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ABSTRACT 

As part of a broader study of the uses of Raman spectroscopy to characterize the effects 
of metabolic diseases and genetic abnormalities on bone tissue, we have examined the 
tissue composition of transgenic mice with a defective parathyroid hormone-related 
protein (PTHrP). PTHrP plays an important role in normal development, especially in the 
regulation of bone formation and metabolism. A transgenic mouse model with a defective 
PTHrP gene sequence was used to assess the biological functions of this particular 
protein. These mice often do not survive longer than a few days and display abnormal 
skeletal features, including uncharacteristic bone and tooth morphology. To date, the role 
of PTHrP in bone or tooth composition has not been examined. The objective of this 
study was to investigate the effects of PTHrP on bone mineral and matrix properties with 
Raman spectroscopy by comparing transgenic mice with a deficient PTHrP gene 
sequence to wild type mice with a normal PTHrP sequence. Three groups of mice were 
examined: wild type (+/+, n=4), heterozygous (+/Δ, n=6), and homozygous (Δ/Δ , n=3). 
For each mouse, one tibia was sectioned at the mid-diaphysis to create two regions for 
Raman analysis. Raman spectra were acquired with an 830-nm system at both the 
proximal and distal ends of each tibial section to assess both cortical and cancellous bone 
tissue, which may be affected differently by the PTHrP mutation. Standard measures of 
bone composition, including mineral-to-matrix ratio, carbonate-to-phosphate ratio, and 
crystallinity, were computed and compared across the three groups. The PTHrPΔ/Δ mice 
exhibited the most pronounced skeletal abnormalities, and bone composition was most 
compromised in this group. Bone composition in the PTHrPΔ/+ mice was more similar to 
that of the PTHrP+/+ mice but still exhibited defects in some metrics. This study is the 
first reported spectroscopic examination of bone composition in a mouse model of a 
genetic defect other than osteogenesis imperfecta. The results demonstrate that Raman 
spectroscopy may be generally useful for characterizing bone tissue composition 
abnormalities caused by genetic defects. 
 
INTRODUCTION 

Bone is a highly organized living tissue, composed of mineral, organic matrix, 

and water.  The bone mineral consists mostly of apatitic crystals and often contains 

impurities, such as carbonate substitutions, in the crystal lattice.  The mineral contributes 

to the rigidity and compressive strength of bone.  The bone matrix is composed primarily 

of type I collagen with small amounts of proteoglycans and noncollagenous proteins.  

Collagen provides flexibility and tensile strength to bone, as well as nucleation loci where 

the mineral crystals can form.  The proteoglycans and noncollagenous proteins play a role 
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in the assembly of collagen in unmineralized bone matrix, or osteoid, and the subsequent 

mineralization of this new bone [1]. 

On a larger scale, bone is organized into either cortical bone, found along the 

shafts of long bones and in the shell surrounding vertebrae, or cancellous bone, found in 

the ends of long bones and in vertebrae and flat bones.  Cortical bone is very dense, with 

a porosity of 5-10%, while cancellous bone is more porous, with a porosity of 75-95% 

(Figure 1).  The structure and porosity of bone changes and adapts during skeletal 

development and over time in response to many stimuli, such as disease, injury, drug 

therapy, and exercise or other mechanical loading.  These changes may affect bone at 

many levels, including the whole bone strength and the tissue architecture, material 

properties, and composition. 

Bone tissue can be characterized using a variety of techniques.  Bone mineral 

density (BMD), a measure of the amount of mineral present in bone tissue, is the most 

common clinical metric used to assess a patient’s risk for sustaining a skeletal fracture.  

Dual-energy X-ray absorptiometry (DXA) is the current gold standard for measuring 

BMD and assessing fracture risk noninvasively, although it only provides two-

dimensional information, or areal BMD.  Quantitative computed tomography (QCT), 

another X-ray technique, measures volumetric BMD, as well as cortical bone geometry 

and cancellous bone architecture.  However, QCT lacks the spatial resolution to detect 

small changes in geometry and architecture.  Magnetic resonance imaging (MRI) can also 

measure mineral density, geometry, and architecture in bone and has the added advantage 

of non-ionizing radiation.  All of these methods are powerful and yield valuable 

information about BMD, geometry, and architecture, but bone integrity is based on more 
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than these properties alone.  A key component to bone integrity that these other 

techniques are not able to probe is the chemical composition and chemical structure of 

bone mineral and matrix  Raman spectroscopy is one way to obtain this information and 

is currently the only method being developed for noninvasive measurements of bone 

composition. 

Raman spectroscopy and infrared (IR) spectroscopy are forms of vibrational 

spectroscopy used to examine the chemical structure of various compounds.  IR 

spectroscopy is based on light absorption of the different chemical species within a 

compound.  Water absorption creates strong interference, limiting IR spectroscopy to 

penetration depths less than 100 microns.  Raman spectroscopy is a light scattering 

technique wherein specimens are excited with visible or near-IR lasers.  Therefore, water 

is rendered nearly invisible in Raman spectra, making this technique ideal for fresh 

biological specimens that must be kept hydrated.  In addition, the glass and fused silica 

optics commonly used with biological specimens yield little or no signal in the near-IR 

region. 

Vibrational spectroscopy provides insight into the chemical composition of bone, 

which is an important contributor to bone quality [2].  Raman spectra of bone tissue have 

distinct bands characteristic of the mineral and matrix components (Figure 2).  Phosphate 

and carbonate symmetric stretches are the two strongest mineral bands at 959 cm-1 and 

1070 cm-1 respectively.  The carbonate-to-phosphate ratio changes in response to local 

perturbations of the crystal structure.  The inverse of the full width at half maximum 

(1/fwhm) of the phosphate band represents bone mineral crystallinity and is a measure of 

lattice order.  A narrow phosphate band, corresponding with high crystallinity, indicates 
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large crystals and low lattice strain.  Carbonate substitution induces structural distortions 

in the lattice, which affects the crystallinity.  Matrix bands include proline at 850 cm-1, 

hydroxyproline at 873 cm-1, phenylalanine at 1002 cm-1, and an amide I envelope in the 

1600-1700 cm-1 region.  Proline, hydroxyproline, and phenylalanine bands are measures 

of collagen content that are relatively insensitive to changes in the secondary structure.  

