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FOREWORD

This report describes research performed iiv The University of Michigan
Radiation Laboratory, 2455 Hayward Street, Ann Arbor, Michigan 48105 and
constitutes the first of two interim reports required under USAF Contract F33615-
71-C-1495, Task 05, Project 6099, "VHF-UHF Phased Array Techniques'". The
work was sponsored by the Electronic Technology Division, Air Force Avionics

Laboratory and the Technical Monitor was Mr.Harold E. Weber, AFAL/TEM-3.

The original work statement for this contract was quite different from the
modified work statement which was made available on 13 October 1972. The
present report covers items which were in the original work statement. A second
interim report will give coverage primarily to the amended work statement of 13

October 1972,

This report covers the time period 5 March 1971 through 30 June 1973 and
was prepared by John A. M. Lyon, Philip H. Fiske, Mohamed A.Hidayet and Jess B.
Scott; Professor Lyon also served as the Principal Investigator. The report has
been designated Radiation Laboratory Report Number 004970-1-T for internal

control purposes. It was submitted for sponsor approval on 3 October 1973.
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ABSTRACT

This report contains information obtained by numerous computer studies
of linear arrays of isotropic elements. A large range of numbers of elements
were used. Various formulations were used to provide control on the degree of
non-uniformity of spacing. Provision was made so as to provide a gradation in
the illumination of the various elements used. It was found that a simple expo-
nential relation provided illumination corresponding simultaneously to a Tchebyscheff
type radiation pattern.

It was decided that for practical purposes some restraint should be provided
on the grading of the slot illumination from the center slot to either extreme end
slot. Therefore, in some of the studies utilizing an exponential variation of
illumination, an arbitrary limit was imposed which required the illumination on
the end slot to be either 9 or 12 dB below that of the center slot.

Considerable work was done on an optimization process, which has been
classified as the method of steepest descent. In the steepest descent method
a change in spacing is made in the direction that causes the most rapid rate of
change (reduction) in the difference between a prescribed radiation pattern and
the obtained radiation pattern. In other words, the change to be made was always
in the direction so as to decrease the error or difference between the two patterns
most rapidly. In applying this optimization procedure it was decided that it was
appropriate to start with an array already reasonably well designed. For instance,
if a broadside Tchebyscheff array was selected, the optimization process would
be applied and changes would be made in the spacings of the elements so that the

sidelobe levels would be reduced.
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I. INTRODUCTION

Originally the contract F33615~71-C-1495 was to cover the period 15 April
1971 through 1 March 1974. The original statement of work was dated 4 March
1971. 1In this work statement four tasks were indicated with titles as follows:
Task 1 was Dual Frequency Microwave Array, Task 2 VHF Ferrite Array,
Task 3 UHF Constant K Lens with Multiple Feeds, and Task 4 Broadband and
Special Array Elements. Although the contract period officially started 15 April
1971 there was an early indication by conversations with sponsors that some
changes would be made in the work statement. In response to an inquiry on
28 June 1971 the chief investigator of this project was told by sponsor repre-
sentatives that a new work statement had been formulated two weeks earlier
and that this statement would be received in another two to three weeks. Later,
on 14 August 1971, the sponsor representative indicated by telephone that the
new work staterment had been prepared and was now in final form. Finally a
formal work statement, dated 27 January 1972, was received which called for
a redirection of effort. This work statement was classified, however, thexre is
no need in this report to refer to the classified objectives. Essentially the new
work statement discontinued Tasks 2, 3 and 4 of the previous work statement.
Tuask 1 of the previous work statement was expanded in its coverage. The main
unclassified titles which persisted in this new work statement were: Dual Frequency
Microwave Array, Array Design Configuration, Element Evaluation, Array
Section Evaluation. On 31 March 1972 the project director and principal investi-
gator outlined in a letter the work proposed by the sponsor at an earlier meeting
on 16 March 1972. The outline in the letter showed six tasks. Task 1 was
Fifteen-Element Linear Array. Task 2 was Fifteen-by-Fifteen Element Planar
Array. Task 3 was Fifteen-Element Linear S-Band Array with Interleaved
Five-Element L-Band Array. Task 4 was Use of Multi-Terminal/Multi-Mode
Elements for Scanning. Task 5 was Fifteen-bv-Fifteen Element S-Band Array

with Interleaved Five-by-Five Element L-Band Array. Task 6 was Large




Interleaved S~ and L-Band Planar Arrays.

On 17 August 1972 a discussion was held with the sponsors at Wright-
Patterson Air Force Base. Shortly thereafter on 24 August 1972 a sponsor
representative called and indicated that the laboratory had decided to restrict
future work on the project to Tasks 1, 2 and 4 as defined in the University of
Michigan letter dated 31 March 1972,

The new work statement providing for three tasks was formalized by a
written statement dated 13 October 1972, Task 1 was Fifteen-Element Linear
Array. Task 2 was Fifteen-by-Fifteen Element Planar Array. Task 3 was
Use of Multi-Terminal/Multi-Mode Elements for Scanning. As can be seen,
the new work statement incorporated Tasks 1, 2 and 4 as shown in the Univer-
sity of Michigan letter of 31 March 1972,

The work described in this report falls under the category of Task 1 --
Dual Frequency Microwave Array, as on the original work statement of 4 March
1971. The work also can be considered to fall under Task 1--Dual Frequency
Microwave Array as shown in the contract modification of 27 January 1972,
Under the original statement a minimal amount of work was done under Task
2 --VHF Ferrite Array and Task 4 --Broadband and Special Array Elements.
Actually no work was done on Task 3 -—UHF Constant-K Lens with Multiple
Feeds, as described in the original work statement. The work described in
this report is also supportive of the work described in the final work statement
of 13 October 1972, particularly Tasks 1 and 2.

In a contract modification effective 17 October 1972 the due date for the
final interim report was changed to 30 July 1973. This represented an early
termination of the contract. In a later contract modification (3 May 1973) the

due date for the final interim report was changed to 30 September 1973.

The conventional array with elements uniformly spaced at half wavelength

intervals is a ''filled" array. The mutual coupling in such an array is often



sufficient to cause undesirable changes in the aperture illumination. It is obvious
that an aperture that contains M-elements, equally spaced at half wavelength
intervals, will contain more elements than if the spacings between elements are
made unequal, and if the minimum spacing is a half wavelength. Since the un-
equally spaced array will contain fewer elements than the conventional array
occupying the same aperture it is said to be '"thinned'. The radiation pattern

of the thinned array cannot be controlled as well as that of a filled array, and the
sidelobe level relative to the main lobe will not be as low. If the thinning is not
too severe (no more than half the elements removed) the peak sidelobes can be
kept to a reasonable value and can be made competitive with that of a uniformly
spaced array.

