, T4, t4 and (4 descends. But any such A’ is an object of 2[9‘{(0‘4’1 ).

10.4.6.3

Z(A, 1) and ZP(A, 1) are full. Let Ty = Ta @4 A and T = T ®p B where

T4 and Tp are free modules over A’ € QIERS,A’I ) and B' € QliﬁgB ) respectively. We

15Technically, tensor product is defined only up to unique isomorphism, not as a single object. “Choosing” a tensor
product corresponds to choosing a cleavage for the category of modules co-fibered over the category of rings.
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assume that Ty @4 (A'/my) = T Qp (B /mp) = Tp, Ta®4 (A/I) = Tr @F (A/I)
and Tp ®@p (B/J) =T @ (B/J).

As before let AT and B be the preimages of F under the natural projection A —»
A/I and B — B/ J, respectively. By the assumption, any morphism « : Ty — Tp
descends to a morphism a* : T4+ — Tp+. Hence, by general properties of morphisms
between finitely generated modules, there exists A” € 22[9%5“ ) and B" € 219{5,3 ) such
that the morphism a™ descends to some o : Tan — Tpgn.

Now, assume that o has come from a morphism in .@,,F or in @EF. This essentially
means that T4 and T carry some extra structures such as pa, pg, ta, tg, (or addi-
tionally 54 and (p), and « satisfies some diagrams such as (10.3.2.2) (or additionally
(10.3.3.2)). Then, by enlarging A” and B” by adding finitely many generators, we

may ensure that o is a morphism in %,, or .@Ep, which concludes the proof.

10.4.7 Properties of Z and F

The following claims follow from our discussion of 2-categorical limits and Propo-
sition 10.1.6. We skip the details and leave them to readers.

The construction of Z (respectively, ,% is “2-functorial” in the following sense.
Any l-morphism ® : F' — F' of ANR,-groupoids naturally extends to a 1-morphism
d:F — F of Q/li)\%g—groupoids (respectively, to a 1-morphism > F — F of
Aug -groupoids), and any 2-isomorphism ¢ : & — &’ between 1-morphisms &, P’ :
F — ' naturally extends to a 2-isomorphism 12 N (respectively, to a 2-
isomorphism @Z LD @ ). Note if ® is a natural inclusion of an 2AR,-subgroupoid

(respectively, fully faithful, 1-isomorphism, formally smooth), then the same property

holds for ® and .

—~

The formation of .7 and .Z commute with 2-fiber products in the following sense:
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for AR,-groupoids %1, %5 and .#, the natural 1-morphisms ﬁl/Xy\ﬁg — ﬁ X 2

—

Fo and P Xz Fy — % X z % are l-isomorphisms, where the 1-morphisms are
obtained by applying the “2-universal property of 2-fiber products” to (pr;, pry, @)
and (pry, pry,w). That these 1-morphisms are 1-isomorphisms can be checked fiber-
wise, which can be done using the explicit description of 2-fiber products stated in
§10.1.8. See Definition 10.1.7 for the “2-universal property” and the notations used
here.

Motivated by this discussion, we make the following definition.!®

Definition 10.4.8. Let %’ and ¢’ be Q/ID\%a—groupoidS, whose formation commutes
with 2-projective limits. Set .# = F'|gn, and ¥ := 4'|qm,, and fix 1-isomorphisms
=7 . F' 5 F and ¢ 1 9 25 4. We say that a l-morphism ¥ : F' — ¢ over AR,
commutes with 2-projective limits if there exists a 1-morphism W : .% — ¢ such that
oW 2 Yoz,

Let #" and ¢’ be 2lug, -groupoids, whose formation commute with 2-direct limits.
Set .F = F'|am, and & = &'|qe,, and fix l-isomorphisms =% : . F = Z' and
=7 .4 = @', We say that a l-morphism ¥ : .Z' — %' over 2ug, commutes with

2-direct limits if there exists a 1-morphism ¥ : .% — ¢ such that U o =7 2 =90 V.

For example, the “forgetting the framing” functor .@g — .@W or 99 — g
commutes with 2-projective or direct limits, respectively.

The following statement is a paraphrase of the discussion on 2-fiber products
above: if both WU, : ,;‘: — .Z commute with 2-projective limits, then the 2-fiber
product (;:1 X 2 % can be recovered from its restriction to AR,-groupoid, and sim-
ilarly if both W, : e}ﬁf — Z commute with 2-direct limits, then the 2-fiber product

F1X 5 % can be recovered from its restriction to ANR,-groupoid. Also it follows as a

16The author is not sure whether the following terminologies are standard.
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consequence that the natural projections L;:l X §£ — ;\: and and % X J;% — %
commute with 2-projective and direct limits, respectively.

The upshot is that the study of the groupoid ¢ and 1-morphisms ¥ over Q/li)\%o or
2ug, as above essentially reduces to that of the AR,-groupoid .# and 1-morphism .
Finally, we remark that the formation of any groupoids over Q/[‘)\‘{o that we consider
commute with 2-projective limits, and all the 1-morphisms over Q/li)\%o commute with
2-projective limits. On the other hand, a %Aug,-groupoid whose formation does not
commute with 2-direct limits naturally arises in the study of deformations; see §11.1.5

for such an example.



CHAPTER XI

Deformations for Gy-representations of P-height < A

Throughout the chapter, we assume that the residue field k of ok is finite. This
assumption is needed for the existence of universal deformation rings and universal
framed deformation rings for G g-representations of P-height < h (Theorem 11.1.2,
which is proved in §11.7). This theorem is not obvious at all, since the usual ‘unre-
stricted’” G g-deformation functor has infinite-dimensional tangent space (see §11.7.1),
so there is no ‘unrestricted’ universal Gy -deformation ring in the category of com-
plete local noetherian rings. We study the local structure of the generic fibers of
these deformation rings via suitable analogues of Kisin’s techniques for analyzing
potentially semi-stable deformation rings [55, §3]. This is done in §11.3.

From the definition of G g-representations of P-height < h, Kisin’s idea [51, §2]
of “resolving flat deformation rings” works for G g-deformation rings of P-height
< h (§11.1), and we can even perform Kisin’s connected component analysis when
h = 1 under a suitable separability assumption (§11.5). As an application, we give
another proof of Kisin’s connected component analysis of the generic fiber of certain
flat deformation rings (Theorem 11.6.1) using G - -deformation rings instead of the
Breuil-Kisin classification of finite flat group schemes. We also point out that the

2-adic case of the theorem is handled in a more uniform manner this way.

260
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We keep the notations from §10.3, with the following exception. For a groupoid
F over AR,, we use the same letter .# to denote the extension of .# to a groupoid

over Q/lﬂ\‘io or Aug,. This is denoted by Z or F in 6X.

11.1 Deformations and & s-lattice of P-height < h

In this section, we define groupoids of deformations (respectively, framed defor-
mations) of P-height < h, and construct “moduli of &-lattices of P-height < h” over
deformation groupoids, which can be thought of as “resolutions.” This was inspired
by Kisin’s resolution of flat deformation rings [51, §2.1].

Let pr be a G g-representation over F, which is of P-height < h (Definition 8.1.7).
That is to say, there exists Mp € (ModFI /&)s" such that T&r(Mp) = pr as a

F[G k|-module. (See Lemma 9.1.2.) We often use §9.2.1 without comment.

Definition 11.1.1. For A € 2AR,, we say that a deformation (pa,Ta,t) € Z,.(A)
is of P-height < h if (pa,T4) is of P-height < h as a torsion G g-representation
(Definition 8.1.7). We let .@pgwh C 9,, denote the full subcategory whose objects
are of P-height < h. We say a framed deformation (pa,Ta,t,54) € @EF is of P-
height < h, if (pa,T4) is of P-height < h as a torsion G g-representation. We let

0,<h O : .
P> C D, denote the full subcategory whose objects are of P-height < h.

We can apply the discussion in §10.4.1 and §10.4.4 to extend @;h and .@EF’@ to
Q/li)\‘io—groupoids and 2Aug -groupoids, respectively, and use §10.4.7 to extend all the
relevant 1-morphisms over Q/li)\%o and RAug,, respectively. In particular, by §10.4.7
we can view nyh and @EF,@ as subgroupoids of Z,, and QEF over Q/IE)T{O and 2Aug,,
respectively. Also, QEF’@ can be written as the 2-fiber product ngwh X%, .@EF, whether

we view them as groupoids over 2AR,, Q/li)\%o, or 2Aug,.

For A € AR,, a deformation (pa,Ta,t) € D,.(A) is called of P-height < h if
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(pa,Ta, ) lies in (the essential image of) @EF’@(A). Concretely, this means that
Ty ® A/m’ is of P-height < h as a torsion G k-representation (Definition 8.1.7) for
all n > 1. For (A, I) € Aug,, a deformation (pa,Ta,t) € D, (A, I) is called of P-
height < h if (pa,Ta,¢) lies in (the essential image of) @Eﬁh(z‘l, I). Concretely, this
means that there exists A’ € Qugi™? and a A'-deformation (pa, T, 1) of P-height
< h such that Ty = Ty @4 A as (A, I)-deformations of pp. We similarly define
framed deformations of P-height < h with coefficients in 9/19\%0 and Aug,.

Having defined the 2AR,-groupoids .@;h and .@E;gh, it is natural to ask if these
groupoids or the associated functors are pro-representable. As remarked in §11.7.1
below, the tangent spaces |Z,,| (Fle|) and }@EF (Fle]) are not finite-dimensional over
F, hence we cannot expect to have ‘unrestricted’ universal deformation rings and
universal framed deformation rings. Later in (11.7), we will prove the following

theorem, which asserts that we have finiteness of the tangent space via imposing the

deformation condition of being of P-height < h.

Theorem 11.1.2. Assume that the residue field k is finite. Then the functor ‘@;ﬂ
always has a hull. If Endg, (pr) = F then the Q/li)\‘io—gmupoid @;h 15 representable.
The functor |.@£’<h| 15 representable with no assumption on pp. Furthermore, the
natural inclusions @;h — D, and .@EF’@ — @g of @o—gmupoids are relatively

representable by surjective maps in Q/li)\‘io.

11.1.3 Topological convention

Let R and A be o0p-algebras. We set the following convention for the meaning of

RAi

1. If 7o is nilpotent in a discrete op-algebra A, for example if A € 2R, or (A, ) €

Aug, for some [ C A, then we set R4 := A®,, R. For example, G4 := A®,, &



263
and 0g.A = A Rog Oc-

2. If Ais a complete local noetherian og-algebra, then we set R4 := lim (A/m’)®,,

R. For example, &4 := lim (A/m’}) ®,, & and og 4 :=lim (A/m}) ®q, o¢.

3. If A is a finite Fy-algebra, then choose a finite flat 0g-subalgebra A° € A with
A = A°[=] and set Ry := Rao[]. For example, &4 1= S 4[] and 0g 4 =
o¢, Ao[ﬂ__lo]. Note that R4 is independent of the choice of A°; for any finite flat
op-subalgebra A° C A containing A°, we have Rjo = Rpo @40 A (using A°-
finiteness of A%). Furthermore, for any finite A-algebra B, we have Rp =

Ry®4 B.

11.1.4

For Ty € Repfi®*(Gx) with A € AR, we define DE"(T4) = Dg 4 (Ta(~h)). By
the discussion in §8.2.4 Q?h is an exact equivalence of categories Rep’®(Gr) —
(ModFT /og)§ which commutes with ®-products, internal homs, duality, and change
of coefficients for A — B in Q/liﬁo.

Let A be an og-module with 7'+ A = 0 for some N (e.g. (A, I) € Aug, for some

I C A). For Ty € Rep'™(G ), we define
<h R Ok
(11.1.4.1) DE(Ta) i= (Ta(~h) @a (0 )a) -

Note that there exists a finite og-subalgebra A’ € A and Ty € Repi®(Gx) with
Ty =Ty @4 A (because G has a finite image in Auta(74)). In this case, it easily
follows that QEZ(TA) o th(TA/) ®o, 4 0¢,4- This shows that QEZ(TA) is an étale
w-module which is finite free with og 4-rank equal to rank,(74). Furthermore, QE’A

is exact and commutes with change of coefficients for any og-map A — B, which

essentially reduces to the case when #(A) < oo handled in §8.2.4.
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The following is the reason for taking the Tate twist in the definition of Q?h.
Choose M € Modg(p)S", and let T' := Ti(9M). Then D.(T) does not have any
G-lattice of P-height < h unless T is unramified. On the other hand, we have
DSM(T) = 0s ®¢ (IMY), where 9 is the dual of P-height h. From now on, we work
with Q?h instead of the contravariant functor Dg, to associate an étale p-module to
a G g-representation.

Now, let (pr, Tr) be an F-representation of P-height < h, and let My := D" (Tx).
Applying the functor Q?h to a deformation (pa, T4, ta) of pr over A € Q/lD\%o, we obtain
My = th(TA), together with a p-compatible isomorphism My — My ®4 A/my

obtained from ¢4. This motivates the following definition of the Q/ID\%o—groupoid Dt -

e Anobject in Py, (A) for A € AR, is a pair (M, 14) where M4 € (ModFI /og)%,

and 14 : Mp — My ®4 (A/my) is a p-compatible isomorphism.

e A morphism (My,ta) — (Mp,ip) over f : A — B is an equivalence class
of p-compatible maps o : My — Mp over f, such that tp = @ o 14 where
a: My®a(A/my) — Mp ®@p (B/mp) is induced by a. Two such maps are
equivalent if one is a (1 + mp)-multiple of the other. By Nakayama’s lemma, «

induces an isomorphism My ®,, , 0g.p — Mp.

Observe that the formation of Z,, commutes with 2-projective limits (Definition
10.4.2). By construction, we have a I-isomorphism D" : 2,. = @) of groupoids
over Q/LS)\C{U, which commutes with the 2-projective limits (Definition 10.4.8).

The following 2Aug,-groupoid extends the 2AR,-groupoid Z,,, via 2-direct limits,

hence we denote this 2Aug,-groupoid by the same notation Zy,.

e An object over (A,I) € QAug, is a pair (My,t4), where M4 € (ModFI /og)%;

i.e., an étale p-module which is free over og 4, and 14 : Mg — Ma®4 (A/I) is a
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p-compatible map which induces an isomorphism Mg ®g(A/I) = M @4 (A/I).

e A morphism (Ma,tan) — (Mp,ys,y) over f: (A, I) — (B,J) is an equiva-
lence class of p-compatible maps o : M4 — Mp over f such that ¢(p ) = @oua
where @ : My ®4 (A/I) — Mp ®p (B/J) is induced by a. Two such maps are
equivalent if one is a (1 + mpg)-multiple of the other. By Nakayama’s lemma for

nilpotent ideals, a induces an isomorphism My ®,, , 0g 5 — Mp.

e The assignment = : {(Ma,0)} — (Ma ®4 A,t) defines a 1-isomorphism,

(Pase|am,) — Pag where the left side is constructed in §10.4.4 and the right

side is defined above.

We still need to prove that = is a 1-isomorphism. Since essentially the same argument
given in §10.4.6 works, we only sketch the proof. Having ¢4 1), any object or a
morphism of the above 2lug, -groupoid always descends over og 4+, where AT is the
preimage of F under A — A/I. So it descends over some finitely generated og-
subalgebra of og 4+, which is necessarily of the form og 4 for some A’ € Qlfﬁf,’“ ),
The formula (11.1.4.1) defines a I-morphism D" : 9, — Py, over Aug, since
D" commutes with change of coefficients for any map (A,I) — (B,J) in Aug,.
In fact, this 1-morphism commutes with 2-direct limits (Definition 10.4.8), which
follows from the natural morphism Q;h(TA/) Qu A — Q;h(TA/ ®a A) being an
isomorphism for any A’ € Q[%S,A’I ). Since the 1-morphism Q?h is a 1-isomorphism
over 2AR,, its extension Q?h over 2Aug, is also a I-isomorphism, by the discussion in

§10.4.7.

11.1.5 & 4s-lattices of P-height < A

Let A be either in AR, or in Aug,. Consider M, € (ModFI /og)% and let M4 C

My be a & 4-lattice of P-height < h (Definition 8.2.2). For any A — B, the scalar
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extension Sp®e,Ma C 0g,3R0, , M4 is a Gp-lattice of P-height < h. Therefore, we
can define a groupoid, whose fiber over A is the category of & 4-lattices of P-height
< h.

More precisely, we define a 2Aug,-groupoid ‘@é}JLMF’ as follows. Objects in .@é}JLMF (A, 1)
are pairs (My,v(a,r)) where M,y € (ModFI /&)S" and van @ My — My Rs,
0g.4)®a(A/I) is a p-compatible map which induces an isomorphism My ®y (A/I) =
(Mo R, 0s.4) @4 (A/I). A morphism is an equivalence class of p-compatible maps
which respect ¢(4 1), where two maps are equivalent if one is a (1 + I)-multiple of the
other. We warn that the formation of the 2Aug,-groupoid .@é};@ does not commute
with 2-direct limits, since 94 ®4 (A/I) is not required to be “constant.”

We extend ‘@é}}\h (rather, its restriction to 2AR,) to a Q/lﬂ\%o-groupoid by 2-projective
limits. More concretely, objects in .@éﬁh (A) can be viewed as pairs (M4, t4) where
My € (ModFI/G)S" and 14 : My = (M4 R, 0c.4) @4 (A/my) is a p-compatible
0¢ p-linear isomorphism. A morphism is an equivalence class (under multiplication
by (14 my) of p-compatible maps which respect ¢ 4.

We define a 1-morphism 7T : .@é’}w — D, over AR, and Aug, by (Ma, ) —
(Ma, ), where My := M4 Rg, 0c 4. We also have a 1-morphism Zéh : é’}wm — .@th
over AR, defined by (Mg, ) — (_E,A(Q)TX),QE}A(L)). If A € AR,, then we have
My e, 0s.4 = D" (T5(MY)); i.c., we have a 2-isomorphism D" o TS" = T over
Q/li)\‘{o. All the 1I-morphisms which appear in this paper will commute with 2-projective
limits.

The following proposition shows that we can extend Iéh to a l-morphism over
2Aug,. The discussion in §10.4.7 does not apply because the formation of the 2Aug,-
groupoid .@é’}\h does not commute with 2-direct limits. Compare with [51, Proposi-

tion (2.1.3)].
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Proposition 11.1.6. There exists a 1-morphism Iéh : @é'}\@ — @pﬁh over Aug,

which recovers the 1-morphism Iéh over AR, and makes the following diagram 2-

commute:
DSt
<h =
Z oF Dt
N
Ts

<h
&, My

Observe that this 2-commutative diagram determines Iéh uniquely up to 2-

isomorphism since the horizontal 1-morphism Q;h is fully faithful.

Proof. Let (My,1) € _@éﬁWF(A,I) and set My = My Qs, 0ga(= Ma[L]). By
the definition of .@élﬁh we have an isomorphism va ) : My — (M4 Re, 0s,4) Da
(A/I), so My descends to a finite free étale (¢, 0g 4+)-module M4+ where A" is
the preimage of F under the natural projection A — A/I. By the standard limit

argument, there exists a A’ € Aug™? such that My := My Rs, 0s.4(= MalL])

0

(A1)
0

descends to a finite free étale (¢, 0g 4+)-module My,. For A” € 2Aug containing
A’, we may repeat this process to obtain a finite étale (p, 0g 4»)-module M4» and
we have a natural ¢-compatible isomorphism Mu» = My ®, e 08,A7 because both
sides map onto same og¢ 4v-submodule of M4+ under the natural maps. Now we set
Iéh(i)ﬁA, ) = (Te(Ma(—h)) @a A, ), which is clearly an (A, I)-deformation of pg
and independent of the choice of A’ € Aug™". Tt remains to show that TS" (M4, ¢)
is of P-height < h as an (A, I')-deformation of p.

We set My = Moy NIMy C My Since My is a G-submodule of finitely
generated og-module M, with no nonzero infinitely wu-divisible element, 97 4. is
finitely generated over &. Clearly 94 is @-stable submodule of My such that
My @, 0g,4 = EJ.T(A/[%] = My N EJJTA[%] = My . By construction, u is 9% -regular,

hence M 4/ is of projective dimension 1 as a G-module. To see that the cokernel of
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¢ on My is annihilated by P(u)", we use the following p-compatible right exact
sequence

a,b)—b—a

0—>9ﬁA/—>MA/@9ﬁA( — My,

together with the injectivity of ¢ and the snake lemma. This shows that My €
(Mod /&)S", Therefore, To(Ma(—h)) is of P-height < h as an og-torsion G-
representation, so TS (M4, 1) := Te(Ma(—h)) @4 A is of P-height < h, by def-
inition. (We cannot conclude that M4 € (ModFI /&)$)', because we cannot show

M 4 is a projective & 4-module.) O

Remark 11.1.7. Tt follows from Corollary 9.3.5 that if he < ¢—1 then T'§" : .@é}j\/[F —
@;h is a 1-isomorphism. But the assumption that he < ¢ — 1 is essential' because
otherwise T' éh may not even be fully faithful. In fact, if he > ¢ — 1, then we have
TS (My) = T (Ma(h)) for any My € (ModFI /&)5".

If he > q—1 then Iéh may not be essentially surjective.? When he > ¢ we now give
an example (with A € AR,) of a deformation T4 of P-height < h which cannot have
any & 4-lattice of P-height < h. Assume that he > ¢ and let (pp, Tr) be the trivial
1-dimensional representation, so My := Ds"(Ty) = o¢r(h). Take a deformation
which corresponds, under D", to My & (0gxq)-e with p(0%e) = (P(u)" + Le)e.
Then, Mg = Gr-ed 6F~(%ee) is a Gp-lattice of P-height < h, so the deformation
is of P-height < h, but there is no Spig-lattice of P-height < h in Myg. (One way
to see this is by directly computing the “p-matrix” for any og gq-basis €' of My,

and show that it cannot divide P(u)".)

11t sounds plausible to, but has not been verified by, the author that in the case of he = ¢ — 1, if we restrict
@éhMF and ngﬂ,h to the full subcategories, whose non-zero subobjects or quotients are either never étale or never

Lubin-Tate type, then Iéh induces a 1-isomorphism between these full subcategories.
<h

2The author does not know if this bound he < g — 1 is sharp for the essential surjectivity of Ts".
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11.1.8

For (R, J) € Rug,, we write Aug g ;) = (2ug,/(R,J)) which is defined in De-
finition 10.2.3. Concretely, the objects of Rlugp ;) are pairs (A, I), where A is an
R-algebra and I C A is a nilpotent ideal such that J-A C I.

For (R, J) € Rlug,, any R-scheme X can be viewed as a functor X : Augp ;) —
(Sets) defined by (A, I) — Homg(Spec A, X), hence as an lug g y-groupoid which
is co-fibered in sets. We use the same letter X to denote this 2Aug g ,-groupoid.
We say an 2lugg ;-groupoid F is representable by an R-scheme X, if we have
a l-isomorphism X — #.2 We say that a l-morphism %’ — # over Qug, is
relatively representable by morphisms of scheme if for any £ € % (A, I), the 2-fiber
product F{ is representable by a scheme X over A. We say that ' — 7 is is

relatively representable by projective morphisms if X, is projective over A for any

£ € Ob(F(A,I)) and (A, I) € 2Aug,.
We now show that the 1-morphism Zéh : é’}\/[F — Qpih is relatively representable

by projective morphisms in the above sense. In other words, we will show that the

2ug g, y-groupoid
<h o < <h
(11.1.8.1) DShine = (D5 1€) X g0 DSy,

for an object £ € Q;h(R, J) can be represented by a projective R-scheme. We first
observe that it is enough to handle the case when R € AR,. Indeed, since any &
over (R, J) € Aug, “descends” to &p over some R’ € AR | the AR _groupoid
.@éﬁ%g can be represented by X¢ , ®r R if .@égwmw can be represented by an
R'-scheme X ,. From now on, we will assume that { is an object over R € 2R,

Using the explicit description of 2-fiber products §10.1.8, objects in géﬁ\@,g(Aa I)

3If we can extend the groupoids over the category of o-schemes S equipped with a nilpotent quasi-coherent sheaf
of ideal .# C Og which contains m,-Og, then this notion recovers usual relative representability.
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for (A,I) € Augy are of form (imA, LaiEQrAS Iéh(DﬁA)). Observe that the
2Aug p-groupoid .@éﬁw?g is co-fibered in equivalence relations; this is because (75" /€)
is co-fibered in equivalence relations over 2Aug, and the natural map M4 — 0 Ry
is injective, so for any for any objects (M4, ¢, o), (4,0, ) € .@éﬁwM(A, I) there

can be at most one morphism f : 9, — 9, which respects the isomorphisms «

and o/. Now we may replace the 2ugp-groupoid by the associated functor “@ég\h,& ,
and replace each fiber category with its set of isomorphism classes.

Let M, := Ds"(€) be the étale p-module corresponding to €. (See §11.1.4 for the
definition of Q?h .) Viewing M4 as a & 4-lattice of P-height < h in My ®p A, the
set |‘@é,}}\h,6(’4’ I)‘ for (A, I) € Augy can be identified with the set of & 4-lattices of
P-height < h for M @p A, where M = Ds"(€).

For any og-scheme X, we set Gx := 6 ®,, Ox and o0g x = 0g ®,, Ox. We say
a @-stable Gx-lattice My in a finite free étale (¢, 0g x)-module Mx is of P-height
< h if coker pgy, is annihilated by P(u)". The following proposition asserts that the

1-morphism 7" : é@ww — P35 is relatively representable by projective morphisms.

Proposition 11.1.9. Assume that the residue field k of K 1is finite, and choose
¢ e .@éh(}%) for some R € AR,. Then there exists a projective R-scheme %%’fh and

a &, <n-lattice %?h C Me ®g O, <n of P-height < h with the following property:
Zs

GRS
ﬂfh defines a 1-isomorphism %@?h = @éﬁwm, such that for any (A, I) € Augp,
an A-point n € %%’?‘(A) is mapped to n* (ﬂfh) € @é};\@,g(A I).

Any two pairs (%%fh,ﬂ?h) are related by a unique isomorphism. Moreover, the

projective scheme g%fh enjoys the following further properties:

1. Let & — & be a morphism in .@;h over a morphism R — R’ in AR,. Then there

erists a unique isomorphism 549??}" ®Qr R = %%;h, which pulls back @;h to
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ﬂ?h ®pr R inside of (Mg Xpr Og%gh) ®Qr R

2. g%?" 15 equipped with a canonical very ample line bundle, whose formation

commutes with the base change described in (1).

We call the &, ,<n-lattice ME" C O, ,<n @, Me the universal S-lattice of P-
3 B3

height < h for &.

Idea of Proof. Since the proof is almost the same as that of [51, Proposition 2.1.7],

we only indicate the idea. Let us first observe that for any (A,I) € 2Augy the
<h

natural injective map ‘Qé’hm’é(A,mR-Aﬂ — ‘Qg’MM(A,I)‘ is bijective. Indeed, any

My € ‘.@éﬁwF’g(A, I)| satisfies
My @ (A/mp-A) = (Me @ R/mp) @p (A/mp-A) =Z M4[1/u] @4 (A/mpg-A),

and this means that M4 € ‘.@éEWF,g(A, mp-A)|.

