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Abstract

Our work addresses the challenge of scaling pre-silicon functional verification of hardware

designs such as microprocessors and microcontrollers. These designs employ wide datap-

aths with arithmetic, logical, and memory units, and complex control logic that coordinates

their functionality. This overall complexity results in anenormous state space with vast

room for design errors, and prevents designers from being able to comprehensively rea-

son about the correctness of digital systems deployed in numerous devices, whose failure

causes serious losses, monetary and otherwise.

In particular, control optimizations play a global role in coordinating the functionality

and data flow. This makes them extremely error-prone and harder to verify locally. To

remedy that, a design implementation can be verified againstits full specification model

which has a much simpler control logic. Then, a formal proof of equivalence exhaustively

checks the state space for potential control bugs, or provesthe lack thereof. Contrary to

simulation-based approaches, which compromises completeness for speed, formal equiva-

lence is hindered by the exponential state explosion. To overcome that, previous approaches

abstract datapath components away in order to eliminate thecomplexity introduced by

them, and to gear the verification towards the control logic.Due to the loose separation

between datapath and control in most designs and hardware description languages, naı̈ve

abstraction results in compromising the accuracy of the verification, and in generating spu-

rious behavior that does not exist in the original design, ormasking real behavior from

being represented in the abstract model.

Our work presents a systematic and fully automatic abstraction-based method to over-
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come these issues. A sound abstraction to fragments of first-order logic is coupled with

refinement mechanisms that adjust the abstract model and prevent false alarms arising due

to spurious behavior. Our approach includes novel techniques for analyzing abstract coun-

terexamples, generalizing them to represent families of counterexamples, checking their

feasibility on the original design, and analyzing the infeasibility in order to learn facts that

augment the abstraction in an iterative process. Automating both the abstraction and re-

finement steps without compromising scalability gives our approach a clear advantage over

systems that require laborious manual reasoning. In turn, the approach can be easily em-

bedded in typical verification flows, where designers apply it on original descriptions used

for synthesis and traditional simulation.

Additionally, our approach leverages the advantages of efficient reasoning engines for

Boolean and first-order logic, including satisfiability (modulo theories) solvers and algo-

rithms for minimal explanation of constraint infeasibility.

An implementation of the approach allows us to verify microcontrollers, microproces-

sors, and memory systems whose RTL Verilog descriptions have hundreds to thousands of

source lines and variables, in a scalable and efficient manner. The results show promising

capability in exposing implementation and specification errors, or, alternatively, proving

correctness of both. We believe that this brings formal verification one step closer to hard-

ware designers.
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Chapter 1

Introduction

This work addresses the challenge of automating and scalingpre-silicon functional verifi-

cation of state-of-the-art hardware designs, such as microprocessors and microcontrollers.

These designs employ widedatapathswith arithmetic, logical, and memory units, and

complexcontrol logic that coordinates their functionality. The latter typically includes a

set of high-level optimizations aimed at increasing a design’s throughput, and reducing its

area and power consumption. The complexity of both the datapath and control logic results

in an enormous state space with vast room for design errors. Furthermore, the progression

in the design of hardware systems like microprocessors leads to ever-increasing control

logic complexity, and overall chip size, as predicted by Moore’s law [45].

In contrast tosimulation, which typically examines a (relatively) small number of sce-

narios when testing a design,formal verificationsystematically proves correctness of a

design by exhaustively examining the entire design’s statespace searching for violations to

a well-specified behavior. The size of the state space grows exponentially with the size of

the design, leading to the so-calledstate explosion problem[19]. Since the control logic

and datapath of contemporary designs are also growing exponentially (in both size and

complexity), the formal verification ‘barrier’ grows doubly exponentially, and significantly

lags behind the design capability, leading to an exponentially growing verification gap.

The increase in complexity and size of today’s designs, as well as the difficulty of formally

verifying these designs, is pictorially expressed in Figure 1.1.

Verification, thus, cannot be made tractable without a divide-and-conquer approach

1
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Figure 1.1 Progression in Microprocessors: Design versus Verification

that tailors different verification methodologies to various parts of the design with different

structural patterns. To be effective, these methodologiesmust be applied at suitable levels

of abstraction. In particular, descriptions given at the Register-Transfer Level (RTL) ac-

curately capture the functionality of hardware designs by preserving high-level semantic

information that is otherwise lost when moving to the gate- or transistor-level representa-

tions. It is, therefore, reasonable to assume that the design under verification be given as an

RTL model in a suitable Hardware Description Language (HDL)such as Verilog [54].

At this level, a reasonable distinction can be made between the datapath and the control

logic, and appropriate verification schemes can be applied to each. Datapath units can usu-

ally be isolated and verified separately with methods that exploit their structural regularity.

2



Once verified, many datapath elements can be reused across various designs and architec-

tures. Control logic, on the other hand, globally “routes” the flow of data in a design, and

thus has to be verified at the level of the entire design. Moreover, control circuitry is invari-

ably custom-made for the architecture and design at hand, precluding the use of previous

verification results.In this work we focus on the verification of control logic.

Current verification efforts have tackled control logic verification by generating new

mathematical models, typically based on abstraction, thatcorrespond to the RTL descrip-

tion of the design, and utilizing theorem provers [17][27][34][49] to reason about them.

Although these models simplify the datapath, they are roughly as complex as the original

RTL model. Consequently, hundreds of man-hours are required to manually regenerate

the verification model from the RTL model. Moreover, a cumbersome process is required

to keep both models consistent, and to prevent subtle bugs from being introduced in the

abstract model or masked from the RTL model.

Theorem provers use a number of mathematical approaches to certify that a design

complies with its desired functionality, and typically incorporate a number of theories,

ranging from zero-, to first-, to higher-order logics, to incrementally prove correctness. In

addition to the drawbacks of verifying an abstract model separately from the RTL descrip-

tion, theorem provers are not fully automatic; although equipped with a set of engines on

their back-end, the user is required in many cases to guide the prover by applying specific

engines in the various phases of the proof. In the best case, manual reasoning signifi-

cantly impedes the verification task for complex designs, and in the average case it makes

it completely infeasible.

The approach we advocate in this thesis significantly differs from previous efforts in a

number of ways, including the emphasis on full automation, as well as the use of contempo-

rary reasoning engines that have been (and will continue to be) progressing tremendously.

We believe that the combination of both elements is a key enabler to the deployment of

formal verification in design flows.
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Our approach achieves scalability of control logic verification through three main the-

oretical contributions presented in this thesis. First, weformalize an approximation-based

framework for hardware verification, that unifies formal, semi-formal, and simulation-

based approaches. In this framework, various types of approximations can be characterized

based on their relation to the original design and the property being checked.

Second, we formalize datapath abstraction of a subset of synthesizable RTL Verilog,

which enables formal verification of hardware designs to scale in space and time. In par-

ticular,

• The abstraction process maps a Verilog description with finite-size bit vector vari-

ables and operations to an infinite-size term-level model. The resulting abstract

model can be expressed using a number of quantifier-free First-Order Logic frag-

ments, per the designer’s choice.

• The abstraction function is a conjunction of ‘local abstractions’ to datapath compo-

nents. This enables fine-grained control over the granularity of the abstraction, and

allows tailoring different abstractions to various parts of the design.

• The abstraction process is geared towards equivalence checking, where abstracting

away datapath components allows meaningful reasoning and property checking of

the control logic.

• The abstraction function is sound with respect to bounded model checking of safety

properties.

• The abstraction function is not theoretically complete, due to datapath/control in-

teractions typical in almost all designs described at the word level. However, in

equivalence-based verification, idiosyncrasies arising from these interactions can be

localized and eliminated.

Third, we present a method that detects and eliminates ‘false alarms’ (also called

infeasible counterexamples) arising in coarse incompleteabstractions. The refinement in-

4



crementally ‘fixes’ the abstraction to make it complete, or determines the existence of a

corresponding real bug in the design. More specifically,

• The refinement includes novel techniques for relating abstract counterexamples, i.e.

property violations in the abstraction, with the original design. This is done through

a satisfiability formulation, on which SAT reasoning engines are applied.

• We introduce the use of minimally unsatisfiable subsets to distill concise explana-

tions for infeasibility. We make a novel use of the resultingexplanations during

refinement.

These techniques were folded into a practical turn-key verification system for RTL

Verilog, such that

• The datapath of the design is abstracted, while the control logic is left concrete. This

tailors the approach towards detecting control bugs.

• The approach is tailored to verifying RTL descriptions. This is important since

designers are usually reluctant to rewrite their design forthe purpose of formal ver-

ification. Verifying the design source code is intuitively asafe and effective method

for the detection of bugs.

• Reasoning is done using a sophisticated Satisfiability Modulo Theories (SMT) solver

to prove the validity and satisfiability of the various formulas arising during verifi-

cation. Formalizing the various reasoning challenges using SMT semantics allows

leveraging the tremendous state-of-the-art advances in this domain, and creating ad-

ditional challenges for future research.

• The approach can be fully automated; a preliminary implementation of the verifica-

tion system allows the designer to specify the design description and a brief set of

directives, and the system formally proves correctness or disproves it with a coun-

terexample.

The Reveal system, a C++ implementation of the presented verification approach,

5



allowed us to experiment with RTL designs written in Verilog. The ability to fully au-

tomate the abstraction and refinement steps gives our approach in particular, and formal

verification in general, an edge over other techniques. The goal is to be able to verify

microcontrollers, microprocessors, and memory systems whose RTL Verilog descriptions

have thousands of source lines and variables, in a scalable and efficient manner.

The rest of the thesis is organized as follows. Chapter 2 surveys relevant work in

formal hardware verification, and presents relevant definitions and notations. Chapter 3

presents a general framework for verification based on approximation, followed by an ab-

straction/refinement method in Chapter 4 specifically tailored to the verification of control

logic in RTL designs. Chapter 5 introduces a number of techniques that augment the re-

finement process and significantly boost its convergence. Reveal’s structure and crucial

implementation details are presented in Chapter 6, followed by a demonstration of Re-

veal’s ability to verify seven design benchmarks in Chapter7. Finally, Chapter 8 concludes

our work with a summary of our contribution and proposes research directions that may

potentially scale the approach further.

6



Chapter 2

Background

In this chapter we survey relevant work in the area of formal verification of control logic in

hardware designs, and particularly in microprocessors in particular. Over two decades of

research in these areas has made it possible to address the challenges of verifying state-of-

the-art designs, with feasible and practical solutions.

Early efforts in this area attempted to answer two main questions:

• What is the mathematical model that represents the (specification and implementa-

tion of the) design to allow scalable verification?

• How should the verification criterion be formulated? i.e., how should the correct

behavior of the design be defined?

Due to the tremendously large state space of a microprocessor’s behavior, most veri-

fication methods have incorporated one or more forms of abstraction. Therefore, the first

question involves choosing the right level of abstraction to reduce complexity, while pre-

serving enough information to allow meaningful verification. The choice of the abstraction

method has implications on the size of the resulting model, and the needed “mechanical

tools”, mainly mathematical reasoning methods, to complete the verification task. The sec-

ond question touches on the, somewhat philosophical, definition of “what it means to be a

correct design”. Our work focuses on the first question1.

1Examples of methods that focus on the second question include those of Aagaardet al. [1], Bose and
Fisher [9], Burch, Dill, and Windley [15][16][63], Bryantet al.[14], Hosabettuet al. [32], Manoloiset al.
[39][40][42], Sawada and Hunt [50][51], Srivas and Bickform [53], and Velevet al. [57][59] .
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2.1 Abstraction-Based Verification

In general, methods for the verification of control logic in microprocessors and microcon-

trollers can be categorized into two types. The first type utilizes the structural pattern in

a design’s description, to differentiate the datapath fromthe control logic, and in turn to

apply aggressive abstraction of the datapath. We will referto this type asDatapath Ab-

straction. The second type, which we refer to asProperty-driven Abstraction, models the

design as, roughly speaking, one finite state machine, and incorporates the specific prop-

erty being checked in the abstraction process. We will describe the relevant work in both

categories, noting that datapath abstraction has been, generally speaking, more prevalent in

the literature of microprocessor verification.

2.1.1 Verification based on Datapath Abstraction

In this type of verification, the abstraction is applied to the datapath, while in most cases

control logic is left at the concrete Boolean level. Initialmethods were based on theorem

provers; later methods evolved by increasing automation and scalability. The following

briefly describes these efforts in chronological order.

Manual Abstraction and Verification

The verification of full-fledged microprocessor control logic dates back to 1990; Srivas and

Bickform [53] used the Clio Theorem Prover to verify Mini Cayuga, a simplified version

of the Cayuga RISC microprocessor developed at Cornell University. Both the 3-stage

pipeline and an abstract unpipelined specification were modeled in Clio at an abstract “in-

structions execution” level. Part of the verification task was facilitated by Clio, which

performed automatic symbolic execution, expression normalization, generalization and in-

duction. Large portions of the task, however, needed manualintervention for modeling and

verifying the design. The verification was done with manual case splitting, formulation of
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criteria, and mechanical proofs; the total effort was estimated to be one man-year. Datapath

elements were manually abstracted into black boxes with well-specified behaviors. A sim-

ilar approach was taken by Cyrlik [24] using PVS [49]. Datapath units were represented

using integers, rationals, higher-order logic, and programming language structures such as

arrays, lists, and segments. Widley and Coe [62] used the HOL[17][27] theorem prover to

model the datapath with higher-order logic.

Automatic Verification

The work by Burch and Dill [15] in 1994 represented a breakthrough in terms of automa-

tion and scalability. The authors suggested modeling the datapath with fully black-boxed

units, called uninterpreted functions2, and presented a solver for a logic they dubbed EUF,

or equality with uninterpreted functions. These UFs “similarly” abstract datapath elements

in the pipelined implementation and the unpipelined specification of the microprocessor.

This allows the designer to isolate and independently verify datapath elements, then “plug

them back in” as UFs, enabling an automatic reasoning engineto discover bugs in the

control logic, which is left unabstracted. This work spawned a number of subsequent ef-

forts including the work of Sawada and Hunt [50], Lahiriet al. [37], and Velevet al.

[11][55][56][58][57]3. These approaches were used to verify microprocessors witharchi-

tectural features as complex as out-of-order execution, hardware interrupts, multi-cycle

datapath units, and branch predictors. However, they all suffered from limited automation

in formulating the verification criterion, as well as the abstraction of the datapath. Sawada

and Hunt’s work, for example, used the ACL2 theorem prover [34] to verify the control

logic of the DLX microprocessor using EUF, requiring three months of manual effort for

the abstraction and verification.

Along the lines of datapath abstraction, CMU’s UCLID language [12] was designed to

2Corella [22] was the first to suggest that UFs can be used to abstract away details of the datapath.
3The main difference among these methods was in the formulation of the verification criterion.
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facilitate the modeling of microprocessors. Specifically,a UCLID model allows the user to

express the interactions of the datapath and control logic as a word-level state machine. In

addition, the datapath can be modeled abstractly in the CLU logic, which enhances EUF

with limited form of counting and efficient memory modeling.Based on the UCLID lan-

guage, the authors proposed a number of methods to automatically decide CLU formulas

within the UCLID tool. In addition to the UCLID group at CMU, Manolios and Srinivasan

[40] were the first to use UCLID to verify the control logic of an XScale-like processor.

Lahiri et al. also used UCLID to verify an out-of-order microprocessor [32].

Automatic Abstraction

Despite their merits, UCLID models have to be “derived” frommicro-architecture descrip-

tions that are written in an HDL such as Verilog [54]. In [4] wemade the pragmatic

assumption that designers would be unwilling to manually generate a UCLID model for

verification purposes, since this necessitates laborious analysis of the RTL model, as well

as incremental updates to the UCLID model whenever the RTL model is updated. This

not only leads to longer verification iterations, but also tothe possibility of injecting addi-

tional bugs due to human errors, while hiding real bugs in theoriginal RTL model. Instead,

the work in [4] showed that Verilog models can be automatically “abstracted” to produce

UCLID models that are suitable for verification. Similarly,Hojati and Brayton [31] trans-

late RTL Verilog to an ICS (Integer Combinational Sequential Concurrency) model, which

describes hardware systems at a high level of abstraction using integers, interpreted and

uninterpreted functions.

It is worth mentioning that none of the previously describedmethods incorporates auto-

matic refinement techniques on the abstracted elements. When the abstraction is too coarse

to reason about the correctness criterion, false negativesarise and have to be eliminated.

Thus, verification based on these methods proceeds iteratively by manually refining the

abstraction until the correctness condition can be established or a genuine design bug that
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violates it is found. The first automatic refinement technique for the EUF and CLU logics

was introduced in [2][3][5], and forms the basis of the approach described in this thesis.

2.1.2 Verification based on Property-Driven Abstraction

While the automation of datapath abstraction is relativelyrecent, property-driven abstrac-

tion has been thoroughly studied in the context of model checking by Clarkeet al. [21]

and Cousot and Cousot [23] for over two decades. Moreover, automatic refinement

has been studied as well, wherein false negatives are automatically checked and elimi-

nated, making the abstraction both sound and complete. Thisprocess is often referred to

as Counterexample-Guided Abstraction Refinement (CEGAR for short), and it has been

shown to be an effective paradigm in a variety of hardware, and even software, verification

scenarios. Originally pioneered by Kurshan [36], it has since been adopted by several re-

searchers as a powerful means for coping with verification complexity. Clarkeet al. [20],

Jainet al. [33] and Daset al. [25] have successfully demonstrated the automation of ab-

straction and refinement in the context of model checking forsafety properties of hardware

and software systems. In particular, these approaches create a smaller abstract transition

system from the underlying concrete transition system and iteratively refine it by eliminat-

ing spurious counterexamples due to the incompleteness of the initial abstraction. These

methods have been successfully used in practical systems, such as the Microsoft SLAM

project [7][6] and the Synopsys RFN Tool [60], and research in this domain is still actively

on-going.

The abstraction in this category is of two types. The first type, referred to as localization

reduction [18][20][29][44][61], abstracts the transition system by hiding state variables, i.e.

replacing the driving logic of some registers with “don’t cares”. The second type, referred

to as predicate abstraction [28], abstracts the transitionsystem by projecting it onto a finite

set of predicates that are relevant to the property being checked. Localization reduction is

mainly suitable for hardware verification since the reasoning is done at the level of bits.
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Predicate abstraction, on the other hand, reasons about “words of data” and was originally

adopted to verify software. The use of predicate abstraction in hardware verification has

been done recently by Jainet al. [33], and was tailored for designs expressed in Verilog.

2.2 SAT-based Verification

2.2.1 SAT Reduction

Since the introduction of model checking and theorem proving to the arena of formal ver-

ification, researchers have used reductions to propositional and first-order logic, and used

reasoning engines as back-end tools. In particular, the useof Binary Decision Diagrams

(BDDs) [13] and SAT solvers [43][46] made these reductions aquite feasible option for

formal verification methods, both as a theoretical framework and for designing practical

and efficient tools. For example, several synthesis and verification methods reduce the

original problem to solving a SAT instance, and apply off-the-shelf SAT solvers on it. Al-

most all recent verification approaches rely on satisfiability solvers as their back-ends. In

this section we formulate the satisfiability problem, introduce commonly-used notations,

and survey available solutions.

Solving Boolean SAT

Boolean (more accurately, 2-valued) satisfiability solvers have made tremendous practical

progress over the past decade, despite the fact that they tackle an NP-complete problem.

Given a set of constraints over Boolean variables, the SAT problem seeks a satisfying as-

signment to the variables that is consistent with all the constraints, or outputs UNSAT if no

such assignment exists. The most commonly-used formulation refers to a conjunction of

constraints, each (called a clause) represented as a disjunction of literals, where a literal is a

2-valued variable or its logical negation. This format is referred to as Conjunctive Normal
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Form (CNF). For example, the CNF formula(x1′)∧ (x1∨x2)∧ (x1∨x2′ ∨x3) conjoins a

1-literal, 2-literal, and 3-literal clauses4

Contemporary SAT solvers such as MiniSAT [26] are able to handle CNF instances

with tens of thousands of variables and millions of constraints. Thus, it has been common

practice to reduce verification problems to CNF instances onwhich an off-the-shelf SAT

solver can be invoked.

Solving Segments of First-Order Logic

Theorem provers incorporate different techniques for solving First-Order Logic (FOL) for-

mulas by combining ‘theory solvers’. The earliest methods are attributed to Nelson and

Oppen [47] and Shostak [52]. The latest generation of these solvers target the decidable

subset of FOL, and is referred to as Satisfiability Modulo Theory (SMT) solvers. These

solvers integrate the theory solvers within a backtrack propositional solver, thus being able

to take advantage of the high-level semantics of the non-propositional constraints (e.g.,

EUF constraints) while at the same time benefiting from the powerful reasoning capabilities

of modern propositional SAT solvers.

A different approach to solving quantifier-free FOL formulas relies on reduction to

SAT. The original formula is converted to an equi-satisfiable propositional formula using a

suitable encoding, which is then checked for satisfiabilityby a Boolean SAT solver. A sat-

isfying assignment is then mapped back to the original formula. This family of solvers was

mainly developed for deciding the validity of EUF and CLU [11] formulas. The main con-

ceptual difference between these encoding-based solvers and SMT solvers is that the former

encode all the constraints required by the logic beforehand, while the latter incorporates

relevant constraints in an on-demand fashion. The incremental and cooperative framework

of SMT algorithms allows them to be extensible to many theories such as equalities, UFs,

4The formula can also be described as(x1′)(x1+x2)(x1+x2′+x3). This more compact notation will be
used throughout the thesis.
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linear and non-linear arithmetic, and fixed-size bit-vectors. This gives SMT-based solvers

an edge over direct reductions to Boolean SAT.

2.2.2 Unsatisfiability Proof Extraction

Explaining the unsatifiability of SAT instances is an important challenge for several SAT-

based applications, including formal verification of hardware. Given a CNF formula, an

Unsatisfiable Sub-formula, or US for short, is the conjunction of an unsatisfiable sub-

set of the formula’s constraints. A Minimally UnsatisfiableSub-formula (MUS) is a

US such that it becomes satisfiable when any constraint is removed. For example, the

CNF formula(x1)(x1′)(x2)(x2′)(x1+x2) has 3 MUSes, namely(x1)(x1′), (x2)(x2′), and

(x1′)(x2′)(x1+ x2). Any subset that includes one or more of these MUSes is a US. Ex-

tracting USes and MUSes from unsatisfiable formulas was firstused in [64] to “explain”

the unsatisfiability of CNF formulas. Two algorithms, zCoreand zMinimal, were designed

to find a US and an MUS, respectively, from an UNSAT formula. The AMUSE [48] and

CAMUS [38] tools were later introduced and were geared towards performance and finding

multiple small MUSes. The latter can also find all MUSes of a given UNSAT formula.

When a SAT algorithm is invoked on a CNF instance that encodeshigh-level con-

straints, proving its unsatisfiability indicates the infeasibility of the original constraints.

Thus, extracting USes and MUSes of an unsatisfiable formula can be used to “diagnose”

the infeasibility of the original problem. In the context ofCEGAR, USes and MUSes have

been utilized to analyze the infeasibility of abstract counterexamples [2][33] that arise when

verifying the abstraction. In these cases, the abstract counterexample represents a scenario

that is allowed by the abstraction, but is disallowed when taking into account the constraints

of the concrete design. USes can thus pin-point the causes ofinfeasibility and determine

the required refinement of the abstraction, in order to eliminate the infeasible counterexam-

ple in the current iteration. Identifying these constraints allows CEGAR-based algorithms

to automatically refine the abstraction and resume the verification. Furthermore, using one
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or more MUSes during this analysis helps in identifying a larger number of concrete con-

straints that are crucial for checking the correctness condition, which if left abstracted will

cause additional infeasible counterexamples. Predictinginfeasible counterexamples, and

eliminating them as early as possible in the refinement loop,helps to reduce the number of

abstraction/refinement iterations in CEGAR-based methods.
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Chapter 3

An Approximation-based Framework
for Hardware Verification

In this chapter we explore a verification approach that analyzes the structure of the design,

and automatically derives anapproximationon which state-of-the-art verification algo-

rithms can be applied. This chapter will first formalize the verification task, and will then

describe a generic approximation framework and its use as a practical approach to veri-

fication. For such an approach to be scalable, the approximation should be significantly

easier to verify than the original design, and such verification should yield meaningful con-

clusions about the correctness of the original design. In this chapter we show how the

approach can be adapted in order achieve these objectives; we do so by setting up a generic

approximation framework, whose specifics are refined in Chapter 4.

