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Abstract

Our work addresses the challenge of scaling pre-silicootfanal verification of hardware
designs such as microprocessors and microcontrollerseldhesigns employ wide datap-
aths with arithmetic, logical, and memory units, and complentrol logic that coordinates
their functionality. This overall complexity results in @mormous state space with vast
room for design errors, and prevents designers from beitgtabcomprehensively rea-
son about the correctness of digital systems deployed iremums devices, whose failure
causes serious losses, monetary and otherwise.

In particular, control optimizations play a global role inacdinating the functionality
and data flow. This makes them extremely error-prone andehaodverify locally. To
remedy that, a design implementation can be verified agamaill specification model
which has a much simpler control logic. Then, a formal prdaquivalence exhaustively
checks the state space for potential control bugs, or prihestack thereof. Contrary to
simulation-based approaches, which compromises conmglete€or speed, formal equiva-
lence is hindered by the exponential state explosion. Toccovee that, previous approaches
abstract datapath components away in order to eliminatedhglexity introduced by
them, and to gear the verification towards the control logce to the loose separation
between datapath and control in most designs and hardwaceigtéeon languages, naive
abstraction results in compromising the accuracy of thdigation, and in generating spu-
rious behavior that does not exist in the original designmassking real behavior from
being represented in the abstract model.

Our work presents a systematic and fully automatic abstrattased method to over-

viii



come these issues. A sound abstraction to fragments obfulst- logic is coupled with
refinement mechanisms that adjust the abstract model andntrialse alarms arising due
to spurious behavior. Our approach includes novel teclesidor analyzing abstract coun-
terexamples, generalizing them to represent families ahtarexamples, checking their
feasibility on the original design, and analyzing the isiedity in order to learn facts that
augment the abstraction in an iterative process. Automdtoth the abstraction and re-
finement steps without compromising scalability gives qapraach a clear advantage over
systems that require laborious manual reasoning. In thenapproach can be easily em-
bedded in typical verification flows, where designers appbnioriginal descriptions used
for synthesis and traditional simulation.

Additionally, our approach leverages the advantages dfieffi reasoning engines for
Boolean and first-order logic, including satisfiability (o theories) solvers and algo-
rithms for minimal explanation of constraint infeasibyjlit

An implementation of the approach allows us to verify mianoizollers, microproces-
sors, and memory systems whose RTL Verilog descriptions handreds to thousands of
source lines and variables, in a scalable and efficient mafiihe results show promising
capability in exposing implementation and specificatiomes, or, alternatively, proving
correctness of both. We believe that this brings formalfieation one step closer to hard-

ware designers.



Chapter 1

Introduction

This work addresses the challenge of automating and sqatesgilicon functional verifi-
cation of state-of-the-art hardware designs, such as priccessors and microcontrollers.
These designs employ widgatapathswith arithmetic, logical, and memory units, and
complexcontrol logicthat coordinates their functionality. The latter typigalhcludes a
set of high-level optimizations aimed at increasing a d&sithroughput, and reducing its
area and power consumption. The complexity of both the d#ltegnd control logic results
in an enormous state space with vast room for design errarghéfrmore, the progression
in the design of hardware systems like microprocessorsslea@ver-increasing control
logic complexity, and overall chip size, as predicted by ka®law [45].

In contrast tasimulation which typically examines a (relatively) small number oésc
narios when testing a desigfgrmal verificationsystematically proves correctness of a
design by exhaustively examining the entire design’s sjaéee searching for violations to
a well-specified behavior. The size of the state space gra ntially with the size of
the design, leading to the so-callsthte explosion probleﬁzince the control logic
and datapath of contemporary designs are also growing expiaily (in both size and
complexity), the formal verification ‘barrier’ grows doytkgxponentially, and significantly
lags behind the design capability, leading to an exponntigowing verification gap
The increase in complexity and size of today’s designs, dsawé¢he difficulty of formally
verifying these designs, is pictorially expressed in Fefiifl .

Verification, thus, cannot be made tractable without a @vadd-conquer approach
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Figure 1.1 Progression in Microprocessors: Design versus Verifipatio

that tailors different verification methodologies to vaisarts of the design with different
structural patterns. To be effective, these methodolagiest be applied at suitable levels
of abstraction. In particular, descriptions given at thgiRer-Transfer Level (RTL) ac-
curately capture the functionality of hardware designs t®serving high-level semantic
information that is otherwise lost when moving to the gatetransistor-level representa-
tions. Itis, therefore, reasonable to assume that the mesider verification be given as an
RTL model in a suitable Hardware Description Language (HBWgh as Verilojﬂ4].

At this level, a reasonable distinction can be made betweeddtapath and the control

logic, and appropriate verification schemes can be applied¢h. Datapath units can usu-

ally be isolated and verified separately with methods thplagixtheir structural regularity.



Once verified, many datapath elements can be reused acrasssvdesigns and architec-
tures. Control logic, on the other hand, globally “routdss flow of data in a design, and
thus has to be verified at the level of the entire design. Maea@ontrol circuitry is invari-
ably custom-made for the architecture and design at haed|ygling the use of previous
verification resultsin this work we focus on the verification of control logic

Current verification efforts have tackled control logic ifieation by generating new
mathematical models, typically based on abstraction,dbatespond to the RTL descrip-
tion of the design, and utilizing theorem provelrs! [L7][ ] to reason about them.
Although these models simplify the datapath, they are riyugé complex as the original
RTL model. Consequently, hundreds of man-hours are redjaorananually regenerate
the verification model from the RTL model. Moreover, a cunsbene process is required
to keep both models consistent, and to prevent subtle bogs lkeing introduced in the
abstract model or masked from the RTL model.

Theorem provers use a number of mathematical approachestity ¢hat a design
complies with its desired functionality, and typically orporate a number of theories,
ranging from zero-, to first-, to higher-order logics, torementally prove correctness. In
addition to the drawbacks of verifying an abstract modebsaely from the RTL descrip-
tion, theorem provers are not fully automatic; althoughipped with a set of engines on
their back-end, the user is required in many cases to guaprthver by applying specific
engines in the various phases of the proof. In the best cageuah reasoning signifi-
cantly impedes the verification task for complex designd,iarthe average case it makes
it completely infeasible.

The approach we advocate in this thesis significantly diffesm previous efforts in a
number of ways, including the emphasis on full automatisnyell as the use of contempo-
rary reasoning engines that have been (and will continue}@imgressing tremendously.
We believe that the combination of both elements is a key lenab the deployment of

formal verification in design flows.



Our approach achieves scalability of control logic veriima through three main the-
oretical contributions presented in this thesis. Firstfavenalize an approximation-based
framework for hardware verification, that unifies formalmsdormal, and simulation-
based approaches. In this framework, various types of appations can be characterized
based on their relation to the original design and the ptgpmering checked.

Second, we formalize datapath abstraction of a subset dhasizable RTL Verilog,
which enables formal verification of hardware designs tdesitaspace and time. In par-

ticular,

e The abstraction process maps a Verilog description withefisize bit vector vari-
ables and operations to an infinite-size term-level modéehe Tesulting abstract
model can be expressed using a number of quantifier-free®ider Logic frag-
ments, per the designer’s choice.

e The abstraction function is a conjunction of ‘local abdti@ts’ to datapath compo-
nents. This enables fine-grained control over the granulafithe abstraction, and
allows tailoring different abstractions to various partshe design.

e The abstraction process is geared towards equivalenc&ingeevhere abstracting
away datapath components allows meaningful reasoning eopegy checking of
the control logic.

e The abstraction function is sound with respect to boundedehchecking of safety
properties.

e The abstraction function is not theoretically completee do datapath/control in-
teractions typical in almost all designs described at thedwevel. However, in
equivalence-based verification, idiosyncrasies arisiagnfthese interactions can be

localized and eliminated.

Third, we present a method that detects and eliminatese‘falarms’ (also called

infeasible counterexamples) arising in coarse incomgbstractions. The refinement in-



crementally ‘fixes’ the abstraction to make it complete, etedmines the existence of a

corresponding real bug in the design. More specifically,

e The refinement includes novel techniques for relating abstrounterexamples, i.e.
property violations in the abstraction, with the originakeyn. This is done through
a satisfiability formulation, on which SAT reasoning engiraee applied.

e We introduce the use of minimally unsatisfiable subsets stlldconcise explana-
tions for infeasibility. We make a novel use of the resulteglanations during

refinement.

These techniques were folded into a practical turn-keyfigation system for RTL

Verilog, such that

e The datapath of the design is abstracted, while the comgt s left concrete. This
tailors the approach towards detecting control bugs.

e The approach is tailored to verifying RTL descriptions. g8 important since
designers are usually reluctant to rewrite their desigriferpurpose of formal ver-
ification. Verifying the design source code is intuitivelgafe and effective method
for the detection of bugs.

e Reasoning is done using a sophisticated Satisfiability NModbeories (SMT) solver
to prove the validity and satisfiability of the various foriasl arising during verifi-
cation. Formalizing the various reasoning challengesguSIMT semantics allows
leveraging the tremendous state-of-the-art advancessimltimain, and creating ad-
ditional challenges for future research.

e The approach can be fully automated; a preliminary impldatem of the verifica-
tion system allows the designer to specify the design detsani and a brief set of
directives, and the system formally proves correctnesssmralves it with a coun-

terexample.

The Reveal system, a C++ implementation of the presentefice¢ion approach,



allowed us to experiment with RTL designs written in Veriloghe ability to fully au-
tomate the abstraction and refinement steps gives our agpmaarticular, and formal
verification in general, an edge over other techniques. Tde ig to be able to verify
microcontrollers, microprocessors, and memory systenese/IiRTL Verilog descriptions
have thousands of source lines and variables, in a scalaBdleficient manner.

The rest of the thesis is organized as follows. Chagter 2egsrvelevant work in
formal hardware verification, and presents relevant defimstand notations. Chapter 3
presents a general framework for verification based on appatdion, followed by an ab-
straction/refinement method in Chagdier 4 specifically taddo the verification of control
logic in RTL designs. Chaptél 5 introduces a number of teges that augment the re-
finement process and significantly boost its convergencered@s structure and crucial
implementation details are presented in Chapler 6, follbtwe a demonstration of Re-
veal's ability to verify seven design benchmarks in Chalgtefinally, Chapteld8 concludes
our work with a summary of our contribution and proposesasdedirections that may

potentially scale the approach further.



Chapter 2

Background

In this chapter we survey relevant work in the area of forneaification of control logic in
hardware designs, and particularly in microprocessorsaitiqular. Over two decades of
research in these areas has made it possible to addressatlemghs of verifying state-of-
the-art designs, with feasible and practical solutions.

Early efforts in this area attempted to answer two main golest

e What is the mathematical model that represents the (spaoiiicand implementa-
tion of the) design to allow scalable verification?
e How should the verification criterion be formulated? i.eowhshould the correct

behavior of the design be defined?

Due to the tremendously large state space of a microprocesshavior, most veri-
fication methods have incorporated one or more forms of attstn. Therefore, the first
guestion involves choosing the right level of abstractmmeduce complexity, while pre-
serving enough information to allow meaningful verificatid he choice of the abstraction
method has implications on the size of the resulting modu, the needed “mechanical
tools”, mainly mathematical reasoning methods, to conedlet verification task. The sec-
ond question touches on the, somewhat philosophical, tdefirof “what it means to be a

correct design”. Our work focuses on the first quegtion

1Examples of methods that focus on the second question ia¢hake of Aagaardt al. [El], Bose and

Fisherﬂ) , Burch, Dill, and Windle 5&‘1@3], Bryardt al]l14], Hosabettiet al. , Manoloiset al.
| 16<] .

[@][@ ], Sawada and Hurﬂb 1], Srivas and Bickio[53], and Velewet al.



2.1 Abstraction-Based Verification

In general, methods for the verification of control logic ircroprocessors and microcon-
trollers can be categorized into two types. The first typkzes the structural pattern in
a design’s description, to differentiate the datapath ftbencontrol logic, and in turn to
apply aggressive abstraction of the datapath. We will refehis type adDatapath Ab-
straction The second type, which we refer to Rperty-driven Abstractionmodels the
design as, roughly speaking, one finite state machine, awtporates the specific prop-
erty being checked in the abstraction process. We will des¢he relevant work in both
categories, noting that datapath abstraction has beeerajrspeaking, more prevalent in

the literature of microprocessor verification.

2.1.1 \Verification based on Datapath Abstraction

In this type of verification, the abstraction is applied te ttatapath, while in most cases
control logic is left at the concrete Boolean level. Initlaéthods were based on theorem
provers; later methods evolved by increasing automati@hsmalability. The following

briefly describes these efforts in chronological order.

Manual Abstraction and Verification

The verification of full-fledged microprocessor controlidates back to 1990; Srivas and
Bickform B] used the Clio Theorem Prover to verify Mini Gaya, a simplified version
of the Cayuga RISC microprocessor developed at Cornell éygity. Both the 3-stage
pipeline and an abstract unpipelined specification wereateadn Clio at an abstract “in-
structions execution” level. Part of the verification tas&swfacilitated by Clio, which
performed automatic symbolic execution, expression nbzatson, generalization and in-
duction. Large portions of the task, however, needed mantealention for modeling and

verifying the design. The verification was done with manwedecsplitting, formulation of



criteria, and mechanical proofs; the total effort was eated to be one man-year. Datapath
elements were manually abstracted into black boxes withspelcified behaviors. A sim-
ilar approach was taken by Cyrlik [24] using PMSI[49]. Dathpanits were represented
using integers, rationals, higher-order logic, and progreng language structures such as
arrays, lists, and segments. Widley and 4;13 [62] used the ] theorem prover to

model the datapath with higher-order logic.

Automatic Verification

The work by Burch and DiIIIE'S] in 1994 represented a breaktigh in terms of automa-
tion and scalability. The authors suggested modeling thapadsh with fully black-boxed
units, called uninterpreted functi&and presented a solver for a logic they dubbed EUF,
or equality with uninterpreted functions. These UFs “sarlil” abstract datapath elements
in the pipelined implementation and the unpipelined speatiton of the microprocessor.
This allows the designer to isolate and independently yeldtapath elements, then “plug
them back in” as UFs, enabling an automatic reasoning ertgirtkscover bugs in the
control logic, which is left unabstracted. This work spadm@enumber of subsequent ef-
forts including the work of Sawada and HUEI[SO], Lalketi al. [Q], and Velevet al.
[H][Q][Q] ][BH These approaches were used to verify microprocessorsavitti-
tectural features as complex as out-of-order executiorgwere interrupts, multi-cycle
datapath units, and branch predictors. However, they ##&ad from limited automation
in formulating the verification criterion, as well as the @hstion of the datapath. Sawada
and Hunt’s work, for example, used the ACL2 theorem proﬂ [8 verify the control
logic of the DLX microprocessor using EUF, requiring threenths of manual effort for
the abstraction and verification.

Along the lines of datapath abstraction, CMU’s UCLID Iangam] was designed to

2Corella @Z] was the first to suggest that UFs can be used tosgbsway details of the datapath.
3The main difference among these methods was in the forronlafithe verification criterion.



facilitate the modeling of microprocessors. SpecificalyCLID model allows the user to
express the interactions of the datapath and control Iaga&c\aeord-level state machine. In
addition, the datapath can be modeled abstractly in the @idi¢| which enhances EUF
with limited form of counting and efficient memory modelinBased on the UCLID lan-
guage, the authors proposed a number of methods to autathatdecide CLU formulas
within the UCLID tool. In addition to the UCLID group at CMU, &holios and Srinivasan
] were the first to use UCLID to verify the control logic of &Scale-like processor.

Lahiri et al. also used UCLID to verify an out-of-order microprocess@j[3

Automatic Abstraction

Despite their merits, UCLID models have to be “derived” fraritro-architecture descrip-
tions that are written in an HDL such as Verilag |[54]. [4] weade the pragmatic
assumption that designers would be unwilling to manuallyegate a UCLID model for

verification purposes, since this necessitates laboripalysis of the RTL model, as well
as incremental updates to the UCLID model whenever the RTHeahis updated. This

not only leads to longer verification iterations, but alsahte possibility of injecting addi-

tional bugs due to human errors, while hiding real bugs irotiginal RTL model. Instead,

the work in Dl] showed that Verilog models can be automadiicabstracted” to produce

UCLID models that are suitable for verification. Similalypjati and Brayton|[31] trans-

late RTL Verilog to an ICS (Integer Combinational Sequdr@iancurrency) model, which

describes hardware systems at a high level of abstractiog usegers, interpreted and
uninterpreted functions.

It is worth mentioning that none of the previously describegthods incorporates auto-
matic refinement techniques on the abstracted elementsn Wlabstraction is too coarse
to reason about the correctness criterion, false negadiies and have to be eliminated.
Thus, verification based on these methods proceeds itelsaty manually refining the

abstraction until the correctness condition can be estadudi or a genuine design bug that

10



violates it is found. The first automatic refinement techeifpr the EUF and CLU logics

was introduced irﬂZﬂSHS], and forms the basis of the agmtodescribed in this thesis.

2.1.2 \ferification based on Property-Driven Abstraction

While the automation of datapath abstraction is relativetgent, property-driven abstrac-
tion has been thoroughly studied in the context of model kingcby Clarkeet al. ]
and Cousot and COUS(E23] for over two decades. Moreovagnaatic refinement
has been studied as well, wherein false negatives are atitathachecked and elimi-
nated, making the abstraction both sound and complete. process is often referred to
as Counterexample-Guided Abstraction Refinement (CEGARort), and it has been
shown to be an effective paradigm in a variety of hardward,emen software, verification
scenarios. Originally pioneered by KurshEI [36], it hagsiheen adopted by several re-
searchers as a powerful means for coping with verificationgexity. Clarkeet al. [Q],
Jainet al. [Q] and Daset al. [Q] have successfully demonstrated the automation of ab-
straction and refinement in the context of model checking#&bety properties of hardware
and software systems. In particular, these approacheteaeamaller abstract transition
system from the underlying concrete transition system eerdtively refine it by eliminat-
ing spurious counterexamples due to the incompletenedsedhitial abstraction. These
methods have been successfully used in practical systemis,as the Microsoft SLAM
project B’]B] and the Synopsys RFN Tool [60], and reseanctinis domain is still actively
on-going.

The abstraction in this category is of two types. The firsetypferred to as localization
reduction EH[ZH[ZH{;H{_—QL] abstracts the transitisystem by hiding state variables, i.e.
replacing the driving logic of some registers with “don’tes’. The second type, referred
to as predicate abstractic]ﬂZB], abstracts the transsiistem by projecting it onto a finite
set of predicates that are relevant to the property beingkelte Localization reduction is

mainly suitable for hardware verification since the reasgns done at the level of bits.

11



Predicate abstraction, on the other hand, reasons aboutisvad data” and was originally
adopted to verify software. The use of predicate abstmadgtidhardware verification has

been done recently by Jait al. [33], and was tailored for designs expressed in Verilog.

2.2 SAT-based Verification

2.2.1 SAT Reduction

Since the introduction of model checking and theorem prtinthe arena of formal ver-
ification, researchers have used reductions to propoaitenmd first-order logic, and used
reasoning engines as back-end tools. In particular, thetB&ary Decision Diagrams
(BDDs) |13] and SAT solverJﬂJﬂm made these reductiorgpde feasible option for
formal verification methods, both as a theoretical framéwanrd for designing practical
and efficient tools. For example, several synthesis andicegion methods reduce the
original problem to solving a SAT instance, and apply o#-8helf SAT solvers on it. Al-
most all recent verification approaches rely on satisfigtslolvers as their back-ends. In
this section we formulate the satisfiability problem, iluoe commonly-used notations,

and survey available solutions.

Solving Boolean SAT

Boolean (more accurately, 2-valued) satisfiability sadvesive made tremendous practical
progress over the past decade, despite the fact that thidg tac NP-complete problem.
Given a set of constraints over Boolean variables, the SAbBlpm seeks a satisfying as-
signment to the variables that is consistent with all thest@ints, or outputs UNSAT if no
such assignment exists. The most commonly-used formulagifers to a conjunction of
constraints, each (called a clause) represented as adisjuof literals, where a literal is a

2-valued variable or its logical negation. This format ifereed to as Conjunctive Normal
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Form (CNF). For example, the CNF formulal’) A (x1V x2) A (x1V X2 V x3) conjoins a
1-literal, 2-literal, and 3-literal clauﬁs

Contemporary SAT solvers such as MiniSAEI[ZG] are able todllCNF instances
with tens of thousands of variables and millions of constgiThus, it has been common
practice to reduce verification problems to CNF instancewlbich an off-the-shelf SAT

solver can be invoked.

Solving Segments of First-Order Logic

Theorem provers incorporate different techniques foriagl¥irst-Order Logic (FOL) for-
mulas by combining ‘theory solvers’. The earliest methogsattributed to Nelson and
Oppen [47] and ShostaHSZ]. The latest generation of thebers target the decidable
subset of FOL, and is referred to as Satisfiability Modulo drigg SMT) solvers. These
solvers integrate the theory solvers within a backtrackpstional solver, thus being able
to take advantage of the high-level semantics of the nopgsitional constraints (e.g.,
EUF constraints) while at the same time benefiting from thvegrtul reasoning capabilities
of modern propositional SAT solvers.

A different approach to solving quantifier-free FOL formaileelies on reduction to
SAT. The original formula is converted to an equi-satisggimopositional formula using a
suitable encoding, which is then checked for satisfiabiiitya Boolean SAT solver. A sat-
isfying assignment is then mapped back to the original féamthis family of solvers was
mainly developed for deciding the validity of EUF and CLU [fdrmulas. The main con-
ceptual difference between these encoding-based solve SMT solvers is that the former
encode all the constraints required by the logic beforehaide the latter incorporates
relevant constraints in an on-demand fashion. The incréahand cooperative framework

of SMT algorithms allows them to be extensible to many tresguch as equalities, UFs,

4The formula can also be described(a¥) (x1 + x2)(x1+ x2’ + x3). This more compact notation will be
used throughout the thesis.

13



linear and non-linear arithmetic, and fixed-size bit-vestd his gives SMT-based solvers

an edge over direct reductions to Boolean SAT.

2.2.2 Unsatisfiability Proof Extraction

Explaining the unsatifiability of SAT instances is an impmitchallenge for several SAT-
based applications, including formal verification of haadlex Given a CNF formula, an
Unsatisfiable Sub-formula, or US for short, is the conjunttof an unsatisfiable sub-
set of the formula’s constraints. A Minimally Unsatisfial#eib-formula (MUS) is a
US such that it becomes satisfiable when any constraint isveda For example, the
CNF formula(x1)(x1')(x2)(x2') (x1+ x2) has 3 MUSes, namelix1)(x1'), (x2)(x2'), and
(x1)(x2')(x1+x2). Any subset that includes one or more of these MUSes is a US. Ex
tracting USes and MUSes from unsatisfiable formulas wasusst in [64] to “explain”
the unsatisfiability of CNF formulas. Two algorithms, zCarel zMinimal, were designed
to find a US and an MUS, respectively, from an UNSAT formulae ®MUSE [48] and
CAMUS [38] tools were later introduced and were geared tdwaerformance and finding
multiple small MUSes. The latter can also find all MUSes ohaegiUNSAT formula.
When a SAT algorithm is invoked on a CNF instance that encdugs-level con-
straints, proving its unsatisfiability indicates the irdmlity of the original constraints.
Thus, extracting USes and MUSes of an unsatisfiable formarnebe used to “diagnose”
the infeasibility of the original problem. In the context@QEGAR, USes and MUSes have
been utilized to analyze the infeasibility of abstract demuamplesﬂZE?;] that arise when
verifying the abstraction. In these cases, the abstracttecexample represents a scenario
that is allowed by the abstraction, but is disallowed wh&mtainto account the constraints
of the concrete design. USes can thus pin-point the caudeseakibility and determine
the required refinement of the abstraction, in order to elaté the infeasible counterexam-
ple in the current iteration. Identifying these constraiaows CEGAR-based algorithms

to automatically refine the abstraction and resume the eatifin. Furthermore, using one

14



or more MUSes during this analysis helps in identifying géamumber of concrete con-
straints that are crucial for checking the correctness itiongwhich if left abstracted will

cause additional infeasible counterexamples. Predidtifggsible counterexamples, and
eliminating them as early as possible in the refinement lbejms to reduce the number of

abstraction/refinement iterations in CEGAR-based methods
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Chapter 3

An Approximation-based Framework
for Hardware Verification

In this chapter we explore a verification approach that aesyhe structure of the design,
and automatically derives aapproximationon which state-of-the-art verification algo-
rithms can be applied. This chapter will first formalize thegification task, and will then
describe a generic approximation framework and its use asaiqal approach to veri-
fication. For such an approach to be scalable, the approximahould be significantly
easier to verify than the original design, and such verificeshould yield meaningful con-
clusions about the correctness of the original design. it ¢hapter we show how the
approach can be adapted in order achieve these objectigak) 8o by setting up a generic

approximation framework, whose specifics are refined in @gb

3.1 Problem Formulation

Our framework assumes that the design is given as a reaainsition system, which is
described via sequential and combinational hardware coergs that are connected to the
inputs and outputs of the design. Each component is chaiedeby a so-calledonsis-
tency functiorthat characterizes its functional behavior by relatingitputs and inputs
with appropriate constraints. In addition to the desigredption, the framework requires a
sequential bounHl, such that the correctness of the design is proven only upatdobund.