Now, let &4 2 (W ®q, A)[[u]] be the u-adic completion of & 4, where W := W (k)
is the usual Witt vector ring if o = Z,, and W := k[[m]] if 09 = F,[[m]]. We
write ]\/ZA = My ®s, @A where My = Mg ®p A. By the main result of [4], the
association My ~ My e, S 4 induces a natural bijection between the set of finite
projective & 4-lattices M4 in M4 and the set of finite projective G a-lattices ﬁA
in M, 4. Note that the latter is precisely the set of A-points of an ind-projective
scheme over R: namely, the affine grassmanian for (ResW/aO GLd) ®o, I, where d is
the og g-rank of M. (See [29, p42] for the definition of affine grassmanians.) It also
follows that ¢y, restricts to 94 and the cokernel M 4/par, (M 4) is annihilated by
P(u)" if and only if the corresponding conditions hold for m A C M A, so the functor
}.@éﬁ\hg! can be represented by a closed ind-subscheme of the affine grassmanian for
(Resw/oy GLq) ®q, R. The argument in [51, Proposition 2.1.7] (with e replaced by he

and p by ¢) shows that it is a projective R-scheme. We call this R-scheme g%fh.
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(From the discussion in the paragraph right above, it follows that the “universal
nilpotent coherent ideal” is mR-Og%gh.)

To construct the universal lattice ﬂfh of P-height < h, we first cover %%"fh by
affine open subschemes {Spec A;}. By the construction of g%fh, each open affine
subscheme Spec A; carries the G 4,-lattice 9, of P-height < h which corresponds to
the natural inclusion Spec 4; — ZZs", and one can show that the 91; glue to give
ﬁ?h which satisfies the properties claimed in the statement. Had we defined all the
groupoids over the category of schemes X equipped with a nilpotent ideal sheaf .#
containing m,-Ox, then ﬂfh would be the universal object. (This follows from the
construction of Y%, and M, over Spec A; — %@fh, as explained in the proof of
[51, Proposition 2.1.7].)

To show that the formation commutes with base change, we observe that .@é}}\/[M, =
(251/¢€") % @5 e) @éﬁwé, so the same holds for the associated functors (because all

the groupoids involved are fibered in equivalence relations). For the existence and

construction of the canonical very ample line bundle, see [29, pp.42-43]. O]

11.1.10

We extend the proposition to allow R &€ ?2/[9\%0, because ultimately we would like
to set R to be RI:<" or R$" if such a deformation ring exists.

For R € 9/19\‘{0, let Augy be the category whose objects are (A, I) where A is an
R-algebra and I C A is a nilpotent ideal such that mg-A C I. Note that a formal
scheme X over Spf R gives rise to a category co-fibered in sets over 2ugp, so we may
extend the notion of representability and relative representability allowing formal
schemes, in the similar manner to §11.1.8.

For a fixed £ € Z5"(R), we can define an 2Augp-groupoid @ég\/fm so that the fiber

.@é’%m(A,I) is the set of &4-lattices of P-height < h in Mg ®r A, where M, :=
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Ds"(€). One way to define @éﬁwm is by declaring @éﬁwM(A, I):=lim (@é};\h@n (A1) =
‘@é}}\h,&no (A, I), where &, := £ ®p R/m}, with n an integer such that ™ = 0.

By Proposition 11.1.9, we obtain a projective R/m’,-scheme %%’fnh and a univer-
sal G-lattice ﬂfnh C M, ® R/, Og%?ﬂh for each n, which is compatible with the

base change under R/m% — R/m’'. On the other hand, we have a natural iso-

morphism ‘.@éﬁwyg = lim |‘@é]}\4m£n , by (10.4.1.2). Therefore it follows that the

functor |@<§}\/Im£’ (hence the groupoid @éﬁwm) can be represented by the projective
formal Rescheme @22¢ = lim 9#<", and the & —<-lattice M := lim M
ormal R-scheme ¢ o= lim e > an e Gggen-lattice M = lim M

satisfies the universal property similar to the one stated in Proposition 11.1.9. Fur-
thermore, since each %%;h is equipped with a (very) ample line bundle which is
compatible with the direct system, it follows from Grothendieck’s formal existence
theorem that the formal scheme @Eh comes from a projective scheme %@fh over
Spec R (which is unique up to unique isomorphism). Also, using the formal exis-

tence theorem for coherent sheaves on the projective formal scheme 9%, ®,,6 over

—_—
<h

Gr = 6@005’, the “formal universal lattice” M~" comes from a &, ,<n-lattice ﬂfh

S
R

with the universal property similar to the one stated in Proposition 11.1.9. Here,
Gg%@ = 6 ®q, Og%,?h and note that @?%@006 is the mg-adic completion of
GRE" Do, 6.

Let us assume furthermore that Endg, (pr) = F, in which case Qpﬁh is pro-
representable (Theorem 11.1.2). Let Rth € Q/li)\%o be the universal deformation

ring and &uiv € Z5"(RS") be the universal object. Then the natural projection

~

o <h <h - . . <h - .
Pry D, — D, 18 a l-isomorphism, so 737}, is representable by a projec-

éuniv

tive RS/-scheme GRS =4 ggéhv We put M = ﬂéﬁiv-

To summarize, we have shown that Proposition 11.1.9 holds true even if we allow

& to be over R € Q/li)\%o. More precisely, we obtain the following corollary:
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Corollary 11.1.11. Assume that the residue field k of K is finite, and let & €
@pﬁh(R) for some R € Q/li)\%a. Then there exists a projective R-scheme g%fh and a
Ggﬂ,?h—lattz'ce @fh C Me ®r Og%fh of P-height < h, with the following property:
ﬂ?h defines a 1-isomorphism %%g@ = ‘@é};\h,&’ such that for any (A, I) € Augp,
an A-point n € ge@?h(fl) is mapped to n*(ﬂfh) € @éf}wm(fl,]). Any two pairs
(%%’?h,ﬂ?‘) are related by a unique isomorphism, and the formation of this pair
commutes with the base change in the sense of Proposition 11.1.9(1), but working in
9/19\‘{0 instead of AR,.

If Endg, (pr) = F, then we have the following 2-commutative diagram of 2Aug,-
groupoids*:

@ gp<h —— Spec (Rpﬁh)

- lN

Sh pr <h
gng]F:guniv Hl (@p\]}? /éuniv)

pra | = J/N

Té h
<h =6 g<h
S, My PF

<n-lattice MS". In other

where the upper left vertical arrow is induced by the G, <
¢

YR
words, éiij 1s representable by a projective R;Fh-scheme GRS" together with the

“universal object” MS". Any two pairs (RS, M) are related by a unique iso-

morphism.

We call @?h as in Corollary 11.1.11 the universal &-lattice of P-height < h for

¢, and MY the universal S-lattice of P-height < h.

11.1.12

In general, a universal deformation ring Rth of P-height < h may not exist.

Therefore we often work with the universal framed deformation ring REF’S" of P-

4We identified schemes and the corresponding 2fug,-groupoids.
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height < h. Let €. € @D’gh(RD’gh) be a universal framed deformation of P-height

univ

< h, and we denote the image of €2 under the “forgetful 1-morphism” .@Eﬁh — 9;’1

univ

by the same notation 2. . Furthermore, the natural 1-morphism (25" /€Y

univ* univ )

<h
25" is formally smooth.

We put ¥2°<h .= GRA  and MO = ﬂfmh . This auxiliary space Z2°<"

univ univ

plays an important role in the study of the generic fiber REF’QL ®, F.

11.2 Generic fibers of deformation rings

In the previous section, we have constructed projective morphisms ¥Z<" —
Spec(R$") and 97" — Spec(RLX<"). In this section, we show that 2" ®, F —
Spec(RfJL@U ) and Y22 @, F — Spec(RD’<h®oF ) are isomorphisms (Proposition
11.2.6). This reduces the study of the generic fiber of deformation rings to the study
of #<" and 9#°<" whose points have an interpretation in terms of G-lattices
of P-height < h. Using this, we show that Rfyh ®, F' and REF’@ ®, F' are formally
smooth over F' (Corollary 11.2.10).

As a first step, we need to give an interpretation of an A-point (4 : Spec A —
g%fh for an R ®, F-algebra A which is finite over F', which is done in Lemma
11.2.4. For this, we need a notion of & 4-lattice of P-height < h where A is a finite

F-algebra; this will be introduced in §11.2.3.

11.2.1

As a motivation, we give an interpretation of the completions of REF’QL ®, I and
Rngh ®, F' at a maximal ideal, below in Proposition 11.2.2.

Let E be a finite extension of F', and let AR5 denote the category of artin local E-
algebras with residue field isomorphic to £. We put F' := op/mg and pp := pr QpF'.

We fix a deformation 1) := (p,, T;) € Z55"(0x) and a framed deformation 5~ € Z;2<".
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We put ng :=“n ®, E” and n :=“n" @, £.” We let @fEh C 9,, denote the ARg-
groupoid of deformations of ng which are of P-height < h as Fj-representations of
G in a similar way to §10.3.2 and Definition 11.1.1. We also let .@EE’@ - .@EE
denote the AR p-groupoid of framed deformations of i which are of P-height < h
as Fy-representations of G in a similar way to §10.3.2 and Definition 11.1.1. For
simplicity, we often suppress the superscript ()2 and let g denote either framed or

unframed “FE-deformation” of py.

Proposition 11.2.2. The framed deformation functor ‘QEE’QL‘ of P-height < h is

3o

prorepresentable by (RS*S"); and the universal object is &3, ® p0.<h (REvgh);g ,
PR

F

where <Rﬁ%<h);\E denotes the completion of (REF’@) ®o E with respect to the kernel
of ng : (RPDF’@) ®, F — E.
<h . . <h . .
If RS ewists, then the deformation functor 955" of P-height < h is prorepre-

sentable by (RS,

. and the universal object is guﬂiV®R§Fh (Rth)’\ where (wah);; de-

ne »

notes the completion of (Rngh)@oE with respect to the kernel of ng : (Rpih)®oE — F.

Proof. We only give a proof for the framed deformation part of the proposition, since
the deformation part is essentially the same but easier.

For A € AR, consider an o-map C4 : RS" — A which reduces to g modulo

|

univ

) is a framed deformation of n%,(€5, ). On the other hand, ¢, is

univ

my,. Clearly, ¢ (
factored by (4o : REF’QL — A° for some finite o-subalgebra A° C A with A"[Wio] = A,

and (%0 (€5..) is of P-height < h as an og-lattice representation by Proposition 9.2.6.

univ

It follows that 4 (€5,,) is of P-height < h as an Fy-lattice representation.

univ

d

It is left to show that any framed deformation (4 of 15 (&5;) can be obtained as

a pull back of £, under a unique map R;)S" — A. Let A" be the preimage of o
under the natural projection A — E. By definition of ng, the framed deformation

Ca descends to (4+ over AT, so also to (40 over some finite o-subalgebra A° C A
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with Ao[ﬂ—lo] = A. By Proposition 2.4.9, (40 is of P-height < h as an ogp-lattice
representation, so it corresponds to a unique o-map Rpulfh — A°. By composing it

with the natural inclusion A° < A, we obtain the desired map REF’@ — A as well

as its uniqueness since the map REﬁh — A is independent of the choice of A°. [

11.2.3

For a finite algebra A over F' := Frac(o), we let Int(A) denote the set of finite
o-subalgebras A° C A with A"[%O] = A. Since 7 is not a zero-divisor in A° € Int(A),
we have the notion of isogenies for (ModFI /&)$" and (ModFT /og)%., and the isogeny
categories (ModFI /G)Ef[%o] and (ModFT /og)%. [=] are well-defined, just as in §2.2.7

and §7.1.6. We often denote the isogeny class containing 940 as Mao[=|, and

1
0
similarly for objects in (ModFI /08)%0[%0].

Let (ModFI /&)$" be the category of p-modules M, over G4 such that My =
EITIAD[T%O] for some M40 € (ModFI/&)SH where A° € Int(A). We similarly define
(ModFI /og)%. For example, if A = Fp, then (ModFI /&)5" is exactly Modg(0)"[],
not Modg, (¢)<". (Here, &, = S[].)

For My € (ModFI /og)%, a ¢-stable & 4-submodule 94 C M, is called a G4-

lattice of P-height < h if 0g 4 ®e, Ma = M4 and M4 € (ModFI /6)§h-

Lemma 11.2.4. Fiz £ € Z5"(R) with R € AR, and put M, == Ds"(€). For
any R-algebra A which is finite over F' : Frac(o), the set of A-points %%fh(A) =
Hompg(Spec A, g%fh) is naturally in bijection with the set of © 4-lattices of P-height

<hlnM§®RA

Proof. Let M4 be a & -lattice of P-height < h in M ®r A. Then by definition,
there exists A° € Int(A) and Mo C M4 such that Mo @40 A = M4 and Mao €

(ModFI /&)5). We may enlarge A° so that the structure morphism R — A factors
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through A°. Therefore, 94 corresponds to an R-map (4 : Spec A — Spec A° Cae,
%@?h, where (40 is the unique A°-point that corresponds to M 40. This A-point (4
does not depend on the choice of A° or M 40.

It remains to show that any R-map (4 : Spec A — %%’fh comes from a & 4-lattice
My C Me @ A of P-height < h. We first handle the case when A = E where E is
a finite extension of F'. Let ps denote the deformation over R which corresponds to
€. Since the structure morphism R — E factors through og (which follows from [19,
Lemma 7.1.9]), we obtain an opg-representation ps ® g 05 which is of P-height < h as
an o0p-lattice representation. In other words, the étale p-module M; ® 0 admits a
G-lattice 9M,,, of P-height < h equipped with a ¢-compatible og-action. By Lemma
11.2.5 below, we have 9,, € (ModFI/&)s", so My := EIRUE[%O] is an & p-lattice of
P-height < hin M ®p E.

For the general case, it is enough to handle the case when A is local. Let E :=
A/my be the residue field of A, and let ng : Spec E — Spec A Ca, %@?h be the
underlying E-point. By the previous discussion for the case A = E, the E-point ng is
factored by an og-point 1 : Specog — A", so (4 is factored by C4+ : Spec AT —
%@?h where AT is the preimage of og by the natural projection A — E. But since
AT @Aoelnt(/x) A°, we see that (4+ is factored by an R-map (40 : Spec A° — %%fh
for some R-subalgebra A° € Int(A). Now, let M40 C Mg ®p A° denote the & go-
lattice of P-height < h which corresponds to (40, and put M4 := Mo ® 40 A. Clearly,

the A-point (4 comes from 91 4. n

Lemma 11.2.5. Let M, be a (v, &)-module of P-height < h equipped with a ¢-

compatible action of og. Then M, is finite free over S,,, so M,, € (ModFI/S)5".

Proof. First observe that (i) &,, = (W ®,, 0g)[[u]]; (ii) W ®,, 0g is a product of
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discrete valuation rings; and (iii) the (g-)Frobenius® endomorphism oy transitively
permutes the primitive idempotents of W ®,, og. It follows that 9, /udM,, is
finite free over W ®,, og since it is mo-torsion free and is an étale p-module. The

S, -freeness of M,, follows from Proposition 7.4.2. O
Now, we are ready to prove the following proposition.

Proposition 11.2.6. Let R € Q/[f?io. For any & € @pih(R), the o-morphism %%f}"&y

F — Spec(R®, F') induced by the structure morphism for %@fh s an isomorphism.

Proof. Recall that the proper o-morphism g%fh ®, F — Spec(R®, F) is an isomor-
phism if and only if it is an étale monomorphism. (A morphism X — Y of schemes
is called a monomorphism if it induces a monomorphism on the functors of points,
or equivalently by [27, I, Proposition 5.3.8], if the diagonal map Y < Y x x Y is an
isomorphism.) Note that R®, F' is a noetherian Jacobson ring by [62, pp.247 Lemma
1], so %%’fh ®, F'is a noetherian Jacobson scheme by [27, IV3, Corollaire (10.4.7)].
So in order to check that %%fh ®oF — Spec(R®, F') is an étale monomorphism, it is
enough to show that g%’?h(fl) — (Spec R)(A) is a bijection for any finite F-algebra
A.

Let A be a finite local F-algebra. We have (Spec R)(A) = lim (Spec R)(A?)

—> AocInt(A)

by [19, Lemma 7.1.9]. Furthermore, we have f%@?h(A) = lim ) %%’?h(flo),

— A°€lnt

which can be seen as follows. First, if A = E is a field, then we have %%fh(E) =
%@fh(o £) by the valuative criterion for properness. Now, if A is finite artin local F-
algebra with residue field £, then %%’fh(A) = %%’fh (A™) where A* is the preimage
of o under the natural projection A — E. Since AT = h_n;AoeInt(A) A we have the

claim. The case of general finite F-algebra A is immediate.

5Recall that g = p if 0g = ZLp.
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It immediately follows from Theorem 5.2.3 that %@fh(/lo) — (Spec R)(A°) is
injective for any finite free o-algebra A°, hence %@fh(/l) — (Spec R)(A) is injective
for any finite F-algebra A. Now we show that this is also surjective for any finite
F-algebra A. Let A € 2ARg for some finite extension E/F and pick an A-point
(a:R— A Welet ng : R AL A A/my = E be the E-point of Spec R on which
Ca is supported. Choose a finite free og-subalgebra A° C A with A = Ao[ﬂio] and an
o-map (' : R — A° with C/[W—IO] = (4. (Such ¢’ always exists for some A°, as discussed
at the beginning of the proof.) Since £ ®g A° is of P-height < h, there exists a
unique &-lattice M 40 of P-height < h for Myo := Mg ®@r A° which is equipped with
a p-compatible A%-action. (As before, we put M := Ds"(€)).

Let ’)ﬁﬁ,E be the image of M40 under the natural surjection Myo — M,, =
Myo ®40 0, and we put M,, = SDT(,E[%O] N M,,, where the intersection is taken
inside MoE[%] = M,,. Then M, is finite free over & by the first paragraph of the
proof of Theorem 5.2.3, hence is finite free over &,, by Lemma 11.2.5.

By Lemma 11.2.7 below, 94 = SUIAO[%O] is free over &4. Now, we choose a
S,,-basis {eq, - ,e,} for M, and lift it to a S4-basis {&;, - ,€,} for M4. We
choose B° C A which contains (4(R) C A so that all the coefficients of pon, (0%€;)
are contained in &pgo. Let Mpo be the free &pgo-submodule of M4 spanned by
{e1, -+ ,e,}. Clearly Mp. C M, is p-stable and EITIBD[W—IO] = M. Thus, Mp. €
(ModFI/&)5s. This shows that 9p. is a (unique) & po-lattice of P-height < h
in the étale (p,0g go)-module which corresponds to the map R — B° that factors

Ca: R — A. In other words, Mp. corresponds to a Bo-point of YZ"

g,SOEITIA

corresponds to an A-point of %%’fh which maps to (4 € (Spec R)(A).
Now, it is left to show the following lemma, which is exactly [55, Lemma 1.6.1] if

0p = Zp. O
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Lemma 11.2.7. Let A be a finite Fy-algebra and let M 4 be a finitely generated S 4-

module which is flat over &[=| and equipped with a map ¢ : o*M4 — M4 whose

1
™0
cokernel is annihilated by P(u)". Suppose that My := MMy QgL € is finile free over
0

Ea. Then M4 is a finite projective G 4-module.

Proof. The following proof is a lengthy way to say that the proof in [55, Lemma 1.6.1]
also works if 0g = F,[[m]]. We prove the lemma by showing that the first nonzero
Fitting ideal I for 9,4 (i.e., the nth Fitting ideal, where n is the £4-rank of My) is
equal to & 4. (See [28, §20.2] for Fitting ideals.)

Let U C Spec 6[—0] denote the largest open subscheme over which 914 is G 4-flat,

1
and let Z be its (reduced) complement. Since A is Fy-finite and My ®g1) € is free
0

over £4 by assumption, Z is cut out by some non-zero g € 6[7?10]
The isomorphism (J*fmA)[ﬁ] - fmf;[ﬁ] implies that g € (o(g)-P(u)) and

o(g) € (g-P(u)). Assume that g is not a unit, so there exists z € K with |z| < 1
with g(z) = 0. Let x and y be such that |z| < 1 and |y| < 1 are smallest and largest

among the nonzero roots of g, if any exist. Then all the nonzero roots of o(g) have

|1/q |1/q

absolute values between |z|/? and |y|”?, which are strictly bigger than |z| and |y|,

respectively. Clearly x is a common root of g and o(g)-P(u). But since o(g) cannot
have a root with absolute value |z|,  is a root of P(u). Similarly, a root w of o(g)

1/q

with |w| = |y|"? is also a root of g-P(u), but g cannot have a root with absolute

4 Hence w is a root of P(u). But all roots of P(u) have same absolute

value |y|
value (being a &*-multiple of an Eisenstein polynomial), so |z = |w| = [y|"/? > |y,
which is a contradiction. This shows that g is either a unit or a unit multiple of a
power of u.

In terms of Fitting ideals, we have shown that u* € I for some i > 0. Therefore,

in order to show that [ is a unit ideal, it is enough to show this after taking u-adic
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completion. Let I C &4 = & o[[u]]4 be the u-adic completion, so I = (u') for
some i > 0. Then o extends continuously on % [[u]]4, and the u-adic completion
G0Ny — My is an isomorphism since P(u) € ( o[[u]]4)*. Since the formation

of Fitting ideals commutes with scalar extension [28, Corollary 20.5], it follows that

o(1)- o[[u]]4 = I. This rules out I = (u') with i > 0. O

The following corollary is a re-interpretation of Proposition 11.2.6 using the in-

terpretation of F-finite points of %%"?h ®, F' (Lemma 11.2.4).

Corollary 11.2.8. Let A be a finite Fy-algebra, and let p4 be an A-representation
of G which is of P-height < h as an Fy-representation. Then there exists a unique

Ma € (ModFI /&)S" such that TS (M) = pa.

Proof. The uniqueness of such 914 is a consequence of full faithfulness of the functor
SEE Modg()S"[7-] — Repg,(Gx) (Theorem 5.2.3), so it suffices to show the
existence. We may assume that A is also local, and let E denote its residue field. We
put ' := og/mp and F{/F, the unramified extension corresponding to the residue
field extension F'/F,. By choosing a G k-stable og-lattice of p4 ®4 E and reducing
it modulo mg, we obtain a residual representation pp := pr Qr F’. By essentially the
same argument as the proof of Proposition 11.2.2; there exists a finite 0p;-subalgebra
A° C A and a Gg-stable A°lattice pso in py. Note that A = A° ®,, F). Let
IS .@;h(AO) be the deformation corresponding to ps.. By Proposition 11.2.6 we
have an isomorphism %%?h R0, Fj — Spec A. By Lemma 11.2.4 this A-point of
%%fh ®o, F{ corresponds to a unique & 4-lattice of P-height < h, which we have

been seeking. O]

Theorem 11.2.9. Assume that k is finite. For anyn € @pﬁh(oE) for a finite exten-

sion E over F', the functor ’.@éﬂ on ARE is formally smooth.



283

Proof. Let A € AR with a nilpotent ideal I C A. We put A := A/I € ARp. For

¢ € |g:(4)

, we want to find ¢ € |-@1§h(14)| which reduces to ¢ modulo I. By
Corollary 11.2.8, there exists M4 € (ModFI /G)Eh such that ¢ = TS"(M). So it

suffices to show that there exists 9,4 € (ModFI /&)$" such that My @4 A = M.

We first choose a finite flat og-subalgebra A° C A such that Ao[ﬂ—lo] = A and
IO[T%O] = I where I° := N A°. So we have A = (AO/IO)[%O], and we put A° ;= A°/[°

and view it as a subring of A. By enlarging A° if necessary, we can assume that there

exists M4 € (ModFI /6)% such that im@[%o] = M. By Proposition 8.2.3, wys :=
coker(gpmﬁ) is finite free over A°. Let w40 be a finite free A°-module equipped with
W a0 @ 40 A0 ws, and let M40 be a finite free G 4o-module equipped with 940 @ 40
A° = M. We can choose a & 40 /P (u)-linear surjective map M 40 /P (u)'IMp0 —

w0 which lifts the natural projection 945 /P (u)" M4z — wxs. Therefore, we obtain

the following diagram with exact rows:

(11291) O on MAO W Ao O
OHO‘*MFWT:MF WAo O’

where M 40 is the kernel of D40 — ﬂﬁAo/P(u)hion —» Wpo. Since wyo is flat over A°,
the top row stays short exact after applying (-) ® 40 A%, 50 Mpo @ 40 A° = o* M5 (i.e.,
the left vertical arrow in (11.2.9.1) is surjective). Therefore, we obtain a surjective
map 7 : 040 — Iyo which factors the natural projection o*Myo — oM.
Now, we define @op,, : 0" M40 5 Mo — Mao. Clearly yom,, lifts O and we
have coker(pan,,) = wao which is annihilated by P(u)". So M4 := ?)JTAO[W—lo] is in
(ModFI/&)S" and lifts 9. (In fact, it also follows that r : 6*M 40 — MNyo is an
isomorphism by the injectivity of ypgn,, (Corollary 2.2.3.2), but we do not need this

in the proof.) O
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Now we are ready to show the formal smoothness of the generic fiber of deforma-

tion rings of P-height < h, as a corollary of Theorem 11.2.9.

Corollary 11.2.10. Assume that k is finite. Let & € .@pﬁh(R) be such that the natural
I-morphism (25" /€) — 25" of @o—groupoids is formally smooth. Then R[%] is

; U<hy L Shi L) /8
formally smooth over F. In particular, the F-algebras R, [m] and R [WO] (if it

exists) are formally smooth over F.

Proof. The second claim of the corollary follows from the first claim by taking & =

|

univ

and & = &y To obtain the first claim, first note that a noetherian Jacobson F'-
algebra A (e.g., A = R[ﬂio] for some complete local noetherian o-algebra R) is formally
smooth over F' if and only if its completion at each maximal ideal is geometrically
regular, by [27, Oy, Théoreme (20.5.8), Corollaires (22.6.5), (22.6.6)]. So it suffices
to show that for any E-point ng : R — E where E/F is some finite extension, the
completion R,, of R ®, E with respect to ker[ng ® £ : R®, E — E] is formally
smooth over E/. We use the same notation ng to denote £ ®g,,, £, and consider the
l-morphism Spf R,, — %,, over ARg defined as follows: a (continuous) E-map
Ca: Ry, — Awith A € AR is sent to { ®r A € Z,,(A) where A is viewed
as an R-algebra via R — R, 4, A. Now using a similar argument to the proof
of Proposition 11.2.2, one can show that the formal smoothness of the 1-morphism
(25/€) — 25 implies the formal smoothness of the 1-morphism Spf R, — %,

over ARg. The corollary then follows from Theorem 11.2.9. O]

11.2.11 Motivation: Relation with crystalline and semi-stable deformation rings

One can generalize Proposition 11.2.6 as follows. We may also consider the com-
<h

T
position @é}}w A @;h — 9, of 1-morphisms, where the latter is the natural in-

clusion. By Theorem 11.1.2, or rather Proposition 11.7.3, this inclusion .@;h — Dy
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is relatively representable by surjective maps of rings. For any & € Z,.(R), let RS
be the universal quotient of R which represents (@;h)g, and let £ be the universal
object® of (Z5")e. Then the 1-morphism @gh — 9,, is relatively representable;
.@ e.p¢ 18 Tepresentable by a projective morphism %%§< , — Spec R which factors
through the closed subscheme Spec RS". By Proposition 11.2.6, this projective mor-
phism induces an isomorphism g%€<h ®o F — Spec(RS"®, F). In the case 0y = Z,,
this proves [55, Proposition 1.6.4(2)]. Note that RS" may not equal the schematic
image of %,@§<h in Spec R.