3.1 Problem Formulation

Our framework assumes that the design is given as a reactive transition system, which is

described via sequential and combinational hardware components that are connected to the

inputs and outputs of the design. Each component is characterized by a so-calledconsis-

tency functionthat characterizes its functional behavior by relating itsoutputs and inputs

with appropriate constraints. In addition to the design description, the framework requires a

sequential boundk, such that the correctness of the design is proven only up to that bound.

While requiring a known bound may seem to limit the utility ofthe approach, empirical ob-
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servation suggests that it has application in many situations where such bounds are known

a priori or can be easily derived from the particular structure of the design. Examples in-

clude verification of pipelined microprocessors, packet routers, and dataflow architectures

common in filters, etc.

Given the design’s description and the boundk, unrolling is used to derive a purely

combinational description of the design’s transition relation. This process is linear ink and

the size of the design. If we letX denote the set of variables in the unrolled description,

then the consistency function of each interconnected component i can be described by a

constraintEi(X), and the formulaexact(X)=̇
∧

1≤i≤n
Ei(X) characterizes the entire behavior

of the unrolled design. In most cases, verification is done bycomparing an implementation

design to a specification “design”. In these casesexact(X) includes the unrolled versions

of both designs.

The verification problem can then be phrased as the question of establishing theva-

lidity of the formulaexact(X) → prop(X), whereprop(X) indicates a specifiedcorrect-

ness condition1. An equivalent, but slightly more convenient, form of this formula is

exact(X) · (p = prop(X)) → p, wherep is a free variable (not inX) that represents the

property being checked. In this form, the sub-formula(p = prop(X)) can be viewed as

the consistency function of the correctness property in thesame way thatexact(X) is the

consistency function of the concrete design. For simplicity, however, and bearing in mind

that it can be considered part ofexact(X), we will omit (p = prop(X)) from our formulas.

Checking the validity ofexact(X) → p is typically done by checking the satisfiability

of its negation:

ϕ(X, p) = exact(X) · ¬p. (3.1)

Proving the unsatisfiability of (3.1) establishes that the property holds, while a satisfy-

ing solution(X∗,0) demonstrates the existence of a design or specification bug.

1Also know as “verification criterion”
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3.2 A Scheme for Approximation

Except for trivial designs, checking the satisfiability of (3.1) directly is generally infeasible.

Instead, in the proposed scheme the property is verified on anapproximationof the exact

design, which is a partial representation of the design’s functionality. For such an approach

to work, the approximation must, by construction, be significantly easier to verify than the

original design, both computationally and practically. Italso must be related to the original

design in such a way that verifying it allows deriving conclusions about the original design.

Along these lines, we will introduce a generic notion of soundness and completeness with

respect to a propertyp, which are useful for deriving suitable approximations as we will

show later. Throughout these definitions, we will useM(X) to denote a conjunction of

constraints overX that models the design, either exactly or approximately. For brevity, we

will omit M’s explicit dependence onX.

Definition (Relative Soundness and Completeness)if (M1 → p) → (M2 → p) is valid

(i.e., holds true for all assignments toX), whereM1 andM2 are two models of the design,

thenM1 is called a sound approximation ofM2, andM2 is called a complete approximation

of M1.

It is easy to show that soundness, as well as completeness, are transitive, reflexive, and

anti-symmetric relations, therefore definingpartial ordersover the possible models. Since

completeness and soundness are dual, we will unify the two orders and use≺ such that

M2 ≺p M1 if M1 (M2) is a sound (complete) approximation ofM2 (M1).

If we letE denote the constraints that exactly model the original design (i.e.E=̇exact(X)),

then a soundness and completeness notion can be defined for approximations ofE as fol-

lows.

Definition (Soundness and Completeness)ApproximationA is called sound (complete)

if E ≺p A (A≺p E).
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Approximations that are sound, complete, or both, can be very useful, particularly

when it is significantly easier to check the validity of(A → p) than to check the valid-

ity of (E → p) and still draw meaningful conclusions aboutE. Approximation-based

methods are, therefore, based on the idea of deriving an approximation, checking the

property on it, and drawing conclusions on the original model. For example, if the prop-

erty holds on a sound approximation, it will definitely hold on the original model, since

(E ≺p A)∧ (A→ p) → (E → p)2. Conversely, if the property is violated on a complete

approximation, it will definitely be violated on the original model.

We can reason about the space of soundandcomplete approximations by simplifying

the expression inRelative Soundness and Completenessdefinition:

(M1 → p) → (M2 → p) ≡ (M′
1+ p)′ +(M′

2+ p)

≡ M1p′+M′
2+ p

≡ M′
2+M1+ p

≡ M2 → M1+ p

≡ M2p′ → M1

and replacingM1 (M2) with A (E) to represent soundness, and withE (A) to represent com-

pleteness:

Soundness: E ≺p A⇒ (A→ p) → (E → p) = E → A+ p = E p′ → A

Completeness: A≺p E ⇒ (E → p) → (A→ p) = A→ E + p = Ap′ → E

Therefore, any sound and complete approximationA must satisfyE p′ → A → E + p,

which can also be written asA ∈ [E p′,E+ p]. In this interval, we have great latitude in

choosing the approximation, as illustrated pictorially inFigure 3.1.

2This can be shown easily from theRelative Soundness and Completenessdefinition.
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Figure 3.1 Sound and Complete Approximations

Our final set of definitions introduce over- and under-approximations, which are special

cases of sound and complete approximations, respectively.

Definition (Relative Over- and Under-Approximation) if M1 → M2 is valid, thenM2

over-approximatesM1, andM1 under-approximatesM2.

Similarly to sound and complete approximations, over- and under-approximations de-

fine partial orders over the possible models, and are represented with the operator≺.

Finally, A is calledan over-approximationif E ≺ A, andan under-approximationif A≺ E.

It is important to note that over- and under-approximationscan be defined without ref-

erencing the propertyp under consideration. As we will shortly show, this will be very

useful in our framework.
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3.3 Verification based on Approximation

As mentioned earlier, the goal of verification methods that use approximations is to find

a soundand complete approximation that simplifies the verification task. Theoretically,

finding such an approximation is as hard as solving the original problem. Practical algo-

rithms, instead, start with an approximationA0 of E that is either sound or complete (but

not both), and check the property on it. Then, a sequence of more accurate approximations

A1,A2, . . . ,Ak is iteratively generated until the property can be proven tofail or hold onE.

Figure 3.2 highlights the main steps in this iterative approximation/correction approach.

In this figure, diagram (a) illustrates the generic approach, whereas diagram (b) shows a

special case based onsoundapproximations. The algorithm starts with a sound approxima-

tionA0 that is not necessarily complete (i.e.E≺A0). Then, throughincremental tightening,

a sequence of more accurate approximationsAk ≺ Ak−1 ≺ . . . ≺ A1 is generated such that

• In iterationsi = 0, . . . ,k−1, the property is violated onAi but not onE. The violation

witness, also called a counterexample, represents afalse negativeclearly indicat-

ing that Ai is not complete. A new approximationAi+1 is then derived such that

E ≺ Ai+1 ≺ Ai .

• In the last iterationk, one of two scenarios takes place: the property is violated on

both Ak andE; or the property holds onAk , i.e. Ak → p. Note that soundness is

preserved throughout the process of tightening the approximation. Therefore, if the

property holds on the last approximation, then it also holdson the exact model.

Diagrams (c) and (d) in Figure 3.2 illustrate this verification process in the space of

assignments, when the sound approximations used are over-approximations.

In a dual algorithm, an initial complete approximation is verified against the property.

If the property is violated on the approximate model, it is definitely violated on the original

design; otherwise, no conclusion can be made and the approximate model isrelaxedto

finally obtain a sound approximation for which the property holds.
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Diagram (e) in Figure 3.2 describes the space of all possiblemodels of the design,

such that each point represents a single model, which can be the exact design (E), or a

(sound, complete, over-, or under-) approximation thereof. The diagram also demonstrates

the relation between these models. For example, every over-approximation is sound, there-

fore, O ⊂ S. Finally, the diagram shows the various possible approximation/correction

processes, particularly tightening (pathsO1 → O2 → O3 andS1 → S2 → S3) and relaxing

(pathsU1 → U2 → U3 andC1 → C2 → C3). As described earlier, the algorithm can either

terminate when a sound and complete approximation is obtained (e.g.S3 ∈ S∩C), or in an

earlier iteration when a real violation is found.

Both approximation-based approaches (i.e. tightening versus relaxing) are used nowa-

days in many verification contexts, in hardware as well as software. The traditional

verification scheme starts withsimulatingthe design in order to “hunt” for bugs; simu-

lation is a form of approximation-based verification, sincethe property is verified given a

specific input vector. The behavior of the design for this input vector is a complete ap-

proximation of the original design. In this context, afalse positiverefers to the scenario

wherein the property is violated by the original design, andthe violation is not caught when

verifying the approximation (i.e. simulating the design).The presence of false positives

is a compromise that designers are willing to make in return for scaling up the verification

(i.e. simulation) time. Recent methods (e.g. [60]) guide the simulation based on formal

methods, and in turn correct the original approximation to lower the possibility of false

positives. This can be considered a form of relaxation.

When reaching a certain level of confidence regarding the correctness of the design, the

designer becomes interested in proving the lack of bugs; therefore, the intuitive solution in

this case is a “top down” iterative tightening based on soundapproximations, such as the

algorithm we are presenting.

While an iterative approximation/correction approach is appealing at a conceptual

level, its applicability hinges on two main premises. First, the approximation process is
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(c) Property Holds on the Concrete Circuit

Figure 3.3 An “Unabstractable” Equivalence Cricuit

computationally easy, such that its benefit outweighs the inherit loss of information that

requires correction to make it sound and complete. For instance, linear-time over- or under-

approximations can be obtained via relaxing or tightening the design’s constraints that are

associated with certain components. This can be done independently of the property being

checked3, which gives over- and under-approximations an edge over other types of sound

and complete approximations. For example, the full-fledgedfunctionality of an arithmetic

unit is replaced with a restricted version that models, say,boundary cases such as an over-

flow computation or a division-by-zero flag; this creates an under-approximation of the

design. Datapathabstraction, which concerns us in this thesis, is another example of an

easy-to-derive over-approximation that is independent ofthe property.

The second premise is that thereexistsa sound and complete approximation, that is

significantlydifferent than the original design, on which the property can be proven to hold

or fail. The existence ofany sound and complete approximation, let alone one that sig-

nificantly differs from the original design, is not always obvious, nor guaranteed. This is

especially true when the approach is confined to a class of approximations, such as over-

approximations. For example, consider the circuit in Figure 3.3(a), in which a Boolean

variablex is compared toy, another Boolean variable that is equivalent tox through the

AND gate. In this caseexact(X) → p, as it can be inferred from the expression in (c).

3This is true for a certain class of properties, such as bounded safety.

24



However, it can be shown by inspection that any over-approximationA obtained by remov-

ing one or more constraints fromexact(X) is sound but not complete, i.e.A → p. In this

case, and many similar cases, applying iterative over-approximation/tightening is likely to

be significantly slower than attempting to establish the validity of the exact formula, since

the iterative algorithm will gradually tighten the approximation until it is ultimately iden-

tical, or very similar, to it. Therefore, the existence of such a “hoped for” approximation,

or the lack thereof, can determine whether applying approximation is beneficial, and can

assist the verification engineer in developing an intuitionregarding its applicability. In the

context of datapath abstraction, our method and experimental results confirm the following

conjecture:

Conjecture 1 An approximation process, wherein similar datapath components in the im-

plementation and specification are abstracted similarly, leads to an over-approximation

that is sound and very close to being complete.

While earlier work (e.g. [12][15][55]) showed the existence of a soundand complete

approximation, and demonstrated how it can be derived manually; our work shows that

an automaticallyderived approximation is sound, and in most cases very closeto being

complete. In turn, it can lead to meaningful verification results without compromising the

potential scalability of abstraction.
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Chapter 4

Verification Based on Datapath
Abstraction and Refinement

In this section we show how an iterative approximation/correction approach can be utilized

to verify the complex control logic of hardware designs described at the Register Transfer

Level (RTL). Our system performs bounded model checking [8]of safety properties on

hardware designs described in Verilog1. A typical usage scenario involves providing two

Verilog descriptions of the same hardware design, such as a high-level specification and a

detailed implementation, and checking them for functionalequivalence. Given a Verilog

description and a sequential boundk, the system extracts a word-level representation of the

design’s transition relation and unrolls itk times to create a combinational description of

the design, on which the approximation/correction approach can be applied.

In the following subsections we will start with an overview of the Verilog hardware

description language [54], and define the verification problem of Verilog descriptions at

the RTL. We will follow that with an algorithm based on the approximation scheme de-

scribed earlier. The approach over-approximates the design by removing datapath-related

constraints, and performs verification on the constraints representing the control logic. In

this new context, the terms “abstraction” and “relaxation”will be used interchangeably to

denote over-approximation, and “refinement” will be used todenote correction or tighten-

ing.

1Extensions can be applied to other HDLs without compromising the merits of the approach.
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4.1 Verilog Descriptions

One of the major differences between RTL and gate-level Verilog is that RTL Verilog de-

scriptions operate at the word-level, i.e. they manipulatewords of data, usually referred to

as bit-vectors. Datapath elements are usually described using bit-vectors. The control logic,

on the other hand, uses single-bit signals to control the computation with the use of mul-

tiplexors and logic gates, that are respectively describedby conditionals (e.g.if-then-else

andswitchstatements) and Boolean expressions.

Formally, an RTL Verilog description defines a set of signalsR, W, I , and M, re-

spectively denoting the registers, wires, inputs and memories in a flat representation of

the design. Each signal inV = R∪W∪ I can be either single-bit (VC ⊆ V) or multi-bit

(VD ⊆ V)2, and signals inM are multi-dimensional arrays of bits. The interactions of the

design components are defined in Verilog via assignments. For example, the Verilog code

fragment

reg [31:0] r;

always @(posedge clk)

r <= r1+r2;

defines the next state of a 32-bit registerr ∈ R as a function of other signals in the design,

i.e. r1 andr2.

Let X denote the set of variables in the unrolled description. Each interconnected com-

ponent with outputxi ∈ X can be described by the consistency constraintC(X) = (xi =

fi(X)) where fi(X) defines a Verilog word- or bit-level expression:

2The naming convention used here associates single-bit signals with control logic (hence “C”) and multi-
bit signals with datapath components (hence “D”). The rationale behind this will be clarified in later sections.
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fi(X) =



































ci whereci is a constant

ini whereini is an input

opi(x j1, . . . ,x jn) where Verilog operatoropi is

applied to signalsx j1, . . . ,x jn ∈ X

The consistency constraintCi(x1,x2,x3)=̇(x3 = x1 +x2), for example, uses the ‘+’ op-

erator to define a word-level constraint that models a 32-bitadder by equating the signalx3

with the sum ofx1 andx2, wherex1, x2, andx3 are 32-bit signals. Note that a compound

constraint can be used to characterize two or more serially connected components. For

example, the constraintC(x1,x2,x3)=̇(x3 = x1 + x2 ≫ 4) uses two word-level operators,

namely addition and right-shifting, to compose a constraint that conjoins two simpler ones.

4.2 Term-based Abstraction Framework

A common way to abstract design’s elements is to replace themwith terms, uninterpreted

functions(UFs), anduninterpreted predicates(UPs) [15]. The resulting term-level abstrac-

tion maintains the consistency of the removed elements without representing their detailed

functionality, and leads to a significant reduction in the size of the design’s state space. The

abstractionstep is followed byproperty checkingandrefinement. Property checking deter-

mines if the abstracted design satisfies the specified property. Refinement determines if the

abstraction was sufficient to establish whether the property holds or fails on the concrete

design and, if otherwise, to refine the abstraction accordingly.

As mentioned earlier, term-based abstraction can be viewedas a relaxation of the sys-

tem of constraints that characterize the concrete design. Specifically, if each concrete

consistency constraintCi(X) is relaxed to a corresponding abstract consistency constraint

Ai(X̂) , whereX andX̂ denote the concrete design signals and their correspondingabstrac-

tions, we can model the abstract design by the formulaabst(X̂) =
∧

1≤i≤n
Ai(X̂). Note that
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conc(X) → abst(X̂)3.

Formally, we introduceα(·) to denote the abstraction process.α(·) maps the concrete

variables and operators to appropriate abstract counterparts. Specifically, ifξ is a concrete

variable or operator, its abstract counterpart is denoted by α(ξ ) = ξ̂ . Applying α(·) to

the concrete constraintC(x1, . . . ,xk) yields α(C(x1, . . . ,xk)) = α(C)(α(x1), . . . ,α(xk)) =

Ĉ(x̂1, . . . , x̂k). In general, any expression involving concrete variables and operators can be

abstracted by recursively applyingα(·) to its sub-expressions. For example, applyingα(·)

to the constraintC(R1,R2,R3)=̇(R3 = R1+R2 ≫ 4) yields

α(R3 = R1+R2 ≫ 4) = (α(R3) = α(+)(α(R1),α(R2 ≫ 4)))

= (α(R3) = α(+)(α(R1),α(≫)(α(R2),α(4))))

Using the mappingsα(+) = add, α(≫) = shi f t, α(Ri) = R̂i, andα(4) = f our, we have

A(R̂1, R̂2, R̂3) = (R̂3 = add(R1,shi f t(R̂2, f our))).

Different types of abstraction can be defined based on an appropriate mapping between

the concrete constants, variables, and operators, and their abstract equivalents4. Further-

more, this approach can take advantage of the design hierarchy, and apply abstraction to

the design at different levels of granularity. For instance, an entire datapath unit, such as

the ALU, can be replaced with a single UF or UP. Such heterogeneous abstraction can be

automated based on syntactic rules, and can also allow manual, yet fairly intuitive, inter-

vention in the abstraction process. While (manual) hierarchy-based abstraction has been

mainly used with theorem proving, our approach focuses on automating the abstraction at

the level of the designsignals, and thereforeα(·) is defined for each signal in the design.

In addition to abstracting combinational elements withα(·), tractable verification may

require the abstraction of memory arrays. Applying only term-based abstraction to ann-

word by m-bit memory yields ann-term abstraction. For memories of typical sizes in

3conc(X) corresponds toexact(X) introduced in Chapter 3.
4Conceptually, this applies also to other abstraction methods.
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current designs,n is on the order of thousands to millions of words. Memory abstraction

allows modeling ann-word memory by a formula whose size is proportional to the number

of write operations,K, rather than ton. Note that memory abstraction is distinct from term-

based abstraction. A useful mnemonic device is to think of term and memory abstraction

as being, respectively, “horizontal” and “vertical;” theycan be applied separately, as well

as jointly.

Our system implements memory abstraction using lambda expressions [12]. In partic-

ular, the expressionM′(x) = λx.ite(x = A,D,M(x)) describes the next state of a memory

arrayM after a write operation with addressA and dataD. The operatorite is an if-then-

else construct simulating a multiplexer. Replacing memorywrites with ite expressions and

UF applications is performed during the process of unrolling, such that the final formula is

lambda-free.

For example, the Verilog code fragment in Figure 4.1 describes the behavior of a

16-word memory that has two ports, one for reading and one forwriting, and Table 4.1

describes the state of all the design signals, including thememory array, in the first four

cycles of execution after initialization. Two write operations are performed on the mem-

ory; the value 1 is written at location 1, and the value 3 is written at location 3. The read

port, which always samples the content of the memory in location 1, reads the value stored

originally in the memory in cycles 0 and 1, and reads the value1 starting at cycle 2, due to

the write operation that was performed in the previous cycle.

Given these abstraction mechanisms, the algorithm performs the satisfiability check on

the abstraction of formula (3.1) (page 17), i.e.

ϕ̂(X̂, p) = α(ϕ(X, p)) = α(conc)(α(X)) ·α(¬p) = abst(X̂)α(¬)α(p). (4.1)

Using an appropriate abstraction operator, (4.1) can be considerably simpler than (3.1),
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reg [31:0] Mem [15:0]; // Memory Array
reg [3:0] Addr; // Address of Write Port
reg [3:0] Read; // Address of Read Port
reg [31:0] Data; // Data for Write and Read Ports
reg en; // Enable signal for Write Port

initial begin
en = 1’b0;
Addr = 4’d0;
Data = 32’d0;

end

alwaysa begin

assignRead = Mem[4’d1]; // Reading the content of location 32’d1.

aIn most cases, memory writes are synchronized on a clock edge. In this example,
however, we omitted any clock specifications to simplify theexposition.

Figure 4.1 A Dual Port Memory in Verilog

Table 4.1 Symbolic Unfolding of Memory using Lambda Expressions

C Mema en A D Readb

0 Mem(x) = λx.M(x) 0 0 0 M(1) c

1
Mem(x)

1 1 1 M(1)= λx.ite(0∧ (x= 0),0,M(x))
= λx.M(x)

2
Mem(x)

0 2 2 ite(1 = 1,1,M(1)) = 1= λx.ite(1∧ (x= 1),1,M(x))
= λx.ite(x= 1,1,M(x))

3
Mem(x) = λx.ite(0∧ (x= 2),

1 3 3 ite(1 = 1,1,M(1)) = 12, ite(x= 1,1,M(1)))
= ite(x= 1,1,M(1))

4

Mem(x) = λx.ite(1∧ (x= 3), ite(1 = 3,3,

2, ite(x= 1,1,M(1))) ite(1 = 1,1,M(1))))
= ite(x= 3,3, = 1
ite(x = 1,1,M(x)))

aThe transition function for Mem in this case is:Mem′(x) = λx.ite(en∧ (x =
Addr),Data,Mem(x)).

bThe value of the Read port is the instantiation ofMem(x) with x = 1.
cSince the memory is not initialized in Verilog, the UFM is used to represent the

initial memory state.
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facilitating its quick solution by a suitable satisfiability checker. Next, we will define the

soundness criterion for this abstraction scheme, and then describe two families of term-

based abstraction.

To reason about soundness, note thatα(·) maps Verilog equality to the interpreted

equality predicate between terms. Thus,ϕ̂(X̂, p) has to adhere to two basic rules; equality

transitivity, and functional consistency.

Definition (Equality Transitivity) Equality Transitivity w.r.t. any three termst1, t2, and

t3, is defined by the relation(t1 = t2)∧ (t2 = t3) → (t1 = t3).

Definition (Functional Consistency)Functional Consistency w.r.t any two sets of terms

x1, . . . ,xn and y1, . . . ,yn and a UF or UP f of arityn, is defined by the relation[(x1 =

y1)∧ . . .∧ (xn = yn)] → [ f (x1, . . . ,xn) = f (y1, . . . ,yn)].

To relateϕ̂(·) with ϕ(·), we have to show that the set of constraints arising inϕ̂(·) are

implied by the concrete formulaϕ(·). To do so, we examine the constraints affectingϕ(·)

based on its structure and semantics.

Consider for example the concrete constraintC(x1,x2,x3)=̇(x3 = x1 + x2) introduced

earlier. It embeds three different constraints implicitly; a “fan-in constraint” defining the

relationC(x1,x2,x3) = (x3 = f (x1,x2)) for some functionf ; a “domain constraint” defining

the possible values of the variables, in this case 0≤ x1,x2,x3 < 232; and a “semantics con-

straint” defining the exact interpretation off , which is 32-bit addition in this case. Fan-in,

domain, and semantics constraints inϕ(·) are denoted byF, D, andS, respectively; and

their counterparts in̂ϕ(·) areF̂, D̂, andŜ. The relation between these sets is described as

follows:

• The abstraction preserves the connectivity of the circuit,i.e. F̂ = F, which can be

easily shown to hold in our case from the definition ofα(·).

• A necessary condition forα(·) to perform over-approximation is that it is a 1-1 func-

tion w.r.t. variables. Consider, for example,conc= [p= (x= y)], and an (erroneous)
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abstractionαerr(·) such thatαerr(p) = p and αerr(x) = αerr(y) = ẑ. In this case

αerr(conc)αerr(X) = [p = (ẑ= ẑ)], and we can show that[p = (ẑ= ẑ) → p] → [p =

(x = y) → p] does not hold, i.e.[αerr(conc)αerr(X) → p] → [conc(X) → p] is not

true. Therefore, we require in our framework thatα(x) = x̂ for each variablex∈ X,

wherex̂ is a “relaxed” version ofx, and in turn we haveD → D̂. Relaxation, as we

will shortly see, can be done by removing the bound constraints altogether.

With these restrictions,̂ϕ(·) over-approximatesϕ(·) if S → Ŝ. In the next subsections

we will define two types of abstraction, and show that the above implication, and in turn

soundness, holds true for each type.