While requiring a known bound may seem to limit the utilitythé approach, empirical ob-
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servation suggests that it has application in many sitnatwehere such bounds are known
a priori or can be easily derived from the particular streetof the design. Examples in-

clude verification of pipelined microprocessors, packetecs, and dataflow architectures
common in filters, etc.

Given the design’s description and the bouqdinrolling is used to derive a purely
combinational description of the design’s transitiontiela This process is linear inand
the size of the design. If we |e€ denote the set of variables in the unrolled description,
then the consistency function of each interconnected coemtd can be described by a
constraints;(X), and the formulaxac{X)= A Ei(X) characterizes the entire behavior
of the unrolled design. In most cases, veriflicgztl'algtinon is donedmgparing an implementation
design to a specification “design”. In these camesc{X) includes the unrolled versions
of both designs.

The verification problem can then be phrased as the questiestablishing theva-
lidity of the formulaexaci{X) — prop(X), whereprop(X) indicates a specifiedorrect-
ness conditicﬂl An equivalent, but slightly more convenient, form of thrhula is
exac{X) - (p= prop(X)) — p, wherep is a free variable (not iX) that represents the
property being checked. In this form, the sub-form(te= prop(X)) can be viewed as
the consistency function of the correctness property irstmae way thaéxact{X) is the
consistency function of the concrete design. For simplitibwever, and bearing in mind
that it can be considered partefac{X), we will omit (p = prop(X)) from our formulas.

Checking the validity okexaci{X) — p is typically done by checking the satisfiability

of its negation:

¢ (X, p) =exac(X) - —p. (3.1)

Proving the unsatisfiability of (3.1) establishes that thapprty holds, while a satisfy-

ing solution(X*,0) demonstrates the existence of a design or specification bug.

1Also know as “verification criterion”
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3.2 A Scheme for Approximation

Except for trivial designs, checking the satisfiability@8I) directly is generally infeasible.
Instead, in the proposed scheme the property is verified @pproximationof the exact
design, which is a partial representation of the desigmistionality. For such an approach
to work, the approximation must, by construction, be sigaiiitly easier to verify than the
original design, both computationally and practicallyalgo must be related to the original
design in such a way that verifying it allows deriving corsstins about the original design.
Along these lines, we will introduce a generic notion of sdress and completeness with
respect to a propertg, which are useful for deriving suitable approximations aswill
show later. Throughout these definitions, we will #d€X) to denote a conjunction of
constraints oveX that models the design, either exactly or approximately.bFevity, we

will omit M’s explicit dependence oX.

Definition (Relative Soundness and Completeness) (M; — p) — (M2 — p) is valid
(i.e., holds true for all assignmentsXg, whereM; andM, are two models of the design,
thenM; is called a sound approximation ®k, andMs is called a complete approximation

of M;.

It is easy to show that soundness, as well as completenedsaasitive, reflexive, and
anti-symmetric relations, therefore definipgrtial ordersover the possible models. Since
completeness and soundness are dual, we will unify the t@ersrand use< such that
Mz <p My if M1 (M) is a sound (complete) approximationidf (My).

If we let E denote the constraints that exactly model the originalgphe@ie. E=exact X)),
then a soundness and completeness notion can be definegfoxiapations ofE as fol-

lows.

Definition (Soundness and Completenesg)pproximationA is called sound (complete)

if E<pA(A<pE).
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Approximations that are sound, complete, or both, can bg useful, particularly
when it is significantly easier to check the validity @ — p) than to check the valid-
ity of (E — p) and still draw meaningful conclusions abdtt Approximation-based
methods are, therefore, based on the idea of deriving aroxippation, checking the
property on it, and drawing conclusions on the original mo#er example, if the prop-
erty holds on a sound approximation, it will definitely hold the original model, since
(E<pA)A(A— p) — (E — pl. Conversely, if the property is violated on a complete
approximation, it will definitely be violated on the origimaodel.

We can reason about the space of soandcomplete approximations by simplifying

the expression iRelative Soundness and Completertegmition:

(M1 — p) — (M2 — p) = (Mg +p)’ + Mz + p)
=M1p' +Ms+p
=My+Mi+p
=M2—M1+p

= Myp' — My

and replacingM; (M>) with A (E) to represent soundness, and vEt(A) to represent com-

pleteness:

Soundnesst <pA= (A—p) = (E—p)=E—A+p=Ep —A
CompletenessA <pE=(E—p) > (A—p =A—E+p=Ap —E

Therefore, any sound and complete approximafanust satisihyEp — A — E + p,
which can also be written a& € [Ep,E+ p]. In this interval, we have great latitude in

choosing the approximation, as illustrated pictoriallyFigure[3.1.

2This can be shown easily from tiRelative Soundness and Completertesmition.
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Figure 3.1 Sound and Complete Approximations

Our final set of definitions introduce over- and under-appnations, which are special

cases of sound and complete approximations, respectively.

Definition (Relative Over- and Under-Approximation) if My — My is valid, thenM»

over-approximateM;, andM; under-approximatell,.

Similarly to sound and complete approximations, over- andet-approximations de-
fine partial orders over the possible models, and are repesgeavith the operato.
Finally, Ais calledan over-approximatioif E < A, andan under-approximatioif A < E.

It is important to note that over- and under-approximaticers be defined without ref-
erencing the propertp under consideration. As we will shortly show, this will berye

useful in our framework.
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3.3 \Verification based on Approximation

As mentioned earlier, the goal of verification methods tts# approximations is to find
a soundand complete approximation that simplifies the verificatiorkta3 heoretically,
finding such an approximation is as hard as solving the algnoblem. Practical algo-
rithms, instead, start with an approximatiéf of E that is either sound or complete (but
not both), and check the property on it. Then, a sequence tf agzurate approximations
Al AZ . AKis iteratively generated until the property can be provefailar hold onE.
Figure[3.2 highlights the main steps in this iterative agpnation/correction approach.
In this figure, diagram (a) illustrates the generic approadtereas diagram (b) shows a
special case based saundapproximations. The algorithm starts with a sound appraxim
tion A° that is not necessarily complete (i< A%. Then, througlincremental tightening

a sequence of more accurate approximatidhs, AK-1 < ... < Al is generated such that

e Initerations =0,...,k— 1, the property is violated off but not onE. The violation
witness, also called a counterexample, represerfitdsa negativeclearly indicat-
ing thatA' is not complete. A new approximatioN*?! is then derived such that
E<AFL <AL

¢ In the last iteratiork, one of two scenarios takes place: the property is violated o
both Ak andE; or the property holds oA¥ , i.e. AKX — p. Note that soundness is
preserved throughout the process of tightening the apmation. Therefore, if the

property holds on the last approximation, then it also holighe exact model.

Diagrams (c) and (d) in Figule=3.2 illustrate this verifioatiprocess in the space of
assignments, when the sound approximations used are ppespa@mations.

In a dual algorithm, an initial complete approximation isitied against the property.
If the property is violated on the approximate model, it ifirdeely violated on the original
design; otherwise, no conclusion can be made and the appatximodel igelaxedto

finally obtain a sound approximation for which the propertyds.
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Diagram (e) in Figuré_3]12 describes the space of all possituldels of the design,
such that each point represents a single model, which cahebexact designH), or a
(sound, complete, over-, or under-) approximation therébé diagram also demonstrates
the relation between these models. For example, everyap@oeximation is sound, there-
fore, O C S Finally, the diagram shows the various possible approtion&orrection
processes, particularly tightening (patbs — O, — Oz and$; — S — S3) and relaxing
(pathsU; — U, — U3z andCy; — C, — C3). As described earlier, the algorithm can either
terminate when a sound and complete approximation is adgmg.S3 € SNC), or in an
earlier iteration when a real violation is found.

Both approximation-based approaches (i.e. tighteningugerelaxing) are used nowa-
days in many verification contexts, in hardware as well aswso€. The traditional
verification scheme starts witsimulatingthe design in order to “hunt” for bugs; simu-
lation is a form of approximation-based verification, sitice property is verified given a
specific input vector. The behavior of the design for thisuingector is a complete ap-
proximation of the original design. In this contextfase positiverefers to the scenario
wherein the property is violated by the original design, redviolation is not caught when
verifying the approximation (i.e. simulating the desigithe presence of false positives
is a compromise that designers are willing to make in retarrs€aling up the verification
(i.e. simulation) time. Recent methods (e.EI [60]) guide simulation based on formal
methods, and in turn correct the original approximationawdr the possibility of false
positives. This can be considered a form of relaxation.

When reaching a certain level of confidence regarding thectiress of the design, the
designer becomes interested in proving the lack of bugsefiie, the intuitive solution in
this case is a “top down” iterative tightening based on soapytoximations, such as the
algorithm we are presenting.

While an iterative approximation/correction approach pealing at a conceptual

level, its applicability hinges on two main premises. Fitee approximation process is
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Figure 3.3 An “Unabstractable” Equivalence Cricuit

computationally easy, such that its benefit outweighs therinloss of information that
requires correction to make it sound and complete. Formestdinear-time over- or under-
approximations can be obtained via relaxing or tightenimegdesign’s constraints that are
associated with certain components. This can be done indepdy of the property being
checkeH, which gives over- and under-approximations an edge overdypes of sound
and complete approximations. For example, the full-fledgedtionality of an arithmetic
unit is replaced with a restricted version that models, Bayndary cases such as an over-
flow computation or a division-by-zero flag; this creates adear-approximation of the
design. Datapathbstraction which concerns us in this thesis, is another example of an
easy-to-derive over-approximation that is independeth@fproperty.

The second premise is that thexeistsa sound and complete approximation, that is
significantlydifferent than the original design, on which the property ba proven to hold
or fail. The existence odny sound and complete approximation, let alone one that sig-
nificantly differs from the original design, is not alwaysvudius, nor guaranteed. This is
especially true when the approach is confined to a class gbaippations, such as over-
approximations. For example, consider the circuit in FedBr3(a), in which a Boolean
variablex is compared tg, another Boolean variable that is equivalenktthrough the

AND gate. In this casexac{X) — p, as it can be inferred from the expression in (c).

3This is true for a certain class of properties, such as baligdfety.

24



However, it can be shown by inspection that any over-appnakbnA obtained by remov-
ing one or more constraints froexac{X) is sound but not complete, i.& — p. In this
case, and many similar cases, applying iterative overeqapiation/tightening is likely to
be significantly slower than attempting to establish théditgl of the exact formula, since
the iterative algorithm will gradually tighten the apprortion until it is ultimately iden-
tical, or very similar, to it. Therefore, the existence otlswa “hoped for” approximation,
or the lack thereof, can determine whether applying appmakion is beneficial, and can
assist the verification engineer in developing an intuitegarding its applicability. In the
context of datapath abstraction, our method and experahezgults confirm the following

conjecture:

Conjecture 1 An approximation process, wherein similar datapath congomsin the im-
plementation and specification are abstracted similadygds to an over-approximation

that is sound and very close to being complete.

While earlier work (e.g. IHZH&S]) showed the existenof a soundand complete
approximation, and demonstrated how it can be derived nignwar work shows that
an automaticallyderived approximation is sound, and in most cases very ¢tbeing
complete. In turn, it can lead to meaningful verificationuleswithout compromising the

potential scalability of abstraction.
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Chapter 4

Verification Based on Datapath
Abstraction and Refinement

In this section we show how an iterative approximation/ection approach can be utilized
to verify the complex control logic of hardware designs dibsd at the Register Transfer
Level (RTL). Our system performs bounded model checkﬂmgoﬁ8$afety properties on
hardware designs described in Verl]ogA typical usage scenario involves providing two
Verilog descriptions of the same hardware design, such &ghalével specification and a
detailed implementation, and checking them for functiegulivalence. Given a Verilog
description and a sequential boundhe system extracts a word-level representation of the
design’s transition relation and unrollskittimes to create a combinational description of
the design, on which the approximation/correction apgiaan be applied.

In the following subsections we will start with an overviedtbe Verilog hardware
description languag 4], and define the verification pFobbf Verilog descriptions at
the RTL. We will follow that with an algorithm based on the apgmation scheme de-
scribed earlier. The approach over-approximates the désigemoving datapath-related
constraints, and performs verification on the constraipsasenting the control logic. In
this new context, the terms “abstraction” and “relaxatianll be used interchangeably to
denote over-approximation, and “refinement” will be usedéaote correction or tighten-
ing.

1Extensions can be applied to other HDLs without comprorgisiiee merits of the approach.
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4.1 Verilog Descriptions

One of the major differences between RTL and gate-leveldgis that RTL Verilog de-
scriptions operate at the word-level, i.e. they manipulateds of data, usually referred to
as bit-vectors. Datapath elements are usually described big-vectors. The control logic,
on the other hand, uses single-bit signals to control thepcwation with the use of mul-
tiplexors and logic gates, that are respectively descrilyedonditionals (e.gif-then-else
andswitchstatements) and Boolean expressions.

Formally, an RTL Verilog description defines a set of sigrldwV, |, and M, re-
spectively denoting the registers, wires, inputs and meson a flat representation of
the design. Each signal M = RUWUI can be either single-bitv/¢ C V) or multi-bit
(VP C VE, and signals irM are multi-dimensional arrays of bits. The interactionshaf t

design components are defined in Verilog via assignmentseXample, the Verilog code

fragment

reg [31:0] r;
always @(posedge clk)

r<=rl+r2;

defines the next state of a 32-bit regigter R as a function of other signals in the design,
i.e.rq andr.

Let X denote the set of variables in the unrolled description hiaterconnected com-
ponent with output; € X can be described by the consistency consti@ix) = (x =

fi(X)) wheref;(X) defines a Verilog word- or bit-level expression:

2The naming convention used here associates single-bilsigiith control logic (hence “C”) and multi-
bit signals with datapath components (hence “D”). The ratie behind this will be clarified in later sections.
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Gi whereg; is a constant
in; wherein; is an input

op (Xj,,---,Xj,) Where Verilog operatoop is

\ applied to signals;j, , ..., xj, € X

The consistency constrai@t(x1, Xz, X3)=(Xs = X1 + X2), for example, uses the ‘+’ op-
erator to define a word-level constraint that models a 32dider by equating the signal
with the sum ofx; andxy, wherexy, xo, andxs are 32-bit signals. Note that a compound
constraint can be used to characterize two or more seriatyected components. For
example, the constrai@(x1,X2,X3)=(X3 = X1 + X2 > 4) uses two word-level operators,

namely addition and right-shifting, to compose a constrtiat conjoins two simpler ones.

4.2 Term-based Abstraction Framework

A common way to abstract design’s elements is to replace thiémterms uninterpreted
functions(UFs), anduninterpreted predicate@JPs) [15]. The resulting term-level abstrac-
tion maintains the consistency of the removed elementsowitrepresenting their detailed
functionality, and leads to a significant reduction in treesif the design’s state space. The
abstractionstep is followed byproperty checkingndrefinementProperty checking deter-
mines if the abstracted design satisfies the specified gyop&finement determines if the
abstraction was sufficient to establish whether the prggetds or fails on the concrete
design and, if otherwise, to refine the abstraction accgtgin

As mentioned earlier, term-based abstraction can be viasedrelaxation of the sys-
tem of constraints that characterize the concrete desigrecifically, if each concrete
consistency constrai@; (X) is relaxed to a corresponding abstract consistency camistra
A ()A() , whereX andX denote the concrete design signals and their corresponbisteac-

tions, we can model the abstract design by the formabls(X) = A Ai(X). Note that
1<i<n
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congdX) — abs(X)H.

Formally, we introduce (-) to denote the abstraction process:) maps the concrete
variables and operators to appropriate abstract coumtsri@pecifically, ifé is a concrete
variable or operator, its abstract counterpart is denoted (£ ) = E. Applying a(-) to
the concrete constraif(xy,...,xx) yields a(C(xy,..., X)) = a(C)(a(X1),...,d (X)) =
C(x], ...,X). In general, any expression involving concrete variabtesa@perators can be
abstracted by recursively applyimg-) to its sub-expressions. For example, applyir(g)

to the constrain€(Ry, Ry, R3)=(Rs = Ry + R > 4) yields

a(Re=Ri1+Rx>4) = (a(Rs) = a(+)(a(Ry),a(Ro > 4)))

= (a(Rs) = a(+)(a(Ry), a(>)(a(Re),a(4))))

Using the mappings (+) = add, a(>>) = shift, a(R) = R, anda(4) = four, we have
A(R1, Rz, R3) = (Rz = add(Ry, shift(Ry, four))).

Different types of abstraction can be defined based on arppate mapping between
the concrete constants, variables, and operators, andatisiact equivalerHs Further-
more, this approach can take advantage of the design Hgrand apply abstraction to
the design at different levels of granularity. For instgraxe entire datapath unit, such as
the ALU, can be replaced with a single UF or UP. Such heteregas abstraction can be
automated based on syntactic rules, and can also allow mag=tdairly intuitive, inter-
vention in the abstraction process. While (manual) hiéngilzased abstraction has been
mainly used with theorem proving, our approach focuses tonaating the abstraction at
the level of the desigeignals and thereforex(-) is defined for each signal in the design.

In addition to abstracting combinational elements waih), tractable verification may
require the abstraction of memory arrays. Applying onlyrtdrased abstraction to am

word by m-bit memory yields am-term abstraction. For memories of typical sizes in

3congX) corresponds texact X) introduced in Chaptdd 3.
4Conceptually, this applies also to other abstraction migho
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current designsn is on the order of thousands to millions of words. Memory idusion
allows modeling am-word memory by a formula whose size is proportional to theber

of write operationsK, rather than tm. Note that memory abstraction is distinct from term-
based abstraction. A useful mnemonic device is to think whtend memory abstraction
as being, respectively, “horizontal” and “vertical;” thegin be applied separately, as well
as jointly.

Our system implements memory abstraction using Iambdaeesicomle'Z]. In partic-
ular, the expressioM’(x) = Ay.ite(x = A,D,M(x)) describes the next state of a memory
arrayM after a write operation with addregsand dateD. The operatoite is an if-then-
else construct simulating a multiplexer. Replacing menvaiijes with ite expressions and
UF applications is performed during the process of unrgllsuch that the final formula is
lambda-free.

For example, the Verilog code fragment in Figlrel 4.1 dessrithe behavior of a
16-word memory that has two ports, one for reading and onevfiing, and Tabld"Z]1
describes the state of all the design signals, includingribmory array, in the first four
cycles of execution after initialization. Two write opeaats are performed on the mem-
ory; the value 1 is written at location 1, and the value 3 igtemi at location 3. The read
port, which always samples the content of the memory in londt, reads the value stored
originally in the memory in cycles 0 and 1, and reads the valstarting at cycle 2, due to
the write operation that was performed in the previous cycle

Given these abstraction mechanisms, the algorithm pesftinmsatisfiability check on

the abstraction of formul&(3.1) (palgd 17), i.e.

A~

(X, p) = a(¢(X,p)) = a(cong(a(X))-a(-p) = abs(X)a(-)a(p). (4.1)

Using an appropriate abstraction operafar](4.1) can bsiderably simpler thai (3.1),
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reg [31:0] Mem [15:0]; // Memory Array

reg [3:0] Addr; // Address of Write Port

reg [3:0] Read; // Address of Read Port

reg [31:0] Data; // Data for Write and Read Ports
reg en; // Enable signal for Write Port

initial begin
en = 1'b0;
Addr = 4'd0;

Data = 32'd0;
end

alwayﬁ begin

assignRead = Mem[4'd1]; // Reading the content of location 32'd1.

8ln most cases, memory writes are synchronized on a clock éxld¢fgis example,
however, we omitted any clock specifications to simplify éx@osition.

Figure 4.1 A Dual Port Memory in Verilog

Table 4.1 Symbolic Unfolding of Memory using Lambda Expressions

C | Men? en| A | D | Read®

0 | Memx) = AcM(X) 0[0|0|MD)¢S
Mem(x)

1| =Aite(OA(x=0),0,M(x) | 1 | 1|1 |M(2)
= Ax-M(X)
Mem(x)

2 | = Aite(AA(x=1),1,M()) | 0 | 2| 2 | ite(1=1,1,M(1)) =1
= Ax.ite(x=1,1,M(x))

Mem(x) = Ay.ite(OA (X= 2),

3| 2 ite(x=1,1,M(1))) 1]3|3]ite1=1,1,M(1))=1
=ite(x=1,1,M(1))
Mem(x) = Ay.ite(1A (x=3), ite(1=3,3,

4 2,ite(x=1,1,M(1))) ite(1=1,1,M(1))))
=ite(x= 3,3, =1

ite(x=1,1,M(x)))

aThe transition function for Mem in this case iddeni(x) = Ax.ite(enA (x =
Addr), Data, Mem(x)).

bThe value of the Read port is the instantiatiorMe#m(x) with x = 1.

¢Since the memory is not initialized in Verilog, the WFis used to represent the
initial memory state.
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facilitating its quick solution by a suitable satisfialylithecker. Next, we will define the
soundness criterion for this abstraction scheme, and tksaritbe two families of term-
based abstraction.

To reason about soundness, note th&t) maps Verilog equality to the interpreted
equality predicate between terms. ThtﬁSX, p) has to adhere to two basic rules; equality

transitivity, and functional consistency.

Definition (Equality Transitivity) Equality Transitivity w.r.t. any three ternts, t, and

t3, is defined by the relatioft; =t) A (t2 =t3) — (t1 =t3).

Definition (Functional Consistency)Functional Consistency w.r.t any two sets of terms

X1,..., % andyi,...,yn and a UF or UP f of arityn, is defined by the relatiof(x; =
YA A =Yn)] — [F(X1,..., %) = F(Y1,---,¥n)]-

To related (-) with ¢ (-), we have to show that the set of constraints arising(ir) are
implied by the concrete formulé(-). To do so, we examine the constraints affecijr{g)
based on its structure and semantics.

Consider for example the concrete constré&ity, Xz, X3)=(X3 = X1 + X2) introduced
earlier. It embeds three different constraints impligidyfan-in constraint” defining the
relationC(x1,X2,X3) = (x3 = f(X1,X2)) for some functionf; a “domain constraint” defining
the possible values of the variables, in this casex, o, x3 < 2%%; and a “semantics con-
straint” defining the exact interpretation df which is 32-bit addition in this case. Fan-in,
domain, and semantics constraintsgi(t) are denoted by, D, andS, respectively; and
their counterparts i (-) arelF, D, andS. The relation between these sets is described as

follows:

e The abstraction preserves the connectivity of the cirdugt, F = F, which can be
easily shown to hold in our case from the definitiorogf).
e A necessary condition fax(-) to perform over-approximation is that it is a 1-1 func-

tion w.r.t. variables. Consider, for exampt®nc= [p= (x=Yy)], and an (erroneous)
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abstractionaer(-) such thataer(p) = p and aerr(X) = derr(y) = 2 In this case
Oerr(cONQaer(X) = [p= (2= 2)], and we can show thgp = (2=2) — p| — [p=
(x=Yy) — p| does not hold, i.e]aerr(coONgader(X) — p| — [condX) — p] is not
true. Therefore, we require in our framework tlgix) = X for each variable € X,
wherexis a “relaxed” version ok, and in turn we hav® — D. Relaxation, as we

will shortly see, can be done by removing the bound condsalogether.

With these restrictiongp(-) over-approximateg(-) if S — S. In the next subsections
we will define two types of abstraction, and show that the aliowlication, and in turn

soundness, holds true for each type.