Now, we assume that oy = Z,. We fix an F-representation p of G, and put
Poo := Pl - We let RﬁD be the universal framed deformation ring, and let £ denote
the restriction to G of the universal framed deformation. Applying Theorem

11.1.2, or rather Proposition 11.7.3, we obtain the universal quotient RD’\h of RD

over which & becomes of P-height < h. So we obtain a map res : R,th — Rﬁm’gh,
where the source is the universal framed deformation ring of P-height < h. From now

O,<h
on, we put RIS := R>'S

, and often suppress the subscript ; on G ,-deformation
rings. (For example, we put RV := RE.)

Let RCanh and RZ'S" be the universal quotients of B2 whose artinian local points

correspond to framed deformations that are torsion crystalline and torsion semi-

stable, respectively, with Hodge-Tate weights in [0, h]. These quotients a priori

O,<h

factor through R; Furthermore, Liu [59] shows that for any finite extension

E/Q,, an E-point z : RY — F factors through the quotient R(,/Drfh or RD’@ if and
only if the the corresponding E-representation V. is crystalline or semi-stable with

Hodge-Tate weights in [0, h], respectively.” We call them crystalline and semistable

framed deformation rings with Hodge-Tate weights in [0, k], respectively. The generic

6In a more down-to earth manner, R<" is the biggest quotient of R such that the pull-back of £ becomes P-height
< h, and €SP is the pull-back of & over RS,
7This result is also valid when p = 2.
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fibers RD’gh[%] and R§’<"[§] coincide with the crystalline and semi-stable quotients

cris
of RD[%] constructed by Kisin [55].
The point is that “restricting to G, = Gx” defines the natural maps res :
ROsh RCDr’ifh and res® : R2<h — RIS" Even though the map res™ is quite

mysterious in general (let alone res™), we give some applications later on of the maps

cris

res™ and res® in the study of crystalline and semi-stable frame deformation rings.
See §11.4.17 and §11.6.

All the discussions above work for the universal deformation rings if both R; and
R$h = R§£ exist. The author does not know whether Endg , (p) = F guarantees
Endg,_ (ps) = F (although he suspects that this may not be true). But we record
the following cases where we do have the full faithfulness of restrictions to G »__ on

residual representations:

1. If p is absolutely irreducible, then it is necessarily tame. Since the inclusion
G .. — G induces an isomorphism after quotienting out the wild inertia

groups, we obtain that Endg, (ps) = F when Endg, (p) = F.

2. Under the following assumption, we have the full faithfulness of the restriction to
G » .. for mod p crystalline representations: either %" is absolutely unramified,
p>2,and h <p—1[13];or h=1and p > 2 (or any more general assumption
for which one can prove the classification of finite flat group schemes over o

[15, Theorem 3.4.3]).
11.3 Local structure of the generic fiber of deformation ring
The aim of this section is to compute the dimension of Rth ®, F and REF’@ ®Ro F

at a closed point of a given “Hodge-Pink type” (Corollary 11.3.11). We also show

that fixing a “Hodge-Pink type” cuts out an equi-dimensional union of connected
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components when J# = G[W—I()]/(P(u)) is separable over o (i.e., P(u) is a &*-
multiple of a separable Eisenstein polynomial). See Proposition 11.3.7 for a precise
statement. Note that the separability condition is automatic if oy = Z,, but not
automatic when oy = F [[mo]]. In the case 0oy = F,[[m]], note that K = k((u)) is
separable over k((uo)) if and only if # /% is so, since &/(my — ug) = 0.0 = 0k via
u +— u. Even though G = Gy for any finite purely inseparable extension K'/K,
the notions of G g-representations of P-height < h and Gk /-representations of P-
height < h are not the same because the construction of & and the choice of P(u)
are not the same for K and K’. So we cannot replace K by its maximal separable
subextension Ky C K over k((ug)), so the assumption that K/k((ug)) is separable
seems to give a genuine restriction.®

Our technique is analogous to Kisin’s technique for studying the local structure
of potentially semi-stable deformation rings [55, §3], with the difference that we
work with weakly admissible Hodge-Pink structures while Kisin works with weakly
admissible filtered (, N)-modules. This permits us to allow the case 0g = F[[m]]
too, as we shall do.

By Theorem 4.3.4, we have an equivalence of categories H : M_od@(gp)[%o] =
HPY"?°(p) which restricts to H : Modg () [] = HPY (), where the target
category is the full subcategory of objects with all Hodge-Pink weights in [0, h]. We
now generalize this to allow A-coefficients, where A is any finite Fy-algebra.

Let A be a finite Fj-algebra. We first make the following definition which is

satisfied by objects of the form (D4, Ay) := H(M,) for M4 € (ModFI /&)5":

Definition 11.3.1. An A-isocrystal is étale o-module D 4 which is free over (£ )4 :=

H o ®p, A. For a free (£ )a-module Dy, we set (Da)zy := Oawy @y Da. An

8The author does not have an example of a G -representation of P-height < h which is not P-height < h as a
G i . -representation.
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A-Hodge-Pink structure for a finite free (#¢)a-module Dy is a (Oa ., )a-lattice
Ay C (Da)zy [ﬁ], which is a direct factor as an A-module (i.e., for h > 0, the
cokernel P(u)™(D4)ay /A4 is a projective A-module®). The A-Hodge-Pink struc-
ture A4 is effective if A4 contains the standard lattice (Da)z, . We define Hodge- Pink
weights and multiplicities for A-Hodge-Pink structure A4 as Hodge-Pink weights and
multiplicities for A4 as Hodge-Pink structure (via forgetting A-action).

We say that an A-isocrystal with A-Hodge-Pink structure is weakly admissible if
it is weakly admissible as a Fy-isocrystal with Fy-Hodge-Pink structure (i.e., if it is
weakly admissible after forgetting A-action). In other words, the weak admissibility
is checked for all the subobjects or quotients which do not necessarily respect the

A-module structure.

For any map A — B of finite Fy-algebras, we have a natural definition of “change
of coefficients” for A-isocrystals with A-Hodge-Pink structure, namely (D4, A4) —
(Da®aB,As®4 B). Note that the natural map Ay®4 B — (Dp)a, [ﬁ] is injective
since the natural inclusion Ay — (Da)q, [ﬁ] splits as an A-module by definition.
The functor H commutes with the change of coefficients.

We generalize Theorem 4.3.4 to allow A-coefficients as follows, where A is a finite

Fy-algebra.

Lemma 11.3.2. The functor H induces an equivalence of categories from (ModFI /G)Eh
onto the category of A-isocrystals with weakly admissible A-Hodge-Pink structure

whose Hodge-Pink weights are in [0, h).

Proof. The full faithfulness follows from Theorem 4.3.4, and by Corollary 11.2.8
the essential surjectivity of H follows if we show that V3,5(Da, A4) is free over A,

where V73,5 is defined in Corollary 5.2.4. We put V4 = V3 5(D4, A4), and may

9For My € (ModFI/G)jh7 (Da,Aa) =H(My,) satisfies this condition thanks to Proposition 8.2.3.
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assume that A is local. First, we have Vi ®4 A/ma = V3p(Dajmys Aajmy), S0 its
A/m4-dimension equals rank ), Da. On the other hand, observe that dimp Vy =
(rank(JgO)A DA)-(dimFO A), which forces V4 to be free with ranks V4 = rank ), Da.
(Indeed, by Nakayama’s lemma there exists a A-linear surjection A®" — V, with

n := rank ), (D4) and both sides have the same Fy-dimension.) O

Remark 11.3.3. In fact, Theorem 11.2.9 can be proved more easily using Lemma
11.3.2, namely from the fact that affine grassmannian is formally smooth and that
weak admissibility lifts under the infinitesimal thickening of coefficient rings. (The
last assertion follows from applying Proposition 2.3.8 to the short exact sequence

(11.3.10.1) below.)

By Corollary 11.2.10, the noetherian rings R;Fh[ﬂio] and REF’Q‘[%O] are formally
smooth over F' (and in particular, geometrically regular). In order to compute their
dimensions we introduce an invariant which picks out an equi-dimensional union
of connected components, generalizing the Hodge-Pink type defined in §2.2.9. The

dimension will be expressed in terms of the corresponding “Hodge-Pink type.”

11.3.4 Hodge-Pink type with coefficients

We seek to define a “Hodge-Pink type” for M4 € (ModFI /G)Eh, with A € AR E
and E/Fy finite (or rather, for the A-isocrystal H(9t4) with A-Hodge-Pink type).
Consider a finite free (J)a-module Dy (where (£ )a == # ¢ g, A) and an A-
Hodge-Pink structure A4 for Dy (Definition 11.3.1). Let ﬁA,mD = Qhzo,a D(ro)a Da
(where Oa 404 == Oau, ®r, A). Motivated by the discussion about Hodge-Pink

types in §2.2.9 and §2.3.3, we make the following definition.

Definition 11.3.4.1. For a finite extension E/F,, an E-Hodge-Pink type v is a pair

(n, A%) where n is a positive integer and AY, is a &p-quotient of (Sg/(P(u)"))®".
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For a finite E-algebra A, an A-Hodge-Pink structure A4 for a finite free (J¢)a-
module D4 is of E-Hodge-Pink type v (or simply, Hodge-Pink type v) if D, is of
(A o)a-rank n and there is an &4/(P(u)")-isomorphism AY, ®r A =2 Ay/(D) o -
(Note that &4/(P(u)") =2 Oa40a /(P(w)").) For My € (ModFI/&)S" with A a
finite E-algebra, we say that 94 is of E-Hodge-Pink type v = (n,A%) (or simply
of Hodge-Pink type v if there is no risk of confusion), if H(91,) is of E-Hodge-Pink
type v; or equivalently by §3.2.6, if M4 is of & 4-rank n and there is an & 4 /P (u)"-
isomorphism A%, ®p A = coker pgy, .

We define the Hodge-Pink type for objects in .@fEh, as follows: the Hodge-Pink
type for &4 € @,ﬁh(/l) is the Hodge-Pink type for the unique & 4-lattice M, of P-

height < h for M @ A, where M := Ds"(€). (The existence of M, is proved in

Corollary 11.2.8.)

Hodge-Pink type with coefficients behaves well under change of coefficients in
the following sense. Let M, € (ModFI /&)S" for a finite E-algebra A, and assume
that 94 is of E-Hodge-Pink type v = (n,A}). Then for any finite A-algebra A’
My @4 A is of E-Hodge-Pink type v. Also for any finite extension E'/E and an
E'-algebra A, M, € (ModFI /&)S" is of E-Hodge-Pink type v := (n,A}) if and
only if M is of E’-Hodge-Pink type v/ := (n, A}, ® E’). Using these, we will often
replace F with a suitable finite extension of F in applications.

It is not a priori clear if any A-Hodge-Pink structure with A € ARg has an FE-
Hodge-Pink type. But when JZ" /% is separable, the following equivalent definition
of F-Hodge-Pink type can be used to show that any A-Hodge-Pink structure has an
FE-Hodge-Pink type.

Consider a finite free (.#y)4-module D4 and an A-Hodge-Pink structure A4 for

D,4. If all the Hodge-Pink weights for Ay are in [0, %] (i.c., Dag, C Aa C P(u) ™"
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Das,) then by definition Ay/Dag, and (P(u)™"Dag,)/Aa are finite projective A-
modules. As in §2.3.3, we can associate decreasing separated exhaustive filtrations
Fil*(Da.,) of Dazy by (O A, )a-submodules, and Fil*(Dy ) of Dy by JH 4
submodules, respectively, as follows:

~

(FUSAR).,) = (Das,) N (P(u)”-Ay) C Dy,

Fil“(D 4., Da
(FU3(AB) ) = Fil(Da, ?)w — C A% > Dy, forweZ,
(P(U)‘DAJO) N Fil (DA,xo) P(u)-DA,xO

where all the intersections are taken inside ﬁA,xo[ﬁ]- Note that if we forget the
A-action and view Fil*(Dy4 ») as a filtration by J# -subspaces, then Fil*(D, ») co-
incides with the filtration (2.4.3.1) or its analogue for the case 0g = F[[mo]].

One can also construct Fil*(Dy ) from Ay := AA/ISA@O, as follows: since the
submodule A4[P(u)¥] C Ay of elements killed by P(u)® is the image of P(u)~%-

Filw(l/)\ A.z,) Under the natural projection, we have an % 4-isomorphism

Aa[P(u)"]

11.3.44 Fil*(D A L A
( ) 1 ( AJK/) AA P(U)w_l]

for each w, where the isomorphism is induced from multiplication by P(u)*. Now, for
any E-Hodge-Pink type (n, A},) we define Fil¥ := A%[P(u)*]/A%[P(u)*"'] C Dg_r.
It is clear from the isomorphism (11.3.4.4) that if an A-Hodge-Pink structure A4 is of
E-Hodge-Pink type v then there exists a J# 4-isomorphism Fil" (D, ») = Fily @pA.
We will show later in Lemma 11.3.5 that the converse is also true if J# /% is
separable.

For M, € (ModFI/&)S", the filtration Fil*(Dy ) for (Da,Ay) := H(9M,) can
be expressed in terms of 914, as follows:

(11.3.4.5)

im (o, ) 0P (u)*- Mg im (o, )

FIE D) = 50y (o)) N Py -9Ts © Pla) im(pmy)

gD/L%, for w € Z.
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Lemma 11.3.5. Assume that & | ¢ is separable.

1. For a finite E-algebra A, an A-Hodge-Pink structure Ay for Dy := Dp®gA is of
E-Hodge-Pink type v if and only if there is an K s-isomorphism Fil* (D4 _z) =
(Fily) @ A for all w, where Fil*(Dy4 ) is as defined in (11.3.4.3).

Fil*(Da, »)

m associated to

2. For a finite Fy-algebra A, the grading gr*(Da x) ==
an A-Hodge-Pink type A4 is a finite projective & 4-module for any w € Z. In

particular, Fi1'(Dy4 ) is a finite projective J# s-module for any w € Z.

3. If A is finite radicial E-algebra (e.g. A € ARg), then any A-Hodge-Pink type

A4 has an E-Hodge-Pink type.

When 2 /% is separable, we often let v denote the corresponding filtration Fil$
which is equivalent information by Lemma 11.3.5(1).

Lemma 11.3.5(2) is false (even when A is a field) if % is not separable over
K 9. See Remark 11.3.6 for an example. But the A-Hodge-Pink structure in this
counterexample cannot appear as a weakly admissible A-Hodge-Pink structure. The
author does not know whether Lemma 11.3.5 holds for any weakly admissible F-

Hodge-Pink structure without assuming that ¢ /% is separable.

Proof. The “only if” direction of (1) is already discussed; see the discussion below
(11.3.4.4). To show the “if” direction of (1), we may assume that A is a finite local
E-algebra. Let E' C A be a subfield containing E which makes A a radicial E’-
algebra. (For example, we may take E’ to be the maximal separable subextension
of A/my over E.) To prove the lemma, we may replace E by E' and v := (n, A},)
by v/ := (n,A}), so we are reduced to the case when A is finite radicial E-algebra.

(The point of this step is that for any finite extension E” of E, A®g E” is local.)
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Since A | o and o/ Fy are separable it follows that J¢ /Fy is separable, so
we have an isomorphism & ®p E = P, E; for some finite separable extensions
E;/E equipped with a fixed Fy-embedding ¢ — E;. Also we have a unique % -
isomorphism Oa,, = #[[P(u)]] (using separability of .# /¢ ), so we have an

isomorphism Oa ,.r = @, Ei[[P(u)]].

Claim 11.3.5.1. For a finite radicial E-algebra A, any Oa 4.4 /(P(u)")-quotient
Ay of ((’)&xo,A/(P(u)h))@n which is projective as an A-module can be written as
follows:

(1135.2) = @ EB ( (E: ®5 A))[g)’( )H)mw,i‘

v w=0,

We choose mo; > 0 for each i so that we have ZZ}:O Myyi = N.

To show Claim 11.3.5.1, it is enough to show that A 4 is projective over J# 4 (which
is E-isomorphic to @, E;®gA). Since J o/ Fy is separable J£ 4 is an étale A-algebra.
So A 4 @4 (A/my) is a product of finite separable extensions of A/my, hence any
H 4 R4 (A/my)-module is projective. Now by local flatness criterion (especially, [62,
Theorem 22.3(4)]), a finitely generated # 4-module is J# 4-flat if and only if it is
A-flat. But by assumption A, is A-flat, so we proved Claim 11.3.5.1.

Now let us deduce (2), (3), and the “if” direction from Claim 11.3.5.1. First,
observe that A4 in Claim 11.3.5.1 is isomorphic to Ag @5 A where

@ & (o)

¢ w=0,

This shows (3). To show (2), we may assume that A is local and radicial over some
finite extension E/Fy (e.g. by taking E to be the maximal separable subextension
of A/my over Fy). Then any A-Hodge-Pink type Ay, Ay = AA/ZSA7xO satisfies the

assumption of Claim 11.3.5.1 by definition. Using the isomorphism (11.3.4.4), we
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obtain for any w € Z

(11.3.5.3) grw(DA’%) (Y] @(EZ Rp A)@mw,i’

)

which is visibly projective over £ 4. The “if” direction of (1) also follows because for
any A-Hodge-Pink type A4 (with A a finite radicial E-algebra), A4/ D A,z 18 uniquely
determined by non-negative integers {my,;}w,; up to isomorphism, but {my,;}y.; is

determined by gr*(Dy4_») as in (11.3.5.3). O

Remark 11.3.6. Consider K := F,((u)) with ug = u? (so P(u) = my—uy = mop—u?). In
particular, the image 7 of u in 0 = Fy[[m, u]]/(mo — ) is a uniformizer satisfying
nt, = m. We take E = Fy[mg|/(mg — 7h) so we have # g = H[ng|/(mg — ) =
H g/ (7 —7g)P.

Consider Dy := (o) e = E'e and set ﬁE@O = (R4, )re. (Note that #( = Fy,

so (A o)g = E.) Consider the following E-Hodge-Pink type:

p—1

Ap = Z(u — 1) (m — up)*w'ﬁE,zO.

w=0
Clearly Ap is of height < p — 1, and one can that the associated filtration is
Fil“(Dgx) = (e — )" -Dg x for w € [0,p — 1] which is not free over % p.

It is impossible to give Dg an FE-isocrystal structure which makes Ap weakly
admissible; any E-isocrystal structure is pure of some slope w since D is of (£ () g-
rank 1, but this forces any weakly admissible Hodge-Pink structure to be of the from

P (U) _wﬁE,zO .

Proposition 11.3.7. Assume that ¢ is separable over #o. Let & € Z5"(R) for
some R € Q/lﬂTig. Then, for any E-Hodge-Pink type v with E a finite extension

over F' = Frac(0),'0 there exists a (possibly empty) union of connected components

100ne can allow E/Fp which does not necessarily contain F, as follows. Pick a finite extension E’ of E which
contains F, and replace v by v/ := {Fill @ g E'}.
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GE; C %@?h ®, B = Spec Rg (where Rg := R ®, E), with the property that for
any finite E-algebra A, an A-point (4 € g,%fh(fl) is of E-Hodge-Pink type v if and

only if Ca is supported in Xy .

Proof. Recall that we have a &, _<nr-lattice ﬂ?h of height < h in M ®p O

< <h
%%g gﬂ?g

which is “universal” in the sense of Corollary 11.1.11, where &, <n := & @, Oy p<n.
g G

We view ﬂ?% = ﬂ?h ®o E as a 6 ®,, Rg-lattice of P-height < h in M, ®, E via

the structure morphism %@fh ®, ' = Spec Ry. Now, set
(11.3.7.1)
M) AP (u)” - M M
Filg ¢ p = al _g’E) () & —=%E , forw=0,1,---,h.

C
P(u)-p(o* M) NP (u) M~ Plu) M
(Compare the left side with (11.3.4.5).)
Let 9% C Spec Rg be a set of primes p C Rg such that there exists an %" ®p,

(RE)p-isomorphism
(11.3.7.2) Filg . p @R, (RE)py = Fily @p(RE),-

Clearly, 9% is an open subspace of Spec Rg. We will now show that 4%y is a
union of connected components of Spec Rg and has the desired property for E-finite
points.

We first show that Filg, 5 is finite projective over & ®p, Rp.'' Tt suffices to
show that Filg ¢ g ®r,(RE), is finite projective over & ®p, (RE), for all maximal
ideals p C Rp. Let E' := Rg/p, and let v/ be the E’-Hodge-Pink type for the
G pr-lattice 2??% ®ry, Re/p of P-height < h (which corresponds to the closed point
p € Spec Rp < g%fh ®, F). Choose a maximal ideal p’ C Rpr = R ®, E’ over

p. By applying Lemma 11.3.5 to the &g, y~-lattice ﬂ?g ®ry Re /p'" of P-height

HFor a different proof, one can adopt the proof of Lemma 11.3.5 as in [55, Lemma 2.6.1].
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< h, we obtain an & ®p, (Rg)y -isomorphism
Filg ¢ g @ry (Rer)y = Fili @pr(Rpr )y

for all w. Since Filg ¢ p ®r,, (RE), is finitely generated over 2 ®p, (Rg),, it is finite
projective by faithful flatness of % ®p, (Rp/)y over # g, (Rg)p-

Since both Fﬂgg, g and Fily @ g Rp are projective £ ® g, Rg-modules, there exists
a (possibly empty) union of connected components U C Spec(.# ®p, Rg) over which
the ranks of both modules coincide (since the rank of a projective A-module is a
locally constant function on Spec A). Clearly, p lies in 9% if and only if the fiber
Spec(# ®p, Rp/p) over p is contained in U. Thus, 9%y is precisely the union of
all the connected components whose preimages in Spec(# ®p, Rg) lie in U.

It is clear from the definition of 4%} that for any A-point (4 € 9%} (A) with A
finite over E, the G 4-lattice (ﬂ?%) of P-height < h in M ®p, A is of E-Hodge-
Pink type v. Now, let us show that for any (4 € (%%fh ®, E)(A) with A finite
over F, if ijl(m?%) is of E-Hodge-Pink type v then (a factors through ¥%;. We

may assume that A is local, and let p be the closed point of g%fh ®, F on which

C4 is supported. By the assumption on (4, the &, /p-lattice @?,’; ®pry Re/p of P-
height < h is of E-Hodge-Pink type v, so Filg ; p ®r,(Rg), and Filj ®g(REg), are
projective % ®p, (Rg)p-modules with same (locally constant) % ®@p, (Rg)y-ranks;

i.e., they are isomorphic as . ®p, (Rg)y-modules. Thus, p € 9% O
11.3.8

By Proposition 11.2.6, the structure morphism %%fh ®e F' — Spec(R ®, F) is

an isomorphism, where £ is over R. Let RY be the direct factor of R ®, F' such
that the isomorphism induces ¥Z} = Spec RY. If Endg, (pr) = F (50 € = Euniv

exists over R := Rfm"), then we write R} to denote RY. We similarly define RPDF"'
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using ¢ = .. The rest of this section is devoted to computing the dimensions of
F-algebras R} and REF"’ for fixed Hodge-Pink type v. Since we already know that
are geometrically regular F-algebras, it is enough to compute the dimension of the
tangent space at each closed point, which can be done after increasing F' so that the
closed point becomes an F'-rational point and passing to the completed local ring.

Fix an E-Hodge-Pink type v and a deformation n € .@;h(o};) such that ng is of
E-Hodge-Pink type v. We fix a framing 3,, for n to obtain a framed deformation
= =, Bop) € .@EF’@(OE). As mentioned in Proposition 11.2.2, the tangent space
}‘@%@ (Ele]) is exactly the Zariski tangent space of REF"’ ®, E at the E-point 13,
and similarly if Endg, (pr) = F then the tangent space }@<h Ele]) is exactly the
Zariski tangent space of R} ®, E at the E-point np. Note also that even if ‘.@fEh
is not representable, the Zariski tangent space ‘.@g’ (E[e]) makes sense as a finite-
dimensional E-vector space since ‘.@iﬂ satisfies Schlessinger’s criteria (H1)-(H3) by
§11.7.1 and Theorem 11.7.2.

Let Ad(ng) be the (natural) G g-representation on Endg(V;). In particular, we
have (Ad(nE))gK = Endg, (ng). Then we can see that ‘Q,IDE’@‘ (Ee]) is a torsor over
}.@q‘ ) under the natural tranitive action of Ad(nz)/ (Ad(ng))9", which can be
seen as follows: for a fixed deformation ngy € Z5"(Ele]), any two lift of the framing
(i.e., the ordered basis) for ng are related by the action of id +¢-Ad(ng), and two
lifts of the framing define isomorphic objects in .@Eﬁ:gh(E [e]) if and only if they are
related by the action of id +¢-(Ad(ng))9%. So we obtain
(11.3.8.1)

dimpg ‘.@Eﬁjgh (Ele]) = dimpg ’.@f; (Ele]) + dimg Ad(ng) — dimg (Ad(nE))gK

Therefore, it is enough to compute the dimension of the tangent space }.@f; (Ele]).

Thanks to Corollary 11.2.8 and Lemma 11.3.2, this can be done by studying (first-
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order) deformations of (weakly admissible) Hodge-Pink structures with coefficients.

11.3.9

The following discussion is an analogue of Kisin’s technique [55, §3] for studying
deformations of weakly admissible filtered isocrystals with coefficients. Let (Dg, Ag)
be a weakly admissible E-Hodge-Pink structure of E-Hodge-Pink type v. We write
(Ad(Dg),Ad(Ag)) := Endg(Dg, Ag), where the right side is the internal hom of
weakly admissible Hodge-Pink structures in the sense of §2.3.2. (If V},(Dg, Ag) =
ng then we have V- (Ad(Dg),Ad(Ag)) = Ad(ng).) The Hodge-Pink type Ad(Ag)
is not effective if there are distinct Hodge-Pink weights for Ag.

Let Ad(ﬁE,xO) = Oaz, ®x, Ad(Dg) denote the standard lattice. Recall from
§2.3.3 that we also have defined a filtration Filyy, ) on the standard lattice Ad(ﬁE@O).
The zeroth filtration FilOAd( Ap) 18 Ad(AR) ﬂAd(ﬁE@O), where the intersection is taken
inside Ad(ﬁEwo)[ﬁ], and can be interpreted as a submodule of endomorphisms on
ﬁE@O which take Ag into itself when extended to ﬁE,xo [ﬁ] In particular, the image
of an endomorphism f € Ad(Dg) via the natural inclusion j : Ad(Dg) — Ad(ﬁE@O)
lies in Filgd( Ap if and only if f respects E-Hodge-Pink structure Ap. Now we define
the following 2-term complex:

C*(Dp, Ap) == |Ad(Dp) "5 Ad(Dp) & —Ac_l(oﬁ o)
Fil Ad(Ag)
We denote by H'(Dg, Ag) the ith cohomology of the complex C*(Dg, Ag).

We discuss how this complex can be used to study the infinitesimal liftings of
weakly admissible Hodge-Pink structures with coefficients. Let A € ARg, and let
I C Abe an ideal with ms-1 = 0. Put A := A/I € ANRE. We fix a weakly admissible
A-Hodge-Pink structure (D, Az) which lifts (Dg,Ag). By Theorem 11.2.9, we

already know that there exists a (weakly admissible) A-Hodge-Pink structures which
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lifts (D4, A ). So we would like to obtain the set of equivalence classes of such lifts,
where two lifts (D4, A4) and (D4, Ay) are equivalent if there is an isomorphism

(Da,Ay) — (D', Ny) which reduces to the identity map modulo 1.

Proposition 11.3.10. The set of equivalence classes of weakly admissible A-lifts
of (Dg,A\z) is a principal homogeneous space under the action of H'(Dg,Ag) ®p
I. For any fized such A-lift (D4, Aa), the group of infinitesimal automorphisms is

isomorphic to H*(Dg, Ag) g 1.