4.3 Abstraction to the EUF and CLU logics

4.3.1 Abstraction to EUF

To perform abstraction to the logic of Equality with Uninterpreted Functions [15], dubbed

EUF, the set of design signalsX is divided into (single-bit) control signals and (multi-

bit) data signals, denoted byXC andXD respectively.XC andXD in the unrolled design

represent their counterpartsVC andVD in the original design description. Generally speak-

ing, and as hinted by the notation, datapath calculations are performed with signals inXD,

whereas control logic is defined with signals inXC. Classifying a signal as a datapath or a

control signal based on its bit width is a syntactic heuristic [4]. However, misclassification

of a control signal as a datapath signal or vice versa does notcompromise the correctness

of the approach. Specifically, a control signal that is abstracted as part of the datapath

might yield a spurious counterexample and cause an increasein the number of refinement

iterations. The less probable scenario of misclassifying adatapath signal as a control sig-

nal causes the abstract model to be unnecessarily detailed and possibly makes the property

checking step intractable. Our experimental results show that the overall algorithm is robust
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and quite scalable despite control/data intermixtures that may lead to the these scenarios.

By the same token, we will useOC andOD to respectively denote the control and data

operators. A control operator is one that performs logical operations, i.e. conjunction,

disjunction, and negation, on single-bit signals. All other operators are considered data op-

erators. Note that an operator is the occurrence of a symbol in a specific constraint, rather

than the mere syntactic token representing it. This is important since Verilog, like other

HDLs, defines the semantics of each operation based on its context [54]. For example,

the constraintCi(x1,x2,x3)=̇(x3 = x1 +x2), introduced in Section 4.1, uses a 32-bit opera-

tor to perform addition; the symbol ‘+’ might have differentsemantics elsewhere. As we

will see later, the abstraction process uses ‘context’ information to determine the abstract

counterpart of each Verilog operator.

In order to be geared towards control logic verification,datapath abstractionremoves

the detailed functionality of the datapath elements, such as adders, shifters, etc. The inter-

actions among the control signals, however, are preserved making it possible to perform

meaningful verification of safety properties on the design’s control logic. Along these

lines, consider the class of abstractions (based on over-approximation viaα(·)) that leave

the control logic unabstracted; i.e., α(·) is the identity function when applied toXC or

OC. For instance,α(¬c) = α(¬)α(c) = ¬c. Leaving the control logic in its concrete state

preserves enough precision that allows discovering bugs inthe control logic.

In this case,ϕ̂(·) is a formula in the quantifier-free first order logic (FOL) defined by

the following rules:

1. Terms: (a) A non-propositional variable is a term. (b) Iff is ann-argument function

symbol(n≥ 1) andt1, . . . , tn are terms, thenf (t1, . . . , tn) is a term.

2. Atoms: (a) A propositional variable (taking values from 0,1) is anatom. (b) IfP is

ann-argument predicate symbol(n≥ 1) andt1, . . . , tn are terms, thenP(t1, . . . , tn) is

an atom.

3. Formulas: (a) An atom is a formula. (b) Ifϕ andψ are formulas, then so are¬ϕ,
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Figure 4.2 Applying EUF Abstraction to Common Design Components

ϕ ∧ψ, andϕ ∨ψ.

EUF [15] also introduces the if-then-else constructite(a, ti, t j) as an abbreviation for

the term which is equal toti if the atoma is 1, and is equal tot j otherwise.

Definition (EUF Abstraction) αE(·) performs abstraction to the EUF logic by leaving the

control logic unabstracted (i.e., modeled via Boolean andite constructs).

Figure 4.2 describes EUF abstraction and its effect on datapath and control logic com-

ponents, while Figure 4.3 demonstrates datapath abstraction to EUF when applied to a

5-stage MIPS-like microprocessor pipeline.
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Note that this datapath abstraction mechanism does not determine the way terms are

modeled. In particular, since the only interpreted operators acting on terms are equalities,

we have freedom in how to model the terms, including leaving them uninterpreted. The

choice of the specific abstraction has implications on validity checking, as well as refine-

ment. The SMT solver YICES [65], for instance, treats uninterpreted terms as integers

and so does our algorithm. Formally, the abstract term of a datapath signald ∈ XD will

be denoted by the integer̂d, i.e. αE(d) = d̂ ∈ N. In the rest of the thesis, we will usêX

andabst(X̂) to respectively denoteαE(X) andαE(conc)(αE(X)). The abstraction of any

expressione∈ EXP is performed by recursive application ofαE(·) as described earlier.

To illustrate EUF abstraction, consider the Verilog “design” in Figure 4.4. The verifi-

cation objective is to prove that signalp is always true, indicating that the design satisfies

the condition(a = 0) → (d = f ). The formula representing the concrete constraints of this

design can be derived by inspection, and is given in Figure 4.4(b).

Using the semantics of bit-vector operations, such as extraction, concatenation, and

shifting, along with the standard Boolean connectives, this formula can be translated in a

straightforward fashion to propositional CNF so that it canbe checked for satisfiability by

standard SAT solvers. In fact, for this simple example it is quite easy for a modern SAT

solver to prove thatconc∧¬p is unsatisfiable which is the same as saying thatconc→ p is

valid.

Our objective, however, is to establish this result using abstraction and refinement.

A possible abstraction of this design is given in Figure 4.4(c), where detailed bit-vector

operations have been replaced by UP and UF symbols. For example, EX1 is a UP that cor-

responds to extracting the most significant bit ofa, and SR2 is a UF that corresponds to a

right shift ofb by two bits. Terms in this abstract formula, i.e. variables that correspond to

bit-vectors in the concrete formula, are now considered to be unbounded integers. They can

be compared for equality to enforce functional consistencybut are otherwise uninterpreted

having lost their concrete semantics. On the other hand, variables in the abstract formula
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1. moduledesign();
2. wire [3:0] a, b;
3. wire m = a[3]; // msb
4. wire l = a[0]; // lsb
5. wire c = m? a>> 1 : a;
6. wire d = l? b>> 2 : c;
7. wire e = m? a : a>> 1;
8. wire f = l? {2b00, b[3:2]} : e;
9. endmodule;

10. moduleproperty();
11. wire p = !(a == 0)|| (d == f);
12. endmodule;

(a) Verilog description

conc(a,b,c,d,e, f , l ,m, p) =

(m= a[3])∧

(l = a[0])∧

(m∧ (c = a >> 1)∨¬m∧ (c= a))∧

(l ∧ (d = b >> 2)∨¬l ∧ (d = c))∧

(m∧ (e= a)∨¬m∧ (e= a >> 1))∧

(l ∧ ( f = {2′b00,b[3 : 2]})∨¬l ∧ ( f = e))∧

(p = ¬(a = 0)∨ (d = f ))

(b) Concrete constraints

αE

conc⇋ abst
γE

constants
0 0̂
1 1̂
2 2̂

variables
a[3:0] â
b[3:0] b̂
c[3:0] ĉ
d[3:0] d̂
e[3:0] ê
f[3:0] f̂

l l
m m
p p

operators
x[3] EX1(x̂)
x[0] EX2(x̂)

x>>y SR(x̂, ŷ)
x[3:2] EX3(x̂)

x,y CT(x̂, ŷ)
!x ¬x

(c) The mapping forαE

abst(â, b̂, ĉ, d̂, ê, f̂ , l ,m, ŝ, t̂, û, p, ˆzero, ˆone, ˆtwo) =

(m= EX1(â))∧

(l = EX2(â))∧

(ŝ= SR1(â, ˆone))∧

(t̂ = CT1( ˆzero,EX3(b̂)))∧

(û = SR1(b̂, ˆtwo)∧

(ĉ = ite(m, ŝ, â))∧

(d̂ = ite(l , û, ĉ))∧

(ê= ite(m, â, ŝ))∧

( f̂ = ite(l , t̂, ê))∧

(p = ¬(â = ˆzero)∨ (d̂ = f̂ )).

(d) Abstract constraints

Figure 4.4 An Example Design and Property
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Figure 4.5 A Circuit Representation of the Design and Property

that correspond to single bits in the concrete formula (suchasmandl ) retain their Boolean

semantics and can be combined with the standard Boolean connectives.

As mentioned in Section 4.2, a necessary condition for the soundness ofαE(·) is that

it is a 1-1 function w.r.t. variables. In fact,αE(·) has to also be 1-1 w.r.t. operators as

well. Consider, for example, the case whereαE(·) maps both{x,3′b000} and{x,2′b00} to

concat(x̂,zero). This abstraction is not sound, since the operator{} has different semantics

in either case; this leads to a scenario whereinconcat(x̂,zero) = concat(x̂,zero) is valid,

while {x,3′b000} = {x,2′b00} is not. The two expressions should, therefore, be mapped

to two distinct UFs underαE(·). The following lemma articulates that, in the general case,

the over-approximation criterion mentioned above is both necessary and sufficient.

Lemma 1 If αE(·) is a 1-1 function, i.e. it maps distinct concrete variables to distinct

abstract variables, and it maps distinct datapath operators to distinct UFs and UPs, then

it is an over-approximation.

Proof Sketch Let x∗ be a full assignment such thatϕ(x∗) = 1 andϕ̂(x̂∗) = 0, wherex∗

andx̂∗ assign similar values to corresponding variables inϕ(·) andϕ̂(·). ϕ(x∗) = 1 implies

thatF(x∗) = D(x∗) = S(x∗) = 1; and sinceD → D̂ andF = F̂, we haveF̂(x̂∗) = D̂(x̂∗) = 1,

and in turnŜ(x̂∗) = 0. Let the constraint ˆs∈ Ŝ be violated, i.e. ˆs(x̂∗) = 0. ŝ cannot be
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an equality transivity constraint, since this type of constraints has to always hold for full

assignments. Therefore, ˆs is a functional consistency constraint. SinceαE(·) is 1-1 w.r.t.

to UFs/UPs and variables,γ(ŝ) involves a single Verilog operator applied on two inputs

of equal value underx∗, and producing dis-equal values underx∗; therefore,γ(ŝ)(x∗) = 0.

Functional consistency has to hold for all operators, i.e.S → γ(ŝ), and sinceγ(ŝ)(x∗) = 0

we haveS(x∗) = 0 which contradicts the earlier assumption onS(x∗). ⊓⊔

In our algorithm, a 1-1αE(·) function is enforced with the use of a naming convention

for UFs and UPs [4]. In particular, since operator semanticsin Verilog are defined by its

operationas well as thesize of its arguments, the name of a UF or UP is a concatenation

of the operator type and argument sizes. For example, a 32-bit addition is abstracted to the

UF called ‘add32 32’.

Finally, it is worth mentioning that sinceαE(·) is 1-1, its inverseγE(·) is well-defined

(see Figure 4.4(b)).γE(·) remaps terms back to their corresponding multi-bit variables,

and remaps uninterpreted functions to their correspondingbit-level counterparts. The use

of γE(·) will be evident in the refinement back-end of our algorithm.

4.3.2 Abstraction to CLU

CLU [12] is a quantifier-free first-order logic that extends EUF with separation constraints

and lambda expressions. Separation constraints allow the use of limited counting arithmetic

useful in modeling certain hardware constructs such as memory pointers. Lambda expres-

sions allow aggressive, albeit consistent, abstraction ofmemories. Note that we “borrow”

Lambda expressions to model memory arrays even when using the EUF logic; thus, the

main difference between EUF and CLU in our case is counting. We will use αC(·) to

differentiate CLU abstraction from EUF abstraction (αE(·)).

The use of counting in CLU is done using an interpreted operator succc that allows

adding an integer constantc to an abstract variable ˆx. Note that such use would not have
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been feasible if abstract variables are represented with non-integer constructs, such as bit-

vectors.

In hardware design, there are two frequent occurrences of addition and subtraction of

constants. The first occurrence, which is rather implicit, is in the use of any stand-alone

constantc; in essence,c is equivalence tosuccc(0̂). Constants are used frequently in de-

coders, such as in IR[3:0]=4’b0101 (succ5(0̂)); or in the control logic in counters, such

as in cnt==3’d4 (succ4(0̂)). The second use of constant addition is in the incrementingof

counters, such as in cnt<=cnt+4’d1 (succ1( ˆcnt);

In order to remain sound, the abstraction of constant addition with the interpretedsucc

operator in CLU has to guarantee thatαC(·) is a 1-1 function. This is always true in the

case of constants;αC(c) can always be modeled withsuccc(0̂) regardless of the size of the

bit-vector representation ofc in Verilog. The latter is true since any two constants of the

same value, but of different bit-width, are still equal according to Verilog semantics5

This no longer holds for counting. IfαC(·) is oblivious to the size ofx, then it will

always abstractx+c with succc(x̂), althoughoverflowoccurs differently depending on the

bit-width of x and the valuec. In general, it is possible to assume that counters do not

overflow as done in [4]. In particular, one can rewrite certain counters to remove implicit

overflow. For example, the counter cnt<=cnt+1 for a 2-bit variable cnt can be replaced

by cnt<=ite(cnt==2’d3,2’d0,cnt+1), and in turn eliminate any possible overflow. In prac-

tice, it is quite feasible to require designers to adhere to acoding style that avoids implicit

overflow with constant addition and subtraction.

4.4 Property Specification and Validity Checking

Early EUF solvers (e.g. [12][55]) convert̂ϕ(·) to an equi-satisfiable propositional for-

mula using a suitable encoding. On the other hand, Satisfiability Modulo Theories (SMT)

5In practice, we use the interpreted addition operator only with small constants. Constants that are greater
than a pre-defined threshold are abstracted similarly to variables, in order not to overload the abstract solver.
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solvers, such as YICES, operate on these formulas directly by integrating specialized “the-

ory” solvers within a backtrack propositional solver. SMT solvers are, thus, able to take

advantage of the high-level semantics of the non-propositional constraints (e.g., EUF con-

straints) while at the same time benefiting from the powerfulreasoning capabilities of

modern propositional SAT solvers.

Given the (over-approximated) abstract formulaϕ̂(·) , the algorithm checks its sat-

isfiability using an SMT solver. If the solver determines that ϕ̂(·) is unsatisfiable, the

algorithm halts concluding that the property holds. Otherwise, an abstract counterexample

is produced and the refinement phase is invoked.

In this type of abstraction, where terms are integer variables, a satisfying solution to for-

mula (4.1) (page 30) is an assignment of integers and Booleans, respectively, to the terms

and atoms in the variable vectorX̂ :

X̂∗ = viol(X̂)=̇
∧

1≤i≤|X̂|

x̂i = ĉi ,

where ĉi is the constant value assigned to ˆxi (the ith element ofX̂). As stated,viol(X̂)

represents a “point” in the space of possible assignments tothe variables of formula (4.1),

such that it is consistent with the abstract constraints butinconsistent with the correctness

property. We indicate this by introducing the satisfiable “violation” formula

ν(X̂, p)=̇ϕ̂(X̂, p) ·viol(X̂) = abst(X̂) · ¬p ·viol(X̂), (4.2)

that succinctly captures the result of the validity check.
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4.5 Counterexample-Guided Refinement

This section describes the most basic refinement type, that is based on refuting spurious

counterexamples. In refutation-based refinement, a spurious abstract counterexample is

viewed as “undesirable” behavior, and one or more succinct explanations are used to re-

fine the abstraction for the next round of checking. This is similar to clause recording, or

learning, in SAT solvers.

To determine if the violation reported by the validity checker is a real violation, we

need to evaluate it on the concrete formula. This step, referred to as feasibility checking,

can be accomplished by applyingγ(·)6 to (4.2) yielding:

γ(ν(X̂, p)) = γ(abst)(γ(X̂)) · ¬p · γ(viol)(γ(X̂)) = conc(X) · ¬p ·cviol(X), (4.3)

wherecviol(X) s the concretization of the abstract violation. Unlike the rest of the formula

elements, concretizing constants is not obvious since the variables in the abstract formula

are unbounded integers; some assignments will not, therefore, fit within the bound of the

originating concrete bit-vector. However, this problem can be avoided altogether by a more

suitable representation of the violation, as explained in the next section.

In general, the process of feasibility checking consists ofdetermining the satisfiabil-

ity of (4.3). If (4.3) is found to be satisfiable, then the violation reported by the validity

checker is a real violation indicating a real design (or specification) bug. If (4.3) is found to

be unsatisfiable, then the violation is spurious. This triggers abstraction refinement, which

strengthens the abstraction by eliminating this violationfrom it for the next round of va-

lidity checking. We will use a superscript to denote the index of the iteration, such that

ϕ̂0(X̂, p) denotes formula (4.1). Theith iteration of the abstraction-refinement loop then

6The ‘E’ superscript ofα andγ are omitted in this subsection and when obvious from the context.
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Figure 4.6 Unrolling and Abstraction

consists of the following computations:

1. Validity Check : Check the satisfiability of̂ϕ i−1(X̂, p). If unsatisfiable, exit reporting

“property holds.”

2. Violation Derivation : Deriveviol i(X̂) from the solutionX∗ returned in step 1.

3. Feasibility Check: Check the satisfiability ofγ(ν(X̂, p)) = γ(ϕ̂ i−1(X̂, p) · viol i(X̂))

If satisfiable, exit reporting “property fails.”

4. Abstraction Refinement: Compute the new formulâϕ i(X̂, p) = ϕ̂ i−1(X̂, p)·¬viol i(X̂)

and go to 1.¬viol i(X̂) will be called a “lemma” in this framework.

In order for refutation to be practical, steps 2 and 3 have to be computationally easy; and

for fast convergence, the violation used for refinement should eliminate as many spurious

behaviors as possible. Section 5.1 is dedicated to showing how this is achieved.

4.6 Soundness

This section focuses on the soundness of the abstraction, aswell as the interaction between

the abstraction and unrolling processes, and the latter’s impact on soundness. Figure 4.6

shows two ways of computing an abstract formulaabst(X̂) using abstraction and unrolling.

Starting from a Verilog Transition Relation over the variables R, W, I , andM, unrolling
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produces the concrete formulaconc(X), which is in turn abstracted toabst(X̂) via α(·) as

described in previous sections. As illustrated in the figure, the same result can be obtained

via producing an abstract transition relation first, followed by unrolling to createabst(X̂)

In the rest of this section, soundness is explained by:

• Describing a generic approach that performs abstraction toUCLID [12], followed by

unrolling and solving.

• Refining the previous approach with the use of Vapor [4] for abstraction. The result

is a sound abstract-then-unroll method.

• Describing a sound unroll-then-abstract method that we usein Reveal.

Subsection 4.6.1 is dedicated to explaining the first two methods, while the third is left

to Subsection 4.6.2.

4.6.1 A Sound Abstract-then-Unroll Process with UCLID/Vapor

UCLID

The UCLID language allows defining sequential term-based abstract models. This lan-

guage supports two basic data types, TRUTH and TERM. It also supports two function

types: FUNC which maps a list of TERMs to a TERM, and PRED whichmaps a list of

TERMs to TRUTH. These types are combined using operators from the following set:

• Boolean connectives for TRUTH constants and variables.

• Equality (=) and ordering (<, >) relations which operate on TERMs and return

TRUTH.

• Interpreted functionssuccandpredwhich take a TERM and return, respectively, its

successor and predecessor. These functions allow modelingcounters and represent a

limited form of integer arithmetic.

• The ITE (if-then-else) operator which selects between two TERMs based on a
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Boolean condition.

• Uninterpreted PRED symbols or Lambda expressions that takeTERM arguments

and return a TRUTH

• Uninterpreted FUNC symbols or Lambda expressions that takeTERM arguments

and return a TERM.

A Motivating Example

We will explain the rationale behind a sound Verilog-to-UCLID abstraction with a small

Verilog example and a series of improved abstractions. Consider the following Verilog

fragment

reg [7:0] v;

wire s;

always @(posedge clk)

if(s)

v[7:0] <= v[7:0] & 8’h0F;

else

v[3:0] <= v[5:2] | 4’h2;

As a first-order approximation, the abstraction of such Verilog description to UCLID can be

thought of as a syntactic mapping between related variable types in the two languages. For

instance, single- and multi-bit signals in Verilog can be mapped, respectively, to TRUTH

and TERM variables in UCLID. These mappings, in turn, inducecorresponding mappings

between Verilog operators and UCLID logical connectives, UFs, and UPs. Such an ap-

proach basically assumes that multi-bit signals and the function units that operate on them

should be automatically abstracted.

If s is abstracted to TRUTH variable S, and v[7:0], v[3:0] andv[5:2] are respectively

46



abstracted to the TERMsV 7 0, V 3 0 andV 5 2, a (resulting) intuitive UCLID abstrac-

tion, which we call ABST1, is given below. Note that temporal abstraction of the clock

signal ‘clk’ is modeled with the function ‘NEXT’, which represents the a single cycle ‘ad-

vancement’ of the transition relation.

NEXT[V 7 0]:=ITE(S,AND(V 7 0,const15),V7 0);

NEXT[V 3 0]:=ITE(!S,OR(V 5 2,const2),V3 0);

Another possible abstraction, which removes more constraints from the UCLID model,

and thus is coarser, is:

NEXT[V 7 0]:=ITE(S,FREEV 7 0,V 7 0);

NEXT[V 3 0]:=ITE(!S,FREEV 3 0,V 3 0);

In this abstraction, called ABST2, arbitrary values are generated using ‘free in-

puts’ denoted by the prefix FREE. This bears some similarity to localization reduction

[18][20][29][44][61], which abstracts state variables byturning them into free inputs.

Finally, thecoarsestabstraction will be called ABST3, and is given by:

NEXT[V 7 0]:=FREEV 7 0;

NEXT[V 3 0]:=FREEV 3 0;

Obviously, ABST3 is sound, since it is completely unconstrained. It is also easy to

see that it is too coarse and does not serve as a meaningful abstraction. A meaningful and

sound abstraction is derived similarly to ABST1 and ABST2 above, with a counter-intuitive

caveat: ABST1 and ABST2 are not actually sound for the following reason. When s=0 in

the Verilog model, v[3:0] is modified due to the assignment inthe ‘else’ branch, but more
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importantly v[7:0] is implicitly modified by virtue of its relation with v[3:0]; on the other

hand, V7 0 remain unchanged in the abstraction when S is false, disallowing a correspond-

ing transition from taking place in the UCLID model. A similar analysis can also be carried

out for the case of s=1.

A possible fix is given by ABST4 as follows:

NEXT[V 7 0]:=ITE(S,AND(V 7 0,const15),FREEV 7 0);

NEXT[V 3 0]:=ITE(!S,OR(V 5 2,const2),FREEV 3 0);

This abstraction is similar to ABST1, except that the state of both UCLID variables is

‘refreshed’ on either sides of the branch. In other words, when the branch is taken, V7 0

gets assigned a value based on the RHS of the Verilog assignment; when it is not taken, a

fresh arbitrary value is assigned. A dual abstraction is used for V3 0.

For this example, soundness is guaranteed by modelingeverypossible transition for

each bit field of v. On the other hand, it is possible to constrain the UCLID model further

without compromising soundness of the abstraction. In particular, the algorithm in Va-

por [4] uses a more ‘refined’ abstraction, such that the arbitrary symbolic values given by

‘FREE’ are replaced with UCLID expressions thatrelate each bit-vector with its bit fields.

The following section describes the abstraction mechanismin Vapor.

Vapor

As shown in the previous subsection, multi-bit signals typically consist of bit fields that are

individually accessed for reading and/or writing. Correctabstraction in such cases must ac-

count for the relation among the bit fields and between each bit field and its parent vector.

Furthermore, a naı̈ve abstraction may lead to the unintended abstraction of critical control

signals that are grouped in Verilog as multi-bit vectors, making the abstract UCLID model

too coarse to be usable in verification. Finally, abstraction of certain Verilog operators may
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lead to the generation of spurious errors since functional abstraction guarantees consistency

under equality but is oblivious to properties such as associativity and commutativity; for

example abstracting integer addition with the UFadd(x,y) will insure functional consis-

tency but will not treatadd(x,y) as identical toadd(y,x) as required by commutativity of

addition.

The above observations suggest that an abstraction algorithm must not only examine

the declared signal types in Verilog but also the way such signals are “used” in the body of

the Verilog description. In the rest of this section, we describe how Vapor abstracts various

Verilog constructs to corresponding ones in UCLID.

Based on their “bit structure” Verilog variables are classified into three main types.

Single-bit variables which are 2-valued and naturally modeled as UCLID TRUTH vari-

ables. Multi-bit words which are viewed as unsigned integers and translated into cor-

responding UCLID TERM variables. Word arrays which typically denote memories or

register files and are conveniently represented by UCLID UF variables. Except for the ab-

straction of bit vectors, these mappings are straightforward. Bit vectors require additional

machinery to insure that their abstraction is consistent. Specifically, given a Verilog bit

vectorX, we must not only create a UCLID TERM to representX but also create addi-

tional TERMs to represent each of its individually-accessed bit fields. Furthermore, we

must introduce a set of uninterpreted functions that relatethese TERMs to each other. Oth-

erwise, UCLID treats these TERMs as completely independent, potentially leading to the

generation of numerous false errors, or to the generation ofunsound abstraction.

