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FOREWORD

This report 7692-3-Q was prepared by The University of Michigan,
Ann Arbor, Michigan, under the direction of Professor Ralph E. Hiatt
and Professor John A, M. Lyon and on Air Force Contract AF 33(615)-3371
under Task No. 435709 of Project 4357 (U) "Electromagnetic Coupling
Reduction Techniques'., The work was administered under the direction
of the Air Force Avionics Laboratory, Electronic Warfare Division,
Research and Technology Division, Wright-Patterson Air Force Base Ohio,
The Task Engineer was Mr, Olin E, Horton, the Project Engineer
Mr. Herbert Bartman,

This report covers the period 15 June 1966 through 14 August 1966,
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ABSTRACT

During this report period, additional studies were made on horns and slots sur-
rounded by absorbing material. New designs were used which permitted all of the
absorbing material to be flush with the conducting surface. Swept frequency
methods were used in obtaining values for the increased isolation over a considerable
range of frequency.

Studies were made on the isolation of two antennas through the use of chokes. A
slot antenna was constructed surrounded by four chokes in the form of circumferen-
tial trenches., For two systems, each equipped with such circumferential chokes, an
additional 22 db of isolation was obtained.

Additional studies were made on the use of corrugations to increase isolation.
The corrugations described here are not of an optimized design and do not use ab-
sorber material as has been planned for the future.

Simple parasitic antenna elements, such as slots as reflectors, have
been used to improve system isolation., The improvement is rather small, being
limited to about 7 db.

Considerable effort has been utilized on developing an RF bridge to improve iso-
lation by cancellation of the unwanted signal. Results have been encouraging but

work remains to adapt this method to a wider bandwidth,

vi
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I
INTRODUCTION

Several of the items covered during this report are continuations of studies
commenced and partially described in the previous quarterly report. Emphasis has
been placed upon obtaining as much bandwidth as possible for decoupling for each of
the decoupling methods studied. For convenience the measurements were often made
at the X-band frequencies but none of the decoupling methods is limited to that fre-
quency band,

The initial experimentation using absorber was sufficiently encouraging so that
newly designed sectoral horns and slot antennas were used in connection with ab-
sorber, The absorber studied was Eccosorb MF-124, Systems, each of which used
an E-sectoral horn, were found to have an increased isolation of 18 db. Two systems
each using a slot antenna, with surrounding absorber as studied here, show an in-
crease of 13 db isolation. In both instances, the increased isolation can be obtained
over the entire X band.

A slot antenna was designed with four circumferential slots surrounding the
driven slot. Two systems, each having such a connected slot, with surrounding
circumferential chokes or trenches, would have increased isol‘aﬁon from one sys-
tem to another of the order of 22 db over 0.5 GHz within the X-band of frequencies.

Two ordinary slot antennas were tested for increased isolation from one to an-
other by the insertion of corrugations between the slots. The tops of the corruga-
tions were flush mounted with the conducting surface. The systems were then found
to be isolated by an increase of 5 db over the entire X-band. The work on corruga-

tions is by no means complete; it is expected that corrugations of different depths
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and with different loading materials in the trenches will be used.

Some favorable results were obtained through the use of parasitic antennas, In
the experimental case explored, a slot antenna was considered with a second para-
sitic slot in back of it. The parasitic slot acted as a reflector, If the transmission
system-has a slot radiator with a slot reflector and likewise the receiving system
has a slot antenna with a slot reflector, it is found that the isolation increase be-
tween the two systems using these parasitics is approximately 7 db. Additional
parasitic elements used as directors had very little effect as far as increase of iso-
lation, The isolation increase was good for a 2,5 GHz bandwidth for X-band opera-
tion,

Another method of isolation explored, at least in a preliminary way, was through
the use of a bridge link or cancellation method. The principle of the bridge link is
to make a second path from transmitting antenna to receiving antenna which will de-
posit a signal at the receiving antenna which will just cancel the undesired signal
from the transmitting antenna. Proceeding in this fashion, a bridge method is de-
scribed in the report, wherein 15 db of increased isolation is obtained for a band-
width of 1,5 GHz for X-band operation. This seemed to be very promising. Exten-

sions of the bridge method, including filtering, are described later in the report.
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II
EXPERIMENTAL STUDIES

2.1 Introductory Remarks

In studying methods for achieving reduction of the electromagnetic coupling be-
tween two antennas mounted on a common ground plane the following information in
terms of charts or graphs is considered to be necessary and sufficient in most cases:
maximum gain versus frequency, E- and H-plane radiation patterns at one or more
frequencies, E- and H-plane coupling versus frequency, and E- and H-plane cou-
pling versus receiving antenna orientation at one or more frequencies.