Unequally spaced arrays may be used to obtain radiation patterns with low
peak sidelobes without the need for an amplitude taper. This may be of importance
in applications where it is not convenient to individually adjust the amplitude of the
illumination at each element. Since the beamwidth of an array is determined
primarily by the extent of the aperture and is relatively insensitive to the arrange-
ment of elements within the aperture (compare, for example, the pattern of the
circular planar aperture with that of a ring), the array with unequally spaced
elements can approximate the beamwidth of a conventional filled array. Although
the beamwidth of the unequally spaced array may be as narrow as that of the
filled array, the theoretical resolution capabilities are not as good, since
resolution depends upon both the beamwidth and the received signal-to-noise
ratio. The latter depends upon the number of elements.

In the operation of a conventional equally spaced array over a wide frequency
range it is quite likely that undesirable grating lobes will be formed. Grating lobes
occur when the array beam is scanned if the element spacing exceeds one-half
wavelength by a slight margin. For example, the spacing must be less than
0.59 for a scan angle of j-_450. If "s'" is the spacing, X is the wavelength in

the same units, 90 is the angle from broadside position of the main lobe, then 91



gives the position(s) of the grating lobe (s) according to the formula (Skolnik, 1970):

o Lo
sin6, sinf_+ s/ (1.1)

The unequally spaced array permits the antenna to operate over a wide frequency
range without the appearance of grating lobes. In addition the unequally spaced
array can be scanned over a wide range without the formation of grating lobes
such as could appear with an equally spaced array.

The availability of the spacing as an additional parameter provides, in
principle, more flexibility in array pattern synthesis. However, this property
is restricted in practice by requirements on permitted spacing.

In individual studies of various linear arrays the technical objectives
obtained from the overall work statement of this project originally were these:

0. 8 degrees beamwidth,

maximum scan position 600 from broadside,

maximum sidelobe level 40 dB below main lobe.
Subsequently, the work statement was drastically modified and the numerical
values above were eliminated. In the studies related to these objectives the
variables which were utilized were the number of array elements, the amplitude
of excitation of each element, and the spacings from one element to another.
Discussion of the studies involving a wide selection of linear arrays with various
numbers of elements, various spacings, and various illumination arrangements
are given in Section II.

Numerical iterative methods have been used in many optimization procedures.
In particular, an iterative method based upon the principle of steepest descent has
been shown to be useful in radiation pattern synthesis. Such a method can make
use of the available parameters of element amplitudes and phases, element
spacing, and frequency. In the optimization by this method which is recorded
here, the method was restricted to optimization by changing the element spacing.

In the studies made by this method, even though there is no complete assurance



that a true optimum was obtained, nevertheless, it is possible to see that a pro-
gressive improvement has been obtained in the performance of a standard array.
Furthermore, it has been possible to see that this improvement has been carried
out very nearly to the limit of such improvements.

Section II presents the results of the linear array studies and includes the
development of the formulations for the computer, the use of CALCOMP as a
design tool, the use of the method of steepest descent and related studies. Section

III contains a discussion of the results and presents our conclusions.



II. USE OF COMPUTER IN ARRAY PATTERN STUDY

2.0 Linear Array Formulation™

A linear array of isotropic radiators is shown in Fig. 1. The number

of radiators is N where N is odd. The symbols to be used are defined as:

a = amplitude of excitation, for example, current;

g

zZ

H

phase relative to center element;

n

distance from center element;

Az = incremental distance between elements.

For the odd number of elements as shown in Fig. 1, certain conditions

including symmetry are specified in the following manner:

(a) a_=1

° for n>1
(b) a_=a

n -n
(c) @ =0

° for n>1
(@) @ =-9_ (2.1)
(e) z =0

© for n>1
(f) z =z

n “-n

(8) Az =Az_

Now restrict the problem to far field conditions where the range to the
observation point is such that the radiated fields decrease as one over the distance.

For this situation Fig. 2 may be used, where the desired direction of the
main lobe of the radiation pattern is specified by angle em relative to the linear

array. To accomplish this the phase of the radiation from each individual element

*This formulation for linear arrays has been taken from the notes of Professor
Charles W. McMullen of The University of Michigan. Mr. John Barnes was
responsible for much of the programming for the CALCOMP method.

6



Center Element

L\z_'3 Az_z Az_l Azl Az2 Azs
.._.’____._.____ — s = = - _
Q-B Q—2 Q-l QO Ql QQ Q3
B, o, B, B B p, P
Z___3 Z..z Z"'l ZO Z1 22 Z3
Fig. 1: Linear Array of Elements, Consisting of

N Isotropic Elements, where N is Odd.
/”5’
Lines of

constant phase

R

Fig. 2: Determination of §'s for Linear Array of Elements.



must be the same along lines of constant phase. As shown in Fig. 2, these
are at an angle of 90° - Gm with respect to the array.

It is required then that

(a) ¢n= —ancos6m=-¢ ,

e (2.2)
(b) B=<I

where X is the wavelength. It is evident from Eq. (2=2) that the phase of elements
to the right of center in Fig. 2 are retarded in phase, while those to the left
are advanced in phase, each relative to the center element for which ¢O= 0.

The incremental distances between elements in the array are specified

by the functional relationships:

(a) Az, =C
Z

1 A

1
(b) Azn= sz(Az

C (2.3)

n-—l) ’

where C and CZ are constants to be specified. These constants allow the

zl’ 3
spacing and spreading of the elements in the array to be controlled. It follows
than from Fig. 1 and Eq. (2. 3) that the distance of elements from the center
is expressed as:

(a) 1z, =Az s

(2.4)
(b) z =z ,+Az forn>2

Finally the amplitude of excitation for elements in the array is given by
the functional relationship
Z2
-2
Cc
a

a =e (2.5)

n

where Ca is a constant to be specified. It allows the taper of excitation to be

controlled as one moves away from the center element. Later in subsection 2.1




computer terminology is used and Ca becomes CAl and a, is called A (N).
Thus Egs. (2. 1) through (2.5) completely specify the linear array antenna

by giving the separation, phase, and amplitude of the elements. With this

information one may use Fig. 3 to calculate the field strength F in any

direction 6 relative to the array.
Since the distance of the field point P is large, the directions of SERSY
Ty and r_, in Fig. 3 may be approximated as the same kind of ro that

la

is, at angle 6 with respect to the array. This same idea was used in Fig. 2

where parallel lines are drawn from each element in the direction of power

concentration. It follows then from Fig. 3 that:

r1 = ro- zq cosf ,

r .=r +z cosf
-1 1 ?
° (2.6)
r2= ro- z2cos(9 s
=r +
r_2 r0 z2 cos 6
Now at some distant point as shown in Fig. 3, the contributions of
each element of the array may be summed to get the field strength F. Thus
-jBr
F=ae O+
o
j¢L -jBrlcose j¢_l ~jBr_,cos 6
a.e e +a .e e +
1 -1
]¢2 —]Br2cos ] ]¢_2 -]Br_zcos 2]
a,e e ta_ye e . (2.7)

Combining Egs. (2. 1b), (2.1d), (2.2a), (2.6) and (2.7), as well as noting

that antenna field patterns usually involve only the magnitude of ¥, one may write:




Point in far-field
region at large F
distance from

array.

Fig. 3: Determination of Field Strength F for Linear Array of Elements.

Center of Array

Az_2
~ N\ 7~ - —
- = g ——
Q, Q, Q,
”-2 ¢—1 ’62
2_2 Z_ 1 Z 1 22

Fig. 4: Linear Array of Elements, Consisting of
N Isotropic Radiators, where N is Even.




Jle(cos Bm— cos 8) -Jle(cos Gm— cos 6)
+9q & + e N
1 2

JBz2(cos Bm- cos A) -]BZZ(COS Gm- cos 6)
e + e
2 2

+ 2a

or

+ - + -
a 2a1 cos [le (cos Gm cos 9)] 2a2 cos [Bzz(cos Gm cos é))]l . (2.8)

Furthermore, antenna field patterns are normally a plot of ]F ]/ ‘ F lma.x

versus angle 6, where

‘F|max=lF’0=9 : (2.9)
m

Finally with Eqs. (2. 8) and (2.9) combined and expressed in general form, there

results
(N-1)/2
I l a0+ 2 a_cos [an(cos Gm- cos Oﬂ
F _J n=1 .
F = (N-1)/2 (2.10)
max
a+2 Z a
o n
n=1

where N is an odd integer giving the total number of elements in the linear array.
Antenna field patterns may now be calculated using Eq. (2. 10).
Consider the linear array antenna in Fig. 4, consisting of N isotropic

radiators, where N is even. It may be readily shown that the antenna field

pattern is given by the expression:




N/2

z a_cos [an (cos Gm- cos Gﬂ

lFl n=1

IFI N/2 (2.11)
max
pX
n
n=1
where all terms are the same as for an odd number of elements except
(a) a =0 |,
o
2_ 2
i z "2
c, (2.12)
(b) a =e for n>1 ,
(c) zl=Azl/2

2.1 Linear Array Program

A computer program was devised based upon the elementary array consid-
erations described in the previous subsection. The radiation patterns which were
recorded in this report have been achieved using a CALCOMP display tube arrange-
ment. Using this equipment it was possible to call for the desired program and
then to insert the appropriate data for the array to be studied. For instance, the
number of elements to be used would be inserted as data by specifying NANT =
followed by the number of elements desired. In a similar way appropriate data
would be inserted for the quantities CZ1, CZ2, CZ3, and CA1l. Note that as
required by computer language instead of Czl as written in subsection 2.0, the
symbol is now written CZ 1. Similar adaptations are made for other symbols.
The first three parameters mentioned serve to specify the spacing to be used.
The last one mentioned serves to specify the amplitude of the individual elements.
The insertion of a single value for CA 1 would be used in the program together

with the exponential expression which produces A(N). In this way the amplitude
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of the illumination for each element was then known. Other quantities which

were specified were THETAM for the angle of the main lobe, (this angle is
measured upward from the line of the array elements), THTMAX for the maxi-
mum angle in the rectangular plot, and THTMIN for the minimum angle in the
rectangular plot. These last two quantities are the extreme points for the range
of scan in the plot. Another important data input was designated as NSTP which
was chosen according to the number of steps (maximum possible 361) desired in
the computation of the rectangular plot. These points were spaced evenly between
the extreme values of scan position. Another useful input point was designated as
NTB, which was given equal to one if a polar plot in the top half only was required.
NTB was made equal to two if a polar plot in the bottom half only was required and
equal to three if a polar plot covering both halves was required.

In addition, keys were available on the CALCOMP display unit to specify
polar plot, if required, rectangular plot, and also overlay. The use of the overlay
button permitted the plotting of a second array situation on top of a previous one.
In order to do this the previous plot should not be erased but one should immediately
proceed to use the overlay button and then to insert the appropriate new data. This
allowed quick comparison between two arrays of interest.

In utilizing the provision for polar plot it is found that the plotting program
provides printed information on beamwidth, number of elements, the choice of
C7Z1, CzZ2, CZ3, CAl, THETAM, Z(N), A(N), and PHI(N). The last quantity,
PHI(N), is the measured phase of any element compared with the center element
which is referenced as zero phase. In the actual construction of an array the
values of A(N), Z(N), and PHI(N) would be used. The advantages of a polar
plot are these: (1) good for easy detection of grating lobes; (2) good for small
numbers of elements where general trends only are desired.

For a rectangular plot there is a computer printout on the face of the
CALCOMP tube indicating the number of elements, CZ1l, CZ2, CZ3, CAl,

and THETAM. Since the rectangular plots are, in general, used for large arrays
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provision was made to store Z(N), the distance to each element and A (N), the
illumination of each element, and PHI(N). For large numbers of elements these
three items of data would involve many points and there might not be room enough
adjacent to the rectangular plot. For this reason this type of data was stored and,
of course, there is provision at any time to call for a printout of this data. The
rectangular plots were used especially for large numbers of array elements.

The obvious advantages of rectangular plots are: (1) observation of exact side-
lobe structure; (2) observation of specific portions of a pattern in great detail.
The use of the overlay provision was available for either polar plots or rectangu-

lar plots.

2.2 Major Steps in Using CALCOMP

The CALCOMP unit provides for a visual display on a cathode ray tube.
Otherwise it functions much like any terminal on the IBM 360/67 computer. A
separate printout unit is associated with CALCOMP, making it unnecessary to
photograph the display on the cathode ray tube. The major steps in the use of
CALCOMP are tabulated below.