Without loss of generality, assume thatX is a vector ofn bits such thatX[n− 1] is

the most significant bit. It is convenient to viewX as the interval[n− 1 : 0]. Assume

further that the set of individually-accessed bit fields ofX is denoted byXF . Thus,XF

is a set of possibly overlapping subintervals of[n− 1 : 0]. Finally, let π(XF) denote

the coarsest partition of[n−1 : 0] induced byXF . For example, ifX is [15 : 0] , and

XF = [15 : 0] , [15 : 8] , [7 : 0] , [10 : 3] , thenπ(XF) = [15 : 11] , [10 : 8] , [7 : 3] , [2 : 0].

49



Consistency can now be established by introducing TERMs foreach of the bit fields in

XF andπ(XF) and a corresponding set of complementary uninterpreted extraction and con-

catenation functions that relate these TERMs. These functions are designed to insure that

whenever a bit field inXF is changed, appropriate updates are made to all the other bitfields

that overlap it. These functions are named according to the naming convension described in

Subsection 4.2, in order to insure soundness. In particular, extraction functions are named

extract m w(X) to indicate the extraction ofw bits from bit vectorX starting at bit po-

sition m7. Similarly, concatenation functions are namedconcat w1 . . . wk(X1, . . . ,Xk) to

indicate the concatenation ofk bit vectorsX1, · · · ,Xk whose bit widths arew1, . . . ,wk . A

similar naming convention is adopted for TERM and TRUTH variables; e.g., the Verilog

bit vectorX [a : b] is declared as the TERMX a b.

These notions are illustrated in Figures 4.7, 4.8 and 4.9; which respectively depict a

Verilog fragment, bit field relations for ‘word’, and the corresponding UCLID abstrac-

tion. Consider, in particular, how the bit vectorword[7 : 0] gets updated. From the Verilog

fragment, it is clear that portions ofword[7 : 0] are assigned to in both branches of the if

statement. Specifically, when mode is equal to 1, the five mostsignificant bits ofword[7 : 0]

(i.e. word[7 : 3]) may change because of the assignment toword[10 : 3]. And when mode

is equal to 0,word[7 : 0] is assigned the value ofwl ow. These updates are facilitated by

introducing the following UCLID TERMs and associated uninterpreted functions:

• mode0 0, word 10 3, andword 7 0 to denote the Verilog variable mode, and the

individually-accessed bit fieldsword[10 : 3] andword[7 : 0]

• word P 2 0 andword P 7 3 to denote the bit fields of word in the induced partition;

word P 7 3 n is a temporary TERM that denotes the next value ofword P 7 3

• the UF extract 4 5() which relatesword 7 3 to word 10 3; word 7 3 is derived

from word 10 3 by extracting 5 bits starting from the fourth most significant bit

7Without loss of generality, bit vectors are assumed to be numbered such that bit 0 is in the least significant
position.
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// signal declarations
reg [16:0] word;
wire [7:0] w low,w high;
wire [16:0] out;
wire parity,clk;

// Verilog fragment with explicit and implicit
// access to bit fields of ‘word’
reg mode;always@(posedge clk)

if (mode == 1’b1)
word[10:3]<=8’b11001110;

else
word<={parity,{w high,∼w low}};

assignout = word;

// Equivalent Verilog fragment where all implicit
// accesses to bit fields of ‘word’ are made explicit
always@(posedge clk)

if (mode == 1’b1)
word[10:3]<=8’b11001110;

else begin
word[16]<=parity;
word[15:8]<=w high;
word[7:0]<=∼w low;

assignout = word;

Figure 4.7 Verilog Example Illustrating the Usage of Bit Fields

position the UFconcat 5 3() which reconstructsword 7 0 from word P 7 3 n and

word P 2 0 the UF bitw not 8() which represents bitwise negation applied on

w low 7 0.

The update ofword[7 : 0] is now achieved as follows:

1. word[7 : 0] is initialized to some arbitrary symbolic constant (line 27).

2. When mode is equal to 1,word[10 : 3] is assigned an uninterpreted constant value

(lines 28 and 29).

3. The next value ofword[7 : 0] is set tobitw not 8(w low) if mode is equal to 0 (line

35) or, if mode is equal to 1, to the concatenation of the new value of its 5 most

significant bits and the old value of its 3 least significant bits (lines 33 and 34).
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(b) Uninterpreted extraction and concatenation functionsneeded to
insure consistency between ‘word’ and its bit fields.

Figure 4.8 The Abstraction of the Bit Fields of ‘word’

The general scheme described above can be simplified in certain situations and such

simplifications can lead to significantly more efficient translations from Verilog to UCLID.

For example, if the individually-accessed bit fields of a Verilog bit vector are mutually dis-

joint, it is not necessary to introduce additional TERMs forthe partition blocks. Extraction

may also be simplified when applied on constants. These optimizations reduce the size of

the propositional formula generated by UCLID since UCLID encodes TERMs using a bit

string whose length is a function of the total number of TERMsand UFs applications being

processed. Furthermore, we found that such an optimizationeliminates many unnecessary

false errors by avoiding the need for using extraction UFs.

In the process of obtaining the coarsest refinement over a setof bit vectors, some of the

blocks in the resulting partition may end up being single bits. These single-bit fields can

be modeled as TERMs and used in extraction and concatenationas described above. This,

however, might allow them to get more than 2 different symbolic values. In such cases, we

use UPs, instead of UFs, as extraction functions. When the block (TRUTH variable) needs
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word 10 3 = concat3 5(word P 10 8,word P 7 3)
word P 10 8 = extract7 3(word 10 3)
word P 7 3 = extract4 5(word 10 3)
(a) Uninterpreted functions that act as axioms relating bit

field word[10:3] to its corresponding blocks in the partition
CONST

INITS : TERM ;
concat5 3 : FUNC[2];
extract7 3 : FUNC[1];
extract4 5 : FUNC[1];
bitw not 8 : FUNC[1];

VAR
mode0 0 : TRUTH ;
word 16 0 : TERM ;
word 16 16 : TRUTH ;
word 10 3 : TERM ;
word 7 0 : TERM ;
w low 7 0 : TERM ;
word P 2 0 : TRUTH ;
word P 7 3 n : TERM ;
word P 10 8 n : TERM ;
const53 :TERM ;
...

DEFINE
word P 7 3 n := case

mode0 0 : extract4 5(const53);
default: ...

esac;
...

ASSIGN
init [word 7 0] := INITS;
next[word 10 3] := case

mode0 0 : const53;
default: ...

esac;
next[word 7 0] := case

mode0 0 : concat5 3(word P 7 3 n,word P 2 0);
default: bitw not 8(w low 7 0);

esac;
...

(b) UCLID fragment corresponding to the update of bit
field word[7:0]

Figure 4.9 UCLID Abstraction from Verilog
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to be concatenated, it has to be “type cast” to TERM, using an appropriate ITE expression.

4.6.2 A Sound Unroll-then-Abstract Process in Reveal

The abstraction and unrolling processes in Vapor examine the coarsest partition of all Ver-

ilog variables, maps each bit field in this partition to a UCLID variable, and defines the

abstraction based onαE(·) or αC(·) as described previously. In this section, we describe

an improvement to the abstraction/unrolling processes such that:

• the unrolling and abstraction processes remain sound and close to complete;

• the refinement process automatically strengthens the abstraction in an on-demand

fashion, eliminating the need for correlating bit fields upfront, as done in Vapor; and,

finally,

• the unrolling-abstraction diagram (Figure 4.6 on page 44) is commutative; i.e., the

resulting abstract formulaabst(X̂) is oblivious to the order of applying unrolling and

abstraction.

Consider the Verilog example we introduced in the beginningof this section, involv-

ing a register ‘v’ of size 8 bits. The individually-accessedbit fields of v are in this case

vF = {[7 : 0], [5 : 2], [3 : 0]}, which can be divided into two sets: bit fields accessed in the

LHS of any Verilog assignment, denoted byvLF = {[7 : 0], [3 : 0]}, and the rest, denoted

by vRF = {[5 : 2]}. As illustrated earlier, Vapor examines the coarsest partition entailed by

vF , in this caseπ(vF) = {[7 : 6], [5 : 4], [3 : 2], [1 : 0]}. Reveal, on the other hand, examines

the coarsest partition entailed byvLF , i.e. π(vLF) = {[7 : 4], [3 : 0]}. The rationale behind

this is twofold. First, expressing the change in the ‘state’of variablev can be done based

solely on the LHS accesses. For example, the Verilog code of the running example can be

rewritten to the following:

reg [7:0] v;
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wire s;

always @(posedge clk)

if(s) begin

v[3:0] <= v[3:0] & 4’hF;

v[7:4] <= v[7:4] & 4’h0;

end else

v[3:0] <= v[5:2] | 4’h2;

Representingv usingv[3 : 0] andv[7 : 4], which have no bits in common, allows a straighfor-

ward, yet sound, mapping to TERMsv 3 0 andv 7 4 and proceeding with the abstraction.

Alternatively, unrolling based on the state of variablesv[3 : 0] andv[7 : 3] can be done first,

followed by the abstraction of the resulting formula. The final abstract formula is similar

in either case.

The practicality of the this scheme relies on the fact that Reveal deploys a refinement

back-end, allowing any false negatives arising from interacting bit-fields to be resolved

automatically. For example,v[5 : 2] appears only in a RHS expression. This means that

(1) it does not need to participate in the state modeling ofv, and (2) it can be expressed

in the final concrete or abstract formula usingv or using the combination ofv[3 : 0] and

v[7 : 4]. If false negatives are to arise due to these interactions, the refinement back-end

will automatically resolve them.
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Chapter 5

Enhanced Abstraction and Refinement

5.1 Lemma-based Refinement

Our experiments show that the implementation details of theabstraction/refinement ap-

proach can directly and greatly affect performance. In particular, a number of techniques

were found to be crucial for convergence, and essential to the overall performance of the

approach. The first group of techniques allow distilling powerful lemmas from abstract

counterexamples in a process we refer to asgeneralization. Using these lemmas to refine

the abstract counterexample was essential for fast convergence of the refinement loop. The

second group of techniques allow generating one or more extremely succinct lemmas in

each refinement iteration, and therefore further speeding up the convergence and overall

performance significantly.

5.1.1 Generalized Lemmas

The counterexample reported by the validity checker can be viewed as a very specific viola-

tion. Checking the feasibility of such a violation is trivial, since it can be done through SAT

propagation in equation (4.3). On the other hand, the violation cannot be used to derive a

useful refinement since it “encodes” only one particular case, and out-of-bound constants

cannot be concretized as described earlier. At the other extreme, the checker can declare

that the property is violated, without reporting any information. This corresponds to requir-

ing viol(X̂) = cviol(X) = 1, leading to an expensive feasibility check when checking the
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satisfiability of (4.3). This, in fact, amounts to doing the verification at the bit level without

any abstraction. In this case there is no need for refinement;if (4.3) is satisfiable, a bug is

reported; otherwise, the property holds.

In between these two extremes, we have great latitude to choose a suitable representa-

tion of the violation, subject to the following objectives:

• It should be efficient to derive;

• It should be efficient to check feasibility on;

• It should provide effective refinement.

We observed that when a violation is detected and checked against the concrete model,

only a very small subset of the model’s components participate in causing the property to

be falsified. A justification process similar to that used in ATPG can identify those con-

straints (i.e. function boxes, “gates”) that participate in the implication chains leading top

being false.

The C-like pseudo-code in figures 5.1 and 5.2 describes the formation ofviol(X̂) which

incorporate four key techniques:

1. Enlarging the footprint of the violation by replacing theconcrete assignments to the

terms with equalities or inequalities between terms.

2. Creating a very compact representation ofviol(X̂) based on theprimary inputsof the

design.

3. Excluding the elements of the concrete design that do not fall in the Cone Of Influ-

ence (COI) of the violation assignment.

4. Excluding all the control elements (interpreted operators) of the concrete design.

The rationale behind the last technique is that the abstractmodel automatically ac-

counts for the constraints of the interpreted operators inϕ(X). Therefore, incorporating

these constraints inviol(X̂) for feasibility checking overloads the SAT solver with redun-

dant constraints, leading to a potential slow down in the feasibility checking process, as
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1. struct {
2. string name;
3. enum{UF, ite, tvar} type;
4. union {
5. // list of inputs to UF
6. list<term> inputs;
7. // inputs to ite
8. atom cond;
9. term thenterm, elseterm;

10. }
11. unsignedvalue;
12. } term;

13. struct {
14. string name;
15. enum{UP, EQ, NOT, OR, AND, pvar} type;
16. union {
17. // list of gate inputs
18. list<term> inputs;
19. // inputs to EQ
20. term left, right;
21. }
22. bool value;
23. } atom;

24. // either P (P = 1) or !P (P = 0)
25. struct {
26. // either UP or EQ
27. atom P;
28. bool V;
29. } relation;

30. // list of (potential) violations
31. list<relation> viol;

Figure 5.1 Data Structures for the Counterexample Generalization Algorithm
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1. void EvalFormula(atom f){
2. // C-style ’fall-through’ switch
3. switch (f.type){
4. caseEQ:{relation r ={EvalTerm(f.left) = EvalTerm(f.right), f.value};
5. viol.insert(r);break;}
6. caseUP:{relation r ={f.name(EvalTerm(f.inputs)), f.value};
7. viol.insert(r);break;}
8. caseOR:
9. caseAND: if (f.value==!controlling(f.type)) EvalFormula(f.inputs);

10. else{ for (input in f.inputs)
11. if (input.value==controlling(f.type))
12. {EvalFormula(input);break;}
13. }
14. break;
15. caseNOT: EvalFormula(f.inputs);break;
16. casepvar:break; // do nothing
17. } // EvalFormula

18. term EvalTerm(term t){
19. switch (t.type){
20. caseUF: return f.name(EvalTerm(f.inputs));
21. caseite: if (t.cond.value==1)
22. return EvalTerm(t.thenterm);
23. else return EvalTerm(t.elseterm);
24. casetvar: return t;
25. } // EvalTerm

26. void GeneralizeCE(atom ‘abst->prop’){
27. viol={};
28. EvalFormula(‘abst->prop’);
29. } // GeneralizeCE

Figure 5.2 Counterexample Generalization Algorithm
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well as reducing the footprint of the violation.

The algorithm traverseŝϕ(·), starting from the top node, and recursively invokes the

procedures EvalTerm and EvalFormula. Given a term variablet, EvalTerm calculates a

symbolic expression representing the value oft when applyingX∗, by evaluating the in-

terpreted operators in its sub-tree. EvalFormula is invoked on formulas, including atoms,

and it constructs the violation by calculating simplified atoms and their value underX∗.

We use the auxiliary function ‘controlling’, traditionally defined for logic gates as control-

ling(AND)=0 and controlling(OR)=1.

5.1.2 Explanation of Infeasibility

Given a spurious violation, i.e.viol(X̂) such thatconc(X) · ¬p · γ(viol(X̂)) is unsatisfiable,

it is possible to further widen the footprint of the learnt lemma by explaining the unsat-

isfiability of the aforementioned formula via Minimally Unsatisfiable Subsets, or MUSes

for short. An MUS is an unsatisfiable subset of the formula that becomes satisfiable if any

constraint is removed. The use of MUSes allows the refinementin the current iteration to

‘block’ violations that might occur in future iterations. Formally, one or more explanations

are extracted as follows:

musk(X) = EXPLAINk(conc(X) · ¬p · γ(viol(X̂)))

abst musk(X̂) = α(musk(X))

explk(X̂) = abst musk(X̂)∩viol(X̂)

In words, MUS extraction is applied on the UNSAT formula, to explain the infeasibility

of the counterexample. We use CAMUS [38] to generate one, multiple, or all MUSes from

the formula. The procedureEXPLAINk represents the process of extracting thekth MUS,

denoted bymusk(X). Then, the abstraction is used to map the MUS back to the original ab-

stract constraints, and the subset of these constraints originally belonging toviol(X̂) is the
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final explanation of infeasibility. The refinement, in turn,uses one or more lemmas each

represented by¬explk(X). Sinceexplk(X) is a subset ofviol(X̂), the lemma¬explk(X̂)

is more compact and has wider impact on the abstract model than ¬viol(X̂), hence us-

ing MUS-based explanation speeds up the refinement convergence as we will see in the

experiments. The efficient implementation of MUS extraction in CAMUS and its tight

integration with the rest of the refinement algorithm allowsthis step to remain very fast

despite the worst case theoretical complexity of MUS extraction.

5.1.3 DP-CEGAR

Figure 5.3 highlights the overall architecture of our automated verification system, based

on Datapath Abstraction and Counterexample-Guided Lemma-based Refinement (DP-

CEGAR), as described earlier.

• Unrolling . The design is initially unrolled to create a bit-vector formula that rep-

resents the design and the property. Unrolling applies a number of optimizations,

such as isolating the property’s cone of influence, or simplifying memory expres-

sions. Most of these simplifications are orthogonal to the abstraction and are related
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to constant propagation in multiplexers.

• Abstraction and Validity Check . The abstraction step over-approximates the de-

sign’s constraints via UFs and UPs, and the resulting formula can be checked using

an SMT solver.

• Refinement. Abstract counterexamples are checked for feasibility andlead to the

generation of lemmas that are stored in a database. The database of lemmas (a) al-

lows the flexibility of aggregating one or more lemmas in eachrefinement iteration;

(b) allows the user to supply lemmas before the verification begins for the design at

hand; and (c) allows reusing lemmas across verification sessions invoked on different

versions of the same design, or different designs of the same“family of designs”.
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Chapter 6

Reveal: An Implementation of
DP-CEGAR

In this chapter we describe Reveal, a software tool that implements DP-CEGAR, and show-

case its usage in identifying (or proving the lack of) designbugs.

6.1 Reveal’s Software Design

Reveal is implemented in C++, and consists of the following components:

• The Hardware Relations library described in Section 6.1.1 is a stand-alone package

that is used to manipulate word-level expressions. Reveal uses it as its platform for

communicating Verilog expressions, as well as abstract lemmas.

• The Formula Generator described in Section 6.1.2 is Reveal’s front-end module. It is

used to generateconc(X).

• The Solver Module described in Section 6.1.3 is Reveal’s back-end module for solv-

ing SMT formulas.

• The MUS Extractor described in Section 6.1.4 is another back-end module responsi-

ble for extracting infeasibility explanations from SMT formulas.

• The CEGAR Core described in Section 6.1.5 orchestrates the entire process as de-

scribed in previous chapters.

The following subsections highlight the components’ implementation specifics that en-

able scalability and automation.
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6.1.1 Hardware Relations

This module allows Reveal to efficiently store and manipulate word-level expressions

throughout the entire flow, as well as to be extensible and applicable to other uses, such

as the verification of software. To achieve that, it has to trade off three requirements simul-

taneously:

• it has to scale in space and time;

• it has to comply with a generic interface that allows interaction with the various

components in Reveal, including lemma storage on the desk;

• and finally, it has to allow each different component to storeits own metadata,

perform its own optimizations on the expressions, and traverse the data structure

accordingly.

To achieve that, the implementation was done using a recursive data structure, such that

each object represents a word-level expression, which can be a leaf node representing a

constant or a variable, or an operation node with an operatorand a list of sub-expressions.

To scale in space and time, the following techniques are used:

• The library avoids frequent OS calls for memory allocation by internally managing

memory allocation and resorting to ‘bulk allocation’, i.e.asking the OS for larger

arrays of free memory at a time. Reveal’s performance was found to improve up

to 20% when this mechanism overrides C++ native ‘new’ allocation, especially for

large benchmarks with millions of allocated nodes.

• Hashing functions are used to quickly determine whether twonodes represent the

same word-level expression, and potentially eliminate resulting duplicates.

• Constant values are automatically propagated through combinational logic and if-

then-else expressions, leading to significant simplifications of expressions. Other

simplifications include (1) the simplification of trivial multiplexers (e.g. ite(x,a,a);

(2) the removal of redundant concatenation/extraction; and (3) the conversion of bit-
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wise operations (e.g. Verilog’s ‘∼’ operator for negation) on single-bit variables to

Boolean logic operations (Verilog’s ‘!’ operator in this case).

In order to be extensible, yet support all of Reveal’s functionality, the library supports

three main functions:

• It allows generic annotation, i.e. storing metadata on eachnode. Annotation is useful

in a number of scenarios. Firstly, it is used to trace a newly created node back to its

originating node. For example, assumen1 is a node representing an expression in

the transition function of the design,n2 is a node representing the value ofn1 in a

certain cycle during unrolling, andn3 is a corresponding simplified expression in the

violation. In this case, back-annotation allowsn3 to point back ton2, which in turn

points back ton1. Secondly, annotation is used to flag nodes during various traversal-

based analyses done in Reveal. Thirdly, annotation is used to indicate to the solver

or MUS extractor the SMT ‘modeling’ for each node. The latterwill be explained in

Subsection 6.1.3.

• It allows recursive traversal of the data structure.

• It allows storage on the desk in the form of a native binary format. This format can

be used to store the lemma database, as well as the transitionrelation of the design

after parsing.

6.1.2 The Formula Generator

This module creates equation (3.1) (page 17) by applying thefollowing steps sequentially:

• Preprocessing.We use Icarus Verilog [68], an open source simulation and synthesis

tool for Verilog, to eliminate compiler directives from thedesign, such as ‘include’

and ‘define’ statements.

• Flattening and Parsing.To test the correctness of the design, through simulation or

formal verification, the design has to be represented in a so-calledflat view, such that
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all modules and functions are instantiated. Flattening in our case generates a new

design that is equivalent to the original, and has no instantiation. The new design is

parsed into an in-memory annotated tree using Icarus Verilog [68]. The supported de-

sign syntax is given in Appendix A, which is a subset of the overall syntax supported

by Icarus Verilog.

• Calculation of Transition Relation. The Formula Generator takes the Verilog rep-

resentation and calculates a transition relation for the design variables based on the

method described in Section 4.6.2.

• Unrolling. Each Verilog variable inR, W, andM, is assigned a symbolic expression

in each cycle based on its transition relation. Rather than using the transition rela-

tion as is, the Formula Generator uses the simplifications supplied by the Hardware

Relations library to reduce the size of the resulting formula.

6.1.3 The Solver

The Solver module is responsible for determining the satisfiability or validity of FOL for-

mulas. It interfaces with the YICES SMT solver via a C++ API [65]. This module can

determine, for example, whether a formula is valid in the EUFor CLU logics, or satisfiable

in the bit-vector (BV) logic.

This module makes use of the generic annotation mechanism introduced in Section

6.1.1 in order to allow the CEGAR Core, as well as the designer, to control the way each

expression is modeled in YICES. In particular, each non-leaf expressione= op(e1, ...,en)

is seen as a combinational component with outpute, inputse1, ...,en, and functionop. In

turn, annotation is used to indicate to YICES how to model each component:

• The outputecan either be represented as a term or a bit-vector. The former modeling

is suitable for the EUF and CLU abstractions introduced in Section 4.3, while the

latter is used during feasibility checking .
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• The operatoropcan be modeled in the SMT formulation using a UF/UP node, a CLU

node, or a native bit-vector operation supported by YICES.

As alluded to earlier, the CEGAR Core annotates each expression node prior to passing

it to the Solver module, which in turn uses this information to formulate the constraints in

YICES. The user has also some control over the way expressions are modeled using this

mechanism. The latter can be useful for externally controlling Reveal’s initial abstraction

α0(·).

6.1.4 The MUS Extractor

This module is responsible for identifying MUSes from an unsatisfiable formula. Unlike

an initial implementation of the system [2], the current implementation uses a modified

version of the CAMUS MUS extraction algorithm [38] that works directly with the YICES

solver. This eliminates the need to generate a propositional encoding of the abstract for-

mula and leads to significant speedup in MUS generation. It also reduces the number of

all possible MUSes in the given conjunction, since including (or excluding) constraints in

the MUS is now done at a coarser granularity, allowing CAMUS to scale better. It is worth

mentioning that given an unsatisfiable formula, CAMUS can berun in three modes: single-,

multiple-, or all-MUS extraction, where the last option is used in most of our experiments.

6.1.5 The CEGAR Core

This component is responsible for coordinating the abstraction, solving, MUS extraction,

and refinement processes. It also maintains the persistent lemma database that is accessed

across invocations. In each iteration it modifies the lemma database and updates the ab-

straction for the next iteration. This module is also responsible for integrating user-supplied

lemmas into the database.
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6.2 A Designer’s Perspective

This section briefly demonstrates running Reveal and interpreting its output.

