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CHAPTER I

INTRODUCTION

1. The Scope of the Investigation

This work is a study of finite-amplitude axisymmetric gravity waves
in a circuldgr basin of uniform depth. Only periodic, free oscillations of
the fluid are considered. The analysis is carried out for a standing wave
whose motion to the first approximation is that of the first mode. However,
the same procedure may also be used for motion corresponding to another mode.
The fluid is assumed to be a non-viscous incompressible liquid.

The relative depth of the liquid (that is, the ratio of the depth
to the radius of the basin) is not limited a ggig{i to either of the extreme
cases of very large or very small values., Rather, the depth is allowed to be
completely general. It is seen that at certain discrete values of the rel-
ative depth a coupled motion can occur in which a higher mode at a frequency
equal to an integral multiple of the primary frequéncy is ¢f the same order
of magnitude as the primary mode. The motion for the depth equal to or very
nearly equal to one of these particular depths is investigated by an appro-
priste modification of the general solution.

The main difficulty in obtaining the solution to the problem is the
task of satisfying the two non~linear free-surface boundary conditions. These
¢onditions, in addition to being non-linear, must be applied at a moving bound-
ary whose position is itself an unknown to be determined. An iteration process

is followed in satisfying these conditions.
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This problem was selected for study primarily because it is funda-
mental in the fields of fluid mechanics and non-linear vibrations. It may,
however, have practical application to the phenomenon of seiche or mass
oscillations in harbors. It may also be useful in pointing the way toward
the solution of other, not necessarily related, non-linear problems in

cylindrical co-ordinates,

2. Historical Outline

In the past hundred fifty years many investigations have been devoted
to gravity waves. A number of the more important works will be mentioned
briefly here; others are listed in the bibliography to this dissertation and
in the excellent bibliographical sections of the books by H. F. Thorade(99) 1
and J. J. Stoker(58), It is unfortunate that until very recently finite~
amplitude waves in deep water and in shallow water have been treated as se-
parate problems rather than as two aspects of the same problem.

The earliest analytical study of progressive gravity waves apparently
is that for the case of infinite fluid depth given by F. J. von Gerstner(8) in
1802, and also independently at a later period by W. J. M. Rankine(lS) in 1863,
which presents a form of wave motion possessing vorticity. Virtually all sub-
sequent writers, however, have rejected this form, arguing that the wave motion
can be generated from rest and hence nust be irrotational.,

Progressive finite-amplitude waves in water of infinite depth and in

(2k)

water of large but finite depth were studied by G. G. Stokes in 1847 and

Lord Rayleigh(l9) in 1876. The existence of such waves when the depth is in-
- . c rroxeo(12) (26)
finite was proved in 1925 by T. Levi-Civita ; the next year D, J. Struik

extended this proof to the case of finite depth.

1 The numbers inrasised parentheses refer to entries in the bibliography.



Periodic waves, progressing without change of form, in shallow water
were first indicated by J. Boussinesq(é) in 1877. The name "cnoidal waves' was
applied to these by D. J. Korteweg and G. de Vries(lo) in 1895. Further study
of cnoidal waves was mede in 1940 by G. H. Keulegan and G. W, Patterson(ul>.

The solitary wave, which consists of a single intumescence, was first
observed by J. Scott,RusséLﬁzl)(eg)(gj) in 1838 and subsequently studied by
H. Bazin(g) in 1865 and J. Boussinesq(u) in 1871. The solitary wave may be
thought of as the limiting case of a wave of infinite wave length and hence
belongs in the shallow water class, K. O. Friedrichs and D. H. Hyers(ah) proved
the existence of solitary waves in 195L.

By replacing the exact non-linear dynamic free-surface boundary con-
dition by another non-linear condition approximating it,2 T, V. Davies(32) in
1952 obtained a solution for progressive finite-amplitude gravity waves which
is applicable over the entire range of depths. Provided his approximation is
valid, both the solitary wave and waves in an infinitely deep fluid are special
cases of Davies' solution.

Much less study has been devoted to standing waves. The motion of
an infinitesimal-amplitude standing wave is rather easily obtained and is

(11)

discussed by H. Lamb for several geometrical configurations. The theoret-

(46)

ical and experimental work of J. S. McNown in 1953 should also be noted.
To the author's knowledge the only theoretical study of finite-amplitude stand-
(49)

ing waves prior to the present work is that of W. G. Penney and A. I. Price

who in 1952 analyzed such waves in a rectangular co-ordinate system.

2 This approximetion is of the type, © %ﬁ% sin 3 6, (]9] 5‘% ).



CHAPTER II

THE PROBLEM AND ITS SOLUTION

1. The Governing Equations for Axisymmetric Standing Waves

The equation governing the irrotational axisymmetric motion of an

—

incompressible non-viscous fluid is, in terms of the velocity potential 4),

. -
Vi $ =0 (1)

in which .
eh 9 0
e — —, *t T T v T
V> = )52 a4 x93t (2)

is the two-dimensional Laplacian operator. As shown in Figure 1 the origin
of the co-ordinate system is on the axis of the cylinder a distance H above
the bottom, where H is the mean depth of the fluid.

The requirement that the velocity normal to the solid boundaries

must vanish is expressed by the conditions

= ° J = -H (3)
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On the free surface, given by % ==7[65,77, both kinematic and dynamic

boundary conditions must be satisfied. The kinematiec condition is

DF .
Y n (5)

D
in which = is the substantial derivative and F = O is the equation of the free

-

D+
surface, Setting F ==E'-5i and performing the indicated differentigtion yields

<ho



Figure 1. Co-ordinate System and Geometric Configuration
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as the kinematic suyface boundary condition.

In the present co-ordinate system the Bernoulli equation tekes

o

- 8<P _ JE_

a¢ - -~ a¢ -
1 + = g2 +
in which the reference pressure 5; is chosen to he the atmospheric pressure
acting upon the surface of the liquid For convenience later on the time
function of integration F(t) is merged in ¢ . When a specific form of ¢ is
assumed, in the next section, it will be pointed out which parts of ¢7 correg-
pond to the F(T) of equation (7). At the surface p equals 55 and the dynamic
surface boundary condition is

2%, 04 o i=7

— -4 2=
57 (an) ( ) y . ®

Since the volume of the fluid remains constant,

//7[ dh =0 | (9)
A

where dA is an element of area in a plane normal to the g-axis. Setting

JA =h J)T JG and performing the integration with respect to 6 , we obtain

R
/571911'7':0 . (10)
0

Equation (1) together with the boundary conditions (3), (&), (6)
and (8) and the statement (10) constitute the governing eguations of the

system, The barred quentities appearing in these équations are dimensional.
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Let us now introduce dimensjonless independent and dependent variables as
follows:

7
A= g

Z -
3 Z‘:ﬁ 3 szj (ll)

¢ ]

d) = S—— 6 = — -
> YT wR ) TR Y PSR 0
W (dimensional) is the frequency of the oscillation. The depth is made
dimensionless by —
= o (13)

= — . 13

R

H is thus the relative depth parameter (hereafter called merely "depth").
An upper case G is written for the non-dimensionesl gravitational accelera-
tion to emphasize the fact that, although it takes the place of g in (8), it

is a dependent variable which determines the frequency.

The dimensionless equations governing the system are thus

v’a b =0 (1k)

09

T -0 - -

- J 2 H (15)
.a__gi. = 0 J n =1 (16)

(17)
g'%i 6 'é(aéﬁp)a“ %(%4?)&: 6N o 2= (18)

]ﬂh%:O. (19)
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2. The Solution at General Depth

Through the use of the method of separation of variables it is seen
that the solution of equation (14) which is finite throughout the fluid region

and which satisfies the linear boundary conditions (15) and (16) is

d = A wohKzrn) T ) T (20)

provided that K assumes the discrete positive eigenvalues Kn for which

t)"(l’{n):o (»y\:})a)u».) . (21)

Jo(Kr) is & Bessel function of the first kind. The first five eigenvalues

are given in Table l.5

TABLE 1

THE EIGENVALUES Ky,

n K

1 3.83170 59702
2 7.01558 66698
3 10.17346 81351
k 13.32369 19363
5 16,47063 00509

Equations (14), (15), and (16) are linear; hence any linear com-
bination of the eigenfunctions given in (20) will also satisfy (14), (15), and
(16). Restricting our attention to periodic solutions, we accordingly choose

the following form for ¢ :

Z i A'mm"m:jjk(;H ) ];(I’Ymn) ain of F
m=| n=0

(22)

i ook K, (2+H) T

Z‘Z’M’ MKH o( n)m»mf

3 The first 150 values of K, are given to ten decimal places &glfven to thir-
teen significant flgures) in the British Association Tables
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The n = 0 terms, in which K, is defined to be zero, are independent of
the space variables and thus correspond to the F(t) which was merged
with ¢ in writing the Bernoulli equation in the form (18). These terms
mske no contribution to the velocitieg; they are included with ¢
solely for convenience.