4.3 Abstraction to the EUF and CLU logics

4.3.1 Abstraction to EUF

To perform abstraction to the logic of Equality with Unirgested FunctionslﬂS], dubbed
EUF, the set of design signal§ is divided into (single-bit) control signals and (multi-
bit) data signals, denoted B¢ andXP respectively.X¢ and XP in the unrolled design
represent their counterpai$ andVP in the original design description. Generally speak-
ing, and as hinted by the notation, datapath calculatiomparformed with signals iXP,
whereas control logic is defined with signals¥f. Classifying a signal as a datapath or a
control signal based on its bit width is a syntactic heurib]. However, misclassification
of a control signal as a datapath signal or vice versa doesamspromise the correctness
of the approach. Specifically, a control signal that is auséd as part of the datapath
might yield a spurious counterexample and cause an inciedlse number of refinement
iterations. The less probable scenario of misclassifyidgtapath signal as a control sig-

nal causes the abstract model to be unnecessarily detaifigplossibly makes the property

checking step intractable. Our experimental results shaithe overall algorithm is robust
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and quite scalable despite control/data intermixturesrttay lead to the these scenarios.
By the same token, we will use® andOP to respectively denote the control and data
operators. A control operator is one that performs logigarations, i.e. conjunction,
disjunction, and negation, on single-bit signals. All atbperators are considered data op-
erators. Note that an operator is the occurrence of a symhaotpecific constraint, rather
than the mere syntactic token representing it. This is itgmdrsince Verilog, like other
HDLs, defines the semantics of each operation based on itextcla]. For example,
the constrain€;(xy, X, X3)=(Xz = X3 + X2), introduced in Sectioh 4.1, uses a 32-bit opera-
tor to perform addition; the symbol ‘+’ might have differesgmantics elsewhere. As we
will see later, the abstraction process uses ‘contextrmétdion to determine the abstract
counterpart of each Verilog operator.
In order to be geared towards control logic verificatidatapath abstractiomemoves
the detailed functionality of the datapath elements, sschdalers, shifters, etc. The inter-
actions among the control signals, however, are presenaddng it possible to perform
meaningful verification of safety properties on the desigeontrol logic. Along these
lines, consider the class of abstractions (based on oy@pgimation viaa(-)) thatleave
the control logic unabstracted.e., a(-) is the identity function when applied ¢ or
OC. For instanceg (—c¢) = a(—)a(c) = —c. Leaving the control logic in its concrete state
preserves enough precision that allows discovering butigicontrol logic.
In this case (-) is a formula in the quantifier-free first order logic (FOL) aefil by
the following rules:
1. Terms: (a) A non-propositional variable is a term. (b)flis ann-argument function
symbol(n> 1) andty,...,t, are terms, theffi(ty,...,t,) is a term.

2. Atoms: (a) A propositional variable (taking values from 0,1) isatom. (b) IfP is
ann-argument predicate symbgi > 1) andt;, ... t, are terms, theR(t, ... t,) is
an atom.

3. Formulas: (a) An atom is a formula. (b) 1§ andy are formulas, then so arep,
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Figure 4.2 Applying EUF Abstraction to Common Design Components

d A Eﬁ andg Vv (.
EUF [15] also introduces the if-then-else constritieta,t;,t;) as an abbreviation for

the term which is equal tf if the atoma is 1, and is equal tg otherwise.

Definition (EUF Abstraction) aF(-) performs abstraction to the EUF logic by leaving the

control logic unabstracted (i.e., modeled via Booleanitadonstructs).

Figure[Z2 describes EUF abstraction and its effect on déttegnd control logic com-
ponents, while FigurE~4.3 demonstrates datapath absinatii EUF when applied to a

5-stage MIPS-like microprocessor pipeline.
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Note that this datapath abstraction mechanism does nataetethe way terms are
modeled. In particular, since the only interpreted opesadating on terms are equalities,
we have freedom in how to model the terms, including leavireqnt uninterpreted. The
choice of the specific abstraction has implications on uglichecking, as well as refine-
ment. The SMT solver YICE 5], for instance, treats unmmteted terms as integers
and so does our algorithm. Formally, the abstract term oftapdah signat € XP will
be denoted by the intege i.e. aE(d) = d € N. In the rest of the thesis, we will use
andabst(X) to respectively denota®(X) anda®(cond(aF(X)). The abstraction of any
expressiore € EXPis performed by recursive application of () as described earlier.

To illustrate EUF abstraction, consider the Verilog “deSiq Figure[4.4. The verifi-
cation objective is to prove that signalis always true, indicating that the design satisfies
the condition(la= 0) — (d = f). The formula representing the concrete constraints of this
design can be derived by inspection, and is given in FiguAéo.

Using the semantics of bit-vector operations, such as &idrg concatenation, and
shifting, along with the standard Boolean connectives fbiimula can be translated in a
straightforward fashion to propositional CNF so that it t@nchecked for satisfiability by
standard SAT solvers. In fact, for this simple example itugeeasy for a modern SAT
solver to prove thatoncA —p is unsatisfiable which is the same as saying toac— pis
valid.

Our objective, however, is to establish this result usingtragtion and refinement.
A possible abstraction of this design is given in Figlird &).4where detailed bit-vector
operations have been replaced by UP and UF symbols. For éxaiXl is a UP that cor-
responds to extracting the most significant biepand SR2 is a UF that corresponds to a
right shift of b by two bits. Terms in this abstract formula, i.e. variablest ttorrespond to
bit-vectors in the concrete formula, are now considerecttoribounded integers. They can
be compared for equality to enforce functional consistdnityare otherwise uninterpreted

having lost their concrete semantics. On the other handhblas in the abstract formula
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module design();
wire [3:0] a, b;
wire m = a[3]; // msb
wire | = a[0]; // Isb
wirec=m?a>>1:a,
wired=1?b>>2:c;
wiree=m?a: a> 1;
wire f=1? {2b00, b[3:2} : e;
endmodule
. module property();
wire p = !(a ==0)|| (d ==f);
. endmodule
(a) Verilog description

©CoNoOr~WDNE

conda,b,c.d,e f,I,m p)=
(m=a[3))A

mA(c=a>>1)V-mA(c=a))A
IN(d=b>>2)v-lA(d=c))A
mA(e=a)V-mA(e=a>>1))
IA(f={2b00,b[3:2)})V-IA(
p=-(a=0)v(d=f))

A
f=e)A

(b) Concrete constraints

of
conc= abst
VE
constants
0 0
1 1 L . .
2 5 absté,b,¢,d,é f,I,m3St,q, p,zéraohetwo) =
variables (m=EX1(&))A
a[3:0] a (1 =EX2(8))A
bgﬁg} b (§= SRL(4,0ne)A
c[3: ¢ . A -
d[3:0] g (t= CTl(ger(} EX3(b)))A
e[3:0] a (0= SRL(b,two)A
f[3:0] f (E=ite(m§a))A
! | (d=ite(l,0,6))A
r; r; (&=ite(m,a,8))A
operators (f =ite(l,£,€)A
x[3] | EX1(X) (p=-(a=zérg Vv (d= f))
x[0] | EX2(X)
x>>y | SRX,Y) (d) Abstract constraints
X[3:2] | EX3(X)
X,y | CT(XY)
IX —X

(c) The mapping fon®

Figure 4.4 An Example Design and Property
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(&) The concrete design and property (f) The abstract design and property

Figure 4.5 A Circuit Representation of the Design and Property

that correspond to single bits in the concrete formula (stisthandl) retain their Boolean
semantics and can be combined with the standard Boolearectves.

As mentioned in Sectidi 4.2, a necessary condition for th@doess otrE(-) is that
it is a 1-1 function w.r.t. variables. In facti®(-) has to also be 1-1 w.r.t. operators as
well. Consider, for example, the case whefg-) maps bothx, 3'b000} and{x, 2'b00} to
concaiX, zero). This abstraction is not sound, since the operétdras different semantics
in either case; this leads to a scenario whemginca{X, zero) = concaiX, zero is valid,
while {x,3'b000} = {x,2'b00} is not. The two expressions should, therefore, be mapped
to two distinct UFs undear®(-). The following lemma articulates that, in the general case,

the over-approximation criterion mentioned above is b@&tessary and sufficient.

Lemma 1 If aB(.) is a 1-1 function, i.e. it maps distinct concrete variablesdistinct
abstract variables, and it maps distinct datapath operatir distinct UFs and UPs, then

it is an over-approximation.

Proof Sketch Let x* be a full assignment such th@i{x*) = 1 and @ (X*) = 0, wherex*
andxX® assign similar values to corresponding variableg(n and@ (-). ¢ (x*) = 1implies
thatF(x*) = D(x*) = S(x*) = 1; and sincéd — D andF = I, we havel (%) = D(%) = 1,

and in turnS(%*) = 0. Let the constrains & S be violated, i.e.s(X*) = 0. $ cannot be
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an equality transivity constraint, since this type of coasits has to always hold for full
assignments. Thereforgjs’a functional consistency constraint. Sirac®(-) is 1-1 w.r.t.

to UFs/UPs and variableg($) involves a single Verilog operator applied on two inputs
of equal value undex*, and producing dis-equal values unaértherefore,y($)(x*) = 0.
Functional consistency has to hold for all operators,S.e- y(S), and sincey/($)(x*) =0

we haveS(x*) = 0 which contradicts the earlier assumptionSjr*). O

In our algorithm, a 1-rE(-) function is enforced with the use of a naming convention
for UFs and UPs||4]. In particular, since operator semanitidgerilog are defined by its
operationas well as thesize of its argumentshe name of a UF or UP is a concatenation
of the operator type and argument sizes. For example, atZ@idition is abstracted to the
UF called ‘add32.32'.

Finally, it is worth mentioning that since®(-) is 1-1, its inversgF(-) is well-defined
(see FiguréZl4(b))yF(-) remaps terms back to their corresponding multi-bit vagapl
and remaps uninterpreted functions to their corresponbitilgvel counterparts. The use

of y&(-) will be evident in the refinement back-end of our algorithm.

4.3.2 Abstractionto CLU

CLU [B] is a quantifier-free first-order logic that extenddfEwith separation constraints
and lambda expressions. Separation constraints allovstheflimited counting arithmetic
useful in modeling certain hardware constructs such as mepmnters. Lambda expres-
sions allow aggressive, albeit consistent, abstractionerhories. Note that we “borrow”
Lambda expressions to model memory arrays even when ustngUh logic; thus, the
main difference between EUF and CLU in our case is countings WM use a®(-) to
differentiate CLU abstraction from EUF abstractiarr(-)).

The use of counting in CLU is done using an interpreted opemaic¢ that allows

adding an integer constaato an abstract variabbe Note that such use would not have
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been feasible if abstract variables are represented witimteger constructs, such as bit-
vectors.
In hardware design, there are two frequent occurrencesdifi@a and subtraction of

constants. The first occurrence, which is rather implisiini the use of any stand-alone

constant; in essenceg is equivalence tsucé(@). Constants are used frequently in de
coders, such as in IR[3:O]:4’b01O$L(cé(6)); or in the control logic in counters, such
as in cnt==3'd4 $ucé’(ﬁ)). The second use of constant addition is in the incrememting
counters, such as in entcnt+4'd1 Gucd(cht);

In order to remain sound, the abstraction of constant aduitiith the interpreteducc
operator in CLU has to guarantee tht(-) is a 1-1 function. This is always true in the
case of constants;®(c) can always be modeled wigucé(0) regardless of the size of the
bit-vector representation afin Verilog. The latter is true since any two constants of the
same value, but of different bit-width, are still equal acting to Verilog semanti

This no longer holds for counting. C(-) is oblivious to the size ok, then it will
always abstract+ c with suc¢(X), althoughoverflowoccurs differently depending on the
bit-width of x and the valuec. In general, it is possible to assume that counters do not
overflow as done iru4]. In particular, one can rewrite cer@ounters to remove implicit
overflow. For example, the counter entcnt+1 for a 2-bit variable cnt can be replaced
by cni=ite(cnt==2'd3,2'd0,cnt+1), and in turn eliminate any piide overflow. In prac-
tice, it is quite feasible to require designers to adheredoding style that avoids implicit

overflow with constant addition and subtraction.

4.4 Property Specification and Validity Checking

Early EUF solvers (e.g. I_—[_LEJSS]) conveft(-) to an equi-satisfiable propositional for-

mula using a suitable encoding. On the other hand, Satisfyaliodulo Theories (SMT)

5In practice, we use the interpreted addition operator oiifly mall constants. Constants that are greater
than a pre-defined threshold are abstracted similarly tabis, in order not to overload the abstract solver.
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solvers, such as YICES, operate on these formulas diregilytegrating specialized “the-
ory” solvers within a backtrack propositional solver. SMAl\&rs are, thus, able to take
advantage of the high-level semantics of the non-propsticonstraints (e.g., EUF con-
straints) while at the same time benefiting from the powergasoning capabilities of
modern propositional SAT solvers.

Given the (over-approximated) abstract form@la) , the algorithm checks its sat-
isfiability using an SMT solver. If the solver determinesttigd-) is unsatisfiable, the
algorithm halts concluding that the property holds. Othsewan abstract counterexample
is produced and the refinement phase is invoked.

In this type of abstraction, where terms are integer vaemla satisfying solution to for-
mula [41) (pag€&30) is an assignment of integers and Bos|easpectively, to the terms

and atoms in the variable vectsr:

wherec is the constant value assignedxo(the it" element ofX). As stated viol(X)
represents a “point” in the space of possible assignmeriteteariables of formuld{4.1),
such that it is consistent with the abstract constraintsrmansistent with the correctness

property. We indicate this by introducing the satisfiablelation” formula

A

v(X,p)=@(X, p) - viol(X) = abst(X) - =p- viol (X), (4.2)

that succinctly captures the result of the validity check.
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4.5 Counterexample-Guided Refinement

This section describes the most basic refinement type, $Hzdsed on refuting spurious
counterexamples. In refutation-based refinement, a @b stract counterexample is
viewed as “undesirable” behavior, and one or more succixgiaeations are used to re-
fine the abstraction for the next round of checking. Thismsilgir to clause recording, or
learning, in SAT solvers.

To determine if the violation reported by the validity checks a real violation, we
need to evaluate it on the concrete formula. This step,neddeto as feasibility checking,

can be accomplished by applyiry/g)H to ([4.2) yielding:
Y(v(X,p)) = y(abst)(y(X)) - =p- y(viol)(y(X)) = condX) - =p-cviol(X),  (4.3)

wherecviol(X) s the concretization of the abstract violation. Unlike testiof the formula
elements, concretizing constants is not obvious sincedhables in the abstract formula
are unbounded integers; some assignments will not, thexdibwithin the bound of the
originating concrete bit-vector. However, this problem ba avoided altogether by a more
suitable representation of the violation, as explaineth@rtext section.

In general, the process of feasibility checking consistdeiermining the satisfiabil-
ity of (3). If @3) is found to be satisfiable, then the watibn reported by the validity
checker is a real violation indicating a real design (or fmation) bug. If [£3) is found to
be unsatisfiable, then the violation is spurious. This &iggabstraction refinement, which
strengthens the abstraction by eliminating this violafimm it for the next round of va-
lidity checking. We will use a superscript to denote the indéthe iteration, such that

#°(X, p) denotes formula{41). Thi&" iteration of the abstraction-refinement loop then

5The ‘E’ superscript ofr andy are omitted in this subsection and when obvious from theeant
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Figure 4.6 Unrolling and Abstraction

consists of the following computations:
1. Validity Check: Check the satisfiability o¢i*1(>2, p). If unsatisfiable, exit reporting
“property holds.”
2. Violation Derivation : Deriveviol' (X) from the solutionX* returned in step 1.
3. Feasibility Check Check the satisfiability of(v(X, p)) = y(¢'~1(X, p) - viol (X))
If satisfiable, exit reporting “property fails.”
4. Abstraction Refinement Compute the new formuld (X, p) = ¢~ (X, p) - —wiol' (X)
and go to 1-viol (X) will be called a “lemma” in this framework.
In order for refutation to be practical, steps 2 and 3 havetodmputationally easy; and
for fast convergence, the violation used for refinement kEheliminate as many spurious

behaviors as possible. Sectlanl5.1 is dedicated to shovawglhis is achieved.

4.6 Soundness

This section focuses on the soundness of the abstractiarglbas the interaction between
the abstraction and unrolling processes, and the latteggct on soundness. Figureld.6
shows two ways of computing an abstract forrmtlm()“() using abstraction and unrolling.

Starting from a Verilog Transition Relation over the vatedR, W, |, andM, unrolling
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produces the concrete formutang X), which is in turn abstracted @bst(X) via a(-) as
described in previous sections. As illustrated in the figtire same result can be obtained
via producing an abstract transition relation first, folemhby unrolling to creatabst(X)

In the rest of this section, soundness is explained by:

e Describing a generic approach that performs abstractio/CiolD [D], followed by
unrolling and solving.

¢ Refining the previous approach with the use of Vaﬂ)r [4] fatedztion. The result
is a sound abstract-then-unroll method.

e Describing a sound unroll-then-abstract method that weruBeveal.

Subsectio 4611 is dedicated to explaining the first twchods, while the third is left

to Subsectioh 4.6.2.

4.6.1 A Sound Abstract-then-Unroll Process with UCLID/Vajor

UCLID

The UCLID language allows defining sequential term-basesfratt models. This lan-
guage supports two basic data types, TRUTH and TERM. It alpparts two function
types: FUNC which maps a list of TERMs to a TERM, and PRED whidps a list of

TERMs to TRUTH. These types are combined using operatons fne following set:

e Boolean connectives for TRUTH constants and variables.

e Equality (=) and ordering £, >) relations which operate on TERMs and return
TRUTH.

¢ Interpreted functionsuccand pred which take a TERM and return, respectively, its
successor and predecessor. These functions allow moaelimders and represent a
limited form of integer arithmetic.

e The ITE (if-then-else) operator which selects between tvitRWs based on a
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Boolean condition.

e Uninterpreted PRED symbols or Lambda expressions that T&&M arguments
and return a TRUTH

e Uninterpreted FUNC symbols or Lambda expressions that T&&M arguments

and return a TERM.

A Motivating Example

We will explain the rationale behind a sound Verilog-to-UDLabstraction with a small
Verilog example and a series of improved abstractions. idenshe following Verilog

fragment

reg [7:0] v;
wire s;
always @ (posedge clk)
if(s)
v[7:0] <=V[7:0] & 8'hOF;
else

V[3:0] <=Vv[5:2] | 4'h2;

As a first-order approximation, the abstraction of suchlvgridescription to UCLID can be

thought of as a syntactic mapping between related varigpkestin the two languages. For
instance, single- and multi-bit signals in Verilog can bepped, respectively, to TRUTH

and TERM variables in UCLID. These mappings, in turn, indoagesponding mappings
between Verilog operators and UCLID logical connectiveBsJand UPs. Such an ap-
proach basically assumes that multi-bit signals and thetiom units that operate on them
should be automatically abstracted.

If s is abstracted to TRUTH variable S, and v[7:0], v[3:0] arj8:2] are respectively
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abstracted to the TERM$_7_0,V _3.0 andV _5_2, a (resulting) intuitive UCLID abstrac-
tion, which we call ABST, is given below. Note that temporal abstraction of the clock
signal ‘clk’ is modeled with the function ‘NEXT’, which repsents the a single cycle ‘ad-

vancement’ of the transition relation.

NEXT[V _7.0]:=ITE(S,AND(V_7.0,const15),\7.0);
NEXT[V _3.0]:=ITE('S,0R(V.5.2,const2),V3.0);

Another possible abstraction, which removes more comggr&iom the UCLID model,

and thus is coarser, is:

NEXT[V _7.0]:=ITE(S,FREEV_7.0,V_7.0);
NEXT[V _3.0]:=ITE('S,FREEV _3.0,V_3.0);

In this abstraction, called ABST arbitrary values are generated using ‘free in-
puts’ denoted by the prefix FREE. This bears some similadtjotalization reduction

[E][E][E][Q] ], which abstracts state variablestioyning them into free inputs.

Finally, thecoarsestbstraction will be called ABS3[ and is given by:

NEXT[V _7.0]:=FREEV_7.0;
NEXT[V _3.0]:=FREEV_3.0;

Obviously, ABST is sound, since it is completely unconstrained. It is alssyda
see that it is too coarse and does not serve as a meaningfidcios. A meaningful and
sound abstraction is derived similarly to ABSdnd ABST, above, with a counter-intuitive
caveat: ABST and ABSTh are not actually sound for the following reason. When s=0 in

the Verilog model, v[3:0] is modified due to the assignmerthim ‘else’ branch, but more
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importantly v[7:0] is implicitly modified by virtue of its dation with v[3:0]; on the other
hand, \.7_0 remain unchanged in the abstraction when S is false, dvgiald) a correspond-
ing transition from taking place in the UCLID model. A simiknalysis can also be carried
out for the case of s=1.

A possible fix is given by ABST as follows:

NEXT[V _7.0]:=ITE(S,AND(V_7.0,const15), FREE/ _7.0);
NEXT[V _3.0]:=ITE(!S,0R(V.5.2,const2), FREE/_3.0);

This abstraction is similar to ABST except that the state of both UCLID variables is
‘refreshed’ on either sides of the branch. In other wordsemtine branch is taken, V_0
gets assigned a value based on the RHS of the Verilog assiywieen it is not taken, a
fresh arbitrary value is assigned dual abstraction is used for_8 0.

For this example, soundness is guaranteed by modelmegypossible transition for
each bit field of v. On the other hand, it is possible to comstitee UCLID model further
without compromising soundness of the abstraction. Iniqdar, the algorithm in Va-
por [4] uses a more ‘refined’ abstraction, such that the r@yitsymbolic values given by
‘FREE’ are replaced with UCLID expressions tmakate each bit-vector with its bit fields

The following section describes the abstraction mechamsvapor.

Vapor

As shown in the previous subsection, multi-bit signalsd¢gfly consist of bit fields that are
individually accessed for reading and/or writing. Corr@astraction in such cases must ac-
count for the relation among the bit fields and between eadield and its parent vector.
Furthermore, a naive abstraction may lead to the unintkalstraction of critical control
signals that are grouped in Verilog as multi-bit vectorskimg the abstract UCLID model

too coarse to be usable in verification. Finally, abstrawtibcertain Verilog operators may
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lead to the generation of spurious errors since functidostraction guarantees consistency
under equality but is oblivious to properties such as ass@ty and commutativity; for
example abstracting integer addition with the Béd(x,y) will insure functional consis-
tency but will not treabdd(x,y) as identical taadd(y,x) as required by commutativity of
addition.

The above observations suggest that an abstraction d&gontust not only examine
the declared signal types in Verilog but also the way suchagare “used” in the body of
the Verilog description. In the rest of this section, we diésgchow Vapor abstracts various
Verilog constructs to corresponding ones in UCLID.

Based on their “bit structure” Verilog variables are cléissl into three main types.
Single-bit variables which are 2-valued and naturally nedes UCLID TRUTH vari-
ables. Multi-bit words which are viewed as unsigned integand translated into cor-
responding UCLID TERM variables. Word arrays which typigalenote memories or
register files and are conveniently represented by UCLID biables. Except for the ab-
straction of bit vectors, these mappings are straightfodwRBit vectors require additional
machinery to insure that their abstraction is consistemec8ically, given a Verilog bit
vector X, we must not only create a UCLID TERM to represenbut also create addi-
tional TERMs to represent each of its individually-acceski fields. Furthermore, we
must introduce a set of uninterpreted functions that relegee TERMSs to each other. Oth-
erwise, UCLID treats these TERMs as completely indepengenéntially leading to the
generation of numerous false errors, or to the generatiom&dund abstraction.