The amide I envelope, however, is sensitive to the degree of crosslinking in the collagen 

fibrils.  Collagen crosslinking is tied to collagen maturity and is determined by the ratio 

of the 1662 cm-1 band to the 1685 cm-1 band within the amide I envelope.  The 

crosslinking ratio increases with collagen maturity.  Bone mineral content is assessed 

using the mineral-to-matrix ratio, calculated using the phosphate ν1 band and any of 

several matrix bands, including proline and amide I at 1662 cm-1. 

Measurable changes occur in both the mineral and matrix bands when bone is 

permanently or elastically deformed, as shown by previous studies in this laboratory [3-

5].  Chemical composition also varies with osteoporotic fracture, as evidenced by 

differences between the Raman spectra of femoral bone in women that fractured and 

women that did not fracture [6].  In this study, the carbonate/phosphate band area ratio 

was approximately 20% higher in the fractured bone tissue.  In addition, Raman 

spectroscopy has been used to characterize changes in bone tissue composition associated 

with osteogenesis imperfecta, a genetic disorder that affects bone matrix [7].  These and 

other studies suggest that Raman spectroscopy can play an important role in the study of 

bone tissue, especially with genetic defects that produce abnormal bone composition. 

Many transgenic animal models have been developed to study the physiologic 

factors that influence skeletal development and adaption [8].  These models are mostly 
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used to mimic a particular human disease and study its effects in a homogeneous 

population or to study the function of a particular gene.  Many different proteins 

contribute to the development and aging of bone tissue.  In particular, the parathyroid 

hormone (PTH)-related protein (PTHrP) plays an important role in many physiological 

tasks, including cell proliferation, differentiation, and apoptosis.  PTHrP regulates many 

skeletal functions, such as endochondral bone formation and tooth eruption, by binding to 

the PTH-1 receptor via the N-terminus of the molecule [9].  However, previous in vitro 

experiments by our collaborators in the laboratory of Prof. Ramiro Toribio (College of 

Veterinary Medicine, Ohio State University) have indicated that PTHrP may mediate 

some cell functions via the molecule mid-region, nuclear localization sequence (NLS), 

and C-terminus [10].  To examine the effects of these three regions on skeletal 

development the Toribio laboratory created a knock-in mouse model using homologous 

recombination to replace the full-length PTHrP sequence with one lacking the coding 

region for amino acids 67-137.  Two mouse groups were developed, one completely 

lacking the coding region for amino acids 67-137 (PTHrPΔ/Δ) and one lacking the region 

only in one allele (PTHrPΔ/+).  Using Raman spectroscopy to determine bone composition 

of these varying genotypes, we are able to examine the role of the PTHrP gene in bone 

development. 

 

EXPERIMENTAL METHODS 

Specimen Preparation 

The PTHrP knock-in mice and wild type littermates were sent from the Toribio 

laboratory to our collaborators in the laboratory of Prof. Laurie McCauley (Department 



-6- 
 

of Periodontics and Oral Medicine, School of Dentistry, University of Michigan), where 

they were sacrificed for tissue harvest.  We received the hindlimbs of 13 mice from the 

McCauley laboratory (Table 1).  The mice were from three experimental groups based on 

the knock-in model described above:  homozygous (PTHrPΔ/Δ, n=3), heterozygous 

(PTHrPΔ/+, n=6), and wild type (PTHrP+/+, n=4).  All mice were less than one month old.  

The PTHrPΔ/Δ mice all died at a neonatal stage, two of them dying before three days.  

Prior to the Raman measurements the mouse hindlimbs were wrapped in gauze soaked 

with phosphate buffered saline (PBS) and stored at -20°C.   

Because the hindlimbs were small, a custom video system constructed from an 

arthroscope and camera was used to obtain a magnified image of the bone.  With 

magnification, the hindlimb anatomy was visible with adequate detail for dissection and 

sectioning.  Each hindlimb was thawed to room temperature, and some skin and muscle 

tissue were carefully removed using a scalpel so that the bone could be visualized more 

clearly.  The tibia was sectioned into two segments by making three transverse cuts 

(Figure 3).  The cuts were made by holding the tibia with a pair of tweezers and sawing 

lightly through the bone using a scalpel.  The cuts were performed slowly, holding the 

scalpel blade perpendicular to the diaphysis, and with very light pressure to avoid 

damaging the fragile bone.  Extra care was required for the PTHrPΔ/Δ mice, as those 

bones were the most fragile.  The first cut was made in the proximal tibial metaphysis, 

distal to the growth plate, to expose cancellous bone.  Similarly, the second cut was made 

in the distal metaphysis, proximal to the growth plate, to expose cancellous bone.  The 

third cut was made at the mid-diaphysis, to expose cortical bone.  After excising the tibia 

segments, any remaining skin and muscle were carefully separated from the bone.   
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Raman Spectroscopy 

The sectioning procedure produced four exposed bone surfaces per tibia to 

examine with Raman spectroscopy:  1) proximal segment cancellous bone, 2) proximal 

segment cortical bone, 3) distal segment cortical bone, and 4) distal segment cancellous 

bone.  For the Raman measurements, the bone segment was placed on a tissue on top of a 

glass microscope slide measuring 3 in x 1 in x 1 mm (Fisher Scientific, Pittsburgh, PA).  

Because the bone surfaces were small, Raman spectra were sampled across the entire 

cross-section (Figure 4).  An acquisition time of 5 minutes was used.  The mice 

specimens were examined in random order (Table 1). 