It is natural to expect that there exists a functorial construction of the “obstruc-
tion class” in H%(Dg,Ag) ®g I for the liftability. But the second cohomology is

trivial, which is consistent with Theorem 11.2.9.

Proof. The claim about the infinitesimal automorphisms is immediate, so we con-
centrate on the other claim.

Let (D4, A4) be an isocrystal with Hodge-Pink structure with A-coefficients such
that (Da,Ay) ®4 A= (Ds,Az). Then (D4, Ay) is automatically weakly admissible

since we have the following short exact sequence
(11.3.10.1) 0— (Dg,Ag) @ I — (Da,As) — (Di,Az) — 0,

where the flanking terms are weakly admissible. Being an extension of weakly ad-
missible Hodge-Pink structures, (D4, A4) is weakly admissible, thanks to Proposi-
tion 2.3.8. Therefore, we are reduced to showing that the set of A-lifts (D4, Aa)
of (Dj,Az) as isocrystals with Hodge-Pink structures with coefficients (without a
priori imposing the weak admissibility) is a torsor under H'(Dg, Ag) ®p I.

Let ¢ : 0*Ds — Dy be the Frobenius structure for the A-isocrystal (Dg, Ag).
Fixing the underlying %y ®p, A-module for the A-isocrystal D, that lifts Dy, the

set of A-lifts of (D, p,Aj) is a set of (¢, A4) up to some equivalence relation, where
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¢ : 0Dy — Dy is an isomorphism which reduces to ¢ modulo I, and Ay C (Da),
is an an (Oa 4, ) a-lattice which reduces to Aj C (Dj);, modulo I.

We fix an A-lift (Da,¢,A4). For any other lift ¢' of ¢, we can always find
vp € Ad(Dpg) ®g I such that ¢’ = (id+7p) o ¢, since p ¥4 A = ¢ @4 A = ¢.
Conversely, given any vp € Ad(Dg) ®g I, we obtain another lift ¢’ := (id +7p)ep.
For any other lift A’y of A 4, choose an automorphism of (Dy)s, [ﬁ] which takes Ay
onto Ay, and reduces to the identity modulo I. In fact, since (D, As) and (D4, Ay)
should have the same FE-Hodge-Pink type, it follows that this automorphism restricts
to an automorphism id +yxp : (Da)zg — (Da)ay, Where yp € Ad (ﬁEm) ®g 1.
Conversely, given any yyp € Ad (ﬁEm()) ®@p I, we can find Ay := (id +yp)(Aa),
which clearly lifts A; = Ay ®4 A. As remarked above, A/, = A, if and only if
e € Filjg,)-

To summarize, Ad(Dg) & (Ad(ﬁE,m())/FﬂoAd(AE))a which is a degree-1 term of
C*(Dg,AE), acts transitively on the set of equivalence classes of A-lifts. We now
seek a condition for (yp,vxp) for which the A-lifts (D4, ¢, Aa) and (Da, ', Ny)
are equivalent, where ¢' := (id +vp)p and A’y := (id +y3p)(A4). Assume that there
exists 8 € Ad(Dg)®g I such that the A-linear map id +/3 : D4 — D4 which respects
p-structures (¢ and ¢') and A-Hodge-Pink structures (A4 and A’y). In other words,

we have
¢ = (id +B)opo(id —*B) = p+(B8 — o (6*8) 0 o™ ")op = P+ (B—padpy) (07 8))op,

(ie., yp = B — Yadawmy)(0*B)) and yup = 3(3) (by considering the A-Hodge-Pink
structure). In other words, (D4, ¢, As) and (Dg, ', \y) are equivalent if and only

if (Yo, yrp) € Im(id —pada(py), 7), which is the “coboundary condition.” O

We apply the the previous proposition to the following special case. Let A =
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Ele] and I = e- A, so necessarily we have (Dj,A;) = (Dg,Ag). By the previous
proposition, the set of E[e]-deformations of (Dg, Ag), which has a natural E-vector
space structure, is naturally E-isomorphic to H'(Dg, Ag). (We can directly check
that the H'(Dg, Ag)-action on the E-vector space of E[e]-deformations is E-linear.)

We use this result to compute the dimension of the tangent space }@fEh (Ele]).
Choose (Dg, Ag) so that ng = Vyi,(Dg,Ag). By Corollary 11.2.8, Lemma 11.3.2
and the discussion immediately above, we have a natural E-linear isomorphism
HY(Dg, Ag) |@<h [€]). Ome can compute the E-dimension of H'(Dg, Ag),
using the well-known trick that the “Euler characteristic” is equal to the alternating

sum of dimensions of the terms of the complex:

Ad(D
FllAd(A )

Ad(Dg .,
= dimE(Ad(an)gK)+dimE .(O—E’O) ,

where the second equality follows from Corollary 5.2.4. Using the equation (11.3.8.1),

we have the following corollary which is the main goal of this section.

Corollary 11.3.11. There exists a natural E-linear isomorphism H*(Dg, Ag) —

}.@q‘ l€]). Any connected component of Spec RD <h[ﬂ0] which contains a closed

point corresponding to (Dg, Ag) of E-Hodge-Pink type v is of dimension
Ad(Dg,
dim (R5Y) = d® + dimp, % .
HAd(Ap)

If Endg, (pr) = F, then any connected component of Spec R;h[wio] which contains a

closed point corresponding to (Dg, Ag) of E-Hodge-Pink type v is of dimension

dim (RY,) = 1 + dimp <—A4(DE@O)> .

TRaap)

If furthermore | is separable (e.g. when oy = Z,), then the formally smooth

D,V v . . . . . .
F-algebras R2Y and Ry (if it exists) are equi-dimensional.
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Proof. Tt remains to show that equi-dimensionality assertion; i.e., the E-dimension
of Ad(ﬁE,xo) / Fil%d( Ap) only depends on the fixed E-Hodge-Pink type v. Consider
A-Hodge-Pink structures Ay and Ay of P-height < h for a rank-d free (J#)a-
module D4 (with A finite over Fp) such that there exists an O A 4.4 /(P(u)")-
isomorphism A 4/ D Ao =N/ D Az0- LThen we can lift this ismorphism to an O 4,4 -
isomorphism Ay = A’y which maps ﬁA,xO C A4 onto ﬁA,xO c Ay. So we have

rank 4 (Ad(ﬁA,zO) / Fﬂgd(AA)) — rank, (Ad(ﬁmo) J Filkgqa, )>. O
11.3.12 2-dimensional example

Let pr be a 2-dimensional G k-representation. Let us fix the following Hodge-Pink
type (or rather Fy-Hodge-Pink type) v = (n = 2, AY := &, /P(u)"). Choose My €
@é}}\/[F(E) with E a fixed finite extension F' = Frac(o) such that 9x has Hodge-
Pink type v. Now, set (Dg,Ag) := H(Mg), and choose a (J#y)a-basis {e, ez}
for D4, such that Ag is the Oa ,, -span of {ﬁel,eﬁ. Under the basis {e;; :=
ef @ ej}ij12 for Ad (ﬁEm>, the Hodge-Pink structure Ad(Ag) is the (Oa 4, )E-
span of {eu, ﬁelg, P(u)hes, 822}. Therefore, {e;1, €12, P(u)"es, exn} spans
Fﬂ?xd(AE)? so we have ~

Ad(DPg.,) . Gk

3 = €21.
Fﬂgd( ap) P

In particular, it follows from Corollary 11.3.11 that if J¢ /¢, is separable then
dim (REF"') =4+ h-[A : Fy], and if furthermore Endg, (pr) = F then dim (RY,) =
1+ h-[A : Fy). Here, 0 := &/P(u), viewed as an integral extension of 0.

For h = 1, we will determine the connected components of Spec RPDF"’ and Spec R}

later in §11.4.14 and §11.5 when J# /% is separable.
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11.3.13 Relation with crystalline and semi-stable deformation rings

This paragraph is a continuation of §11.2.11. We assume that oy = Z,. We first
recall the definition of p-adic Hodge type for a weakly admissible filtered (¢, N)-
module. Let £/Q, be a finite extension and fix a decreasing separated and exhaustive
filtration v := {Fily C ( g)9"} by £ g-submodules such that the associated graded
module is concentrated in degrees in [0, k). For a finite E-algebra A, we say that a
weakly admissible filtered (¢, N)-module with A-coefficients (Dy, ¢, N, Fil*(D4_»)
is of Hodge type v if there exists a filtered (. 4)-linear isomorphism (J# ®q, A)%" =
(Da).x where the filtration on the left side is {(Fily) ® z A}. For a semi-stable A-
representation V4 of G » with Hodge-Tate weights in [0, h], we say Vj is of p-adic
Hodge type v if D, (Va(—h)) is of p-adic Hodge type v, where D : Repap(g;g) —
MF (o, N) is the covariant equivalence of categories. By Lemma 11.3.5(1), one
can also view v := {Fily'} as an F-Hodge-Pink type.

Let A be a finite E-algebra. We defined a functor res : MF% (o, N) — HP (¥)
in (5.2.12.1), which takes a filtered (¢, N)-module with A-coefficients into Hodge-
Pink structure with A-coefficients. For a fixed v := {Fily}, we can show that
the weakly admissible filtered (¢, N)-module D4 := (Da, ¢, N, Fil*(D4).») with A-
coefficients is of p-adic Hodge type v if and only if res(D,) is of Hodge-Pink type v.

This claim essentially follows from [52, Lemma 1.2.1].

< <
R[S:tlv\h R‘:L\h

As in §11.2.11, fix a mod p representation p of G . Let and R_.,
denote semi-stable and crystalline framed deformation ring for p in the sense of
[59], respectively. (For what follows, the same discussion works if the framed de-
formation rings are replaced by deformation rings, provided Endg, (ps) = F.)
By [55, (2.6)], fixing the Hodge type v cuts out unions of connected components

Spec RZY € Spec RZS"[L] and Spec RZY € Spec RD’gh[%], respectively. Moreover,

P cris cris



304

7

O,<h :
Ry™ restrict

the map res™ : Spec — Spec RS defined by “restricting to G

to Spec RsDt’v — Spec RZY, where v and v are chosen as above. Similarly, res®

restricts to Spec RV — Spec RZY.

cris

O,v

The local structure of R-:Y and RZY is studied in [55, §3] (including the case

Ov

p = 2). For example, R is equi-dimensional and formally smooth, and RE’V is
equi-dimensional and admits a dense open subscheme which is formally smooth. The
dimensions can be computed. In particular, by comparing the dimension formulae
for RCDr’i;’ and for B2V, we see that they have the same dimension if (and only if)
h=1.

We give an example in case p is a 2-dimensional G ,-representation. Let v be the
filtration on #®? such that dim 4 Fily = 2 for w <0, dim 4 Fil; =1 for 1 <w < h,
and dimy Fily = 0 for w > h. We obtain natural maps Spec RSDt’V — Spec REY
and Spec RV Spec R2V, and similarly for the deformation rings. The first two

cris co )

equations of the following are from Kisin [55, (3.3)] and the rest from §11.3.12 above.

dim(RZY) = dim(RSY) = 4+[# : Q)

dim(RY;) = dim(RY) = 1+[#¢ :Q,), if Endg,(p) =F.
dim(RDY) = 44 hl2 : Q)
dim(RY,) = 1+h[Z :Q,), if Endg, (ps)=TF
For h > 1, this difference of dimensions reflects the “gap” between G »__-representations

of P-height < h and crystalline or semi-stable G ,-representations with Hodge-Tate

weights in [0, h.

11.4 “Ordinary” and “formal” components

We again allow 0y = F,[[m]]. In addition to Hodge-Pink types, we discuss two

more conditions on REF’@[T%O] (or rather, on ¥%Z7S" @, F') which cut out unions of
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connected components: more precisely, we show that the “ordinary” and “formal”
deformations, which will be defined below in §11.4.3 and §11.4.6, form unions of
connected components in the generic fiber of the framed deformation ring of P-height
< h. Exactly the same results will hold for wah[ﬂio] whenever it exists.

Using these finer conditions, we work out a complete description of ordinary com-
ponents of a 2-dimensional (framed) deformation ring of P-height < h with a certain
fixed Hodge-Pink type (see Proposition 11.4.15)'2. We end this discussion with an

application to crystalline and semi-stable (framed) deformation rings in §11.4.17.

11.4.1

For the proof of Proposition 11.4.2 we need to extend Corollary 8.1.11 to allow
coefficients in (B,J) € Aug,. First, recall that for Tp € Rep’s®(Gx) with B an
0p-algebra where 7 is nilpotent, we defined in (11.1.4.1) an étale (¢, 0g p)-module
th(TB) free with og p-rank equal to rankp(7Tz). We also showed that Q;h is exact
and commutes with ®-products, internal homs, duality, and change of coefficients.

If, furthermore, Tp is unramified (i.e., Ixx acts trivially on Tz), then we define
(11.4.1.1) U(Tg) = (WSh oy TB)QK/IK7

where W is as in §1.3.3 and W*" denotes the strict henselization of W. We can show

the following without difficulty:

1. For Tg € Repy®(Gk/Ix), U(Tp) is an finite free étale (¢, Wp)-module with

W-rank equal to rankg(7Tg). Here, Wp := W ®,, B.

2. A sequence (1) : 0 — Th — Ty — Ti — 0 in Rep's®(Gx/Ix) is short exact if

and only if U(T) is short exact.

12For this result, we do not require H | X o to be separable.
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3. The formation of U commutes with ®-products, internal homs, duality, and

change of coefficients.

4. There is a natural isomorphism og @y, U(Ts) = Ds"(Ts(h)) of étale (¢, o p)-

module, where Tz € Rep's®(Gr /I ).

5. If My € (ModFI /&) is étale, then Ty := TS (Mp) is of Lubin-Tate type
of P-height h (i.e., Tp(—h) is unramified) and we have a natural ¢-compatible

isomorphism Mp = & Qw, U(Ts(—h)).

If #(B) < oo then (1)—(4) can be proved using Corollary 8.1.11, following the ar-
gument in §8.2.4. The general case of (1)—(4) follows from this case because Tg
descends to Ty € Repfé?e(g k/Ix) with B" C B some finite og-subalgebra, and we
have a p-compatible isomorphism U(Tg) = U(Tp) @ B. To show (5), first observe
that Tg(—h) = TS (M), where the right side makes sense since Mp is étale. Now
Tg is of P-height < 0 by Proposition 11.1.6, so T is unramified by Proposition
8.1.10. The second part of (5) is reduced to the case when #(B) < oo by a similar
argument as previously, and then we apply Corollary 8.1.11.

We now state the following proposition which shows the existence of the connected-

étale sequence for My € _@éﬁ\/[F(A, I). This generalizes Proposition 8.2.7.

Proposition 11.4.2. Consider (A, I) € ug,, and assume that Spec A is connected.
Any My € .@éﬁ\h(z‘l, I) has a “mazimal” étale submodule ME € (ModFI /&)S"
and a “mazimal” Lubin-Tate type quotient IM5T € (ModFI /6)?‘ with the following

properties.

1. Both the quotient M 4 /IS and the kernel of My — IMET are finite locally free

over G 4; i.c. they are objects in (ModFI /&)5".
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2. For any morphism (A, 1) — (B, J) in Aug,, the natural morphisms
MG @4 B — (Ma®4 B)®, (Ma®4B)T —M5" ©4 B
are 1somorphisms.

3. The natural morphisms (IM5T)Y — (MY and (IMY)ET — (MY are isomor-

phisms.

4. The formation of MM and ML is “functorial,” in the following sense: any
@-compatible map My — M, in (ModF1/&)S" takes M into (M) and

induces a map IM5T — (9,)<7.

Proof. The proof is essentially identical to [51, Proposition 2.4.14]. The existence and
properties of M4T can be reduced to the corresponding claims on 9% by duality of P-
height &, so it suffices to handle the claims on M. We may assume that A is finitely
generated over 0. Then A is Jacobson since A,q is finitely generated over F,. The key
step is to show that for any closed point z € Spec A, d(z) := ranke,, (Ma®4 K(z))%
is locally constant in MaxSpec A (hence in Spec A), where k(x) denotes the residue
field at € Spec A.

We first show that d(x) is lower semi-continuous (i.e., d(z) goes down along
a closed subset), as follows. Consider a @-module M,4/uM,4 and choose a ba-
sis. Let P(T) be the characteristic polynomial for the matrix representation of
@ o (Ma/uMy) — Ma/udMty with respect to the chosen basis. Then d(z) equals
the largest integer d such that the coefficient of 7"~ in P(T) does not vanish at z.

In order to show that d(z) is upper semi-continuous, we will define for each d €
[0,n] a projective A-scheme XgnA, such that d(x) > d if and only if z is in the image
of X¢,. To construct Xg, , consider M, € .@éﬁv‘,F(A, I with (A, I) € Aug,, and let

Ty = TS"(My4) as defined in (the proof of) Proposition 11.1.6. For any A-algebra
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B, we define XgﬁA(B) to be the set of G g-stable B-submodules Ly C T4 ® 4 B with

the following properties.

1. The submodule Lp is locally free of B-rank d and the quotient (Ty ®4 B)/Lp

is locally free over B.
2. The Tate twist Lg(—h) is unramified.

3. We identify 94[+] with QEZ(TA) using Proposition 11.1.6. The ¢-stable Wg-

submodule U(Lg(—h)) C Q;,}A(TA) is contained in M4 ®4 B.

We now show that the functor Xg, , 1s representable by a projective A-scheme
equipped with a universal rank-d G g-stable subbundle Lxgﬂ ) C Ty ®a OX%{ ) of
Lubin-Tate type of P-height h. It is clear from the definition that the formation of
Xg ,and L Xg if they exist, commutes with arbitrary scalar extension for A — B.
For the proof of representability, first observe that the conditions (1) and (2) obvi-
ously define a closed subscheme (which we denote by YggtA) of the grassmannian of
rank-d subspaces of T'y. We now show that the third condition is closed in YDCJI?Av as fol-
lows. It is enough to show that for any A-algebra B and any B-point Lg € Yg‘jitA(B),
there exists an ideal J € B with the property that Lp ®p C' C T ®4 C satisfies (3)
above for a B-algebra C'if and only if JC = 0. It is clear that the construction of
J C B is compatible with scalar extension, so we obtain the universal closed sub-
scheme of the grassmannian with conditions (1)—(3) by gluing such ideals J, C B,
for some open affine covering {Spec B}, of Y.

To construct the ideal J C B as above, put Mp := M4 @4 Band Tg :=T1 R4 B.
Since Sp(1]/Sp is free over B, Mp[L] /My is also free over B. Choose an B-basis

{e;}; for Mp[L]/Mp. Now consider the following composite of B-linear maps

rp: U(Lp(—h)) = D§"(Ts) — D" (Tp)/Mp = Mp[1/u]/Mp = @Bej-

J
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Note that U(Lg(—h)) is finite free over B since Wp is so. Choose a B-basis {u;} for
U(Lg(—h)), and let J C B be the ideal generated by rg(u;). Since the formation
of U and the B-linear map rp commutes with change of coefficients, the ideal J has
the required property.

Now, let us show that for a closed point z € Spec(A), we have d(x) > d if and
only if z is in the image of X, . (This shows that d(z) is locally constant on Spec 4,
so it is constant if Spec A is connected.) First, it directly follows from the definition
of X, that for any map (A,I) — (B,J) in Aug, we have a natural isomorphism
X§, ®a B = X§, where Mp := My ®4 B. By taking (B, J) = (k(x),(0)) where
k(x) is the residue field at z, we are reduced to showing that the Xgﬁn(z) is non-
empty if and only if ranks_,, (sm,i(x))ét > d, where M,.(5) := M4 @4 k(x). If we have
the inequality ranke, ( (m?”(x))ét) > d, then any d-dimensional G g-stable subspace
L) of Iéh ((Sﬁn($))ét) defines a k(z)-point of Xgﬁﬁ(z). (That L, satisfies condition
(3) of the definition of XgnA follows Corollary 8.1.11, especially the special case of (2)
and (5) in §11.4.1.) Conversely, if Xgﬁn(x) is non-empty then there exists a k-point
L. € Xf,lm(z)(/i) for some finite extension k/k(x). By definition of Xgnﬁ(z), especially
by condition (3), we have &, @w, U(L.(—h)) C (M) Dn(z) £) = (M) Q) £
(where the isomorphism is obtained from Proposition 8.2.7), so we have the desired
inequality I‘&Ilk@m(w)(mtn(x))ét > d.

This shows that d(z) is locally constant on Spec A. We can furthermore show that
the structure morphism Xgm — Spec A induces an isomorphism over the (possibly
empty) union of connected components on which d(x) = d. Assume that Spec A is
connected and d(z) = d for all closed point € Spec A. Since XgnA is proper over
A, it is enough to show that if the formal completion at each closed point of Spec A

is an isomorphism. Since the formation of X commutes with scalar extension
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A — A/m? (where m, is the maximal ideal corresponding to x), it suffices to show
that if A is local with #(A) < co then we have rankg, (M%) = d and X§, (B) —
(Spec A)(B) is a bijection for any finite A-algebra B. To prove this claim, observe
that for any B-point Lp € X (B) we have U(Lp) C (M4 @4 B)* = MY ®4 B by
definition of Xgm and Proposition 8.2.7, so (essentially by Corollary 8.1.11) we have
an inclusion Ly C T8 (9M%) ®4 B of rank-d free B-modules which are direct factors
in Tp (as abstract B-modules). Thus, we have an equality Ly = TS"(MM%) ®4 B,
which proves the claim.

Now, assume that A is connected and finitely generated over oq with d(z) = d
for all closed point z € Spec A. Since the structure morphism Xg, . — Spec A is
an isomorphism, we obtain the universal G g-stable submodule L4 C T4 of Lubin-
Tate type of P-height h. When #(A) < oo, it follows from Corollary 8.1.11 and
the discussion of the paragraph immediately above that MG = &4 @, U(L4) as
submodules of M 4. In general, we put M := S 4 @y, U(L4). Since the formations
of Ly and U commute with any change of coefficients for A — B, we obtain the
equality MM @4 B = (M4 @4 B)* of submodules of M4 ®4 B for any A — B, and
if #(B) < oo then this is known to be a maximal étale submodule of M4 ®4 B. In
particular, MG ®4 B contains the image of ()2, ¢"(6™*M4) in M4 ® B. So for any
maximal ideal m C A and any positive integer i, we have

(" (D) /MG (304 MF),

i=1
thus, we have MM = (72, " (6™*M4). This shows that MY is a maximal étale
submodule of M 4. To see My /imif is a finite locally free & 4-module, note that
(M4/ME) s, &5 is finite locally free over &z for any maximal ideal m C A

because the formation of 9M& commutes with change of coefficients and 94 /9 is

finite locally free over G4 when #(A) < oo by Proposition 8.2.7. The functoriality
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assertion is clear. O

11.4.3 Definition: formal G k-representations

A torsion og-representation T is said to be formal if there exists a a unipotent'®
torsion p-module M € (Mod /&) such that T = TS (M) = I’é(ﬁv). A lat-
tice og-representation 7' is said to be formal if there exists a unipotent ¢-module
M € (Mod /&)S" such that T = TT(IM) = T5(MY). Tt follows from Proposition
9.2.6 and the existence of (the dual of) connected-étale sequence that a lattice o¢-
representation 7 is formal if and only if T'/7yT is formal as a torsion representation
for each n.

Let A° be a complete local noetherian o0y-algebra with finite residue field. We say
an A°-representation Tao is formal if Tao ® 40 (A°/m’,) for each n is formal as a
torsion og-representation. Observe that if A° = og then this definition recovers the
definition of formal og-lattice representations by the above application of Proposition
9.2.6.

An Fy-representation V is said to be formal if there exists a G x-stable og-lattice
T C V which is formal as a lattice og-representation. In fact, for an Fy-representation
V', if a Gg-stable lattice T' C V is formal then any other G g-stable lattice is formal.
(Proof: if M € Modg(p)S" is p-nilpotent then any MM € Modg(p)S" which is
isogenous to M is p-nilpotent. Now apply Proposition 5.2.9.) For a finite Fj-algebra
A, we say an A-representation V4 is formal if it is formal as an Fj-representation.

We record some special cases of this, which justifies the name “formal” G-
representation

If og = IF,[[m0]] and A is finite flat over F,[[m]], then formal G g-representations

(over A) of P-height < h are exactly those that come from formal (i.e., connected)

13Recall from §8.3.6 that 9t is unipotent if and only if m s ¢-nilpotent.
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mo-divisible groups of P-height < h (with A-action). Next, suppose 0y = Z, and
h = 1. We shall use the notations from §1.3.1.2. Assume that p > 2 so that we
can use the Breuil-Kisin classification of Barsotti-Tate groups and finite flat group
schemes. Let A be a finite flat Z,-algebra, and consider a Barsotti-Tate group G
over 0 with an action of A. Then the G, -restriction of the Tate module T),(G) is
formal if and only if G is a formal (i.e., connected) Barsotti-Tate group. Similarly, let
A be a finite Z,-algebra of finite length and let G be a finite flat group scheme over
0 with an action of A. Then the G, __-restriction of the torsion G ,-representation
G(*) is formal if and only if G is connected.'*

Now let us define the full subgroupoids éﬂ; C .@é@w whose objects are unipo-
tent of P-height < h, and _@gfh C Qpih whose objects are formal deformations.
That they are subgroupoids follows from the fact that if M, € (ModFI/&)S" is
e-nilpotent then the change of coefficients 94 ®4 A’ is also g-nilpotent (so we have
enough co-cartesian lifts). The composition of 1-morphisms éﬁ; — é@wﬁ g

<h <h
25" factors through 9;; .

Proposition 11.4.4. Let Rep, (G k) be the category of finitely generated oy-modules
with a continuous G -action, and Repy, (Gk) the category of Fy-representations of
Gx. The full subcategories of Rep, (Gx) and Repp, (Gk) whose objects are formal
of P-height < h are closed under subobjects, quotients and direct sums. Therefore,
the natural inclusion .@gfh C .@pih of Q/li)\‘ia—groupoids 15 relatively representable by
surjections of rings.

For ¢ e .@éh(R) and R € Q/li)\‘{o, let RY be the universal quotient of R which repre-
sents the inclusion .@gfh C .@;h. Then the subscheme Spec(R/ ®,F) C Spec(R®,F)

18 open and closed.

M The “if” direction is still true when p = 2 by [53].
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Assume that /% is separable (which is automatic if 09 = Z,) and let v be any
E-Hodge-Pink type for some finite extension E/F. Let Spec R¥ denote the union of
connected components of Spec(R ®, E) whose closed points have Hodge-Pink type
v. (Such a quotient R, exists by Proposition 11.3.7.) It follows from the proposition
above that there exists an open and closed subscheme Spec R"Y C Spec R¥ whose

closed points corresponds to formal G g-representation of Hodge-Pink type v.

Proof. The first claim is reduced to the fact that y-nilpotentness of p-modules is
closed under subobjects, quotients, and direct sums, by a schematic closure argument
similar to Proposition 9.2.2. (The claims for formal Fy-representations are reduced
to the claims for formal lattice og-representations.) Applying Ramakrishna’s relative
representability criterion [68], it follows that the natural inclusion .@g}fh C .@;h is
relatively representable by surjections of rings.