The surface elevation n(n, 1)is represented in the form

0o 0
7[()1,1):21&17) o mt  + E I_Q} Arn ‘ (23)
m=0 m=j

Because of the long and complicated nature of the
expressions obtained for Ay, B ,J.., and G, several shorthand nota-

tions are defined below and used hereafter:

Ti 2 T,
(24)

.= K L= . , =
R LR ER LTRSS V]

The subscript i appears in this work soleiy as 0 and 1.

The frequency of an oscillation whose motion is to the
first (thet is, linear) approximation that of the first axisymmetric
mode will be denoted by (v (dimensional). Then the Ay and By; terms
in (22) correspond to this motion. Since this is a steady-state oscilla-
tion, there is no natural time origin in contrast, for example, to the
case of release from rest at seome initial configuration. Therefore; the
time origin can be chosen arbitrarily. In particular, if the time
origin is chosen such that Byj is ldentically zero, All is the para-
meter which determines the amplitude of the motion. Its magnitude is
allowed te be arbitrary within a certain upper limit, This upper limit,

corresponding to a breaking wave, will be discussed in detail in Section
L of Chapter III. It is assumed that all other Anp and an are of order
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";
CSYA/f) or higher. The order-of-magnitude assumptions may be summarized as

A ] = &(A Il)
B, =0

All other A, and By, = Cy(A;> or higher.

(25)

It is further assumed that in satisfying the free-surface boundary
conditions (17) and (18) terms of order C%CA:> may be neglected in comparison
with terms of order OF(A)) 1in the first approximation. Similarly, in the
second approximation terms of orders 69(A3>and C%Cﬁﬂ)are retained while
terms of order C}C4i> or higher are neglected, et cetersa.

The following procedure is used for satisfying the surface boundary
conditions. The approximations are made in order, first, second, third, etc.
The assumed forms of ¢ and 7| in (22) and (23) are substituted into the kinema-
tic surface condition (17). In evaluating the derivatives of ($ at Z =?7

the functions sinh Ky (] +H) and cosh Kh(T(+H) are expanded as
et o o o G

ceshr K (0 +H) = [ M’U by, [K s Ll m*l>3 ..]Aﬁm(%)

®

Bach non-linear term is of the form XY where both X and Y contain one or more

terms of order C}(A”) as well as higher order terms. In order to retain all
AN o

terms of ordeI‘C}C4” > in the product XY it is necessary to use only those

. 7-1

terms of order C%C%, ) or less in X and in Y. Hence the use of the results

of the (j-l)st approximation in the non-linear terms of the j th approximation

is permissible.
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Equation (17) after the substitution of (22) and (23) may be

written in the form

0 o0
Zé’mmmj' ’"Z/@m"““‘”r=0 (1)
m=0 m=|

in which each £, 1is of the form

'81'4‘{1: ’mj_.t(:n) + {i'm (A'n/ A:m , B-mm) H/ j‘,) (—m ?_o) (28)

”

where each fr. . is known. Because of the orthogonality of the trigono-

metric functions each ,8+ must vanish independently.
- m

Py = © (m20), (29)
For all m2 |, (29) becomes
ji,(:(:) = -’%‘ﬂ ‘Fi,ng'UA/mfn/ me) H))) ('W\ 2 ‘)k (30)

and the functions j (ﬂ) are determined in terms of the A and B . For
tm nn mn
m=0
ﬁ(Au)BOMJHlJ‘n)=O . (31)
Each function of r occurringin the expression (31) is expanded in a Dini

series of Bessel functions. That is,

F(n) = Z «(F) T, (32)
mn=0

where the cqnstants 0("/l la.re given by

aFey T, o
X (F) = &/_ ) . (33)

"

The Dini expansions are explained more fully and the D(M 's for the particu-

lar functions F(r) of interest here are tabulated in Appendix I. Multiplying



equation (31) by J?t%j Jﬂ, integrating with respect to r from O to 1, and
noting the orthogonality relations (II-1 and II-3) for Bessel functions, we
obtain explicit expressions for the B&m sy N ZJ) in terms of the parameters
Ap1 and H.

Now substituting (22), (23), and (30) into the dynamic surface
boundary condition (18), using the value of G from the previous approxi-
mation in all terms of order (9'(Ai) or higher on the right side of (18),
and .applying the same techniques as déscribed above for the kinematic sur-
face condition, we obtain solutions for A, ., B,,, and G solely in terms of
the parameters A;; and H. Substitution of Amn and an into the equations
(30) gives i/&?) in terms of A;, and H. From (18) a solution for

j;@ﬁ in terms of Ajq, H, and Cy, the copstant of equation (18), is
also obtained. Equation (19) is now applied to determine C, and hence

]:(JU in terms solely of the parameters All and H. To show that the
time-dependent terms of 71 vanish when integrated in the manner of (19)
it is necessary to prove certain indentities., Those identities needed
through the third approximation are proved in Appendix II as equations
(Ir-11),(II-12), and (II-13).

The procedure which has been outlined for satisfying the non-
linear free-surface boundary conditions has been carried out through the
third approximation. Further approximations do not seem practicable for
two reasons. First, the expressions obtained are quite complicated. Secondly,
for higher approximations the coefficients aﬁn in the Dini expansions of

many more functions F(r) must be computed. Since these coefficients are

evaluated by numerical integration, the labor involved is considerable.
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The solution to the first approximation is

All = /4 L) B|| o

H

J:(”) = A, Kﬁ /UQ) ]—OI
E% = K Zﬁ,

C; and all the other Ap,, By,, and :Eq% are either zero or of higher order

i

(34)

than C}(A”) . Equations (34) are the linear solution for infinitesimal-
amplitude waves as given in Lamb(ll) and due to ,‘Rq.;y'leigh(]g).LL
The results of the second approximation, in which the first

effects due to the finiteness of the amplitude appear are

Av=A, , B, =0 (35)
AE 2 ¢

AM=-—”_Q_J-D| (»nz_o) (36)
AR K2

¢, = 2D (-4 Tn) (37)

.I(,,)=A5470?[u Tt - 75&)7 ] (38)

Jw= a4 %2 7T, (39)

_ Ay, S K, |
ALY S LR

|

(41)

?

b mnis problem was considered as early as 1828 by Poisson(l7) . However,
because the theory of Bessel functions had not yet been worked out, his
results were not interpreted.
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A1l other A ., By,, and :I;qm are either zero or of order higher than

2 ,
4 (A,,) . The quantity Dn is a function of H only and is defined as

3= X (T8) + 2, (T
rQ - , m )
m = N, '
| - S
41,

The solution to the third approximation, upon which much of

(42)

the discussion of Chapter III will be based, is presented in Appendix III.
In cerrying out the eomputations it is found that all B and\J:SZ).g(aw Z]),
are proportionel to By, and hence, because the time origin was chosen such
that By; = 0, are identically zero. It is also found that [, are zero,
at least to order 0‘ (A-f) , independently of the assumption that Bll is zero.
The existence of finite-amplitude axisymmetric standing wayes and
the convergence of the iterative process used for obtaining 4) and'YL are
not proved., The existence and convergence theorems for progressive waves
(16)(12)(26)(54) all depend essentially on the possibility of transforming
the problem to one of steady flow by adopting co-ordinates travelling with
the wave. This simplification is in the present case ungvailable. The
author is not aware of any existence or convergence theorems for finite-
amplitude standing waves; Penney and Price(k9;.p‘ 268) specifically state,
"There seems little likelihood that a proof of the existence of the station-
ary waves will ever be given." One observation canbe made concerning the

th
convergence .of the present solution. The factor Eﬁg , Wwhich is present in
1

a number of the summations of the third approximation, behaeves as unity for
H very large and as gg for H very small; thus for small depths this factor
L

will give a greater amplification to the terms for m 2 of these summations

than it will for large depths. It can therefore be anticipated that the
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convergence of the present solution will be more napid for large depths than

for small.

3. The Solution at the Critical Depths

Inspection of the second approximation to the solution at general
depth, in particular equations (36) and (40) and the definition (L42) of EL s

K, B,

reveals the presence of the factor |~ ;TR-Ei— in the denominator. Like-
VY

wise the third approximation contains the factor | — 2 in the dgnomi-

’Mm
| 94K, B
nator of certain terms in equations (III-4) and (III-9). These factors are

both of the type

| - KX/DQ& (6=1,23..) (43)
%EKﬁ (7X=O)I)E\|\) ,
17 .

In general the J th approximation will introduce the fagtor (hj) with q = §
intg the denominator of certain terms which were expected to be of order
C9'</¥3) . If there are any values of Q, % , and H for which this factor
equals zero, then particular terms in both ¢> and 7\ become infinite and
the general-depth solution must be rejected at those depths. Accordingly,
it is desiraeble to look for the roots of the equation

1A

When g =1, § = 1 is a root for all values of H. This root causes no trouble,

= 0 , (44)

however, since the factor (4#3) is identically zéro when q = { = 1 and hence
we do not divide by it assuming it to be non-zero., Therefore attention can

be restricted to q 2 2, for which it is evident that (44) can have no roots

vhen | = 0 or 1.
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f
For Q 2 2, ;?ﬁ decreages monotonically from ,2 to 1l as H

increases from O to 0 .l Thus only for those { such that m< -:-? _(_rma will
there be roots to equation (44). Since the eigenvalues K, tend ulLimately
to the form ﬂ% X TT(ﬂ\*‘%) , there will be for each integer g approxi-
mately ;;.(%E~ 6) discrete values of H, each associated with a particular
J , for which (4k4) will be satisfied. The roots of (4k4) for g = 2,3 are
listed in Table 2. In addition the minimum and meximum reoots for q = 10
have been computed and are also shown. For future reference we denote the
values of H at which there are roots of (U4k) with q = 2 as the second-order

critical depths and those values of H at which there are roots of (44) with

q = 3 as the third-order critical depths, etec.