 

Raman System 

The Raman spectra were collected using a custom Raman system consisting of a 

commercial benchtop Raman analyzer (RXN1, Kaiser Optical Systems, Inc., Ann Arbor, 

MI), an upright microscope (Eclipse ME600, Nikon Instruments, Inc., Melville, NY), and 

various beam-shaping optics (Figure 5).  Within this setup, a 400-mW, 830-nm diode 

laser was focused into a fused silica multimode optical fiber with a 100-μm diameter 

core.  The fiber was launched into a fiber coupler assembly with a built-in fiber positioner 

(F-91-C1-T, Newport Corp., Irvine, CA) and a 10x/0.50 numerical aperture objective 

(Fluar, Carl Zeiss Microimaging, Inc., Thornwood, NY).  The laser light was collimated 

using an air-spaced doublet collimator (F810FC-780, ThorLabs, Newton, NJ), shaped 

into a line (1° fan angle Powell lens, Lasiris, St-Laurent, Québec), focused with achromat 

lenses, and then reflected by a dichroic mirror (R830RDC, Chroma Technology Corp., 
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Rockingham, VT) into the microscope.  A 20x/0.75 numerical aperture fluorescence 

resistant objective (S Fluor, Nikon Instruments, Inc., Melville, NY) focused the laser line 

onto the sample.  A neutral density filter with an optical density of 0.2 was used to 

attenuate the laser beam and avoid specimen burning for most specimens (Appendix A 

lists the specimens for which the filter was used).  

Raman-shifted scatter was collected through the same objective, transmitted 

through the dichroic mirror, and focused by an achromatic lens with a 60-mm focal 

length (AC254-060-B, Thorlabs) onto a rectangular bundle of 50 optical fibers (custom 

assembly, FiberTech Optica, Inc., Kitchener, Ontario, Canada).  The collection bundle 

consisted of a set of 50 near-infrared (NIR) optical fibers with a 100-μm diameter core 

that were arranged into a 5x10 close-packed array at the input end and a 1x50 linear array 

at the termination end.  Each fiber contained a fused silica core, surrounded by fluorine-

doped fused silica cladding (110-μm diameter) and a polymide buffer (125-μm diameter).  

The buffer was stripped from the fibers at each end of the collection bundle.  The linear 

fiber array delivered the collected Raman scatter to a NIR-optimized imaging 

spectrograph fitted with a 50-μm slit to provide a spectral resolution of 6-8 cm-1.  The 

light was then dispersed onto a thermoelectrically-cooled, deep-depletion, 1024x255 

pixel CCD operated at -40°C.  A frame-grabber board and support software were used 

with a video camera to capture images of the surface where the laser was focused. 

 

Data Processing 

The raw data (Figure 6) were arrays of 255 Raman spectra collected as single 

CCD images.  All data processing was performed in MATLAB (R2008b, The 
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Mathworks, Inc., Natick, MA) using custom written scripts (Appendix B).  Preprocessing 

of the Raman spectra included correcting the image curvature resulting from 

spectrograph astigmatism produced at the slit, removing cosmic rays and other spikes, 

and subtracting the dark current.  Spectral wavelength and intensity were calibrated using 

neon and white-light sources, respectively (Raman Calibration Accessory, Kaiser Optical 

Systems, Inc.).  The wavelength axis was calibrated by comparing the neon spectra with 

reference values from the National Institute of Science and Technology (NIST).  After 

preprocessing the spectra were truncated to include a wavenumber region of interest 

(ROI) from 838 cm-1 to 1723 cm-1 (Figure 7).  The fluorescence background was 

removed using a modified polynomial baselining script, which baselined each row of data 

from the CCD separately and then summed along the wavenumber axis to produce the 

final spectrum (Figure 8).  All spectra were normalized to the maximum intensity of the 

phenylalanine band. 

Peak fitting was performed in GRAMS (Thermo Fisher Scientific, Waltham, MA) 

using three spectral regions to characterize the composition of the mineral and matrix 

components of bone tissue.  The region surrounding phosphate ν1 (900-991 cm-1) was 

fitted with three peaks at 920, 937, and 959 cm-1, with 959 cm-1 representing the 

phosphate ν1 band used in band intensity calculations.  The region surrounding carbonate 

(991-1135 cm-1) was fitted with five peaks at 1003, 1035, 1048, 1073, and 1103 cm-1, 

with 1073 cm-1 representing the carbonate band utilized in calculations.  The region 

surrounding amide I (1520-1700 cm-1) was fitted with 6 peaks at 1565, 1585, 1602, 1620, 

1639, and 1662 cm-1, with 1662 cm-1 representing the amide I band in intensity 

calculations.  The band intensities of the fitted peaks were measured, and various band 



-10- 
 

intensity ratios were computed, namely phosphate-to-amide I, phosphate-to-

phenylalanine, phosphate-to-carbonate, 1690 cm-1-to-1660 cm-1 bands of Amide I, and 

phosphate-to-proline.  In addition, the mineral crystallinity (1/fwhm) was computed using 

the phosphate ν1 band at 959 cm-1. 

The computed Raman measures were compared across the three experimental 

groups (PTHrPΔ/Δ, PTHrPΔ/+, PTHrP+/+) using repeated measures analysis of variance 

(ANOVA) with the SAS statistical software (SAS 9.1, SAS Institute, Inc., Cary, NC).  .  

The analyses treated the four measurement sites within the bone as the repeated measure 

and were performed using a mixed-effect model with an unstructured covariance 

structure.  Pairwise comparisons were made between the groups using a Tukey-Kramer 

adjustment for multiple comparisons.  Various influence diagnostics were used to identify 

outliers, which were then excluded from the analyses.  A significance level of 0.05 was 

used for all statistical analyses. 

 

Results and Discussion 

The bone mineral content differed significantly among the three mouse 

genotypes, as measured by the phosphate-to-phenylalanine and phosphate-to-amide I 

ratios (p < 0.0001 for both, Figure 9).  PTHrPΔ/Δ mice had a lower phosphate-to-

phenylalanine ratio than either PTHrPΔ/+ or PTHrP+/+ mice (p = 0.003 and p < 0.0001, 

respectively), and PTHrPΔ/+ mice had a lower ratio than PTHrP+/+ mice (p < 0.0001).  