Without loss of generality, assume thétis a vector ofn bits such thaX[n— 1] is
the most significant bit. It is convenient to vie as the intervaln—1 : 0. Assume
further that the set of individually-accessed bit fieldsXofs denoted byxF. Thus,XF
is a set of possibly overlapping subintervals[of-1: 0. Finally, let i(XF) denote
the coarsest partition dh—1: 0] induced byXF . For example, ifX is [15:0 , and
XF=[15:0,[15:8,[7:0,[10: 3, thenr(XF) =[15:11,[10: §,[7:3,[2:0.
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Consistency can now be established by introducing TERMedah of the bit fields in
XF andrm(XF) and a corresponding set of complementary uninterpretedatidan and con-
catenation functions that relate these TERMs. These fomgire designed to insure that
whenever a bit field iiX™ is changed, appropriate updates are made to all the otHeslds
that overlap it. These functions are named according todh@mg convension described in
Subsectio 412, in order to insure soundness. In particekémraction functions are named
extractm w(X) to indicate the extraction o bits from bit vectorX starting at bit po-
sition nH Similarly, concatenation functions are nanmeahcatwy_... Wi (X1,...,X) to
indicate the concatenation &fbit vectorsXy,-- -, X whose bit widths arevy,...,w, . A
similar naming convention is adopted for TERM and TRUTH &hles; e.g., the Verilog
bit vectorX [a: b| is declared as the TERM_a_b.

These notions are illustrated in Figuiesl4£.7] 4.8 4 .9¢chwiespectively depict a
Verilog fragment, bit field relations for ‘word’, and the eesponding UCLID abstrac-
tion. Consider, in particular, how the bit vectword |7 : 0] gets updated. From the Verilog
fragment, it is clear that portions @ford[7 : O] are assigned to in both branches of the if
statement. Specifically, when mode is equal to 1, the five sigsificant bits ofvord[7 : Q]
(i.e. word[7 : 3]) may change because of the assignmemtdad [10 : 3. And when mode
is equal to Oword(7 : 0] is assigned the value ofyow. These updates are facilitated by

introducing the following UCLID TERMs and associated ueiprreted functions:

e mode0_0, word_10_3, andword_7_0 to denote the Verilog variable mode, and the
individually-accessed bit fieldsord[10 : 3 andword|7 : O]

e word_P_2 0 andword_P_7_3 to denote the bit fields of word in the induced patrtition;
word_P_7_3_nis a temporary TERM that denotes the next valuevofd_P_7_3

e the UF extract4.5() which relatesword_7_3 to word_10_3; word_7_3 is derived

from word_10_3 by extracting 5 bits starting from the fourth most significlit

"Without loss of generality, bit vectors are assumed to bebared such that bit 0 is in the least significant
position.
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/l signal declarations
reg [16:0] word;

wire [7:0] w_low,w_high;
wire [16:0] out;

wire parity,clk;

/I Verilog fragment with explicit and implicit
/I access to bit fields of ‘word’
reg mode;always @ (posedge clk)
if (mode ==1'b1)
word[10:3k=8'h11001110;
else
word<={parity,{w_high~w_low} };
assignout = word;

/I Equivalent Verilog fragment where all implicit
/I accesses to bit fields of ‘word’ are made explicit
always @(posedge clk)
if (mode ==1'b1)
word[10:3k=8'h11001110;
else begin
word[16]<=parity;
word[15:8k=w_high;
word[7:0]<=~w_low;
assignout = word;

Figure 4.7 Verilog Example lllustrating the Usage of Bit Fields

position the UFconcat5_3() which reconstructsvord_7_0 from word_P_7_3_n and
word_P_2 0 the UF bitw_not 8() which represents bitwise negation applied on

w_low_7_0.

The update ofvord([7 : 0] is now achieved as follows:

1.
2.

word[7 : 0] is initialized to some arbitrary symbolic constant (ling.27

When mode is equal to Word[10: 3 is assigned an uninterpreted constant value
(lines 28 and 29).
. The next value ofvord(7 : Q] is set tobitw_not 8(w_low) if mode is equal to O (line
35) or, if mode is equal to 1, to the concatenation of the nelwevaf its 5 most

significant bits and the old value of its 3 least significams ines 33 and 34).
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i =
1 [ I
1615 1110 87 32 0
(a) Partition induced by the bit fields of ‘word’

TERMs 16 0 16 15 8 7 0 10 3
corresponding word_10_3

to Verilog l l I:l l l l l l —— l

bit fields extract 7 3
TERMs extract_4_5

corresponding
to induced 16 D 15|

partition
concat_3_5

word 10_3 |

(b) Uninterpreted extraction and concatenation functimeeded to
insure consistency between ‘word’ and its bit fields.

Figure 4.8 The Abstraction of the Bit Fields of ‘word’

The general scheme described above can be simplified inrceitaations and such
simplifications can lead to significantly more efficient skations from Verilog to UCLID.
For example, if the individually-accessed bit fields of aildey bit vector are mutually dis-
joint, it is not necessary to introduce additional TERMstfw partition blocks. Extraction
may also be simplified when applied on constants. These @atiions reduce the size of
the propositional formula generated by UCLID since UCLIzetes TERMs using a bit
string whose length is a function of the total number of TERId UFs applications being
processed. Furthermore, we found that such an optimizeationinates many unnecessary
false errors by avoiding the need for using extraction UFs.

In the process of obtaining the coarsest refinement overd bétvectors, some of the
blocks in the resulting partition may end up being singls.bifhese single-bit fields can
be modeled as TERMs and used in extraction and concatersgtidescribed above. This,
however, might allow them to get more than 2 different syndedlues. In such cases, we

use UPs, instead of UFs, as extraction functions. When tiekifTRUTH variable) needs
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word 10_3 = concat3_5(word P_10_8,word P_7_3)
word_P_10.8 = extract7_3(word.10_3)
word_P_7_3 = extract4_5(word 10_3)

(a) Uninterpreted functions that act as axioms relating b
field word[10:3] to its corresponding blocks in the partitio

CONST
INITS : TERM;
concat5_3 : FUNCJ2];
extract7_3 : FUNCI1];
extract4.5 : FUNCI1];
bitw_not 8 : FUNCI[1];

VAR
mode0.0: TRUTH;
word.16.0 : TERM;
word 16.16 : TRUTH ;
word.10.3: TERM;
word. 7.0 : TERM;
w_low_7_0: TERM;
word P_.2.0 : TRUTH;
word P_7_3.n: TERM;
word_P_10.8.n: TERM;
const53 :-TERM;

DEFINE
word_P_7_3_n :=case
mode0_0 : extract4_5(const53);
default: ...
esac

ASSIGN

init[word_7_0] := INITS;

nextfword_10_3] := case
mode0_.0 : const53;
default: ...

esag

nextjword_7_0] := case
mode0.0 : concat5_3(word P_7_3_n,word P_2_0);
default: bitw_not 8(w_low_7_0);

esag

(b')"UCLID fragment corresponding to the update of bit
field word[7:0]

Figure 4.9 UCLID Abstraction from Verilog
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to be concatenated, it has to be “type cast” to TERM, usingoanagriate ITE expression.

4.6.2 A Sound Unroll-then-Abstract Process in Reveal

The abstraction and unrolling processes in Vapor examimedharsest partition of all Ver-
ilog variables, maps each bit field in this partition to a UDLrariable, and defines the
abstraction based am®(-) or a®(-) as described previously. In this section, we describe

an improvement to the abstraction/unrolling processel that:

¢ the unrolling and abstraction processes remain sound asd td complete;

¢ the refinement process automatically strengthens theaalisin in an on-demand
fashion, eliminating the need for correlating bit fieldsrnapit, as done in Vapor; and,
finally,

e the unrolling-abstraction diagram (Figurel4.6 on pade 4¢4ommutative; i.e., the
resulting abstract formulabst()A() is oblivious to the order of applying unrolling and

abstraction.

Consider the Verilog example we introduced in the beginmhthis section, involv-
ing a register ‘v’ of size 8 bits. The individually-accesdatlfields of v are in this case
Vi ={[7:0],[5:2,[3: 0]}, which can be divided into two sets: bit fields accessed in the
LHS of any Verilog assignment, denoted W = {[7: 0],[3: 0}, and the rest, denoted
by VRF = {[5: 2]}. Asillustrated earlier, Vapor examines the coarsesttpamtentailed by
VF, in this caset(VF) = {[7:6],[5:4],[3: 2,[1: 0]}. Reveal, on the other hand, examines
the coarsest partition entailed Y, i.e. m(V-F) = {[7 : 4],[3: 0]}. The rationale behind
this is twofold. First, expressing the change in the ‘stafe’ariablev can be done based
solely on the LHS accesses. For example, the Verilog codeeafunning example can be

rewritten to the following:

reg [7:0] v;
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wire s;
always @(posedge clk)
if(s) begin
V[3:0] <=V[3:0] & 4’hF;
V[7:4] <=V[7:4] & 4’h0;
end else

v[3:0] <=V[5:2] | 4'h2;

Representing usingv[3: 0] andv|7 : 4], which have no bits in common, allows a straighfor-
ward, yet sound, mapping to TERMS3_0 andv_7_4 and proceeding with the abstraction.
Alternatively, unrolling based on the state of variabls: 0 andv[7 : 3] can be done first,
followed by the abstraction of the resulting formula. Theafiabstract formula is similar
in either case.

The practicality of the this scheme relies on the fact thatelRedeploys a refinement
back-end, allowing any false negatives arising from irteéng bit-fields to be resolved
automatically. For exampley5 : 2] appears only in a RHS expression. This means that
(1) it does not need to participate in the state modeling, @nd (2) it can be expressed
in the final concrete or abstract formula uswgr using the combination of3 : 0] and
v[7 : 4. If false negatives are to arise due to these interactidresrdfinement back-end

will automatically resolve them.
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Chapter 5

Enhanced Abstraction and Refinement

5.1 Lemma-based Refinement

Our experiments show that the implementation details ofatbstraction/refinement ap-
proach can directly and greatly affect performance. Inipalgr, a number of techniques
were found to be crucial for convergence, and essentialdmterall performance of the
approach. The first group of techniques allow distilling poful lemmas from abstract
counterexamples in a process we refer tgaseralization Using these lemmas to refine
the abstract counterexample was essential for fast coeneegof the refinement loop. The
second group of technigues allow generating one or morermelly succinct lemmas in
each refinement iteration, and therefore further speedmnthe@ convergence and overall

performance significantly.

5.1.1 Generalized Lemmas

The counterexample reported by the validity checker candyeed as a very specific viola-

tion. Checking the feasibility of such a violation is trijiaince it can be done through SAT
propagation in equatioi.{4.3). On the other hand, the w@iatannot be used to derive a
useful refinement since it “encodes” only one particulaecasd out-of-bound constants
cannot be concretized as described earlier. At the otheerext the checker can declare
that the property is violated, without reporting any infation. This corresponds to requir-

ing viol(X) = cviol(X) = 1, leading to an expensive feasibility check when checkiteg t
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satisfiability of [4.B). This, in fact, amounts to doing theri¥ication at the bit level without
any abstraction. In this case there is no need for refinenfdlf) is satisfiable, a bug is

reported; otherwise, the property holds.

In between these two extremes, we have great latitude tosehmguitable representa-

tion of the violation, subject to the following objectives:

¢ It should be efficient to derive;
e It should be efficient to check feasibility on;

¢ It should provide effective refinement.

We observed that when a violation is detected and checkedsdaglae concrete model,
only a very small subset of the model’s components partieipacausing the property to
be falsified. A justification process similar to that used iIfiP& can identify those con-
straints (i.e. function boxes, “gates”) that participatehie implication chains leading o

being false.

The C-like pseudo-code in figuresb.1 5.2 describes theation ofviol (X) which
incorporate four key techniques:
1. Enlarging the footprint of the violation by replacing tt@encrete assignments to the
terms with equalities or inequalities between terms.
2. Creating a very compact representationiof(X) based on therimary inputsof the
design.
3. Excluding the elements of the concrete design that doallohfthe Cone Of Influ-
ence (COlI) of the violation assignment.
4. Excluding all the control elements (interpreted opestof the concrete design.
The rationale behind the last technique is that the abstnactel automatically ac-
counts for the constraints of the interpreted operatorg (). Therefore, incorporating
these constraints iniol (X) for feasibility checking overloads the SAT solver with redu

dant constraints, leading to a potential slow down in theifekty checking process, as
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1
2.  string name;
3. enum{UF, ite, tvai type;
4. union{
5. Il list of inputs to UF
6 list<term> inputs;
7 /[ inputs to ite
8. atom cond;
9. term thenterm, elseterm;
10. }
11. unsignedvalue;
12. } term;

13. struct {
14.  string name;
15. enum{UP, EQ, NOT, OR, AND, pvartype;

16. union {
17. I/ list of gate inputs
18. list<term> inputs;

19. /Il inputs to EQ
20. term left, right;

21. }

22. boolvalue;

23. } atom;

24. /[ eitherP (P=1)or!P (P=0)
25. struct {

26. /[ either UP or EQ

27. atom P;

28. boolV;

29. } relation;

30. // list of (potential) violations
31. list<relatiorn> viol;

Figure 5.1 Data Structures for the Counterexample Generalizatiomrtlym
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1. void EvalFormula(atom f)

2. /I C-style 'fall-through’ switch

3. switch (f.typeX

4. caseEQ: {relation r ={EvalTerm(f.left) = EvalTerm(f.right), f.value
5 viol.insert(r);break; }

6 caseUP: {relation r ={f.name(EvalTerm(f.inputs)), f.valde

7 viol.insert(r);break; }

8

. caseOR:

9. caseAND: if (f.value==!Icontrolling(f.type)) EvalFormula(f.inpyts
10. else{ for (inputin f.inputs)
11. if (input.value==controlling(f.type))
12. {EvalFormula(input)break; }
13. }
14. break;
15. caseNOT: EvalFormula(f.inputskpreak;
16. casepvar: break; // do nothing

17. } I/ EvalFormula

18. term EvalTerm(term {)
19. switch (t.type)

20. caseUF: return f.name(EvalTerm(f.inputs));
21. caseite: if (t.cond.value==1)

22. return EvalTerm(t.thenterm);

23. else return EvalTerm(t.elseterm);
24. casetvar: return t;

25. } /[ EvalTerm

26. void GeneralizeCE(atom ‘abstprop’){
27. viol={};

28. EvalFormula(‘abst-prop’);

29. } /| GeneralizeCE

Figure 5.2 Counterexample Generalization Algorithm
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well as reducing the footprint of the violation.

The algorithm traversed(-), starting from the top node, and recursively invokes the
procedures EvalTerm and EvalFormula. Given a term varigbievalTerm calculates a
symbolic expression representing the valué wfhen applyingX*, by evaluating the in-
terpreted operators in its sub-tree. EvalFormula is indake formulas, including atoms,
and it constructs the violation by calculating simplifiedras and their value undet*.

We use the auxiliary function ‘controlling’, traditiongltiefined for logic gates as control-

ling(AND)=0 and controlling(OR)=1.

5.1.2 Explanation of Infeasibility

Given a spurious violation, i.aiol (X) such thatondX) - =p- y(viol (X)) is unsatisfiable,
it is possible to further widen the footprint of the learninima by explaining the unsat-
isfiability of the aforementioned formula via Minimally Uatssfiable Subsets, or MUSes
for short. An MUS is an unsatisfiable subset of the formula biemomes satisfiable if any
constraint is removed. The use of MUSes allows the refinemethe current iteration to
‘block’ violations that might occur in future iterationsofmally, one or more explanations

are extracted as follows:

mug(X) = EXPLAIN(congX) - =p- y(viol (X)))

abstmug(X) = a(muk(X))
expk(X) = abstmus(X) Nviol (X)

In words, MUS extraction is applied on the UNSAT formula, t@kin the infeasibility
of the counterexample. We use CAMLE|[38] to generate onetjpheylor all MUSes from
the formula. The procedui®X PLAIN, represents the process of extracting k(HeMUS,

denoted bynuk(X). Then, the abstraction is used to map the MUS back to thenaligb-

stract constraints, and the subset of these constraimgfisally belonging toviol (X) is the
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Figure 5.3 The DP-CEGAR Algorithm

final explanation of infeasibility. The refinement, in tuuses one or more lemmas each
represented by-expk(X). Sinceexpk(X) is a subset ofiol(X), the lemma-expk(X)

is more compact and has wider impact on the abstract model-tkiml (X), hence us-
ing MUS-based explanation speeds up the refinement comages we will see in the
experiments. The efficient implementation of MUS extrattio CAMUS and its tight
integration with the rest of the refinement algorithm allawis step to remain very fast

despite the worst case theoretical complexity of MUS exitvac

5.1.3 DP-CEGAR

Figure[E3B highlights the overall architecture of our ausoed verification system, based
on Datapath Abstraction and Counterexample-Guided Lemasad Refinement (DP-
CEGAR), as described earlier.

e Unrolling. The design is initially unrolled to create a bit-vectorrfara that rep-
resents the design and the property. Unrolling applies abeuraf optimizations,
such as isolating the property’s cone of influence, or sifyiplj memory expres-

sions. Most of these simplifications are orthogonal to tretralstion and are related
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to constant propagation in multiplexers.

e Abstraction and Validity Check. The abstraction step over-approximates the de-
sign’s constraints via UFs and UPs, and the resulting foancah be checked using
an SMT solver.

e Refinement Abstract counterexamples are checked for feasibility lead to the
generation of lemmas that are stored in a database. Theadatalblemmas (a) al-
lows the flexibility of aggregating one or more lemmas in eafinement iteration;
(b) allows the user to supply lemmas before the verificatiegiits for the design at
hand; and (c) allows reusing lemmas across verification@essvoked on different

versions of the same design, or different designs of the Stamely of designs”.
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Chapter 6

Reveal: An Implementation of
DP-CEGAR

In this chapter we describe Reveal, a software tool thatempehts DP-CEGAR, and show-

case its usage in identifying (or proving the lack of) desiggs.

6.1 Reveal's Software Design

Reveal is implemented in C++, and consists of the followiogponents:

e The Hardware Relations library described in Seclion 6.4 4 stand-alone package
that is used to manipulate word-level expressions. Rewas it as its platform for
communicating Verilog expressions, as well as abstractriasm

e The Formula Generator described in Seclion .1.2 is Re/&aht-end module. Itis
used to generatondX).

e The Solver Module described in Section6l1.3 is Reveal'&+sa module for solv-
ing SMT formulas.

e The MUS Extractor described in Sectian€11.4 is another fmackmodule responsi-
ble for extracting infeasibility explanations from SMT foulas.

e The CEGAR Core described in Sectibn 6l1.5 orchestratesritie gprocess as de-

scribed in previous chapters.

The following subsections highlight the components’ inmpémtation specifics that en-

able scalability and automation.
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6.1.1 Hardware Relations

This module allows Reveal to efficiently store and manipulabrd-level expressions
throughout the entire flow, as well as to be extensible andicgipe to other uses, such
as the verification of software. To achieve that, it has tddraff three requirements simul-

taneously:

e it has to scale in space and time;

e it has to comply with a generic interface that allows intéiat with the various
components in Reveal, including lemma storage on the desk;

e and finally, it has to allow each different component to stilseown metadata,
perform its own optimizations on the expressions, and tes/¢he data structure

accordingly.

To achieve that, the implementation was done using a reeudsita structure, such that
each object represents a word-level expression, which eam Ibaf node representing a
constant or a variable, or an operation node with an opesaaidia list of sub-expressions.

To scale in space and time, the following techniques are:used

e The library avoids frequent OS calls for memory allocatignifternally managing
memory allocation and resorting to ‘bulk allocation’, i.asking the OS for larger
arrays of free memory at a time. Reveal’s performance wasdda improve up
to 20% when this mechanism overrides C++ native ‘new’ alioca especially for
large benchmarks with millions of allocated nodes.

e Hashing functions are used to quickly determine whethernates represent the
same word-level expression, and potentially eliminatalteg duplicates.

e Constant values are automatically propagated through c@tibnal logic and if-
then-else expressions, leading to significant simplificetiof expressions. Other
simplifications include (1) the simplification of trivial rttiplexers (e.g. ite(x,a,a);

(2) the removal of redundant concatenation/extractiod;(@hthe conversion of bit-
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wise operations (e.g. Verilog’'sw” operator for negation) on single-bit variables to

Boolean logic operations (Verilog’s ‘I operator in thisss).

In order to be extensible, yet support all of Reveal’s fumadility, the library supports

three main functions:

¢ It allows generic annotation, i.e. storing metadata on @acke. Annotation is useful
in a number of scenarios. Firstly, it is used to trace a newdpated node back to its
originating node. For example, assumeis a hode representing an expression in
the transition function of the designy is a node representing the valuerafin a
certain cycle during unrolling, ang is a corresponding simplified expression in the
violation. In this case, back-annotation allomgto point back tan,, which in turn
points back ta;. Secondly, annotation is used to flag nodes during varieustsal-
based analyses done in Reveal. Thirdly, annotation is usedlicate to the solver
or MUS extractor the SMT ‘modeling’ for each node. The lattdt be explained in
Subsectioh 6.113.

¢ It allows recursive traversal of the data structure.

¢ It allows storage on the desk in the form of a native binarynfat. This format can
be used to store the lemma database, as well as the transi@ion of the design

after parsing.

6.1.2 The Formula Generator

This module creates equatidn{3.1) (phgke 17) by applyindoll@ving steps sequentially:

e Preprocessing.We use Icarus VerilogEJSS], an open source simulation anthegis
tool for Verilog, to eliminate compiler directives from tldesign, such as ‘include’
and ‘define’ statements.

e Flattening and Parsing. To test the correctness of the design, through simulation or

formal verification, the design has to be represented in@a#ledflat view such that
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all modules and functions are instantiated. Flatteningunaase generates a new
design that is equivalent to the original, and has no ingtaoh. The new design is
parsed into an in-memory annotated tree using Icarus |. The supported de-
sign syntax is given in AppendixIA, which is a subset of therallesyntax supported
by Icarus Verilog.

Calculation of Transition Relation. The Formula Generator takes the Verilog rep-
resentation and calculates a transition relation for theegmevariables based on the
method described in Sectibn416.2.

Unrolling. Each Verilog variable ik, W, andM, is assigned a symbolic expression
in each cycle based on its transition relation. Rather ttsanguthe transition rela-
tion as is, the Formula Generator uses the simplificatiopplgd by the Hardware

Relations library to reduce the size of the resulting foramul

6.1.3 The Solver

The Solver module is responsible for determining the sabdity or validity of FOL for-

mulas. It interfaces with the YICES SMT solver via a C++ AQIB This module can

determine, for example, whether a formula is valid in the FIJELU logics, or satisfiable

in the bit-vector (BV) logic.

This module makes use of the generic annotation mechanigsoduted in Section

in order to allow the CEGAR Core, as well as the desjgnerontrol the way each

expression is modeled in YICES. In particular, each nofdgpressiore = op(e, ..., &)

is seen as a combinational component with ougpunputsey, ..., e,, and functionop. In

turn, annotation is used to indicate to YICES how to modehezmmponent:

e The outpuk can either be represented as a term or a bit-vector. The fonoéeling
is suitable for the EUF and CLU abstractions introduced iati8e[43, while the

latter is used during feasibility checking .
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e The operatoopcan be modeled in the SMT formulation using a UF/UP node, a CLU

node, or a native bit-vector operation supported by YICES.

As alluded to earlier, the CEGAR Core annotates each expresede prior to passing
it to the Solver module, which in turn uses this informatioridrmulate the constraints in
YICES. The user has also some control over the way expressi@modeled using this

mechanism. The latter can be useful for externally contrglReveal’s initial abstraction

ao(-).

6.1.4 The MUS Extractor

This module is responsible for identifying MUSes from anatisiable formula. Unlike
an initial implementation of the systeru [2], the current lerpentation uses a modified
version of the CAMUS MUS extraction algorithrm38] that werdtirectly with the YICES
solver. This eliminates the need to generate a propositer@ding of the abstract for-
mula and leads to significant speedup in MUS generation.stt e#duces the number of
all possible MUSes in the given conjunction, since inclgdjar excluding) constraints in
the MUS is now done at a coarser granularity, allowing CAMUOSdale better. It is worth
mentioning that given an unsatisfiable formula, CAMUS canipan three modes: single-,

multiple-, or all-MUS extraction, where the last option &ed in most of our experiments.

6.1.5 The CEGAR Core

This component is responsible for coordinating the abstinacsolving, MUS extraction,
and refinement processes. It also maintains the persistemé database that is accessed
across invocations. In each iteration it modifies the lemtalthse and updates the ab-
straction for the next iteration. This module is also resilolie for integrating user-supplied

lemmas into the database.
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6.2 A Designer’s Perspective

This section briefly demonstrates running Reveal and ineéing its output.

