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1. Introduction 

 In the least square analysis of data based on a full rank linear regression model, an 

observation may be judged influential if important features of the analysis—i.e. estimated regression 

coefficients are altered substantially when the observation is isolated from the analysis. In 

microeconomics researches, influential observations usually can be attributed to various factors. This 

paper will explore the causes and ways to deal with the influential observations using the Panel Study 

of Income Dynamics (PSID) data as an example.  

The Panel Study of Income Dynamics is a nationally representative longitudinal study of 

nearly 8,000 US families. Following the same families and individuals since 1968, the PSID collects 

data on economic health and social behavior.  There are many possible factors that can be attributed 

to the influential observations in the PSID. Information obtained in an interview can always be 

noisy. Respondents may not know or remember the exact answer to certain types of questions—for 

example, the amount of money spent on gasoline over the past one year. It is also possible that 

respondents tried to hide the truth to certain sensitive questions from the interviewer—tax evasion 

for example. Improperly recorded data can be a cause of influential observations too—either at the 

stage when people were interviewed or in the process that the data were coded into the data base.  

Identifying an influential observation, as well as controlling the effect of such observation is 

an important step in the regression diagnostics. This project examined the characteristics of an 

influential observation in least square analysis and used data from the PSID as an example 

illustrating some ways of eliminating the influence of influential observations. 

2. Discussion 

In a full rank linear regression model, an observation should be considered as influential if 

there is substantial change in the estimated parameters of the regression model when the 

observation is excluded from the analysis. Cook (1979) presented in his paper the following 

relationship:  1
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The influence of an observation is defined as the amount change in the parameters estimated 

from a regression model with the observation excluded. Cook’s finding in 1979 shows that the 

influence of an observation is a combination effect of the residual from a full rank regression and 

the value of .  iiH

Holding  constant, when the residual from a full rank regression of a specific observation 

is small, the influence of that observation is small; the opposite can be concluded if the residual is 

large. Similarly, apart from the effect in influence from the size of residuals, as value of 

approaches 1, the change in the estimated parameters will approach infinity. In order to identify 

influential observations, it is important to understand the mechanism behind factors that affect the 

influence of an observation. In this project, the value was of great interest. 
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2.1-a) Simple Linear Regression Case (Derivation) 

First, consider a simple linear regression shown below,  

0 1β β= + +iy x εi i , this can be written as β ε= +y X  where 
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The hat matrix H is: 
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And the ith diagonal entry in the hat matrix is: 

2 2

1 1
2

2

1 1

2
= =

= =

− +
=

⎛ ⎞
− ⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑

n n

i i i
i i

ii n n

i i
i i

 

 

ix x x nx
H

n x x
 



Let = +i ix X d , where  is the deviation of id ix  from the mean of X and it can be shown 

that: 
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The above identity shows that the  value of a simple linear regression model depends on 

three factors listed below: 

iiH

1) Total number of observations in a full rank regression 

As n goes top infinity,  value of each observation goes to 0. This is because 

 and p is a constant pre-determined by the number of independent variables in 

the analysis. 
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2) The deviation of the X value of this observation from the mean of X 

If ix is close to the mean of X, then will be small and vice versa. iiH

 

 

3) The variance in X 



When the variance in X is large, will be small as opposite to the situation when variance 

in X is small. 

iiH
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2.1-b) Simple Linear Regression Case (Simulation Example) 

To varify what was obtained above, a simulation study was conducted. In the simulation study 

below, eight different cases will be considered. Table 1 summarized the condition of each case and 

the corresponding estimates in each case. 

Table 1 Summary of the result from a simulation study 

 Var(X) ix  from X  −i iy y  

Estimate of β0 

with the 

observation 

removed 

Estimate of β0 

from a full 

rank 

regression 

Estimate 

of β1 with 

the 

observatio

n removed 

Estimate of 

β1 from a 

full rank 

regression 

Case 1 

small 

close 
small 

5 

4.997409 

0.1 

0.1018085 

Case 2 large 4.98632 0.1077104 

Case 3 
far 

small 4.773075 0.1340312 

Case 4 large 4.088985 0.2366008 

Case 5 

large 

close 
small 5.010946 0.0998395 

Case 6 large 5.044802 0.09907133 

Case 7 
far 

small 4.982216 0.1055619 

Case 8 large 4.929882 0.1219611 

 

 

 

From Table 1, it can be seen that when ix  is close to X , meaning that ix only contribute a 

minute amount of variation to the total variation in X, the influence of the observation is small. The 

influence of an observation is most significant when a large proportion of variance in X is 

contributed by X and the residual from a full rank regression is large. 