6.2.1 Reveal’s Input

The input to Reveal consists of Verilog design files, as well as aconfigurationfile contain-

ing a set of directives to control Reveal’s behavior. The full list of the directives and their

functionality and (possible/default) values can be found in Appendix B. The directives can

be roughly divided into the following three categories:

• Algorithmic Behavior . These directives allow the user to change the default behav-

ior of Reveal’s DP-CEGAR algorithm. This includes whether abstraction/refinement

is turned on, the type of the abstraction used (EUF or CLU), the type of MUS-based

minimization used, and configuring the behavior of the lemmadatabase.

• Input Specifications. These directives specify special design signals such as ‘clock’

and ‘property’, and additional information on how clockingand unrolling should

be modeled (i.e. the number of unrolling cycles, unrolling simplifications used, be-

havior of clock, etc.). The user can use these parameters also to change the default

behavior of the Verilog parser, to make it more compatible with traditional simu-

lation tools (e.g. automatic 0-extension for RHS and LHS expressions that are not

size-compatible). Additionally, a number of parameters allow the user to flag cer-

tain modules with additional attributes; this includes specifying the top module for

multi-module designs, as well as symbolic initialization of memory arrays. Finally,

the user can specify the input files to Reveal. This includes names, locations, and

types of files for the design and property being checked; aside from Verilog, the user

can use the native binary format of the Hardware Relations library.

• Output Specifications. These directives control Reveal’s output, including the gen-

eration of a combinational representation of the initial verification condition, as well
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as the final condition (property with lemmas). Reveal supports the following formats

for output: Yices, UCLID, Verilog, and BAT.

6.2.2 Reveal’s Output and Counterexample Traces

Reveal’s output usually consists of three major parts: a preface listing Reveal’s current con-

figuration as described in the previous subsection; whetherthe property holds or is violated;

and, in case the property is violated, a counterexample trace. Reveal can also be integrated

with a simulation-like graphical back-end interface, as demonstrated in [69]. This section,

however, focuses on the textual output of Reveal.

A counterexample trace produced by Reveal includes a list ofsignals and their corre-

sponding bit-vector values in each cycle (see Figure 6.1). As mentioned earlier, flattening

renames design signals based on the hierarchical instantiation of the design’s modules.

For example, the ‘flat signal’ pipelinedesign10$wb stagedesign10$resultmux repre-

sents the ‘hierarchical signal’ resultmux that was instantiated in the WB module in

pipelinedesign1. Finally, it is worth mentioning that Reveal excludes signals and values

that are irrelevant to the current bug being diagnosed. Thiscomes mainly in three forms:

• Signals that fall outside the cone of influence of the property being checked, i.e. those

signals that do not participate in formingconc(X).

• Signals that fall outside the cone of influence of the path leading to the bug, i.e. a

control expression of the formite(c,x1,x2) wherec= 0 under the current trace (lead-

ing to prop = 0) prevents signalx2 from appearing in the trace since its value is

irrelevant to the value of this expression for the given value ofc.

• Multi-bit signals whosefull value is not needed to provingprop= 0. These mainly

include signals involved in bit field selection such as the Instruction Register (see

id ex IR design1 in Figure 6.1). In those cases, ‘x’ is used in the trace to represent a

‘don’t-care’.
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Counterexample Trace:
=====================
Cycle 0
————–
pipelinedesign10$wb stagedesign10$resultmux
= 0000000000000000000000000000000000000000000000000000000000000001a

...
Cycle 1
————–
id ex IR design1
= 01000111111111110000010000011111
...
id ex IR design1
= 000xxxxxxxxxxxxxxxxxxxxxxxxxx

aThe leftmost bit (0) is the vector’s most significant bit.

Figure 6.1 A Snapshot from a Counterexample Trace Arising during MIPS Verification
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Chapter 7

Experimental Studies

In this section we describe results of applying the abstraction refinement techniques in

DP-CEGAR on a number of designs for the purpose of control logic verification. Seven

test cases were used to evaluate the effectiveness of those techniques. We also compare

our techniques to verification systems being researched and/or developed by others. A

summary of the results is presented in Section 7.8.

In the following sections we will classify the various runs of Reveal by a one-, two-, or

three-letter code that indicates the abstraction and refinement options used:

• Abstraction options will be labeled B (bit-level, i.e., no abstraction), C (CLU abstrac-

tion, see Section 4.3.2), and E (EUF abstraction, see Section 4.3.1).

• Refinement options will be labeled V (negating the violation, as described in Section

4.5) and L (refinement with lemmas, as described in Section 5.1.1).

• For lemma refinement, S will denote refinement with one lemma per iteration,

while M will denote refinement with multiple lemmas. For example, the label Re-

veal(CLM) means CLU abstraction and refinement with multiple lemmas, whereas

Reveal(EV) means EUF abstraction and refinement with the negation of the violation.

We compare the performance of Reveal against the following four verification systems:

• UCLID [12][79] which allows modeling of the datapath with abstract terms, and

memories with Lambda expressions. Since UCLID does not accept Verilog, we use

VAPOR [4] to produce UCLID models.
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Table 7.1 Benchmark Statistics

Name
Verilog Verilog State
Lines Signals Bits

Sorter 79 30 35 to 103

ICRAM 153 13 1.3x105

OMU 400 to 104 40 to 260 1.0x106

DLX 2.4x103 399 1.0x1011
RISC16F84 1.2x103 169 1.0x105

X86 1.3x104 1.0x103 5.8x103

• BAT [41][80] which models memories with set and get functions for reads and writes,

respectively, but models the datapath with finite-length bit-vectors. BAT formula-

tions were produced from our verification conditions compiled from the Verilog. We

are unaware of any other conversion methods from Verilog to BAT’s language.

• VCEGAR [33][81] which performs word-level predicate abstraction on the Verilog

input, but does not abstract memory arrays.

• VIS [10][82] which, by default, uses bit-level reachability analysis to verify invari-

ants. It can also be used in two special modes: one that performs bounded model

checking of safety properties, and another that performs invariant checking with a

CEGAR algorithm based onhiding registers[61]. We will denote the default mode

by VIS, the BMC mode by VIS(BMC), and the last mode by VIS(AR).

The first six experiments, with design statistics shown in Table tab:stats, were con-

ducted on a 2.2 GHz AMD Opteron processor with 8GB of RAM running Linux, while

the last experiment was conducted on 2.0 GHz Intel Xeon processors with 16GB of RAM

running Linux. VCEGAR, BAT, and UCLID use the zChaff SAT solver [83] and the SMV

model checker [66].

72



d1

1

0

d1>d2

d1

d2
res1

1

0

d2

d1
res2

d2

Sort2

s1

s2

Registers

C
O

N
T
R
O
L

sres1
Sort2d1

d2

Sort2d1

d2

s3

s4

sres2

sres3

sres4

Sort4 Spec

ires1

ires2

ires3

ires4
s23

s14

s11

Sort2
d1

d2

Sort2
d3

d4

Sort2

Sort2

Sort2

s12

s13

s21

s22

s24

Registers Registers Registers

Sort4 Impl

Figure 7.1 Sorter Test Case

7.1 Sorter Case Study

The Sorter design [71] implements two versions of an algorithm that sorts four bit-vectors.

It makes use of a Sort2 sub-unit that sorts two bit-vectors. In the first version, five Sort2

sub-units are instantiated and connected serially. The inputs are introduced to the first two

sub-units, and the calculation propagates serially towards the outputs. The computation

advances through 3 layers of registers, thus requiring three cycles to complete. The second

version is based on just two Sort2 sub-units and a controllerthat uses them to carry out the

sorting computation in three cycles as well.

• The effect of datapath abstraction is evident from the performance of Reveal(C) and

UCLID, which are oblivious toW. In both cases the abstract model is unaltered when
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changing the datapath bit width; thus the time needed to verify the abstract model is

constant. Furthermore, the only interaction between the datapath and the control in-

volves bit-vector inequalities, allowing the CLU logic to prove the property without

any refinement.

• BAT’s performance degrades when increasingW, since the datapath is unabstracted.

Nonetheless, BAT’s reduction to CNF appears to play an important role in keeping

the runtime low.

• VCEGAR takes 6.1 seconds to prove the property forW=2 as it incrementally dis-

covers between 33 and 40 predicates within 58 to 130 iterations. Additionally, the

runtime grows exponentially with the width of the datapath.We suspect that the

reason behind this is the expense of simulating the abstractcounterexample on the

concrete design in each refinement iteration, as well as the repeated generation of the

abstract model each time a new predicate is added.

• The runtimes of Reveal(B), VIS, and VIS(BMC) degrade rapidly as the bit width is

increased. The runtimes of VIS(AR) are similar to VIS and were removed from the

graph to avoid clutter.

The property we verified is the equality between corresponding outputs in the two ver-

sions. All the bit-vectors in the two units, including the inputs and the outputs, are of

bit-width W, which we vary from 2 to 64 to see the effect of the datapath width on the

scalability of each tool. Figure 7.2 shows the runtime of each of the verification tools as a

function ofW, and Table 7.2 shows the number of bits in the concrete verification condition

(i.e.,ϕ(·)) and statistics about the number of the nodes in the abstractverification condition

(i.e., ϕ̂(·)). The last column, labeled by R, shows the ratio between the number of bits and

the number of nodes. The results demonstrate the following trends:
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7.2 Instruction Cache RAM Case Study

The Instruction Cache RAM (ICRAM) test case [72] is obtainedfrom the publicly avail-

able Verilog description of the Sun PicoJava II Microprocessor [67]. This unit includes a

memory array of 16K 8-bit words, 32-bit input and output dataports, and single-bit control

signals to trigger certain operations in the cache such as reading, writing, BIST testing, and

switching to “power down” mode. The ICRAM interacts with theInstruction Cache Unit

which manages the instructions tags and buffers for the entire microprocessor.

The address space of the ICRAM is divided into two “banks,” distinguished by a single

bit in the address register. A write operation takes an address signal adr[13:3], a data signal

di[31:0], and control signals selecting the destination bank b∈ {0,1}. The memory update

for write(adr,di,b) is:

mem[adr,b,00]<=d[31:24]

mem[adr,b,01]<=d[23:16]

mem[adr,b,10]<=d[15:8]
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Table 7.2 Verification Condition Stats

Test E → p A→ p R
Bits Terms Booleans UFs UPs Overall

Sorter, W=8 127 14 12 0 0 26 5.08
Sorter, W=16 249 14 12 0 0 26 9.96
Sorter, W=32 473 14 12 0 0 26 18.9
Sorter, W=64 921 14 12 0 0 26 36.8
ICRAM 287 31 48 9 2 90 3.12
OMU, K=16 1346 67 275 2 0 344 3.91
OMU, K=32 3154 131 1059 2 0 1192 2.65
OMU, K=64 8306 259 4163 2 0 4524 1.88
OMU, K=128 2.5x104 515 1.7x104 2 0 1.7x104 1.47

mem[adr,b,11]<=d[7:0]

The ICRAM has been formally verified by VCEGAR [33] and BAT [41]. The property

verified is that given an arbitrary initial memory array, performing a write(adr,di,0), then

performing a read from address adr,001, will yield a value that is equal to di[23:16].

We verified this example with Reveal(C), Reveal(B), BAT, andUCLID. The runtimes

are 30ms, 38ms, 50ms, and 92ms, respectively. This result iscounterintuitive given that the

original design has 217 state bits. The efficiency of these methods stems primarily from the

reduction obtained by memory abstraction; as shown in Table7.2, both the concrete and

the abstract verification conditions are very small despitethe large state space. Moreover,

due to the simple interaction between the control and datapath, the abstraction in UCLID

and Reveal(C) is sound and complete. Therefore, refinement is not triggered.

Left unabstracted, the memory array causes VCEGAR and VIS toencounter “vertical”

state explosion. VCEGAR’s runtime was shown in [33] and [41]to grow exponentially

with the memory size. Likewise, VIS times out for this example. In particular, the veri-

fication in VIS begins with converting anyn-word by m-bit memory inton ·m single-bit

registers regardless of the property being verified. “Flattening” the memory in this way

also leads to loss of the structural correlation between thememory registers, which can
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otherwise be used by the model checker during verification.

7.3 Out-of-Order Memory Updates Case Study

The Out-of-Order Memory Updates example [73] (OMU) has beenpreviously introduced

in [41] to demonstrate the effectiveness of memory abstraction for RTL verification. The

design instantiates an array of 65K 16-bit words, which can be read from or written to via

designated signals.

The design is verified by simulating two sequences of write operations on the mem-

ory array. The initial memoryM is modified by a sequence ofK writes to locations

A,A+1,A+2, . . . ,A+K−1, with the data wordsD1,D2, . . . ,DK, respectively, resulting in

memoryM1. Independently, a second sequence of writes is performed on M in locations

A+K −1,A+K−2, . . . ,A, with the data words,DK,DK−1, . . . ,D1, respectively, resulting

in memoryM2. Since the addresses for the write operations are mutuallydistinct, the or-

dering of the writes does not affect the final state of the memory. In particular, the content

of locationA in bothM1 andM2 is equal. A second, more generic, property is verified by

simulating a similar sequence of writes to distinct locationsA1,A2 . . . ,AK. In other words,

we allow the addresses to be arbitrary, albeit mutually dis-equal.

We compared Reveal(C), Reveal(B), BAT, and UCLID on these two properties, while

varyingK over{16,32,64,128}. The runtimes are plotted in Figure 7.4 (page 79) on a loga-

rithmic scale1. Similarly to the ICRAM case, the effect of modeling the memory is evident

in this example. In particular,

• Reveal(C) scales well on both properties, taking less than 3seconds for all the val-

ues ofK. This is attributed to the memory abstraction via Lambda expressions [12].

Refinement was not triggered since the datapath/control interactions are exclusive to

(dis-) equalities.

1Dashed and solid lines correspond to the first and second properties, respectively. VIS and VCEGAR
were omitted to avoid clutter.
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Figure 7.4 Runtime Graphs for OMU

• BAT appears to be sensitive to the pattern of memory writes; proving the property for

arbitrary addresses is two orders of magnitude slower than for consecutive addresses.

• UCLID is two orders of magnitude slower than BAT and Reveal(C) on both prop-

erties. Despite its memory and datapath abstractions, its reduction to CNF [41] is

significantly slower in proving the property on the abstractmodel.

• Reveal(B) clearly demonstrates the state explosion problem, as the runtime rapidly

worsens when increasingK.

• As with the ICRAM case, VCEGAR’s runtime was shown in [41] to grow exponen-

tially in the number of writes to memory. VIS times out on thisexample for any

number of writes. The lack of memory abstraction hinders both.

7.4 DLX Case Study

DLX [74] is a 32-bit RISC microprocessor [30]. Its salient features include a 32-bit address

space with separate instruction and data memories, a 32-word register file with two read

ports and one write port, and 38 op-codes for arithmetic, logical, and control operations.
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Our case study involved comparing two versions of DLX, both written in Verilog 95

[54]. The first version, which we will refer to asDLXSpec, is a single-cycle implementation

of the instruction set architecture (ISA) and serves as the architectural specification of the

microprocessor. The second version, labeledDLXImpl, is a standard 5-stage pipelined de-

sign consisting of instruction fetch, instruction decode,instruction execute, memory access,

and write-back stages.

StartingDLXSpecandDLXImpl from their reset states, the property we checked for

was equivalence of corresponding state elements (registerand memory locations) after a

bounded number of execution cycles. Specifically, letES
i andEI

j denote the values of two

corresponding state elements from the specification and implementation afteri and j cycles

from reset, respectively. These two elements would, then, be considered equivalent if:

(ES
1 = EI

1)∨ (ES
1 = EI

2)∨ . . .∨ (ES
1 = EI

5)

To compare the various abstraction and refinement options inReveal and to demon-

strate its ability to (dis-)prove properties, we verified a number of (buggy and bug-free)

variations of the design. We focus onE=̇PC here, but similar verification can be used for

other state elements. The buggy versions were obtained by injecting errors in the RTL of

DLXImpl. These variations are as follows:

• D1 is a bug-freeDLXSpecandDLXImpl.

• D2 is a buggyDLXImpl wherein the pipeline ‘Stall’ control signal is stuck at 1.

• D3 is a buggyDLXImpl wherein the address of the ‘jump’ instruction is calculated

incorrectly.

Table 7.3 contains runtime statistics for each mode of Reveal. Columns labeled T, I,

and L, describe, respectively, runtime (seconds), number of iterations, and total number
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Table 7.3 Verification Results for DLX

CVa ELS CLS ELM CLM B
T I T I T I T A I L T A I L T

D1 >600 >1507 1.92 9 1.8 8 0.6 3948 1.0 27612>600
D2 0.11 1 0.15 1 0.12 1 0.11 3 10 0.1 7 1 0 0.21
D3 3.16 45 2.22 11 1.16 5 1.13 2335 1.1 254 8 6.7

aThe notation is explained in the beginning of this chapter.

of refinement lemmas (when applicable). The columns labeledA show the ratio of the

runtime of verifying the abstract model to the total runtimeas a percentage. Finally, the

smallest runtime is emphasized in each row; there can be multiple in each row when the

difference is insignificant.

The performance of the various options in Reveal demonstrate the role of automatic

refinement. Since the control and the datapath in this designare intermixed, refinement is

needed to “recover” facts that were lost in the course of the abstraction, yet are relevant to

(dis-)proving the property. To shed some light on the types of lemmas discovered during

this process, we traced the source of these lemmas back to theoriginal Verilog code. Most

of these lemmas were related to the pipeline registers and control logic in DLXImpl. For

instance, the lemma (IR3=32’d0)→(IR3[31:26]6=6’d4), which states that it’s not possible

to extract a non-zero field from a zero bit vector, was traced to the following code segment

involving IR3:

defineBEQ 4

defineop 31:26

initial IR3 = 32’d0;

caseIR3[‘op] ‘BEQ: ...

In this case, the initial abstraction lost the fact that IR3[31:26] can not be equal to 4
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(i.e., the opcode of BEQ) when it is actually holding a NOP instruction (i.e., with opcode

0), and it found a spurious counterexample that executed theBEQ instruction.

Upon closer examination, we found thatDLXImpl consists mainly of a datapath that

is responsible for computing values for the PC and memory to be committed, and control

logic that orchestrates the pipeline. Furthermore, the datapath inDLXImpl is very similar,

and in most cases identical, to the datapath inDLXSpec. As a result, refinement only affects

those portions of the design involving interactions between the datapath and control logic

in DLXImpl.

Table 7.3 also shows that the use of lemmas for refinement (modes ELS, CLS, ELM,

and CLM) is far superior to using the violation (mode CV). Also, using multiple lemmas

in each refinement (modes CLM and ELM) outperforms refinementwith a single lemma at

a time (modes ELS and CLS).

Surprisingly, Reveal(B) is able to terminate on the buggy versions of the design. This

is attributed to the ability of the BV solver in YICES to efficiently find a satisfying as-

signment to equation 4.3. The rest of the case studies in thisthesis confirm that proving the

unsatisfiability of this equation is intractable with Reveal(B), while proving its satisfiability

may be tractable in some cases, though not all.

In order to compare the performance of YICES and UCLID in solving the abstract for-

mula, we generate the expression:(conc→ prop)∨
∨

i lemmai which represents the final

“refined” verification condition created in Reveal. This expression is dumped as a Verilog

word-level combinational circuit, and VAPOR is then used togenerate its corresponding

UCLID model. UCLID spends two orders of magnitude more time than the time spent by

Reveal in solving the abstract formula. We observed a similar trend in the rest of the test

cases.

Finally, we ran VIS and VCEGAR on this design. VIS was unable to create a netlist

due to what we believe is an internal error in the tool. Regardless, we do not think that VIS

could verify this design due to its large memory arrays. VCEGAR processed the input but
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timed out at 600 seconds.

7.5 RISC16F84 Case Study

This design is an implementation [75] of the Risc16F84 microcontroller [78]. It has

a 213x14-bit instruction memory, a 29x8-bit data memory, 34op-codes, and a 4-stage

pipeline. We denote the implementation and specification byOCImplandOCSpecrespec-

tively. OCImplprocesses one instruction every four cycles, whileOCSpecneeds one cycle

to process each instruction. The equivalence criterion in this case is

∧

j

(I j
0 = Sj

0) →
∧

j

(I j
4 = Sj

1),

whereI j
i andSj

i denote the state of thejth state element inOCImpl andOCSpec, respec-

tively, after i cycles of execution. In essence, this is an inductive criterion: given equal

state elements in the current cycle, it requires equal stateelements after processing a single

instruction.

Reveal was able to discover a genuine bug in this design. The following Verilog code

in OCImpluses afloatingsignal cin as the carry-in bit to a 8-bit addition operation.

// risc16f84lite.v

reg c in; // line 223

addnode,temp<= {1’b0,aluimpl reg,1’b1}+{1’b0,aluinp2reg,cin}; // line 519

OCSpec, on the other hand, performs addition without any carry-in bit. Reveal thus pro-

duces a counterexample showing the deviation, with cin assigned to 1. The unit designer

acknowledged this problem, and asserted that the simulation carried out for this design

assumed cin=0.
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Table 7.4 Verification Results for RISC16F84

CVa ELS CLS ELM CLM B
T I T I T I T A I L T A I L T

R1 >600 >1767 >600 >1204 >600 >1085 257 .793185 148 .8 68170209
R2 0.79 8 56 20 >600 >1881 72 144 13 40 1.133 39 15.2
R3 115 654 50 123 121 311 2.6 .6 5 15 27.3 0.240 73 11.6

aThe notation is explained in the beginning of this chapter.

Tables 7.4 contains runtime results for three versions of this design:

• R1 is a bug-freeOCImplandOCSpec.

• R2 is a buggyOCImpl with the aforementioned bug, i.e. a floating ‘carry-in’ signal

for addition.

• R3 is a buggyOCImplwherein ‘aluoutzeronode’ is stuck at 1.

In these results we observe the following:

• Refinement with lemmas is superior to refinement with the violation. Furthermore,

the use of multiple lemmas for refinement is crucial for verifying version R1.

• The verification condition here is relatively small despitethe huge memory embed-

ded in the RISC16F84 design. This is attributed to memory abstraction discussed in

previous sections.

• The verification of the bug-free version (R1) with Reveal(B)terminates after 209

seconds. It also terminates rapidly on the 2 buggy versions.This makes its perfor-

mance comparable with Reveal(C) and Reveal(E). As we saw in previous sections,

the runtime of Reveal(B) grows exponentially with the number of bits in the con-

crete verification condition. On the other hand, the performance of Reveal(C) and

Reveal(E) depends on the number of nodes in the verification condition as well as

the control/datapath intermix.

• The R2 case shows an interesting outlier, in which Reveal(CV) is significantly faster

than any version that refines with lemmas. This is due to the heuristic nature of the
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satisfiability search for finding a bug. Any search, regardless of the refinement used,

could “get lucky” and reach a bug early in this way, though only rarely.

• An analysis of the lemmas discovered in all variations of this test case reveals that

most of the spurious counterexamples are due to thevariable opcode widthfea-

ture, wherein the opcode field can beK-bits wide for anyK ∈ {2,3,4,5,6,7,14}.

For instance, the opcode of thegoto instruction is IR[13:11]=3’b101, while the

opcode for addlw is IR[13:9]=5’b11111. The encoding guarantees that only one

opcode is active at any given time. This information is lost when abstracting the

bit-vector extraction operation. This results in the occurrence of lemmas of the form

(IR[13 :k1] = v1)→ (IR[13 :k2] 6= v2) for valuesv1,v2 and distinct indicesk1,k2 ∈K.

• On this example, UCLID timed-out after 600 seconds for R1, and is two orders of

magnitude slower than YICES on R2 and R3. VCEGAR runs out of memory after

370 seconds, and VIS was not able to process this design sinceit does not support

blocking assignments, which are used throughout the Verilog description. We believe

that VIS would otherwise encounter an additional obstacle with the large memories.

7.6 X86 Case Study

The X86 design [76] is an open source RTL Verilog model developed at IIT, Madras that

implements Intel’s IA-32 ISA [77]. The design contains fourhigh-level modules. TheDe-

codermodule, which is the main focus of our verification effort, isresponsible for fetching

an instruction prefix from the memory, finding the total length of the instruction, fetching

and decoding the rest of the instruction, and providing the result to theControl module.