6.2.1 Reveal’s Input

The input to Reveal consists of Verilog design files, as wekheonfigurationfile contain-
ing a set of directives to control Reveal’s behavior. Thelfst of the directives and their
functionality and (possible/default) values can be foundppendiXB. The directives can

be roughly divided into the following three categories:

e Algorithmic Behavior. These directives allow the user to change the default behav
ior of Reveal’s DP-CEGAR algorithm. This includes whethlestaaction/refinement
is turned on, the type of the abstraction used (EUF or CLW typbe of MUS-based
minimization used, and configuring the behavior of the lendiat@mbase.

e Input Specifications These directives specify special design signals suchask’c
and ‘property’, and additional information on how clockiagd unrolling should
be modeled (i.e. the number of unrolling cycles, unrolling@ifications used, be-
havior of clock, etc.). The user can use these parametersatshange the default
behavior of the Verilog parser, to make it more compatibléhviiaditional simu-
lation tools (e.g. automatic 0-extension for RHS and LHSreggions that are not
size-compatible). Additionally, a number of parametetsvalthe user to flag cer-
tain modules with additional attributes; this includescdfyeng the top module for
multi-module designs, as well as symbolic initializatidmeemory arrays. Finally,
the user can specify the input files to Reveal. This includeses, locations, and
types of files for the design and property being checkedgdswin Verilog, the user
can use the native binary format of the Hardware Relatidiary.

e Output Specifications These directives control Reveal’s output, including teag

eration of a combinational representation of the initiaifi@ation condition, as well
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as the final condition (property with lemmas). Reveal suigabie following formats

for output: Yices, UCLID, Verilog, and BAT.

6.2.2 Reveal’s Output and Counterexample Traces

Reveal’s output usually consists of three major parts: tapedisting Reveal’s current con-
figuration as described in the previous subsection; whétiegeroperty holds or is violated,;
and, in case the property is violated, a counterexample tiReveal can also be integrated
with a simulation-like graphical back-end interface, asdastrated inIEQ]. This section,
however, focuses on the textual output of Reveal.

A counterexample trace produced by Reveal includes a listgofals and their corre-
sponding bit-vector values in each cycle (see Fifurke 6.5)mantioned earlier, flattening
renames design signals based on the hierarchical ingtantiaf the design’s modules.
For example, the ‘flat signal’ pipelindesign10$wh_stagedesign10$resultmux repre-
sents the ‘hierarchical signal’ resuftux that was instantiated in the WB module in
pipelinedesignl. Finally, it is worth mentioning that Reveal ex@sdignals and values

that are irrelevant to the current bug being diagnosed. ddmses mainly in three forms:

e Signals that fall outside the cone of influence of the propeeing checked, i.e. those
signals that do not participate in formiegndX).

e Signals that fall outside the cone of influence of the patditeato the bug, i.e. a
control expression of the forite(c,x1,X2) wherec = 0 under the current trace (lead-
ing to prop = 0) prevents signak, from appearing in the trace since its value is
irrelevant to the value of this expression for the given gajiic.

e Multi-bit signals whosdull value is not needed to provingop = 0. These mainly
include signals involved in bit field selection such as thstrimction Register (see
id_ex IR_designl in FigurE®l1). In those cases, ‘X’ is used in thesttagepresent a

‘don’t-care’.
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Counterexample Trace:

Cycle 0

pipelinedesign10$wh stagedesign10$resultmux
= 000000000000000000000000000000000000000000000000000000000#1

Cycle 1

id_ex IR_designl
=010001111111111100000100000111112

id_ex IR_designl
=H010[0)07000000000 0000000000000

aThe leftmost bit (0) is the vector’s most significant bit.

Figure 6.1 A Snapshot from a Counterexample Trace Arising during MIR8f\ation
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Chapter 7

Experimental Studies

In this section we describe results of applying the abstaatefinement techniques in
DP-CEGAR on a number of designs for the purpose of contratlegrification. Seven
test cases were used to evaluate the effectiveness of thcseiques. We also compare
our techniques to verification systems being researchetbraddveloped by others. A
summary of the results is presented in Sedfioh 7.8.

In the following sections we will classify the various runfsReveal by a one-, two-, or

three-letter code that indicates the abstraction and raénéoptions used:

e Abstraction options will be labeled B (bit-level, i.e., noséraction), C (CLU abstrac-
tion, see Sectio 4.3.2), and E (EUF abstraction, see $&EiR]1).

¢ Refinement options will be labeled V (negating the violat@ndescribed in Section
.3) and L (refinement with lemmas, as described in SeEibAp.

e For lemma refinement, S will denote refinement with one lemraa iferation,
while M will denote refinement with multiple lemmas. For exalm the label Re-
veal(CLM) means CLU abstraction and refinement with mudtigimmas, whereas

Reveal(EV) means EUF abstraction and refinement with thatieygof the violation.
We compare the performance of Reveal against the followong¥erification systems:

e UCLID [a][] which allows modeling of the datapath with sttact terms, and

memories with Lambda expressions. Since UCLID does notpadéilog, we use

VAPOR 1] to produce UCLID models.
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Table 7.1 Benchmark Statistics

Name Vgrilog Vgrilog St.ate
Lines Signals Bits

Sorter 79 30 35t0 10
ICRAM 153 13 1.3x10
oMU 400to 1d | 40to 260| 1.0x1C
DLX 2.4x1C 399 1.0x101
RISC16F84| 1.2x1G 169 1.0x10
X86 1.3x10" | 1.0x1G | 5.8x1C

e BAT [H][Q] which models memories with set and get functidor reads and writes,
respectively, but models the datapath with finite-lengthvbctors. BAT formula-
tions were produced from our verification conditions comgilrom the Verilog. We
are unaware of any other conversion methods from Verilogt'8language.

e VCEGAR Q]Q] which performs word-level predicate alastiion on the Verilog
input, but does not abstract memory arrays.

e VIS [B][Q] which, by default, uses bit-level reachalyilanalysis to verify invari-
ants. It can also be used in two special modes: one that pesfoounded model
checking of safety properties, and another that perforwariant checking with a
CEGAR algorithm based ohniding registers[El]. We will denote the default mode
by VIS, the BMC mode by VIS(BMC), and the last mode by VIS(AR).

The first six experiments, with design statistics shown ibldaab:stats, were con-
ducted on a 2.2 GHz AMD Opteron processor with 8GB of RAM rumgnLinux, while
the last experiment was conducted on 2.0 GHz Intel Xeon gsme with 16GB of RAM
running Linux. VCEGAR, BAT, and UCLID use the zChaff SAT seh@] and the SMV

model checkel [66].
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Figure 7.1 Sorter Test Case

7.1 Sorter Case Study

The Sorter design [71] implements two versions of an algorithat sorts four bit-vectors.

It makes use of a Sort2 sub-unit that sorts two bit-vectansthé first version, five Sort2

sub-units are instantiated and connected serially. Thetsgre introduced to the first two

sub-units, and the calculation propagates serially tosvéind outputs. The computation

advances through 3 layers of registers, thus requiringttyeles to complete. The second

version is based on just two Sort2 sub-units and a contriblruses them to carry out the

sorting computation in three cycles as well.

e The effect of datapath abstraction is evident from the perémce of Reveal(C) and

UCLID, which are oblivious t&V. In both cases the abstract model is unaltered when
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changing the datapath bit width; thus the time needed tdyvéme abstract model is
constant. Furthermore, the only interaction between ti&pdah and the control in-
volves bit-vector inequalities, allowing the CLU logic toope the property without
any refinement.

e BAT’s performance degrades when increasdivigsince the datapath is unabstracted.
Nonetheless, BAT's reduction to CNF appears to play an itapdrole in keeping
the runtime low.

e VCEGAR takes 6.1 seconds to prove the propertyibr2 as it incrementally dis-
covers between 33 and 40 predicates within 58 to 130 iterstiddditionally, the
runtime grows exponentially with the width of the datapaile suspect that the
reason behind this is the expense of simulating the abstoactterexample on the
concrete design in each refinement iteration, as well ae{heated generation of the
abstract model each time a new predicate is added.

e The runtimes of Reveal(B), VIS, and VIS(BMC) degrade rapai the bit width is
increased. The runtimes of VIS(AR) are similar to VIS andeveamoved from the

graph to avoid clutter.

The property we verified is the equality between correspandutputs in the two ver-
sions. All the bit-vectors in the two units, including thepiris and the outputs, are of
bit-width W, which we vary from 2 to 64 to see the effect of the datapathiwah the
scalability of each tool. Figuile"1.2 shows the runtime otheaicthe verification tools as a
function ofW, and Tabl€Z]2 shows the number of bits in the concrete vatiific condition
(i.e.,¢()) and statistics about the number of the nodes in the absdtitation condition
(i.e.,d(-)). The last column, labeled by R, shows the ratio between tingber of bits and

the number of nodes. The results demonstrate the followergls:
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Figure 7.2 Runtime Graphs for Sorter

7.2 Instruction Cache RAM Case Study

The Instruction Cache RAM (ICRAM) test casEI[?Z] is obtairfiain the publicly avail-
able Verilog description of the Sun PicoJava Il Microprames67]. This unit includes a
memory array of 16K 8-bit words, 32-bit input and output dadés, and single-bit control
signals to trigger certain operations in the cache sucheaiirg, writing, BIST testing, and
switching to “power down” mode. The ICRAM interacts with thestruction Cache Unit
which manages the instructions tags and buffers for theeemticroprocessor.

The address space of the ICRAM is divided into two “banksstidguished by a single
bit in the address register. A write operation takes an asdsignal adr[13:3], a data signal
di[31:0], and control signals selecting the destinationkdae {0,1}. The memory update

for write(adr,di,b) is:
mem|adr,b,00&=d[31:24]

mem[adr,b,01&=d[23:16]
mem|adr,b,10&=d[15:8]
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Table 7.2 Verification Condition Stats

Test E—p A—p R
Bits Terms| Booleans| UFs | UPs| Overall

Sorter, W=8 127 14 12 0 0 26 5.08
Sorter, W=16 249 14 12 0 0 26 9.96
Sorter, W=32| 473 14 12 0 0 26 18.9
Sorter, W=64 921 14 12 0 0 26 36.8
ICRAM 287 31 48 9 2 90 3.12
OMU, K=16 1346 67 275 2 0 344 | 3.91
OMU, K=32 3154 131 1059 2 0 1192 | 2.65
OMU, K=64 8306 259 4163 2 0 4524 | 1.88
OMU, K=128 | 2.5x10° | 515 | 1.7x1C 2 0 |1.7x10 | 1.47

mem[adr,b,11&=d[7:0]

The ICRAM has been formally verified by VCEGAEISS] and BAEIlélIhe property
verified is that given an arbitrary initial memory array, feeming a write(adr,di,0), then
performing a read from address adr,001, will yield a vala thequal to di[23:16].

We verified this example with Reveal(C), Reveal(B), BAT, &ndLID. The runtimes
are 30ms, 38ms, 50ms, and 92ms, respectively. This reqdtigerintuitive given that the
original design has state bits. The efficiency of these methods stems primagiy the
reduction obtained by memory abstraction; as shown in Taleboth the concrete and
the abstract verification conditions are very small dedpiéelarge state space. Moreover,
due to the simple interaction between the control and d#tafize abstraction in UCLID
and Reveal(C) is sound and complete. Therefore, refineraewmt itriggered.

Left unabstracted, the memory array causes VCEGAR and Véad¢ounter “vertical”
state explosion. VCEGAR'’s runtime was shownm [33] am [@lprow exponentially
with the memory size. Likewise, VIS times out for this exampln particular, the veri-
fication in VIS begins with converting anyword by m-bit memory inton- m single-bit
registers regardless of the property being verified. “Blattg” the memory in this way

also leads to loss of the structural correlation betweemtbmory registers, which can

77



otherwise be used by the model checker during verification.

7.3 Out-of-Order Memory Updates Case Study

The Out-of-Order Memory Updates exam;gl [73] (OMU) has barewiously introduced
in [41] to demonstrate the effectiveness of memory abstmador RTL verification. The
design instantiates an array of 65K 16-bit words, which camndad from or written to via
designated signals.

The design is verified by simulating two sequences of writerafjons on the mem-
ory array. The initial memonM is modified by a sequence &f writes to locations
AA+1,A+2,...,A+K—1, with the data wordB1, D, ..., Dk, respectively, resulting in
memoryM1. Independently, a second sequence of writes is performéd im locations
A+K—-1A+K-2,... A with the data worddDk,Dk_1,...,D1, respectively, resulting
in memoryM2. Since the addresses for the write operations are mutdisliyict, the or-
dering of the writes does not affect the final state of the nrgmia particular, the content
of locationA in bothM1 andM2 is equal. A second, more generic, property is verified by
simulating a similar sequence of writes to distinct locasify, Az . ..,Ak. In other words,
we allow the addresses to be arbitrary, albeit mutuallyedjsal.

We compared Reveal(C), Reveal(B), BAT, and UCLID on these jwoperties, while
varyingK over{16,32,64,128. The runtimes are plotted in Figurel7.4 (p&gk 79) on a loga-
rithmic scalg. Similarly to the ICRAM case, the effect of modeling the meynis evident

in this example. In particular,

e Reveal(C) scales well on both properties, taking less thaec®nds for all the val-
ues ofK. This is attributed to the memory abstraction via Lambdaesgions|[12].
Refinement was not triggered since the datapath/contexidations are exclusive to

(dis-) equalities.

IDashed and solid lines correspond to the first and secondepiies, respectively. VIS and VCEGAR
were omitted to avoid clutter.

78



¢ UCLID = BAT e Reveal(C) A Reveal(B)
1000

100

—
o
L

©
o

Verification Time, sec.

o
o
=

0 16 32 48 64 80 96 112 128 144
# of Write Operations

Figure 7.4 Runtime Graphs for OMU

e BAT appears to be sensitive to the pattern of memory writes;ipg the property for
arbitrary addresses is two orders of magnitude slower thiacoinsecutive addresses.

e UCLID is two orders of magnitude slower than BAT and Revepld@ both prop-
erties. Despite its memory and datapath abstractionsedksction to CNFIjl] is
significantly slower in proving the property on the abstracdel.

¢ Reveal(B) clearly demonstrates the state explosion pmobées the runtime rapidly
worsens when increasing

e As with the ICRAM case, VCEGAR'’s runtime was shownm[41] tog exponen-

tially in the number of writes to memory. VIS times out on tleisample for any

number of writes. The lack of memory abstraction hinders&ibot

7.4 DLX Case Study

DLX [Q} isa 32-bit RISC microprocessHSO]. Its salienafares include a 32-bit address
space with separate instruction and data memories, a 3@-tegister file with two read

ports and one write port, and 38 op-codes for arithmetiagckdgand control operations.
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Our case study involved comparing two versions of DLX, botitten in Verilog 95

]. The first version, which we will refer to &L XSpecis a single-cycle implementation
of the instruction set architecture (ISA) and serves as tbtieitectural specification of the
microprocessor. The second version, labéd&KImpl, is a standard 5-stage pipelined de-
sign consisting of instruction fetch, instruction decddstruction execute, memory access,
and write-back stages.

StartingDLXSpecand DLXImpl from their reset states, the property we checked for
was equivalence of corresponding state elements (registememory locations) after a
bounded number of execution cycles. Specificallyﬂ%iand E} denote the values of two
corresponding state elements from the specification anttmgntation afterandj cycles

from reset, respectively. These two elements would, therconsidered equivalent if:

(ES=E})V(EP=E} V...V (Ef=E})

To compare the various abstraction and refinement optiof®eireal and to demon-
strate its ability to (dis-)prove properties, we verified amber of (buggy and bug-free)
variations of the design. We focus &3PC here, but similar verification can be used for
other state elements. The buggy versions were obtaineddytiimg errors in the RTL of

DLXImpl. These variations are as follows:

e D1is abug-fredDLXSpeandDLXImpl.
e D2 is a buggyDLXImpl wherein the pipeline ‘Stall’ control signal is stuck at 1.
e D3 is a buggyDLXImpl wherein the address of the ‘jump’ instruction is calculated

incorrectly.

Table[7B contains runtime statistics for each mode of Rev@alumns labeled T, I,

and L, describe, respectively, runtime (seconds), numbéetions, and total number
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Table 7.3 Verification Results for DLX

cva ELS | CLS ELM CLM B

T I T |1 T |If T (AL} T |A{I{L] T
D1 | >600 |>1507 1.92|9| 1.8 § 0.6 [3948 1.0 27612>600
D2} 011 | 1 |0.15|1|0.123 0.11|310, 0.1|7{10|0.21
D3| 3.16 | 45 | 2.22|1] 1.16|5 1.13 2335 1.1 294 8| 6.7

8The notation is explained in the beginning of this chapter.

of refinement lemmas (when applicable). The columns labalethow the ratio of the
runtime of verifying the abstract model to the total runtiaeea percentage. Finally, the
smallest runtime is emphasized in each row; there can bapieuibh each row when the
difference is insignificant.

The performance of the various options in Reveal demomsthet role of automatic
refinement. Since the control and the datapath in this desigimtermixed, refinement is
needed to “recover” facts that were lost in the course of bstraction, yet are relevant to
(dis-)proving the property. To shed some light on the tyddemmas discovered during
this process, we traced the source of these lemmas back ¢oigfireal Verilog code. Most
of these lemmas were related to the pipeline registers anladdogic in DLXImpl. For
instance, the lemma (IR3=32'd8)(IR3[31:26}£6'd4), which states that it's not possible
to extract a non-zero field from a zero bit vector, was traceti¢ following code segment

involving IR3:
defineBEQ 4
defineop 31:26

initial IR3 =32'd0;
caselR3['op] ‘BEQ: ...

In this case, the initial abstraction lost the fact that [RI3p6] can not be equal to 4
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(i.e., the opcode of BEQ) when it is actually holding a NORnmstion (i.e., with opcode
0), and it found a spurious counterexample that executeBHgg instruction.

Upon closer examination, we found tHaLXImpl consists mainly of a datapath that
is responsible for computing values for the PC and memoretodmmitted, and control
logic that orchestrates the pipeline. Furthermore, thaph inDLXImplis very similar,
and in most cases identical, to the datapatbliXSpec As a result, refinement only affects
those portions of the design involving interactions betwide datapath and control logic
in DLXImpl.

Table[Z.B also shows that the use of lemmas for refinementdsBdS, CLS, ELM,
and CLM) is far superior to using the violation (mode CV). é|sising multiple lemmas
in each refinement (modes CLM and ELM) outperforms refinemathta single lemma at
atime (modes ELS and CLS).

Surprisingly, Reveal(B) is able to terminate on the bugggiams of the design. This
is attributed to the ability of the BV solver in YICES to efieitly find a satisfying as-
signment to equatidn4.3. The rest of the case studies ithbséss confirm that proving the
unsatisfiability of this equation is intractable with ReNB3, while proving its satisfiability
may be tractable in some cases, though not all.

In order to compare the performance of YICES and UCLID in s@\the abstract for-
mula, we generate the expressignonc— prop) v \/;lemma which represents the final
“refined” verification condition created in Reveal. This eegsion is dumped as a Verilog
word-level combinational circuit, and VAPOR is then usedjémerate its corresponding
UCLID model. UCLID spends two orders of magnitude more titmentthe time spent by
Reveal in solving the abstract formula. We observed a sirtréend in the rest of the test
cases.

Finally, we ran VIS and VCEGAR on this design. VIS was unablereate a netlist
due to what we believe is an internal error in the tool. Relgas] we do not think that VIS

could verify this design due to its large memory arrays. V@ERProcessed the input but
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timed out at 600 seconds.

7.5 RISC16F84 Case Study

This design is an impIementatioD?S] of the Risc16F84 nuordroller @]. It has
a 213x14-bit instruction memory, a 29x8-bit data memory,opdcodes, and a 4-stage
pipeline. We denote the implementation and specificatio@8ymplandOCS pecespec-
tively. OCImplprocesses one instruction every four cycles, wi{eS peceeds one cycle

to process each instruction. The equivalence criteriohigdase is

wherelij andS,j denote the state of thi" state element i®CImplandOCSpe¢respec-
tively, afteri cycles of execution. In essence, this is an inductive doitergiven equal
state elements in the current cycle, it requires equal stateents after processing a single
instruction.

Reveal was able to discover a genuine bug in this design. dlleving Verilog code

in OCImpluses dloatingsignal cin as the carry-in bit to a 8-bit addition operation.

I risc16f84lite.v
reg cin; // line 223
addnode,temp<= {1'b0,aluimplreg,1'bL+{1’'b0,aluinp2reg,cin}; // line 519

OCSpegon the other hand, performs addition without any carryitn Beveal thus pro-
duces a counterexample showing the deviation, witit @ssigned to 1. The unit designer
acknowledged this problem, and asserted that the simnlaoried out for this design

assumed én=0.
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Table 7.4 \Verification Results for RISC16F84

cva ELS CLS ELM CLM B

T I T I T I T Al|L] T |AIIIL|T
R1| >600 [>1767 >600 [>1204 >600 [>108% 257 7193183 148 |.8(68170209
R2| 079 | 8 56 20 | >600 [>1881 72 |14413| 40 [1.13339(15.2
R3| 115 | 654 | 50 | 123 | 121 | 311 | 2.6 |.65|15| 27.30.24Q 73[11.6

8The notation is explained in the beginning of this chapter.

TabledZM contains runtime results for three versionsisfdésign:

e R1is abug-fre®©CImplandOCSpec
e R2is a buggyOCImplwith the aforementioned bug, i.e. a floating ‘carry-in’ sajn
for addition.

e R3is a buggyOCImplwherein ‘aluoutzeranode’ is stuck at 1.
In these results we observe the following:

e Refinement with lemmas is superior to refinement with theatioh. Furthermore,
the use of multiple lemmas for refinement is crucial for wenf version R1.

e The verification condition here is relatively small despite huge memory embed-
ded in the RISC16F84 design. This is attributed to memoryrabison discussed in
previous sections.

e The verification of the bug-free version (R1) with Reveal(B)minates after 209
seconds. It also terminates rapidly on the 2 buggy versidhgs makes its perfor-
mance comparable with Reveal(C) and Reveal(E). As we sawewiqus sections,
the runtime of Reveal(B) grows exponentially with the numbgbits in the con-
crete verification condition. On the other hand, the peréoroe of Reveal(C) and
Reveal(E) depends on the number of nodes in the verificabaditon as well as
the control/datapath intermix.

e The R2 case shows an interesting outlier, in which Revedl({€¥ignificantly faster

than any version that refines with lemmas. This is due to theistec nature of the
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satisfiability search for finding a bug. Any search, regaslief the refinement used,
could “get lucky” and reach a bug early in this way, thoughyaakely.

e An analysis of the lemmas discovered in all variations of tieist case reveals that
most of the spurious counterexamples are due tovHr@ble opcode widtHea-
ture, wherein the opcode field can Kebits wide for anyK € {2,3,4,5,6,7,14}.
For instance, the opcode of tlgoto instruction is IR[13:11]=3'b101, while the
opcode for addlw is IR[13:9]=5’b11111. The encoding guseas that only one
opcode is active at any given time. This information is loiew abstracting the
bit-vector extraction operation. This results in the ocence of lemmas of the form
(IR[13:k1] =v1) — (IR[13 :kp] # Vo) for valuesvy, vo and distinct indicek, ko € K.

e On this example, UCLID timed-out after 600 seconds for RH isntwo orders of
magnitude slower than YICES on R2 and R3. VCEGAR runs out ahorg after
370 seconds, and VIS was not able to process this designisidces not support
blocking assignments, which are used throughout the \éedéscription. We believe

that VIS would otherwise encounter an additional obstadllk thie large memories.

7.6 X86 Case Study

The X86 designlEG] is an open source RTL Verilog model dgwetbat 11T, Madras that
implements Intel’s IA-32 ISAD?]. The design contains fdugh-level modules. ThBe-

codermodule, which is the main focus of our verification effortrésponsible for fetching
an instruction prefix from the memory, finding the total ldngf the instruction, fetching
and decoding the rest of the instruction, and providing et to theControl module.