TABLE 2

ROOTS OF THE EQUATION,

LT

L2

8 ”azﬁn
g 4 i
2 3 Q.19811
2 L 0.34698
3 b4 0.084
3 5 Q.132
3 6 0.168
3 7 0.207
3 8 0.255
3 9 0.321
3 10 0.440
,lo(sto.»‘o».‘anooquoiéooaﬁoou.o(;:oooo)lao
ié,,.,,..,....,iél.. ,,,,, mé:::(éi"

The physical meaning attached to these critical depths may be

seen rather easily. It has been assumed that there is a first mode of



order 0 (A,,) oscillating at frequency 0 and that all other modes and
harmonics (that is, all other Amn’ an) are of order (9(#,‘,") or higher.
When ti&e dépth equals one of the critical depths, the agsumption that all
other A,,, By, are §f higher order is not v,\élid. In particular, Aﬁ 2 and/or
B . will be of order G‘(A,,) , where q and X are the q and f assodi-
atZd with the particular critical depth. In fact the condition that Ay,

representing a first mode at frequency w , and A‘ and/or B , represent-

2R
ing an J th mode at frequency %w , both be of order O‘(A-n) ig, to the
first ap_proxmati@n, that equation (44) be satisfied.

Since AW and/or B~ are of order @‘(An) when H = H,, where

2
He is a critical depth and q.a%érld )2 have those values associated with He,
and are of order 0’ (Af) when H is appreciably different from H,, it is
logical to assume that there is some transition range H;- €{H<H +€&,
where € 1is some sma.'J.l number dependent on A, in vhich A and/or B8 g
are between order 6(/},,) and order &(A,,) .2 Thus in order to obtain
a solution of the system (14),(15),(16),(17),{18), and (19) which is valid

when H is equal to or is very nearly equal to H,, we revise the genenal-

depth assumptions (25) to the following:

A, = QCA,,)
B, =° (45)
Aﬁﬁ gnd/or 52 6’(,4“)

A1 other A, and By = (J(A[) or higher.

To observe how the solution at a critical depth differs in form

from the solution when H is not critical the solution .can be carried out by

D The alternative is to assume that ] (H)[ and/or IB 5“)[ has a Jjump dis-
continuity when H = H,. This alterng tive does not éeem physically rea-
sonable,
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following the assumptions (h5) when the depth equals or very nearly equals

either of the two second-order critical depths. The order-of-magnitude
assumptions (45) then become
'%;11 =6 (/¥”)
Bn o (46)
AEQ Q’V"J/a’? B?..Q = &<A,,>

All other A, and an = @( A: or higher. It is understood that ﬂ =3

]

when H % 0.19811 and § = 4 when H & 0.34698.

The substitution of ¢ (22) and 7( (23) into the free-surface
boundary conditions (17) and (18) and into (19), and the evaluation of
the individual B and have been carried out in the manner

Amp’ mn? ‘Tifm
described in the previous section through the,second\approximation;6

The results of the first approximation are

g, =0 (47)

K,
’4 [] - R =0 48
2 41, X, (49)
K, X%
B [‘ - —3._—5] = 0 i
24 | 4~le%) (49)
Jw = 4 % 3, (50)

6 When the depth is approximstely equal to one of the J th order critieal
depths (J 2 3), the method of solution is conceptuslly identical to that
outlined here; however, the labor involved is considerably greater because
the solution must be carried to the j th approximation in order to obtain
the relationship between 50 end/or BﬁQ and A1y .
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J(a) = 5 AU h, B, T (51)

I, =-1B, 1, # T, (52
é = KB . (53)

C, and all other Apns Bypy and ;ﬁfﬂm are either zero or of order higher than
C}(/*n> . From (48) and (49) it is seen that if the depth is exactly
critical, AZQ_ and BEQ are arbitrary to the first or linear approximation.
That is; when H = HC’-Aax and BEQ are linearly independent of A,,. How-
ever, if the depth is not exactly critical A,, and B&Q will be zero.

The results of the second approximation are given in full in
Appendix IV. As in the general-depth solution it is found that BEQ (and
indeed all B, “m 2 |) is proportional to B, and is hence identically zero.
The most interesting result. is the relation between AEQ and All‘ This re-
lation is of the form

A - Ci + } Caa + C4 (54)

24 C3

in which Co, C3, and C) are functions of H and All given by

K, A
‘2 | 41
i
K~ A A Ir
C. = 2713 2 _ﬁ)"j —
Ky 2,
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Ath‘ 2_ 2
G, = re ﬁ3l¢{ ),Q(Tora)"'aqg(jll) G (57)

The quantity CS + Ch under the radical in equation (54) has been shown
(enalytically for { = 4 and numerically for { = 3 to be positive for both
second=-order critical depths.

At first glapce AEQ appears to be double-valued. However the
possiblility of double-valuedness is quickly dispelled. For any depth
nearly but not quite critical (that is, ]C2| very small but non-zero) let
All become infinitesimal. By the results of the first approxjmation AEQ
must approach zero as All becomes infinitesimal. This requires that the
negative sign in equation (54) be taken wuen Cp > 0, and the positive sign
taken when Co < 0. Only when 02 is exactly zero is the sign of Aez not
uniquely determined. The sbsolute magnitude of AEE is determined then;
however, the motion due to ARQ is either in phase with the, primary Aqq
motion or is 180° out of phase. For a depth differing in the slightest
amount from the critica; depth, the phase between AEQ and A 11 is also
uniquely determined. Thus equation (54) may be written as

Ca - )C: +C4 (CE S O)

Cy

A= Ca+’c§-rC4 (Ca<o>

2R Cs

AE,Q =

(58)
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Figure 2. This figure illustrates the transition of AaQ from order C364“)

The magnitude | | is plotted against H for A;; = .0l in

to 69'(A30 as H approaches the critical depth.

The purpose of this section has been to point out the existence
of the critical depths and to show that the wave motion when the depth is
critical or nearly critical can be analyzed by the procedure of the pre-
vious section if the order-of-magnitude assumptions (25) for non-critical
depths are appropriately modified. This dissertation is primarily concerned
with the motion when the depth is non-critical; nevertheless, certain aspects

of the critical-depth solution will be discussed in sections2 and 4 of the

next chapter.
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Figure 2. The Magnitude [—=| versus H for Aj; = .0l
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CHAPTER IIT

ANALYSIS OF THE SOLUTION

1. The Surface Profile

The surface elevation?l(r,t) of a periodic, axisymmetric gravity
wave in fluid of general depth, as given to the third approximation in
Appendix III, equations (1II-6) through (III-9), may be examined more con=~

veniently in the form,

W H) = Ak Ty + Ty et +(A,.Kf)a]°,*<ﬂ) wl +

(59)
+ A KS ]‘a*(n) wa 2F + (A, K,P‘)&J?L(n) w31,
where the starred functions are defined by
A o = N
‘ *
A;“ Kl Zﬁl (Au ma) jo (ﬂ) = JPO(]))
g 2\C ¥ ‘
A,.K.ﬁ:(‘*n"'> I, (n) = j,(ﬂ)‘ Ar”iffllﬁ,]",} (60)

}*"F(,Zﬁ'<f¥"|(f) tI;¥(“) = j; (0)
Y
A’n , I@,(A,ﬂf) ]; (n = TB () o

In the form (59) the effects on '71* of the parameters Aand H have been
separated since the ];j(n) , (m =0, 1,2,3), depend only on H.

A number of obgervations may be made illustrating how the charac-
teristics of a finite-amplitude wave differ from those of a wave of infinites-

For waves of infinitesimal amplitude, the temporal mean

2P

imal amplitude.
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elevation of the surface is identically zero at all radii. There is a
nodal circle at r = .628, The surface is horizontal twice during each

period, at t =}g and t = gI[ The crests and troughs are identical in

shape; that is 7|(2,0) = -N(z,T).

In contrast to the infinitesimal wave, the finite wave does not
have these p:operties. Because of the sz.term which is independent of
time, the temporal mean elevation of the surface at any given radius is
in general not zero.7 There is no nodal circle. The surface is never
horizontal. Probably the most striking difference between the infinites-
imal = and the finite wave is the marked alteration in the latter of the
shape of the crests and troughs. The crests become higher and narrower
and the troughs become broader and shallower as the amplitude is increased.