The top module of the Decoder instantiates the fetching unit, the instruction length find

unit, and six decoding units, which correspond to six instruction types that exist in the

x86 architecture and its extensions, namely Integer, Floating Point, MMX, SSE, SSE2,

and SSE3. Each decoding unit has an enable signal that orchestrates its operation with the
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Decoder top module.

Upon reset, the Decoder fetches the PC and the correspondinginstruction from mem-

ory. We verified the property that the Decoder activates the corresponding decode unit when

the instruction is confined to a set of 6 Integer and Floating Point op-codes as follows:

(opcode∈ {CMP,JMP,MOV,FADD,FCMOV,FINIT}) →

((opcode∈ {CMP,JMP,MOV}) ↔ enInteger)∧

((opcode∈ {FADD,FCMOV,FINIT}) ↔ enFloatingPoint)

When the verification was invoked in Reveal, the tool was ableto discover a coding

problem in the design. In particular, the RTL description includes the code

// sse3Decoder.v

op2 = 32d0; // line 55

if (...) // line 185

op2[16:0] = instrSeq[31:16]; // line 188

which uses a blocking assignment to initialize the signal op2, and then extracts a 16-bit

displacement value from the instruction stream and assignsit to a 17-bit register. Most

synthesis tools will zero-extend the RHS expression to makethe sizes consistent, in which

case the resulting model is still correct. Nonetheless, such an error may indicate addi-

tional problems in other units of the design. We have notifiedthe unit designers about this

problem, and we modified the Verilog to eliminate the problemfor the later experiments.

Similarly to the previous two test cases, we compared the performance of Reveal on

two buggy versions and one bug-free version as follows:

• X1 is a bug-free X86 design and property.

• X2 is a buggy version wherein property swaps ‘enable’ signals for the Int and FP
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Table 7.5 Verification Results for X86

CVa ELS CLS ELM CLM B
T I T I T I T A I L T A I L T

X1 >600 >388 >600 >1158 >600 >945 36.5 3140104 60.4 591996>600
X2 >600 >461 >600 >1062 >600 >1046 30.5 3278161 103 632486>600
X3 1.98 2 1.95 2 1.96 2 2.0 6 2 6 2.1 6 1 0 2.72
X4 >600 >308 >600 >847 >600 >1252 23 4812 41 58.7 74 7 43>600

aThe notation is explained in the beginning of this chapter.

units.

• X3 is a buggy design wherein the ‘opcode’ for ‘CMP’ activatesthe FP unit instead

of Int unit.

The runtime results are included in Table 7.5. These resultsreassert the importance of

refinement with multiple lemmas. A notable phenomenon in this case is that Reveal(C)

converges significantly faster than Reveal(E) in terms of refinement iterations. This is at-

tributed to the heavy use of counters in the FSM of the X86 decoder. Along these lines, note

that the number of lemmas accumulated in Reveal(C) is much smaller than in Reveal(E).

On the other hand, Reveal(C) spends more time verifying the abstract model, almost twice

as much as Reveal(E), despite Reveal(C)s smaller number of refinement iterations.

To further assess the effect of the lemma database on the convergence of the algorithm,

we ran Reveal(C) on a version that combines the three bugs present in X2, X3 and X4. This

was an iterative session, in which Reveal was re-invoked after correcting each reported bug.

We tested Reveal in two modes: a mode in which learned lemmas are discarded after each

run and a mode in which learned lemmas are saved and used across runs. The total runtime

for the first mode was 232 seconds, whereas the runtime in the second mode was 166 sec-

onds, a 40% improvement in speed. This confirmed our conjecture that lemmas discovered

in one verification run can be profitably used in subsequent runs. The verification of real-

life designs involves tens to hundreds of invocations of thetool, thus a significantly larger

speedup could be seen in practice.
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UCLID exhausts available memory during its CNF encoding stage on most of the vari-

ations of this design after approximately 250s. VIS cannot process the input Verilog due to

blocking assignments, and VCEGAR halted due to an internal error after parsing.

7.7 MIPS Case Study

MIPS [70] is a 64-bit microprocessor implementing the AlphaISA. Aside from a wider

datapath, it differs from the DLX design that was introducedin Section 7.4 mainly in the

fact that it follows the von Neumann architecture rather than the Harvard architecture used

in the DLX; the instruction and data memories are unified, andthus the microprocessor can

either read instructions or read/write data from/to the memory on the same bus.

Unlike its predecessors, this case study

• demonstrates Reveal’s ease of use, as it is invoked by 21 different designers on their

own variations of the MIPS;

• showcases the tool’s ability to discover real and subtle control bugs in pipelined im-

plementations of the MIPS;

• and sheds some light on the scalability of Reveal for provingcorrectness or discov-

ering bugs.

Three variations of the MIPS design were involved in the verification effort. The first

version, calledMIPSSpecand described in Figure 7.5(a), implements the ISA with a single-

cycle-per-instruction design. The second version, calledMIPSBubbleand shown in Figure

7.5(b), is a simplified version of the 5-stage pipeline that loads one instruction every 5 cy-

cles, to allow trivial resolution of hazards; after each instruction, 4 NOPs are pushed into

the pipeline for that purpose. The third version, calledMIPSPipe(Figure 7.6(a)), is a full

fledged implementation of the pipeline with stalling and forwarding logic.

The verification of MIPS was done in two experiments. The firstexperiment, referred

to asBubble-to-Bubble, was initially expected to produce a trivial result. However, Re-
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veal discovered a counterintuitive error that was present in this design, which was used for

years by computer architecture students across many universities. In this experiment, two

identicalMIPSBubbledesigns, dubbed ‘design1’ and ‘design2’, were compared forequiv-

alence, and were found by Reveal to be non-equivalent, indicating non-determinism in the

execution of the microprocessor.

Visible state elements, i.e. PC, memory, and register files,were initialized similarly in

both designs. Additionally, both versions were simulated for 5 cycles, to allow fetching,

executing, and retiring a single instruction. Surprisingly, Reveal discovered that the retired

values are not similar, indicating that non-determinism ispresent in the pipeline, due to

improper initialization. This was attributed to thewrite enablesignal of the register file,

which was active at the first positive clock edge despite the reset operation. As a result,

a write operation took place at the first cycle without an explicit instruction through the

pipeline dictating so.

The counterexample trace indicated that a ‘conditional jump’ instruction triggers this

problem. Since programs would normally avoid loading or branching on a dirty value from

the register file (i.e. without previously writing to that location), this error is not triggered

by most programs that follow usual programming semantics. However, this error shows

that unintended behavior was introduced to the microprocessor, which could not have been

discovered without the use of formal verification with Reveal.

The next few paragraphs explain Reveal’s counterexample trace indicating the afore-

mentioned bug. During our explanation, we will refer to the events listed in Table 7.6 and

the full counterexample trace in Appendix C.

1. PC Initialization: In cycle 0, both instances of the design are reset on the positive

edge of the clock, forcing their PC to get the value zero.

2. Memories Initialization: The content of the register file and memories are initially

forced to be identical across the two designs. As shown in Table 7.6, this is done by

directing Reveal to replace all memory arrays in cycle 0 called ‘memarray*’ with
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Table 7.6 MIPS Bubble-to-Bubble Bug Reference

Event Verilog Fragment Filea Line(s)
1 PC reg<= 64’0; if stage*.v 76

2
memarray* memarray

*.mem map 1-4
regf * regarray

3
assign regwr en out =

wb stage*.v 59
(memwb destreg idx!=‘ZERO REG);

4

if(op code == 6’h38)

id stage*.v

253,256
opaselect = ‘ALU OPA IS NPC; 257,258
opb select = ‘ALU OPB IS BR DISP; 276
alu func = ‘ALU ADDQ;
condbranch = ‘TRUE;

5
2’b00: cond = (opa[0] == 1’b0);

ex stage*.v
118,172

wire [63:0] br disp =
{{41{id ex IR[20]}},id ex IR[20:0], 2’b00};

a‘*’ is used to indicate both ‘design1’ and ‘design2’.

‘memarray’, and consequently forcing both memory arrays (from ‘design1’ and ‘de-

sign2’) to be equal. The same is applied on the register file. These directives are

added to the memory mapping files (using ‘memmap’), as explained in Appendix

B.2.2.

3. Erroneous RF Modification: Erroneously, the ‘writeen’ signal of the register file

assigned in the WB stage is active during ‘reset’. As illustrated in Table 7.6, as well

as Appendix C lines 63, 64, 69, and 70, Reveal chooses an initial value of 5’b000002

for the destination register, which leads to an active ‘write enable’, which results in

writing value 64’d1 to r0.

4. Conditional Branch Instruction: As shown in Appendix C lines 204 and 205, the

‘IR’ has MSBs of 6’b111000=6’h38. The decoder unit interprets that as a conditional

branch, which, in turn, directs the ALU to calculate the nextvalue of the PC based

on NPC+displacement if the condition holds.

5. NPC Calculation: As shown in Appendix C lines 312-317, 322, and 323, the val-

ues of the ‘IR’ and ‘rega’ in design2 during ‘EX’ stage leads to the addition of

2The ‘ZEROREG’ is register 31.
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64’hFFFFFFFC to ‘NPC’, whose value is 64’h4, leading to changing the ‘PC’ to

64’d0 in ‘design2’, while ‘design1’ has a PC of 64’d4. The source of the deviation is

the value of r0 which differs in both designs, due to the erroneous RF modification in

cycle 0 as explained earlier; while r0 in ‘design1’ is 64’d1,leading to ‘cond’=0 (i.e.

jump is not taken), r0 is 64’d0 in ‘design2’, leading to ‘cond’=1 (i.e. jump is taken).

6. Final PC Deviation: As shown in Appendix C lines 464-467, the final ‘PC’ values

in ‘design1’ and ‘design2’ are, respectively, 64’d4 and 64’d0, leading to falsifying

the equivalence.

7. Bug Fix: To fix this bug, the statement in ‘wbstage*:line 59’ is modified to: assign

reg wr en out = (memwb destreg idx!=‘ZERO REG) && !reset;

In the second experiment,MIPSSpecis compared toMIPSPipefor k instructions af-

ter reset, including a HALT instruction at the end of the stream (see Figure 7.6(b)). The

pipelines were simulated withk arbitrary instructions that follow these assumptions:

• The instruction currently in the WB stage is a HALT. This was enforced with a special

flag triggered by the HALT instruction in the WB stage.

• No HALT instruction was previously encountered in the stream.

• No illegal instruction was previously encountered in the stream.

• No self-modifying code is performed. This was enforced by assuming that instruc-

tion accesses are done to addresses less than 100, and data accesses are done to

addresses more than 200.

This experiment was done through an undergraduate ComputerArchitecture Class

project at the University of Michigan, with the assistance of the class instructors, Steven

Pelley and Prof. Thomas Wenisch. Over 40 students were required to modifyMIPSBub-

ble by adding stalling and forwarding logic that resolves dependency hazards. They were

then asked to formally verify the resultingMIPSPipeagainstMIPSSpecusing Reveal. 20

students used Reveal to verify their designs, 16 of which submitted their Verilog designs
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Table 7.7 MIPS Spec-to-Impl Student Verification Results

Student Cycles k Time Property Lemmas
1 12 2.5 136 Pass 236
2 13 3 3541 Pass 4916
3 5 0 0.04 Pass 0
4 11 2 64 Fail 30
5 13 3 507 Fail 1262
6 13 3 1214 Pass 5611
7 13 3 >3600 N/A N/A
8 13 3 >3600 N/A N/A
9 12 2.5 113 Pass 179
10 11 2 89 Fail 190
11 11 2 46 Fail 248
12 11 2 1 Pass 0
13 11 2 0.04 Pass 0
14 12 2.5 10 Fail 352
15 11 2 3 Fail 0
16 12 2.5 120 Pass 189

alongside verification results from valid Reveal invokations3.

The verification results of the students are collectively given in Table 7.7. The ‘Cycles’

column shows the maximal cycle number for which the student verified her MIPS design.

A cycle corresponds to a positive or negative edge of the clock. The next column shows

the number of instructions (k) in the corresponding instruction stream. Since each instruc-

tion needs two cycles to advance in the pipeline (two clock edges),k = 2.5 means that two

instructions fully retired, and the third instruction needs half a clock period to retire. The

last three columns show the verification run time in seconds,the result of the equivalence

checking, and the number of total lemmas aggregated in the database.

The results show that

• Reveal is suitable for both finding design bugs (e.g. the casefor students 4, 5, 10, 11,

14, and 15), or proving design correctness.

• With a time-out of 1 hour, most students were able to run Reveal to completion.

3Remaining students did not expose their designs to us, or failed to supply Reveal with valid Verilog input.
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• Reveal learns 1 to 7 lemmas per second, and tends to require more lemmas on average

when the property fails than when it passes.

• Reveal requires different number of lemmas to converge (andin turn the verification

time is affected) across various designs with similar cyclenumber and verification

result. For example, student no. 2 requires 3 times more lemmas and run time than

student no. 6, although both run with cycles=13 and with a correct design. This

indicates that the design of student no. 3 involves more datapath/control interactions

that had to be fixed using refinement.

The case of student no. 16 is particularly worth noting. GongYifan Yang (Yifan in what

follows) discovered two problems in his MIPS pipeline with Reveal, both of which are re-

lated to his forwarding logic. The Verilog signals ‘fwdcheckEX’ and ‘fwd checkMEM’

are used throughout his design to indicate forwarding respectively from the ‘EX’ and

‘MEM’ stages into the ‘ID’ stage. These 5-bit variables takeon values ranging from 5’d0

to 5’d31, indicating the register index that should be forwarded. Yifan’sMIPSPipehad two

bugs:

• These signals were not initialized in one version of his design, leading to forwarding

from ‘EX’ and ‘MEM’ stages prior to loading meaningful instructions into them.

• These signals were erroneously assigned value 5’d30 upon reset or a taken branch.

While Yifan’s intention was to assign them to 5’d31 (the ‘zero register’), which is

treated as ‘no forwarding’, Yifan’s design actually triggered forwarding (immediately

after reset and after a taken branch) from register 30.

For brevity, we will explain the second bug since it subsumesthe first. Reveal’s full

counterexample trace, as produced by Reveal during Yifan’sverification effort, is given

in Appendix D. Lines 150-153 and 442-445 show faulty forwarding from both ‘EX’ and

‘MEM’ after loading the first instruction, and faulty forwarding from ‘MEM’ after loading

the second instruction. In general, forwarding affects instructions that read values from
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the register file and produce resultsonly based on those values that were previously read.

Therefore, instruction sequences that are affected from erroneous forwarding upon initial-

ization, such as the one encountered, remain absent from real life scenarios. Therefore,

Yifan’s design passed all simulation test cases provided with the project.

However, erroneously activating forwardingafter a taken branchis a real bug for se-

quences where a conditional jump is followed by instructions that read from r30. This is

true since the faulty forwarding forces the pipeline to ignore the actual value of r30 after

the branch.

7.8 Experimental Observations

This section generalizes the experimental results introduced earlier, and presents our con-

clusions regarding the merits of the verification approach,its applicability to complex test

cases, its drawbacks, and directions for improvement. The section is divided into a number

of themes, each of which puts the results in a different perspsective.

7.8.1 Datapath and Memory Abstraction

The merits of datapath and memory abstraction is evident in most of the test cases. In

the Sorter test case, Reveal reduces the verification task toperforming validity checking

of EUF or CLU formulas that are oblivious to the size of the datapath, contrary to most

other verification tools. The OMU and ICRAM test cases also show the effectiveness of

memory abstraction, as well as the merits of Lambda-based memory abstraction compared

to other memory abstraction methods. Finally, the rest of the test cases show that datapath

abstraction is essential to scalability, without which verification is rendered intractable.

This anticipated result has two interesting caveats. First, the use of counting arithmetic

in CLU does not necessarily speed up the overall verification. While convergence tends

to be faster, the SMT solver spends more time solving the abstract formula. Second, on
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Table 7.8 Verification Results for DLX, RISC16F84, and X86

CVa ELS CLS ELM CLM B
D1 >600 1.92 1.8 0.6 1.0 >600
D2 0.11 0.15 0.12 0.11 0.1 0.21
D3 3.16 2.22 1.16 1.13 1.1 6.7
R1 >600 >600 >600 257 148 209
R2 0.79 56 >600 72 40 15.2
R3 115 50 121 2.6 27.3 11.6
X1 >600 >600 >600 36.5 60.4 >600
X2 >600 >600 >600 30.5 103 >600
X3 1.98 1.95 1.96 2.0 2.1 2.72
X4 >600 >600 >600 23 58.7 >600

aThe notation is explained in the beginning of this chapter.

a number of occasions, especially buggy versions of the design or specification, leaving

the formula unabstracted (i.e. at the bit level) allowed Reveal to terminate quickly. This

suggests that adaptive and partial abstraction of the datapath may combine the merits of

both methods.

7.8.2 Refinement Trade-Offs

A rapidly converging refinement back-end is essential to thepracticality of our approach.

Table 7.8 shows the runtime of Reveal (in seconds) on the DLX,RISC16F84, and X86,

based on the refinement mode used. In general, the use of lemmarefinement, with mul-

tiple lemmas in each iteration, outperforms other types of refinement. In 3 out of the

10 cases, however, refinement without the use of lemma was able to terminate relatively

quickly. We believe that for more complex designs, especially those that are bug-free or

with hard-to-find bugs, lemma refinement is essential.
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Table 7.9 Verification Condition Nodes and Bits Stats

Test Concrete Bits Abstract Nodes Bits-to-Nodes Runtime (sec.)
Sorter, W=8 127 26 5.08 0.05
Sorter, W=16 249 26 9.96 0.05
Sorter, W=32 473 26 18.9 0.05
Sorter, W=64 921 26 36.8 0.05
ICRAM 287 90 3.12 0.03
OMU, K=16 1346 344 3.91 0.05
OMU, K=32 3154 1192 2.65 0.1
OMU, K=64 8306 4524 1.88 0.05
OMU, K=128 2.5x104 1.7x104 1.47 1.1
DLX, D1 2.2x104 3945 5.58 0.6
DLX, D2 3552 522 6.8 0.1
DLX, D3 2.2x104 3915 5.62 1.1
RISC16F84, R1 7286 2904 2.54 148
RISC16F84, R2 7376 2928 2.52 40
RISC16F84, R3 7224 2849 2.54 2.6
X86, X1 1.5x105 7x104 2.19 36.5
X86, X2 1.5x105 6.7x104 2.28 30.5
X86, X3 2764 3945 1.04 2.0
X86, X4 1.5x105 6.7x104 2.28 23

7.8.3 Overall Scalability

Table 7.9 characterizes the sizes of the verification conditions, before and after abstraction,

and presents Reveal’s runtime on each4. The column labeled ‘Concrete Bits’ shows the

number of bits inconc(X), while the column labeled ‘Abstract Nodes’ shows the number

of nodes inabst(X̂). The last column shows the ratio between the two, which indicates the

average width of the datapath in the design and specifications.

As described earlier, Reveal is able to terminate on all these versions in less than 200

seconds. We noted that there is no particular correlation between the width of the datapath

and the verification time. This is attributed to the brute-force datapath abstraction in Re-

veal. Furthermore, the refinement back-end is robust such that it allows Reveal to terminate

despite the control/datapath intermixture.

4We show the smaller runtime of ELM and CLM.
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Automating both abstraction and refinement plays a significant role in improving the

scalability and making Reveal more practical than other approaches. Additionally, ag-

gregating concise lemmas in a persistent database enables efficient incremental verifica-

tion. Finally, the efficiency of the validity checking and refinement stages is attributed to

SMT-based satisfiability checking. The scalability of Reveal can be further improved by

performing unbounded model checking based on finite inductive formulations.

7.8.4 Discovering Design and Specification Bugs

Since Reveal produces a counterexample trace, it is as illustrative as ‘simulation’ in show-

ing the unintended behavior. Furthermore, Reveal proved tobe effective in discovering

sophisticated bugs that would not have been otherwise discovered. Examples for genuine

bugs include the RISC16F84 and MIPS bugs. Finally, Reveal was able to discover other

types of unintended behavior, including problems in the specifications, as well as non-

determinism in the design that propagated to the outputs. Examples of the earlier include

the R2 and X2 variations, and examples of the latter include the problem in the register file

in MIPSBubble.

It is possible to further improve the output of Reveal by producing additional infor-

mation alongside the bug trace. Examples of that include actual candidates of the bugs in

the design or specification. The use of formal techniques makes it possible to seek such

approaches, although their applicability is yet to be determined.
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Chapter 8

Conclusions and Future Work

Formal verification of complex hardware systems like microprocessors and microcon-

trollers has been researched for about two decades. Faced with the state explosion problem,

researchers resorted to applying various types of abstraction, in order to filter out design

behavior that is orthogonal to the property being verified, and in turn reduce the size of

the resulting model. In most of these efforts, however, manual reasoning about designs,

properties, and abstractions, has been a major hurdle that slowed down the process overall,

and hindered the scalability of formal verification for these types of designs.

Our thesis presents an abstraction-based turn-key verification process for control logic

in hardware designs. Scalability is achieved with the use ofan automatic counterexample-

guided abstraction refinement of the datapath, and automated proofs of safety properties

in general, and equivalence in particular. This approach isparticularly suited for the ver-

ification of designs with wide datapaths and complex controllogic. Datapath abstraction

allows the approach to focus on the control interactions making it possible to scale up to

much larger designs than is possible if verification is carried out at the bit level. Addi-

tionally, The scheme’s demand-based lemma generation capability eliminates one of the

obstacles that had complicated the deployment of formal equivalence tools in the past.

From a practical perspective, hands-free operation and support of Verilog allow the

system to be directly used by designers. Reveal, an implementation of the approach, has

been tested by university students taking a computer architecture class. Using Reveal as

an automatic testing tool prior to synthesis, students wereable to hunt for bugs in their
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RTL designs, as well as raise their confidence about the correctness of the final design with

respect to a certain correctness criterion. During this process, numerous cases were discov-

ered in which unintended behavior was present in the specification and/or implementation

of the design, and was fixed using counterexample traces thatwere generated automati-

cally as well. Three of these cases were design problems in a years-old Verilog code; of

those, one was a serious bug that is based on a perfectly plausible scenario. None of these

problems were discovered by a comprehensive set of tests that has been used by the class

instructors, and is unlikely to have been discovered by traditional simulation approaches.

The capabilities of the approach and practicality of Revealwere further demonstrated

by efficiently discovering bugs, or proving the lack thereof, in six Verilog examples that

are, amongst publicly available designs, the closest to real-life designs both in terms of size

and complexity.

Since Verilog and other design languages were particularlydesigned to serve as sim-

ulation platforms, there has been no clear separation between datapath and control logic

that can be represented with a well-defined partition. In general, our approach is resilient

against the datapath/control interactions that arise fromsuch ambiguity and lead to false

negatives. However, the iterative CEGAR process can still benefit from design method-

ologies that minimize datapath/control interactions, since those would be, by construction,

geared towards datapath abstraction.

We plan to continue developing automated methods that bridge between existing de-

sign methodologies and reasoning engines, in order to leverage the latter and maximize its

potential, as well as shrink the verification gap. One possible improvement is to automate

module-level abstraction, such that entire blocks of hardware implementing self-contained

sub-components are abstracted away from the implementation and specification. The dual

approach, mostly useful for hunting bugs in medium-size designs, is to perform incremental

on-demand abstraction based on performance monitors.

Reveal’s usability can be potentially improved with two techniques. Firstly, integrating
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unbounded model checking eliminates the need for supplyingan unrolling bound, and pro-

vides a more complete coverage of correctness for the design. Secondly, debugging can be

facilitated to assist in faster identification of design bugs. In particular, cumbersome coun-

terexample traces that stretch over many clock cycles can bereplaced with automatically

localized ‘suggestions’ of fixes, which potentially includes the sought design bug. Finally,

similar equivalence algorithms can be developed for higher-levels of abstraction such as C

[35].

Overall, we believe that formal verification in both hardware and software follows the

simple relation: Automation∧ Efficiency→ Scalability. We hope that scalability will

continue to rise and formal verification methods, like ours,will ultimately be adopted in

industrial settings.
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Appendix A

VERSA Verilog

VERSA, also VErilog Restricted Subset for Abstraction, is designed to combine three main

features for the purpose of abstraction-based verification:

• the uniformity of a structural description,

• the word-level granularity of a high-level description,

• limited behavioral modeling that is widely used by designers worldwide.

This subset is suitable for word-level formal verification of control logic described in

this thesis, and it allows word-level functionality and datapath abstractions to be more

easily inferred. We believe that defining this subset leverages the benefit of abstraction

methods by allowing all design descriptions, regardless oftheir source format (Verilog

2000, System Verilog, VHDL, and other HDLs), to be convertedto VERSA and to uti-

lize similar abstraction techniques. In what follows, we describe VERSA and the rationale

behind each set of Verilog (un)supported structures.