Chart 1 presents a graphic representation of each case. The simulated observations are in 

represented by red circles. Most (49/50) of the red circles are located along the straight line and 

there is only one point that deviates from the trend of the simulated points. The fitted line with a 

full rank regression is plotted in blue and the fitted line from the regression with the influential 

observation removed is plotted in green.  

  The deviation of the green line from the blue one indicates the influence of the observation. 

As Table 1 summarized, Case 4 has the most influential point as the discrepancy between the blue 

line and the green line is most significant. Thus the criteria for an influential observation in a simple 

linear regression model were verified.  

Chart 1 A graphic representation of the simulation study 
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2.2-a) Multiple Linear Regression with Two Predictors (Derivation) 

Next, consider a simple case of multiple linear regressions. Suppose there is a regression 

model ' ' '
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If the following transformations are taken, 
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The model can be re-written as 1 2i i iy x z iβ β ε= + + , i.e. Y Xβ ε= +  
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The following relationships are observed: 
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Where r is the Pearson Correlation Coefficient 
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The diagonal entries of the Hat matrix H are: 
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The above result shows that holding residuals constant, the following factors will have an 

effect in the influence of an observation: 

1) The larger the deviation that the observation lies from the mean of all its predictors, the 

larger the iiH value, i.e. the larger the influence of an observation  

2) The correlation coefficient between the predictors of this observation, the larger the 

correlation coefficient, the larger the influence will be. The influence will be amplified 

especially when the observation has two predictors opposite the trend of correlation between 

them. For example, the two predictors are positively correlated overall, then observations 

with predictor pairs that appear to be negatively correlated will have larger iiH value. 

3) The larger the sample size, the smaller the iiH value, thus the influence. 

 

 

 

 



2.2-b) Multiple Linear Regression with Two Predictors (Simulation Study) 

A simulation study was conducted to verify the first two factors. 100 observations were 

randomly generated from a population where X and Z have correlation coefficient r. Xi and Zi are 

the corresponding standardized scores of X and Z, the corresponding values are calculated and 

plotted in the 3-D space. The blue surface indicates the value corresponding to each 

combination of the Xi and Zi pair. 

iiH

iiH

Chart 2 Simulated Surfaces in 3-D Space iiH

 

 

 

 

 

 

 

 

 Both Xi and Zi have mean 0 and standard deviation of 1. When Xi and Zi are close to 0, the 

value will be small. If the values are plotted against corresponding Xi, Zi pairs in a 3 

dimensional space as shown in Chart 2, a paraboloid can be observed. The minimum point of the 

paraboloid locates at the mean of

iiH iiH

( , )i iX Z , i.e. when both Xi and Zi equals to 0. In the plot when 

the correlation coefficient between X and Z is -0.5, a moderate negative correlation, it is obvious 

that along the line of X=Z, the H value increase the fastest when Xi and Zi start to deviate from 

their means. This shows the influence has been amplified when the observations fail to follow the 

correlation pattern between predictors.  

ii

  

 

 



Chart 3 ( , )i iX Z Pairs Color Coded By  iiH

 

 

 

 

 

 

  Next, 10,000 pairs of Xi and Zi values are simulated for different correlation coefficients r. 