The top module of the Decoder instantiates the fetching timé instruction length find
unit, and six decoding units, which correspond to six irdtam types that exist in the

x86 architecture and its extensions, namely Integer, Fgaeoint, MMX, SSE, SSEZ2,

and SSE3. Each decoding unit has an enable signal that tnatiessts operation with the
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Decoder top module.
Upon reset, the Decoder fetches the PC and the correspoimditngction from mem-
ory. We verified the property that the Decoder activatestieesponding decode unit when

the instruction is confined to a set of 6 Integer and Floatioigptop-codes as follows:

(opcodes {CMP,JMP, MOV, FADD,FCMOV,FINIT }) —
((opcodes {CMP,JMP,MQOV}) < eNnteger) A
((opcodec {FADD,FCMOV,FINIT }) < entjoatingpoint)
When the verification was invoked in Reveal, the tool was abldiscover a coding

problem in the design. In particular, the RTL descriptiodimles the code

/I sse3Decoder.v
op2 = 32d0; // line 55
if (...) // line 185
0p2[16:0] = instrSeq[31:16]; // line 188

which uses a blocking assignment to initialize the signd,@nd then extracts a 16-bit
displacement value from the instruction stream and asstgosa 17-bit register. Most
synthesis tools will zero-extend the RHS expression to nia&aizes consistent, in which
case the resulting model is still correct. Nonethelessh sut error may indicate addi-
tional problems in other units of the design. We have notifieddunit designers about this
problem, and we modified the Verilog to eliminate the probfenthe later experiments.
Similarly to the previous two test cases, we compared thiopeance of Reveal on

two buggy versions and one bug-free version as follows:

e X1is a bug-free X86 design and property.

e X2 is a buggy version wherein property swaps ‘enable’ sigifiai the Int and FP
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Table 7.5 Verification Results for X86
cva ELS CLS ELM CLM B
T I T I T I T |AllfL| T |AI|L| T
X1 | >600 |>388 >600 |[>1158 >600 | >945| 36.5 (3140104 60.4 591996>60(0
X2 | >600 |[>461 >600 |[>1062 >600 >1046 30.5 3278161 103 [632486>60(
X3 198 | 2 1.95 2 1.96 2 2.0 |6/2| 6| 2.1 |6/1(0|2.72
X4 | >600 |>308 >600|>847| >600 >1252 23 [481241| 58.7 {747 43>60(

8The notation is explained in the beginning of this chapter.

units.
e X3 is a buggy design wherein the ‘opcode’ for ‘CMP’ activates FP unit instead

of Int unit.

The runtime results are included in Tablel7.5. These resedissert the importance of
refinement with multiple lemmas. A notable phenomenon is tase is that Reveal(C)
converges significantly faster than Reveal(E) in terms faheenent iterations. This is at-
tributed to the heavy use of counters in the FSM of the X86 decdlong these lines, note
that the number of lemmas accumulated in Reveal(C) is mudilenthan in Reveal(E).
On the other hand, Reveal(C) spends more time verifyinglts&@ct model, almost twice
as much as Reveal(E), despite Reveal(C)s smaller numbefinément iterations.

To further assess the effect of the lemma database on thergemce of the algorithm,
we ran Reveal(C) on a version that combines the three bugemiri; X2, X3 and X4. This
was an iterative session, in which Reveal was re-invokext aftrrecting each reported bug.
We tested Reveal in two modes: a mode in which learned lemmeadiscarded after each
run and a mode in which learned lemmas are saved and used aenss The total runtime
for the first mode was 232 seconds, whereas the runtime irettend mode was 166 sec-
onds, a 40% improvement in speed. This confirmed our congdtat lemmas discovered
in one verification run can be profitably used in subsequerg.rifhe verification of real-
life designs involves tens to hundreds of invocations ofttiog, thus a significantly larger

speedup could be seen in practice.
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UCLID exhausts available memory during its CNF encodingstan most of the vari-
ations of this design after approximately 250s. VIS canmotess the input Verilog due to

blocking assignments, and VCEGAR halted due to an intemnat after parsing.

7.7 MIPS Case Study

MIPS @] is a 64-bit microprocessor implementing the AlgB&. Aside from a wider
datapath, it differs from the DLX design that was introduge&ectio_Z}¥ mainly in the
fact that it follows the von Neumann architecture rathenttiee Harvard architecture used
in the DLX; the instruction and data memories are unified,tAnd the microprocessor can
either read instructions or read/write data from/to the mgnon the same bus.

Unlike its predecessors, this case study

e demonstrates Reveal's ease of use, as it is invoked by 2 eiiff designers on their
own variations of the MIPS;

e showcases the tool’s ability to discover real and subtlérobbugs in pipelined im-
plementations of the MIPS;

e and sheds some light on the scalability of Reveal for procimigectness or discov-

ering bugs.

Three variations of the MIPS design were involved in thefieation effort. The first
version, calledMIPSSpeand described in FigukeT.5(a), implements the ISA with glsin
cycle-per-instruction design. The second version, calélSBubbleand shown in Figure
[Z3(b), is a simplified version of the 5-stage pipeline tatls one instruction every 5 cy-
cles, to allow trivial resolution of hazards; after eachtrinstion, 4 NOPs are pushed into
the pipeline for that purpose. The third version, calédPSPipe(Figure[Z.6(a)), is a full
fledged implementation of the pipeline with stalling andifarding logic.

The verification of MIPS was done in two experiments. The Bsgieriment, referred

to asBubble-to-Bubblewas initially expected to produce a trivial result. HowevRe-
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(b) NOP-based Pipeline DesigM(PSBubblg

Figure 7.5 MIPS Specification and a Naively Pipelined Implementation
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veal discovered a counterintuitive error that was presetttis design, which was used for
years by computer architecture students across many sitiesr In this experiment, two
identicalMIPSBubbledesigns, dubbed ‘designl’ and ‘design2’, were compareddoiv-
alence, and were found by Reveal to be non-equivalent,atidig non-determinism in the
execution of the microprocessor.

Visible state elements, i.e. PC, memory, and register fiese initialized similarly in
both designs. Additionally, both versions were simulat@ds cycles, to allow fetching,
executing, and retiring a single instruction. Surprisyn&leveal discovered that the retired
values are not similar, indicating that non-determinisrprissent in the pipeline, due to
improper initialization. This was attributed to theite_enablesignal of the register file,
which was active at the first positive clock edge despite #setroperation. As a result,
a write operation took place at the first cycle without an eipinstruction through the
pipeline dictating so.

The counterexample trace indicated that a ‘conditionalguimstruction triggers this
problem. Since programs would normally avoid loading onbhang on a dirty value from
the register file (i.e. without previously writing to thathtion), this error is not triggered
by most programs that follow usual programming semanticswéver, this error shows
that unintended behavior was introduced to the micropsmreshich could not have been
discovered without the use of formal verification with Rdvea

The next few paragraphs explain Reveal’s counterexamaée tindicating the afore-
mentioned bug. During our explanation, we will refer to tergs listed in TablE~716 and
the full counterexample trace in Appendik C.

1. PC Initialization: In cycle 0, both instances of the design are reset on theisit

edge of the clock, forcing their PC to get the value zero.

2. Memories Initialization: The content of the register file and memories are initially

forced to be identical across the two designs. As shown iteTAB, this is done by

directing Reveal to replace all memory arrays in cycle Oechlmemarray*’ with
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Table 7.6 MIPS Bubble-to-Bubble Bug Reference

Event| Verilog Fragment File? Line(s)
1 PCreg<=640; if_stage*.v 76
5 memarray* memarray * memmap 1-4

regf_* regarray
assign regnr_enout =

3 (memwb_destregidx!="ZERO_REG); wh.stage®.v 59
if(op_code == 6’h38) 253,256
opaselect = ‘ALU_.OPA.IS_.NPC; 257,258

4 opbselect ='ALU OPB.IS_BR_DISP; id_stage*.v 276
alufunc = '‘ALU_ADDQ;
condbranch = ‘TRUE;
2’b00: cond = (opa[0] == 1'b0); 118,172

5 wire [63:0] br.disp = ex_stage*.v

{{41{id_ex IR[20]} },id_ex IR[20:0], 2'b00};

a=' is used to indicate both ‘design1’ and ‘design2’.

‘memarray’, and consequently forcing both memory arragan(f‘designl’ and ‘de-
sign2’) to be equal. The same is applied on the register filkees€ directives are
added to the memory mapping files (using ‘memap’), as explained in Appendix
BZ2.

3. Erroneous RF Modification: Erroneously, the ‘writeen’ signal of the register file
assigned in the WB stage is active during ‘reset’. As illatgd in Tabl€716, as well
as AppendiX lines 63, 64, 69, and 70, Reveal chooses aal ivitiue of 5’b000(%
for the destination register, which leads to an active ‘sveihable’, which results in
writing value 64’d1 to rO.

4. Conditional Branch Instruction: As shown in AppendikIC lines 204 and 205, the
‘IR” has MSBs of 6’b111000=6’h38. The decoder unit intetprat as a conditional
branch, which, in turn, directs the ALU to calculate the neadue of the PC based
on NPC+displacement if the condition holds.

5. NPC Calculation: As shown in AppendiXTC lines 312-317, 322, and 323, the val-

ues of the ‘IR’ and ‘rega’ in design2 during ‘EX’ stage leadsthe addition of

°The ‘ZERQREG' is register 31.
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64'hFFFFFFFC to ‘NPC’, whose value is 64’'h4, leading to ajiag the ‘PC’ to
64'd0 in ‘design2’, while ‘designl’ has a PC of 64’d4. The smiof the deviation is
the value of rO which differs in both designs, due to the exous RF modification in
cycle 0 as explained earlier; while r0 in ‘designl’ is 64’tdading to ‘cond’=0 (i.e.
jump is not taken), r0 is 64'd0 in ‘design2’, leading to ‘contl (i.e. jump is taken).

6. Final PC Deviation: As shown in AppendikIC lines 464-467, the final ‘PC’ values
in ‘designl’ and ‘design2’ are, respectively, 64'd4 andd®’'leading to falsifying
the equivalence.

7. Bug Fix: To fix this bug, the statement in ‘whtage*:line 59’ is modified to: assign
regwr_enout = (memwb_destregidx!="ZERO_REG) && !reset;

In the second experimen¥IPSSpeds compared taVIIPSPipefor k instructions af-

ter reset, including a HALT instruction at the end of the atne(see Figure_4.6(b)). The

pipelines were simulated witharbitrary instructions that follow these assumptions:

e Theinstruction currently in the WB stage is a HALT. This wasogced with a special
flag triggered by the HALT instruction in the WB stage.

e No HALT instruction was previously encountered in the stnea

¢ No illegal instruction was previously encountered in thean.

e No self-modifying code is performed. This was enforced kguasing that instruc-
tion accesses are done to addresses less than 100, and cizdaescare done to

addresses more than 200.

This experiment was done through an undergraduate Computhitecture Class
project at the University of Michigan, with the assistan¢¢he class instructors, Steven
Pelley and Prof. Thomas Wenisch. Over 40 students wereresyjto modifyMIPSBub-
ble by adding stalling and forwarding logic that resolves dejggity hazards. They were
then asked to formally verify the resultiddIPSPipeagainstMIPSSpeasing Reveal. 20

students used Reveal to verify their designs, 16 of whichmstiéd their Verilog designs
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Table 7.7 MIPS Spec-to-Impl Student Verification Results

Student| Cycles| k | Time | Property| Lemmas
1 12 25| 136 Pass 236
2 13 3 | 3541 Pass 4916
3 5 0 0.04 Pass 0
4 11 2 64 Fail 30
5 13 3 507 Fail 1262
6 13 3 1214 Pass 5611
7 13 3 | >3600| N/A N/A
8 13 3 | >3600| N/A N/A
9 12 25| 113 Pass 179

10 11 2 89 Fail 190
11 11 2 46 Fail 248
12 11 2 1 Pass 0
13 11 2 0.04 Pass 0
14 12 2.5 10 Fail 352
15 11 2 3 Fail 0
16 12 25| 120 Pass 189

alongside verification results from valid Reveal invokaga

The verification results of the students are collectivelyegiin Tabld—Z]7. The ‘Cycles’
column shows the maximal cycle number for which the studenfigd her MIPS design.
A cycle corresponds to a positive or negative edge of thekcldthe next column shows
the number of instructionk) in the corresponding instruction stream. Since eachunstr
tion needs two cycles to advance in the pipeline (two clodesilk = 2.5 means that two
instructions fully retired, and the third instruction nedtalf a clock period to retire. The
last three columns show the verification run time in secotidsresult of the equivalence
checking, and the number of total lemmas aggregated in tiadase.

The results show that

e Reveal is suitable for both finding design bugs (e.g. the fasdudents 4, 5, 10, 11,
14, and 15), or proving design correctness.

e With a time-out of 1 hour, most students were able to run Reeezompletion.

SRemaining students did not expose their designs to us,ledft supply Reveal with valid Verilog input.
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e Reveallearns 1to 7 lemmas per second, and tends to requiedenamas on average
when the property fails than when it passes.

e Reveal requires different number of lemmas to converge ifatutn the verification
time is affected) across various designs with similar cyezlenber and verification
result. For example, student no. 2 requires 3 times more ksrand run time than
student no. 6, although both run with cycles=13 and with aeobrdesign. This
indicates that the design of student no. 3 involves morepaditacontrol interactions

that had to be fixed using refinement.

The case of student no. 16 is particularly worth noting. Géifign Yang (Yifan in what
follows) discovered two problems in his MIPS pipeline witevRal, both of which are re-
lated to his forwarding logic. The Verilog signals ‘fwcheck EX’ and ‘fwd_check MEM’
are used throughout his design to indicate forwarding smdy from the ‘EX’ and
‘MEM’ stages into the ‘ID’ stage. These 5-bit variables takevalues ranging from 5°'d0
to 5'd31, indicating the register index that should be faakesl. Yifan'sMIPSPipehad two

bugs:

e These signals were not initialized in one version of hisgledeading to forwarding
from ‘EX’ and ‘MEM’ stages prior to loading meaningful insictions into them.

e These signals were erroneously assigned value 5’d30 upgeth oe a taken branch.
While Yifan’s intention was to assign them to 5'd31 (the zeegister’), which is
treated as ‘no forwarding’, Yifan’s design actually trigge forwarding (immediately

after reset and after a taken branch) from register 30.

For brevity, we will explain the second bug since it subsuthesfirst. Reveal’s full
counterexample trace, as produced by Reveal during Yifeersication effort, is given
in Appendix[D. Lines 150-153 and 442-445 show faulty forwagdfrom both ‘EX’ and
‘MEM’ after loading the first instruction, and faulty forw@ing from ‘MEM’ after loading

the second instruction. In general, forwarding affectdringions that read values from
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the register file and produce resutisly based on those values that were previously read
Therefore, instruction sequences that are affected freameous forwarding upon initial-
ization, such as the one encountered, remain absent frdnifeescenarios. Therefore,
Yifan’s design passed all simulation test cases providek thie project.

However, erroneously activating forwardiadter a taken branclis areal bug for se-
guences where a conditional jump is followed by instruditmat read from r30. This is
true since the faulty forwarding forces the pipeline to ignthe actual value of r30 after

the branch.

7.8 Experimental Observations

This section generalizes the experimental results intedwarlier, and presents our con-
clusions regarding the merits of the verification appro@shapplicability to complex test
cases, its drawbacks, and directions for improvement. &bia is divided into a number

of themes, each of which puts the results in a different sersjve.

7.8.1 Datapath and Memory Abstraction

The merits of datapath and memory abstraction is evidentastrof the test cases. In
the Sorter test case, Reveal reduces the verification tag&rforming validity checking
of EUF or CLU formulas that are oblivious to the size of theagaith, contrary to most
other verification tools. The OMU and ICRAM test cases alsonsthe effectiveness of
memory abstraction, as well as the merits of Lambda-bas@dameabstraction compared
to other memory abstraction methods. Finally, the rest etéist cases show that datapath
abstraction is essential to scalability, without whichifieation is rendered intractable.
This anticipated result has two interesting caveats. Rhistuse of counting arithmetic
in CLU does not necessarily speed up the overall verificatM#hnile convergence tends

to be faster, the SMT solver spends more time solving theatisiormula. Second, on
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Table 7.8 \Verification Results for DLX, RISC16F84, and X86
Cv2 | ELS | CLS | ELM | CLM B
D1 | >600( 1.92 1.8 0.6 1.0 | >600
D2 0.11 | 0.5 | 0.12 | 0.11| 0.1 0.21
D3| 316 | 222 | 116 | 1.13| 1.1 6.7
R1| >600| >600| >600| 257 | 148 209
R2| 0.79 56 >600| 72 40 15.2
R3| 115 50 121 26 | 27.3 | 11.6
X1 | >600| >600| >600| 36.5| 60.4 | >600
X2 | >600| >600| >600| 30.5| 103 | >600
X3 198 | 195 196 | 2.0 2.1 2.72
X4 | >600| >600| >600| 23 58.7 | >600

aThe notation is explained in the beginning of this chapter.

a number of occasions, especially buggy versions of theydesi specification, leaving
the formula unabstracted (i.e. at the bit level) allowed é\vo terminate quickly. This
suggests that adaptive and partial abstraction of the dtitapay combine the merits of

both methods.

7.8.2 Refinement Trade-Offs

A rapidly converging refinement back-end is essential topttaeticality of our approach.
Table[Z8 shows the runtime of Reveal (in seconds) on the IRISC16F84, and X86,
based on the refinement mode used. In general, the use of leefimement, with mul-

tiple lemmas in each iteration, outperforms other typesefihement. In 3 out of the
10 cases, however, refinement without the use of lemma wastabérminate relatively
quickly. We believe that for more complex designs, espbctabse that are bug-free or

with hard-to-find bugs, lemma refinement is essential.
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Table 7.9 Verification Condition Nodes and Bits Stats

Test Concrete Bits| Abstract Nodeg Bits-to-Nodes| Runtime (sec.
Sorter, W=8 127 26 5.08 0.05
Sorter, W=16 249 26 9.96 0.05
Sorter, W=32 473 26 18.9 0.05
Sorter, W=64 921 26 36.8 0.05
ICRAM 287 90 3.12 0.03
OMU, K=16 1346 344 3.91 0.05
OMU, K=32 3154 1192 2.65 0.1
OMU, K=64 8306 4524 1.88 0.05
OMU, K=128 2.5x10 1.7x1¢ 1.47 1.1
DLX, D1 2.2x10¢ 3945 5.58 0.6
DLX, D2 3552 522 6.8 0.1
DLX, D3 2.2x10 3915 5.62 1.1
RISC16F84, R] 7286 2904 2.54 148
RISC16F84, R2 7376 2928 2.52 40
RISC16F84, R3 7224 2849 2.54 2.6
X86, X1 1.5x10 7x10° 2.19 36.5
X86, X2 1.5x10 6.7x10 2.28 30.5
X86, X3 2764 3945 1.04 2.0
X86, X4 1.5x10 6.7x10 2.28 23

7.8.3 Overall Scalability

and presents Reveal’s runtime on &ch’he column labeled ‘Concrete Bits’ shows the
of nodes inabst(X). The last column shows the ratio between the two, which atdithe

As described earlier, Reveal is able to terminate on alletlvessions in less than 200

despite the control/datapath intermixture.

“We show the smaller runtime of ELM and CLM.
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average width of the datapath in the design and specification

Table[Z.® characterizes the sizes of the verification candif before and after abstraction,

number of bits incond X), while the column labeled ‘Abstract Nodes’ shows the number

seconds. We noted that there is no particular correlatibnd®n the width of the datapath
and the verification time. This is attributed to the brutecéodatapath abstraction in Re-

veal. Furthermore, the refinement back-end is robust swuthitthilows Reveal to terminate




Automating both abstraction and refinement plays a sigmificale in improving the
scalability and making Reveal more practical than other@gghes. Additionally, ag-
gregating concise lemmas in a persistent database endfib@sné incremental verifica-
tion. Finally, the efficiency of the validity checking andirement stages is attributed to
SMT-based satisfiability checking. The scalability of R&vean be further improved by

performing unbounded model checking based on finite inded¢tirmulations.

7.8.4 Discovering Design and Specification Bugs

Since Reveal produces a counterexample trace, it is agdtive as ‘simulation’ in show-
ing the unintended behavior. Furthermore, Reveal proveuketeffective in discovering
sophisticated bugs that would not have been otherwiseised. Examples for genuine
bugs include the RISC16F84 and MIPS bugs. Finally, Revealatde to discover other
types of unintended behavior, including problems in thecgations, as well as non-
determinism in the design that propagated to the outputamiples of the earlier include
the R2 and X2 variations, and examples of the latter inclbdgtoblem in the register file
in MIPSBubble

It is possible to further improve the output of Reveal by pcidg additional infor-
mation alongside the bug trace. Examples of that includeahcandidates of the bugs in
the design or specification. The use of formal techniqueses@kpossible to seek such

approaches, although their applicability is yet to be deieed.
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Chapter 8

Conclusions and Future Work

Formal verification of complex hardware systems like micogessors and microcon-
trollers has been researched for about two decades. Fattethe/state explosion problem,
researchers resorted to applying various types of ab&tnach order to filter out design
behavior that is orthogonal to the property being verifiae an turn reduce the size of
the resulting model. In most of these efforts, however, maneasoning about designs,
properties, and abstractions, has been a major hurdlelthmetd down the process overall,
and hindered the scalability of formal verification for thégpes of designs.

Our thesis presents an abstraction-based turn-key véioficgrocess for control logic
in hardware designs. Scalability is achieved with the ussncdiutomatic counterexample-
guided abstraction refinement of the datapath, and autdnpatefs of safety properties
in general, and equivalence in particular. This approagtarticularly suited for the ver-
ification of designs with wide datapaths and complex cortrgic. Datapath abstraction
allows the approach to focus on the control interactionsingpit possible to scale up to
much larger designs than is possible if verification is e@rmout at the bit level. Addi-
tionally, The scheme’s demand-based lemma generatiorbitip&liminates one of the
obstacles that had complicated the deployment of formal/atpnce tools in the past.

From a practical perspective, hands-free operation angastipf Verilog allow the
system to be directly used by designers. Reveal, an impleten of the approach, has
been tested by university students taking a computer aathite class. Using Reveal as

an automatic testing tool prior to synthesis, students vaéte to hunt for bugs in their
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RTL designs, as well as raise their confidence about theaogss of the final design with
respect to a certain correctness criterion. During thisgss, numerous cases were discov-
ered in which unintended behavior was present in the spatditand/or implementation
of the design, and was fixed using counterexample tracesnmia generated automati-
cally as well. Three of these cases were design problems @aesyold Verilog code; of
those, one was a serious bug that is based on a perfectlylpassenario. None of these
problems were discovered by a comprehensive set of tedthdldeen used by the class
instructors, and is unlikely to have been discovered byiticathl simulation approaches.

The capabilities of the approach and practicality of Reveate further demonstrated
by efficiently discovering bugs, or proving the lack therdaofsix Verilog examples that
are, amongst publicly available designs, the closest tdifealesigns both in terms of size
and complexity.

Since Verilog and other design languages were particutieligned to serve as sim-
ulation platforms, there has been no clear separation leetwatapath and control logic
that can be represented with a well-defined partition. Ireganour approach is resilient
against the datapath/control interactions that arise saoh ambiguity and lead to false
negatives. However, the iterative CEGAR process can siliefit from design method-
ologies that minimize datapath/control interactionsgsithose would be, by construction,
geared towards datapath abstraction.

We plan to continue developing automated methods that érdgween existing de-
sign methodologies and reasoning engines, in order todgedhe latter and maximize its
potential, as well as shrink the verification gap. One pdssibprovement is to automate
module-level abstraction, such that entire blocks of harévwimplementing self-contained
sub-components are abstracted away from the implememiatio specification. The dual
approach, mostly useful for hunting bugs in medium-sizégiess is to perform incremental
on-demand abstraction based on performance monitors.

Reveal’s usability can be potentially improved with twoheijues. Firstly, integrating
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unbounded model checking eliminates the need for suppgmngnrolling bound, and pro-
vides a more complete coverage of correctness for the deSegpondly, debugging can be
facilitated to assist in faster identification of design &uln particular, cumbersome coun-
terexample traces that stretch over many clock cycles caegdaced with automatically
localized ‘suggestions’ of fixes, which potentially incagithe sought design bug. Finally,
similar equivalence algorithms can be developed for hidgnezls of abstraction such as C

I

Overall, we believe that formal verification in both harde/and software follows the
simple relation: Automatiom Efficiency — Scalability. We hope that scalability will
continue to rise and formal verification methods, like owvdl, ultimately be adopted in

industrial settings.
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Appendix A
VERSA Verilog

VERSA, also VErilog Restricted Subset for Abstraction,a@signed to combine three main

features for the purpose of abstraction-based verification

¢ the uniformity of a structural description,
¢ the word-level granularity of a high-level description,

¢ limited behavioral modeling that is widely used by designeorldwide.