Similarly, the phosphate-to-amide I ratio was lower in both PTHrPΔ/Δ and PTHrPΔ/+ mice 

than in PTHrP+/+ mice (p < 0.0001 for both).  This ratio tended to be lower in PTHrPΔ/Δ 

mice than in PTHrPΔ/+ mice, although this difference was not significant (p = 0.07).  The 
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phosphate-to-proline ratio did not yield conclusive results.  Overall, these results indicate 

that the bone tissue of homozygous mice was less mineralized than either the 

heterozygous or wild type mice.  Mineralization in the heterozygous mouse was generally 

lower than normal, although the difference was not always detectable.  Because 

perturbation of the PTHrP gene induced these changes in the mineral-to-matrix ratio, 

PTHrP seems to play a substantial role in bone mineralization during development. 

Genotype differences were also observed in the quality of the bone mineral, 

measured by crystallinity (p = 0.001) and the carbonate-to-phosphate ratio (p < 0.0001, 

Figures 10, 11).  Multiple comparisons revealed that crystallinity was lower in PTHrPΔ/Δ 

mice than in PTHrPΔ/+ and PTHrP+/+ mice (p = 0.02 and p = 0.007, respectively), 

indicating smaller and less perfect mineral crystals.  Crystallinity did not differ between 

PTHrPΔ/+ and PTHrP+/+ mice (p = 0.3).  In addition, PTHrPΔ/Δ mice had greater carbonate 

content than either PTHrPΔ/+ or PTHrP+/+ mice (p = 0.01 and p < 0.0001, respectively) 

and PTHrPΔ/+ mice had greater carbonate than PTHrP+/+ mice (p < 0.0001).  The values 

of the carbonate-to-phosphate ratios were large, ranging from 34 to 56%.  Because these 

mice were very young, and the bone tissue should be lightly carbonated, the elevated 

ratios likely result from an overlap between carbonate ν1 at 1073 cm-1 and phosphate ν3 

at 1076 cm-1 that could not be resolved.  However, carbonate content generally tracks 

crystallinity in relation to the strong phosphate ν1 band, and similar trends were observed 

here in the two measures.  Overall, the quality of the mineral lattice in the homozygous 

mice was generally lower than in heterozygous or wild type mice.  The origin of these 

differences is unknown; the lower quality in PTHrPΔ/Δ mice may result from a 

compromised ability to mineralize bone or merely from a younger age.  Because the 
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PTHrPΔ/Δ mice failed to thrive more than a couple of days postnatally, the lattice structure 

had less time to mature than in the other mice. 

The maturity of collagen crosslinks differed by genotype (p < 0.0001).  The 

crosslinking ratio was lower in PTHrPΔ/Δ mice than PTHrPΔ/+ mice (p = 0.04), indicating 

less mature collagen crosslinks in the heterozygous mice.  The variance in these data was 

large, which limited the ability to detect differences between groups.  The 1690 cm-1 band 

could not be repeatably resolved, because it lies at the edge of detection for the CCD, 

which has low quantum efficiency in that spectral region for the 830-nm excitation 

wavelength.  Therefore, the crosslinking results were mostly inconclusive. 

The signal-to-noise ratio, calculated at locations near the phosphate ν1 band, 

averaged 36.9 ± 31.9 (range = 3.91-147).  The low signal-to-noise ratio can be attributed 

to the neonatal stage of all mice, which had little time for mineralization.  As a result, 

Raman measurements were averaged over regions with little mineral and regions with 

much more mineral, yielding large variances.  The signal-to-noise ratio decreased at 

higher wavenumbers.  A band should be visible at 1690 cm-1, but the quantum efficiency 

of the CCD falls off in that region and is at the edge of its detection. 

The fragile PTHrPΔ/Δ bone tissue burned under the laser beam.  The problem was 

observed with the first homozygous specimen examined and solved with the addition of a 

neutral density filter to attenuate laser power.  The damaged region of that specimen was 

not used for additional measurements, because the tissue was burned.  Repeat 

measurements were not performed in specimens that were previously examined, because 

the tissue was compromised.  The neutral density filter was used for all subsequent 

measurements.  Consequently, the final data set includes spectra acquired both with and 
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without the filter.  Absolute intensity variations caused by differences in the total incident 

laser energy and instrument optical alignment were cancelled out when the spectra were 

normalized by the intensity of the phenylalanine band. 

Spectral baselining was performed through many iterations to improve the final 

spectrum.  The baselining script used originally was not robust enough to handle spectra 

that had very small arbitrary intensities, resulting in a noticeable offset that compromised 

fitting.  Subsequently, a custom script was used to fit the peaks.  Although this script has 

proven useful in other situations, the larger amount of noise present in this experiment 

yielded fits that were unreliable and not repeatable.  Therefore, only fits performed in 

GRAMS were retained. 

 

Conclusions 

In general, the bone tissue of PTHrPΔ/Δ mice was significantly compromised, 

resulting in reduced mineral content, lower crystallinity, and higher carbonate content 

compared to wild type mice.  The bone tissue of PTHrPΔ/+ mice was also negatively 

affected.  Decreased bone integrity with increased expression of compromised PTHrP 

was observed across multiple Raman metrics, especially in the mineral-to-matrix and 

carbonate-to-phosphate ratios.  Combined with the severe skeletal abnormalities and 

physical fragility of the bone, these results suggest that PTHrP plays a key role in skeletal 

development, especially in mineral formation and crystal growth. 
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Table 1.  Specimen information.  The order in which specimens were examined is given 
by specimen number. 
 