It should be pointed out that the term "gain" is used with the meaning (Kraus,
1950) "directivity times efficiency". This clarification becomes necessary because
some authors.use the term gain with the meaning of directivity, When absorbing
materials are used in the vicinity of the aperture of a microwave antenna with the
purpose of reducing the interference to a nearby antenna it has been observed (Lyon,
et al, 1966) that in some cases although the antenna directivity is not seriously af-
fected, the antenna efficiency is reduced resulting in considerable loss of gain,
Since any decoupling method resulting in gain reduction is not considered an accep-
table solution the variation of gain must always be studied, The types of antennas
considered radiate mainly broadside to the conducting ground plane, Therefore,
the variation of gain was studied in this direction,

Coupling from one antenna to another when the receiving antenna is rotated has
already been presented (Lyon, et al, 1966)

Since for aerodynamic reasons all antennas on aircraft or aerospace vehicles
are flush-mounted any coupling reduction technique would not be acceptable unless
if it avoids any protrusions above the ground plane, All techniques presented in this

report meet this requirement,
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One important aspect of decoupling is broadbanding, A swept frequency techni-
que was used to give faster and more complete information on the dependence of
coupling upon frequency than the previously used point-by-point method. The circuit,
in block diagram form, is shown on Fig, 2-1: When sweeping the frequency one has
to abandon the slide-screw tuners used in the point-by-point method to match the
aperture with the waveguide impedance. By using the tuning devices, the coupling
obtained represents the most pessimistic estimate, However, the elimination of
the tuners was not found to be responsible for more than approximately 0,5 db
change in the coupling level; besides the new system most probably represents a
more realistic case in view of the applications,

When measuring coupling, flanges A and B (Fig. 2-1) mate to establish the
reference level shown on all swept-frequency coupling charts. In measuring varia-
tion of gain versus frequency a standard 2" x 2" horn was used as a receiver (inthe
far-field of the antenna), The gain patterns indicate only the relative level, i.e.
whether a particular decoupling method tends to increase or decrease the gain of the

original antenna,

2,2 Decoupling of Two Antennas by Means of Absorbing Materials

2.2.1 E-Sectoral Horns

A new arrangement was designed and manufactured to permit the aperture of an
E-Sectoral Horn to be surrounded by absorbing material and at the same time result
in a flush-mounted structure (see Fig. 2-2). The absorber used is Emerson and
Cuming's Eccosorb MF-124 for which the manufacturer specifies an average value
of attenuation 69 db/cm (at 10 GHz),

The variation of gain with frequency is shown in Fig, 2-3. The comparison
with the control horn shows a small loss in antenna gain of the order of 0.5 db,
Radiation patterns for three different frequencies are shown in Fig, 2-4, The pat-

tern at 10 GHz, where the strongest coupling has been observed, shows that the
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presence of the absorber leaves the main lobe practically unchanged, while it re-
duces the side lobes by approximately 9 db.

Coupling patterns versus frequency for both the modified (high isolation) horn
and the control horn (i.e, a flush-mounted horn with aperture 2.3 cm x 3.9 cm) are
shown in Fig. 2-5, It should be noted that the high-isolation modification was ap-
plied only to the transmitting horn, i.e., the same receiver was used for all the
coupling patterns of Fig, 2-5, Therefore, according to the symmetry argument,
twice as much decoupling should be expected if both transmitter and receiver were
modified according to Fig. 2-2. Thus for E-plane coupling the increase in isolation
is approximately 18 db while for H-plane, it is 15 db,

Since the swept-frequency generator output varied with frequency (by 1 0.75db)
constant coupling levels are no longer horizontal. A reference line corresponding
to -34 db below direct coupling is shown on top in Fig., 2-5, This reference level
was obtained by connecting directly between flanges A and B (Fig. 2-1) while in-
troducing 34 db attenuation by means of the precision attenuator, This attenuation
was then removed from the system during the actual coupling measurement,

Patterns of coupling versus receiver orientation were also taken but are not
presented since they do not contain any new information beyond that previously pub-
lished data (Lyon, Kalafus, et al, 1966), except of course for the overall coupling

level.