It is left to show that the map Spec(R’ ®, F') — Spec(R ®, F) is formally étale
at each closed point (since R ®, F' is Jacobson). Put Vi := Tg[ﬂio] where T¢ is
the representation space which corresponds to €. Let A be a finite artin local F-
algebra, let I C A be a square-zero ideal, and put A := A/I. Let us fix an A-point
z: R — Asuch that 7: R 5 A — A factors through R/. Set V, := Ve ®ro A and
Vi = VeQps A. Then we have a short exact sequence 0 — Vz;®41 — V, — Vi — 0,
Now it follows that V, is formal, being an extension of formal G x-representations.

In other words, x factors through R/. O]

Proposition 11.4.5. The natural inclusion @éﬁg — @é% 1s open and closed. In
particular, for any & € .@pﬁh(R) and R € Q/lD\%o, there exists a universal open and
closed immersion %%?gh — %@?h of R-schemes which represents the fully faithful

: : u,<h <h u,<h | __ <h u,<h
inclusion Dy ¢ = Donner Where D5 ¢ = (25"/€) X g D" Furthermore
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the composition %%g’gh — %@?h — Spec R factors through Spec R and induces

an isomorphism g%’g’gh ®, F' — Spec(R! ®, F).

From the proposition above, one can immediately deduce that an A-point M, €
%@?h(/l) (with A finite over F') is supported in gﬁg’gh if and only if 9014 is unipotent
of P-height < h (i.e., M, allows a &S o-lattice M40 C M4 which is “unipotent” of
P-height < h, where A° C A is a finite flat o-subalgebra with AO[%] =A).

Proof. Let us first show that éﬂ; — é}}\h is open and closed. Consider M, €
‘@é}M(A’ I) for (A, I) € 2ug,. Let Spec A C Spec A be the locus where the rank of
maximal Lubin-Tate quotient d,7 is zero, which is open and closed by Proposition
11.4.2 applied to connected components of Spec A. Thus, there is a unique union of
connected components @?gh C @?h such that its functorial points are exactly
the “unipotent points” of g%fh. Now clearly @?gh is obtained from mg-adic
completion of an open and closed subscheme g%g’gh C %%fh. The last claim
in the proposition readily follows from the definition of formal G x-representations
of P-height < h and the structure morphism g%fh ®o F' — Spec(R ®, F') being

isomorphic. O

11.4.6 Definitions: ordinary G i-representations

Let A be one of the following: A € AR, (A, I) € Aug,, or a finite F-algebra A. A
(continuous) A-representation V4 of G of P-height < h is said to be ordinary if there
exists a G g-stable A-submodule L4 C V4 such that V4 /L4 is a projective A-module
(of constant rank) and both V4/L4 and La(—h) are unramified representations'®.

In other words, V, is an extension of an unramified representation by a Lubin-Tate

type representation of P-height h. For a complete local noetherian o-algebra A,

3If 09 = Zp, then G = G, acts on Zp(1) via the restriction of the p-adic cyclotomic character; and if
00 = Fq[[mo]], then Gk acts on Fy[[mo]](1) via the Lubin-Tate character.
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the ordinary-ness for Vy is equivalent to the ordinary-ness for each V4 ®4 (A/m%).
If A is a finite Fy-algebra, then the ordinary-ness for V, is equivalent to requiring
the existence of an ordinary “G g-stable A%-lattice” for some finite flat 0p-subalgebra
A° C A by Lemma 11.4.7 below.

Let A be either an object in AR, or (A, I) € ug, for some ideal I with Spec A
connected. By Proposition 11.4.2 any M, € (ModFI/ 6)§h admits the maximal
étale subobject M C M4 and the maximal p-nilpotent quotient M4 /I, which
are both objects in (ModFI /&)S". In other words, there exists a “connected-étale
sequence” for any My € (ModFI/&)S". We say that M, € (ModFI/&)§" is
ordinary if the maximal g-nilpotent quotient M,/ is of Lubin-Tate type of P-
height . When A € Q/[D\‘{o, the ordinary-ness of 91 4 is equivalent to the ordinary-ness
of M4 @4 (A/m’y) for each n. For a finite F-algebra A, we say M4 € (ModFI/&)S"
is ordinary if there exists a finite flat o-subalgebra A° ¢ A and M40 € (ModFI /&)$h
such that M, = M Ao[ﬁio] and M40 is ordinary. The ordinary-ness is stable under
the duality of P-height h.

Let A be either a complete local noetherian op-algebra or a finite Fy-algebra, and
consider M, € (ModFI /&)§". Then we can see that TS"(9MM4) is ordinary as a
G k-representation if and only 94 is ordinary. (The ‘if” direction of the case when

A is Fy-finite uses Lemma 11.4.7 below and Theorem 5.2.3.)

Lemma 11.4.7. Let A be a finite Fy-algebra. Consider a short exact sequence V'® :
0 = Vi — Va — VI — 0 of finite free A-modules with continuous G k-action
and assume that all the maps are G -equivariant. Then there exists a finite flat o-
subalgebra A° C A with A“[ﬂiﬂ] = A, and G-stable A°-lattices T!yo C Vy, Tao C Vi,
and T, C V}, such that the short exact sequence V* restricts to a short exact

sequence 0 — TV, — Tyo — To — 0.
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Proof. We modify the argument in [50, Proposition 9.5], at the bottom of page 433.
We may assume that A is local, and let E be its residue field. Let AT be the preimage
of o under the natural projection A — E. Note that A" is a rising union of finite flat
0p-subalgebras A° C A. Since the claim is clear when A = F (by taking A° := og), we
may choose an A-basis {e1, -+ , €., €41, , €y} of Vi such that {e1, - , e} is
an A-basis for the image of V} in Vs, {€,41,- -+ , €4, } reduces to an A-basis for V7,
and the image of {e1, -+ ,e 1} in V ®4 E generates a Gg-stable og-lattice (i.e.,
the A*-span of {ey, -+ ,e. .} is Gg-stable). By compactness of G, the image

of G in GLy,n(AT) has to lie in GL,4,#(A°) for some finite flat 0g-subalgebra

A° C A*. Now, we put Tyo C V4 be the A%span of {e, -, e}, Tho C V) the
A°-span of {ejy,--- ,ey}, and T%, C V} the A°span of {€ 11, -, €4} O
11.4.8

Let € € .@pih (R) for some R € 9/19\%0. We now show that the “ordinary-ness con-
dition” cuts out a union of connected components in g%\hd Choose non-negative
integers d := {dg,dr7} such that dg + der < n = dimp(pr). We define a full
Aug,-subgroupoid 9@ C 9@ such that 9, € .@é’%(A,I) for (A, I) € Aug,
if and only if Qﬁit is of G 4-rank dg and SﬁﬁT is of G -rank d,7. This s a Aug,-
subgroupoid by Proposition 11.4.2, especially by (2). If d = dg and d¢, + der = n,
then we put .@é’%ord = @éz\’/}i, le, My € QgMF is an object in Qghdord(A I) if
and only if it is an extension of a Lubin-Tate type object of rank n — d by an étale
object of rank d.

For any R € Q/li)Tio and £ € @éh(R), the 2-fiber product .@éh]\};g : (9<h/§) X _<h

.@é}}\}; is a full QAugp-subgroupoid of 961\/1 ¢ By Corollary 11.1.11, .@GM ¢ can be

represented by a projective R-scheme %%gh
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Proposition 11.4.9. The full Augy-subgroupoid @é%é is representable by an open
and closed R-subscheme %%’gh d of YA Sh. As a special case, the full Aug p-subgroupoid

.@@ “ord can be represented by an open and closed R-subscheme %%fh’d’ord of%%’fh.

Proof. The proof is essentially identical to the proof of Proposition 11.4.5. Consider
My € .@gh (A, 1) for (A, I) € Aug,. Let Spec A C Spec A be the locus where the
rank of MA47 is d .7 and the rank of M is de;, which is open and closed by Proposition
11.4.2 applied to connected components of Spec A. Thus, there is a unique union of
connected components @f i C @f " such that its functorial points are exactly
the points of %%?h with the “condition d” on the ranks of a maximal étale subobject
and a maximal Lubin-Tate type quotient. Now clearly @?Iud is obtained from mg-

adic completion of an open and closed subscheme %%’gh e GH. sk O]

Let Spec(R[= ]) C Spec R[- -] be the union of connected components which is
the image of g%gh’d under the structure morphism %%?h ®o F = Spec R[Wio] We
put (R[ﬂio])d’ord = (R[ﬂ—lo])d with d = dg and dgr = n — d (where n = dimp pr).
From the discussion in §11.4.6 and the proposition above, we can easily deduce that
an o-map R[] — A (with A finite over F) factors through (R[-])**"* if and only
if £ ®p A is ordinary with maximal Lubin-Tate A-subrepresentation of rank d. One
can deduce a similar assertion for A-points of g,@\hd Spec(R| 0]) , and %@u’gh
(with A finite over F).

We will often apply this discussion to R = REF’@ and R = RS, in which case we

respectively write REF’gh’d’ord and Rth’d’(’rd for R,

Remark 11.4.10. Consider an Fy-Hodge-Pink type vy := (n,(Sp/P(u))®?). (If
H | K o is separable then fixing the Hodge-Pink type v, is equivalent by Lemma

11.3.5(1) to fixing the filtration Fil}, of #" given as follows: dim (g9 ) =n—d,
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dim_ (gr}y ) = d, and dim (gr¥ ) = 0 if w # 0,h.) We claim that for a finite F-
algebra A, an A-point (4 € 9%;*(A) factors through %%?h’d’ord ®, F' if and only if
the corresponding & 4-lattice of P-height < A is ordinary with Fy-Hodge-Pink type
vg. In particular, if £ /% is separable then %%fh’d’ord ®, I is contained in 4 Z;"
(as a union of connected components).

In fact, we have the following general claim. Let A be one of the following:
complete local noetherian og-algebra with finite residue field, an og-algebra with
mN-A = 0, and a finite Fy-algebra. For any 9ty € (ModFI /&)S" of Lubin-Tate
type of P-height h (as defined in §8.3.5), the image of gy, is precisely P(u)"94. If
M 4 fits in the following short exact sequence 0 — MG — M4 — MET — 0 where
M is an finite free étale (, & 4)-module and M4T € (ModFI /&)S" is of Lubin-
Tate type of P-height h, then we have an & 4/(P(u)")-isomorphism coker(pan,) =
IMET /P (u)"MET = (S4/(P(u)h))®4T where the second isomorphism is obtained

by choosing & 4-basis for 947 (where d,7 is the & 4-rank of 9M47T).

11.4.11

Let n := dimp(pr). We choose My € .@é%ord(]l?); ie., Mr is a Gp-lattice of
P-height < h for Ds"(pr) such that Mg is of rank d and Mp/ME is of Lubin-
Tate type of P-height h. We consider an 2AR,-groupoid ngﬁ’d’ord whose objects
over A are (M4, 14), where My € Qéz\}i’ord(A) and 14 @ My @4 A/my = M.

. . <h,d,ord <h,d,ord
There is a natural 1-morphism 25" — 237
M S,M

, defined by forgetting 1. If
Endg, (pr) = F, then @%’d’ord is pro-representable by the completed local ring of
GRS gt the closed point corresponding to M. In general, the 2-fiber product
.@iﬁ:?ord = (25"/€) x 5" .@;{;’d’ord is pro-representable by the completed local ring

of g@fh’d’ord at the closed point corresponding to 9. By increasing F, we obtain

the completed local ring of g,@fh’d at any closed point.
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There is an Sp/(P(u)")-isomorphism fg : (Sg/P(u))® = Myp/P(u)"Mp by
Remark 11.4.10, and we choose one. We define an 2AR,-groupoid*® é;éf’d’ord, where
an object over A is My € .@;{;’d’ord(A) together with an & 4/P(u)"-isomorphism
Ba: (Ga/P(uw))® = M4 /P(u)*9M 4 which lifts Gp. (Note that such an isomor-
phism exists by Remark 11.4.10.) By forgetting this isomorphism, we obtain a 1-
morphism .@;&d’ord — .@;{;’d’ord, which makes the former into a torsor under the
formal completion of the Weil restriction Resf" /P GL, at the identity section. In
particular, this 1-morphism is formally smooth.

Now, we define another AR,-groupoid Gr¥"(n, d) whose objects are quotients of
(&.4/P(u)")®" which are free of & 4/P(u)"-rank d. This groupoid is representable by
(the 7g-adic completion of) a grassmannian for ResS/ P@" GL,, which is a smooth
formal o-scheme. We have a 1-morphism @;Z’d’ord — Gr¥'(n, d) by sending (M4, 54)
to the composite (& 4/P(u)")®" ﬁ%: M4/ P(u)" My % coker p. We now show that
this 1-morphism is formally smooth, as follows. Let A € AR, and let I C A be
a square-zero ideal. Put A := A/I. Let (M3, 81 € @;ﬁ’d’ord([l), and we put
(6 4/P(u)")® — A% be the corresponding point in Gr"(n,d)(A) and fix a lift
(S4/P(u)")®" — Ad. We put M,y = &9" and choose M4 — M4 which lifts (5.
Now, we can give ¢ on 9, by choosing a lift of ¢ := gy, in the commutative

diagram below with exact rows:

0—>0"My - F>My —= A4 ——>0

.

0—= 0" Mz ——>My AG 0.

Now, let 9% and M4 be a maximal étale subobject and a maximal Lubin-Tate type
quotient of M4, respectively. Since the formation of M and M4T commutes with

change of coefficients by Proposition 8.2.7, we have natural isomorphisms 9% ® 4 A =2

16Here, the tilde in the notation does not mean the extension by 2-direct limits, which is defined in §10.4.4.
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smfg and iUIff R4 A sz{. This shows that 24 together with the obvious choice
of B4 defines an object in Qghdord(/l).

Now, we are ready to prove the following

Proposition 11.4.12. Assume that (25"/€) — 25" is formally smooth. Then
%%fh’d’ord is formally smooth over o. In particular, ¢ Z=<"% is formally smooth

%gh,d,ord

over o and 4 is formally smooth over o if .@fmh is representable.

<hd,ord
"% at each closed

Proof. 1t is enough to show the completed local ring of g%’
point is a formally smooth o-algebra. Now consider the following diagrams where all

the arrows are formally smooth.

5 <h,d,ord > <h,d,ord <h
Do — Doy, — GrY™(n,d)
ggh ,d,ord @ﬁh,d,ord

The two horizontal arrows in the square are formally smooth since they are 2-pull
back of the formally smooth 1-morphism (Z5"/€) — 25" and the formal smoothness
pulls back under 2-base changes (Proposition 10.2.8). Since the square is 2-cartesian
and the right vertical arrow is formally smooth, the left vertical arrow is because

the formal smoothness pulls back under 2-base changes. Finally, we have seen that

gh d ord

GrS"(n,d) is a smooth formal o-scheme, and Zg; is prorepresentable by the

<h,d

completed local ring of %@ at the closed point which corresponds to 9. O]

Let %@gh 49" he the fiber over the closed point of Spec R under T'S" : GR, Shidord _,
Spec R. The following corollary shows that distinct connected components of the
gh d, ord

generic fiber %, shdord gy B “reduce” to distinet connected components of GH e

We let Hy(X) denote the set of connected components of X.
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Corollary 11.4.13. We keep the assumption that (Z5"/€) — D5 is formally

smooth. Then the natural maps below
Ho(gﬁfh,d,ord R F) — Ho(ggg?h,d,ord) - Ho(gﬁég,d,ord>

are bijective.

Proof. The first bijection is clear from the formal smoothness of %@fh’d’ord. By the

—— <h,d,ord

theorem on formal functions, the natural map Hy(Y%, ) — HO(%@fh’d’ord)
. .. . — <h,d,ord | . . . —— <h,d,ord
is a bijection, where ¢% is the mg-adic completion. Since ¥Z, and

g%fg dord 1 ave the same underlying topological space, we have the second bijection.

]

11.4.14 Rank-2 example

We assume that (Z5"/¢) — 25" is formally smooth, so %%fh’d’ord is formally

smooth over 0. Thus, to compute the connected components of %@?h’d’ord ®, F'it is

enough to compute the connected component of the fiber %%’fg sd,ord

over the closed
point of Spec R (by the theorem on formal functions). We now do this computation
for the case when that dimp(pr) = 2 and d := dg = 1. We let %@fh’ord denote the
ordinary locus of %%"fh with d := dg, = 1. When J# /% is separable, %%;h’ord ®o
F is a union of connected components of the ¥%;’s where v := (n = 2,AY =
Sp,/P(u)") (by Remark 11.4.10), and its complement is precisely the “unipotent
locus” in %¢ (which is open and closed, by Proposition 11.4.5). But even when
H | K o is not separable, any A-point of g%fh’ord ®o F has Fy-Hodge-Pink type
v = (n = 2,AY := Gp,/P(u)") by Remark 11.4.10. In this sense, the following
discussion is the continuation of §11.3.12.

We now set up some notations. Let xo7 : Gx — F; be the character by which

Gk acts on Fy (1) := T (6(1)) ®, Fy. If 09 = Z,, then xo7 is the restriction of
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the p-adic cyclotomic character to G = Gi. (Note that ¢ = p in this case.) If
09 = Fy[[mo]], then x,7 is obtained from the mo-torsion points of the Lubin-Tate
formal group. For an unramified character v, let 9%, denote the unique Lubin-Tate
type p-module over &g of P-height h such that TS"(90,) = 9. (So the Tate twist
M, (—h) is an étale (p, Sp)-module such that G acts on TS (My(—h)) via Yxir.)
Proposition 11.4.15. Assume that (25" /€) — D5 is formally smooth. If%%ég’ord
1s non-empty then it consists of a single point, unless pp = (1%1 £2) where both

and 1y are unramified (so necessarily x o is unramified). In the latter case, we have

two possibilities:
1. If ¥y # s then %%ég’ord consists of two (reduced) points which correspond to
(11.4.15.1) (zmwlxz;) (—h)®My,, and (93%2)(21}) (—h)®My,, respectively.
2. If ) = 1Py = 1y then any My € %%ég’ord(ﬂ?) is of the following form:
(11.4.15.2) My = (M, ) (—h) & My,
Furthermore, we have a natural isomorphism g%’égord = PL of F-schemes,

and this sends My € %%ég’ord(F) to Ly == TS (M) C Ty (which defines an

F-point of PL), where Ty := Iéh(im]p) is the representation space for pp. Note
that under the isomorphism (11.4.15.2), we have M = <9ﬁ¢x2§) (—h).
Proof. Let A be a finite artin local F-algebra, and put Ty := TpQpA, My := Q?h(TA).
We first consider a point M, € %%ég’ord(A), which is a & 4-lattice of P-height < h

for M 4. Then we have a short exact sequence
0— M — My — MET — 0.

We put Ly := TS"(9M%), so the locally free quotient Th/La = TS"(9M57) is unram-

ified.
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Claim. Let Tx be an A-representation of G of P-height < h (as an og-torsion
G i -representation in the sense of Definition 8.1.7'7) and we put My := Qggh(TA).
For any G -stable A-line Ly C Ta (i.e., Ta/Lya is A-projective of constant rank)
such that La(—h) and Ta/La are unramified, there exists a unique S s-lattice My €
(ModFI /&)§" in M4 such that TS (INS) = L and TS (M5T) = Ta/La.

We first grant this claim and deduce the proposition. The proposition follows
straightforwardly from the claim except when pp = (7’5 3)), in which case we only
have a functorial isomorphism %@fg‘ ©rd(A) = PL(A) for finite artinian F-algebras A.
However, this implies that the smooth proper F-scheme g%f’g’ord has zeta function
coinciding with that of P, which forces %@ég’ord to be a smooth curve of genus 0.
Since F is finite, we have %@ég’ord =~ Pp.

It remains to show the claim. Consider the étale G-lattice MY, € (Mod /&))"
in D5"(La), and the Lubin-Tate type &-lattice M%7 | € (Mod /&)S" of P-height
hin Ds"(T4/L4). Note that the A-action on L4 induces a @p-compatible A-action
on M (by functoriality of a maximal S-lattice of P-height < h), and one can
show that this makes 9% . a finite free &4-module by an argument as sketched
in §8.2.418; ie., SﬁéLtA € (ModFI /G)jh. By duality of P-height h, we also have
MET, € (ModFI/&)5".

Now, we can rephrase the claim that there exists a unique & 4z-lattice M4 of P-
height < h in Mp®pA which is an extension of E)ﬁ%z/LA by 9§ in (ModFI /&) To
show the existence of M4 with the required property, consider a maximal & 4-lattice

E)ﬁj; of P-height < h in My ®p A, so the inclusion L, — T4 induces ,‘Jﬁjif P Sﬁj.

17 A priori, we do not necessarily have Mty € (ModFI/G)ih such that Ty = Zéh(imA); the definition only

guarantees the existence of M4 € (Mod /&)S" which may not be a (p, G 4)-module, such that T4 = Iéh(SﬁA) as
op-torsion G i-representations.

18We briefly recall the argument. Essentially by Corollary 8.1.11, we have méLtA =~ S@w U(La) in (Mod /&)Sh
which respects the natural A-actions on both sides. (See the proof of Proposition 8.1.10 for the definition of U.)
Now, we repeat the argument in §8.2.4 to show that U(L ) is Wx-free with rank equal to rank (L 4).
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Since M is a maximal & 4-lattice in Ds"(L,), it follows that 90t /905 ', has no non-
zero u-torsion so it is a G-lattice of P-height < h in DS"(T4/L4). Now, I/ me
contains zmT /1, because the latter is a minimal G-lattice of P-height < h, and
let M4 be the preimage of MET | under the natural projection My — M /M’
By construction 94 has a natural p-compatible A-action, so we have a short exact
sequence 0 — M — My — M7 p, — 0of (¢, 64)-modules. Since both flanking
terms are finite free over G4, so is the middle term M y; i.e., M4 € (ModFI /G)Eh
To show the uniqueness, observe that if M4 and M, are extensions of ED?T LA by
MY, in (ModFI /)5 then so is M4 + M, where the sum is taken inside My @ A;
clearly 9ty + 90, is an extension of E)ﬁT /LA DY smégA as a (¢, S 4)-module, so G 4-
freeness follows. By Lemma 9.2.4 there exist maximal and minimal & 4-lattices
EUI(AJr)’ im(A*) C My ®p A of P-height < h among the extensions of imT /L. DY met L

Now, we have the following commutative diagram with short exact rows:

(=)
idl idl
0 S)')rtéLtA mfj) mTA/ La 0

imTA/LA;>0

where the vertical map in the middle is the natural inclusion. By 5-lemma, the

vertical map in the middle is an isomorphism, which shows the uniqueness. O]

Corollary 11.4.16. Assume that dimp(pr) = 2 and K | ¢ is separable (so that
we can apply Proposition 11.3.7). Let R be REF’@, or Rp\th if it exists. Let EJF be
a finite extension, and let x1, x5 € (Spec RV)(FE), where v is the Fy-Hodge-Pink type
(n = 2,6¢/P(u)). If z1 and x4 lie in the same connected component of Spec RY
then V,, and V,, are either both ordinary or both non-ordinary.

If both V., and V,, are ordinary, then x1 and x5 are in the same connected com-

ponent if for the unique E-line L; C V,, on which I acts via X7, the Galois group
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Gk acts on Ly and Ly via oj-valued characters with the same reduction modulo mg.

Assuming that J# /% is separable, the natural question that arises is to compute
the non-ordinary connected components of Spec RV, where v := (n = 2,&p/P(u)")
is as in the statement of the corollary. If A = 1, then we can show that the non-
ordinary locus in Spec RY is connected, which will be seen in the next section. On

the other hand, this question for h > 1 seems to require a new idea.

11.4.17 Application to crystalline and semi-stable deformation rings

Assume oy = Z,, and use the same notations as in §11.2.11. Let V' be a p-adic
G v-representation which is semi-stable with Hodge-Tate weights in [0, h]. We say
that V' is ordinary if there exists a G »-stable subspace L C V such that both L(—h)
and V/L are unramified. Equivalently, one can require that D (V'), or equivalently
D (V')(h), is an extension of a weakly admissible filtered ¢-module pure of slope h
by an étale filtered p-module. We say that V is formal if V' admits no non-trivial
unramified quotient. Equivalently, one can require that DX (V') has no non-trivial
étale subobject, or equivalently that Dg (V')(h) admits no weakly admissible quotient
which is pure of slope h. We can naturally extend these definitions to semi-stable
A-representations V4 of G where A is a finite Q,-algebra, as follows: we say that
V4 is ordinary if it is ordinary as a p-adic representation and the maximal unramified
quotient V4 /L, is projective as an A-module; we say that Vy is formal if it is formal
as a p-adic representation. (Note that the maximal unramified Q,-linear quotient

V§t of Vy is automatically an A-linear quotient.)

As before, we fix a mod p representation p of G . Let Rih and Rfrﬁ respectively
denote the semi-stable and crystalline deformation ring or framed deformation ring

of p in the sense of [59]. We will use Propositions 11.4.4 and 11.4.9, and the maps
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res® and res® to prove:

Proposition 11.4.18. Let R € 52/19\”{0, and consider a semi-stable deformation pgr
of p with Hodge-Tate weights in [0, h]; i.e., each artinian quotient pr g (R/m%) is

torsion semi-stable with Hodge-Tate weights in [0, h].

1. There exists a unique open and closed subscheme Spec(R/ ®,F) of Spec(R®,F)
with the following property: for any finite Q,-algebra A, a map x : R — A
factors through R if and only if the corresponding representation pp @p. A is

formal.

2. There exists a unique open and closed subscheme Spec R**™ of Spec(R ®, F')
with the following property: for any finite Q,-algebra A, a map r : R®, F — A
factors through R4°™ if and only if the corresponding representation pr Qg .. A

is ordinary and its maximal unramified quotient is of A-rank (n — d).

Proof. The uniqueness is clear, so we just have to prove existence. Let Spec R C
Spec R be the maximal closed subscheme (which is also open in the Q,-fiber) such
that (pr ®r Rf)|g,_ is formal as a G, -representation, and let Spec R*™¢ C
Spec(R®,F) be the maximal open and closed subscheme such that (pp®rR*™)|g,,
is ordinary and its maximal unramified quotient is of rank (n — d). The existence
of Rf and R%°' is proved in Propositions 11.4.4 and 11.4.9, respectively. It follows

from the lemma below that R/ and R%°'? satisfy the desired properties. O

Lemma 11.4.19. Let A be a finite Q,-algebra and let V4 be a rank-n semi-stable
A-representation of Gy with Hodge-Tate weights in [0,h]. Let V' be the maximal
unramified A-quotient of Valg,, . as a Gy -representation, which exists and is a
projective A-module by Proposition 8.2.7. Then V' is the mazimal unramified A-

quotient of V4 as a G -representation; i.e., the kernel of the natural projection V4 —
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V§is Gy -stable and has no non-trivial unramified quotient as a Q,-representation
space.

As special cases, we have the following:

1. The Gy -representation Valg,,_ is formal if and only if Vi is formal as a

G v -representation.

2. The Gy -representation Valg,,_ is ordinary of P-height < h with mazimal
unramified Gy __-quotient of A-rank d if and only if V4 is ordinary as a G-

representation with maximal unramified G y -quotient of A-rank d.