A.1 Verilog 95

The underlying syntax of VERSA is Verilog 95 [54], which is supported by most Ver-

ilog tools including Icarus Verilog [68], a popular and publicly available Verilog compiler.

Conceptually, any design can be represented in Verilog 95 regardless of its original HDL

source, modulo issues that are orthogonal to Reveal’s abstraction-based verification, such

as readability of the source code, and scalability for simulation and synthesis.
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A.2 Synthesizable Subset

Since Verilog was originally designed as a simulation language, it includes a number of

constructs with the sole purpose of facilitating simulation, and bearing no effect on the

synthesis process. Since in abstraction-based verification we are interested in modeling

the actual hardware that will be ultimately implemented on the chip, VERSA is confined

to the synthesizable subset of Verilog. The following Verilog types and constructs are not

synthesizable by most tools including Icarus Verilog, and are thus excluded from VERSA:

• Real Constants [54, chap. 2.5.2, p. 8]

• Variables of types real, realtime, and time [54, chap. 3.9, p. 23]

• Strings [54, chap. 6, p. 60]

• Procedural continuous assignments [54, chap. 9.3, p. 104]

• The delay and wait procedural timing controls [54, chap. 9.7, p. 114]

• The event procedural timing control with expressions otherthan identifiers and

posedge/negedge [54, chap. 9.7, p. 114]

• System tasks and functions [54, chap. 14, p. 172]

A.3 Clocking

In VERSA we require that the design has only one clock input (the main clock). Multiple

clocks can be derived from the main clock and used to synchronize the logic.

A.4 Explicit Description

Verilog includes a number of features that allow flexible andeasy-to-read RTL coding of

hardware components. Excluding these features does not compromise the expressiveness

of Verilog. Rather, it allows a simplier and more regular representation. The following

features are, thus, excluded from VERSA:
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• Tasks [54, chap. 10, p. 125]

• Parameters [54, chap. 3.10, p.25]

• Compiler directives [54, chap. 16, p.219], except ‘includeand ‘define

A.5 Structural Description

Some additional Verilog features allow the coder to use behavioral description that resem-

bles sequential software. Static preprocessing can removethese features and allow a more

‘regular’ form of the code.

The following constructs are thus excluded from VERSA:

• Parallel blocks [54, chap. 9.8.2, p. 121]

• Named blocks and tasks [54, chap. 11, p. 132]

• Looping [54, chap. 9.6, p. 111]

A.6 Abstraction-Oriented Description

According to [54, chap. 6, p. 50] LHS of continuous assignments can include bit- and

part-selects with constant indexing. VERSA requires constant indexing inall expres-

sions involving extraction from a 1-dimensional bit-vectors. In particular, (1) procedural

assignments to bit-vectors with variable indexing in the LHS should be replaced with mul-

tiple assignments representing each bit- or part-select; (2) expressions appearing in RHS

of assignments with variable indexing applied on bit-vectors should be replaced with ?:

expressions that convert them to constant indexing. VERSA also restricts the use of non-

constant repeat count [54, chap. 4.1, p. 27] and shifting by anon-constant value.

Since the approach is premised on RTL Verilog, VERSA excludes gate- and switch-

level modeling [54, chap. 7, p. 55] and user defined premitives [54, chap. 8, p. 87]. Gates

should be replaced with continuous assignments. VERSA alsorequires that wire is the only
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net type. Other net types such as buses, pullups, pulldowns,and supplies [54, chap. 3.7, p.

17], should be eliminated.

The following constructs are allowed in a VERSA description, but are ignored since

they bear no effect on the verification on Reveal:

• Vectored and scalared variables [54, chap. 3.3.2, p. 15]

• Minimum, typical, and maximum delay expressions [54, chap.4.3, p. 42]

• Strengths [54, chap. 6.1.4, p. 53]

• Procedural timing controls [54, chap. 9.7, p. 114]

• Specify-blocks [54, chap. 13, p. 152]

A.7 Memories

VERSA allows the modeling of memories with 2-dimensional bit-vectors. LHS and RHS

expressions that involve extraction (with dynamic indexing) are treated as write and read

ports, respectively. No extraction with constant indexingis allowed with memory 2-

dimensional variables.
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Appendix B

Configuration Directives

Reveal’s specific choice for abstraction, refinement and solving are controlled via a set of

configuration directives. We divide them into three groups following Section 6.2.1.

B.1 Algorithmic Behavior

The following arguments control the abstraction, refinement, and solving steps:

• alg type [optional, default: abst ref] . Through this argument the user can control

the type of verification algorithm. ‘abstref’ indicates the use of DP-CEGAR, while

‘bit blast’ indicates the use of YICES’ SMT(BV) by representingconc(X) with the

native bit-vector representation in YICES.

• conc min type [optional, default: all muses]. Counterexample minimization us-

ing MUSes can be controlled using this argument. The values ‘all muses’ and

‘one muses’ allows the use of all or one MUS in each refinement iteration, while

the argument ‘none’ turns off MUS-based minimization.

• abst min type [optional, default: none]. Counterexample minimization at the ab-

stract level can be done through this option.

• lemma db [optional] . This argument activates the lemma database and specifies the

name of the file used to store the lemmas.

• sim simplifications [optional, default: 1]. When disabled with value ‘0’, simula-

tion simplifications are not used (see Section 6.2.2).
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• max iter [optional, default: 0] . When a non-zero value is used, refinement itera-

tions are limited to the given number.

• abst solver [optional, default: yicesapi]. This specifies the type of the abstract

solver used, which is one of ‘yicesapi’, ‘yices’, ‘stp’, ‘ario’, and ‘bat’.

• abst logic [optional, default: euf]. This specifies the abstract logic used, which is

one of ‘euf’ or ‘clu’.

• camus timeout [optional, default: 5]. This specifies the number of seconds after

which CAMUS times-out during counterexample minimization.

• camus groups [optional, default: 0]. A non-zero value directs Reveal to group the

constraints in the violation into the given number of groups(arbitrarily) before pass-

ing to CAMUS. Constraints that are grouped together in CAMUSwill be enabled

(included in the MUS) or disabled (excluded from the MUS) together.

• camus group sizes [optional, default: 0]. A non-zero value directs Reveal to group

the constraints in the violation such that each group includes the specified number of

constraints. See the ‘camusgroups‘ argument above.

• camus max muses [optional, default: 0]. A non-zero value directs CAMUS to

limit the number of MUSes used for refinement to the given number.

B.2 Input Specifications

The following arguments control the way Reveal models the input design, as well as nec-

essary information to launch the verification.

B.2.1 Design Modeling

• clock sig [optional]. This specifies the name of the clock signal. This is the main

clock input driving the design. Multiple clocks can be derived from the main clock,

and they can all (including the main clock) be used to synchronize the design’s logic
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on either edge or value. Purely combinational designs can also be specified, in which

case no clock signal is needed.

• clock model [optional, default: init 0 oscillating]. This argument tells the

simulator the way the main clock signal is modeled. Reveal’ssupports the

‘init 0 oscillating’ mode, where the clock is automatically initialized with 0 in cycle

0, and oscillates (hi to lo or vice versa) in each new cycle; and the ‘init 0 posedge’,

which forces the clock to be 0 at cycle 0 but to have a single positive edge in each

cycle. The latter is allowed for designs that exclude negative clock edge synchro-

nization, and prevents spending two cycles for a single clock period.

• prop cycle [mandatory]. This specifies the number of cycles the design has to be

unfolded to generateconc(X).

• truncate rhs [optional, default: 0]. When turned on, Reveal will truncate RHS ex-

pressions that are assigned to a wider LHS signals to enforcesize compatibility. By

default, this is disabled and such design input produces an error.

• extend rhs [optional, default: 0]. When turned on, Reveal will 0-extend RHS ex-

pressions that are assigned to a narrower LHS signals to enforce size compatibility.

By default, this is disabled and such design input produces an error.

• mem map [optional]. The given file specifies a mapping for memory arrays. This

is useful for enforcing initialization for memories. Each line in this file specifies the

name of the memory array, and the new name of its corresponding memory array

used in cycle 0.

B.2.2 Design Information

• designfile [mandatory] . Specifies the name of the Verilog file including the top

module.

• design type [optional, default: verilog]. Specifies the format type of the input. If

given ‘hr’, Reveal will attempt to read a binary HR representation of the transition
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function.

• prop file [mandatory] . Specifies the name of the file including the property.

• prop type [optional, default: verilog]. Specifies the format type of the property file

similarly to ‘designtype’.

• prop sig [mandatory]. This specifies the name of the signal represented the property

defined in ‘propfile’.

• top module [optional]. This specifies the name of the top module for multi-module

designs.

B.3 Output Specifications

The arguments described here control Reveal’s output on thescreen and as numerous files.

We divide these into arguments that control the back-end of Reveal for the purpose of re-

suming the verification with other tools, and arguments for the sole purpose of debugging

and understanding the operation of Reveal.

B.3.1 Back-end

• dump {init |final} formula in {verilog|uclid} [optional] . When activated with

value ‘1’, Reveal dumps the initial (conc(X)) or final formula (̂ϕN(X̂, p), whereN is

the number of refinement iterations) in Verilog or UCLID.

• trace signals [optional]. This specifies to Reveal which signals should be included

for viewing in the GUI back-end.

B.3.2 Debugging

• dump designmodeling [optional]. The transition relation of the design is textually

dumped to the file specified in this option.
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• dump designhr [optional, default: 0] . This specifies whether to dump the transi-

tion relation of the design in the ‘HR’ format.

• dump model [optional, default: 0]. The transition relation of the design is textually

dumped to the screen.

• dump cex [optional, default: 0]. All abstract counterexamples are dumped (to std-

out) when this option is turned on.

• dump viol [optional, default: 0] . The violation computed in each iteration is textu-

ally dumped to the screen.

• dump ref [optional, default: 0] . The refinement computed in each iteration is tex-

tually dumped to the screen.

• dump stats [optional]. Dumps verification statistics to the specified file.

• sim signals [optional]. A list of signals to be printed during simulation.

• verbosity [optional, default: 1]. Verbosity of Reveal’s output ranges from level 0 to

3, where level 1 shows the CEGAR loop and the time spent on the abstraction versus

refinement iterations.
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Appendix C

MIPS Bubble-to-Bubble
Counterexample Trace

1. Reveal - University of Michigan, Ann Arbor
2. Version:1.1
3.
4. CONFIGURATION:
5. ************************************************
6. abstlogic = euf
7. abstmin type = none
8. abstsolver = yicesapi
9. alg type = abstref

10. auxfile =
11. boundon abstvars = 0
12. camusgroupsize = 0
13. camusgroups = 0
14. camusmax muses = 100
15. camustimeout = 5
16. clockmodel = init 0 oscillating
17. clocksig = clock
18. concmin type = all muses
19. designfile = wenischidentical.v
20. designtype = verilog
21. dumpcex =
22. dumpdesignhr =
23. dumpdesignmodeling =
24. dumpfinal formula in uclid =
25. dumpfinal formula in verilog =
26. dumpinit formula in uclid =
27. dumpinit formula in verilog =
28. dumpmodel = 470identical.model
29. dumpref =
30. dumpstats =
31. dumpviol =
32. experiment = 0
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33. experimentcoi = 0
34. extendrhs = 0
35. interactivedebugger = 0
36. lemmadb =
37. maxiter = 0
38. memmap = wenischidentical.memmap
39. propcycle = 13
40. propfile = prop.v
41. propsig = prop
42. proptype = verilog
43. simsignals =
44. simsimplifications = on
45. topmodule = pipeline
46. tracesignals =
47. truncaterhs = 0
48. variablesabstraction = intsinterpretedconsts
49. verbosity = 0
50. ************************************************
51. Reveal started...
52. -I- model dumped to: 470identical.model
53. -I- *********************
54. -I- Property is Violated!
55. -I- *********************
56. -I-
57. Counterexample Trace:
58. =====================
59. Cycle 0
60. ————–
61. memwb NPC design1
62. = 0000000000000000000000000000000000000000000000000000000000000001
63. pipeline design10$memwb dest reg idx
64. = 00000
65. pipelinedesign10$memwb takebranch
66. = 1
67. pipeline design10$wb reg wr data out
68. = 0000000000000000000000000000000000000000000000000000000000000001
69. pipeline design10$wb reg wr en out
70. = 1
71. pipeline design10$wb reg wr idx out
72. = 00000
73. pipelinedesign10$wb stagedesign10$resultmux
74. = 0000000000000000000000000000000000000000000000000000000000000001
75. pipelinedesign20$memwb destreg idx
76. = 00001
77. pipeline design20$wb reg wr idx out
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78. = 00001
79.
80. Cycle 1
81. ————–
82. id ex IR design1
83. = 01000111111111110000010000011111
84. id ex IR design2
85. = 01000111111111110000010000011111
86. if id IR design1
87. = 01000111111111110000010000011111
88. if id IR design2
89. = 01000111111111110000010000011111
90. pipelinedesign10$exmemalu result
91. = 0000000000000000000000000000000000000000000000000000000000000000
92. pipelinedesign10$exmemdestreg idx
93. = 11111
94. pipelinedesign10$id ex rega
95. = 0000000000000000000000000000000000000000000000000000000000000000
96. pipelinedesign10$if stagedesign10$PCreg
97. = 0000000000000000000000000000000000000000000000000000000000000000
98. pipelinedesign10$memwb destreg idx
99. = 11111

100. pipelinedesign10$memwb result
101. = 0000000000000000000000000000000000000000000000000000000000000000
102. pipelinedesign20$exmemalu result
103. = 0000000000000000000000000000000000000000000000000000000000000000
104. pipelinedesign20$exmemdestreg idx
105. = 11111
106. pipelinedesign20$id ex rega
107. = 0000000000000000000000000000000000000000000000000000000000000000
108. pipelinedesign20$if stagedesign20$PCreg
109. = 0000000000000000000000000000000000000000000000000000000000000000
110. pipelinedesign20$memwb destreg idx
111. = 11111
112. pipelinedesign20$memwb result
113. = 0000000000000000000000000000000000000000000000000000000000000000
114.
115. Cycle 2
116. ————–
117. if IR out design1
118. = 11100000000111111111111111111111
119. if IR out design2
120. = 11100000000111111111111111111111
121. if NPC out design1
122. = 0000000000000000000000000000000000000000000000000000000000000100
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123. if NPC out design2
124. = 0000000000000000000000000000000000000000000000000000000000000100
125. if id IR design1
126. = 01000111111111110000010000011111
127. if id IR design2
128. = 01000111111111110000010000011111
129. mem2procdatadesign1
130. = 11100000000111111111111111111111
131. mem2procdatadesign2
132. = 11100000000111111111111111111111
133. pipelinedesign10$exmemalu result
134. = 0000000000000000000000000000000000000000000000000000000000000000
135. pipelinedesign10$exmemdestreg idx
136. = 11111
137. pipelinedesign10$id condbranchout
138. = 0
139. pipelinedesign10$id ex rega
140. = 0000000000000000000000000000000000000000000000000000000000000000
141. pipelinedesign10$id uncondbranchout
142. = 0
143. pipelinedesign10$if stagedesign10$PCplus 4
144. = 0000000000000000000000000000000000000000000000000000000000000100
145. pipelinedesign10$if stagedesign10$PCreg
146. = 0000000000000000000000000000000000000000000000000000000000000000
147. pipelinedesign10$if stagedesign10$nextPC
148. = 0000000000000000000000000000000000000000000000000000000000000100
149. pipelinedesign10$memresultout
150. = 0000000000000000000000000000000000000000000000000000000000000000
151. pipelinedesign10$memwb destreg idx
152. = 11111
153. pipelinedesign10$memwb result
154. = 0000000000000000000000000000000000000000000000000000000000000000
155. pipelinedesign10$proc2Imemaddr
156. = 0000000000000000000000000000000000000000000000000000000000000000
157. pipelinedesign10$wb reg wr dataout
158. = 0000000000000000000000000000000000000000000000000000000000000000
159. pipelinedesign10$wb reg wr idx out
160. = 11111
161. pipelinedesign10$wb stagedesign10$resultmux
162. = 0000000000000000000000000000000000000000000000000000000000000000
163. pipelinedesign20$exmemalu result
164. = 0000000000000000000000000000000000000000000000000000000000000000
165. pipelinedesign20$exmemdestreg idx
166. = 11111
167. pipelinedesign20$id condbranchout
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168. = 0
169. pipelinedesign20$id ex rega
170. = 0000000000000000000000000000000000000000000000000000000000000000
171. pipelinedesign20$id uncondbranchout
172. = 0
173. pipelinedesign20$if stagedesign20$PCplus 4
174. = 0000000000000000000000000000000000000000000000000000000000000100
175. pipelinedesign20$if stagedesign20$PCreg
176. = 0000000000000000000000000000000000000000000000000000000000000000
177. pipelinedesign20$if stagedesign20$nextPC
178. = 0000000000000000000000000000000000000000000000000000000000000100
179. pipelinedesign20$memresultout
180. = 0000000000000000000000000000000000000000000000000000000000000000
181. pipelinedesign20$memwb destreg idx
182. = 11111
183. pipelinedesign20$memwb result
184. = 0000000000000000000000000000000000000000000000000000000000000000
185. pipelinedesign20$proc2Imemaddr
186. = 0000000000000000000000000000000000000000000000000000000000000000
187. pipelinedesign20$wb reg wr dataout
188. = 0000000000000000000000000000000000000000000000000000000000000000
189. pipelinedesign20$wb reg wr idx out
190. = 11111
191. pipelinedesign20$wb stagedesign20$resultmux
192. = 0000000000000000000000000000000000000000000000000000000000000000
193. proc2memaddrdesign1
194. = 0000000000000000000000000000000000000000000000000000000000000000
195. proc2memaddrdesign2
196. = 0000000000000000000000000000000000000000000000000000000000000000
197.
198. Cycle 3
199. ————–
200. id ex IR design1
201. = 01000111111111110000010000011111
202. id ex IR design2
203. = 01000111111111110000010000011111
204. if id IR design1
205. = 11100000000111111111111111111111
206. if id IR design2
207. = 11100000000111111111111111111111
208. if id NPC design1
209. = 0000000000000000000000000000000000000000000000000000000000000100
210. if id NPC design2
211. = 0000000000000000000000000000000000000000000000000000000000000100
212. pipelinedesign10$id ex condbranch
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213. = 0
214. pipelinedesign10$id ex uncondbranch
215. = 0
216. pipelinedesign10$if stagedesign10$PCreg
217. = 0000000000000000000000000000000000000000000000000000000000000100
218. pipelinedesign10$memwb destreg idx
219. = 11111
220. pipelinedesign10$memwb result
221. = 0000000000000000000000000000000000000000000000000000000000000000
222. pipelinedesign20$id ex condbranch
223. = 0
224. pipelinedesign20$id ex uncondbranch
225. = 0
226. pipelinedesign20$if stagedesign20$PCreg
227. = 0000000000000000000000000000000000000000000000000000000000000100
228. pipelinedesign20$memwb destreg idx
229. = 11111
230. pipelinedesign20$memwb result
231. = 0000000000000000000000000000000000000000000000000000000000000000
232.
233. Cycle 4
234. ————–
235. if id IR design1
236. = 11100000000111111111111111111111
237. if id IR design2
238. = 11100000000111111111111111111111
239. if id NPC design1
240. = 0000000000000000000000000000000000000000000000000000000000000100
241. if id NPC design2
242. = 0000000000000000000000000000000000000000000000000000000000000100
243. pipelinedesign10$ex takebranchout
244. = 0
245. pipelinedesign10$id ex condbranch
246. = 0
247. pipelinedesign10$id ex uncondbranch
248. = 0
249. pipelinedesign10$id regaout
250. = 0000000000000000000000000000000000000000000000000000000000000001
251. pipelinedesign10$id stagedesign10$decoderdesign10$opcode
252. = 111000
253. pipelinedesign10$id stagedesign10$decoderdesign10$opcode1
254. = 111000
255. pipelinedesign10$id stagedesign10$ra idx
256. = 00000
257. pipelinedesign10$id stagedesign10$regfdesign10$rdareg
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258. = 0000000000000000000000000000000000000000000000000000000000000001
259. pipelinedesign10$if stagedesign10$PCreg
260. = 0000000000000000000000000000000000000000000000000000000000000100
261. pipelinedesign10$memwb destreg idx
262. = 11111
263. pipelinedesign10$memwb result
264. = 0000000000000000000000000000000000000000000000000000000000000000
265. pipelinedesign10$wb reg wr dataout
266. = 0000000000000000000000000000000000000000000000000000000000000000
267. pipelinedesign10$wb reg wr en out
268. = 0
269. pipelinedesign10$wb reg wr idx out
270. = 11111
271. pipelinedesign10$wb stagedesign10$resultmux
272. = 0000000000000000000000000000000000000000000000000000000000000000
273. pipelinedesign20$ex takebranchout
274. = 0
275. pipelinedesign20$id alu func out
276. = 00000
277. pipelinedesign20$id ex condbranch
278. = 0
279. pipelinedesign20$id ex uncondbranch
280. = 0
281. pipelinedesign20$id opaselectout
282. = 10
283. pipelinedesign20$id opb selectout
284. = 10
285. pipelinedesign20$id regaout
286. = 0000000000000000000000000000000000000000000000000000000000000000
287. pipelinedesign20$id stagedesign20$decoderdesign20$opcode
288. = 111000
289. pipelinedesign20$id stagedesign20$decoderdesign20$opcode1
290. = 111000
291. pipelinedesign20$id stagedesign20$ra idx
292. = 00000
293. pipelinedesign20$id stagedesign20$regfdesign20$rdareg
294. = 0000000000000000000000000000000000000000000000000000000000000000
295. pipelinedesign20$if stagedesign20$PCreg
296. = 0000000000000000000000000000000000000000000000000000000000000100
297. pipelinedesign20$memwb destreg idx
298. = 11111
299. pipelinedesign20$memwb result
300. = 0000000000000000000000000000000000000000000000000000000000000000
301. pipelinedesign20$wb reg wr dataout
302. = 0000000000000000000000000000000000000000000000000000000000000000
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303. pipelinedesign20$wb reg wr en out
304. = 0
305. pipelinedesign20$wb reg wr idx out
306. = 11111
307. pipelinedesign20$wb stagedesign20$resultmux
308. = 0000000000000000000000000000000000000000000000000000000000000000
309.
310. Cycle 5
311. ————–
312. id ex IR design1
313. = 11100000000111111111111111111111
314. id ex IR design2
315. = 11100000000111111111111111111111
316. id ex NPC design1
317. = 0000000000000000000000000000000000000000000000000000000000000100
318. id ex NPC design2
319. = 0000000000000000000000000000000000000000000000000000000000000100
320. pipelinedesign10$exmemtakebranch
321. = 0
322. pipeline design10$id ex rega
323. = 0000000000000000000000000000000000000000000000000000000000000001
324. pipelinedesign10$if stagedesign10$PCreg
325. = 0000000000000000000000000000000000000000000000000000000000000100
326. pipelinedesign20$exmemtakebranch
327. = 0
328. pipelinedesign20$id ex alu func
329. = 00000
330. pipelinedesign20$id ex opaselect
331. = 10
332. pipelinedesign20$id ex opb select
333. = 10
334. pipelinedesign20$id ex rega
335. = 0000000000000000000000000000000000000000000000000000000000000000
336. pipelinedesign20$if stagedesign20$PCreg
337. = 0000000000000000000000000000000000000000000000000000000000000100
338.
339. Cycle 6
340. ————–
341. id ex IR design1
342. = 000xxxxxxxxxxxxxxxxxxxxxxxxxx
343. id ex IR design2
344. = 000xxxxx111111111111111111111
345. id ex NPC design1
346. = 0000000000000000000000000000000000000000000000000000000000000100
347. id ex NPC design2
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348. = 0000000000000000000000000000000000000000000000000000000000000100
349. pipelinedesign10$exmemtakebranch
350. = 0
351. pipelinedesign10$exstagedesign10$id ex IR aux
352. = 000
353. pipelinedesign10$id condbranchout
354. = 0
355. pipelinedesign10$id ex rega
356. = 0000000000000000000000000000000000000000000000000000000000000001
357. pipelinedesign10$id uncondbranchout
358. = 0
359. pipelinedesign10$if stagedesign10$PCreg
360. = 0000000000000000000000000000000000000000000000000000000000000100
361. pipelinedesign20$exalu resultout
362. = 0000000000000000000000000000000000000000000000000000000000000000
363. pipelinedesign20$exmemtakebranch
364. = 0
365. pipelinedesign20$exstagedesign20$br disp
366. = 1111111111111111111111111111111111111111111111111111111111111100
367. pipelinedesign20$exstagedesign20$id ex IR aux
368. = 000
369. pipelinedesign20$exstagedesign20$opamux out
370. = 0000000000000000000000000000000000000000000000000000000000000100
371. pipelinedesign20$exstagedesign20$opbmux out
372. = 1111111111111111111111111111111111111111111111111111111111111100
373. pipelinedesign20$id condbranchout
374. = 0
375. pipelinedesign20$id ex alu func
376. = 00000
377. pipelinedesign20$id ex opaselect
378. = 10
379. pipelinedesign20$id ex opb select
380. = 10
381. pipelinedesign20$id ex rega
382. = 0000000000000000000000000000000000000000000000000000000000000000
383. pipelinedesign20$id uncondbranchout
384. = 0
385. pipelinedesign20$if stagedesign20$PCreg
386. = 0000000000000000000000000000000000000000000000000000000000000100
387.
388. Cycle 7
389. ————–
390. pipelinedesign10$id ex condbranch
391. = 0
392. pipelinedesign10$id ex uncondbranch
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393. = 0
394. pipelinedesign10$if stagedesign10$PCreg
395. = 0000000000000000000000000000000000000000000000000000000000000100
396. pipelinedesign20$exmemalu result
397. = 0000000000000000000000000000000000000000000000000000000000000000
398. pipelinedesign20$id ex condbranch
399. = 0
400. pipelinedesign20$id ex uncondbranch
401. = 0
402. pipelinedesign20$if stagedesign20$PCreg
403. = 0000000000000000000000000000000000000000000000000000000000000100
404.
405. Cycle 8
406. ————–
407. pipelinedesign10$ex takebranchout
408. = 0
409. pipelinedesign10$id ex condbranch
410. = 0
411. pipelinedesign10$id ex uncondbranch
412. = 0
413. pipelinedesign10$if stagedesign10$PCreg
414. = 0000000000000000000000000000000000000000000000000000000000000100
415. pipelinedesign20$exmemalu result
416. = 0000000000000000000000000000000000000000000000000000000000000000
417. pipelinedesign20$ex takebranchout
418. = 0
419. pipelinedesign20$id ex condbranch
420. = 0
421. pipelinedesign20$id ex uncondbranch
422. = 0
423. pipelinedesign20$if stagedesign20$PCreg
424. = 0000000000000000000000000000000000000000000000000000000000000100
425. pipelinedesign20$if stagedesign20$nextPC
426. = 0000000000000000000000000000000000000000000000000000000000000000
427.
428. Cycle 9
429. ————–
430. pipelinedesign10$exmemtakebranch
431. = 0
432. pipelinedesign10$if stagedesign10$PCreg
433. = 0000000000000000000000000000000000000000000000000000000000000100
434. pipelinedesign20$exmemtakebranch = 0
435. pipelinedesign20$if stagedesign20$PCreg
436. = 0000000000000000000000000000000000000000000000000000000000000000
437.
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438. Cycle 10
439. ————–
440. pcequiv curr cycle
441. = 0
442. pipelinedesign10$exmemtakebranch
443. = 0
444. pipelinedesign10$if stagedesign10$PCreg
445. = 0000000000000000000000000000000000000000000000000000000000000100
446. pipelinedesign20$exmemtakebranch
447. = 0
448. pipelinedesign20$if stagedesign20$PCreg
449. = 0000000000000000000000000000000000000000000000000000000000000000
450.
451. Cycle 11
452. ————–
453. pcequiv always
454. = 0
455. pipelinedesign10$if stagedesign10$PCreg
456. = 0000000000000000000000000000000000000000000000000000000000000100
457. pipelinedesign20$if stagedesign20$PCreg
458. = 0000000000000000000000000000000000000000000000000000000000000000
459.
460. Cycle 12
461. ————–
462. pcequiv always
463. = 0
464. pipeline design10$if stagedesign10$PC reg
465. = 0000000000000000000000000000000000000000000000000000000000000100
466. pipeline design20$if stagedesign20$PC reg
467. = 0000000000000000000000000000000000000000000000000000000000000000
468.
469. -I- Total iterations: 1
470.
471. Reveal finished.
472.
473. Abst Solving Time: 0.08
474. Total Time: 0.26
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Appendix D