2.2,2 Slots

A slot was recessed in a shallow cavity which was partially filled with absorber,
The cavity dimensions and absorber geometry and type are the same as the ones
used with the E-Sectoral Horn (Fig, 2-2). This modification was found to increase
the maximum gain of the slot by approximately 0.5 to 1,0 db throughout the X-band
While decreasing the radiation along the surface of the ground plane, Typicalradia-

tion patterns taken at a frequency of 10 GHz are presented in Fig, 2-6,
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The E-plane coupling between a modified and a plain slot is shown in Fig, 2-7,
where it is also compared to the coupling between two plain slots. A reduction of
maximum coupling by 6.5 db is observed over the X-band of frequencies, Again,
by reciprocity, if both antennas were similarly modified, a 13 db decoupling would
result,

Next the absorber was changed to B. F. Goodrich's RF-X (same geometry),
Variation of maximum gain and coupling with frequency as well as radiation patternsj
for this case are shown in Figs, 2-8 through 2-10, It should be noted that very
similar patterns to those shown in Figs. 2-8 to 2-10 were observed when no ab-
sorber at all was placed in the cavity, indicating that the RF-X absorber is not

suitable for this application,,

2.3 Decoupling of Two Antennas by Means of Chokes and Corrugations
2.3.1 Chokes

A new slot antenna was constructed having an X-band slot surrounded by four
chokes in the form of circumferential trenches, If b is the radius of such a choke
then the cutoff depth is given by

A

A
d = Tg = 0 (AO = free space wavelength) .

¢ X, 2
\1-(575)

Since previous data (Lyon, et al, 1966) have indicated that for frequencies be-

low the cutoff the gain of the antenna is decreased, while the coupling to nearby
antennas is increased, the chokes were designed with a cutoff frequency of 8.2 GHz,
The antenna gain was found to increase by 4 db at this frequency (Fig. 2-11) due to
the deformation of the radiation pattern of the slot caused by the chokes (Fig, 2-12),

The E-plane coupling between a slot surrounded by four chokes and a plain slot
was 11,5 db below the coupling between two plain slots at the cutoff frequency

12
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(Fig, 2-13). This decoupling, however, was gradually reduced at the higher fre-
quencies, Thus the decoupling over the entire X-band, would be approximately

13 db if both slots were surrounded by chokes. The H-plane coupling was very little
affected by the presence of chokes., The decoupling observed was of the order of 1

to 2 db.

2.3.2 Corrugations

The propagation of an electromagnetic wave along an infinite corrugated surface
has been studied (Hurd, 1954), The data in this reference show that the cutoff depth,
dc , depends upon the spacing of the corrugations, t, For a separation t f 10
then dc =0, 23 )LO to 0, 25 7\0. The surface wave does not propagate for dc<d< %-g— .

Three sets of corrugations have been used during this period, All three were
imbedded in a cavity placed symmetrically between two slots, oriented for E-plane
coupling, The aperture dimensions of this cavity were 7,2 cm and 2, 3 cmparallel
to the H- and E-plane respectively. The depth of the cavity was adjustable so that
the corrugations would be always flush-mounted, The parameters of the sets of
corrugations used are given below:

Set I: d1=0.90m t1=1.5mm

Set II: d2=0.90m t2=2.1 mm

Set III: d3 =0,61t0 0.9 cm t3 =1,5mm ,
In the third set the depth was varied in equal steps monotonically, so that in an E-
plane cross-section the bottom of the cavity would be in a ladder form,
The sets I and II had almost identical radiation patterns (within 0, 2 db)
which seemed to be greatly influenced by the existence of the cavity as shown in

Fig, 2-14a, Set III created a radiation pattern of the same general shape but with

16
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different size side lobes (Fig. 2-14b). The maximum gain in the presence of the
tapered corrugations was +1 to -2 db with respect to the gain of the plain slot,
depending upon the frequency.