1. Sign On

2. $GLAB: SETUP
ECHO OFF (Computer Response)

3. # RUN SOURCE PROGRAM + GLAB; GILBCI

4. Press desired function button such as POLAR RECT OVERLAY
NEATEN STOP.

5. IN [ JArray specs []& ouT
Array Specs such as
CA1=1,00, CA1=0.333, NTB =1, etc.
NTB =1 calls for a polar plot in the top half only. This plot
will be printed.

6. Press OVERLAY

7. &IN [ ]Array Specs [ ]2 OUT
Plot in lower half will be made.

14




8. Press NEATEN
Grid and array spacings, amplitudes and phases will be displayed.

2.3 Physical Constraints on Array

It is necessary that for each prescribed amplitude distribution chosen for
the elements there must be an appropriate feed network to provide for this. In
the cases considered, isotropic elements are involved and the problem of pro-
viding the necessary feeds is neglected for the time being. In an actual physical
array the mutual coupling effects can be of paramount importance. Such coupling
effects may very well mean that the actual illuminations obtained on each element
aperture will not be simply related to the powers fed to the element by the feed
network. This means that a complete analysis of an array must go beyond a
simple array in which element illuminations are assumed. Although in these
pattern studies coupling effects are not considered, nevertheless, the chosen
illumination distributions have been made with possible alterations due to coup-
ling in mind. For this reason, in some of the studies, the minimum level of
illumination obtained at an end element was limited to a prescribed dB level
below the illumination level of the central element. This restriction on illumi-
nations recognized that to go to still lower levels of illumination would be quite
meaningless since such levels would be completely upset by mutual coupling
effects.

The element spacings used in these arrays were restricted to values of
the order of 0.4X to 0.5A. This range of spacings is the one most frequently
used for simple, broadside antenna arrays. Furthermore, this range of spacing
provides adequate clearance between the individual elements and inhibits the
formation of grating lobes. It should be noted that some grating lobes can be
tolerated, provided that they are positioned in such a fashion as to be cancelled
out by nulls in the patterns of the individual elements. In a few cases studied

where the spacing was greater than 0.5, grating lobes were formed.
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Although the design studies here described show certain performance would
be obtained with the assumed values of illumination, amplitude, and phase, together
with the assumed values of spacing, yet the exact same radiation patterns would
very likely not be obtained on a physical antenna array using the same prescribed
illumination and spacing values. Some departures could result because the physi-
cal model did not adequately reproduce the conditions assumed in the analysis model.
For instance, the isotropic elements assumed here would not be obtainable in
practice.

A very considerable range was used in the number of elements chosen for
the various linear array studies. Naturally it is desired to keep the number of
elements to a minimum, thereby keeping the complexity of the array to a minimum.
As will be easily noticed in this study a very large number of elements was used
in order to approach the directivity and beamwidth requirements which were
originally set as objectives. Careful consideration was given in extending the
studies to longer and longer linear arrays. It was important to assess the advan-

tage of adding additional elements.

2.4 Random Errors in Arrays

Although the benefits of increasing the number of elements in the assumed
case of isotropic radiators may seem worthwhile, the practicality of adding elements
should be questioned. One can, in principle, specify the distribution of illumination
across the array aperture and expect the resulting radiation pattern to be as pre-
dicted. In practice, however, there will be unavoidable errors in the illuminations
excited at the aperture, and the actual radiation pattern will differ from that
predicted by theory. The agreement between the two depends upon how well the
desired distribution of illumination across the array aperture can be achieved.

Errors in the aperture illumination can be divided into two types depending
upon whether they are predictable or random. An example of a predictable error

is the finite quantization of the phase produced by a digital phase~shifter. Random
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errors are caused by the accidental deviations of the antenna parameters from
design values. Although these errors may be small, they are always present
and can limit the minimum sidelobe level that can be achieved just as random
ncise limits the sensitivity of a radio receiver. Random errors will increase
the sidelobe level, cause a reduction in the gain, and cause errors in the direc-
tion of the main beam.

An array antenna radiation pattern may differ from the desired radiation
pattern because of: (1) errors in the illuminations at each element, (2) errors
in the phase of the illuminations, (3) missing or inactive elements (due to catas-
trophic failure), (4) rotation of the radiating element (faulty alignment of element
polarization), (5) translational errors in the element location, and (6) errors

in the radiation patterns of individual elements.

2.5 25=Element Arrays with Uniform Illumination but Varied Spacings

This set of studies designated with the prefix A and shown in Figs. 5
to 13 inclusively, consists of a number of computer studies on 25-element
arrays. Each of the arrays is characterized by uniform illumination over the
array aperture. The fact that the uniform illumination persists is implied by the
choice of CA1 which is a very large value. The unequal spacing is described
by the values of CZ1, CZ2, CZ3. Refer to the legend given on pages 8 and 9
for a description on the use of the various parameters mentioned. The studies
in this section are preliminary in the sense that they were the first studies to be
made using the computer display tube. These early studies were made with polar
plots which were convenient for the small number of elements used. However, it
was soon learned, as shown in subsequent studies, that a rectangular plot was
much preferred, especially for large arrays with many side lobes. Each array
pattern shown in this group actually has two major lobes. The narrower main
lobe at 90° in each case corresponds to an illumination so that the array radiates

in a broadside direction. An additional plot has been made which shows the array
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radiating with the phasing adjusted for a scan angle of 60° from broadside position.
However, this has been plotted as a mirror image to minimize overlapping in the
sidelobes. It is to be noticed that the beam is wider than a main beam as would be
expected. To re-state the above, the wide lobe which appears to be at 330° is
really the main beam at a position of 300; that is, the beam as shown in the fourth
quadrant should really be in the first quadrant. In observing these preliminary
studies it will be noted that the small number of elements with uniform spacing

and various illuminations provide beams that are considerably wider than required.
Likewise the sidelobe levels which are observed are not sufficiently low to approach
the requirements as originally stated. The plots shown are based on a linear power
scale.

It will be noted that some examples in this group of preliminary studies
commenced with the basic spacing of 0. 33X at the center with the successive
spacings increasing slightly as one progresses outward from the center. Values
of the parameter CZ 2, which influence the spacing, were from 1.0 to 1.04. The
parameter CZ 3 was kept constant throughout these studies. It is to be noted at
the top of each study, the beamwidths for the two positions of the main beam have
been printed on the computer output.