This subset is suitable for word-level formal verificatiahcontrol logic described in
this thesis, and it allows word-level functionality and ajadth abstractions to be more
easily inferred. We believe that defining this subset leyesathe benefit of abstraction
methods by allowing all design descriptions, regardlestheir source format (Verilog
2000, System Verilog, VHDL, and other HDLS), to be convertied/ERSA and to uti-
lize similar abstraction techniques. In what follows, wed&e VERSA and the rationale

behind each set of Verilog (un)supported structures.

A.1 \Verilog 95

The underlying syntax of VERSA is Verilog 9&54], which ispported by most Ver-
ilog tools including Icarus Verilog [68], a popular and pight available Verilog compiler.
Conceptually, any design can be represented in Verilog §ardéess of its original HDL
source, modulo issues that are orthogonal to Reveal’saatisin-based verification, such

as readability of the source code, and scalability for satioh and synthesis.
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A.2 Synthesizable Subset

Since Verilog was originally designed as a simulation laggy it includes a number of
constructs with the sole purpose of facilitating simulagiand bearing no effect on the
synthesis process. Since in abstraction-based verificat® are interested in modeling
the actual hardware that will be ultimately implemented loa ¢hip, VERSA is confined

to the synthesizable subset of Verilog. The following \agitypes and constructs are not

synthesizable by most tools including Icarus Verilog, aredthus excluded from VERSA:

e Real Constantﬁj%, chap. 2.5.2, p. 8]

e Variables of types real, realtime, and tirQ[54, chap. 3.23)

e Strings EL chap. 6, p. 60]

e Procedural continuous assignme@ [54, chap. 9.3, p. 104]

e The delay and wait procedural timing contri [54, chap, p.114]

e The event procedural timing control with expressions oftian identifiers and
posedge/negedge |54, ch’aliL 9.7, p. 114]

e System tasks and functions [54, chap. 14, p. 172]

A.3 Clocking

In VERSA we require that the design has only one clock inghe (hain clock). Multiple

clocks can be derived from the main clock and used to syn@edhe logic.

A.4 Explicit Description

Verilog includes a number of features that allow flexible aady-to-read RTL coding of
hardware components. Excluding these features does ngiroomse the expressiveness
of Verilog. Rather, it allows a simplier and more regularregentation. The following

features are, thus, excluded from VERSA:
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° Tasksl[_—S_L, chap. 10, p. 125]

e Compiler directive

. ParameterB4, cjaj. 3.10, p.25]

4, chap. 16, p.219], except ‘inclaahel ‘define

A.5 Structural Description

Some additional Verilog features allow the coder to use Weha description that resem-
bles sequential software. Static preprocessing can rethege features and allow a more
‘regular’ form of the code.

The following constructs are thus excluded from VERSA:

e Parallel bIocksIE4, chTEQ.S.Z, p. 121]

e Named blocks and taskis [54, chap. 11, p. 132]

e Looping Q chap. 9.6, p. 111]

A.6 Abstraction-Oriented Description

According to Elﬁl chap. 6, p. 50] LHS of continuous assignta@an include bit- and
part-selects with constant indexing. VERSA requires aamtsindexing inall expres-
sions involving extraction from a 1-dimensional bit-vastoln particular, (1) procedural
assignments to bit-vectors with variable indexing in theS_$hould be replaced with mul-
tiple assignments representing each bit- or part-sel2rtexXpressions appearing in RHS
of assignments with variable indexing applied on bit-vextshould be replaced with ?:
expressions that convert them to constant indexing. VERISA r@stricts the use of non-
constant repeat courm54, chap. 4.1, p. 27] and shiftingmyraconstant value.
Since the approach is premised on RTL Verilog, VERSA exduglate- and switch-
Ifjd, chap. 7, p. 55] and user defined prem;'t@, chap. 8, p. 87]. Gates

level modeling

should be replaced with continuous assignments. VERSAratadres that wire is the only
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net type. Other net types such as buses, pullups, pulldcarmdssupplies]ﬂ4, chap. 3.7, p.
17], should be eliminated.
The following constructs are allowed in a VERSA descriptibat are ignored since

they bear no effect on the verification on Reveal:

e \ectored and scalared variabIEI[54, chap. 3.3.iij 15]

Minimum,lltjpical, and maximum delay expressi [54, cHaB, p. 42]

Strengths

4, chap. 6.1.4, p. 53]
Procedural timin controlEL, chap. 9.7, p. 114]
Specify-blocksljéx

, chap. 13, p. 152]

A.7 Memories

VERSA allows the modeling of memories with 2-dimension&lJactors. LHS and RHS
expressions that involve extraction (with dynamic inde)iare treated as write and read
ports, respectively. No extraction with constant indexiagallowed with memory 2-

dimensional variables.
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Appendix B

Configuration Directives

Reveal’s specific choice for abstraction, refinement andrsglare controlled via a set of

configuration directives. We divide them into three grouglofving Sectiod6.211.

B.1 Algorithmic Behavior

The following arguments control the abstraction, refinetnamd solving steps:

e alg_type [optional, default: abstref]. Through this argument the user can control
the type of verification algorithm. ‘absef’ indicates the use of DP-CEGAR, while
‘bit_blast’ indicates the use of YICES’ SMT(BV) by representoung X) with the
native bit-vector representation in YICES.

e conc.min_type [optional, default: all_muses] Counterexample minimization us-
ing MUSes can be controlled using this argument. The valadsriuses’ and
‘one.muses’ allows the use of all or one MUS in each refinementtiterawhile
the argument ‘none’ turns off MUS-based minimization.

e abstmin_type [optional, default: none]. Counterexample minimization at the ab-
stract level can be done through this option.

e lemma.db [optional]. This argument activates the lemma database and specdies th
name of the file used to store the lemmas.

e sim_simplifications [optional, default: 1]. When disabled with value ‘0’, simula-

tion simplifications are not used (see Secflon 6.2.2).

108



max_iter [optional, default: 0]. When a non-zero value is used, refinement itera-
tions are limited to the given number.

abst solver [optional, default: yicesapi]. This specifies the type of the abstract
solver used, which is one of ‘yicespi’, ‘yices’, ‘stp’, ‘ario’, and ‘bat’.

abst.logic [optional, default: euf]. This specifies the abstract logic used, which is
one of ‘euf’ or ‘clu’.

camustimeout [optional, default: 5]. This specifies the number of seconds after
which CAMUS times-out during counterexample minimization

camusgroups [optional, default: 0]. A non-zero value directs Reveal to group the
constraints in the violation into the given number of gro(grbitrarily) before pass-
ing to CAMUS. Constraints that are grouped together in CAMuMIB be enabled
(included in the MUS) or disabled (excluded from the MUS )attgpr.
camusgroup_sizes [optional, default: O] A non-zero value directs Reveal to group
the constraints in the violation such that each group iredutie specified number of
constraints. See the ‘camgsoups' argument above.

camus max_muses [optional, default: 0] A non-zero value directs CAMUS to

limit the number of MUSes used for refinement to the given neimb

Input Specifications

The following arguments control the way Reveal models tipeiirdesign, as well as nec-

essary information to launch the verification.

B.2.1 Design Modeling

e clock_sig [optional]. This specifies the name of the clock signal. This is the main
clock input driving the design. Multiple clocks can be dedvrom the main clock,

and they can all (including the main clock) be used to synalzeothe design’s logic
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on either edge or value. Purely combinational designs canba specified, in which
case no clock signal is needed.

e clock-model [optional, default: init_O_oscillating]. This argument tells the
simulator the way the main clock signal is modeled. Reveslipports the
‘init _0_oscillating’ mode, where the clock is automatically inizad with O in cycle
0, and oscillates (hi to lo or vice versa) in each new cycle thie ‘init. 0_posedge’,
which forces the clock to be 0 at cycle 0 but to have a singléigesdge in each
cycle. The latter is allowed for designs that exclude negatlock edge synchro-
nization, and prevents spending two cycles for a singlekgh@ziod.

e prop_cycle [mandatory]. This specifies the number of cycles the design has to be
unfolded to generateondX).

e truncate_rhs [optional, default: 0]. When turned on, Reveal will truncate RHS ex-
pressions that are assigned to a wider LHS signals to enstweecompatibility. By
default, this is disabled and such design input producesran e

e extend.rhs [optional, default: 0]. When turned on, Reveal will 0-extend RHS ex-
pressions that are assigned to a narrower LHS signals tocensize compatibility.
By default, this is disabled and such design input produnesiar.

e mem.map [optional]. The given file specifies a mapping for memory arrays. This
is useful for enforcing initialization for memories. Eaahd in this file specifies the
name of the memory array, and the new name of its correspgrmdamory array

used in cycle 0.

B.2.2 Design Information

¢ designfile [mandatory]. Specifies the name of the Verilog file including the top
module.
e designtype [optional, default: verilog]. Specifies the format type of the input. If

given ‘hr’, Reveal will attempt to read a binary HR represgioin of the transition
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function.

prop_file [mandatory]. Specifies the name of the file including the property.

prop _type [optional, default: verilog]. Specifies the format type of the property file

similarly to ‘designtype’.

prop_sig [mandatory]. This specifies the name of the signal represented the fiyoper

defined in ‘propfile’.

top_module [optional]. This specifies the name of the top module for multi-module

designs.

B.3 Output Specifications

The arguments described here control Reveal’s output oscifeen and as numerous files.
We divide these into arguments that control the back-endevERI for the purpose of re-
suming the verification with other tools, and arguments ffigrsole purpose of debugging

and understanding the operation of Reveal.

B.3.1 Back-end

e dump_{init|final } formula_in_{verilog|uclid} [optional]. When activated with
value ‘1’, Reveal dumps the initiatond X)) or final formula ¢N (X, p), whereN is
the number of refinement iterations) in Verilog or UCLID.

e trace_signals [optional]. This specifies to Reveal which signals should be included

for viewing in the GUI back-end.

B.3.2 Debugging

e dump_designmodeling [optional]. The transition relation of the design is textually

dumped to the file specified in this option.

111



dump_designhr [optional, default: 0] . This specifies whether to dump the transi-
tion relation of the design in the ‘HR’ format.

dump_model [optional, default: 0]. The transition relation of the design is textually
dumped to the screen.

dump_cex [optional, default: 0]. All abstract counterexamples are dumped (to std-
out) when this option is turned on.

dump_viol [optional, default: 0]. The violation computed in each iteration is textu-
ally dumped to the screen.

dump_ref [optional, default: 0]. The refinement computed in each iteration is tex-
tually dumped to the screen.

dump_stats [optional]. Dumps verification statistics to the specified file.
sim_signals [optional]. A list of signals to be printed during simulation.

verbosity [optional, default: 1]. Verbosity of Reveal’s output ranges from level O to
3, where level 1 shows the CEGAR loop and the time spent onldstesgction versus

refinement iterations.
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Appendix C

MIPS Bubble-to-Bubble
Counterexample Trace

Reveal - University of Michigan, Ann Arbor
Version:1.1

CONFIGURATION:
kkkkkkkkkhkkkkkhhkkkkhkkkkhkkhhkkkhkkhkhhkkkhkhkkkhkhhkkhkhkkkkkkk
abstlogic = euf

abstmin_type = none

abstsolver = yicesapi

algtype = abstref

auxfile =

. boundon abstvars =0
. camuggroupsize =0
. camuggroups =0

camusnmaxmuses = 100

. camugimeout =5

. clockmodel = init0_oscillating
. clocksig = clock

. concmin_type = alLmuses

. desigdfile = wenischidentical.v
. designtype = verilog

. dumpcex =

. dumpdesignhr =

. dumpdesignmodeling =

. dumpfinal_formula.in_uclid =

. dumpfinal_formula.in_verilog =
. dumpinit_formulain_uclid =

. dumpinit_formulain_verilog =

. dumpmodel = 47Qidentical.model
. dumpref =

. dumpstats =

. dumpviol =

. experiment=0
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33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.

experimentoi =0

extendrhs =0

interactivedebugger =0

lemmadb =

maxiter =0

memmap = wenischidentical. memmap
propcycle = 13

propfile = prop.v

propsig = prop

proptype = verilog

simsignals =

simsimplifications = on

topmodule = pipeline

tracesignals =

truncaterhs =0

variablesabstraction = intsnterpretedconsts
verbosity =0
*kkkkkkkkkkkkhkhkkkkhkkkkkhhkkkkhhkkkhhkkkhkhhkkhkhhkkkkkk
Reveal started...

-I- model dumped to: 47@lentical.model

- I _ khkkkkkkkkkkkkkkkkkkkk

-I- Property is Violated!

- I o kkkkkkkkkkhkkkkkkkkkkkk
-l-
Counterexample Trace:

Cycle 0

memwb_NPC _designl
=00000000000000000000000000000000000000000000000000000000001
pipeline_design10$memwb_destreg_idx

= 00000

pipelinedesign10$memwhb_take branch

=1

pipeline_design10$wb_reg_wr _data_out
=00000000000000000000000000000000000000000000000000000000001
pipeline_design10$wb_reg-wr_en out

=1

pipeline_design10$wb_reg wr _idx _out

=00000

pipelinedesign10$wh stagedesign10$resultmux
=00000000000000000000000000000000000000000000000000000000001
pipelinedesign20$memwb_destreg idx

= 00001

pipeline_design20$wb_reg wr _idx _out
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78

122

. =00001
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

Cycle 1

idex IR_designl

=010001111111111100000100000111112

idex IR_design2

=010001111111111100000100000111112

if_id_IR_designl

=010001112111111110000010000011111

if_id_IR_design2

=010001111111111100000100000111112
pipelinedesign10$exmemalu_result

= 00000000000000000000000000000000000000000000000000000000000
pipelinedesign10$exmemdestreg idx

=11111

pipelinedesign10$id ex rega
=00000000000000000000000000000000000000000000000000000000000
pipelinedesign10$if_stagedesign10$PCreg
=00000000000000000000000000000000000000000000000000000000000
pipelinedesign10$memwb_destreg idx

=11111

pipelinedesign10$memwhb_result
=00000000000000000000000000000000000000000000000000000000000
pipelinedesign20$ex memalu_result

= 00000000000000000000000000000000000000000000000000000000000
pipelinedesign20$ex memdestreg idx

=11111

pipelinedesign20$id_ex rega

= 00000000000000000000000000000000000000000000000000000000000
pipelinedesign20$if_stagedesign20$PCreg

= 00000000000000000000000000000000000000000000000000000000000
pipelinedesign20$memwhb_destreg.idx

=11111

pipelinedesign20$memwhb_result

= 00000000000000000000000000000000000000000000000000000000000

Cycle 2

if IR_out.designl

=111000000001111211111121211111121211

if_IR_out.design2

=111000000001111111111721171121112121112

it NPC out designl

= 00000000000000000000000000000000000000000000000000000000100
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123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.

it NPC_out.design2
=00000000000000000000000000000000000000000000000000000000100
if id_IR_designl

=01000111111111110000010000011111

ifid_IR_design2

=010001111111111100000100000111112

mem2proalatadesignl

=111000000001111111111221171121112121112

memz2proalatadesign2

=11100000000111121111122111121121211

pipelinedesign10$ex memalu_result
=00000000000000000000000000000000000000000000000000000000000
pipelinedesign10$ex memdestreg idx

=11111

pipelinedesign10$id_cond branchout

=0

pipelinedesign10$id_ex rega
=00000000000000000000000000000000000000000000000000000000000
pipelinedesign10$id_uncondbranchout

=0

pipelinedesign10$if_stagedesign10$PCplus 4
=00000000000000000000000000000000000000000000000000000000100
pipelinedesign10s$if_stagedesign10$PCreg
=00000000000000000000000000000000000000000000000000000000000
pipelinedesign10$if_stagedesign10$nextPC

= 00000000000000000000000000000000000000000000000000000000100
pipelinedesign10$memresultout
=00000000000000000000000000000000000000000000000000000000000
pipelinedesign10$memwb_destreg idx

=11111

pipelinedesign10$memwhb_result

= 00000000000000000000000000000000000000000000000000000000000
pipelinedesign10$proc2imemaddr
=00000000000000000000000000000000000000000000000000000000000
pipelinedesign10$wh.reg wr_dataout

= 00000000000000000000000000000000000000000000000000000000000
pipelinedesign10$wh._reg wr_idx_out

=11111

pipelinedesign10$wh stagedesign10$resultmux

= 00000000000000000000000000000000000000000000000000000000000
pipelinedesign20$ex memalu_result

= 00000000000000000000000000000000000000000000000000000000000
pipelinedesign20$ex memdestreg idx

=11111

pipelinedesign20$id_cond branchout
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168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
2009.
210.
211.
212.

=0

pipelinedesign20$id_ex rega
=00000000000000000000000000000000000000000000000000000000000
pipelinedesign20$id_uncondbranchout

=0

pipelinedesign203$if_stagedesign20$PCplus 4
=00000000000000000000000000000000000000000000000000000000100
pipelinedesign20s$if_stagedesign20$PCreg

= 00000000000000000000000000000000000000000000000000000000000
pipelinedesign20$if_stagedesign20$nextPC

= 00000000000000000000000000000000000000000000000000000000100
pipelinedesign20$memresultout
=00000000000000000000000000000000000000000000000000000000000
pipelinedesign20$memwb_destreg idx

=11111

pipelinedesign20$memwhb_result

= 00000000000000000000000000000000000000000000000000000000000
pipelinedesign20$proc2imemaddr

= 00000000000000000000000000000000000000000000000000000000000
pipelinedesign20$wh.reg wr_dataout

= 00000000000000000000000000000000000000000000000000000000000
pipelinedesign20$wh.reg wr_idx_out

=11111

pipelinedesign20$wh stagedesign20$resultmux

= 00000000000000000000000000000000000000000000000000000000000
proc2menaddrdesignl

= 00000000000000000000000000000000000000000000000000000000000
proc2menaddrdesign2
=00000000000000000000000000000000000000000000000000000000000

Cycle 3

idex IR_designl

=010001111111111100000100000111112

idex IR_design2

=01000111111111110000010000011111

if _id_IR _designl

=111000000001111111111721171121112211212

if id_IR_design2

=11100000000111121111112211111121211

if.id_NPC.designl

= 00000000000000000000000000000000000000000000000000000000100
if id_NPC design2

= 00000000000000000000000000000000000000000000000000000000100
pipelinedesign10$id_ex condbranch
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213.
214,
215.
216.
217.
218.
219.
220.
221.
222.
223.
224,
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244,
245.
246.
247.
248.
249.
250.
251.
252.
253.
254,
255.
256.
257.

=0

pipelinedesign10$id_ex uncondbranch

=0

pipelinedesign10$if_stagedesign10$PCreg

= 00000000000000000000000000000000000000000000000000000000100
pipelinedesign10$memwhb_destreg.idx

=11111

pipelinedesign10$memwhb_result

= 00000000000000000000000000000000000000000000000000000000000
pipelinedesign20$id_ex cond branch

=0

pipelinedesign20$id_ex uncondbranch

=0

pipelinedesign20$if_stagedesign20$PCreg

= 00000000000000000000000000000000000000000000000000000000100
pipelinedesign20$memwb_destreg idx

=11111

pipelinedesign20$memwhb_result

= 00000000000000000000000000000000000000000000000000000000000

Cycle 4

if id_IR_designl

=1110000000011111111117211712111711211212

ifid_IR_design2

=11100000000111121111112211111121211

if id_NPC.designl

= 00000000000000000000000000000000000000000000000000000000100
if id_NPC.design2

= 00000000000000000000000000000000000000000000000000000000100
pipelinedesign10$ex take branchout

=0

pipelinedesign10$id_ex condbranch

=0

pipelinedesign10$id_ex uncondbranch

=0

pipelinedesign10$id regaout
=00000000000000000000000000000000000000000000000000000000001
pipelinedesign10$id_stagedesign10$decodedesign10$op.code

=111000

pipelinedesign10$id_stagedesign10$decodedesign10$opcodel

=111000

pipelinedesign10$id_stagedesign10$raidx

= 00000

pipelinedesign10$id stagedesign10$regfdesign10$rdareg

118



258

259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294,
295.
296.
297.
298.
299.
300.
301.

302

=00000000000000000000000000000000000000000000000000000000001
pipelinedesign10s$if_stagedesign10$PCreg
=00000000000000000000000000000000000000000000000000000000100
pipelinedesign10$memwb_destreg idx

=11111

pipelinedesign10$memwhb_result
=00000000000000000000000000000000000000000000000000000000000
pipelinedesign10$wh._reg wr_dataout

= 00000000000000000000000000000000000000000000000000000000000
pipelinedesign10$whb.reg wr_en out

=0

pipelinedesign10$wh reg wr_idx_out

=11111

pipelinedesign10$wh_stagedesign10$resultmux

= 00000000000000000000000000000000000000000000000000000000000
pipelinedesign20$ex take branchout

=0

pipelinedesign20$id_alu func_out

= 00000

pipelinedesign20$id_ex cond branch

=0

pipelinedesign20$id_ex uncondbranch

=0

pipelinedesign20%$id opaselectout

=10

pipelinedesign20$id_oph selectout

=10

pipelinedesign20$id regaout
=00000000000000000000000000000000000000000000000000000000000
pipelinedesign20$id_stagedesign20$decodedesign20$op.code

=111000

pipelinedesign20$id_stagedesign20$decoderdesign20$opcodel

=111000

pipelinedesign20$id_stagedesign20$raidx

= 00000

pipelinedesign20$id_stagedesign20$regfdesign20$rdareg

= 00000000000000000000000000000000000000000000000000000000000
pipelinedesign203$if_stagedesign20$PCreg
=00000000000000000000000000000000000000000000000000000000100
pipelinedesign20$memwb_destreg idx

=11111

pipelinedesign20$memwhb_result
=00000000000000000000000000000000000000000000000000000000000
pipelinedesign20$wh_reg wr_dataout
=00000000000000000000000000000000000000000000000000000000000
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303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.
323.
324.
325.

326.
327.
328.
329.
330.
331.
332.
333.
334.
335.
336.
337.
338.
339.
340.
341.
342.
343.
344.
345.
346.
347.

pipelinedesign20$wh reg wr_en out

=0

pipelinedesign20$wh.reg wr_idx_out

=11111

pipelinedesign20$wh_stagedesign20$resultmux

= 00000000000000000000000000000000000000000000000000000000000

Cycle 5

id_ex IR _designl

=1110000000011112111121212111121121211

id_ex IR _design2

=11100000000111111111172117112111221112

id_ex NPC_designl
=00000000000000000000000000000000000000000000000000000000100
id_ex NPC_design2
=00000000000000000000000000000000000000000000000000000000100
pipelinedesign10$ex memtake branch

=0

pipeline_design103id_ex_rega
=00000000000000000000000000000000000000000000000000000000001
pipelinedesign10s$if_stagedesign10$PCreg
=00000000000000000000000000000000000000000000000000000000100
pipelinedesign20$ex memtake branch

=0

pipelinedesign20$id_ex alu func

= 00000

pipelinedesign20$id_ex opaselect

=10

pipelinedesign20$id_ex oph select

=10

pipelinedesign20$id_ex rega
=00000000000000000000000000000000000000000000000000000000000
pipelinedesign20s$if_stagedesign20$PCreg

= 00000000000000000000000000000000000000000000000000000000100

Cycle 6

idex IR_designl

= DOOXXXXXXXXXXXXXXXXXXX XXX XXXX

idex IR_design2

= 000xxxxx111111111111111111111

idex NPC_designl
=00000000000000000000000000000000000000000000000000000000100
idex NPC_design2
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348

349.
350.
351.
352.
353.
354.
355.
356.
357.
358.
359.
360.
361.
362.
363.
364.
365.
366.
367.
368.
369.
370.
371.
372.
373.
374.
375.
376.
377.
378.
379.
380.
381.
382.
383.
384.
385.
386.
387.
388.
389.
390.
391.
392.