The decoupling obtained was of the order to 5 to 8 db (Fig. 2-15), In view
of the decoupling levels observed and the accompanying reduction of gain at the
broadside direction, this method at its present stage of development is not con-

- sidered satisfactory for coupling reduction, It should be noted, however, that the
tapered corrugations offer more decoupling without any additional loss in gain,
The design of improved tapered corrugations with desirable a frequency character-

istic will be attempted in the future,

2.4 Decoupling of Two Antennas by Means of Parasitic Elements

Parasitic elements can be used as reflectors or directors to reflect or direct,
respectively, the antenna radiation in a particular direction, Such elements have
been found to be very effective at VHF and UHF frequencies (e.g., Yagi-Uda
Array) and have numerous applications.

The use of parasitic elements with microwave aerospace antennas is severely
restricted by the requirement of flush-mounting, In initial experiments good re-
sults were obtained by using four screws errected on the ground plane between two
E-Sectoral Horns, In this case the E-plane coupling was reduced by 18 db over a
frequency range of 0.5 GHz (9,25 to 9,75 GHz).

In order to study the behavior of flush-mounted parasitic antennas a new an-
tenna has been constructed in the form of a three slot array, One slot was fed by
X-band waveguide while the other two were backed by cavities constructed again
from X-band waveguide and equipped with sliding shorts. The distance of the par-
asitic slots from the transmitting one was adjustable, from a minimum of 1, 27 cm
center-to-center (imposed by the physical dimensions of the waveguide) to a maxi-

mum of approximately 4,0 cm,
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The case does not lend itself readily for an exact theoretical analysis because
the close spacing of the parasitic elements necessitates solution of the combined
problem, transmission line - - antenna, i.e,, one would have to consider the field
distribution in the aperture of the transmitting slot as unknown. If one were to use
"thin" slots then the field distribution in the transmitting slot may be assumed known
and on this basis the problem can be solved, with the aid of a digital computer (Coe,
et al, 1964).

A series of radiation patterns have been taken for various spacings, £, of the
parasitic elements and various positions of the shorting plungers. A single parasi-
tic element acts as a reflector when the cavity depth d is ?\g /4. A front to back
ratio of 7 db was observed for close spacings. For the minimum possible spacing
the pattern becomes highly asymmetrical while for spacings near A / 2 (center-to-
center) the pattern symmetry is partially restored (Fig. 2-16), No settmg was
found for which a single parasitic element would act as "director', increasing the
side lobe level in its direction. In combinations of two parasitic elements on either
side of the transmitter it was noted that the '"reflecting' parasitic had a predom-
inant effect. A front-to-back ratio of 8 db has been obtained in this case (Fig.
2-17),

Coupling measurements have not been completed yet, So far a modest decou-
pling of 3 db has been observed if one of the two slots of a transmitter-receiver
system is accompanied by parasitic elements, Twice as much would be expected
if both slots were similarly modified. It is felt that considerable improvement will

be possible in the near future.

2.5 Decoupling of Two Antennas by Means of an RF Bridge

If two antennas are in proximity to each other, there may be strong inter-
ference or "coupling'' between them. An RF bridge has been used to reduce this

interference, or to "decouple' the two antennas,
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The basic concept of the RF bridge is illustrated in Fig, 2-18, The inter-
fering signal travels from the transmitter to the receiver along the upper path of
length d1 cm (equivalent air path length), This signal path is called the coupled
path, The RF bridge cancels out this interfering signal by producing a signal at the
receiver which is of the same amplitude as the interfering signal, but 180° out of
phase with it, This canceling signal travels from the transmitter to the receiver
along the lower path of length d2 cm (equivalent air path length), This signal path
is called the bridge path and contains an adjustable phase shifter, labelled ¢ in
the figure,