The following trends are observed: In cases where the spacing increased
most rapidly in departing from the center, it can be seen that the beamwidths tend
to be less than in other studies. There is some limitation on this phenomenon
because ultimately as the spacing increases the problem of grating lobes occurs,
resulting in an undesirable high level of lobes. It is also noted that with the beam
in the scan position 60° from broadside, the beamwidth is increased by the secant of
the angle of 600, or in other words, for this scan position the beamwidth is twice
that for the broadside beam position. Of course the principal reason that the heam-
widths are as large as they are is that in this series of studies the restriction of
25-elements has been imposed. Also it is to be observed that the relatively high

sidelobe level corresponds to the fact that the illumination of elements was main=~
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tained uniformly throughout the array. A tapered illumination would be helpful in
reducing the sidelobe level. This latter variation is implemented in subsequent
studies. The studies in this group are labeled consecutively starting with A-1 and
running through the number A-9.

For illustration in interpreting the studies consider Study A-1. The top
half of the display shows the beam in broadside position; the beamwidth is printed
out as 6. 10. Since an array of isotropic radiators is considered the radiation
pattern around the axis of the array is circular. The directivity for study A-1
with the beamwidth mentioned is 12, 7 dB; this value neglects the sidelobes.

The bottom half of the display shows the beam in a scanned position of 60° from
broadside; its beamwidth as printed out is 12. 40. Note there are 25 elements.

The value of CZ 1 being 0.333 and CZ2 being 1. 000 and CZ 3 being 1. 000 indicate
a uniform spacing between elements of 0.333X. The value of CA 1l being 0.1x 107
assures that, practically speaking, the illumination is without taper (all elements
have the same illumination). The values of Z printed give the positions of all
elements since symmetry exists.  For this particular study all of the A's

are equal to 1. This indicates each element has the same illumination of normalized
value 1. Other studies may be interpreted in a similar way. Occasional reference
to subsection 2. 1 will help.

It is interesting to contrast Studies A-1 through A-~7, all having uniform
spacing, with Studies A-8 and A~9, which have non-uniform spacings. The latter
two studies each show a substantial second lobe for the scanned position of 60o
from broadside of the main beam. For Study A-8 the large secondary lobe is about
70° from broadside (130o from main lobe). For Study A-9 the large secondary lobe
is 60° from broadside (1200 from main lobe). These large secondary lobes are
not strictly grating lobes since they are not as large as the main lobes. However,
these secondary lobes have their origin in the increased spacing (above 0.5X) of
some elements, in particular, elements near the ends of the two arrays involved.

Since all elements do not have the necessary excessive spacing a full size grating
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lobe does not occur in Studies A-8 and A-9. Note in Study A-8 the element spacing
at the extreme end of the array is 0.622X whereas the spacing at the center of the

array is 0.5A.

2.6  Studies on Variation of Tapered Illumination

In these B-series studies shown in Figs. 14 to 29 inclusively, the spacing
was uniform for all studies. For some of the studies arrays of 150 elements were
used and in others 250 elements were used. The illumination in each case is con-
trolled by the parameters CA 1. the use of this parameter is described in sub-
section 2. 1. Smaller values of the parameter CA 1l correspond to greater amounts
of tapering. The direct computer plots on these studies have been made on a
rectangular coordinate basis. Please notice that here the vertical scale corres—
ponds to dB power. The horizontal scale is a degree scale. The overall extent
of the horizontal scale is 1800, which corresponds to 18° markings on the scale.
The computer program provides for an expanded horizontal scale wherever
necessary. It is possible to call for this expanded scale and this has been done
in some studies. This expanded scale is extremely useful for determining the
beamwidth and also to show further detail on the sidelobe structure. It is to be
noticed that in the data on the 150-element arrays the beamwidth of the main beam
is very small, being of the order of 1°. The beamwidth of the main beam is even
smaller on the 250-element studies, as can easily be observed. It is to be noted
that with 250 elements improved performance can be observed. For instance, in
Study B-12, using 250 elements and with considerable illumination taper, it is
found that a significant directivity has been achieved. Unfortunately, a printout
of the beamwidth for the rectangular plots was not requested; this request could
have been made as in the polar plots of the A series. Reading the beamwidth
from the rectangular plot would enable the directivity to be computed approxi-
mately although such a reading is not at all precise. The main beam can be
measured more accurately on an expanded scale as is shown in a later figure

which indicates that it is about 10. Note that the sidelobe structure is such
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that all lobes are below 40 dB as compared with the main beam.

Please note in the studies relating to graded illumination of elements that
all of the studies were made for a scan angle corresponding to 60° from the broad-
side position or as noted on the individual figures corresponding to an angle of 30°
as measured from the plane of the array. In commenting on the observed results
it should be pointed out that the great reduction of sidelobe level which occurs with
the cases showing a steep gradation of illumination is strictly in accordance with
what would be anticipated from analysis. Analysis of this type of dependence of
sidelobe structure has been made in the literature. Just as a square pulse needs
high frequency components in order to be synthesized, so a square distribution of
illumination (uniform distribution of illumination of elements) corresponds to the
occurence of many sidelobes with substantial level of such sidelobes. Thus we
see a distinct advantage for large amounts of taper. However, large amounts of
taper also pose problems which must yet be considered. In an actual antenna
array a large amount of taper is difficult to maintain accurately because of
mutual coupling effects. Loss in efficiency also occurs with a high degree of

taper in the illumination.

2.7  Studies Illustrating the Grating Lobe

All of the C-series of studies, shown in Figs. 30 to 35 inclusively,
were made with arrays of 250 elements. Some of the studies were made with
0.6 uniform spacing. In others of the studies, a uniform spacing of 0. 754
was used. Please notice that both of these spacings exceed the 0.5 spacing
which is commonly used for many arrays. Grating lobes are possible only when
the uniform spacing exceeds 0.5X. Actually the onset of grating lobes depends on
the scan angle (see equation (1.1)). For a scan angle of jr_GOO no grating lobes
occur for uniform spacing less than 0.53; for a scan of i45O no grating lobes
occur for spacing less than 0.59X. The various amounts of illumination taper
were used in these studies. It is to be observed that illumination taper does not

provide a means for eliminating grating lobes. On the other hand, for arrays
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which have unequal spacings of elements it is possible to have some spacings
exceed the critical values mentioned without running into the presence of grating
lobes or large secondary lobes. It should be mentioned that a grating lobe is a
second main lobe in the visible region. Strictly speaking, grating lobes do not
occur for arrays with non-uniform spacing. Please note that the grating lobes
shown in this series of figures are about the same size as the main lobe. There
appears to be some tendency in the cases computed for the grating lobe to increase 3
slightly in magnitude as the amount of illumination taper increases. Studies num-
bered C-3 and C-6 are cases which illustrate the slight increase in grating lobe
level which has been observed as the illumination taper has become relatively
large. So far no simple explanation for this situation has been found. Again in
this group of studies the computer has provided information for the extreme scan
angle position of 60° from broadside. As depicted in a series of illustrations
here, the range of angles shown from O to 180° is what is considered to comprise

the visible region for a linear or planar array.