Proof. Let Dy = (Da, ¢, N,Fil*(D4) ») := D% (Va) be the weakly admissible filtered
(¢, N)-module which correspond to V4. Let res(D4) be the weakly admissible Hodge-
Pink structure corresponding to Valg,,_. (The functor res is defined in §5.2.12.)
We may assume that the residue field £ of 0 is algebraically closed, and that
A is local. Let Vft be the maximal unramified quotient of Vy|g v a8 2 Gy -
representation, and set d := rank4(V5'). Let D be the maximal étale subobject
of res(D4) as an isocrystal with Hodge-Pink structure, so D% is of 5 4-rank d.
Since k = k, by the Dieudonné-Manin decomposition D4 = D% @ D', where any
subquotient of D', has positive slopes. Thus, the relation Ny = ppN implies that

N

pe = 0. So by the weak admissibility, we see that (D) ¢ NFil*(Da) e = 0 for
all w > 0. Thus, DY defines a weakly admissible subobject of D4. Clearly, Vi (D%)
is the maximal unramified quotient of V4 as a G y-representation over Q,, and is
an A-quotient of V{*. Now, we claim that V' = V(DY) as A-quotients of V4. For
this, it suffices to show the inequality ranke, (M%) < rank ), (DS). First, observe
that IS /udME is pure of slope 0, because by definition there exists a finite flat Z,-

subalgebra A° C A and a finite free étale (¢, & 40)-module 9 40 with S)LTIAO[%] =M.
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But since Dy = 94 /udM 4, we have MG /uIMS € D, thus we obtain the desired

inequality. O

Consider a filtration Fil? of # %" (i.e., a p-adic Hodge type v). Proposition
11.4.18 provides a “universal” open and closed subscheme Spec RY C Spec RY,
where Spec RY is the open and closed subscheme of Spec(R ®, F') corresponding to
the Hodge type v. Let vq be a filtration of #®" such that dim grgd =n —d for
w < 0, dim grﬁd = d, and dim_ gry, = 0 for w # 0, h. It follows from Proposition
11.4.18 that the natural open and closed inclusions Spec R4 — Spec(R ®, F')
factors through Spec RY¢.

We will often apply Proposition 11.4.18 to the following cases. We let R denote one
of the following: R(E’ifh, RO, RS and RS". With these choices of R, the ordinary

and formal loci R4 and R/ ®, F in R[%] have an obvious “mapping property.”
0,<h

For example, for any finite F-algebra A, an A-point of R_:] [i] factors through

RD,éh,d,ord

- if and only if the corresponding framed A-deformation is ordinary such

that the maximal étale quotient is of A-rank n — d. With this said, the proposition

O,<h O,<h <
: Rst ) R iy

cris cris’

can be rephrased as follows. Let R denote one of the following: R
and thh. Let x1,x9 be closed points of Spec(R ®, F'), and V,,,V,, be corresponding
G v -representations. If x1 and x4 lie in the same component then either both V,, and
V., are ordinary or both are mon-ordinary. Similarly, if x1 and xo lie in the same

component then either both V,, and V,, are formal or both are non-formal.
11.5 Connected components: h =1 Case
Now we restrict ourselves to the case when h = 1 and J# /% is separable.

We assume that dimg(pp) = 2, and choose £ € Z5'(R) for some R € AR, such

that (@;1/{“) — @fFl is formally smooth. Important examples are & = &y if
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Endg, (pr) = F, and & := €. .

We fix a Hodge-Pink type v := (n = 2,AY := &5, /P(u)) as in §11.3.12. We
already described connected components of ¢%; which correspond to ordinary lifts
in Proposition 11.4.15 and Corollary 11.4.16. In this section, we show that the non-
ordinary locus in 4%y is connected, which completes the description of the connected
components of ¥%;. Actually, we will content ourselves with reducing the proof to
the affine grassmannian computation which is done in [51, §2.5] and [43].

We briefly explain the idea and indicate where we need the assumption h = 1. We
start with defining a closed subscheme %%Z’im C %%’?1 such that g%z’mt ®, F =
GHEY , and %%Z’int is “reasonably nice” as a scheme so that each connected component
of %%’z’int ®, F' “uniquely reduces” to a connected component of %%’z’int ®pr R/mp.
The author does not know any analogue of %%z’im for h > 1. Once we show this,

then the affine grassmannian computation in loc.cit. gives the connectedness result

we want.

11.5.1

For an og-algebra A, let Dy be a free &,/P(u)-module of rank 2. We say a
& 4/P(u)-submodule L4 C D, is Lagrangian if it is a direct factor as an A-module
and the submodule £, is its own annihilator under a & 4/P(u)-bilinear symplectic
pairing on D4 (which is unique up to unit multiple).

If % /¢, is separable and A is a finite Fy-algebra, then p(c*9M4)/P(u)M4 is
necessarily projective & 4/P(u)-module of rank 1; since &4/P(u) is a finite étale
A-algebra, A-flatness of D4/L 4 implies & 4/P(u)-flatness by local flatness criterion.
But in general, a Lagrangian is not necessarily projective over &4/P(u). If -
A = 0 then the &4/P(u)-span of {u'e;,u‘"‘ey} for i € [0,¢] is a Lagrangian in

Di—1264/P(u)e;. If # /g is not separable then one can construct Lagragians in
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D 4 which is not projective over & 4/P(u) even when A = E is a finite extension of
Fy, using an idea similar to Remark 11.3.6.

We now define a full subgroupoid @élj\% C -@élMF over 2ug, and Q/lf)\%o whose ob-
jects M 4 over A are those satisfying that the & 4 /P (u)-submodule p(a*M4) /P (u)M4 C
Ma/P(u)My is a Lagrangian. Note that this submodule is a direct factor as an A-

module, by Proposition 8.2.3.

Proposition 11.5.2. The natural inclusion of Aug,-groupoids .@émj\}F — géle 18
relatively representable by closed immersions; i.e., for any & € .@pﬁh(R) with R €
oy . v,int L < v,int .

AR, the Augp-groupoid Dy ¢ = (.@;Fl/f) X gt Dy 1 representable by a closed
subscheme %%’z’int C E?;%’fl. If # | o is separable, then g%fg’mt@oF C %9??1@0}7
is precisely YR with v := (n = 2, AV := &, /P(u)). (In particular, %@Z’im ®o I

is a union of connected components of 54%’?1 ®, F.)

Even though %%?im ®, F' makes sense without the separability assumption on
H | H g, the author does not know whether all closed points of %@Z’int ®, F' have
Hodge-Pink type v := (n = 2, A := &p, /P (u)), nor whether %%z’im@oF is a union
of connected components of %@?1.

If &) is separable, one can adapt the discussions in [51, (2.2)] to define a
closed subscheme g%’z’im of YX¢ ®, o for any E-Hodge-Pink type v of P-height

< 1 (with E/F a finite extension) such that %@z’im oy B =GRy

Proof. We construct %%"Z’int as follows. Put Gg%@ = 6 ®,, Og%@ and consider

the universal Gg%gl—lattice ﬂfl of P-height < 1 in M, ®p (’)g%@. Let ¢ de-
note the universal p-structure on %51. By Proposition 8.2.3, im(apg)/P(u)ﬂfl C

ﬂ?l /P(u)@fl is a direct factor as a vector bundle over 54%’?1. Now, choose a

6%%§I/P<U)—baSiS for @?1 /P(u)ﬂ?l and let (,) denote the standard symplectic



331

pairing on @?1 / P(u)ﬂ?l with respect to the fixed basis. Choose an open (affine)
covering {U,} of g%fl which trivializes im(wg)/P(u)ﬂfl, and choose an Oy, -
basis {€14, " ,€r,.a} Of (im(wg)/P(u)ﬂfl)]Uw Now, let %%’Z’im be the closed
subscheme of %%fl cut out by a coherent ideal .#, where #|y, is generated by
{(€i.a:€ja) tij=1,- o> Viewing (,) as an Og%@—bﬂinear pairing. Clearly %@Z’int
represents the groupoid .@é”iﬂmf. If /%, is separable then any A-point My €
YA (A) with A finite over F is supported in 42"™ @, F if and only if My
is of Hodge-Pink type v := (n = 2,AY := &p,/P(u)) since any Lagrangian in
(&.4/P(u))®? s free of rank 1 over & 4/P(u). Since both %%)z’im@oF and %%§1®0F
are Jacobson, this implies g%z’int ®o F'= 9% as a subscheme of %@?1 ®. F. O

11.5.3

As in §11.4.11, we construct a common “formally smooth covering” of the com-
pleted local rings of %%’Z’mt and a “model space” whose local structure can be
understood. Using this technique, we will show that %%z’int is o-flat and a rela-
tive complete intersection, and that %%z’mt ®, 0/m, is reduced. If oy = Z, then
the model space will coincide with the Deligne-Pappas étale-local model for Hilbert-
Brumenthal modular surfaces [22], as one expects from Kisin’s work [51]. (For more
general Hodge-Pink types v, the model space that appears is the Pappas-Rapoport
étale-local model for a certain type of Shimura varieties [66] in the case 0y = Z,.)

We fix My € .@éﬁp (F). We consider an AR,-groupoid Zy;™ whose objects over
A are (My4,t4), where My € @é’mﬂjF(A) and 14 @ My @4 A/my — Mp. There
is a natural I-morphism .@;}’t;nt — Qémj\jw, defined by replacing ¢4 with LA[T%O] :
(Ms ®a A/mA)[ﬂiO] = My. If Endg, (pr) & F, then .@;ﬁ;nt is pro-representable

by the completed local ring of ¥2¥™ at the closed point corresponding to My. In
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general, the 2-fiber product _@;’ﬁ;ng = (251/€) x 75" @;&;ﬂt is pro-representable by
the completed local ring of %%z’mt at the closed point corresponding to Mr. By
extending IF, we obtain all completed local rings of %@Z’im at closed points.

We fix a &p/P(u)-isomorphism G : (Sp/P(u))®? = Mp/P(u)Mr. We define
an ANR,-groupoid’ @;&;ﬂt, where an object over A is My € .@;’)};m(A) together with
a &4/P(u)-linear isomorphism (4 : (&4/P(u))®* = M4/P(u)M4 which lifts Fy.
By forgetting this isomorphism, we obtain a l-morphism é;’t;nt — @;&;ﬂt, which
makes the former into a torsor under the formal completion of the Weil restriction
Resoe“/ P(w) GL, at the identity section. In particular, this 1-morphism is formally
smooth.

Now, we define another 2AR,-groupoid M, whose objects are Lagrangians of
(6.4/P(u))®? under the standard symplectic form (in the sense of §11.5.1). This
groupoid is representable by (the mp-adic completion of) a closed subscheme of a
grassmannian. We let the same notation M, denote the representing projective o-
scheme. The argument given in [22, §4], which also works in the case of 0y = F,[[m]],
shows that M, is o-flat and a relative complete intersectionT and that M, ®,0/m, is
reduced. (For the o-flatness, see [27, IV,, 3.4.6.1].) We have a 1-morphism .@;}éﬂt —
M, by sending (94, B4) to the kernel of (& 4/P(u))®? % M4/ P(u)My 2> coker o,
which is seen to be formally smooth by an argument similar to §11.4.11.

Now, we are ready to prove the following

Proposition 11.5.4. Assume that (Z5"/€) — 25" is formally smooth. Then
%%z’int is o-flat and a relative complete intersection, and %%’z’im ®, 0/m, is Te-

duced.

Proof. The proof is similar to that of Proposition 11.4.12. Consider the following

19 Again, the tilde in the notation does not mean the extension by 2-direct limit, which is defined in §10.4.4.



333

diagrams where all the arrows are formally smooth.

5 v,int ~yV,int
@mﬂ?,f '@mJF MV

L

v,int v,int
Mg, & @WW
Since M, has the desired properties, we conclude that %%z’im has the desired prop-

erties. =

Let g%z”ém be the fiber over the closed point of Spec R under T éh : %%’Z’mt —
Spec R. The following corollary shows that distinct connected components of the
generic fiber g%z’im ®o F “reduce” to distinct connected components of %%;’g}m.

We let Hy(X) denote the set of connected components of X.

Corollary 11.5.5. We keep the assumption that (@fwh/ﬁ) — @pﬁh is formally smooth.

Then the natural maps below
Ho( @A™ @0 F) — Ho(GH™) — Hy(GH5")

are bijective.

Proof. The second bijection follows from the theorem on formal functions. The first
bijection follows from an argument similar to the proof of [51, Corollary 2.4.10] using

o-flatness and the reducedness of %%z’im ®, 0/m,. O
We now state the following theorem.

Theorem 11.5.6. Assume that £ | is separable and & € D5M(R) is such that
(251 /€) — D5 is formally smooth. Let RY be the universal quotient of R[W—lo] whose
points are of Hodge-Pink type v := (n = 2, AV = &g, /P(u)). Then the non-ordinary

locus of Spec RY 1is connected.
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Proof. By Corollary 11.5.5, the problem is reduced to showing the connectedness

v,int

of the non-ordinary locus in g%w . This follows from the affine grassmannian
computation in characteristic p by Kisin [51, (2.5)] in the case of k = F, (where

q = pif 0og = Z,), and by Imai [43] in the general case®. O

11.6 Application to flat deformation rings

Throughout this section, we assume that oy = Z, and let p be a 2-dimensional

“finite flat” F-representation of G »; i.e., we assume that p comes from the generic

< <
RD,\l R\l

01 <1 .
s s Poiey RS  and RS be as in

fiber of a finite flat group scheme over 0. Let
§11.2.11. By Kisin’s theorem?®! (also stated in Theorem 2.4.11(2)), any crystalline Q,-

representation with Hodge-Tate weights in [0, 1] comes from the p-adic Tate module

0<i1

of a Barsotti-Tate group over o . Therefore, the crystalline deformation rings R_;;

and RSL coincide with the flat deformation rings RS and Rp, respectively.
The goal of this section is to prove the following theorem, which was originally
proved by Kisin [51, Corollary 2.5.16] under the assumption that p > 2, and [53, §2]

for any p (especially, p = 2). Note that this theorem plays a crucial role in Kisin’s

modularity lifting theorem for potentially Barsotti-Tate representations.

Theorem 11.6.1 (Kisin). Assume that p is finite flat.** Let v be the p-adic Hodge
type such that dim gr’ =1 for w =0 or 1, and dim_ gr¥ =0 for w # 0, 1.

1. There is at most one non-ordinary connected component in Spec R

cris *

Ov

2. There exists at most one ordinary connected component in Spec R} if and only

if p 2 (’8 32) where both x1 and xo are distinct unramified characters.

20The author believes, but has not carefully checked, that Imai’s computation works in the case p = 2.

21Breuil [14] gave the first proof of this theorem for the case p > 2, and Kisin reproved the theorem without
assuming p > 2.

221t follows from [52, Corollary 2.2.6] that any torsion crystalline G, -representation comes from the generic fiber
of a finite flat group scheme over o0 (even when p = 2), so this assumption can be removed.
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3 If p= (’8 )?2) where x1 # X2 are both unramified, then there exist exactly two

ordinary connected components in Spec RE’V. For a finite extension E/F, let x4

and xo be E-points of Spec R such that the corresponding G  -representations

cris

V., and V., are ordinary. Then x1 and x4 are in the same connected component
if and only if for the unique E-line L; C V,, on which Ix acts via X%y, the
Galois group G acts on Ly and Lo via of-valued characters with the same

reduction modulo mg.

The same holds for Spec Ry, if Endg, (p) = F.

cris

11.6.2 Preliminary reduction: the case p > 2

Let v be as in the statement of Theorem 11.6.1 and set v := (n = 2,AY =
Sp,/P(u)). Recall from §11.3.13 that a semi-stable Q,-representation is of p-adic

Hodge type v if and only if its restriction to G __ is of Hodge-Pink type v. In

Cris cris

particular, the map res™® : Spec RD’@[—] — Spec RS <1[p] restricts to Spec R:Y

>~

Spec RZV. Now assume that p comes from a finite flat group scheme and Endg . (p)
F. Then we will show later in Lemma 11.6.12 that Endg,_(ps) = F, so we get

Spec RY.. — Spec RY..

cris

On the other hand, we have obtained the complete description of the connected
components of Spec RV, which is very similar to the statement of Theorem 11.6.1.
See §11.4-811.5, especially Proposition 11.4.9 and Theorem 11.5.6. So in order
to obtain Theorem 11.6.1 from this, we need more information about the map

Spec RV — Spec RZY, and the map Spec RY,

cris

— Spec RY, if Endg . (p) = F.

cris

Proposition 11.6.3. Assume that p > 2 and p is finite flat. The natural map res™s :

Spec RS [l] — Spec RD’@[ | defined by the restriction to G is an isomorphism.

Cris

<1
aisly) =

If furthermore Endg . (plg,.. ) = F, then the natural map res™™ : Spec R
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Spec Rfol[%] is an isomorphism.

11.6.4 Preliminary reduction: the case p = 2

It is conjectured that we can remove the hypothesis p > 2 from the statement of

Proposition 11.6.3.22 On the other hand, the hard part in proving Theorem 11.6.1 is

A
Cris

to show the connectedness of the non-ordinary locus in Spec RY... (i.e., the “formal”

locus in the sense of §11.4.17); the ordinary connected components can be analyzed
using Kummer theory and some Galois cohomology considerations.?* (See [53, §2.4]
for an argument.)

This leads us to consider the following setting. By Proposition 11.4.4, there exists

the universal closed subscheme Spec RISH of Spec RZ:S! whose points correspond to

cris cris

deformations which restrict to a formal G »__-representation (in the “torsion” sense).

Recall that on the Q,-fiber, the subscheme Spec(RD’gl’f[%)]) C Spec(RZS [1—1)]) is open

cris cris

and closed, with finite artinian points corresponding to “formal” lifts of p in the sense

of §11.4.17. (See Proposition 11.4.5 and Lemma 11.4.19 for more details.)

By definition, the natural map res™ : Spec Ro:S' — Spec RIS! restricts to
0,<1L,f

cris

0,<1

— Spec RSL/ | where RZSY is a universal quotient of R

res®™ : Spec R
classifying “formal” framed deformations. If Endg,, (p) = F, then we can apply the

same discussion to “unframed” deformation rings. Now, we are ready to state the

following modification of Proposition 11.6.3 which we prove with no assumption on
p.

Proposition 11.6.5. Assume that p is finite flat. The natural map

- 1 1
@Crlb . SpeC levglvfl:_] — SpeC R(E;glyf[_]
p p

cris

231f the Breuil-Kisin classification of finite flat group schemes work in the case p = 2, which is conjectured in [11],
then the proposition 11.6.3 for p = 2 follows.
241n particular, the argument does not use the Breuil-Kisin classification of finite flat group schemes over o .
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defined by the restriction to Gy s an isomorphism. Furthermore, if we have
Endg,, (plg, ) =T then the natural map res™ : Spec Rgl’f[%] — Spec RSM[2] is

1
cris P

an 1somorphism.

Combining the proposition above with Theorem 11.5.6, one obtains the connect-

D7V7f

s > and so completes the proof of Theorem 11.6.1.

edness of Spec R

11.6.6

Kisin’s original proof of Theorem 11.6.1, or rather Propositions 11.6.3 and 11.6.5,
can be rephrased as follows (using our deformation rings RS, RS! for G that
were not considered in [51, 53]). If p > 2, then we can use the Breuil-Kisin classi-
fication of finite flat group schemes® over 0 to show that the restriction to G
induces an equivalence of categories Reptz(;r’cris’[o’” (Gr)— ReptZ(;r’[O’l] (Gr..) (See 15,
Theorem 3.4.3] for a proof.) In particular, the natural maps res™® : RZ<! — RY
and res™ : RS — Ry are isomorphisms?®®. This proves Proposition 11.6.3.

For the case p = 2, Kisin [53, §1] extended the classification theorem to connected
finite flat group schemes over 0. Now repeating the same argument, one obtains
Proposition 11.6.5 (in a stronger form, without inverting p). We note that Kisin’s
work in [53, §1] uses Zink’s theory of windows and displays. We re-emphasize that the
modularity lifting theorem for 2-adic Barsotti-Tate representations has an important
consequence, namely the even conductor case of Serre’s modularity conjecture.

We now present a different proof of Propositions 11.6.3 and 11.6.5 (hence, of The-
orem 11.6.1), which avoids the Breuil-Kisin classification of finite flat group schemes
(so in turn, it eliminates the use of Zink’s theory of windows and displays).

Let us discuss the proof of Proposition 11.6.3. By avoiding the classification of

25See [52, Theorem 2.3.5] for the precise statement.
26By the full faithfulness, Endg ,, (p) = F implies Endg . (plg, ) =T, in which case RS exists.
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finite flat group schemes, we lose our grip on the torsion theory to some extent. So
instead of trying to study the artinian points of the deformation ring (concentrated
on the closed point), we use the following theorem of Gabber to study the Q,-fiber
of the deformation ring more directly. We state Gabber’s theorem in the form that
we will use in our situation, but the original statement in [54, Appendix] is more

general.

Theorem 11.6.7 (Gabber). Let R and R' be complete local noetherian o-algebras
with residue fields finite over o/m,. Assume that both R and R’ are p-torsion free,
R is reduced, and R’ is normal. Let f : R — R be a o0-algebra map such that
Spec(f[]lo]) : Spec R[%} — Spec R’[%] induces a bijection between the set of closed
points and isomorphisms on the residue fields at each closed point. Then f is an

1somorphism.

This theorem is certainly very delicate — it is not even obvious that the assumption
implies that f is of finite type. The proof uses the flattening technique of Raynaud-
Gruson (and very ingenious commutative algebra). See Gabber’s appendix in [54]

for more details.

11.6.8

We outline how to use Gabber’s theorem to prove Proposition 11.6.3. Fix an
F-representation p of G (of arbitrary dimension) and let p,, denote the restriction

of pto G . Let R and R be one of the following:

1. Assuming p > 2, we set R := RESYand R, = RIS

cris

2. Assuming p > 2 and Endg , (p) = F, we set R := RS., and Ry, := RS

cris

3. Under no assumption on p, we set R := Rggfl’f and R, = RZSH,

4. Assuming Endg . (p) = F and under no assumption on p, we set R := Rfrils’f
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and R, := R$M.
In all the cases above, the restriction to G »__ induces a natural map res: R, — R.
Although both the source and the target of res are each finite over some formal power
series ring (being complete local noetherian o-algebras with the same residue field as

0), they may not be normal nor reduced. But we know that both R[%] and Roo[%]

are formally smooth over Q,. We fix this situation by applying normalization, as

follows.

We let Ro be the normalization of the image of Ry in Roo[%]. (More naturally

speaking, éoo is the normalization of (Ruo)red/(Roo)rea[p™].) Note that éoo is finite
over R, since every complete local noetherian ring is excellent [27, IV, (7.8.3)(iii)],

SO }Nﬁoo satisfies the assumptions on R’ in the statement of Gabber’s theorem. By the

property of normalization, we have a natural map R, — Roo[%] which induces an
isomorphism Eoo[%] = Roo[%}. We identify R, with its image in ROO[%].

We also define R to be the normalization of the image of R in R[%]. We view R as
an o-subalgebra of R[] via the natural isomorphism E[%] — R[}]. The normalization
R is finite over R, reduced and p-torsion free. (Thus, R satisfies the assumptions on

R in the statement of Gabber’s theorem.) Furthermore the map @C“S[%] : Roo[%] —

R[zla] restricts to 168 : Ro — R.

Now, we prove the following proposition.

Proposition 11.6.9. Let R and R, be as above §11.6.8. Then the F-morphism

@[%] : Spec R[%] — Spec Roo[]lo] induces a bijection between the sets of closed points

and trivial residue field extension at each closed point.

By Gabber’s theorem (Theorem 11.6.7), the proposition implies that the map

res : Ry, — R induced on the normalized deformation rings is an isomorphism, so in

particular, res[>] : Roo[] — R[}] is an isomorphism.
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Remark 11.6.10. A similar situation to Proposition 11.6.9 came up in Kisin’s work
[54, Proposition 3.13], where he analyzed a certain crystalline deformation ring of
“Intermediate” Hodge-Tate weights (with 2 = Q). Kisin constructed a concrete
ring which maps into the normalized crystalline deformation ring, and after invert-
ing p induces a bijection on the set of closed points and induces trivial residue field
extensions at such points. Kisin uses Gabber’s theorem and obtained the connect-
edness result of the crystalline deformation ring which is strong enough to prove the

modularity lifting theorem in his setup.

11.6.11

We outline the proof of Proposition 11.6.9. Let R and R, be as in §11.6.8. By
the full faithfulness of the restriction to G »_ on crystalline Q,-representations (as
stated in Theorem 2.4.10), we see that @[}D] : Spec R[%] — Spec Roo[%] induces an
injective map on the sets of closed points. In order to show the surjectivity and
triviality of residue field extensions at closed points, it suffices to show that for
any finite extension E/F, the map (Spec R) (F) — (Spec Ry ) (F) induced by res is
surjective. Let x € (Spec Rw) (E) and let V,, be the corresponding F-representation
of G . Since the o-algebra map = : R,, — E factors through og, we also obtain

a Gy -stable og-lattice T, C V,, such that T, ®,, op/mpg = po QF 0g/mp as a

G . -representation. We now proceed by showing the following.

Step(1) The G »_ -representation V, (uniquely) extends to a crystalline representa-

tion of G » with Hodge-Tate weights in [0, 1].
Step(2) The G _-stable og-lattice T, C V,, is G »-stable.

Step(3) We have a G y-equivariant isomorphism 7, ®,, 0p/mp = p QF 0p/mg

extending the initial such G 4 _-isomorphism.
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The above claims imply that T, defines an og-point of Spec R which maps to x €
(Spec Rw) (E) by res, hence we obtain the desired surjectivity.
Step (1) is an immediate consequence of [52, Lemma 2.2.2], which is also stated

as Corollary 2.4.7 in this paper. The following lemma takes care of Step (3).

Lemma 11.6.12. The functor from the category of mod p finite flat representations

of G to the category of representations of G .. over I, defined by “restricting to

G ... is fully faithful.

Proof. The main idea is to use Fontaine’s ramification estimates for mod p finite flat
G w-representations [30], which turn out to be “very sharp.”?” Fontaine’s ramification

estimate asserts that the higher ramification group 1% is in the kernel of any mod

p finite flat G ,-representation, where e* = z%' (We follow Serre’s upper indexing
[72, Ch.IV] while the convention Fontaine used in [30] differs from Serre’s by a shift

by 1.) The idea is to show that the natural inclusion induces an isomorphism

(11.6.12.1) G I NGor) = G /T

The lemma follows from this isomorphism, since any mod p finite flat representation
p: G — GL(n,F,) factors through G 4 /I, so the isomorphism (11.6.12.1) shows
the equality p(G.»..) = p(G.») of the images (i.e., p and p|g,_ are essentially the
same representation.)

To rephrase the isomorphism (11.6.12.1), we want to show that the open sub-
group 1%-G .. C Gy fills up the full Galois group G »; i.e., there is no non-trivial
subextension of % ,/# fixed by I%,. This follows from the claim below, which is a
nice exercise with higher ramification groups.

Claim. Let ' = 2 (7W) for 7V € H o, such that (7V)P = 7. Then I, does

27The author learned this idea from [2, Proposition 8.5.1]
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not fix A 4.

Put ¢ := £ ((,) where (, € ¥ is a primitive p-th root of unity, and consider
K= " (M), which is a Galois closure of # 1 /#. We put G := Gal(H#" /. #) =
Gal(A /X)) x Gal(H" ) #1). Here, Gal(#'/#") = Z/pZ is the wild inertia
subgroup of G, and Gal(#"}/.#1) C (Z/pZ)* acts on Gal(o¢}/#") by Kummer
theory.

Since the upper indexing is well-behaved under passing to quotients [72, IV.§3,
Proposotion 14], it is enough to show that G does not fix #;. Indeed, we show
that G = Gal(.#"|/#") by computing the higher ramification subgroups G; in the
lower numbering and using the Herbrand function, exploiting the explicitness of the
situation.