Consider first the coupled path., The number of waves which can be contained

in a distance x is given by:
N = x/Xx (2.1)

where A is the wavelength, The wavelength function is determined by the medium
through which the wave propagates, As a simplification distances d are expressed

as equivalent air path lengths in cms. For free space:

3x 1010 (cm/sec)
f (Hertz)

)\0 = cft = (2.2)

Now, if the transmitter is taken as the phase reference in Fig, 2-18, the wave

arrives at the receiver along the coupled path with the phase:
0
6, = (dl/ko —nl) x 360 . (2.3)

Where d1 /)\o is the number of waves along the coupled path, and n, is the

greatest integer < d1 /)LO . The subtraction of n, in Eq, (2,3) is done so

0°<6

1

1 < 360° . See Fig, 2-19 for a wave arriving at the receiver with phase
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91 = 180° along the coupled path. In the figure, dl/k0 = 2.5 waves,
Now consider the bridge path, It is similar to the coupled path except that

it contains a phase-shifter which adds ¢O to the phase angle in this path,

©0° < ¢o < 360°) Again, taking the transmitter as the phase reference, the wave

arrives at the receiver along the bridge path with the phase:
6. = (d/x -n) x 360° + ¢° (2.4)
2 2" o 2 : *

For the RF bridge to produce decoupling, the signal along the bridge path must

cancel the signal from the coupled path, Thus, at the receiver:
_ 0
| 6, - 0, | = 180 . (2.5)
Combining Eqs. (2.3) and (2. 4) yields:

1
5= (@ - dy) 360° - ¢ | - n(360%) = 180° (2.6)
0

where n is an integer,

Obtaining broadband decoupling with the RF bridge is very important, The
manner in which the decoupling varies with frequency must be known., Equation
(2. 6) provides much insight into this problem.

In a physical example, the lengths of the coupled path and the bridge path will be
fixed at d1 cm and at d2 cm respectively. The phase-shifter will be set at a
phase angle of ¢(1) to cancel the interfering signal at a frequency of fl Hertz,

corresponding to a wavelength of A, cm,

1
Because Eq. (2,6) deals with degrees, it is periodic with cycles of 3600.

Thus, the bridge will null at a wavelength of ki, corresponding to fi , When:
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1/>x1 - 1/7”1 = K 1/(d1 -d) (2.7)

2

where K takes on values of positive integers.

Then, for a single setting of @, the bridge will cancel the interfering signal
at many frequencies. This happens whenever a frequency corresponds to an inte-
gral number of wavelengths, as shown in Eq, (2,7). However, just as the bridge
wi]l,‘ null at many frequencies, there are also many frequencies where the bridge
path's signal will add in-phase with the coupled signal at the receiver. This adding
will actually increase the level of the interfering signal at those frequencies. This
is undesirable.

The difference in length between d1 and d2 is the key to making the RF
bridge feasiblg. I d1 equals d2, the coefficient of the frequency dependent term
in Eq. (2.6) will be zero, For this case, § = 180° is a requirement to null the
bridge, independent of frequency, The decoupling obtained would be perfectly
broadband. Moreover, there would be no in-phase adding of signals as described
earlier,

Figure 2-20 shows the relationship of d1 to d,. When d, equals d2, the

2° 1
decoupling is broadband as discussed above. When the difference between d1 and

d2 is moderate, the nulls are fairly broad and moderately spaced in frequency.

When the difference between d1 and d2 is large, the nulls are very narrow and

closely spaced. Note the in-phase adding that actually increases the coupling which

occurs whenever d1 is not equal to d2 .