2.8 Computer Simulations of Tschebyscheff Arrays

The series D patterns show the results obtained from the study of T'scheby-
scheff illumination on linear arrays; the patterns are shown in Figs. 36 to 42
inclusively. An antenna array having a radiation pattern corresponding to the curve
of a Tschebyscheff polynomial is one for which the sidelobes are of uniform height.
Also this uniform height corresponds to having the lowest sidelobe level of any
possible illumination distribution almong the elements of the array. Other
illuminations which would result in a different sidelobe structure must have one
or more sidelobes higher than the others. The order of the Tschebyscheff poly-
nomial which corresponds to the radiation pattern is related to the number of
elements in the array. In the studies on Tschebyscheff array simulation not all
of the patterns correspond to true Tschebyscheif curves. The reason for this
is that it was found that the illumination taper, in order to provide a true Tscheby-

scheff pattern, was, of necessity, very steep. This meant that there was an
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extreme range of power level between the center element and the end element of
an array. It is interesting to note that in order to achieve a Tschebyscheff pattern
the required illumination function to provide the appropriate tapered illumination
is approximately in the form of a simple exponential of the common base "'e" to a
negative exponent. This negative exponent has as its value distance squared
divided by the parameter CA 1 where the distance is that from the element involved
to the array center. For this mathematical form you are referred to subsection
2.1 which indicates the various formulas which utilize the specified parameters
for the arrays. The computer simulations of Tschebyscheff patterns use various
numbers of elements. However, each study involved a uniform spacing of 0.5A.
The degree to which an actual Tschebyscheff pattern was realized depends upon
the steepness of taper of the illumination. The exponential distribution of
illumination used varies from study to study. A large negative exponent in

this exponential corresponds to a severe tapering of the illumination. It is to

be noted that the case with the largest negative exponent provides the best
Tschebyscheff radiation pattern. However, it is also necessary to consider

that the size of the negative exponent does not depend alone on CA 1 but rather
on the squared distance from the center to the element involved divided by CA 1.
There is no printout on the patterns shown which indicates simply the greatest
taper. In judging the patterns in this respect both the number of elements and
the values of the parameter CA 1 must be considered. Note that the horizontal
scales for the patterns in this group vary from pattern to pattern.

Pattern D~1 shown for a 25-element array, resembles closely a true
Tschebyscheff curve. This pattern was taken for a main lobe in the normal broad-
side position although part of the main lobe is not shown. If the peak of the main
lobe was shown it would be noted that the sidelobe level is very low compared to
cases in series A using the same number of elements.

Radiation pattern D-2 is for the same number of elements as D-1 except
that the illumination taper is less; correspondingly it can be observed that the

pattern departs from the true Tschebyscheff type and there is a marked variation
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in the levels of the various sidelobes present. In this radiation pattern it is
possible to be misled because of the small angular scale. At first glance, it
would appear that the highest sidelobe is lower than the highest sidelobe in the
previous radiation pattern D-1. However, this is not the case since other side-
lobes are obscured because of the small angular or horizontal scale. Those
sidelobes which are not immediately apparent have appeared to merge with the
main beam; however, they are present and a more detailed representation of
the pattern using a larger angular scale would immediately show up the presence
of additional sidelobes.

Pattern D-3 shows the influence of increasing the number of elements to
200. The beamwidth has now become 1. 430 as compared to the 6. 60 for the
previous 25-element array.

In radiation pattern D-4 the number of elements has been increased to
280 and, as would be expected the beamwidth is reduced still further. The
beamwidth now is approximately 10.

Radiation pattern D-5 taken for a 200-element array with a very steep
illumination taper shows a pattern which very closely approximates a Tscheby-
scheff curve. With the large angular scale here most of the sidelobe structure
is not available for study. Notice here that the beamwidth is 1. 7°. This should
be compared with case D-3 which was for 200-elements which has 1.40 beamwidth.
By more closely approximating the Tschebyscheff radiation pattern we have
reduced the sidelobe level approximately 10 dB for a given number of elements
(200) but in achieving this there has been some increase in the beamwidth.

The radiation pattern shown in case D=6 for 220 elements is close to the
case previously described in D-5. However, the additional elements have caused
the beamwidth to be reduced to 1. 480. The large illumination taper is close to
optimum for a Tschebyscheff radiation pattern. In comparing D=3 and D-6 it is
observed that the beamwidths in the two are almost exactly the same, but the
sidelobe level in D-6 has been greatly reduced. This has been accomplished by

having the more nearly optimum illumination for a Tschebyscheff radiation

62



pattern. Of course it has been necessary to increase the number of elements
to maintain the beamwidth of the D=3 pattern.

In the radiation pattern depicted for case D-7, it is to be noted that
increasing the number of elements to 300 has provided a pattern with a beam-
width of 1. 07 degrees. The sidelobe level is still more than 40 dB below the

main beam.

2.9 Optimization in the Presence of Power Constraints

In this phase of the study, the ratio of the power fed to the center element
with that fed to the end element was kept constant. This constraint is practical
since in an actual array synthesis problem, mutual coupling effects tend to limit
the range of power levels fed to individual elements in an array. The two levels
of power constraints utilized in these studies were -9dB and -12 dB, or in other
words, the amount of power fed to the end element in the array was 1/8 and 1/16,
respectively, of that fed to the center element. All cases studied in this section
utilized the familiar negative exponential taper as discussed in section 2. 8.

Three separate cases using the idea of power constraints were examined.
The first two involved the application of ~9dB and -12dB constraints to uniform
arrays with half~wavelength spacing. The third case concerned the application
of a =9 dB constraint to space-tapered arrays. Each case involved 8 arrays
ranging in size from 50 to 400 elements in increments of 50 elements. A scan
position of 60° from broadside was used for each array. Array patterns were
plotted on a rectangular scale and the detailed sidelobe structure about the main
lobe was studied carefully to determine the correct level of the maximum sidelobe.