The corresponding value to each Xi Zi pair was then calculated. In Chart 3, when Zi is plotted 

against Xi, the points are color coded by values, it is obvious that when the correlation coefficient 

between X and Z is 0, the equal contours are circles centered at , and 

radius

iiH

iiH

iiH ( , ) (0,0)i iX Z =

( 1)iiH n − . This shows that when X and Z are not correlated, the distance of an observation 

from the means of both predictors will determine the value of that observation, and in turn, the 

influence of the observation. It also can be observed that when X and Z are strongly correlated, 

either negatively or positively, the H value increase more rapidly in the direction opposite the 

general trend of all observations.  

iiH
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2.3) Generalizations 

 In order to generalize the result above, the following model will be examined: 

Y Xβ ε= +  where , there are three predictors in this model and all of them 

are standardized in order to simplify the analysis. It can be shown that 

11 21 31

1 2 3n n n

x x x

X

x x x

⎛ ⎞
⎜ ⎟= ⎜
⎜ ⎟
⎝ ⎠

⎟

 

 



 
12 13

12 23

13 23

1

( 1) 1

1

TX X n

ρ ρ
ρ ρ
ρ ρ

⎛ ⎞
⎜= − × ⎜
⎜ ⎟
⎝ ⎠

⎟
⎟ ij where ρ  indicates the correlation between predictor i and 

j. 

2
23 13 23 12 12 23 13

1 2
13 23 12 13 12 13 232 2 2

12 13 23 12 13 23 2
12 23 13 12 13 23 12

1
1

( ) 1
( 1)(1 2 )

1

TX X
n

ρ ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ ρ

−

⎛ ⎞− −
⎜ ⎟= × − −⎜ ⎟− − − − + ⎜ ⎟− − −⎝ ⎠

−
−  

And the corresponding value  is iiH

2 2 2 2 2 2
23 1 13 2 12 3 1 2 13 23 12 1 3 12 23 13 2 3 12 13 23

2 2 2
12 13 23 12 13 23

(1 ) (1 ) (1 ) 2 ( ) 2 ( ) 2 ( )
( 1)(1 2 )

i i i i i i i i i
ii

X X X X X X X X X
H

n
ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ
− + − + − + − + − + −

=
− − − − +

ρ

pi

 

From the above result, similar conclusion can be made—the sample size, variation in predictors, 

correlation between predictors, as well as observations that has opposite trend with the correlation will inflate 

the influence. 

On a separate note: 
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When all predictors in X are standardized, the matrix gives the correlation matrix. TX X



 When all predictors in X are orthogonal, i.e. all entries in except diagonal entries equal to 

0, 
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− ∑ X which means that only depends on total variation that the observation 

contributes to the variation in each predictor. 
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 This shows that to control the influence of influential observations, several methods can be 

taken: increasing the sample size—this is the most straightforward approach, since ( )ii

p
E H

n
= , 

larger sample size reduces overall influence of an observation. However, this approach seldom works in 

reality for increasing sample size cannot be realized without increasing cost which study institutions try to 

avoid.  

Increasing the variability in predictors also helps to reduce influence. Say age is considered an 

independent variable in a certain analysis, in the data collection process, researchers should be aware that a 

larger age range should be covered as to increase variability in predictors. However, this is not possible with a 

give data set. Besides that, avoiding highly correlated predictors is important in controlling for influence: high 

correlation between predictors inflates the value and instability in the inverse of the matrix .  In 

the next section, an example using the PSID data will be presented as an illustration of possible factors that 

affect the influence of an observation and ways of dealing with influential observations. 
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3. Example from the PSID 

In a complex research project—like the PSID, rarely is the case that various predictors are 

uncorrelated; instead, many predictors are strongly correlated and highly influential points are likely 

to occur in those cases.  In this section, an example will be drawn from the PSID to figure out the 

various causes of influential observations and a discussion of methods to deal with those 

observations will be discussed. 

Suppose the interest of study is to examine the relationship between amount of investment 

in child’s education and parent’s income and variation in family income as well as other 

characteristics in children. The data used are extracted from the PSID Child Development 

Supplement (CDS) wave II interview in 2002. The data set used for this analysis consists of two 

parts. Part 1 is the Child file that includes variables of child’s age, sex, type of school attended, 

parents’ expectation in the child and total school related expenditures (school cost, school supplies 

and extra lessons) reported by the primary care giver (PCG) of the child being interviewed. Part 2 is 

the family file that contains the household information extracted from the PSID core data including 

the family money income—the sum of all taxable income, transfer income and social security 

income of members in the family in 2002; the variation in family income estimated by the standard 

deviation in family money income from year 1984 to 2002 (in 2002 dollars); and the annual property 

tax paid in 2002. The Child file and the Family File were merged using the Family Identification 

Mapping System (FIMS). A list of variables is shown in Table 2. Case wise deletion was applied to 

observations with missing values, resulting a sample size of 2772. 