Thus, for the postulated RF bridge in Fig. 2-18, the decoupling obtained

could be perfectly broadband if d, equals d

1 2°
2.5.1 A Microwave Bridge to Decouple Two Slot Antennas (X-Band)

The circuit of a microwave bridge used to decouple two slot antennas mounted

on a common ground plane is shown in Fig, 2-21, This bridge circuit is designed
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for X-band and has been built entirely with X-band waveguide components, RF
power is supplied by an Alfred X-band swept-frequency generator, The input power
level is adjusted by the precision attenuator @ .
It has been shown that broadband decoupling is possible with an RF bridge if the
length of the coupled path is made equal to the length of the bridge path, The ref-
erence point which was the transmitter in Fig, 2-18 is the probe of the X-band
slotted line in Fig, 2-21, The coupled path begins at the probe, includes the rest
of the slotted line, the ferrite isolator A, the flexible waveguide section W1 , the
transmitting antenna slot A, the coupling path between slot A and slot B, the
receiving antenna slot B, the ferrite isolator B, and the flexible waveguide section
Wz. The bridge path also begins at the probe of the slotted line, It includes the
probe, the attenuator o, the phase-shifter @, and the section of flexible wave-

guide W,. The bridge signal and the coupled signal are added together in the

hybrid tei. The resultant output passes through a crystal detector into the Scienti-
fic Atlanta receiver., The bridge path and the coupled path are made approximately
equal in length by a careful choice of the lengths of the flexible waveguide sections,
A fine adjustment of the coupled path length is provided by the slotted line, The
probe rides in a movable carriage; the range of adjustment is 10 cm,

The probe in the slotted line provides the signal for the bridge path, The pre-
cision attenuator a/2 matches the level of the bridge signal to the level of the cou-
| pled signal, For the separation of the two slots shown, the loss of signal power
is approximately 30 db between the transmitting slot and the receiving slot, The
precision phase-shifter provides the necessary phase shift for the bridge signal to
cancel the coupled signal at the hybrid tee. The ferrite isolators are used to pre-

vent standing waves which might be caused by mismatches between the various

components,
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An analysis of the microwave bridge circuit can be performed like the analysis
of the general RF bridge. The expression for the arriving phase angle in the bridge
path is basically the same as the earlier expression for 62 (Eq (2,4)). For wave-

guide,  however, the relationship between the wavelength and the frequency is known:

A = c/f x 1/\ﬁ- (c/f A,) 2 (2.8)

where )Lc is the cutoff wavelength = 4,57 cm for X-band waveguide, Then, sub-

stituting this Ag into Eq. (2.4):

6, = (dyfc x £V1 - (cft Y )2 - n,) 360° + ¢° (2.9)

where d_ is the length of the waveguide in the bridge path,

2
In the coupled path, however, the wave travels through two different media,
There is X-band waveguide, and there is the air path between slot A and slot B,

Thus, there are two terms in the equation for the arriving phase angle:
o
= + dai -
61 (dwg/kg dalr/lo nl) x 360 (2.10)1
where dwg is the length of waveguide in the coupled path and dair is the length

of the air path between Slot A and slot B, Substituting the expressions for )tg
(Eq. (2.8)) and 7L0 (Eq. (2.2)) into Eq, (2.10) we get:

61 = ((dwgfe) x £ Vl - (c/f hc)z + (dair/e) x f—nl) 3600, (2.11)
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Next, define a factor S, a function of frequency alone:

= f/c x Vi - (C/f )\C)21 be 3600 . (2.12)

As before, if the microwave bridge is to work, 91 and 92 must be 180° apart,

Expressed in an equation using the factor S:

_
S (dwg -d_ + dair/Vl-(c/f Ac)z ) - ¢°| - n 360° = 180°

2

(2.13)
Equation (2, 13) is similar to the RF bridge Eq. (2,6), The factor S, which

is a function of frequency only, is similar to (3600/7\) in Eq. (2.6). Before, we
set d, equal to d

1 2
zero, We want to do the same thing in Eq. (2.13), But looking above, we see that

and the coefficient of the frequency dependent term went to

the coefficient of S has a part that is frequency dependent itself, Thus, the co-
efficient of S cannot be made to go to zero for all frequencies. Thus, we see that
the microwave bridge of Fig. 2-21 does not produce perfectly broadband decoupling,
However, the best performance would be obtained when the coefficient of S is as
small as possible.

Using the microwave bridge of Fig., 2-21, we have been able to obtain about
15 db of decoupling over a bandwidth of 1.5 GHz 1in the X-band, The frequency
where the decoupling occurs is variable in this band, Figures 2-22 through 2-25
illustrate the decoupling obtained with the microwave bridge in X-band, Figure
2-26 is included to show what happens if the coefficient of S in Eq, (2.13) is too

large.