Clearly, G; = Gal(2¢| /"), and G; is a subgroup of Gal(#"/#") for all i >
0. Let ¢ := ‘I A %1‘ denote the ramification index of ¢/ |, so the absolute
ramification index of 7] is epc. (Also note that [Gy : G1] = ¢.) Since lower indexing
is well-behaved under passing to subgroups, we may replace J# by .#” and assume
G = Gal(¢" /#") in order to compute G;. For any v € G, we have v(7(V) = ¢Zq(®

for the cocycle € given by Kummer theory, so
Uy (v(rD) =7y -1 = Uy (C;(”) —1) + vy () =1 =e’c+c— 1.

This shows that G; = Gal(#"}/#") for 0 < i < e*c+c— 1, and G; = {id} for
i > e*ctc—1 (without assuming # = #”). Since [Gy : G;] = cfor 0 < i < e*c+c—1,

we obtain

G = Gal("/H"), for 0 <r <e4 <L
G" = {id}, for r > e* 4+ <1

In particular, G¢ = Gal(#" /.#") does not fix 7 . O
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For Step (2), we use Breuil’s theory of strongly divisible lattices (of weight < 1).
We only use the fact that one can naturally associate a G y-stable Z,-lattice of V,
to a strongly divisible “lattice” by purely semilinear algebra means (i.e., without
relating the strongly divisible modules of weight < 1 with Barsotti-Tate groups over
0). Since it takes a significant digression to introduce the relevant definitions, we

carry out these steps in a separate chapter §XII.

11.7 Representability

In this section, we prove Theorem 11.1.2. In fact, the proof is via Ramakrishna’s
theory [68, Theorem 1.1], which is built upon Schlessinger’s criterion [71, Theorem
2.11]. This is familiar from the flat deformation problem for the Galois group of a
finite extension of Q,. But the crucial difference is that the tangent spaces of |Z,,|
and ‘.@EH are not finite, even when the residue field k of K is finite, so we additionally
have to show that the finiteness of the tangent spaces of |@§Fh‘ and |@EF’<}‘| when £

is finite.

11.7.1 Resumé of Mazur’s and Ramakrishna’s theory

Given a functor F' : 2R, — (Sets), Schlessinger found three conditions (H1)-(H3)
which are equivalent for I’ to have a hull. He also showed that F' is pro-representable
if and only if F' satisfies an additional condition (H4). For the statement and a proof,
see [71, Thm 2.11].

Mazur [63, §1.2] showed that for a profinite group I' and a continuous F-linear
I'-representation pr, the deformation functor |Z,,| always satisfies (H1)-(H2), and
satisfies (H4) if pr is absolutely irreducible. In fact, the argument can be modified to
show (H4) if Endg, (pr) = F. Furthermore, Mazur showed that ‘.@EH always satisfies

(H1), (H2) and (H4) with no assumption on pg.
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On the other hand, in order to show that the deformation functor and the framed
deformation functor satisfy (H3) (i.e., the tangent space is a finite-dimensional F-
vector space) we need a p-finiteness assumption on I' [63, §1.1], which is satisfied
by an absolute Galois group for a finite extension of Q, (and certain quotients of
the absolute Galois group of any finite extension of Q). Unfortunately, Gx does
not satisfy the p-finiteness even when the residue field k£ of K is finite. In fact,
(H3) fails even when pp is 1-dimensional. To see this, consider the cohomological
interpretation of the tangent space; i.e., |2,.| (Fle]) & H' (K, Ad(pr)), where Ad(pr)
is Endg(7F) with the natural Gg-action. If pp is 1-dimensional, then Ad(pg) is the
trivial 1-dimensional G g-representation, so H' (K, Ad(pr)) = Homeon (G, F), which
is always infinite since we have infinitely many Artin-Schreier cyclic p-extensions
(via the theory of norm fields and local class field theory in characteristic p > 0).
This also shows that |Z,,| and {QEF} never satisfies (H3) for any finite-dimensional
pr, since we have a surjective map |Z,,| (Fe]) = |Zaet(pr)| (Fle]) induced by taking
determinant®®, and in particular these ‘unrestricted’ deformation functors are never
represented by a complete local noetherian ring.

Now, let us look at the subfunctors ‘foph‘ C |%,,| and ‘nggh‘ C |9PDF‘ which
consist of deformations with extra properties of interest. We have seen, in Proposition
9.2.2, that these subfunctors are closed under subobjects, quotients, and direct sums.
Under this setup, Ramakrishna [68, proof of Theorem 1.1] proved that if the ambient
functor satisfies (Hi) for some ¢ =1, 2, 3 or 4, then so does the subfunctor. (For this
result, see also §25 and §23 of [64].)

Applying this to our setup, we obtain the following results.

28For any deformation det(pp) + €-c € ‘@det(p[p)| (Fle]) (where ¢ : Gk — F' is a cocycle), consider py + €-¢ with

c 0
é:= ( ) has determinant det(pp) + €-c.
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1. The functor ‘gpih’ always satisfies (H1)-(H2), and satisfies (H4) if Endg, (pr) =

F.
2. The functor |_@£’<h| always satisfies (H1), (H2), and (H4) with no assumptions
on pPr.
Recall that the natural 1-morphism Z5" — }@éh‘ is a 1-isomorphism if Endg, (pr) =

F. Therefore, the representability assertion of Theorem 11.1.2 reduces to the follow-

ing theorem.

Theorem 11.7.2. Assume that the residue field k of o is finite. Then the tangent

spaces ‘.@;h (Fle]) and ‘9{%@ (Fle]) are finite-dimensional F-vector spaces.

Proof. Since .@E;gh is a ﬁ(n)—torsor over .@;h, it is enough to show that the set
}@pﬁh (Fle]) is finite. We proceed in the following steps.

11.7.2.1 Setup

Let [(prig, T, )] € | 25| (Fle]). Set My := DF"(Ty) and Mgy := D" (Twpq).
See §11.1.4 for the definition of Q?h. Viewing My as a ogp-module, there is a
Gp-lattice My C Mpyg of P-height < h for Mgyy. In general, there may be no
Grq-lattice of P-height < h for My, as we saw in Remark 11.1.7

11.7.2.2 Strategy and Outline

Using the 1-isomorphism Q?h, we rephrase our goal. We need to show that
there exist only finitely many equivalence classes of étale g-modules My which are
free over og g and equipped with an isomorphism ¢ : My = Myg @l F, where
two such lifts (Myq, ) and (Mg, ') are equivalent if there exists an isomorphism
My = Mg, which respects ¢ and ¢'.

One possible approach is to fix a og p-basis for Mg and a lift to a og g|-basis for

each deformation Mg once and for all, and identify Mg with the “p-matrix” with
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respect to the fixed basis and interpret the equivalence relations in terms of the “p-
matrix.” Then the problem turns into showing the finiteness of equivalence classes of
matrices with some constraints — namely, having some “integral structure” or more
precisely, having a Gg-lattice of P-height < h. So the fixed basis has to “reflect” the
integral structure.

This approach faces the following obstacles. First, the deformations Mg we
consider do not necessarily allow any Gp-lattice of P-height < h. In other words,
we cannot expect, in general, to find a og piq-basis {e;} for Mgy in such a way that
{e;, €e;} generates a Gp-lattice of P-height < h. In §11.7.2.3-§11.7.2.5 we show that
a slightly weaker statement is true. Roughly speaking, we show that there is an
0¢ Fl-basis {e;} for Mpq so that there exists an Gp-lattice of P-height < h with a
Gp-basis only involving “uniformly” u-adically bounded denominators as coefficients
relative to the og p-basis {e;, e-e;} of M.

Second, we may have more than one Gg-lattice of P-height < h for Mg or for
Mgy, especially when he is large. In particular, a fixed Gp-lattice for Mg may not
“lift” to any Gp-lattice for some deformation Mgy of P-height < h. We get around
this issue by varying the basis for My among finitely many choices. This step is
carried out in §11.7.2.6. In fact, we only need finitely many choices of bases because
there are only finitely many Gg-lattices of P-height < h for a fixed My, thanks to
Lemma 9.2.4.

Once we get around these technical problems, we show the finiteness by a o-
conjugacy computation of matrices. This is the key technical step and crucially uses
the assumption that the [Fle]-deformations we consider (or rather, the corresponding
étale p-module Mp) admits a Gg-lattice of P-height < h (in Mpyg). See Claim

11.7.2.1 for more details.
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11.7.2.3

Let Mgy correspond to some deformation of P-height < h. Even though there
may not exist any Ggyg-lattice of P-height < h for My, we can find a Gp-lattice
Mg with P-height < h such that Mgy is stable under multiplication by e.* In
fact, the maximal G-lattice Sﬁﬁe] of P-height < h does the job. (More generally, a

maximal S-lattice 9T of P-height < A in a torsion étale p-module M is easily seen

to be functorial in M)

11.7.2.4

For a Gg-lattice My C Mpyg of P-height < h which is stable under the e-
multiplication, we can find a Gg-basis which can be “nicely” written in terms of
some 0¢ plg-basis of My, as follows. Let MMy be the image of My — My induced
by the natural projection My — My, which is a Gp-lattice of P-height < A in Mp.
Now, consider the following diagram:

0 T Mg My 0
[

0 — € Mpjqg — Mpq My 0,

where 9 := Ker[Mgg — My| is a Sp-lattice of P-height < h in My;g. We choose
a Gp-basis {e1,- - ,e,} of Mp. Viewing them as a ogp-basis of My, we lift {e;}
to an og piq-basis of My (again denoted {e;}). By assumption from the previous
step, we have @, _; G- (ee;) C N, where both are Sp-lattices of P-height < h for
€-Mrpjq. It follows that (%e)ei form a Gg-basis of I, for some non-negative integers
r;. Therefore, {e;, (#e)ei} is a Gp-basis of My. We also use the isomorphism

My = ¢ My via multiplication by e.

29This means that M| is a p-module over S| ], but does not force M| to be a projective Spf-module. Hence,

such M) may not be a Spj-module of P-height < h. The example My = Sp-e D GF(%ee) discussed in Remark
11.1.7 is such an example.
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11.7.2.5

In this step, we find an upper bound for the non-negative integers r; only depend-
ing on My and the choice of Sp-basis of Myp. Since N is a ¢-stable submodule, it

contains

A 1 . 1 <
() ay (U (u_rwl)) = (u(m 6) oo (07ei) = uqme-;aﬁej,

where a;; € Gy satisty o, (07e;) = Z?:l a;jej. Note that we obtain the first identity

because par,, (07¢;) lifts pam, (07¢;) and the e-multiple ambiguity in the lift disappears
when we multiply against €. Since any element of 91 is a Gp-linear combination of

(1-€)e;, we obtain inequalities ord,(ay;) — gr; > —r; for all i,j from the above

[

equation (f). Let r := max;{r;} and we obtain ¢r; < r 4 min;{ord,(a;;)} for all
i. (Note that the right side of the inequality is always finite.) Now, by taking the

maximum among all ¢, we obtain

1
r< —— max { min{ord,(e;;)}} < oo
q— ¢ J
This shows that the non-negative integers r; has an upper bound which only depends

on the matrices entries for gy, with respect to the Gp basis of M.

11.7.2.6 Recapitulation

For each Gp-lattice EUII(FG) of P-height < h for My, we fix a Gp-basis {ega)} and
let a(® = (ozg;l)) € Mat, (Gp) be the “p-matrix” with respect to {ega)}. In other

words, Pona (o%e!™y =3, ag.l)eg.a). We also view {€\”’} as a og g-basis for Mg and

(ol

) is the matrix for ¢y, with respect to {e!”}. Note that (ocz(;)) is invertible
over ogr since My = Sﬁé‘a)[%] is an étale (p, 0g p-module. We pick an integer r@ >

q_% max; { min;{ord,(c;)}} < oo, for each index a. As remarked earlier in §11.7.2.2,
there exist only finitely many Sp-lattices of P-height < h for Mg, thanks to Lemma

9.2.4, so the index a runs through a finite set.
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For any Mgjq which corresponds to a deformation of P-height < h, we may find
a Gp-lattice My C Mpjq of P-height < h which is stable under e-multiplication
§11.7.2.3. The image of My inside M is equal to some 9)?1(;). Lift the cho-
sen basis {ega)} to an og piq-basis for Mpiy. Then My admits a Sg-basis of form
{ega), (%e)el(-a)} for some integers r; < (@ (§11.7.2.4-§11.7.2.5).

Let us consider the matrix representation of s, with respect to the basis {ega)}.
We have @z, (el™) = Zi(%(? + eﬂ,f;))ega) for some 3@ = (ﬁz(]a)) € Mat,(ogr)
because @i, lifts ©ar. In fact, since My is -stable, it follows that § € ﬁ
Mat,,(Gp). We say two such matrices  and [’ are equivalent if there exists a matrix

X € Mat,(0g ) such that 3’ = 3+ (a!?.0(X) — X-a¥). This equation is obtained

from the following:
('Y +e3) = (Id, +eX) - ('Y + €3)-0(Id,, +€X),

which defines the equivalence of two étale p-modules whose @-structures are given
by (@@ +eB) and (¥ + ¢3'), respectively.

Now, the theorem is reduced to prove the following claim: for each a, there exist
only finitely many equivalence classes of matrices 3 € ﬁ-Matn(GF). Indeed, by
varying both a and the equivalence classes of 3, we cover all the possible deformations
Mpq of “P-height < h” up to isomorphism, hence the theorem is proved.

From now on, we fix a and suppress the superscript () everywhere. For example,

r:=7r® and a := a®. Proving the following claim is the last step of the proof.

Claim 11.7.2.1. For any X € u®Mat,(&g) with ¢ > 2he, the matrices 3 and f+ X

are equivalent.>

(Granting this claim, we have a surjective map from (2 -Mat,(Sy)) / (u-Mat,,(SF))

30The inequality ¢ > 2he is used to ensure q(c — he) > c. Therefore, if ¢ # 2 then ¢ = 2he also works.
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onto the set of equivalence classes of 3’s, and the former is a finite set®, as desired.)

We prove the claim by “successive approximation.” Let v = u"-a~!. Since
My = DJTI(;) is of P-height < h and P(u) has image in &y = (k ®p, F)[[u]] with
u-order e, we know that v € Mat,(Sr). We set YV := —-.(X~), which is in

u¢~"¢ Mat,, (&) by the assumption on X. Then 3 + X is equivalent to
B+X)+ (ao(YD)—YWDa) =3+ a-c(YV) =+ XD

with XM € " .Mat,, (Sg), where ¢V := g(c—he) > ¢. Now for any positive integer

1, we recursively define the following

Y® .= —h~(X(Z_1)7), X0 = q.g(Y®), D= q(Y — he).
u €

One can check that ¢@ > ¢(i —1)(> 2he), X© € u”-Mat,(Sg), and YO €

uc " —he Mat,,(6&F). Also, f 4+ X is equivalent to
(B+X)+ (a.a(y(l) L Y(i)) — (y(l) L d Y(i))a) =3+ X,

From the inequality ¢¥ > ¢~V it follows that the infinite sum YV := Y00 Y

converges and X — 0 as i — oco. Therefore we see that 3+ X is equivalent to

B+X)+ (aoY)—ya) = (B+X)+ (a-a(ZY@) - (ZY“U-&)

= lim(3+XY) =3,

1—00

so we are done. ]

To complete the proof of Theorem 11.1.2, it remains to show the following relative
representability result, which is, again, “essentially” a consequence of Ramakrishna’s

theory [68, Theorem 1.1].

31We crucially used the fact that we can bound the denominator.
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Proposition 11.7.3. The natural inclusions 25" — P, and .@E’F’@ — .@EF of AR, -
groupoids are relatively representable by surjective maps in Q/lf)\%o and its formation
commutes with 2-projective limits in the sense of Definition 10.4.8. In other words,
for any given deformation or framed deformation over A € Q/li)\%o, there exists a

universal quotient AS" of A over which the deformation or framed deformation is of

P-height < h.

Recall that the formation of the natural inclusions 75" — 2, and 25" — 2]
commutes with 2-projective limit (as observed below Definition 10.4.2). From this

we obtain a natural isomorphism A" 2 lim (A/m%)<" for any A € AR,
—n

Proof. 1t is enough to show that @pﬁh — 9, is relatively representable by surjective
maps, since the other inclusion QPDF’Q” — .@,ODF is a “2-base change” of .@;h — Dy
under .@g — 9,,, and relative representability pulls back.

Consider { € Z,.(A) for A € AR,. The natural projection pr; : (Z5")e =
(Dpe /) X3, D5 — (D,,/€) is fully faithful, so we regard the left side as a full
subcategory of the right side via pr;. And since (Z,,/§) is co-fibered in equivalence
relations, so is its full subcategory (@éh) ¢. Therefore, it is enough to show the natural
monomorphism of functors |pr,| : [(Z5")e| — (2 /€)] is relatively representable
by surjective maps of rings.

The objects of [(Z,,/&)| are the isomorphism classes [{ — 7] of morphisms in
D, 50 we have a natural notion of direct sums, sub-objects and quotients using the
corresponding notion for 1. By Proposition 9.2.2, the subfunctor }(@pﬁh)g’ is closed
under these operations. We can therefore repeat the proof of [68, Theorem 1.1] for
our setup to show that |(.@,§Fh)§‘ is representable.

Now let A’ € AR, be the object which represents (Z51)e, and let A — A’ be the
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morphism in AR, which represents the I-morphism (D51 = (Do /). Tt is left
to show that A — A’ is surjective. Since both rings are complete local noetherian
with the same residue field, it is enough to show that the morphism induces a surjec-
tive map on “reduced” Zariski cotangent spaces ma/(m, +m?%) — mu /(m, + m%,),
which in turn is equivalent to the injectivity of [(Zs")¢| (Fle]) — [(Z,,/€)| (Fle])
by the duality of finite-dimensional F-vector spaces. But the morphism of functors

(Z5M)e| = (D /€)] is a monomorphism, by assumption. O



CHAPTER XII

Integral p-adic Hodge theory

Assume 0y = Z,. We introduce new semilinear algebra objects which give rise
to lattice semi-stable G ,-representations of low Hodge-Tate weights, initiated by
Breuil. Using these, we complete Steps (2) in §11.6.11, hence the proof of Theorem
11.6.1. Even though we will apply the results only for crystalline representations
with Hodge-Tate weights in [0, 1], we present the theory in more generality than we
need.

Since we only need classical, if not basic, results in this subject, we direct in-
terested readers to [15] for an overview of the theory. See [58] for more recent

developments in this subject.

12.1 Definitions

12.1.1 Basic assumption

Let V be a p-adic G y-representation with Hodge-Tate weights in [0, h]. Through-
out this chapter we assume that 0 < h < p—1. If h = p — 1, then we additionally
require V' to be “formal” in the sense of §11.4.17. For example, if p =2 (so h = 1)
we only consider “formal” representations.

Let D := D (V(—h)) be the weakly admissible filtered (y, N)-module! covari-

1Following the usual convention, ¢ is a o-semilinear endomorphism throughout this chapter.
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antly associated to V' with filtration jumps in [0, h]. Then V' is “formal” in the sense
of §11.4.17 if and only if D is “unipotent” in the sense of [15, Definition 2.1.1]; i.e.,
D does not admit any weakly admissible quotient pure of slope h. So we assume
throughout this chapter that if h = p — 1 then we only consider weakly admissible
filtered (p, N')-modules that are unipotent.

Although the key lemma below (Lemma 12.2.4) requires this basic assumption
(not to mention the full force of Breuil’s theory of strongly divisible modules requires
this assumption), a lot of the results proven in this chapter do not require this

assumption. So we will indicate whenever we actually need this assumption.

12.1.2 Breuil’s theory of “filtered modules”

Let S be the p-adic completion of the divided power envelop of W (k)[u] with
respect to the ideal generated by P(u). It can be shown, with some work, that S
can be viewed as a subring of J#o[[u]] whose elements are precisely those of the
form 7, ai%), where ¢(i) := [£] with e := degP(u), and a; € W (k) converge
to 0 as ¢ — oco. We define a differential operator N := —u% on S. We define
o : S — S via extending the Witt vector Frobenius on the coefficients by o(u) = u”.
We let Fil" S € S denote the ideal topologically generated by P(u)/i! for i > h. If
h < p—1then gy := z% - Fil" § — S is well-defined. On the other hand, if h > p—1

then the image of Fil"” S under o is not divisible by p". (Idea of proof: consider

(v = L2 = (iﬁ)! : ELZT; and compute ordp((if?)!).) As will be clear later in this

chapter, this is one of the main reasons why we work under the running assumptions

in §12.1.1.
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12.1.2.1 Qp-theory

Let D be a weakly admissible filtered (¢, V)-module over J# with non-negative
Hodge-Tate weights. We consider the finite free S [%]—module D=8 Qw k) D
equipped with the o-linear endomorphism ¢z = 05 ® ¢p, the differential opera-

tor N := N ®id+id®N over N : § — S, and the decreasing filtration Fil* D

which is defined as follows: set Fil®D := 1/5, and for any ¢ > 0 we set
Fil''' D := {& € D| N3(z) € Fil' D, pr,(z) € Fil''! D},

where pr, : D — Dy is induced from S — S/P(u) = o, where u — . If all
the Hodge-Tate weights of D are in [0, k], then the associated grading to Fil* D is
concentrated in degrees [0, h].

Let us record the following observations:

1. There exists a unique section D — D to the projection D - 13/ uD = D which
is compatible with ¢ and N. This identifies D with the % -subspace of D which
consists of elements killed by some power of N5. The filtration on D 4 coincides
with the image of Fil* D by under pr. : D — 5/77(u)ﬁ >~ D . In particular,
the construction D +— D defines a fully faithful functor into a suitable target

category. See [10, §6] for the proofs and more details.

2. Assume that all the Hodge-Tate weights of D are in [0, h]. Then the filtration

Fil* D can be (uniquely) recovered from Fil" D as follows:
Fil'D = {x € D: P(u)" 'z € Fil" D}.

Also pp can be recovered from ¢ = % - Fil"D — D. (c.f. See the definition

of strongly divisible lattices in §12.1.2.2.)
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3. The monodromy operator N : D — D is the zero map if and only if N5 =

0 mod uD.

Later, we will associate to D a Q,-representation E\*St(ls) of G which is naturally
isomorphic to V(D) (so fst('l/)\) is semi-stable with Hodge-Tate weights in [0, h]).
We will define fst later in §12.2.1, for which we need to define gst, an S-algebra
where the “integral structure” of periods lie in. See §12.1.3 for the definition of A\st;
and see [10, §6] or [58, §2.2] for more details.

The construction D — D makes sense without any assumptions on h. But for
the case h < p — 1, one can give an intrinsic characterization? of the “filtered S [%]—
modules” D which can be obtained as D := S ®w k) D for a weakly admissible filtered
(¢, N)-module D over # with Hodge-Tate weights in [0, h]. This is done in [10, 12]
under the assumption h < p — 1, but it is claimed in [15, Theorem 2.2.3] that this
can be done when h = p — 1. In the intended application in this paper, any “filtered
S []l?]—module” we study are known to come from a weakly admissible filtered (¢, N)-
module, so we do not need the intrinsic characterization of the essential image of the

functor D — D.

12.1.2.2 Z,-theory

Let D be a weakly admissible filtered (¢, N)-module with Hodge-Tate weights in
[0, h]. We impose our running assumptions; i.e., h < p—1, and that D is “unipotent”
ifh=p—1 Let D:=5 ®w ) D be the “filtered S[%]—module.” We say that an

S-lattice M C D is a strongly divisible lattice (of weight < h) if M satisfies the

following properties.

(SD1) M is a finite free S-submodule of D which is stable under ¢ : D — D and

2

i.e., a description purely in terms of ¢, N, and the filtration on ’5, without mentioning the weakly admissible
filtered (¢, N)-module D from which D was constructed. For this statement, we do not need to assume that all the
weakly admissible filtered (¢, N)-modules are unipotent when h = p — 1.
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such that M[%] =D.

(SD2) Set Fil" M := M N Fil" D, then we have o(Fil" M) C p" M. We set ¢, =
#gp : Fil" M — M. (In fact, this axiom implies the seemingly stronger axiom,
namely that ¢, (Fil" M) generates M.)

(SD3) M is stable under N : D — D; i.e., N(M) C M.

Any strongly divisible lattice M in D is equipped with a S-submodule Fil® M C
M, o-linear map ¢, : Fil" M — M whose image generates M, and a dif-
ferential operator Naoy : M — M over N : § — §. As previously, the da-
tum (M, Fil" M, ¢, N am) which is obtained as a strongly divisible lattice in some
D=5 ®w k) D can be characterized purely in terms of Fil" M, ©n, and Nagq. See
[15, Theorem 2.2.3] for the statement. We will later construct a G ,-stable lattice
T (M) in fst(ﬁ), which is semi-stable with Hodge-Tate weights in [0, h].

We say that an S-lattice M C Disa quasi-strongly divisible lattice® (of weight
< h) if M only satisfies (SD1) and (SD2). Such M is equipped with Fil" M :=
MANOFil" D and on, : Fil" M — M., but has no differential operator Na,. For such
an object, we can only associate a G -stable Z,-lattice T7 (M) in fst(ﬁ), but
not necessarily G ,-stable.

Tong Liu [58] showed that any G ,-stable Z,-lattice of fst (D) = V*(D) comes
from a strongly divisible lattice in D. Note that it is not obvious (and was not fully
known before Tong Liu’s theorem) that for any weakly admissible filtered (¢, N)-
module D over .# with Hodge-Tate weights in [0,4], D := $ Qw k) D admits a
strongly divisible lattice M € D. These seemingly more complicated objects D

are introduced and studied because one can obtain “integral” p-adic Hodge theory.

On the other hand, in our intended application we will be given D together with a

3This terminology is introduced by Tong Liu [60].
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strongly divisible lattice M from the outset. All we need for the application would

be that M gives rise to a G »-stable Z,-lattice of fst(ﬁ)

12.1.2.3 Coefficients

We can extend the definitions to allow various coefficients by requiring that all
the structures are linear over the coefficient ring. We give an example which will
be used later. Let E/Q, be a finite extension and op its valuation ring. We put
Sp = S ®z, F and S,, := S ®z, 0. Now for a weakly admissible filtered (¢, N)-
module Dy with E-coefficients, we see that 5;; = S Qwu) Dg is finite free over Sg.

We consider strongly divisible lattices in YSE which are S, -free.

12.1.3 More “period S-algebras”

In order to define the functors into the categories of G »_ - and G - representa-
tions, we need to introduce some S-algebras where the “integral structure” of p-adic
periods lie. First of all, we put R} := lim 057/(p). It is well-known that the k-

2Pz
algebra R is complete with respect to a naturally given valuation and Frac(fR) is
algebraically closed. See [32, §1] for basic properties of . As in §1.3.1.2, we fix a
uniformizer m € 0 such that P(m) = 0 and we choose successive p-power roots FAWR
ie., 7 =7 and (7)) = 7" The sequence 7 := {7(™} is an element of R, and
we embed o = k[[u]] — R over k via u +— 7.

Take the “canonical lift” 6 : W(R) — oc,, of the first projection R — o0-/(p).
This map is G y-equivariant for the natural actions on both sides and is a topological

" on the source and the natural p-adic

quotient map (for the “product topology’
topology on the target). We define A5 as the p-adic completion of the divided power
envelop of W (R) with respect to ker(6). The Witt vector Frobenius map and the G -

action on W(R) extend to Aeis. By construction, the inclusion W (k)[u] — W (R),
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which satisfies u +— [x] (where [r] is the Teichmiiller lift of x), uniquely extends to
S < Aens which makes A an S-algebra. (This map is well-defined since P([x]) €
ker(f).) This inclusion respects the Frobenius structures and is G _-stable, but
not G x-stable. We let Fil" A, be the ideal topologically generated by = (ker )" for
1 > h. We have (Filh S)Auis C Fil" A, and from the running assumption h < p—1
we have J(Filh Aeris) Acris C P Acris, 80 we can define oy, 1= % Fil® Auis — Aeis.