Table 2 List of Variables Used (Total Number of Observations n = 2772) 

Child 

File 

Variable 

Name 
Remarks 

Family 

File 

Variable Name Remarks 

Sex 1: Male; 0: Female Total Family Income in 

2002  

Ranges from -99260 to 

2069000 dollars in 2002 Age 5-18 Years Old 

Type of School 

Attended 

0: Not in School; 1: Public School; 2: Private 

School; 3: Attend School at Home 
Variation in Income  

Ranges from 270.7 to 

760700 dollars (in 2002 

dollars) 

Expectation 0-8 where 0 is lowest and 8 is highest 

Total Property Tax  
Ranges from 0 to 19800 

dollars in 2002 
School Related 

Expenditure 
Ranges from 0 to 21340 dollars in 2002 

 



 A general approach of this type of research question is usually regression analysis. Suppose 

in this case, a multiple regression model with two predictors was constructed as shown below: 

Model 1: 

i 0 1 i 2 iSchool Related Expenditure  = Family Income  + Variation in Family Income  + iβ β β+ ε  

 The coefficients of the model estimated using ordinary least squares are presented in the 

Table 3, a summary of regression models. Chart 4 shows that the normality assumption of residuals 

was violated and box-cox transformation was applied to the model. A log transformation was made 

to the response variable yielding Model 2 shown below. 

Chart 4 Diagnostic Plots of Model 1 

 

Model 2: 

i 0 1 2log(School Related Expenditure )=     i iFamily Income Variation in Family Income iβ β β ε+ + +  

 

 

Both Model 1 and Model 2 are naïve approaches to the question; such approaches were 

subject to the influence of influential data points. As discussed in the previous section, the influence 

of an observation depends on both the estimated residuals in a full rank linear regression and the 

value as well. In Chart 5, a scatter plot of Family Income against Variation in Family Income was iiH



shown and the color of the points indicates the corresponding value—the darker the color, the 

larger the value. Similarly a scatter plot of Family Income against Variation in Family Income 

color coded by residual size is presented in Chart 6. 

iiH

iiH

Chart 5 A Scatter Plot of Family Income vs 

Variation in Family Income (Color Coded 

by ) iiH

Chart 6 A Scatter Plot of Family Income vs 

Variation in Family Income (Color Coded 

by Residuals) 

 

 

 

 

 

 

 

 

 

 From Chart 5 and Chart 6, it can be seen that there are several observations that have both 

large  values and large residuals. Also, there is a strong positive correlation between family 

income and variation in family income—the two independent variables. Thus, we should anticipate 

influential observations in the regression analysis. Next, 2772 regression models were estimated, 

each with only one observation isolated from the model. This produced 2772 sets of estimated 

coefficients. The newly estimated coefficients were then compared to the full rank linear regression 

estimates. In Chart 7, the percent change in estimated coefficients of variation in family income is 

plotted against the percent change in estimated coefficients of family income.  
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Chart 7 A Scatter Plot of Percent Change in Estimated Coefficients of Variation in Family 

Income vs. Percent Change in Estimated Coefficients of Family Income 

 

From Chart 7, it can be seen that most of the observations resulted only less than 10% 

change in estimated coefficients when they were isolated from the regression analysis. However, at 

the same time, three observations labeled as 638, 640 and 1440 resulted almost 30% change in one 

of the estimated coefficients. Despite a large sample size of 2772, influential observations affected 

the analysis substantially. This can be a great concern especially in cases when such analysis was used 

to aid policy making,    

In the case of the example, most of the observations clustered close to the means of the two 

predictors; there are very few observations lying far away from the means. In another sense, when 

the more influential data points located further from the means are removed from the regression 

analysis, the coefficient of a predictor can be almost anything. Thus, it is the more influential data 

points that determine the estimated coefficient of the regression model. However, the result 

obtained may not make any economic sense. In this case, the influential observations are those 

children in a family unit with exceptionally high family income and therefore, the pattern of 

spending in child’s education may be different from those in moderately rich households. It is 

 

 



 

 

inaccurate to let the extremely wealthy families to influence the regression results without taking any 

additional measure. 