The first case to be considered is the application of a =9 dB power constraint
to uniformly spaced arrays. The array patterns for this case are designated by
the letter E and are shown in Figs. 43 through 46, inclusively. These
patterns indicate that the sidelobe level remains relatively constant at a level
of ~20dB independent of the number of elements in the array. As expected,

the beamwidth tends to decrease as the number of elements increases. The
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design level of 0. 8° is reached somewhere between 250 and 300 elements. (For
250 elements, BW = 0.9°, for 300 elements, BW =0, 7°.)

Next, a -12 dB power constraint was applied (o a set of uniformly spaced
arrays. The patterns for this case are denoted by the letter F and are shown in
Figs. 47 to 54, inclusively. As in the previous case, the patterns indicate
that the sidelobe level remains relatively constant, independent of the number of
elements in the array. The sidelobe level was -30dB for this set of arrays, a
noticeable improvement over the case where a -9 dB constraint was applied. As
before, the beamwidth tended to decrease as the number of elements increased.
The design level of 0. 8° was reached somewhere between 250 and 300 elements.

The final case studies in this section utilized a -9 dB power constraint on
a spaced tapered array. The patterns for this case are denoted by the letter G
and are shown in Figs. 55 to 61, inclusively. The tapering parameters used
were CZ1=0.5, CZ2=1.05, and CZ3=1.00, (Please refer to subsection 2.1
for a detailed explanation of these terms.) This means that the distance of the
nth element from the center of the array is (0.5)(1. 05)" wavelengths. The
sidelobe structure obtained for this case was very poor due to the grating lobe
effect discussed earlier. This fact yields further evidence to the thought that one
must have a more systematic way of obtaining space tapering if grating lobes are
to be avoided. Such a method is developed subsection 2. 10 dealing with the steepest
descent method.

Finally, it should be noted that there was nothing magic about choosing -9 dB
and -12dB for the level of power constraint. Depending upon mutual coupling effects
and the actual size of the array, less restrictive constraints could be applied to
yield lower sidelobe levels. In the absence of detailed coupling data for large
arrays, the value of this section is in observing general trends rather than in

designing specific arrays.

2.10 Optimization by Steepest Descent Technique

A computer program was written to implement the steepest descent technique.

in the synthesis of antenna patterns. The resulting patterns are for linear arrays
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symmetrical about a center point. In this first use of the steepest descent
technique, the amplitudes of the elements are specified, and the element
positions are varied to obtain the desired pattern.

The steepest descent technique is a general method and is not restricted
to the examples described. It should be applicable to planar as well as linear
arrays. Other parameters could be adjusted instead of the element positions
to obtain the desired pattern, or they could be adjusted in addition to the element
positions.

The synthesis of the non-uniformly spaced linear array is now considered.
The array pattern P is defined:

NokR R

p= Zb e N (2.13)
n

n=1

where bn is the relative level of excitation of the nth element including phase,
and RN is the distance of the nth element from the origin. Let

-jzncos(u“'m
b =a e . (2.14)

Then for an even number of elements the calculated pattern is:
N/2
P = Za cos [kz (cos0 -cos 9)} (2.15)
c n n m

n=1

where the elements are numbered from the center. Note that PC has a maximum
value when 6 = Gm. It is assumed that the a are real and have magnitudes
adjusted so that the maximum value of Pc is unity.

Let PS(B) be some specified array pattern given as a function of 6. An
example is shown in Fig. 62. The synthesis problem is to find a combination
of the element positions z producing a pattern Pc’ which matches as closely ,
as possible the specified pattern Ps . Define an error function El(e) = PS(G) - PC( 0)| .

An error function over the entire synthesis range of 6 is defined:
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Beam Width 6 —=

Fig. 62: Specified Array Pattern

M

L _ 2
El—z [PS(Oi) Pc(Gi‘)i] (2.16)

i=1

where 91,""6M

spaced closely enough to give an accurate value of the error for all values of

are n specified directions. It is assumed that the Bi are

6 in the synthesis range. If more emphasis is placed on certain values of 6

than on others in the design procedure, a weighting function W ) can be

(6,
i

introduced so that equation (2. 16) becomes

M
2
El--ZW(Bi) [PS(Oi)-PC(GJ . (2.17)
i=1

For simplicity in specifying the pattern Ps , it will be defined positive and the
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error function will be defined

M
2
E -2 w(ei) [PS(Gi) - ipcwi)ﬂ (2.18)

i=1

From equations (2,15) and (2. 18) it is seen that E is a function of the z - Let z

be the vector

Z= (kzl, kz, ,..., kz_). (2.19)

27 N

Then E=E(Z) . (2.20)

The problem then is to find the minimum value of E (Z).
The method of solution (Perini and Idselis, 1971) is known as the conjugate

gradient method or the method of steepest descent. A gradient can be defined

OE oE 0E
VE(Z) = T, T, e, (2.21)
c')kz1 8k22 8kzN
where from equation (2. 18)
M
0E a
okz, B 22W(91) [Psmi)_ lpc (ei)ﬂ (-1) okz, ’Pc(ei) (2.22)
o= j
and from equation (2. 15)
a| PC(Bi)I
T:—Slgn[})cwi) aN(cos Gm- cos Oi) sin kzj(cos Gm— cos Bi) . (2.23)

J

0 -
Suppose that initially one has a vector Z and an error EO. For example, zo
might correspond to a uniformly spaced array. From equation (2.21) the greatest
decrease in E is accomplished for a given change in magnitude of Z when the

change in Z is opposed to the gradient of E. That is,
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7'=7-KVE® . (2. 24)

This represents the n equations

' e 1,0 oE
kzl kzl K akzl
(2.25)
A oE
kzN kzN K okz
N
The corresponding near value for E is approximately
E (7)Y E% 25| Akp +...+ 2E Akz (2.26)
p okz 1 okz N
1 Eo N .Z_o

where Akzi represents the change in the ith position and E° = E(zo). Equation

(2. 26) can be written

Ep(z')¥E°+ vE®(z'-2°) (2.27)

or from equation (2. 24)

2
Ep(z')? E°-K(VE®) . (2.28)

The constant K is chosen so that the value for E(Zz') given by equation (2. 27)
is comparable with the true value given by equation (2. 18) (Eveleigh, 1967). The

purpose of this restriction is to assure that the gradient vE® = VE 5=5° is not

greatly different from the gradient VE'=VE s=gt" A practical condition

(Eveleigh, 1967) is that

AE -AE
P ¢

< 2.29
oE, .6 (2.29)

AE - AE
—P ¢

> 2.30
AEC .2 (2.30)
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where A Ep , the predicted change in error, is given by equation (2. 29)
0.2
AEp=—K(VE ) (2.31)

and A Ec , the calculated change in error, is given using equation (2. 18)

—_
oo

AEC= E [Zo] -E [_Z_,] .32)

If K is so small that Ep is very close to the value Ec , then it will take more
iterations than necessary to find the minimum error. However, if K is so large
that Ep is very different from Ec , it is not assured that the iterative procedure
will converge.