2.95.2 Proposed Improvements of the X-Band Microwave Bridge

In the precious section, the reason the decoupling was not more broadband

is mainly the presence of the air coupling path between slot A and slot B, This
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air path produced a term in Eq. (2.13) which had a frequency dependent coefficient,
One possible solution would be to place an equivalent air gap in the bridge path, This
could be done with carefully aimed X-band horns, or with the proper length of air-
line coax. This would produce a term involving an air path in Eq, (2,13) which
might be made to cancel the term present now, This change would give a chance

of obtaining very broadband decoupling.

The amount of decoupling obtained is dependent upon how well the amplitude
of the bridge signal matches the amplitude of the coupled signal, If they were ex-
actly equal, the decoupling expressed in db would be infinite, As the frequency is
swept, however, the coupled power varies somewhat, Thus, to obtain more db's
of decoupling, the bridge signal would have to match the variation of the coupled
signal closely.

We also need to investigate the properties of the components used in our sys-
tem. We need to know how the phase-shifter performs as a function of frequency.
The attenuator «, has some phase-shift inherent in it too., Another thing to in-
vestigate is the length of the coupling path between slot A and slot B as a function
of frequency. In general, the response of our system components must be known
before any small irregularities can be compensated away.

A completely different idea is to achieve broadband decoupling by using two
bridge paths and a filtering network., This is shown in Fig, 2-27, Bridge network
1 is set to null for the high frequencies; after passing through the high-pass fil-
ter the undesired adding in-phase at low frequencies is removed. Bridge network
2 is set to null at low frequencies; after passing through the low-pass filter the
undesired adding in-phase at high frequencies is removed, The outputs of the two

filters are added together, hopefully producing broadband decoupling.
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2.6 Coupling Between a Spiral and a Slot

A ground plane has been made for studying coupling and decoupling between
S-band antennas such as slots, spirals and monopoles, Special attention was given
to making some holes in the ground plane as closely together as possible so that the
near field coupling effects can be included. As a preliminary work to future de-
coupling study, the coupling data between a spiral and a slot were obtained, The
spirals used were two AFA circular Archimedean spirals and two Advanced Devel-
opment Laboratories square Archimedean spirals, The arrangement of the antennas
on the ground plane is shown in Fig, 2-28.

It is obvious from this figure that there are four factors affecting the value of
coupling, These are:

1) The relative orientation of the slot with respect to a fixed spiral.

2) The center-to-center distance between the two antennas.

3) The azimuth angle § or orientation of the spiral.

4) The frequency.

First consider the coupling along the two axes A-A and B-B which will be
designated as the E-plane and H-plane coupling respectively, This should not be
considered as inadequate to demonstrate the nature of the coupling since the coupling
on the two axes are respectively the maximum and the minimum values and there-
fore yield the most informative data., Figures 2-29 to 2-32 show the results of
circular spiral to slot coupling, Although the coupling was plotted as a function of
¢ with £ and d as parameters, its dependence on f and d can readily be seen
by comparing the data on different curves.

The effect of spiral orientation relative to the slot can be summarized. The
E-plane coupling is seen to be stronger than H-plane coupling, especially for larger
distances owing to the fact that the near field term is largely responsible for H-

plane coupling,
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The @ variation of coupling is largely dependent on frequency. For 2.2 GHz
and 2,6 GHz the variation is small; for 3.4 GHz and 3.8 GHz it is very large; for
3.0 GHz it is intermediate, This indicates clearly the influence of the less sym-
metrical structure of the spiral on coupling because the radiation region approaches
the center of the spiral as the frequency goes up to the high frequency limit of the
spiral, For 2.2 GHz and 2,8 GHz the radiation region has a radius about one-half
that of the spiral. Good symmetry and small reflections from the end result in
almost omnidirectional coupling,

The center-to-center distance and frequency dependence can be simply stated.
These are intimately related, It is hard to draw any conclusion before normalizing
to coupling versus wavelengths spacing, However, it is seen that the coupling does
not follow the far field 6 db per octave rule for both E-plane and H-plane coupling,
Most of the features in the spiral-to-slot coupling are not unlike those previously
published by this project group on spiral—to—mdnopole coupling, For an interesting

comparison, the reader is referred to earlier reports (J,A. M, Lyon, et al, 1966),
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III
ABSORBING MATERIALS

In this report magnetic loss tangent and magnetic Q data are included
completing a twelve sample series (Fig. 3-1 through 3-5). The frequency
range where measurements were taken necessitated the determination of the
u' and ' parameters by the use of an impedance bridge and a sample
holder shorted at one end with the specimen in contact with the short termina-
tion.