MIPS Spec-to-Pipe
Counterexample Trace

1. Reveal - University of Michigan, Ann Arbor
2. Version:1.1
3.
4. CONFIGURATION:
5. ************************************************
6. abstlogic = euf
7. abstmin type = none
8. abstsolver = yicesapi
9. alg type = abstref

10. auxfile =
11. boundon abstvars = 0
12. camusgroupsize = 0
13. camusgroups = 5
14. camusmax muses = 100
15. camustimeout = 5
16. clockmodel = init 0 oscillating
17. clocksig = clock
18. concmin type = all muses
19. designfile = alphatest.v
20. designtype = verilog
21. dumpcex =
22. dumpdesignhr =
23. dumpdesignmodeling =
24. dumpfinal formula in uclid =
25. dumpfinal formula in verilog =
26. dumpinit formula in uclid =
27. dumpinit formula in verilog =
28. dumpmodel = ../work/alphatest.model
29. dumpref =
30. dumpstats = ../work/alphatest.stats
31. dumpviol =
32. experiment = 0
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33. experimentcoi = 0
34. extendrhs = 0
35. interactivedebugger = 0
36. lemmadb = ../work/alphatest.lemmasdb
37. maxiter = 0
38. memmap = alphatest.memmap
39. propcycle = 12
40. propfile = prop.v
41. propsig = prop
42. proptype = verilog
43. simsignals =
44. simsimplifications = on
45. topmodule = alphatest
46. tracesignals =
47. truncaterhs = 0
48. variablesabstraction = intsinterpretedconsts
49. verbosity = 1
50. ************************************************
51.
52. Reveal started...
53.
54. -D- Loading the design...
55. -D- 1-bit registers: 1147
56. -D- Loading the property...
57. -D- Done.
58. -I- model dumped to: ../work/alphatest.model
59. Added clock:INIT[clock] := 1’d0
60. Added clock:NSF[clock] := !clock
61. -D- Simulating..
62. -D- Done.
63. -I-
64. -I- Creating an empty Lemma DB file: ../work/alphatest.lemmasdb
65. -I-
66. -I- *********************
67. -I- Property is Violated!
68. -I- *********************
69. -I-
70. Counterexample Trace:
71. =====================
72.
73. Cycle 0
74. ————–
75. f1
76. = 1
77. f2
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78. = 1
79. haltprev pipeline
80. = 0
81. pipeline0$if stage0$PCreg
82. = 0000000000000000000000000000000000000000000000000000000000110000
83. pipelinespec0$if stagespec0$PCreg
84. = 0000000000000000000000000000000000000000000000000000000000110000
85.
86. Cycle 1
87. ————–
88. f1 acc
89. = 1
90. f2 acc
91. = 1
92. haltprev pipeline
93. = 0
94. id ex IR impl
95. = 01000111111111110000010000011111
96. if id IR impl
97. = 01000111111111110000010000011111
98. if id NPC impl
99. = 0000000000000000000000000000000000000000000000000000000000000000

100. if id valid inst impl
101. = 0
102. mem2procfetch dataspec
103. = 11101011110000000000000000110001
104. memwb IR spec
105. = 111xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
106. pipelineimpl 0$exmemalu result
107. = 0000000000000000000000000000000000000000000000000000000000000000
108. pipelineimpl 0$exmemdestreg idx
109. = 11111
110. pipelineimpl 0$exmemhalt
111. = 0
112. pipelineimpl 0$exmemillegal
113. = 0
114. pipelineimpl 0$exmemrd mem
115. = 0
116. pipelineimpl 0$exmemtakebranch
117. = 0
118. pipelineimpl 0$exmemwr mem
119. = 0
120. pipelineimpl 0$exvaluea
121. = 0000000000000000000000000000000000000000000000000000000000000000
122. pipelineimpl 0$id ex alu func
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123. = 00000
124. pipelineimpl 0$id ex condbranch
125. = 0
126. pipelineimpl 0$id ex destreg idx
127. = 11111
128. pipelineimpl 0$id ex fwd a
129. = 00
130. pipelineimpl 0$id ex fwd b
131. = 00
132. pipelineimpl 0$id ex halt
133. = 0
134. pipelineimpl 0$id ex illegal
135. = 0
136. pipelineimpl 0$id ex opaselect
137. = 00
138. pipelineimpl 0$id ex opb select
139. = 00
140. pipelineimpl 0$id ex rd mem
141. = 0
142. pipelineimpl 0$id ex rega
143. = 0000000000000000000000000000000000000000000000000000000000000000
144. pipelineimpl 0$id ex regb
145. = 0000000000000000000000000000000000000000000000000000000000000000
146. pipelineimpl 0$id ex uncondbranch
147. = 0
148. pipelineimpl 0$id ex wr mem
149. = 0
150. pipeline impl 0$id stage0$fwd check EX
151. = 11110
152. pipeline impl 0$id stage0$fwd check MEM
153. = 11110
154. pipelineimpl 0$if stage0$PCreg
155. = 0000000000000000000000000000000000000000000000000000000000000000
156. pipelineimpl 0$memwb destreg idx
157. = 11111
158. pipelineimpl 0$memwb result
159. = 0000000000000000000000000000000000000000000000000000000000000000
160. pipelineimpl 0$proc2Dmemcommand
161. = 00
162. pipelinespec0$exstagespec0$opbmux out
163. = 0000000000000000000000000000000000000000000000000000000000000000
164. pipelinespec0$id alu func out
165. = 00000
166. pipelinespec0$id opaselectout
167. = 01
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168. pipelinespec0$id opb selectout
169. = 00
170. pipelinespec0$id regbout
171. = 0000000000000000000000000000000000000000000000000000000000000000
172. pipelinespec0$if stagespec0$PCreg
173. = 0000000000000000000000000000000000000000000000000000000000000000
174. pipelinespec0$proc2Dmemcommand
175. = 00
176. pipelinespec0$proc2Imemaddr
177. = 0000000000000000000000000000000000000000000000000000000000000000
178. proc2memcommandimpl
179. = 01
180. proc2memcommandspec
181. = 00
182. proc2memfetch addrspec
183. = 0000000000000000000000000000000000000000000000000000000000000xxx
184. specmemidx2
185. = 0000000000000000000000000000000000000000000000000000000000000
186.
187. Cycle 2
188. ————–
189. f1
190. = 1
191. f1 acc
192. = 1
193. f2
194. = 1
195. f2 acc
196. = 1
197. haltprev pipeline
198. = 0
199. if IR out impl
200. = 11101011110000000000000000110001
201. if NPC out impl
202. = 0000000000000000000000000000000000000000000000000000000000000100
203. if id IR impl
204. = 01000111111111110000010000011111
205. if id NPC impl
206. = 0000000000000000000000000000000000000000000000000000000000000000
207. if id valid inst impl
208. = 0
209. if valid inst out impl
210. = 1
211. impl memidx
212. = 0000000000000000000000000000000000000000000000000000000000000
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213. mem2procdataimpl
214. = 11101011110000000000000000110001
215. mem2procfetch dataspec
216. = 11101011110000000000000000110001
217. memwb IR spec
218. = 11101011110000000000000000110001
219. memwb NPC spec
220. = 0000000000000000000000000000000000000000000000000000000000000100
221. pipeline0$id illegal out
222. = 0
223. pipeline0$if stage0$PCreg
224. = 0000000000000000000000000000000000000000000000000000000000110000
225. pipelinecommit NPC spec
226. = 0000000000000000000000000000000000000000000000000000000000000100
227. pipelineerror statusimpl
228. = 0000
229. pipelineerror statusspec
230. = 0000
231. pipelineimpl 0$exalu resultout
232. = 0000000000000000000000000000000000000000000000000000000000000000
233. pipelineimpl 0$exmemalu result
234. = 0000000000000000000000000000000000000000000000000000000000000000
235. pipelineimpl 0$exmemdestreg idx
236. = 11111
237. pipelineimpl 0$exmemhalt
238. = 0
239. pipelineimpl 0$exmemillegal
240. = 0
241. pipelineimpl 0$exmemrd mem
242. = 0
243. pipelineimpl 0$exmemtakebranch
244. = 0
245. pipelineimpl 0$exmemwr mem
246. = 0
247. pipelineimpl 0$exstage0$opamux out
248. = 0000000000000000000000000000000000000000000000000000000000000000
249. pipelineimpl 0$exstage0$opbmux out
250. = 0000000000000000000000000000000000000000000000000000000000000000
251. pipelineimpl 0$ex takebranchout
252. = 0
253. pipelineimpl 0$exvaluea
254. = 0000000000000000000000000000000000000000000000000000000000000000
255. pipelineimpl 0$exvalueb
256. = 0000000000000000000000000000000000000000000000000000000000000000
257. pipelineimpl 0$fwd a
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258. = 00
259. pipelineimpl 0$fwd b
260. = 00
261. pipelineimpl 0$id alu func out
262. = 00000
263. pipelineimpl 0$id condbranchout
264. = 0
265. pipelineimpl 0$id destreg idx out
266. = 11111
267. pipelineimpl 0$id ex alu func
268. = 00000
269. pipelineimpl 0$id ex condbranch
270. = 0
271. pipelineimpl 0$id ex destreg idx
272. = 11111
273. pipelineimpl 0$id ex fwd a
274. = 00
275. pipelineimpl 0$id ex fwd b
276. = 00
277. pipelineimpl 0$id ex halt
278. = 0
279. pipelineimpl 0$id ex illegal
280. = 0
281. pipelineimpl 0$id ex opaselect
282. = 00
283. pipelineimpl 0$id ex opb select
284. = 00
285. pipelineimpl 0$id ex rd mem
286. = 0
287. pipelineimpl 0$id ex rega
288. = 0000000000000000000000000000000000000000000000000000000000000000
289. pipelineimpl 0$id ex regb
290. = 0000000000000000000000000000000000000000000000000000000000000000
291. pipelineimpl 0$id ex uncondbranch
292. = 0
293. pipelineimpl 0$id ex wr mem
294. = 0
295. pipelineimpl 0$id halt out
296. = 0
297. pipelineimpl 0$id illegal out
298. = 0
299. pipelineimpl 0$id opaselectout
300. = 00
301. pipelineimpl 0$id opb selectout
302. = 00
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303. pipelineimpl 0$id rd memout
304. = 0
305. pipelineimpl 0$id stage0$destreg select
306. = 10
307. pipelineimpl 0$id stage0$fwd checkEX
308. = 11110
309. pipelineimpl 0$id stage0$fwd checkMEM
310. = 11110
311. pipelineimpl 0$id stage0$ra idx
312. = 11111
313. pipelineimpl 0$id stage0$rb idx
314. = 11111
315. pipelineimpl 0$id uncondbranchout
316. = 0
317. pipelineimpl 0$id wr memout
318. = 0
319. pipelineimpl 0$if stage0$PCenable
320. = 1
321. pipelineimpl 0$if stage0$PCplus 4
322. = 0000000000000000000000000000000000000000000000000000000000000100
323. pipelineimpl 0$if stage0$PCreg
324. = 0000000000000000000000000000000000000000000000000000000000000000
325. pipelineimpl 0$if stage0$nextPC
326. = 0000000000000000000000000000000000000000000000000000000000000100
327. pipelineimpl 0$memresultout
328. = 0000000000000000000000000000000000000000000000000000000000000000
329. pipelineimpl 0$memwb destreg idx
330. = 11111
331. pipelineimpl 0$memwb result
332. = 0000000000000000000000000000000000000000000000000000000000000000
333. pipelineimpl 0$proc2Dmemcommand
334. = 00
335. pipelineimpl 0$proc2Imemaddr
336. = 0000000000000000000000000000000000000000000000000000000000000000
337. pipelineimpl 0$wb reg wr dataout
338. = 0000000000000000000000000000000000000000000000000000000000000000
339. pipelineimpl 0$wb reg wr idx out
340. = 11111
341. pipelineimpl 0$wb stage0$resultmux
342. = 0000000000000000000000000000000000000000000000000000000000000000
343. pipelinespec0$exalu resultout
344. = 0000000000000000000000000000000000000000000000000000000011001000
345. pipelinespec0$exstagespec0$brdisp
346. = 0000000000000000000000000000000000000000000000000000000011000100
347. pipelinespec0$exstagespec0$idex IR aux
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348. = 010
349. pipelinespec0$exstagespec0$opamux out
350. = 0000000000000000000000000000000000000000000000000000000000000100
351. pipelinespec0$exstagespec0$opbmux out
352. = 0000000000000000000000000000000000000000000000000000000011000100
353. pipelinespec0$id alu func out
354. = 00000
355. pipelinespec0$id destreg idx out
356. = 11111
357. pipelinespec0$id opaselectout
358. = 10
359. pipelinespec0$id opb selectout
360. = 10
361. pipelinespec0$id regaout
362. = 1000000000000000000000000000000000000000000000000000000000000000
363. pipelinespec0$id stagespec0$destreg select
364. = 10
365. pipelinespec0$id stagespec0$raidx
366. = 11110
367. pipelinespec0$id stagespec0$regfspec0$rdareg
368. = 1000000000000000000000000000000000000000000000000000000000000000
369. pipelinespec0$if stagespec0$PCplus 4
370. = 0000000000000000000000000000000000000000000000000000000000000100
371. pipelinespec0$if stagespec0$PCreg
372. = 0000000000000000000000000000000000000000000000000000000000000000
373. pipelinespec0$if stagespec0$nextPC
374. = 0000000000000000000000000000000000000000000000000000000011001000
375. pipelinespec0$if stagespec0$PCreg
376. = 0000000000000000000000000000000000000000000000000000000000110000
377. pipelinespec0$proc2Dmemaddr
378. = 0000000000000000000000000000000000000000000000000000000011001000
379. pipelinespec0$proc2Imemaddr
380. = 0000000000000000000000000000000000000000000000000000000000000000
381. pipelinespec0$wb reg wr en out
382. = 0
383. pipelinespec0$wb reg wr idx out
384. = 11111
385. proc2memaddr impl
386. = 0000000000000000000000000000000000000000000000000000000000000xxx
387. proc2memcommandimpl
388. = 01
389. proc2memfetch addrspec
390. = 0000000000000000000000000000000000000000000000000000000000000xxx
391. specmemidx2
392. = 0000000000000000000000000000000000000000000000000000000000000
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393.
394. Cycle 3
395. ————–
396. id ex IR impl
397. = 01000111111111110000010000011111
398. if id IR impl
399. = 11101011110000000000000000110001
400. illegal impl encountered
401. = 0
402. mem2procfetch dataspec
403. = 10110100000111110000000011001100
404. memwb IR spec
405. = 10110100000111110000000011001100
406. pipelineimpl 0$exmemalu result
407. = 0000000000000000000000000000000000000000000000000000000000000000
408. pipelineimpl 0$exmemdestreg idx
409. = 11111
410. pipelineimpl 0$exmemhalt
411. = 0
412. pipelineimpl 0$exmemillegal
413. = 0
414. pipelineimpl 0$exmemrd mem
415. = 0
416. pipelineimpl 0$exmemtakebranch
417. = 0
418. pipelineimpl 0$exmemwr mem
419. = 0
420. pipelineimpl 0$id ex alu func
421. = 00000
422. pipelineimpl 0$id ex condbranch
423. = 0
424. pipelineimpl 0$id ex destreg idx
425. = 11111
426. pipelineimpl 0$id ex fwd a
427. = 00
428. pipelineimpl 0$id ex halt
429. = 0
430. pipelineimpl 0$id ex illegal
431. = 0
432. pipelineimpl 0$id ex opaselect
433. = 00
434. pipelineimpl 0$id ex opb select
435. = 00
436. pipelineimpl 0$id ex rd mem
437. = 0
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438. pipelineimpl 0$id ex uncondbranch
439. = 0
440. pipelineimpl 0$id ex wr mem
441. = 0
442. pipeline impl 0$id stage0$fwd check EX
443. = 11111
444. pipeline impl 0$id stage0$fwd check MEM
445. = 11110
446. pipelineimpl 0$id stage0$stall check
447. = 0
448. pipelineimpl 0$if stage0$PCreg
449. = 0000000000000000000000000000000000000000000000000000000000000100
450. pipelineimpl 0$memwb destreg idx
451. = 11111
452. pipelineimpl 0$memwb halt
453. = 0
454. pipelineimpl 0$memwb illegal
455. = 0
456. pipelineimpl 0$memwb result
457. = 0000000000000000000000000000000000000000000000000000000000000000
458. pipelineimpl 0$memwb takebranch
459. = 0
460. pipelineimpl 0$proc2Dmemcommand
461. = 00
462. pipelinespec0$exalu resultout
463. = 0000000000000000000000000000000000000000000000000000000011001100
464. pipelinespec0$exstagespec0$memdisp
465. = 0000000000000000000000000000000000000000000000000000000011001100
466. pipelinespec0$exstagespec0$opamux out
467. = 0000000000000000000000000000000000000000000000000000000011001100
468. pipelinespec0$exstagespec0$opbmux out
469. = 0000000000000000000000000000000000000000000000000000000000000000
470. pipelinespec0$id alu func out
471. = 00000
472. pipelinespec0$id opaselectout
473. = 01
474. pipelinespec0$id opb selectout
475. = 00
476. pipelinespec0$id regaout
477. = 0000000000000000000000000000000000000000000000000000010101010101
478. pipelinespec0$id regbout
479. = 0000000000000000000000000000000000000000000000000000000000000000
480. pipelinespec0$id stagespec0$raidx
481. = 00000
482. pipelinespec0$id stagespec0$rbidx
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483. = 11111
484. pipelinespec0$id stagespec0$regfspec0$rdareg
485. = 0000000000000000000000000000000000000000000000000000010101010101
486. pipelinespec0$if stagespec0$PCreg
487. = 0000000000000000000000000000000000000000000000000000000011001000
488. pipelinespec0$proc2Dmemaddr
489. = 0000000000000000000000000000000000000000000000000000000011001100
490. pipelinespec0$proc2Dmemcommand
491. = 10
492. pipelinespec0$proc2Imemaddr
493. = 0000000000000000000000000000000000000000000000000000000011001000
494. proc2memaddrspec
495. = 0000000000000000000000000000000000000000000000000000000011001100
496. proc2memcommandimpl
497. = 01
498. proc2memcommandspec
499. = 10
500. proc2memdataspec
501. = 0000000000000000000000000000000000000000000000000000010101010101
502. proc2memfetch addrspec
503. = 0000000000000000000000000000000000000000000000000000000011001xxx
504. specmemidx
505. = 0000000000000000000000000000000000000000000000000000000011001
506. specmemidx2
507. = 0000000000000000000000000000000000000000000000000000000011001
508.
509. Cycle 4
510. ————–
511. ...
512. Cycle 12
513. ————–
514. f1
515. = 1
516. f2
517. = 1
518. haltcurr
519. = 1
520. haltprev
521. = 0
522. mem2procfetch dataspec
523. = 00000000000000000000010101010101
524. memwb IR spec
525. = 000xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
526. memwb NPC impl
527. = 0000000000000000000000000000000000000000000000000000000000001000
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528. pipeline0$if stage0$PCreg
529. = 0000000000000000000000000000000000000000000000000000000000110000
530. pipelinecommit NPC impl
531. = 0000000000000000000000000000000000000000000000000000000000001000
532. pipelineerror statusimpl
533. = 0010
534. pipelineimpl 0$proc2Dmemcommand
535. = 00
536. pipelinespec0$if stagespec0$PCreg
537. = 0000000000000000000000000000000000000000000000000000000011001000
538. pipelinespec0$if stagespec0$PCreg
539. = 0000000000000000000000000000000000000000000000000000000000110000
540. pipelinespec0$proc2Dmemcommand
541. = 00
542. pipelinespec0$proc2Imemaddr
543. = 0000000000000000000000000000000000000000000000000000000011001000
544. proc2memcommandimpl
545. = 01
546. proc2memcommandspec
547. = 00
548. proc2memfetch addrspec
549. = 0000000000000000000000000000000000000000000000000000000011001xxx
550. sampleNPC pipeline
551. = 0000000000000000000000000000000000000000000000000000000011001100
552. specmemidx2
553. = 0000000000000000000000000000000000000000000000000000000011001
554.
555.
556. -I- Updating Lemma DB file: ../work/alphatest.lemmasdb
557. -I- Total iterations: 21
558.
559.
560. Reveal finished.
561.
562. Abst Solving Time: 4.79
563. Total Time: 140.35
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