Penney and Price(ng), in their discussion of periodic, finite=-
amplitude standing waves in rectangular co-ordinates for water of infinite
depth, noticed the effects of finite amplitude consistent with their geo-
metrical configuration, equivalent to the effects mentioned above. The
narrowing and heightening of the crests and the broadening and flattening
.of the troughs have been observed both experimentally and analytically over
a wide range of relative depths for both standing and progressive waves of

finite amplitude.(ll)(24)(ul)(46)(h9)(58)

If we define the amplitude of the surface displacement‘njr,t) to
be*% [ﬂﬁo,o) -'YKO,ﬂﬁ], and define the guantity N, dependent solely on the
parameters A;; and H, as

e, - Wto,m)

N = N - (61)

T ]:* , and hence the temporal mean surface elevation, is zero at two pan-
ticular values of r, which values are functions of H.



)

x
N ,%)
will have an "amplitude" of unity regardless

e,
N

shape of the free surface. This function, evaluated at t =0 and t =TJ,

then the funection
of what values are assigned to All and H. thus indicates the

is plotted in Figures 3 through 6 for both finite and infinitesimal waves

for four different depths, including the two extremes H = 0 and H =00,

For each depth the amplitude parameter All of the finite wave has the

value E% . It is understood that when we speak of a function evaluated
whenvAlllis zero and/or H is zero or infinity we really mean the limit

of that function as All approaches zero and/orIH approaches zero or infinity.

Figures 3 through 6 clearly show the difference in profile shape
between a finite-amplitude wave and an infinitesimal wgve. The heighten-
ing of the crests and the broadening of the troughs of the finite wave is
most pronounced for the small depths; in the limiting case H = 0, the tip
of the crest in the center of the basin as given by the non-linear theory
is 29,7% higher than that predicted by the linear solution.

In calculating the shape of the finite wave for H = ® and H = .3
the third-order terms made negligible contributions. For the shallower
depths, however, the third-order terms were significant, their contributions
for H = O being almost half as large gs those of the second-order terms.

This observation is in keeping with the predition that, if our method is

convergent, the convergence will be least rapid for very shallow depths.

2. The Frequency of Oscillation

The frequency of oscillation W of an axisymmetric infinitesimal-

amplitude first-mode gravity wave in a circular tank of constant depth has

(19)(11) (46)

beeh given by previous investigators in the dimensional form
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Figure 3. Configuration of the Free Surface for H = o
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Figure 4. Configuration of the Free Surface for H = ,3
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Figure 6. Configuration of the Free Surface for H= 0
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2 - K -
w=j‘ﬁ’“w~'H . (62)

In the non-dimensional notation of this study (62) becomes equation (41)

|
which is the frequency equation to both the first and second approximations

-when the depth is non-critical. In the third epproximation the frequency

equation is

2\&
' (An Kt)
E - K\ ﬁ, ' + T c (63)
where the correction factor G, is a funetion of H only and is given by

oo = [4{em? a7 ) () -

2 ‘53
L (e A3, (3, 77 + o«,( 'Z) +

l 0 Kim -
S LTy |

Since the derivatives with respect to H of thy, thy, and ==, (p = 1,2...),
‘ 1

and consequently also those of ]—V vanish at H = 0 and H =00, it follows

dG
from (64) that Ell_fg =0 when H = 0 and H =%, G, has been plotted against
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H in Figure 7. Since G, in the range 1 < H <% differs from Gc,H:l

by less than one-fourth of one percent, only the range 0 < H <1 is shown

in Pigure 7.8

Equation (64) contains the second-order critical-depth factors
of the type (43) which cause E’ and. [2 to become infinite when H = .19811
and H = .3h698, respectively. Thus for depths nearly equal to (say within
+ .002 of) either of these depths, the critical-depth solution must be used.
Since (64) is not applicable in the immediate vicinity of the critical
depths, the curve in Figure T has been drawn smoothly through these depths.
The location of the second-order critical depths is indicated in Figure 7
by the vertical dashed lines.

A most interesting feature of Figure 7 is that Gc changes sign;
it is positive for small depths and negative for large depths. The value
of H at which G, passes through zero might even be selected as the division
between moderately shallow and moderately deep water. Thus for large depths
the frequency of Qscillation 1s decreased and the period increased in com=-
parison with those of an infinitesimal-amplitude wave. Conversely, for
small depths the frequency is increased and the period decreaged when com-
pared with the values predicted by the linear theory. This result for very
large depths is qualitatively the same as that obtained by Penney and Price
(49) for standing waves in a rectangular co-ordinate system.
9

If the period of oscillation is represented by OT' (dimensional),

and the subscript o is used to denote the values of W and ﬁ’ given by the

S For similar reason only the range 0 < H < 1 is shown in Figure 8 also.
The non-dimensional period is 2x.-
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w-, T,
and will be the relative corrections
[} (7] ) w_wo VT-GTO'

to the linear theory due to finite amplitude. and

W, ‘j;

been calculated for the extreme cases H = 0 and H = % for waves of

linear theory, then

have

approximately the maximum amplutude?Q These values are shown in Table 3.

TABIE 3
- T
%—”AND -w:,T—° "FOR WAVES OF APPROXIMATELY
5 (-]

THE MAXIMUM AMPLUTUDE

2 0, L
B Ak &8 TR
0 .6 +8.86 -8.1%
o0 .8 - 3.4 +3.3%

When the depth is very nearly equal to either of the second-

order critical depths, the freguency is given to the second approximation

by '
| ALKK |1 n &
L= o 27 "7 -3 (T, T,) +
K, X | (65)
+ 2R
Klml 0(‘(3-” Ik)

in which it is understood that { = 3 when H % .19811 and Q= 4 when

H % .34698. Since the sign of Aezwhen H = H; is opposite to that when
H = H:, it is noted from (65) that the sign of the frequency correction
when H = H; is opposite to that when H = H:. The predicted corrections
to the frequency at the second-order critical depths have been computed

for an amplitude of Aj; = .0l and are shown in Teble k4.

10 The waﬁe ofbmaximum amplitude is discussed in section 4 of this chapter.
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TABLE 4
W‘(Oo
x AT THE SECOND-ORDER CRITICAL
[e]
DEPTHS FOR A;; = .01
H W=D,
.19811" -.05%
198117 +.05%
.34698" -.01%
.3h6987F +.01%

Although these corrections are very small in magnitude, it should
be remembered that the general-depth solution does not predict any correction
until the third approximation. Since é is linear in Aik and since the correc-
tion term is very small, W% will also be linear in A225 hence to a suit-
w

able scale a plot of | | versus H for H nearly critical will have the same

(4]
shape as the curves in Figure 2, if it is assumed that the function of H in

square brackets in (65) is constant for values of H sufficiently near Hc}l

3. The Pressure and Velocity Distributions

The pressure at any point in the fluid may be obtained through the
use of the Bernoulli equation. Merging the F(t) in (7) with ¢ as was done
before writing the dynamic surface boundary condition (8), we obtain the

dimensionless pressure equation

e
09 _séiz__l_ai)
&"Po = 5_; +Cl -6z E_{&)]) E.(AZ- . (66)

11 The variation 2f this function with H is much much less than the
variation of |22 | when H is nearly critical.

A
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The radial and vertical components of the velocity, ~, and Vv,

respectively, are obtained by differentiating ¢ in the usual manner

99 T (67)

—_ — —— - [

T T 0 z 0=z
Because other aspects of the solution are of greater interest, no
attempt has been made toward detailed analysis of the pressure or velccity
distributions. One observation in connection with the velocity, however,
should be made. Twice during each period (t = 0 and t = x) the fluid is
everywhere momentarily at rest. This implies that the motion may be gener-
ated by giving the free surface the configuration 71(Jbl» or 72(n}7z) and

releasing the fluid from rest.

k4, The Wave of Maximum Amplitude

Michell(lS) andeavelock(g) have discussed the maximum amplitude
o

of progressive waves in deep water. If the amplitude exceeds this limiting
value, breaking will occur at the crests and the waves cannot be propagated
with constant form. Penney and Price(h9), following a different approach have
obtained the maximum amplitude of stationary waves in a rectangular co-ordinate
system when the fluid depth is infinite, With their criterion it can be shown
that for axisymmetric standing waves there is a maximum value of All’ this
maximum being a function of H.

Since the motion is most extreme at the center of the tank, it is
assumed that the condition of impending breaking will occur at the tip of the

crest at r = 0 at the instant whenfygo,t) reaches its greatest positive eleva-

tion.

1137“0 t) will in general be maximum when t = 0. However, when the depth is
nearly critical and ﬁ4” { 0, there is the p0581b111ty that N(0,t) may
reach its greatest val ue when t is approximately X; that is, close to the time
when that component of the surface elevation due to A makes its greatest con=-

tribution. ZT
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The criterion limiting the amplitude of the waves is based on the postulate
that the fluid cannot withstand tension.15 If the atmospheric pressure p,
is zero, the pressure just inside the liquid must be positive dr zero and
consequently at the crestl4
P <o
oz

The dimensionless Euler equation of motion in the z-direction is, in mixed

(68)

notation,
2 :
Y 0N oz dz

At the crest /\)j7 =, =0, and hence from (68)

2
o (G (70)
oz of T

Consaquently, the criterion limiting the amplitude of the waves is that the

downward acceleration at the crest must not exceed the gravitational acceler-

ation (G in non-dimensional units).