Specimen 
number  Specimen ID  Genotype 

1  J9 +/‐ #1  heterozygous 
2  M8 +/‐ #3  heterozygous 
3  M10 +/‐ #2  heterozygous 
4  M10 +/+ #3  wild type 
5  E10 ‐/‐  homozygous 
6  M9 +/‐ #2  heterozygous 
7  C10 +/+ #6  wild type 
8  M10 ‐/‐ #1  homozygous 
9  C10 +/+ #5  wild type 
10  E10 +/‐  heterozygous 
11  C8 +/+ #2  wild type 
12  B9 ‐/‐  homozygous 
13  M9 +/‐ #1  heterozygous 
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 Figure 1.  Upper portion of a human femur cut lengthwise to expose the cortical and 
cancellous bone regions (from Plate 37 in ref. [11] ) 
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Figure 2.  Top: Sample Raman spectrum of bone showing important mineral and matrix 
bands.  Bottom: a schematic diagram of bone tissue illustrating the collagen fibrils (green 
arrow) that are embedded with mineral crystallites (blue arrow). 
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Figure 3.  Tibial segments created by making three transverse cuts.  Sampling sites shown 
by letters a, b, c, and d.  Sites a and d are cancellous bone, while b and c are cortical 
bone. 
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Sites a and d, cancellous bone

Sites b and c, cortical bone

 
 
Figure 4.  Sample images of cancellous and cortical bone from the mouse tibia.  Sites 
defined in Figure 3. 



-19- 
 

 
 

 
 
Figure 5.  Schematic of Raman spectroscopic apparatus. 
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Figure 6.  Representative Raman image showing the raw data before processing. 
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Figure 7.  Representative Raman spectrum showing the data truncated to the 838-1723 
cm-1 spectral region prior to background subtraction. 
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Figure 8.  Representative Raman spectrum showing the completely processed data with 
the fluorescence background removed. 
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Figure 9.  Phosphate-to-phenylalanine and phosphate-to-amide I ratios, with standard 
deviations, across all three phenotypes. 
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Figure 10.  Crystallinity, with standard deviations, across all three phenotypes. 
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Figure 11.  Carbonate-to-phosphate ratio, with standard deviations, across all three 
phenotypes. 
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APPENDIX A.  Specimen list using neutral density filter during Raman 
measurements 
The following specimen were examined using a neutral density filter for measurements: 
 
M9 +/- #2 
J9 +/- #2 
C10 +/+ #6 
M10 -/- #1 
C10 +/+ #5 
E10 +/- 
C8 +/+ #2 
B9 -/- 
M9 +/- #1 
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APPENDIX B.  MATLAB SCRIPTS 

B.1 Index of MATLAB scripts and their data processing functions 

preprocessing.m correct image curvature 
 remove spikes 
 subtract dark current 
 
baselining_and_collating.m background subtraction (baselining) 
mod_GIFTSv2.m sub-function 
 
 
 
 
 
 
Disused scripts 
 
 
 
data_process.m background subtraction (baselining) 
 
solvepeakfit.m peak fitting 
errorfit.m sub-function 
nmsimplex.m sub-function 
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B.2 Library of MATLAB scripts 

B.2.1 Preprocessing.m 

This program prepares the data for baselining and fitting by subtracting dark spectra, 
white correcting, and establishes the axis calibration using a neon spectrum.  For use in 
MATLAB. 
 
% Modified to remove verbose output and eliminate matlab warnings. 
%   Francis Esmonde-White and Michael Roberto, June 16 2008 
% 
% version 0.1 FEW 16/06/2008 
 
% % % % % %  
% % % % % % % Preprocess all the data in the subfolders 
% % % % % % angleindegrees=-0.68812; 
% % % % % %  
% % % % % % if all(size(dark)==[1024,128]) 
% % % % % %     dark=dark(210:1024,2:127); 
% % % % % % end 
% % % % % % if all(size(white)==[1024,128]) 
% % % % % %     white=white(210:1024,2:127); 
% % % % % % end 
% % % % % % if all(size(teflon)==[1024,128]) 
% % % % % %     teflon=teflon(210:1024,2:127); 
% % % % % % end 
 
% load the unspiked hsf file of interest. 
 
% correct the neon 
% neon = (neon(1:1024,1:255)-dark)./(white-dark); % now the neon is 

chopped 
% to the same range as the data. 
neon = (neon-dark)./(white-dark); % now the neon is chopped to the same 

range as the data. 
% neon = imrotate(neon', angleindegrees, 'bicubic'); 
% neon = neon(12:126,3:815); 
% francis_uncurve(neon', 'neon');  % needs to be transposed so that it 

runs properly 
 
francis_uncurve(neon, 'neon'); 
neon=francis_decurve(neon,'neon')'; 
 
% francis_uncurve(neon', 'neon', 0.5); 
%  
% neon = francis_decurve(neon', 'neon')'; 
% ne = sum(neon(1:255,:)); 
ne = sum(neon); 
 
% find the neon peaks 
[maxy,maxi] = findmaxima(ne); 
 
% load the known wavelength values 
cal_vector = xlsread('red3 Calibration.xls'); 
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% split the loaded values into wavelengths and pixels 
wavelen = cal_vector(1,:); 
est_pix = cal_vector(2,:); 
 
wavelen(est_pix<5)=[]; 
est_pix(est_pix<5)=[]; 
 
% find the closest pixels 
for i=1:numel(est_pix); 
    [y,j] = min(abs(est_pix(i)-maxi)); 
%     disp([i, y]); 
    known_pix(i) = maxi(j); 
end 
 
% calculate the rshift coefficients 
coef = 

wavelen/[known_pix.^3;known_pix.^2;known_pix;ones(size(known_pix)
)]; 

 
% deal with teflon 
teflon = (teflon-dark)./(white-dark); % now the neon is chopped to the 

same range as the data. 
% teflon = imrotate(teflon', angleindegrees, 'bicubic'); 
% % % % % teflon = teflon(12:126,3:815); 
 
teflon = francis_decurve(teflon, 'neon')'; 
tef = sum(teflon); 
% tef = sum(teflon(1:255,410:1024)); 
 
% initial laser wavelength estimate 
laser_wl=829.5; 
 
% iteratively find a better laser wavelength 
cm=rshift(1:1024,[coef],laser_wl); 
[interp_data,interp_axis]=FEW_interpolate(tef(250:end),cm(250:end),50); 
% plot(interp_axis,interp_data); zoom on 
 