The first step in using criteria of equations (2.29) and (2. 30) is to get an
initial value of K. The criterion for choosing an initial K in the example is to
specify that the spacing between any two elements should change no more than five

percent at the first iteration. Then it is desired that:

— _(.0_0 < o_ o
(Zi Zi—l) (2, Zi—l) < 0.05 (2, zi—l) . (2.33)
From equation (2. 24) then
o0E oE o o
- + <0.0 . = . 2.34
Kot T Kotk | SO0 (77 (2.34)
i i-1
Thus:
o o
%7 i1
K< 0.05| %% Y (2.35)
okz, 9d(kz. ,)
i i-1

Noting equation (2. 19) there results:

(kz,) - (kz, )

= L=2,...,
K = 0. 05 max 5 5F ,

a(kzl)_ 9 (kz

(2.36)

l-—l)
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Once the iterative procedure is begun the value of K is controlled by the tests
indicated in equations (2.29) and (2. 30). If equation (2. 29) is true K is increased
by 50 percent. If equation (2.30) is true K is decreased by 20 percent. Other-
wise, K remains the same. After the above tests are made, the test is made to
see if the new value for the error E' is less than the error at the previous step
EO. If it is a new step in the iteration is taken. However, if E'> EO, the
previous step is repeated with the new value for K. That is, the just calculated
element positions are dumped, the element positions are restored to the values
they had at the beginning of the step, and a new set of element positions is cal-
culated using the new value of K.

A numerical example will be used for illustration. It is desired to lower
the sidelobe level of a 200-element uniformly spaced symmetrically excited array
by varying the element spacings. The spacings must be varied so that the
elements are spaced symmetrically about the center. The designis to be terminated
if the element spacing is required to be less than 0.42. The element excitation

is shown in Fig. 63. The specified pattern PS is of the same form as Fig.

B
n
1.0 (0 dB)
0. 355 (-9 dB)
1 | - 1 ]
T 1 ! ’ !
100 50 50 100

Fig. 63: Element Excitation
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with a beamwidth of 1° and a uniform sidelobe level of 0.01. The pattern

is assumed to be normalized with the maximum value at 9m= 90°. The weighting
function W(Bi) is chosen so that W(89.5%) = 225 and all the remaining values

are unity or zero, depending on whether Ps < PC or PS> PC , respectively. The

z vector is initially chosen so that the spacing between any two elements is 1/2.
There are 450 values of Oi chosen to assure a good pattern match. These angles
are chosen so that the point density close to the main beam is greater than it is
away from the main beam.

After two iterations the height of the maximum sidelobe was reduced from
-17.8dB to -25dB. The flow chart for the numerical work is given in Fig. 67.
The initial pattern Pc(zo) is given in Fig. 64, and the pattern after two itera-
tions is shown in Fig. 65. After the second iteration, the minimum spacing
was 0.408X and the maximum spacing was 0.56A. The total array width was

98. 6 as compared to 99. 5 for the original uniformly spaced array.
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Fig. 66: Overlay of original pattern and pattern after two iterations.
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Fig. 67: Flow chart for synthesis of an unequally spaced array.
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III. DISCUSSION AND CONCLUSIONS

The use of the CALCOMP Unit in connection with the IBM 360/67 computer
was helpful in portraying the influence on linear array characteristics in response
to changes of various parameters. The series of computer studies did not result
in new principles being evolved. Rather, the accomplishment was to observe the
influence of changing many parameters. The series of studies showed approxi-
mately what would be necessary in the number of elements, spacings and grada-
tion of illumination in order to satisfy the requirements of a high performance
linear array. The CALCOMP method utilized could possible be extended to
planar array work. However, this would require a considerable complication
in the programming. Furthermore, for this CALCOMP display it would be
necessary to obtain various cuts for the pattern of a planar array.

As would be expected the various computed patterns verify the following
established dependencies: (1) increasing the length of the array results in a
narrower beam, (2) for a uniformly spaced array tapering the illumination
of the elements from the center to the extreme ends results in lower sidelobe
levels, (3) increasing the spacing of a uniformly spaced array ultimately
results in the presence of grating lobes in the visible region, (4) the beam-
width of an array increases as the position of the beam departs from the broad-
side position, (5) with unequal spacings of elements it is possible to have some
spacings exceed the critical value of 0. 552 without the occurrence of grating
lobes, (6) for a linear array of uniformly spaced elements it is possible to
have an illumination taper such that the resulting array pattern is the same
shape as a Tschebyscheff polynomial.

The mathematical method of ''steepest descent'' has been made applicable
to a simple linear array. The results of computations on a 200-element linear
array using the ''steepest descent'' method shows an improvement is obtained.

This means that it is possible to take a linear array which roughly approximates
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the desired performance of the array and then by the method of steepest descent
calculate the changes necessary to make the final array come up to the required
performance, i.e., to make the required array have the radiation pattern that

has been prescribed.
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13 ABSTACT

This report contains information obtained by numerous computer studies of linear arrays of
isotropic clements. A large range of numbers of elements were used. Various formulations were
used to provide control on the degree of non-uniformity of spacing. Provision was made so as to
provide a gradation in the illumination of the various elements used. It was found that a simple
exponential relation provided illumination corresponding simultaneously to a Tchebyscheff type

radiation pattern.

1t was decided that for practical purposes some restraint should be provided on the grading
of the slot illumination from the center slot to either extreme end slot. Therefore, in some of
the studies utilizing an exponential variation of illumination, an arbitrary limit was imposed which
required the illumination on the end slot to be either 9 or 12 dB below that of the center slot.

Considerable work was done on an optimization process, which has been classified as the
method of steepest descent. In the steepest descent method a change in spacing is made in the
direction that causes the most rapid rate of change (reduction) in the difference between a pre-
scribed radiation pattern and the obtained radiation pattern. In other words, the change to he
made was always in the direction so as to decrease the error or difference between the two
patterns most rapidly. In applying this optimization procedure it was decided that it was
appropriate to start with an array already reasonably designed. For instance, if a broadside
Tschebyscheff array was selected, the optimization process would be applied and changes would
be made in the spacings of the elements so that the sidelobe levels would be reduced.
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