0
If -JE

o2
positive at the crest, the liquid is not in tension, but from the equation of

Now suppose that p, is not zero, but is positive. is
motion (69) the downward acceleration in the liquid just below the top of the
crest 1s greater than it is at the c¢crest. This is physically unacceptable,
Thus (68) is true at the crest and the criterion (70) applies regardless of
weather or not Py is zero. At the tip of the crest of a maximum wave the

equality sign in (68), and hence in (70), will hold.

15 This criterion may also be obtained( 9) through stability considerations.
14 In the remainder of this section and in the next section the term "crest"
refers only to a crest at r = 0 at the instant of its greatest elevation.
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To the first approximation (70) yields

(4, KF) 1

- e
Mo AR

This permits Ay to become very large when the depth is very small. However,

the first approximation to (/M,Kf) cannot be expected to be at all
Mo
reasgonable since it is an attempt to use the infinitesimal-amplitude wave solu-
tion for predicting the breaking wave. The second and third approximations
have also been obtained and all three are plotted in Figure 8.15 No attempt
has been made to show the effects of the critical depths in this plot. The
maximum amplitude when the depth is critical or nearly critical will be dis-
cussed later in this section.
2

The wvalue of (A,,K}) as predicted by the third approxi-
mation is about .8 for large depths énd about .75 for small depths. It may
readily be seen from Figure 8 that the convergence of the successive approxi-
mations (if, indeed, they do converge) is much slower for shallow depths.
This is in agreement with what was anticipated at the end of section 2,
Chapter IL

In the general-depth solution were assumed valid when the depth is
critical, application of (70) would lead to the conclusion that (A”}f'e) = 0
when the depth is critical. Use of the critical-depth solution in (73§®;or
depths critical or nearly critical results in a less stringent value of
(A“K'a> ; however, (A-” K,E> when the depth is

AL Moy

critical is considerably smaller than at non-critical depths. By use of

15 The thifd.approximation to (A lK_-%) ax VE5 evaluated for only four values
of H, namely oo, .50, .25, and.lO.
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the relation (58) between AEQ and A;;, the maximum amplitude when H equals
either of the second-order critical depths has been computed to the first

approximation and is shown in Table 5.

TABIE 5

THE MAXIMUM AMPLITUDE AT THE
SECOND~ORDER CRITICAL DEPTHS

. A 2
H sign of ~22 (AllKIl)maX
|

.19811" - .523
.19811% + o8
34698~ + .210
346987 - .2k9

. . . 2 . Aap

It is noticed that at either H, (A1;K7), gy is smaller when
A
N
is positive than when this ratio is negative. This is to be expected since

A

when \Eﬁ is positive the,All and AER components of the motion are in

]
phase and both make their greatest contribution to the downward acceleration

A
simultaneously at t = 0. On the other hand when -ff is negative the two
components are out of phase and the greatest downward acceleration during a
period will be less than that for the same A;; when .fﬁi is positive. Tt

¢ Ay gl Aaf
follows that (AMH}) is larger when ~2! is negative than when -2 is
mayL

Ay A
positive, both at the same H,.
The component of downward acceleration due to AEQ is of order C964")
2
when H = H, but becomes of order 6}04“) as |H-H,| increases. If the critical-
depth solution is substituted into (70) to the first approximation and the re-

sulting equation applied as IH-HCI increases, then the AEUQ term of that equa-

tion becomes of order (9(A37) but the other terms of order 69(AWT) have
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not been taken into account. Since terms of order C9(Ay?) are of com-
parable magnitude with terms of order C?'(Aﬂ> in determining the maximum
amplitude, OAHKE)WWA4 from the first approximation when H % H, will not
approach, as |H-H,| increases, (An'Kﬁ)Mu»f from either the first or second
approximations as plotted in Figure 8 for H not critical. In order to
investigate the manner in which, as |H-H;| increases, (AWdTilna¢ for depths
nearly critical approaches the value predicted from the general-depth
theory requires that both the general-depth solution and the critical-
depth solution be carried to a sufficiently high order of approximation

that the apparent convergence of each has been secured.

5. The Angle at the Crest of a Maximum Wave

Stokes(gu) showed that, if progressive waves exist having a
discontinuity of slope at the crest, the angle enclosed there is 120°.
Experimental work(58) has indeed shown that such a wave apparently can
exist. Penney and Price(u9) recently concluded that the crest of the
maximum stable standing wave in rectangular co-ordinates 1s also pointed,
enclosing an angle of 90°. Following the general procedure used by Penney
and Price leads to the conclusion that the maximum axdsymmetric standing
wave has at r = 0 a crest enclosing an angle of approximately 109.5°.

Because the eigenfunctions tr all have first derivatives

om
with respect to r which are zero at r = 0, the solution far?lﬁr,t), when
taken to any finite order, must necessarily give a wave profile having a

horizontal tangent at the crest. However, consideration of the free sur-

face as the isobar, p = p,, does yield a non-zero slope at the crest of a
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maximum wave at the instant of its greatest elevation.l
The equation of the free surface of the maximum wave at the in-

stant t = 0 may be regarded as given by the implicit relation

’f(ﬂ)Z) = 700 , (72)

where the curves p(r,z) = C, (C 2 po), are the isobars in the r - z

plane. Assuming p(r,z) to be continuous throughout the fluid, then for

an infinitesimal displacement (dr,dz) from the point (r,z) we have
Jf:*fo(ﬂ+io)a

o o2
Taking the point (r,z) at the tip of the crest, and choosing a displace-

ment (dr,dz) such that the new point is also in the free surface,

0= af o(n + éj Jg- (73)
on oz

From the previous section E?t is zero at the crest of a maximum wave.
2
From (73) we perceive that §£ is also zero. Hence the tip of the
on

crest is a singular point.

Proceeding to the second order in dr and dz for an infinites-

imal displacement from the crest along the free surface,

O:i}(o(,,)i+aa—ﬁ dndp + i}(a‘i_)l . (74)
008 og?

on 02
Since p is obtained from the velocity potential by the Bernoulli

equation (66)

16 For the rest of this section, this instant of greatest elevation is
taken as t = 0. DBecause of the reservation of fcotnote 12, page 32,
it is understood that "t = 0" in this section is not necessarily the
same time origin used elsewhere in this paper.
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Pt = o ! 2 \on 2\oe/ 3
o9 ,
and b_ and 5—; are identically zero at the crest when t = 0, p must
)
satisfy ¥ 70:0 at the crest when t = O:

2 2
H+L%+ﬂé=o , (75)
ont N on 0 2%

At r = 0 the middle term of (75) is indeterminate. However one appli-

cation of 1' Hospital's rule yields,

P 2

b B m B Y
= = > . (76)

N0 n=o | on

Thus at the tip of the crgst

2 4
) °
dnn o2t

Since ¢ must have the form (22) at least as far as its

rf—

dependence on r and z is concerned, and since — M is zero at r = o,

é_ﬁt) =0 at r =0 for all z, All’ and t. It follows that not only %—-

on N+ 2 2 A
but also U of -a-i‘-)J (i?) , and <ﬂ> are zero at r = 0, assuming
on o2 X’ \on 0z

unlimited differentiability of 43 . Since py, C;, and Gz are independent
of r, it follows from (66) that
7 <, S a=o (19)

0N

and

0
t o~ a n=0, (79)
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From (79) it is seen that the middle term of (74) is zero and

hence that

'5a7° 5, 520 Jz)a
5;—2((1'0 + bz-a( . (80)

[l
Y

From (77) and (80)
aaf Ld)® - Jz)a]
e S

at the tip of the crest of the maximum wave.

i
Q

(81)

Therefore
I
+ - .Jﬂ
‘0{2- = - r._a ' (82)

The negative root is the one associated with a crest. If the angle be-
tween the negative z-axis and the tangent to the surface is denoted by

¥ then the total enclosed angle 2% at the crest of a maximum wave is

25 = 2 wedan VT = 109°28° (85)

4

This conclusion is valid unless ffﬁ; and consequently %&2§ are zero,

That the angle at the 3;§st of the maximum axig;mmetric wave
should be greater than the 90° of the maximum two-dimensional standing
wave of Penney and Price mighf be anticipated from the difference in
geometry. Let us view both wave types from above. In the latter case
there is a "line crest" parallel to the y-axis; as the crest rises téward
its greatest elevation, the fluid particles approach it only from the posi-

tive and negative x-directions. In the axisymmetric case there is a '"point

crest" at r = 0; as the crest rises toward its greatest elevation, the fluid
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particles approach radially from all angles @ . If each system possesses
a given amplitude less than the maximum amplitude of either, and if the ampli-
tude of each is gradually increased, it seems logical, because of the geo-
metric difference noted above, for the axisymmetric wave to reach an unstable
condition earlier, that is, at a less sharply pointed crest. This is indeed
the result Jjust found.