[y,i]=max(interp_data); 
pos=interp_axis(i); 
 
oldl=nan; 
 
while abs(pos-732)>0.02 
     
    disp(['teflon peak: ', num2str(pos)]) 
    grandl=oldl; 
    oldl=laser_wl; 
    if (pos<732) 
        % make laser wl bigger 
        laser_wl = laser_wl - 0.005; 
    else 
        % make laser wl smaller 
        laser_wl = laser_wl + 0.005; 
    end 
     
    if (grandl==laser_wl) % it is jittering around the same point. 
        break; 
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    end 
     
    % iteratively find a better laser wavelength 
    cm=rshift(1:1024,[coef],laser_wl); 
    

[interp_data,interp_axis]=FEW_interpolate(tef(250:end),cm(250:end
),50); 

    % plot(interp_axis,interp_data); zoom on 
 
    [y,i]=max(interp_data); 
    pos=interp_axis(i); 
end 
 
wavenumber_axis = cm; 
 
% preprocess silicon for white correction and dark correction 
% si_tmp = (si-dark)'./(white-dark)'; 
 
dat=nan(size(data,1),255,1024); 
 
% for each frame in the data images, do the following: 
for i=1:size(data,1); 
 
    % subtract the dark and white correct 
    dat_tmp = (squeeze(data(i,:,:))-dark60)./(white-dark); 
 
%     tmp=1; 
    % rotate the image 
%     dat_rot = imrotate(dat_tmp, angleindegrees, 'bicubic'); 
     
%     % rotate the image and subtract the silicon background 
%     dat_rot = imrotate(dat_tmp-si_tmp, angleindegrees, 'bicubic'); 
 
%     dat_rot = dat_rot; 
%         dat_rot = dat_rot(1:255,410:1024); 
     
    % uncurve the image 
    dat_tmp=francis_decurve(dat_tmp, 'neon')'; 
     
%     imagesc(dat_rot(20:100,:)) 
%     plot(sum(dat_rot(20:100,:))) 
     
    % chop out the portion of interest 
    dat(i,:,:) = dat_tmp; 
 
end 
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B.2.2 baselining_and_collating.m 

This program truncates and baselines the data using GIFTSv2opt, then collates the data. 

data_files = dir('mod*spk.mat'); 
  
p=0; 
for i=1:numel(data_files); 
    disp(['file: ',num2str(i)]); 
  
    

load(data_files(i).name,'dat','wavenumber_axis','samples','proper
ties'); 

  
    tmp = zeros([size(dat,1),255,541]); 
  
    for j=1:size(dat,1); 
        disp(['image: ',num2str(j)]); 
        for k=1:255; 
            

[tmp(j,k,:),baseline]=giftsv2opt(squeeze(dat(j,k,395:935)),4); 
        end; 
    end 
     
    for j=1:size(dat,1) 
        p=p+1; 
        [output(p,:),baseline]=giftsv2opt(sum(squeeze(tmp(j,:,:))),1); 
        wn_axis(p,:) = wavenumber_axis(395:935); 
        samplename(p)=samples(j); 
        sampleprop(p,:)=properties(:,j).'; 
    end 
end 
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B.2.3 GIFTS v2_opt.m 

This program is a baseline removal script, removing noise of the order specified. 
 
function [baselined_spectrum,baseline]=GIFTSv2_opt(raw_spectrum,order) 
%LIEBERFIT Baseline removal script based on Applied Spectroscopy, 57, 

11, 2003, 1363. 
%USAGE: [baselined_spectrum,baseline]=lieberfit(raw_spectrum,order); 
%This program applies a multiple least squares baseline curve fitting 

with 
%adjusted parameters to separate Raman and fluorescence features. 
%This should reduce strong negative lobes on the sides of peaks. 
  
if size(raw_spectrum,1)>size(raw_spectrum,2) 
    raw_spectrum = raw_spectrum'; 
end 
  
N = numel(raw_spectrum); 
  
% These spectra are "shot noise" limited, so the square root of 
% the sum of the counts is the noise, that I am using for an  
% error estimate (mvs-this is defined by the noise in the spectra... 
% so we need to define a portion in the spectra that has no signal so 

we can calculate the RMS noise 
  
% We initialize our last spectrum variable, this simplifies our 

polynomial 
% fitting loop 
last_spectrum=raw_spectrum; 
  
% to use polyfit we need an x-axis 
% this loop generates an x-axis  
dummy_x=1:N; 
  
% Fit the spectrum with a polynomial of order N 
% This is the first fitting pass 
%this polyfit function is self scaleing and self centering 
[P,S,MU]=polyfit(dummy_x,last_spectrum,order); 
  
% Generate the values for the curve that was generated by the 
% polynomial fit 
dummy_based=polyval(P,dummy_x,[],MU); 
  
% initialize some variables 
j=1; 
convergence=0; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%% 
%%%mvs so her I will start a counter to determine how many points are 

reassigned 
  
zero_spectrum = zeros(size(last_spectrum)); 
  
% This is the loop where we compare our curve to the spectrum 
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while(convergence==0);%, %while we haven't converged 
    tmp=find(dummy_based>0); 
   KEPT = sum(dummy_based(tmp) <= last_spectrum(tmp)); 
   DUMP = sum(dummy_based(tmp) > last_spectrum(tmp)); 
    
   last_spectrum = min([dummy_based; last_spectrum]); 
   last_spectrum = max([last_spectrum; zero_spectrum]); 
    
   % Re-fit and re-generate the values for the fit curve 
   [P,S,MU]=polyfit(dummy_x,last_spectrum,order); 
     
    dummy_based=polyval(P,dummy_x,[],MU); 
    
   % here is where we decide if we are done fitting, as an estimate of 

when we 
   % should stop when the relative standard deviation of the polynomial 

is less than 
   % or equal to the Relative RMSnoise in the measurement  
    
   if  KEPT>=25*DUMP || j>=100; %converges when the difference between 

the fit and the previous fit is less than .0004% 
       convergence=1; 
%        disp(j); 
   end; 
   j=j+1; %increment the number of iterations 
   %disp(j); %some output to let us know we are running ok 
    
end; 
  