As observed above, A5 cannot produce G y-representations from Breuil’s divisi-
ble S-modules because the map S < A is not G »-stable. Also, A does not have
a “monodromy operator.” For these reasons, we introduce a “bigger ring” with more
structures. Let gst be the p-adic completion of the divided power “polynomial ring”
Agis| X, & i ],>1 We first define the embedding S — Ast by u — I[JFL}X and then define
the structures on Ast in such a way that this embedding respects all the structures:

define a Frobenius map o : Ay — Ay using o : Aeis — Aais on the coefficients and

o1+ X)= (14X, so o(Z) = < Az ) We define the ideal

1+X 1+X

~ Xt ,
Fﬂh ASt = {Z ai? < ASt’ ai < Fﬂlih Acrisa hm a; = 0}7

i>0
where we set Fil¥ Aq := Agis for w < 0. Then (Fil* S )/Alst c Fil”® ﬁst and the map

o, = 2 : Fil" Ast — Ast is well-defined. Let N : Ast — Ast be the A...-derivation

p

(1+ X)-%, so that N(l[%() = —%. For any v € G, we let ¢(vy) = [? € Acris,

and v +— €(7y) is a continuous cocycle. We define y(1 + X) = e(y)(1 + X), so

[E])_

Y(i5%) = 14%- In particular, the embedding S — Ay is G y-stable! (Actually, we

even have S — (Est)g%. See [10, §4] for the proof.) The choice of the coordinate
X depends on the choice of 7 := {W(")}, but if we replacing m with 7’ := -7 where

e = {50 € R with € = 1, then X gets replaced by X' = [(]X + ([(] — 1) €

Fil! A\St \ Fil? A\St (obtained by setting IEFL]X = l[ﬁ]r[Xﬂ,) One can directly check that
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this change of coordinates does not modify the embedding S — Ay defined by
[z _ ldlx]

u — —

Tix = 1.7 and it respects o, NV, and the filtration. So /Alst only depends on

the choice of 7 = 7, (In fact, A\St has a coordinate-free description in terms of
log-crystalline cohomology which only depends on the choice of 7 = 7(0).)

We also record that the map A\St — Agys defined by X — 0 is a map of S-
algebras which respects the Frobenius structures and G _-actions on both sides.
We emphasize that even though we are only interested in crystalline representations,
we still need to work with fAlst to obtain functors into G ,-representations because
the embedding S < Ag;s is only G »__-stable. (Readers are advised not to be tricked
by the notations A.;s and A\St.)

We discuss the relation of gst with Fontaine’s period rings. Let Bj; be the
completion of W(‘ﬁ)[%] with respect to the kernel of 6[%], and let Bagr := Bii[3,
where ¢ is Fontaine’s p-adic analogue of 2mi. Recall that A, naturally embeds into
Bar (and in fact # ® 4, Ais embeds into Bqr by [32, Théoreme 4.2.4]), and we
define an embedding A\St — Bgr over Aqis by X — [1;] — 1. This embedding respects
the natural G -actions and the filtrations on both sides.

From A.;; we obtain Fontaine’s crystalline period ring B = Acris[l—l),%] =
Acris[1]. On the other hand, B, = A\S,;[%, = A\St[%] is strictly larger than Fontaine’s
semi-stable period ring Bg. In fact, By has an embedding into B; which respects
all the structures, and the image is the Bes-subalgebra Be;s[log(1 + X)] C E\St, or
equivalently the subring of elements on which N is nilpotent. See [10, Lemma 7.1]
for the proof.

Now we are ready to functorially associate to a strongly divisible S-lattice in

D = S ®@ww D a G y-stable Z,-lattice of V3 (D). We also define functors from

other semi-linear algebra categories to the category of strongly divisible S-modules,
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and compare the associated Galois representations.

12.2 Galois representations

12.2.1 Construction of G -stable lattices of a semi-stable representation

Let D be the weakly admissible filtered (¢, N)-module with Hodge-Tate weights
in [0, 4], and consider D=9 ®w ) D with the structure of ¢, N, and filtration as
discussed in §12.1.2.1. Let M C D be a strongly divisible lattice. Now, we define a

Qp[G »]-module fst(ﬁ) and its G y-stable Z,-submodule T (M), as follows.

(122].].) K*St(D) = Homs[%]’wh’N’Fﬂo (D, Bst)
(12.2.1.2) TH(M) == Homg, ypp(M,Ay),
where G » acts through f?; = A;t[%] and A\m respectively. The natural inclusion

— o~ o~

T%(M) — V' (D) induces an isomorphism I;(M)[%] = fst(D), which follows
from the fact that an S [%]-map D — B, respects the filtrations on both sides if and
only if it respects Fil" on both sides (by §12.1.2.1). Since T (M) is clearly p-adically
separated and complete, T (M) is finite free over Z, so it can naturally be viewed

) —st

as a G y-stable lattice of f‘st(ﬁ)

Theorem 12.2.1.3 (Breuil). Let D be the weakly admissible filtered (@, N)-module
(with no assumptions on Hodge-Tate weights), and D=9 Qwm) D. Then there

exists a natural Gy -isomorphism

A~

V* (D) = V(D) := Hom oy nrie (D, Byy),

~ st ~s

Assume that all the Hodge-Tate weights of D are non-negative. Then under the
above identification, we view 17 (M) as a G x-stable Z,-lattice in the semi-stable

representation V7 (D).
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Proof. The proof of this theorem is sketched in [15, Proposition 2.2.5]. We can reduce
to the case when all the Hodge-Tate weights of D are non-negative, which will be
assumed from now on. We embed all the period rings and “period S-algebras” into
Bgr in a compatible way.

We first define a map fst(ﬁ) — V5 (D), and then we show this is an isomorphism.
As discussed in §12.1.2.1, D can be identified with the ¢ -subspace of D whose
elements are killed by some power of Nz. For any f € f st(ﬁ), one can show that
the image of D under f is contained in B} since By has an embedding into E\St (which
respects all the structures) and the image is precisely the subring of elements killed
by some power of N. In order to show that f|p € V7 (D), the only non-trivial part is

to show that f|p respects the filtrations. For this, we use that Fil* D, = pr_(Fil* D)

where pr_ : D — D/P(u)D = D, and that the following diagram commutes:

(12.2.1.4) ) ! ot

By
[

Dy Y H Ry, Bt Bar.

So f +— f|p defines an injective G ,-equivariant map E\*St(ﬁ) — V(D).

Now, we define its inverse as follows. For any g € V7% (D), consider D % Bf —
é\st+ = gst[]—l)] and S[%]-linearly extend it to § : D — B\St+. Once we show that
g e v (D) then one can check that g — § defines the inverse of the mapfst(ls) —
V(D) defined by f — f|p.

Clearly, § respects ¢ and N. So it is left to check that § takes Fil* D to Fil’ é\st+ =

(Fil’ A\St)[%] for all . For this, we use the induction on i. The case i = 0 is trivial.

Now, we assume that § takes Fil' ' D to Fil' ' By, .
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For any x € Fil’ 13, we have

(1) g(z) = g(pr,(z)) € Fil'(B @, H#) = Fil' Bfz N (H R4, Bs), by (12.2.1.4),

— 4+

(2) N(g(z)) = g(N(z)) € Fil' ' By, (by the induction hypothesis).
Write g(z) = Y_,50anar where a, € Bl such that a, — 0 p-adically. Then
Fil"™! é\st+ contains

n

N@) = (04 X) Yt = a3+ ) o

n>0 n>1

By the definition of Fil"™* B\S:, we have a; € Fil' ! B, and a; +a, € Fil' 2 B, so

cris cris?

we obtain ay € Fil”? B . By repeating this process, we get a,, € Fil"™" BY._ (where

cris” cris

Fil* B

cris *

= Bgs for w < 0. This shows anl an% e Fil’ 1/3;+. But (1) implies

that ao € Fil' BY. , which shows that §(z) € Fil’ By, . O

cris?

12.2.2 G »_ -representations

Let D be as in §12.2.1, and let M C D be a quasi-strongly divisible lattice
(for example, a strongly divisible lattice M by “ignoring” the differential operator
N : M — M). Now, we define a Q,[|G »_|-module Q\*qst(ﬁ) and its G -stable

Z,-submodule T7 (M), as follows.

(12.2.2.1) V(D) = Homs[%}’%’Fﬂh(D,Acris[l/p])
(12.2.2.2) I;;St(M) = HOInS,(Ph,Fllh (M’ ACI‘iS)J

where G acts through Acris[%] and A, respectively. Clearly, T (M) is p-

adically separated and complete, so the following lemma shows that T7 (M) is

finite free over Z,. The following lemma is taken from [60, Lemma 3.4.3].
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Lemma 12.2.2.3. Let D be the weakly admissible filtered (o, N)-module (with no
assumptions on Hodge-Tate weights), and D=9 Q@wky D. Then the natural map
(12.2.2.4)

=3 A ~ =
V'q(D) = HomS[%],%,N,Fnh (D,Bs ) — HomS[ lon Fil® (D B =V qst(D)7

CI‘lS)

induced by the map é\st — Bt defined by X +— 0 is a G -isomorphism.

Cris

Assume that all the Hodge-Tate weights of D are non-negative. For a strongly

divisible lattice M in D, the above isomorphism fst(l)) — V" (D) restricts to the

isomorphism of G -stable lattices T (M) = L5 (M).

Using this lemma, we identify the representation spaces of 1% (M) and 1" (M)

=qst

so we regard 17 (M) as the restriction of the G »-action on T (M) to G, .

Proof. The second claim follows from the first. Let us show that the natural G, _-
equivariant map (12.2.2.4) is an isomorphism.

Let f € fst(ﬁ) and let f € Vqst(D) denote the image of f. We identify D with
the % g-subspace of D whose elements are killed by some power of N. Since the
image of By in é\stJr is Beis[log(1+ X)] and the map E\S,t — Bl defined by X — 0

maps I[JF]X to [x] = %'Zi>0 7 (log(1 + X)), it follows that for any z € D we have

= [(N'z)y'(log(1 + X)),

i>0
where 7 is the standard ith divided power. In particular, if f = 0 then f = 0. This
shows that the natural map (12.2.2.4) is injective.
We now show the surjectivity. For any f € V*qst(ﬁ), we consider the following
“formal expression:”

Zf (N'z)y'(log(1 + X)) € BL_[[X]], for any z € D.

>0
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If z € D (ie., if N'(z) = 0 for some i), then f(z) converges in é\stJr. On the other
hand, f turns out to be S-linear, hence f defines a map into BAStJr. Instead of proving

the S-linearity, we give the following “heuristics” which can be turned into a proof.

Recall that we embed S — A via u — [r] and S — A\St via u — % We want to

show f(y"(u)x) =~ (1[]:])() .f(x) for all z € D, where 4 is the nth standard divided

power. The following equation is a formal consequence of the Leibnitz rule:

%

Ny () = 3 (j)w”(u)wﬂm -y () (=n) " ()N ().

j=0 7=0 J

By “reordering” the sum, we obtain

fo ) = sz (N (a i—‘(j.)vi(logu X))

%

= () Y Y POV @) ((=n) Iy (log(1 + X)) )7 (log(1 + X))

‘=7 3 ([a]) exp(-nloa(1 + X)) 7 FV () log(1 + X))
)

The step of “reordering the sum” (i.e., the equality in quotes) can be made precise
by truncating both sides and estimating the error terms.

Now, it remains to check that:

1. f respects @: for any x € ﬁ,

o(f(z)) = Y ol(f( (o(log(1 + X))

>0

= ) f ' Np())) (v (plog(1 + X)))

>0

= flp()).
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2. f respects N: for any x € 73, we have

N(f(@) = > f(N'z)-N(5'(log(1+ X))
= Zf (N'z)-v""(log(1 + X))
— [(N(x)).

The first equality follows since N is a derivation over A and f(N'z) € Agis,

and the second equality follows since N (log(1 + X)) = 1.

3. f respects the filtrations: if z € Fil" ﬁ, then we claim f(z) € Fil" B;Jr. But we
have v(log(1 + X)) € Fil’ Bst , and since f : D — B respects the filtrations

Cris

we have f(N'z) € Fil*~" Bl | where Fil* BY, := Bess for w < 0.

cris? Cris

This shows that f € fst(ﬁ), which completes the proof. O

Kisin’s theory [52] provides another category of p-modules which classify G -
stable Z,-lattices in semi-stable G ,-representations, namely &-lattices of P-height <
h in the (¢, Ny )-vector bundle M7 (D) over A. (See Theorem 2.4.5 for notations.)
The next subsection associates a quasi-strongly divisible lattice M in D to a &-
lattice of P-height < h in M™% (D) compatibly with the functors into the category

of lattice G »_ -representations.

12.2.3 Relation with Kisin’s theory

Let D be a weakly admissible filtered (y, N)-module over % with Hodge-Tate
weights in [0, k], where h < p — 1. Kisin [52, §1] constructed a (¢, Ny)-module
M = MMP(D) over Oa from a filtered (¢, N)-module D and showed that D is
weakly admissible if and only if M is pure of slope 0 in the sense of Kedlaya. Let

M C M be a &-lattice of P-height < h. We set M := S ®,e M = S Qg (c*M).
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We have an S-linear map id ®pgy : M = S ®g (0*M) — S ®g M. Using this, we

define a S-submodule Fil® M C M and ¢, : Fil" M — M as follows.

(12.2.3.1) Fil" M := {z € M| id®@pm(z) € Fil" S @ M C S @ M}
(122.32) ¢ P M 222 pith g oo m 299 9@, 6 M = M

The following lemma directly follows from [58, Corollary 3.2.3].

Lemma 12.2.3.3. With the same notations as above, M := S ®,sIM has a natural

structure of quasi-strongly divisible lattice in D=9 Qwm D.

In fact, the above construction 9 ~» S®, 9N induces an equivalence of categories
between Modg(¢)S" and the category of quasi-strongly divisible lattices of weight

< h [16, Theorem 2.2.1]. We will not use this fact.

Sketch of Proof. Let 1 : Oa — S[%] denote the embedding defined by u +— u, which is
well-defined as can be directly checked. Put o : Oa 225 Oa < S[%]. For a (¢, Ny)-
module M pure of slope 0, consider ﬁM = S[]lg] ®q.0, M. We define Fil" D and ©p in

the same manner to (12.2.3.1) and (12.2.3.2). We put N5, = N®@1+ soy(1 ® Ny ).

(For any f € Oa — S, we have N(u(f)) = L(ﬁNv(f)).) By direct computations,

one show that D satisfies the “intrinsic characterization” for filtered S []l)]—modules
which come from weakly admissible filtered (¢, N)-modules. See [60, Proposition
3.2.1] for the proof.

Let M := MM7(D) and let M C M be a G-lattice of P-height < h. Then

clearly, M = S ®, s MM is a quasi-strongly divisible lattice in Dy = S [%] ®on

M. So the lemma will follow if we show that naturally ﬁM = 13,3 =S Qwm D

as a filtered S[%]—module. Note that the functor D ~» Dp from the category of

weakly admissible filtered (¢, N)-modules to the category of filtered S [%]—modules
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is fully faithful; that we can recover the underlying (p, N)-module D as Dp / uDp,
and the filtration Fil* D is pr_(Fil® ﬁD) where pr_ : Dp —» ﬁD/P(u)ﬁD ~ Dy
is the natural map. It can be directly seen that this recipe, when applied to D M
precisely gives D7 (M) which is naturally isomorphic to D by Kisin’s result (stated
in Theorem 2.4.5 of this paper). This verification uses the construction of the functor

DM7F . See [58, Corollary 3.2.3] for the complete proof. ]

Let 9 € Modg(¢)S". Recall that we have a contravariant functor Tg(9M) =
Home , (MM, 05w ) < Home,, (9, &™) if M € Modg(¢)<". (That the arrows are
isomorphisms follows from [31, §B Proposition 1.8.3], which is also stated as Lemma

8.1.6 in this paper.) Therefore, we obtain a natural G »_ -equivariant morphism:

(12.2.3.4) Top: Ts(9M) =2 Home o (M, &) — Homg , pyr (M, Ais) = Ty (M)

=qst

where the arrow in the middle is defined as follows: for a G-linear map f : 9 —
éur, we consider f M =5 Q.6 M — Agis obtained by S-linearly extending
m EN Sur 2, Acis, where we view S as a G-algebra via 0 : & — S. One can check
that if f respects ¢, then f respects o, and takes Fil" M to Fil" A, so f — f
defines a map T'(9M) — T (M). This map is furthermore G 4 -equivariant since
oG s Aeis 18 G -equivariant.

Let us state the key lemma, which crucially uses all of the basic assumptions in

§12.1.1. We postpone the proof to §12.3.

Lemma 12.2.4. Let h < p—1 and M € Modg(p)S". Assume that M is unipotent
in the sense of §8.3.6 if h = p — 1. Then the natural map TG(IM) — T (M) in

12.2.3.4) 1s an isomorphism as a Z,-lattice G  __-representation.
P o

The following lemma is very specific to the case of h = 1, which is proved in [14,

Proposition 5.1.3] under the assumption that p > 2. The identical proof works when
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p = 2 (even without assuming that D is “unipotent”).

Lemma 12.2.5. Let D be a weakly admissible filtered isocrystal with Hodge-Tate
weights in [0,1]. (So the monodromy operator N : D — D is a zero map.) Let
= S[ | @w@) D as before. Then any quasi-strongly divisible lattice M € D is

stable under Nz : D — 13, hence M is a strongly divisible lattice in D.

Corollary 12.2.6. Let V' be a crystalline Q,-representation of G with Hodge-
Tate weights in [0,1], and let T C V be a G -stable Z,-lattice. If p = 2 then
assume that either V' has no nontrivial unramified quotient, or V has no non-trivial
G v -subrepresentation on which the inertia group I acts via the p-adic cyclotomic

character. Then T is necessarily G ,-stable.

Proof. Let D := D_;.(V(—1)) be the corresponding weakly admissible filtered isocrys-
tal, so D is unipotent if and only if V' has no nontrivial unramified quotient. If V'
has no non-trivial G ,-subrepresentation on which the inertia group I, acts via the
p-adic cyclotomic character, then we replace V' with V*(1).

Let D := S ®w) D be the corresponding filtered (¢, N)-module over S. We
identify V with V. (D*(1)) and V* .(D*(1)) via natural isomorphisms, where D*(1)
is the filtered S-module corresponding to D*(1). Kisin’s theory produces a 9 €
Modg(9)S! equipped with a G -equivariant isomorphism Tg(90) = T. (See the
comment below Theorem 2.4.10 or see [52, Proposition 2.1.15].) By Lemma 12.2.3.3,

M = 5 ®R,6 M can be naturally viewed as a quasi-strongly divisible lattice in D

such that T

=qst

(M) =T as a Zy-lattice in V. Lemma 12.2.5 asserts that M is a
strongly divisible lattice, hence T (M) = T (M) = T by Lemmas 12.2.2.3 and

12.2.4. In particular, T is a G »-stable lattice. O
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12.3 Proof of Lemma 12.2.4

Let us recall the statement of of Lemma 12.2.4. Let h < p— 1 and M €
Modg(¢)S". Assume that 9 is unipotent in the sense of §8.3.6 if h = p—1. Consider

the following natural G »__-equivariant map

Ton : T5(M) = Home , (M, 6) — Homg ,, pyn (M, Acis) = Thy (M)

=q

induced by o : Gw Aeis. See the discussion following (12.2.3.4) for the construc-
tion of this map.

Clearly, Toy is injective since o : Sw — Aeis 18 injective. So in order to prove
Lemma 12.2.4, it is enough to show the surjectivity of Tgn. Since T7 (M) is p-
adically separated and complete (which is immediate from the definition), we may
apply successive approximation* to reduce to showing the surjectivity of Top ®z, Fp
(M) @05, F, — Ty (M) @3, F,,

Let us consider the “mod p reduction” 9 := & /pSRsM, and M := S/pS@5M
equipped with Fil* M = S/pS s Fil" M and &, : Fil"’™M — M. By Lemma
5.1.9, the F,[G »_]-module T5(9M) ®z, F, is naturally isomorphic to T(MM). Now,
by Fontaine’s lemma [31, §B, Proposition 1.8.3] (which is Lemma 8.1.6), we have the

natural isomorphism
Home pe, (M, 6" /p&™) = Home pe,, (M, 0gur /pogus ) =: Ts(M),

which is induced from the natural inclusion &™ / PO < 0fu /pogur .

From the natural projection A.is = Aeris/PAcris, We obtain the following natural

4More precisely, we are applying Nakayama’s lemma to Ton ®z, Z/(p"), for which we don’t a priori have to
know the target is finitely generated. If we assume that 90t corresponds to a G __-stable Zp-lattice of some semi-
stable representation with non-negative Hodge-Tate weights (which will be the case in the intended application) then
Tom ®z, Qp is an isomorphism by Lemma 12.2.2.3 and Theorem 2.4.10, so we see that the target I:;St(M) of Typ is
a finitely generated Zj,-module.
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injective map:
(1230 1) HOmS,(ph,Filh (M’ ACI‘iS) ®Zp ]Fp — HOHlS/pSWh’Fﬂh (m, ACl‘iS/pACI‘iS>7

where the left side is 77 (M) ®z, F, and the right side is T (M). Therefore we

=qst = gst
obtain the natural map

— %o ®zp Fy

(12.3.0.2) T : T ()

T (M) @y, F, 2250 70 (RF).

= qst —qst
We obtain the same map T; using the map on the second arguments o : Guw / péur —
Agis/PAais, by the construction similar to (12.2.3.4). The following lemma is the

main step of the proof.

Lemma 12.3.1. Let h < p—1 and M € Modg(p)S". Assume that M is unipotent

in the sense of §8.3.6 if h = p — 1. Then, the natural map Tz : Ts(IM) — T (M)

=qst
18 1njective.

12.3.2 Deducing Lemma 12.2.4 from Lemma 12.3.1

We now show that Lemma 12.3.1 implies that Top @z, F), : T5(M) @z, F, —

T? (M) @z, F, is an isomorphism, so Lemma 12.2.4 follows from successive approx-

imation as we noted at the beginning of §12.3.

Since Ty © Ts(M) — Tr (M) is injective by Lemma 12.3.1, it follows the
construction of Tgy that Toy ®z, F) : T's(M) @z, Fy — T (M) ®z, F), is injective.
So it is enough to show that the [F-dimensions of the source and the target are equal.
We have dimg, T, (M) = rankg;,s M = rankg/,e M by [12, Lemme 2.3.1.2], which
forces Tg; and (12.3.0.1) to be isomorphisms.

The following special case of Lemma 12.2.4 which suffices for proving Corollary
12.2.6 can be deduced from Lemma 12.3.1 without invoking [12, Lemme 2.3.1.2]:

namely when M comes from the mod p reduction of 9t which comes from a G _-

stable lattice of a semi-stable G ,-representation. In this case, we know by Lemma
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12.2.2.3 and Theorem 2.4.10 that Tox[-] : zg(sm)[%] — I (M)[%] is an isomor-

1
P =qst

phism, so in particular the Z,-ranks of Tg(9M) and T7 (M) are the same. Thus,
injectivity of Tgy implies surjectivity.

The rest of the section is devoted to proving Lemma 12.3.1.

12.3.3 Proof of Lemma 12.3.1: the case h < p—2

We give a proof for the case h < p — 2 following Breuil [13, Proposition 4.2.1]°.
(This automatically rules out the case when p =2 and h = 1.)

We recall the notation from §12.1.3. Let R := lim o03/(p) and consider the
canonical lift § : W(R) — oc,, of the “first projecgzg‘:izz” R — 05/(p). We set
Fil' W(R) := ker § and Fil' R := ker[f ®z, F,, : R — 05/(p)]. Recall that A is the
p-adic completion of the divided power envelop of W () with respect to Fil' W (fR).
It can be checked that Agis/pAeis is precisely the divided power envelop of R with

respect to Fil' R. (See [7, Remark 3.20(8)] for the proof.)

Recall that the map
o Home/pe,go(ﬁa &"/p&") — HomS/pS,goh,Filh (ﬂ> Acris/PAcris)

is induced from the map o : G /péur — Aeris/PAqis-  (See the comment below
(12.3.0.2).) One can check, by hand, that the kernel of o : @ur/péur — Acris/PAcris
is principally generated by u¢, where e is the ramification index of J¢ .

Assume that f € Tg(M) = Home/ps (M, S /p&™) is in the kernel of T
Then, for any 2 € 90, we have f(z) € ue(@ur/p(:}“r). Suppose f(z) € ue/(éur/p@ur)
for some e’ > e. Since M is of P-height < h, there exists y € M such that pzr(c*y) =
ux. Since P(u) mod p is (a unit multiple of) u¢, we have

f(@) = u™" [ (paa(0™y) = u™ "o (F(y)) € u”? (& /p&™) € u*(&" /p&™),

5 Although [13, Proposition 4.2.1] is only worked out when e = 1, the argument works with little modification for
any e.
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since we assumed that h < p — 2. By iterating this process, we conclude that f = 0.

12.3.4 Non-example: the case h=p—1

Before we present the proof of the case h = p — 1, we give an example of non-
unipotent M € Mod g()SP~! where the lemma fails to hold. Take 9 := &(p—1);i.e.,
M = Ge with pop(o*e) = P(u)P~te. Let M := MReS/pS& and M := S/pS®, M.
We show that T : T6(9) — T (M) is the zero map, which in turn implies that

Ton ®z, Fp 1 Tg(M) @z, F, — T (M) ®z, F) is the zero map. In particular, Ty
cannot be injective (so Toy cannot be an isomorphism).

Let f € Tg(M) = Home e, (MM, S /p&™) be any element. Then we have

(f(e))’ = o (f(e) = f (wm(o"e)) = u® Ve f(e).

If f is non-zero then we have (f(e))?~' = uP~V¢ so f(e) = a-u® where a € Fy.
On the other hand, o : G / péur — Aeris/PAeris maps any multiple of u¢ to 0. This

proves that %5 is the zero map.

12.3.5 Proof of Lemma 12.3.1: the case h=p—1

Now, we handle the remaining case.® Put h = p — 1, and assume that 9 is
unipotent of P-height < h (or equivalently, 90 is). Let f € T%(90) be in the kernel
of Ty, We set M := f(IM) C & / P&, which is a & /pS-submodule stable under
the pth power map o : @“r/péur — @ur/p(%“r. This makes N into a (p, &/p&)-
module. Since we have the p-compatible surjection f : 9t — N, it follows that 9 is
of P-height < p — 1; i.e., uP~VN C pxr(a*N).

Since f is in the kernel of T, the same argument as §12.3.3 implies that N C
ue(@“r/pé“r). Using that ¢g; is induced from the pth power map o : @ur/p@“r —

&' /p&™, we have g(o™M) C uP*(&™ /p&™), so uP VN > p(0*N). Since N is of

6The author thanks Tong Liu for providing his idea.
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P-height < p — 1, we obtain pxr(0*N) = uP~VN; ie., N is of Lubin-Tate type of
P-height p — 1. But by the definition of unipotent-ness of P-height < p — 1, 9 does
not admit any non-zero quotient of Lubin-Tate type of P-height p — 1. Therefore

N=0,s0 f=0.
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