Ideally if the sample is placed in the position where the electric field is maxi-
mum, or at A/4 away from the short termination one should be able to determine
€' and €', However, due to the fact that one is unable to obtain with this tech-
nique reproducible results at the particular frequency range of 50 - 400 MHz the
data obtained on €' and €'" are not reported, Concurrently with the above effort,
measurements are taken now at frequencies between 2000 - 7000 MHz. The tech-
nique used for this particular range of frequencies is that of the determination of
the propagation constant < and intrinsic impedance of the specimen through the
determination of open and short circuit impedance measurements with the sample
in a coaxial line, This method appears to be the most accurate one used so far
since corrections compensate for the residual VSWR on the line and the noise
level, A computer program is available for the calculations,

From the information presented in this report one may deduce that some of the
mixtures present a high absorbing capacity. Of particular notice is mixture 2
which has both broadband characteristics and high magnetic loss tangent between
50 and 400 MHz as can be seen in Fig. 3-2b. A complete chart of the data appears
in Table IV-1,
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v
CONCLUSIONS

The work effort during this report period has indicated promising improve ment
of isolation obtained over what was reported for the previous quarter. The 15 db
of isolation acquired through the use of abridge link, goodfor 1.5 GHz bandwidth
coverage for the X-band, is indeed promising, However, the use of absorbing mate-
rial with E-Sectoral Horns providing 18 db of isolation system to system over
X-band is also encouraging., Circumferential chokes around a driven slot or an
active slot giving 22 db system-to-system over 0.5 GHz can offer a useful isolation
increase if this narrow bandwidth coverage is satisfactory for X-band, The same
method offers 14 db increased isolation over the entire X-band,

The work reported on corrugations is still preliminary, Much needs to be done
to make corrugations provide a satisfactory increase of isolation, Likewise, the
use of parasitic slot elements has brought on a system-to-system basis an increase
of 7 db over 2.5 GHz for X-band,

The decoupling results are summarized in Table IV-1 of this section. This
table enables a simple comparison to be made of the various methods. In actual
use of methods to combat a known system-to-system interference problem, it is
quite likely that more than one of the several methods will be needed to bring the
offending signal down to an appropriate level,

It is to be observed in this table that proper initial orientation of antennas with-
in the limitations of polarization and direction requirements of the antennas affords
a very useful means of introducing isolation between two systems. The other meth-
ods in the table are by their nature suited to modifications, However, the initial
antenna orientation is one dictated by the design requirements for operation of the
systems involved. All coupling reduction techniques are adaptable to systems

operating at various frequency bands.
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The various methods of increasing decoupling or increasing isolation that have
been studied in this report have been made with full cognizance of the undesirability
of modifying the radiation characteristics of the antennas involved, For this reason,
experimental data have been shown indicating to some extent the limitations imposedj

on the radiation pattern of an antenna by the influence of absorber or surface mocd-

ifications.
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\Y%
FUTURE EFFORT

During the next report period, it is anticipated that extensive work will be done
on the bridge link method which has been described in this report. It is expected
that additional bridge links will be utilized each, one covering a given bandwidth,
By the use of several links, each with its own filtering, it is expected that the en-
tire X-band could be covered by this method,

The methods using absorber will benefit by the purchase of different types of
absorber and by the use of absorber which has been fabricated on this project., The
fabrication of absorber on this project has been limited to readily mixed materials
having the desired electrical characteristics, It is expected that isolation by either
chokes or corrugations will be improved both in magnitude and bandwidth by the use

of appropriate absorbing material,
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