% we calculate the baselined spectrum and return the baseline 
baselined_spectrum=raw_spectrum-dummy_based; 
baseline=dummy_based; 
  
% let us know we have finished normally 
% disp 'finished'; 
  
% plot(baselined_spectrum) 
% hold on; 
% plot(baseline,'r') 
% plot(raw_spectrum,'g') 
  
% plot the baselined spectrum 
%plot(baselined_spectrum); 
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B.2.4 data_process.m 
 
This was a failed baselining program, which had problems with offset because of low 
scaled values in the data.  This was replaced by baselining_and_collating. 
 
 
files = dir('mod_*_spk.mat'); 
  
for i=1:numel(files) 
    disp (['file ',files(i).name]); 
    save temp.mat files i; 
    load(files(i).name); 
     
    for j=1:size(dat,1) 
        disp(['spectrum number ',num2str(j)]); 
        tmp=squeeze(dat(j,:,395:935)); 
        for k=1:255; 
            if (mod(k,50)==0) 
                disp(['row number ',num2str(k)]); 
            end 
            [baselined,base]=GIFTSv2_opt(tmp(k,:)',4); 
            final_data(j,k,:) = (tmp(k,:)-base); 
        end 
    end 
     
    load temp.mat; 
    save(['proc_',files(i).name]); 
    clear; 
    load temp.mat; 
end 
 



-36- 
 

B.2.5 solvepeakfit.m 
 
This was a fitting program used early in the experiment, replaced by GRAMS.  This 
program uses a Nelder-Meade simplex fitting program, based off their famous paper.  
Called functions are listed below. 
 
% solve for peak fit 
  
% generic 
  
initialoptim.peakcount=; 
  
initialoptim.background.enable=false; 
  
i=  
  
initialoptim.peak(i).enable=true; 
initialoptim.peak(i).params= % [ Centre Amplitude Gauss_width 

Lorz_width ] 
initialoptim.peak(i).llim= 
initialoptim.peak(i).ulim= 
  
  
  
% % 
number_samples= size(normalized,1); 
newheights=zeros(3,number_samples); 
fits = zeros(number_samples,i*4); 
error = zeros(number_samples,2); 
  
for j=1:number_samples 
     
    region =  
    axis = wn_axis(j,region); 
    data = normalized(j,region); 
     
    clear p llim ulim 
     
    for i=1:initialoptim.peakcount 
        p(i,:)=initialoptim.peak(i).params; 
        llim(i,:)=initialoptim.peak(i).llim; 
        ulim(i,:)=initialoptim.peak(i).ulim; 
    end 
    %         err=errorfit(p, axis, data, llim, ulim) 
     
    input=p.'; 
    input=input(:); 
     
    llim=llim.'; 
    llim=llim(:); 
     
    ulim=ulim.'; 
    ulim=ulim(:); 



-37- 
 

     
    % set initial parameters 
    i=1;    input((i-1)*4+2)=data(11)*2; 
    i=2;    input((i-1)*4+2)=data(20)*2; 
    i=3;    input((i-1)*4+2)=data(32)*2; 
     
    input=(input-llim)./(ulim-llim); 
    input=-log((1-input)./input); 
     
    [p,err]=nmsimplex(input.', @errorfit, axis, data, llim.', ulim.'); 
    p=mean(p); 
    % pnew = (1./(1+exp(-p(1,:).'))).*(ulim-llim)+llim; 
    pnew=(1./(1+exp(-p.'))).*(ulim-llim)+llim; 
     
    fits(j,:)=pnew; 
     
    peaks = reshape(pnew,[4,3])' 
     
    % plot out fit versus the raw data 
    y=zeros(size(axis)); 
    numpeaks=numel(p)/4; 
    % pnew = (1./(1+exp(-p))).*(ulim-llim)+llim; 
     
    for i=1:numpeaks 
        %     if optim.peak(i).enable 
        % %         p=optim.peak(i).params; 
        % % 
        % %         llim=optim.peak(i).llim; 
        % %         ulim=optim.peak(i).ulim; 
         
        %         p(i,:) 
         
        y=y+voigtprofile(axis,pnew((i-1)*4+(1:4))); 
         
         
        %     end 
    end 
     
    hold off; 
    plot(axis,data,'b') 
    hold on; 
    plot(axis,y,'r') 
    disp(['sample is ',num2str(j)]) 
    pause(0.5); 
     
     
    for i=1:numpeaks 
        %     if optim.peak(i).enable 
        % %         p=optim.peak(i).params; 
        % % 
        % %         llim=optim.peak(i).llim; 
        % %         ulim=optim.peak(i).ulim; 
         
        %         p(i,:) 
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        newheights(i,j)=voigtprofile(pnew((i-1)*4+1),pnew((i-

1)*4+(1:4))); 
         
        %     end 
    end 
    error(j,:)=[mean(err),sqrt(sum((err-mean(err)).^2)/(numel(err)-

1))]; 
     
    % err=errorfit(optim,axis,data) 
     
end 
  
% FWHM for the phosphate 959 peak 
% fits(:,12) is the Lorentzian width 
% fits(:,11) is the Gaussian width 
fwhm = 0.5346*fits(:,12)+sqrt(0.2166*fits(:,12).^2 + fits(:,11).^2); 
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B.2.6 errorfit.m 
 
function err=errorfit(p, axis, data, llim, ulim) 
  
% if optim.background.enable 
%     y = polyval(optim.background.coeffs,axis); 
% else 
%     y=zeros(size(axis)); 
% end 
  
y=zeros(size(axis)); 
  
numpeaks=numel(p)/4; 
pnew = (1./(1+exp(-p))).*(ulim-llim)+llim; 
  
for i=1:numpeaks 
%     if optim.peak(i).enable 
% %         p=optim.peak(i).params; 
% %          
% %         llim=optim.peak(i).llim; 
% %         ulim=optim.peak(i).ulim; 
         