At first glamce it appears that (82) is valid for a depression
as well as for an elevation at r = 0. However at the bottom of a trough
at the instant of its greatest depression the acceleration is upward and
hence from (69) ggg is not zero. From (78) g!f is zero there at all

J

times. Thus we conclude from (73) that dz = O for a depression and the

tangent to the surface at the bottom of the trough is horizontal.

6. The Energy of the Wave Motion

In a progressive wave of infinitesimal amplitude the total energy
of the motion is one-half kinetic and one-half potential. Similarly in an
axisymmetric standing wave, the mean kinetic energy equals the mean poten-
tial energy to the first or linear approximation. What is true for an axisym-
metric standing wave of finite amplitude?

The potential energy V of the wave motion is

\/=-£-6A[/71&v(/} (8)

in which dA is an element of area in a plane normal to the z-axis. Setting

dA = rdr d0 and performing the integration with respect to @, we obtain

\/=T"6[ﬂ71avfn. (85)
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If a bar denotes the dimensional energies, then V and T have been made non-

dimensional by

v T
,OQJERS b] T - low?_ RS

The kinetic energy T .of the wave motion is

T ] e g

in which d¥ is an element of volume of the fluid. Upon integration with

’ (86)

\/ =

respect to 0, (87) may be written as

"
T=7T/ﬂ [ B ()=
a0 \®

=-H

, (88)
However, a more convenient form for the evaluation of T may be obtained
by using Green's theorem to transform the triple integration (87) into a

double integration

T=_é£[¢§$ol<3 (59)

in which d& is an element of area in the boundaries of the fluid region,

and dn is an increment of length along the normal to QX, positive when

directed into the fluid region. Since — is zero on the solid bound-
%

aries, only the integral over the free surface will make a contribution

to (89). Setting QQ = rdg ds and performing the 6 integration,

T=-T My:_d’ oo (50)
M
C
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where C is the curve formed by the intersection of the free surface =z =’7[

with a plane containing the z+axis, and ds is an increment of length along C.

aN

On C, dz =— dr, and
A

0o¢ o= -
_a_?J4=[§_§§f+;;a-;]J4=
M

om
_9¢ 9% . _ _5;?3_11__ .3_9_’]01,,
‘HG"} d2 -[éﬂ Y 02 '

By the kinematic free-surface boundary condition (17)

o 2 o

on 0N 02 ot
at z =71. Thus

04 4, = o

O &2‘%

on C and we finally arrive at the expression

l
0 2=

Performing the integrations (85) and (91) on the solution to

the third approximation at general depth, we obtain

Ly o AR
7V = 222 i) s e 2t] +

-

343
+ Al il [CS et I+ C, msj-] +
7
4‘
+ M Wnsml {( + Cwedd +( m#]
‘*-?ig~—“ 7 8 3

(92)
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and

Al It Th [
L= o Do h K| |- e 2%
=T = T, (1) ]

3.3 ..
A, N A, - ot = C, mBj‘] +
4

L)
A,,'{ Zﬂ, Cll +.<: Coa a;*- + C“3 Lvﬂ‘4ji]
96

The Cp, (5 < n < 13), are rather long functions of H and are presented
in Appendix V.

Because the system is conservative and no work is done at the
boundaries, the total energy T + V must be constant. This requires that
the sums (05 + Cy), Cg - Clo)’(CB + Cyp), and (09 +~Cl5) each be zero.
Certain identities, involving integrals of products of Besael functions,
are sufficient to prove that the first three of these sums are each
identically zero. These identities have been proved analytically in
Appendix II as equations (II-15), (II-16), (II-17), (II-18), and (II-21).
09 + Cy5 will also be identically zero if two expressions (II-EE%(II—EB)
are identities. The identity of these expressions has not been proved,
but strong evidence for it has been presented in Appendix II. Thus the
total energy of the wave is given by
) = A,, It %, A,T I3

96

L(T+v
-

T (r) * ‘ (C_7+ (.”) , (9k)

Platzman(5o) in his investigation of the partition of energy
in periodic progressive waves of finite amplitude and permanent form in wa-

ter of infinite depth found that the kinetic energy exceeded the potential
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energy. For the wave of maximum amplitude he found 2%2 %K% , the first
term in his expression yielding a value for E%Y of 9.95%.
Representing the temporal mean kinetic and potential energy by
Ty and Vy, respectively, and making use of several of the identities of

Appendix II we dbtain;7

For a wave of approximately maximum amplitude (Alle = .8) when H =00,

(95) yields E%:KM =-3,4%. Thus for an akisymmetric standing wave in

fluid of infini%é depth the mean potential energy exceeds the mean kinetic
energy. Although one would hesitate to predict the sign of TvaM_in.advance,
this result does seem reasonable since V is always positive while T equals
zero twice during each period; consequently both Vﬁin > Tmin =0 and

Vmax > ?max’ The differences between the present problem (standing

wave in cylindrical co-ordinates) and Platzman's problem (progressive wave

in rectangular co-ordinates) cause the algebraic sign of our result for

17 Note that from (92) and (93) Ty=Vy is of order'cﬂA.hg. This is in
qualitative agreement with the result of Rayleigh(%% who first pointed
out that the difference between the kinetic and potentibl energy of an
oscillatory progressive wave of finite amplitude and permanent form in
water of infinite depth is of fourth order.
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Ty-Vy to be opposite to his, both for the case H =00 . However, as Starr
(55? b. 185) in his article on energy integrals for gravity waves observed,

S0 far as the writer has been able to find there
appears to be no simple means for obtgining the
magnitude or algebraic sign of .,.061'..0.. from
general considerations without making use of the
detailed solution to the wave problem.

18 Starr's € is defined as the difference between the kinetic and
potential energy of the waves,



CHAPTER IV

CONCLUSIONS AND RECOMMENDATIONS

1. Concluding Remarks

The exact equations governing the free oscillations of
finite~amplitude axisymmetric gravity waves are presented. These
equations include two types: a Ilnear group, and two non-linear
free-surface boundary conditions. The eigenfunctions are deter-
mined from the linear equations. To represent a perigdic first-
mode motion a linear combination of these eigenfunctions is taken.
An iteratien procedure is followed to find the coefficlents in
this combination in terms of an amplitude parameter, All’ such
that the two non-linear boundary conditions are satisfied. Be-
cause of the complicated nature of the problem neither the exist-
ence of this metion nor the convergence of the solution proce-
dure has been proved.

No a priori limitations have been made on the depth eof
the liquid. It i1s found, however, that there are certaln discrete
depths at which a higher modé at a frequency equal to an integra1
multiple of the basic frequency is of the same order of magnitude
as the first mode. The motion when the depth is appreximately
equal to one of these critical depths is treated by an appropriate
modification of the precedure used in obtaining the general solu~

tion.,

“47-
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Heightening of the crests and broadening of the treughs,
when compared to the linear solution for the surface configuratien,
result from the analysis and are typical of all finite-amplitude
wave solutiens avallable s¢o far. The period of oscillatiah, compared
to that of infinitesimally small e¢scillations, is increased for large
depths but decreased for small depths. The maximum amplitude for
which an axisymmetric wave will remain stable has been investigated;
it is found that the maximum wave has a polnted crest at r = © encles-
ing an angle of approximately 109.5°. The potential energy of the
motion 1s grester than the kinetic energy (at least when the depth is
infinite), and the difference between the potential and kinetic energy
is proportional to the fourth power of the amplitude.

Detalled results pertaining te the surface configuration,
the frequency of escillation, the wave of maximum amplitude, and the

energy of the wave motion are presented in Chapter III.

2. Suggestions for Further Study

Further study in several areas both directly and indirectly
related to the present work seems désirable& These areas fall into
two classes: these suggested by the results of this werk, and more
difficult problems toward whose solutions this work is but a first
step.

In this dissertation the main interest has been in a first-
mode wave when the depth is ngn-critical. Mention of the critieal

depths has been for the purpose of noting their existence and of
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showing that the motion when H #% H, may be treated by the general
procedure outlined in Chapter II. A detailed study of the coupled
motion carrying the solution te higher approximaetions when H & H,
would undoubtedly reveal many interesting features not noted here.

By a Jjudicious permutation of subscripts the motion of
axisymmetric waves of modes higher than the first may be obtained
from the general-depth solution of this paper. However;, there will
be a different set of critical depths pertaining to the higher mode.
For modes higher than the second there will also be the possibllity
of exciting lower-mode oscillatiens at frequencies equal te the basic
frequency divided by an integer. For example, a third-mode wave at
frequency w will excite a first mode at frequency-é ¢ when
H= ,19811. Caution should thus be exercised in applying the re-
sults of this study to higher modes.

An experimental study of the meximum-amplitude axisymmetric
wave would be useful in verifying the prediction that such a wave has
a crest angle of 109.5° as well as in gaining a greater understanding
of the mechanism of bresking.

0f considerable practical interest are those modes of
oscillation which are not axisymmetric, If the motion varies with @
ag well as with A, 2 and j‘, there are nodal diameters as well as
nodal cireles in the linear solution, which is discussed in some detail
by laMb@JJ » Conceptually, a nen-linear solution for unsymmetric
gravity waves in a circular basin ig only slightly more difficult

than the work ¢f this paper. However, a second infinite set of
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eigenvalues 1s introduced by the angular variation and the additional
summation over this set makes the problem extremely invelved from a
computational standpoint.