To reduce the influence of those influential observations, it is necessary to figure out the 

source of influence of the observations. First, as mentioned before, an association between 

predictors will inflate the influence. From Chart 5, it is obvious that there is a strong positive 

correlation between family income in 2002 and variation in family income—usually wealthy families 

are those whose wealth build up rapidly and thus, there is a larger variation in family income over 

the years comparing to those households whose earning remained relatively unchanged—in terms of 

purchasing power of earning. This strong association is a source of highly influential observations. 

Also, large residuals from a full rank regression are the source of influential observations. 

Large residuals are sometimes due to improperly recorded data, it can also be attributed to the fact 

sometimes people did not report the right amount. Using the same example, in this case, parents 

have to report the amount of money that they spend on the very specific child being interviewed. 

Several explanations can be offered for mis-reporting the amount: 

The interview of the PSID CDS is in a retrospective manner—i.e. they interview is carried 

out in 2003 for the 2002 wave, so parents would have to recall the amount and this may cause some 

discrepancies between the real amount and reported amount. Chart 8 shows a histogram of reported 

school related spending (with outliers eliminated). It reflects a pattern that parents report at whole 

intervals of hundreds or thousands instead of specific amount simply because the parents may not 

be able to remember how much they spend and they started guessing or making up numbers in the 

interview. It is also possible that parents overstates the amount of money that is allocated to the 

child’s education because spending more on education is something that’s both socially and morally 

desirable. The incentive for parents to overstate their spending on child’s education is beyond the 

study of this project and will not be further discussed. Such pattern is possibly a cause of large 

residuals in a full rank regression and thus large influence.   



Chart 8 Histogram of School Related Expenditures 

 

 

 

 

 

 

 

 

 With the causes of influential observations—strong correlation between family income and 

variation in family income, and large residuals from full rank regression due to mis-reporting by 

parents; it is possible to work out several measure that can reduce the influence of influential 

observations and reach a conclusion that makes more statistical and economic sense. 

Method 1 

 One cause of highly influential observations in the previous example is extreme value in 

family income. With a progressive tax system in the United State, taxation helps to reduce the 

disparity in income by taxing more heavily on high income families. By using disposable income, 

that is income after tax as a predictor instead of taxable income will move extreme family income 

observations close to the mean family income standard and can possibly reduce the influence of 

those influential data points. The model will be modified as  

Model 3: 

 

 

i0 1 2log(  Re  )      i i iSchool lated Expenditure Family Disposable Income Variation In Family Incomeβ β β= + + + ε

i

 

Where  i iFamily Disposable Income Family Income Annual Tax= −



 A log transformation of the response variable was used to avoid violation of normality 

assumption in residuals.  

 Comparing the summary of Model 3 and Model 2 at the end of this paper, it can be seen that 

there is not much difference in terms of goodness of fit between the two models. Approximately 

5.8% of the variations in the response variables were explained by the predictors in Model 2 and 

5.6% of the variations in same response variables were explained by the predictors in Model 3. 

Therefore, any improvement in influential observations will make Model 3 a more desirable choice 

in analysis than Model 2. The percent change in estimated coefficients of variation in family income 

is plotted against the percent change in estimated coefficients of family income after tax in Chart 9. 

Chart 9 A Scatter Plot of Percent Change in Estimated Coefficients of Variation in Family 

Income vs. Percent Change in Estimated Coefficients of Disposable Family Income (After 

Tax) 

 

 Comparing Chart 7 with Chart 9, it can be seen that the layout of the effect of influential 

observations did not improve significantly. In Chart 10, taxes paid in 2002 were plotted against total 

family income. The observations circled by red circles indicate observations that had very high 

income but disproportionally low amount of tax paid. This shows that tax evasion existed in such 

 

 



families and therefore, tax did not always work well in order to bring extremely high income closer 

to the average incomes. Thus, Method 1 that tried to reduce the variation of predictors contributed 

by highly influential observations did not work well.  