%         p(i,:) 
         y=y+voigtprofile(axis,pnew((i-1)*4+(1:4))); 
         
%     end 
end 
% hold off; 
% plot(axis,data,'b') 
% hold on; 
% plot(axis,y,'r') 
% pause(0.001); 
err = sqrt(sum((data-y).^2)); 
  
  
  
function [y]=voigtprofile(x,p) 
% Based on the function voigt.m from the mfit toolbox by: 
% 
% Author:  MZ <mzinkin@sghms.ac.uk> adapted from DFM 
% Description:  Voigt 
% 
% 
% Francis Esmonde-White, April 2009 
  
  
% voigt     : Voigt 
% function [y, {name, pnames, pin}]=voigt(x,p, {flag}) 
% 
% MFIT Voigt fitting function 
% p = [ Amplitude Centre Gauss_width Lorz_width Background ] 
  
% Author:  MZ <mzinkin@sghms.ac.uk> adapted from DFM 
% Description:  Voigt 
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% p = [ Centre Amplitude Gauss_width Lorz_width ] 
% % p = [ Amplitude Centre Gauss_width Lorz_width Background ] 
%  
% 1->2 
% 2->1 
%  
% 5 is removed 
  
% if nargin==2; 
    N = 16; 
    b = -sqrt(log(2))/p(3); 
    a = b*p(4); 
    b = b*2*i; 
    z = a + b*(x-p(1)); 
  
    M=2*N; M2=2*M; k=[-M+1:1:M-1]'; 
    L=sqrt(N/sqrt(2)); 
    tt=(L*tan(k*pi/M2)).^2; 
    f=[0; exp(-tt).*(L^2+tt)]; 
    a=real(fft(fftshift(f)))/M2; 
    a=flipud(a(2:N+1)); 
    l=L-z; 
    Z=(L+z)./l; 
    pp=polyval(a,Z); 
    y=p(2)*real(2*pp ./l.^2+(1/sqrt(pi))*ones(size(z)) ./l); 
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B.2.7 nmsimplex.m 

function [P,Y]=nmsimplex(Pinit,solver,varargin) 
  
% NMSimplex 
% 
% 
% Nelder-Meade Simplex 
%  J. A. Nelder, R. Mead, The Computer Journal 1965, 7, 308. 
% 
% Francis Esmonde-White, Sepember 4 2008, version 0.1 
  
% n variables 
% P points defining the current simplex [n+1] 
  
% Estimated number of iterations (i) to convergence based on the number 

of 
% variables (k) 
% i = 3*16*(k+1)^(2*11); 
  
% Constants: 
randomization_constant = 1000; % the inverse of this value determines 

the distance to look around the current values. 
alpha = 1.01; % alpha is a positive constant, reflection coefficient 
gamma = 1.95; % gamma is a positive constant greater than unity 
beta = 0.49; % beta is the contraction constant between 0 and 1 
termination_error = 1e-7; % take this as the standard deviation of the 

spectrum multiplied by the number of points. 
  
maxiters = 20000; % give up and run away if we hit this point. 
  
% ENTRY: Calculate initial Pi and Yi 
  
% input Pinit 
n = numel(Pinit); 
P = repmat(Pinit,[(n+1),1]); 
tmp = randn(size(P)); 
tmp(1,:)=0; 
P = (P+0.01).*(1+tmp/randomization_constant); 
  
for i=1:(n+1); 
    Y(i) = solver(P(i,:),varargin{:}); 
end 
  
iters = 0; 
minimum_found = false; 
while ~minimum_found 
    iters=iters+1; 
    if iters>maxiters 
        break; 
    end 
     
    % Determine h, l 
    [garbage,h] = max(Y); 
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    [garbage,l] = min(Y); 
  
    % Calculate Pcentroid 
    Ptemp = P; 
    Ptemp(h,:)=[]; 
    Pcentroid = mean(Ptemp); 
  
    % replace P(h,:) by a new point. 
  
    % reflection (of the worst point through the centroid) 
    % alpha is a positive constant, reflection coefficient 
    Pnew = (1+alpha)*Pcentroid - alpha*P(h,:); 
    Ynew = solver(Pnew,varargin{:}); 
  
    if (Ynew < Y(l)) 
        % expansion (of Pnew through the centroid) 
        % gamma is a positive constant greater than unity 
        Pnew2 = gamma*Pnew + (1-gamma)*Pcentroid; 
        Ynew2 = solver(Pnew2,varargin{:}); 
  
        if (Ynew2 < Y(l)) 
            P(h,:)=Pnew2; 
            Y(h)=Ynew2; 
        else 
            P(h,:)=Pnew; 
            Y(h)=Ynew; 
        end 
    else 
        Ytmp = Y; 
        Ytmp(h)=[]; 
        if ~all(Ynew>Ytmp) 
            P(h,:)=Pnew; 
            Y(h)=Ynew; 
        else 
            if (Ynew<=Y(h)) 
                P(h,:)=Pnew; 
                Y(h)=Ynew; 
            end 
            % contraction (of P(h,:) towards the centroid) 
            % beta is the contraction constant between 0 and 1 
            Pnew2 = beta*P(h,:) + (1-beta)*Pcentroid; 
            Ynew2 = solver(Pnew2,varargin{:}); 
            if (Ynew2 > Y(h)) 
                for i=1:(n+1); 
                    P(i,:)=(P(i,:)+P(l,:))/2; 
                    y(i) = solver(P(i,:),varargin{:}); 
                end 
            else 
                P(h,:)=Pnew2; 
                Y(h)=Ynew2; 
            end 
  
        end 
    end 
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    stderr = sqrt(sum((Y-mean(Y)).^2)/n); 
     
    if (stderr < termination_error) 
        % this relies on the difference between the solution values of 

the different vertices 
        minimum_found = true; 
    end 
end 
  
disp(iters) 
     
 
 