Only free oscillations have been considered in this dis-
sertation. The results obtained may be of use in attempting to solve
the more difficult, but very important, problem of forced vibrations.
Both resonant and non-resonant cases should be studied.

Very closely related to the forced motion is the problem
of determining the motion following release of the fluid from rest
with an initial arbitrary axisymmetric configuration of the free sur-
face. This motion, which is easily analyzed if the problem is linear-

ized, will in general be non-periodic.



APPENDIX T

THE EXPANSION OF FUNCTIONS IN DINI SERIES

The expansion of an arbitrary function F(r) of the real

variable r in the form
)
Fo) = Zb,,, T, (1-1)
M=\

where‘kl, Xa,‘ks,o oooooooo .denote the positive zeros in ascending

order of magnitude of the function
-.y /
v (4 T M)

when 2):Zm1/2 and M is any given constant, was first investigated by

Dini(6l)o The coefficients in the expansion are given by the formula
2
{()\M“‘ZJ )Ty >\;n + >\_ﬂ Ty ()\,ﬂ) b’" = (1-2)

|
= 2 X, [2F@ T,(h2) o

Dini noted that the expansion (I-1) must be modified by the insertion

of an initial term, é&bﬁ , when M +2) = 0 1 s although he gave its

value incorrectly 0 P 597)  nig initial term is given by

!
B, = 2 (¥+) 7 ofﬂw Fo) &, (1-3)

19 ) ifferent initial term must slso be inserted when M +2) < 0, (665 P.597)

~51-
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Of particular interest in this paper is the special case
M =2)= 0. Then

F(n)

i

g, +Zb T ( ) = (1-4)

< 2o +§b L0 A

0
where >\ are the pos:.tlve zeros of
e
* 7T, ‘(¥
and the ceefficlents, b,, are given by

b fa Fo) 3,009 b | -

r TS

M
It is seen that the ) are precisely K,. It is also seen that, if K,
M

be defined as zero, the initial term §4(r) in (I-4) is the zeroth term
of the summation with its coefficient bé given by (I-5) for n = 0.
Because there are many different functions F(r) which we wish to expand
in Dini series, let us adopt the nomenclature O(M(F) for the bn asso-
ciated with a particular F(r). Then
o
Fo)= 3 X (A T, (1-6)

n=0

where K,=0 and K1, Ky, K3je.u.....8re the positive zeros of Jl-(K)
arranged in ascending order of magnitude and the coefficients &, (F)

are given by

") _[J? FO) T, h
X, (F) = 2— ‘ (1-7)
5 TA(n,)
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If F(r) is continuous and has 1imiteﬁ total fluctuation in
the interval O < r < 1 and if the integral / n"®Fe) dr  exists ana
converges absolutely, then the Dindi series ?I—é), is uniformly conver-
gent and uniformly summeble in the interval 0<r< 1 (66, p. 598'616)0
All functions F(r) which we encounter, at least through the third approxi-
mation, meet these conditions.

Except in the very simplest instances, the integral in (I-7)
cannot be evaluated analytically but must be done by numerical means.
Those & 's which have been computed through numerical integration are
presented in Table 6. It is believed that the first three decimal places
are accurate, While the fourth decimsl place, particularly for the
higher values of n, is known to be unrelisble. The NM(J;,) , whose
values may be obtained analytically, were also computed numerically for
comparison with the exact values.

For the discussion in Chapter III, section 6, of the energy
of the wave metion, a number of integrals S{F)are needed, where the

operator S (F)is defined as
]

S(F) = fn Fo) oy (1-8)

0

It 1s seen that the ¢ffs and .S'S are not independent but are related

by

$(T.F) _ S(%.F)

« (F) = = . (1-9)
) S(3)

Table 7 gives the integrals which have been computed. The first three

decimal places are believed accurate, while the fourth decimal place is

unreliable.
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TABLE 6

¢, (F) FOR VARIOUS FUNCTIONS F(r)

L2 2
exacgo%( 's comp_utggl X's »JOl 1 JO’%

ZETO 0.0000 0.1622 0.1622 0.0572
1.0000 1.0000 0.3523 0.1761 0.4139
zero 0.0001 0.479%  -0,32h41 0.3157
zero 0.0001 0.0070  =0.017k 0.2082
Zero 0.0002 -0.0007 0.0043 0.0060
Zero 0.0002 0.0004 -0.0018 -0.000k
zero 0.0003 0.0002 0.0009 0.000k4
zero 0.0003 0.000k  -0.0005  0.0002
zZero 0.0007 0.0003 0.0003 d.000k
zero 0.0003 0.0003  -0.0002 0.0003
zero 10.000k4 0.000k4 0.0001 0.000k
Jnd11 J'11? /¥qr Jordee  Jordo3  Jordou
0.0286 0.0429 Zero zZero zero
0.1380 0.0811 0.2662 0.0027  -0.0002
-0.0185 -0.0775 0.3020 0.2945 0.0040
-0, 140k ~0,0483 0.4254 0.2929 0.3087
-0.0089 0.0026 0.0076 0.4037 0.2897
0.0017 -0.0011 -0.0008 0.0076 0.3919
-0.0006 0.0005 0.0005  -0.0008 0.0076
0.0003 -0.0003 0,0002 0.0006  -0.0008
-0.0002 0.0002 0.000k 0.0002 0.0006
0.0001 0.0001 0.0003 0.000k4 0.0002

-0.000L 0.0001 0.0004 0.0004 0.0005
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TABLE 6, CON'T.

F(r) Jo1705 J01706 Jo1%07 01708 01709
&, (F) zero zero zero zero Zero
¥, (F) 0.0001 0.0000 0.0001 0.0000 0.0000
5 (F) -0.0003 0.0002 0.0001 0.0001 0.0001
0(3(F) 0.004T -0,0004 0,0003 0.0001 0.0001
oq(F) 0.3173 10,0052 -0.000k4 0.0003 0.0001
¥(F) 0.2882 0.3230 0.0056  -0.0005 0,000k
%(F) 0.3846 0.2873 0.3272 0.0057 -0,0005
a(7(F) 0.0078 0.3795 0.2868 0.3303 0.0059
Xg(F') -0.0007 0.0075 0.3758
o(ﬁ(F) 0.0007 -0, 0007 0.0075
o) (F) 0.0003 0.0007 -0.0006
F(r) Jor7010 I11912 Ji9is T s
&, (F) zero zero zero zero zero
¥, (F) 0.0001 0.2436 0,0032  -0.0005 0.0001
ﬁ(a(F) 0.0001 0.082k 0.260k 0.0054 -0.0008
Q(S(F) 0.0001 -0.3132 0.0551 0.2681 0.0066
Yg(F) 0.0002 -0,0157 -0,3071 0.0416 0.2716
() 0.0002
b(é(F) 0.0004
~0. 000k

0(7(F)
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TABLE 6, CON'T.

F(r) 11916 J11917 Jfis %9 T
o, (F) zero zero zero zero zero
o, (F) -0.0000 0.0000 -0.0000 0.0000  -0.0000
O(E(F) 0.0002 -0.0001 0.0000  -0.0000 0.0000
o (F) ~0.0011 0.0003 -0.0001 0.0001  -0.0000
0.0073 -0.0013 0.000%  -0.0002 0.0001

°(4(F)
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TABLE 7

S(F) FOR VARIOUS FUNCTIONS F(r)

F(r) 100 S(F) _'F(r) 100 S(F) F(r) 100 8(F)
Jo3 28577 | Jordopdos  0-0000 | Jopdgudos  O0:756k
T30 2.1589 | Jordoedoy  ©0.0003 | Jgydgulog 00123
I01%03 0.0219 | Jg1Tpdeg  0.0005 | Jo1Jgydoy  -0.0011
JeiJm -0.0006 [ 30 JpTog 00003 | 3y 30T 0.0008
Jgf_JOS 0.0008 | 3y Jpdorg  0:000k | JpJ0de0  0.0003
T2 0.0003 [ Jo,305 0.9130 | 3130 Tg1s ©0-0005
AT 0.0005 | 3y J Ty, 0.962k JOlJ_Q”‘; 0.5561
63908 0.000k | Jo1Jp305 00T | Jydgsdee  0.623
363909 0.000k | Jg1J53Tpg  -0.0013 | JoyJpsdpy  0.0108
ToeTo10 0.0004 | JgJg3dg7  0.0008 | JgiJosleg  -0.0009
To1905 13602 | Iy J3dgs  0-0003 | Jodgsdeg  -0.0007
Jo1702903 1.3263 J01703%09 0.000k Jo1d05Jp10 0-0003
Todoador  0-0181 | JoyTozdgro  0.000k Jo1902 0.4658
Jorloedes  -0-0015 JmJoi 0.6906 JordosToy  ©0-530k
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TABLE 7 CON'T.