Chart 10 A Scatter Plot of Taxes Paid in 2002 vs. Total Family Income in 2002 

 

 

 

 

 

 

 

 

 

Method 2 

 In Method 1, it was found that although taxation serves as an instrument whose purpose was 

to bring down extremely high incomes to be close to their means, it was not an effective one—thus 

the influence reduction was not effective. Consider the strong positive correlation between family 

income and variation in income; it is possible to predict family income given variation in family 

income over the past years. By using predicted family income as a single predictor (Model 4), i.e. 

the use of an instrumental variable, the influence of an extreme data points can be reduced.  

  27,885 1.42    

                          (1470*)(0.035*)

R-Squared=0.3791

i iEstimated Family Income Variation In Family Income= + ×
 

 

 



The above regression results shows that approximately 38% of the variation in family 

income can be explained by the variation in the predictor—variation in family income over the past 

years. When family income is predicted using the model above, it can be used as a predictor for 

school related expenditure on child.  

Model 4: 

0 1 Re    i i iSchool lated Expenditure Estimated Family Incomeβ β ε= + +  

 Diagnostics again shows that a log transformation of the response variable was necessary 

and resulted Model 5. 

Model 5: 

0 1log(  Re  )   i i iSchool lated Expenditure Estimated Family Incomeβ β ε= + +  

 When the instrumental variable is used, there is a slight compromise in R-square comparing 

to the example before. Only 3.4% of the variation in the response variable was explained by the 

predictors in Model 5 as opposed to 5.8% in Model 2. 

Chart 11 Half Normal Plot of Percent Change in Estimated Coefficients of Estimated 

Family Income 

 

 



However, in Chart 11 it can be seen that the percent change in estimated coefficients has 

decreased to around 12% for the maximum. More interestingly, the previously three most influential 

observations-638, 640 and 1440 were nowhere to be seen among the most influential ones in Model 

5. The use of instrumental variables is then an effective way of reducing influences of extreme data 

points. The reduction of influence by the use of instrumental variables should be attributed to the 

regression to the mean effect. In this case, each predicted family income is the mean of population 

family income given the variation in family income. Uncertainties and deviations from the means are 

removed in the predicted value—this on one hand, sacrifice some of the information contained in 

the original data points, causing a compromise in R-square; on another hand, has successfully reduce 

the influence.  

In order to verify the influence reduction effect of using instrumental variables, the 

following models were estimated and compared. 

Model 6: 
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Model 7: 
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Model 8: 
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5 6 7 8

 Re  

      

 Pr        

i

i i i i

i i i i i

School lated Expenditure

Estimated Family Income Sex Of Child Age Of Child Expectation
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Model 9: 
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 Please note that both Model 6 and Model 8 have violated the normality assumption and thus, 

log transformation in Model 7 and Model 9 was necessary.  



 In Model 7, approximately 28% of the variation was explained and in Model 9, 

approximately 26.4% of the same variation was explained—the use of instrumental variable 

sacrificed the goodness of fit by 1.6%. However, Model 9 reduced the influence of influential 

observations in Model 7. Chart 12 shows that in Model 7, there are two highly influential 

observations. Using the estimated coefficients of family income as an example, the coefficient will 

change by almost 30% if any of the observations was isolated from the regression analysis. However, 

the same observations will only change the estimated coefficient of estimated family income by 

about 5%. Another interesting feature is there was one observation (in red circle) which was not 

considered influential in Model 7—the change in estimated coefficients when the observation was 

isolated from the analysis was almost negligible; in Model 9, the same observation was much more 

influential than before—the change in estimated coefficients when the observation was isolated 

from the analysis was more than 10%.   