=00000000000000000000000000000000000000000000000000000000100
pipelinedesign10$ex memtake branch

=0

pipelinedesign10$ex stagedesign10$id ex IR_aux

=000

pipelinedesign10$id_cond branchout

=0

pipelinedesign10$id_ex rega

= 00000000000000000000000000000000000000000000000000000000001
pipelinedesign10$id_uncondbranchout

=0

pipelinedesign103$if_stagedesign10$PCreg
=00000000000000000000000000000000000000000000000000000000100
pipelinedesign20$exalu_resultout

= 00000000000000000000000000000000000000000000000000000000000
pipelinedesign20$ex memtake branch

=0

pipelinedesign20$ex stagedesign20$br. disp
=11111112221112122211122221121222111212211122111121111221111100
pipelinedesign20$ex stagedesign20$id_ex IR_aux

=000

pipelinedesign20$ex stagedesign20$opamux out
=00000000000000000000000000000000000000000000000000000000100
pipelinedesign20$ex stagedesign20$ophmux_out
=111111122211112122211122221121222111212211122111121111221111100
pipelinedesign20$id_cond branchout

=0

pipelinedesign20$id_ex alu func

= 00000

pipelinedesign20$id_ex opaselect

=10

pipelinedesign20$id_ex oph select

=10

pipelinedesign20$id_ex rega

= 00000000000000000000000000000000000000000000000000000000000
pipelinedesign20%$id_uncondbranchout

=0

pipelinedesign20s$if_stagedesign20$PCreg
=00000000000000000000000000000000000000000000000000000000100

Cycle 7

pipelinedesign10$id_ex condbranch

=0
pipelinedesign10$id_ex uncondbranch
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393.
394.
395.
396.
397.
398.
399.
400.
401.
402.
403.
404.
405.
406.
407.
408.
4009.
410.
411.
412.
413.
414.
415.
416.
417.
418.
419.
420.
421.
422.
423.
424.
425.
426.
427.
428.
429.
430.
431.
432.
433.
434.
435.
436.
437.

=0

pipelinedesign10$if_stagedesign10$PCreg
=00000000000000000000000000000000000000000000000000000000100
pipelinedesign20$ex memalu_result

= 00000000000000000000000000000000000000000000000000000000000
pipelinedesign20$id_ex condbranch

=0

pipelinedesign20$id_ex uncondbranch

=0

pipelinedesign20%$if_stagedesign20$PCreg

= 00000000000000000000000000000000000000000000000000000000100

Cycle 8

pipelinedesign10$ex take branchout

=0

pipelinedesign10$id_ex condbranch

=0

pipelinedesign10$id_ex uncondbranch

=0

pipelinedesign10$if_stagedesign10$PCreg
=00000000000000000000000000000000000000000000000000000000100
pipelinedesign20$ex memalu_result
=00000000000000000000000000000000000000000000000000000000000
pipelinedesign20$ex take branchout

=0

pipelinedesign20$id_ex condbranch

=0

pipelinedesign20$id_ex uncondbranch

=0

pipelinedesign20$if_stagedesign20$PCreg

= 00000000000000000000000000000000000000000000000000000000100
pipelinedesign20%$if_stagedesign20$nextPC
=00000000000000000000000000000000000000000000000000000000000

Cycle 9

pipelinedesign10$ex memtake branch

=0

pipelinedesign10$if_stagedesign10$PCreg

= 00000000000000000000000000000000000000000000000000000000100
pipelinedesign20$ex memtake branch = 0
pipelinedesign203$if_stagedesign20$PCreg
=00000000000000000000000000000000000000000000000000000000000
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438.
439.
440.
441.
442.
443.
444.
445.
446.
447.
448.
449.
450.
451.
452.
453.
454,
455.
456.
457.
458.
459.
460.
461.
462.
463.
464.
465.
466.
467.
468.
4609.
470.
471.
472.
473.
474.

Cycle 10

pcequiv_curr_cycle

=0

pipelinedesign10$ex memtake branch

=0

pipelinedesign10s$if_stagedesign10$PCreg
=00000000000000000000000000000000000000000000000000000000100
pipelinedesign20$ex memtake branch

=0

pipelinedesign20$if_stagedesign20$PCreg
=00000000000000000000000000000000000000000000000000000000000

Cycle 11

pcequiv_always

=0

pipelinedesign103$if_stagedesign10$PCreg

= 00000000000000000000000000000000000000000000000000000000100
pipelinedesign20$if_stagedesign20$PCreg

= 00000000000000000000000000000000000000000000000000000000000

Cycle 12

pcequiv_always

=0

pipeline_design10$if_stagedesign10$PC.reg
=00000000000000000000000000000000000000000000000000000000100
pipeline_design203$if_stagedesign20$PC.reg
=00000000000000000000000000000000000000000000000000000000000
-I- Total iterations: 1

Reveal finished.

Abst Solving Time: 0.08
Total Time: 0.26
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Appendix D

MIPS Spec-to-Pipe
Counterexample Trace

Reveal - University of Michigan, Ann Arbor
Version:1.1

CONFIGURATION:
kkkkkkkkkhkkkkkhhkkkkhkhhkkkhkkhkhkkkhkkhkhhkkkhkhkkkhkhhkkhkkhhkkkkkk
abstlogic = euf

abstmin_type = none

abstsolver = yicesapi

algtype = abstref

auxfile =

. boundon abstvars =0
. camuggroupsize =0
. camusggroups =5

camusnmaxmuses = 100

. camugimeout =5

. clockmodel = init0_oscillating

. clocksig = clock

. concmin_type = alLmuses

. desigrfile = alphatest.v

. designtype = verilog

. dumpcex =

. dumpdesignhr =

. dumpdesignmodeling =

. dumpfinal_formula.in_uclid =

. dumpfinal_formula.in_verilog =

. dumpinit_formulain_uclid =

. dumpinit_formulain_verilog =

. dumpmodel = ../work/alphatest.model
. dumpref =

. dumpstats = ../work/alphatest.stats
. dumpviol =

. experiment=0
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33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.

experimentoi =0

extendrhs =0

interactivedebugger =0

lemmadb = ../work/alphatest.lemmatb
maxiter =0

memmap = alphatest.memap
propcycle =12

propfile = prop.v

propsig = prop

proptype = verilog

simsignals =

simsimplifications = on

topmodule = alphatest

tracesignals =

truncaterhs =0

variablesabstraction = intsnterpretedconsts
verbosity =1

kkkkkkkkkkkkkkkkkkkhkkhkkkkkkkkkkkhkkhkkhkkhkkhkkhkkhkkikk

Reveal started...

-D- Loading the design...

-D- 1-bit registers: 1147

-D- Loading the property...

-D- Done.

-I- model dumped to: ../work/alphatest.model
Added clock:INIT[clock] := 1'd0

Added clock:NSFclock] := Iclock

-D- Simulating..

-D- Done.

-1-

-I- Creating an empty Lemma DB file: ../work/alphateshimasdb
-1-

- I o kkkkkkkkkkhkkkkkkkkkkkk

-I- Property is Violated!
- I _ kkkkkkkkhkkkhkkkkkhkkkkkhkk
--

Counterexample Trace:

Cycle O
fl

=1
f2
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78. =1

79. haltprev pipeline

80. =0

81. pipeline0s$if_stageO$PCreg

82. = 00000000000000000000000000000000000000000000000000000110000
83. pipelinespec0$if_stagespecO$PCreg

84. = 00000000000000000000000000000000000000000000000000000110000
85.

86. Cycle 1

87.

88. flacc

89. =

90. f2.acc

91. =

92. haltprev_pipeline

93. =0

94. idexIR_impl

95. =01000111111111110000010000011111

96. ifid_IR_impl

97. =01000111111111110000010000011111

98. ifid_NPC.impl

99. =00000000000000000000000000000000000000000000000000000000000
100. ifid_valid_instimpl

101. =0

102. mem2pradetch dataspec

103. =11101011110000000000000000110001

104. memwb_IR_spec

105. = LIIXXXXXXXXXXXXXXXXXXX XXX XXKXXXXX

106. pipelineimpl_0$exmemalu_result

107. =00000000000000000000000000000000000000000000000000000000000
108. pipelineimpl_0$exmemdestreg.idx

109. =11111

110. pipelineimpl_0$exmemhalt

111. =0

112. pipelineimpl_0$exmemillegal

113. =0

114. pipelineimpl_0$exmemrd_mem

115. =0

116. pipelineimpl_0$exmemtake branch

117. =0

118. pipelineimpl_0$exmemwr_mem

119. =0

120. pipelineimpl_0$exvaluea

121. =00000000000000000000000000000000000000000000000000000000000
122. pipelineimpl_0$id ex alu_func
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123

153

154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.

167

. = 00000
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.

pipelineimpl_0$id_ex cond branch

=0

pipelineimpl_0$id ex destreg idx

=11111

pipelineimpl_0$id ex fwd_a

=00

pipelineimpl_0$id_ex fwd_b

=00

pipelineimpl_0$id_ex_halt

=0

pipelineimpl_0$id ex.illegal

=0

pipelineimpl_0$id ex opaselect

=00

pipelineimpl_0$id ex oph select

=00

pipelineimpl_0$id ex rd_mem

=0

pipelineimpl_0$id ex rega

= 00000000000000000000000000000000000000000000000000000000000
pipelineimpl_0$id ex regh
=00000000000000000000000000000000000000000000000000000000000
pipelineimpl_0$id_ex uncondbranch

=0

pipelineimpl_0$id_ex wr_-mem

=0

pipeline_impl _0$id_stage 0$fwd_check EX

=11110

pipeline_impl _0$id_stage 0$fwd_check MEM

.=11110

pipelineimpl_0$if_stage0$PCreg
=00000000000000000000000000000000000000000000000000000000000
pipelineimpl_0$memwb_destreg idx

=11111

pipelineimpl_0$memwb_result

= 00000000000000000000000000000000000000000000000000000000000
pipelineimpl_0$proc2Dmenmcommand

=00

pipelinespecO$ex stagespecO$opbmux out

= 00000000000000000000000000000000000000000000000000000000000
pipelinespecO0$id alu_func_out

= 00000

pipelinespecO0$id opaselectout

. =01
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168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
2009.
210.
211.

212

pipelinespec0$id oph_selectout

=00

pipelinespec0$id regh out

= 00000000000000000000000000000000000000000000000000000000000
pipelinespecOs$if_stagespecO0$PCeg
=00000000000000000000000000000000000000000000000000000000000
pipelinespecO$proc2Dmencommand

=00

pipelinespecO$proc2imemaddr

= 00000000000000000000000000000000000000000000000000000000000
proc2menctommandmpl

=01

proc2mentommandspec

=00

proc2menfetch.addrspec

= 00000000000000000000000000000000000000000000000000000000xxx
speamem.idx2
=00000000000000000000000000000000000000000000000000000000

Cycle 2

haltprev_pipeline

=0

if_IR_outimpl

=11101011110000000000000000110001

it NPC_outimpl
=00000000000000000000000000000000000000000000000000000000100
if_id_IR_impl

=01000111111111110000010000011111

if id_NPC.impl
=00000000000000000000000000000000000000000000000000000000000
ifid_valid_instimpl

=0

if_valid_instoutimpl

=1

impLmemidx
=00000000000000000000000000000000000000000000000000000000
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213.
214,
215.
216.
217.
218.
219.
220.
221.
222.
223.
224,
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244,
245.
246.
247.
248.
249.
250.
251.
252.
253.
254,
255.
256.
257.

mem2proalataimpl

=11101011110000000000000000110001

memz2prodetch dataspec

=11101011110000000000000000110001

memwb_IR_spec

=11101011110000000000000000110001

memwb_NPC spec
=00000000000000000000000000000000000000000000000000000000100
pipelineOSid.illegal_out

=0

pipeline0$if_stage0$PCreg
=00000000000000000000000000000000000000000000000000000110000
pipelinecommitNPC spec

= 00000000000000000000000000000000000000000000000000000000100
pipelineerror_statusimpl

= 0000

pipelineerror statusspec

= 0000

pipelineimpl_0$exalu resultout

= 00000000000000000000000000000000000000000000000000000000000
pipelineimpl_0$exmemalu_result
=00000000000000000000000000000000000000000000000000000000000
pipelineimpl_0$exmemdestreg.idx

=11111

pipelineimpl_0$exmem halt

=0

pipelineimpl_0$exmemillegal

=0

pipelineimpl_0$exmemrd_mem

=0

pipelineimpl_0$exmemtake branch

=0

pipelineimpl_0$exmemwr_mem

=0

pipelineimpl_0$ex stageO$opamux out

= 00000000000000000000000000000000000000000000000000000000000
pipelineimpl_0$ex stageO$ophmux out
=00000000000000000000000000000000000000000000000000000000000
pipelineimpl_0$extake branchout

=0

pipelineimpl_0O$exvaluea

= 00000000000000000000000000000000000000000000000000000000000
pipelineimpl_0$exvalueb
=00000000000000000000000000000000000000000000000000000000000
pipelineimpl_0$fwd.a
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258

259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294,
295.
296.
297.
298.
299.
300.
301.

302

. =00

pipelineimpl_0$fwd_b

=00
pipelineimpl_0$idalu_func_out

= 00000

pipelineimpl_0$id_cond branchout
=0
pipelineimpl_0$id_destreg.idx_out
=11111

pipelineimpl_0$id_ex alu_func

= 00000
pipelineimpl_0$id_ex cond branch
=0
pipelineimpl_0$id ex destreg idx
=11111
pipelineimpl_0$id_ex fwd_a

=00

pipelineimpl_0$id_ex fwd_b

=00

pipelineimpl_0$id_ex_halt

=0

pipelineimpl_0$id ex.illegal

=0

pipelineimpl_0$id_ex opaselect
=00
pipelineimpl_0$id ex oph select
=00
pipelineimpl_0$id ex rd_mem

=0

pipelineimpl_0$id ex rega

= 00000000000000000000000000000000000000000000000000000000000
pipelineimpl_0$id_ex regb
=00000000000000000000000000000000000000000000000000000000000
pipelineimpl_0$id_ex uncondbranch
=0

pipelineimpl_0$id_ex wr_-mem

=0

pipelineimpl_0$id_halt out

=0

pipelineimpl_0$id.illegal_out

=0

pipelineimpl_0$id opaselectout
=00

pipelineimpl_0$id_oph selectout

. =00
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303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.
323.
324.
325.
326.
327.
328.
329.
330.
331.
332.
333.
334.
335.
336.
337.
338.
339.
340.
341.
342.
343.
344.
345.
346.
347.

pipelineimpl_0$id.rd_memout

=0

pipelineimpl_0$id stageO$destreg select

=10

pipelineimpl_0$id stage0$fwd_check EX

=11110

pipelineimpl_0$id_stage0$fwd check MEM

=11110

pipelineimpl_0$id stageO$raidx

=11111

pipelineimpl_0$id stage0$rhb.idx

=11111

pipelineimpl_0$id_.uncondbranchout

=0

pipelineimpl_0$id. wr_memout

=0

pipelineimpl_0$if_stage0$PCenable

=1

pipelineimpl_0$if_stage0$PCplus 4

= 00000000000000000000000000000000000000000000000000000000100
pipelineimpl_0$if_stage0$PCreg
=00000000000000000000000000000000000000000000000000000000000
pipelineimpl_0$if_stage0$nextPC
=00000000000000000000000000000000000000000000000000000000100
pipelineimpl_0$memresultout

= 00000000000000000000000000000000000000000000000000000000000
pipelineimpl_0$memwb_destreg idx

=11111

pipelineimpl_0$memwb_result

= 00000000000000000000000000000000000000000000000000000000000
pipelineimpl_0$proc2Dmemcommand

=00

pipelineimpl_0$proc2lmemaddr
=00000000000000000000000000000000000000000000000000000000000
pipelineimpl_0$wh.reg wr_dataout

= 00000000000000000000000000000000000000000000000000000000000
pipelineimpl_0$wh.reg wr_idx_out

=11111

pipelineimpl_0$wh stageO$resultmux

= 00000000000000000000000000000000000000000000000000000000000
pipelinespecO$exalu_resultout

= 00000000000000000000000000000000000000000000000000011001000
pipelinespec0$ex stagespecO$hrdisp

= 00000000000000000000000000000000000000000000000000011000100
pipelinespecO$ex stagespecO$idex IR _aux
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348.
349.
350.
351.
352.
353.
354.
355.
356.
357.
358.
359.
360.
361.
362.
363.
364.
365.
366.
367.
368.
369.
370.
371.
372.
373.
374.
375.
376.
377.
378.
379.
380.
381.
382.
383.
384.
385.
386.
387.
388.
3809.
390.
391.

392

=010

pipelinespec0$ex stagespecO$opanux_out
=00000000000000000000000000000000000000000000000000000000100
pipelinespecO$ex stagespecO$opbmux out

= 00000000000000000000000000000000000000000000000000011000100
pipelinespecO0$id alu_func_out

= 00000

pipelinespecO0$id destregidx_out

=11111

pipelinespec0$id opa selectout

=10

pipelinespec0$id oph_selectout

=10

pipelinespec0$id regaout
=10000000000000000000000000000000000000000000000000000000000
pipelinespec0$id stagespecO$desteg select

=10

pipelinespec0$id_stagespecO$radx

=11110

pipelinespec0$id_stagespecO$regbpec0$rdaeg
=10000000000000000000000000000000000000000000000000000000000
pipelinespec03$if_stagespecO$P(plus 4
=00000000000000000000000000000000000000000000000000000000100
pipelinespec03$if_stagespec0$PTeg

= 00000000000000000000000000000000000000000000000000000000000
pipelinespecOs$if_stagespecO0$nexPC

= 00000000000000000000000000000000000000000000000000011001000
pipelinespec03$if_stagespecO0$PCreg

= 00000000000000000000000000000000000000000000000000000110000
pipelinespecO$proc2Dmemaddr

= 00000000000000000000000000000000000000000000000000011001000
pipelinespecO$proc2imemaddr
=00000000000000000000000000000000000000000000000000000000000
pipelinespecO$wh reg wr_en out

=0

pipelinespecO$wh reg wr_idx_out

=11111

proc2menaddrimpl
=00000000000000000000000000000000000000000000000000000000xxX
proc2menctommandmpl

=01

proc2menfetch.addrspec
=00000000000000000000000000000000000000000000000000000000xxX
speamemidx2
=00000000000000000000000000000000000000000000000000000000
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393.

394.
395.
396.
397.
398.
399.
400.
401.
402.
403.
404.
405.
406.
407.
408.
4009.
410.
411.
412.
413.
414.
415.
416.
417.
418.
419.
420.
421.
422.
423.
424.
425.
426.
427.
428.
429.
430.
431.
432.
433.
434.
435.
436.

437

Cycle 3

idex IR_impl
=01000111111111110000010000011111
ifid_IR_impl
=11101011110000000000000000110001
illegalimpl_encountered

=0

mem2prodetch dataspec
=10110100000111110000000011001100
memwb_IR_spec
=10110100000111110000000011001100
pipelineimpl_0$exmemalu_result

= 00000000000000000000000000000000000000000000000000000000000
pipelineimpl_0$exmemdestreg idx
=11111

pipelineimpl_0$exmem halt

=0

pipelineimpl_0$exmemillegal

=0

pipelineimpl_0$exmemrd_mem

=0

pipelineimpl_0$exmemtake branch

=0

pipelineimpl_0$exmemwr_mem

=0

pipelineimpl_0$id ex alu_func

= 00000

pipelineimpl_0$id_ex condbranch

=0

pipelineimpl_0$id ex destreg idx

=11111

pipelineimpl_0$id ex fwd_a

=00

pipelineimpl_0$id_ex_halt

=0

pipelineimpl_0$id ex.illegal

=0

pipelineimpl_0$id ex opaselect

=00

pipelineimpl_0$id ex oph select

=00

pipelineimpl_0$id ex rd_mem

. =0
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438
439
440
441
442
443
444
445

pipelineimpl_0$id_ex uncondbranch
=0

pipelineimpl_0$id_ex wr_mem

=0

. pipeline_impl _0$id_stage 0$fwd_check EX
.=11111

. pipeline_impl _0$id_stage 0$fwd_check MEM
.=11110

446.
447,
448.
449,
450.
451.
452.
453.
454,
455.
456.
457.
458.
459.
460.
461.
462.
463.
464.
465.
466.
467.
468.
469.
470.
471.
472.
473.
474,
475.
476.
477.
478.
479.
480.
481.
482.

pipelineimpl_0$id stageO$stall.check

=0

pipelineimpl_0$if_stage0$PCreg
=00000000000000000000000000000000000000000000000000000000100
pipelineimpl_0$memwb_destreg idx

=11111

pipelineimpl_0$memwnb_halt

=0

pipelineimpl_0$memwb_illegal

=0

pipelineimpl_0$memwb_result

= 00000000000000000000000000000000000000000000000000000000000
pipelineimpl_0$memwb_take branch

=0

pipelineimpl_0$proc2Dmemcommand

=00

pipelinespecO$exalu_resultout

= 00000000000000000000000000000000000000000000000000011001100
pipelinespec0$ex stagespecO$mendisp
=00000000000000000000000000000000000000000000000000011001100
pipelinespecO$ex stagespecO$opanux_out

= 00000000000000000000000000000000000000000000000000011001100
pipelinespecO$ex stagespec0$opbmux out

= 00000000000000000000000000000000000000000000000000000000000
pipelinespecO0$id alu_func_out

= 00000

pipelinespec0$id opa selectout

=01

pipelinespec0$id oph selectout

=00

pipelinespec0$id regaout

= 00000000000000000000000000000000000000000000000010101010101
pipelinespec0$id regh out

= 00000000000000000000000000000000000000000000000000000000000
pipelinespec0$id_stagespecO$radx

= 00000

pipelinespec0$id_stagespec0$rhidx
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483

484.
485.
486.
487.
488.
489.
490.
491.
492.
493.
494.
495.
496.
497.
498.
499.
500.
501.
502.
503.
504.
505.
506.
507.
508.
509.
510.
511.
512.
513.
514.
515.
516.
517.
518.
519.
520.
521.
522.
523.
524.
525.
526.

527

=11111

pipelinespec0$id_stagespec0$regbpecO$rdaeg
=00000000000000000000000000000000000000000000000010101010101
pipelinespecO$if_stagespecO0$PCeg
=00000000000000000000000000000000000000000000000000011001000
pipelinespecO$proc2Dmermaddr

= 00000000000000000000000000000000000000000000000000011001100
pipelinespecO$proc2Dmencommand

=10

pipelinespecO$proc2imemaddr
=00000000000000000000000000000000000000000000000000011001000
proc2menaddrspec

= 00000000000000000000000000000000000000000000000000011001100
proc2menctommandmpl

=01

proc2mentommandspec

=10

proc2mendataspec
=00000000000000000000000000000000000000000000000010101010101
proc2menfetch.addrspec
=00000000000000000000000000000000000000000000000000011001xxX
speamem.idx
=00000000000000000000000000000000000000000000000000011001
speamemidx2
=00000000000000000000000000000000000000000000000000011001

Cycle 4

Cycle 12

f1

=1

f2

=1

haltcurr

=1

haltprev

=0

mem2prodetch dataspec

= 00000000000000000000010101010101
memwb_IR_spec

= D0OXXXXKKXXXKXHXKKXXXXKXXKKXXXXKX
memwb_NPC.impl
=00000000000000000000000000000000000000000000000000000001000
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528.
529.
530.
531.
532.
533.
534.
535.
536.
537.
538.
539.
540.
541.
542.
543.
544.
545.
546.
547.
548.
549.
550.
551.
552.
553.
554.
555.
556.
557.
558.
559.
560.
561.
562.
563.

pipeline0$if_stage0$PCreg
=00000000000000000000000000000000000000000000000000000110000
pipelinecommitNPC.impl

= 00000000000000000000000000000000000000000000000000000001000
pipelineerror_statusimpl

= 0010

pipelineimpl_0$proc2Dmenmcommand

=00

pipelinespecO$if_stagespecO0$PCeg

= 00000000000000000000000000000000000000000000000000011001000
pipelinespec0$if_stagespec0$PCreg
=00000000000000000000000000000000000000000000000000000110000
pipelinespecO$proc2Dmencommand

=00

pipelinespecO$proc2imemaddr

= 00000000000000000000000000000000000000000000000000011001000
proc2menctommandmpl

=01

proc2mentommandspec

=00

proc2menfetch.addrspec
=00000000000000000000000000000000000000000000000000011001xxx
sampleNPC pipeline

= 00000000000000000000000000000000000000000000000000011001100
speanem.idx2

= 00000000000000000000000000000000000000000000000000011001

-I- Updating Lemma DB file: ../work/alphatest.lemnutis
-I- Total iterations: 21

Reveal finished.

Abst Solving Time: 4.79
Total Time: 140.35
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