Chart 12 A Scatter Plot of Percent Change in Estimated Coefficients of Estimated Family 

Income in Model 9 vs. Percent Change in Estimated Coefficients of Family Income in 

Model 7 

 

 

 

 

 



 

 

Table 3 Regression Results Summary 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Response Variable 

(y = School Related 

Expenditure on Child) 

y log(y) log(y) y log(y) y log(y) y log(y) 

 
Estimated Beta 

Standard Error 

n 2772 

Intercept 
2.07E+02 4.18E+00 4.189E+00 6.842E+01 4.120E+00 -1.435E+02 2.937E+00 -2.767E+02 2.735E+00 

2.91E+01*** 4.42E-02 *** 4.419E-02 *** 3.608E+01 ^ 5.553E-02 *** 1.302E+02 2.191E-01 *** 1.310E+02 * 2.228E-01 *** 

Family Income in 2002 
8.35E-04 4.54E-06 

--- --- --- 
3.015E-04 3.709E-06 

--- --- 
3.54E-04 * 5.38E-07 *** 2.838E-04 4.775E-07 *** 

Variation in Family 

Income 

7.06E-03 3.25E-06 3.486E-06 
--- --- 

6.117E-03 1.460E-06 
--- --- 

8.15E-04 *** 1.24E-06 ** 1.237E-06 ** 6.476E-04 *** 1.090E-06 

Family Disposable 

Income (After Tax) 
--- --- 

4.450E-06 
--- --- --- --- --- --- 

5.436E-07 *** 

Estimated Family 

Income in 2002 
--- --- --- 

5.806E-03 6.830E-06 
--- --- 

4.604E-03 4.651E-06 

4.528E-04 *** 6.969E-07 *** 3.624E-04  *** 6.163E-07 *** 

Sex of 

Child 

Male --- --- --- --- --- 
-9.790E+01 -3.039E-01 -9.667E+01 -2.888E-01 

3.582E+01 ** 6.026E-02  *** 3.580E+01 ** 6.087E-02 *** 

Female  --- --- --- --- --- --- --- --- --- 

Age of Child --- --- --- --- --- 
1.415E+01 -1.290E-02 1.466E+01 -6.617E-03 

4.974E+00 ** 8.369E-03 4.951E+00 ** 8.418E-03 

Parents' Expectation on 

Child 
--- --- --- --- --- 

4.532E+01 1.757E-01 4.671E+01 1.927E-01 

9.717E+00 *** 1.635E-02  *** 9.629E+00  *** 1.637E-02 *** 

Type of Not in --- --- --- --- --- --- --- --- --- 



 

 

School 

Attended 

School  

Public 

School 
--- --- --- --- --- 

-2.047E+00 9.302E-01 -1.295E+00 9.394E-01 

8.945E+01 1.505E-01  *** 8.945E+01 1.521E-01 *** 

Private 

School 
--- --- --- --- --- 

2.880E+03 3.781E+0 2.882E+03 3.810E+00 

1.128E+02 *** 1.897E-01  *** 1.127E+02  *** 1.917E-01 *** 

Home 

School 
--- --- --- --- --- 

3.181E+02 1.581E+00 3.195E+02 1.598E+00 

1.707E+02 ^ 2.872E-01  *** 1.707E+02 ^ 2.903E-01 *** 

Total Number of 

Children in Family 
--- --- --- --- --- 

-4.824E+01 -1.310E-01 -4.798E+01 -1.278E-01 

1.686E+01 ** 2.837E-02  *** 1.686E+01 ** 2.867E-02 *** 

R-Squared 0.058 0.058 0.056 0.056 0.034 0.411 0.280 0.411 0.264

Adjusted R-Squared 0.057 0.057 0.056 0.056 0.033 0.410 0.277 0.409 0.262

Signif. Codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘^’ 0.1 ‘ ’ 1

 



4. Conclusion 

 As the example shown above, there is no cure-all approach that solves all the problems 

introduced by influential observations. The occurrence of influential observations—most of the time is 

an combination effect from both the predictors and the response variables. When there is no sufficient 

background knowledge about the specific observation—i.e. whether the influential observation contains 

useful information or was is simply an error in data input. With such information, it is easier to make 

decision on methods to deal with influential observations. However, most of the time in practice, such 

knowledge are not available. In such cases, depends on researcher’s specific goal, improvements can be 

made in terms of influential observations. The use of instrumental variable is a method that shrinks 

predictors to its mean—a.k.a. reduces variation in a predictor contributed by a specific observation so 

as to reduce the  value. This can be particularly helpful in when there is strong correlation between 

predictors. However, using instrumental variable sacrifice the goodness of fit of the model—

information is lost when predicted value is used as a predictor. 
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