F(r) 100 S(F) F(r)' - 100 s(F) F(r) 100 s(F)
Ior906%08  0-00%2 | Jod3pdyg  =0.0000 | Jgadyidyp -0.9765
Jo1Jo6dog ~ -0-0007 | Jp1dy3dyg  0.0000 | Jo3dypdyz  0.1719
Jordosloro  0-0007 | J51991dy9  -0.0000 | Joudyydyy  0.8357
To173 0.4009 | J509:2 -LASOE | Joadypdys  0.0206
019077908 0.4616 Joe9117%12 0.3709 Jo3911%16 O 0034
Jorforlog  0-0082 | Jgpdydyz 11728 | Jo3dppdiy  0.0010
Jo1Jo79010  -0-0006 JopI11914 0.0243 Jo3911918  -0-000k
JOlJlf_ 1.4286 Jepd11915  -0-0036 Jozd1191g  0-0002
Jond1191e 19Tl | Jgpdyidyg 0.0010 | Joodyydyq -0.0001
Jorip1day  0.0263 | Jppdypdy  -0.000k | Jg3.2 0.0102
Jor91191,  -0.0037 | JopdyqJys 0.0002 JouJy1dys  -0.0373
Jo1911915  0.0009 | Jepdiidig  -0.000L | Joudi3dyz  -0.7321
Jord1191g  =0-0003 | Jgpdyidyyg  0.0000 | Jpdydqy,  0.0992
Jordiidyy  0.0001 | Joaif -0.0542 | JpJ1Ty5  0.6MTh
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TABLE T CON'T.

F(r) 100 S(F) F(r) 100 S(F) | F(r)__ - 100 s(F)
Jouii191g 00175 | Joidg 0.014% | 35130055 -0.0002
Toudyadyy  -0:0030 | Jo33,s -0,0008 | Jy1Jg0H g 0.0001
TouT11918  0.0009 | Jo3deg 0.0007 | Jp1dgi0715 -0.0001
Joud11919  -0.000% | JoPdgy 0.0003 i%g 2.1428

3

Ioud11900  0:0002 | Jo33.g 0.0005 | Iy %% 0.6578
JOSJﬁ -0.003k JQ%Jgg 0.0003 Jop ;%—i- -0.3490
Iocd15 0.001% | J537010 0.000k 03 .;.%% -0,1506
Torins -0.0006 | Jo20,2 1.1189 | Jy %% 0.0061
J®8Jl§_ 0.000k Io190p915 -0,0831¢ To5 ;31:; -0.0021
Joo"1d -0.0002 | JoJoghhf  -0.4377 06 %; @»095
Jo10%11 0.,0001 | JoIgudd  -0.11 | Jor %{2 -0, 0004
Soi 3.3512 | Jodgsf  0.0033 | Jgg %.é 0.0002
Tott0n LA21T | Iy dge0if -0.0000 | Jgg %% 0.0002
Tot%03 0.6490 | Iy Tprdis 0,000k | Jg0 %—é 0.0001

Jll{ 2.0k07




APPENDIX IT

CERTAIN INTEGRALS OF BESSEL FUNCTIONS

Orthogenality Relations

Provided that } = (m2 0) are the eigenvalues for

wnich J,(I,)=0, 1t follows from McLachlan(63, PP. 102-10h) ¢pay

S (E,W\ T"m) =0 m # M (11-1)
S (_‘Ym Tm) =0 mF M (11-2)
S(T,a) = 3 T.5(K,) m 20 (11-3)
S(T2) = & T, (n) wr ]

where the operator S ( F) has been defined as

S(F) = [ Feod -

Some Identities

The differential equation
y

/ 2 (
where prime denotes differentiation with respect to /7 is satisfied by

n\j :‘J:(Kn) for which (7/5 };Z = -K I(Kn) . Multiply (II-5) by Av~ia,

where ~, ~w, and -, are any single-valued and differentisble functions of

-60-
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N in the range Oéﬂf I
2
J‘]r\)zw«}??”-;- /V'V\)r\ﬂ,/{?/ + N K ,\)w,\_};7= [ (11-6)

Noting that
/

/o ] ry
[J'\’Vzw'\)»q] ~J')/\)~\Jq/«'\\7 + J‘ONM/\}V + (T2-7)

/ / / / /
F NNV ANy DY ’\A)’\l«\\] + /\/w,\/,,\\]
we may rewrite (II-6) as

ro / / / / 2 -
N AV «,\q + DA /\;(7 +J')/\//vx)'¢«\7 -n K ’\)M’\-}U = (11.8)

/ .
-]
Multiply by A) and integrate from O tos; then
fﬂ[«)w,\;' "t b e g = 12 ]JA =
S il | e 2 V) = 3
5 J J / J J (11-9)
- 1 AvVAUvA /\\7 ¢

This result 1s very general. ~V,~v, and -, have not been
restricted to any particular functions of 7 . v has been restrict-
ed te being 'J:(Kn) s but K is not necessarily an eigenvalue. If we now
require that K be one of the pasitivé eigenvalues I, 3 (“n Z)))and perform
the integration from O to 1, then, upon substituting for y and y' and
div\iding by X,

ffl [(/\/m)r\/.,'i- /\)M'»\; -'-/VL\,\)/\J_) j;.,\ + h:v) A AL 3.0'»«] 4)/7 =0 , (II&].Q)

0
The special cases of (II-10) of interest in this paper

are obtained by choosing ~,m, from the functions unity, J,., , and
T,wm » and by combining certain results obtained directly from (11-10).

These identities are, (M 2| ))



S(3,

2) -5 ()

B

= 0

S(j°%> -z S<Tol 3——”2>= o

35(3,7%) —-ag( -

35() <4 5(T)=0

S( ) “BS(TMTH):

35(3.7%)~ 2 (7, 22 ) (7 = o

S(Tt T = (11T, -

7

.,
E S(To\j—njm): 0

(1T, ~2 S(3T T =

K
uf

2
(& _
KP.

i

"o (3t - (B

KE,

— =

2) S(joe\\‘yo'n) t 2 S(_‘T)Il Tcw,) = 0

) ST T,)=

(I1-11)

(I1-12)

(11-13)

(I1-1%)

(11-15)

(11-16)

(11-17)

(11-18)

(11-19)

(11-20)
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From the definitions of ]:I (42), O(’n (1-7), and S(F)

(1-8) and the identity (II-12),

82‘5&\.& S(E%) = [T ']'OE(H,> ) (I1I-21)

Two expressions of a somewhat different form from the

above identities have been verified numerically:

° S(To,a If‘> = 2{[_"(—(»(13” —O(M(T‘F)] S@ﬁ j.o'n) | (1I-22)

and tr3
35(%1 7)) -2 S (T ;;;) =

=3 : [xm(trf)- %M(I.?)][S(if IM)~BS(TfJZmﬂ

Use of the numerical integrations tabulated in Tables 6 and 7 yields

(I1-23)

for (II-22) a left side of .02238 and a right side of .02239; for (II-23),
a left side of .02041 and a right side of .02041. In each case the first
two terms of the infinite sum provide over 99.9% of the total right side.
These numerical results strongly indicate the identity of (II-22) and
(II~23)° Furthermore, the physical consideration that the total energy

of the wave motion must be independent of time requires it.



APPENDIX III

THE SOLUTION AT GENERAL DEPTH
TO THE THIRD APPROXIMATION

The results of the third approximation to the solution
at general depth are:

Ay=A, , B, =0

(I11-1)
= '41? H}$ - N : ;
Am E(am' }CQ' H) D('“(t):">_
4[, - Knm]
K, &,
| E , 7}
’E(Hw’) X, (TO,T,,) + °(m( ""}7) -
o . o (I11-2)
| T H f
-7 ,Z.F? B %G )%“*Wf)bf‘g;’”?o %aldaLg) -
= f:) a
%
| K Iﬁ Qn::q)
-2 ) X o (T, T ?
’ ;2;1 KF'Zﬂ; f NW( Lf) CM i i)
A% K
Aam - - — r/: (m 2 o) (IT1-3)
3 4
Ao Ak 2 3
- 3¢)) ~fﬂ} g A=) o (1,0) +
SR ¥

w8 T; “m('fmfof) + (ITI-4)
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AR 2 1T A, |
ja(”)‘ *‘j;‘-—-'{os‘ju ‘42 F'TD\I"H (I1I-8)
m=I
3 s
js(n)zA..'z.m,{é(l+df}‘Lf (5033, 72 +
3 w0 &3 2
Ty _1 Koy B, _leh
+E\; 3%'*‘\ ID]I“];M 41\20 uar:j”j—o"‘-,-
v 2 = K,
- LR IR LT
mz| ~“n=|
B,
* 2 T,
__LZ JLTE E_‘E(HXI‘ZF ) « (];f‘) +
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All other Ap,, B ., and J;ﬂnare either zero or of order higher than
0,(,)“3') . The quantity ’l: is a functien of H only and has been

defined previously by equation (42) on page 1k.



APPENDIX IV
THE SOLUTION AT THE SECOND-CRDER
CRITICAL DEPTHS TO THE SECOND APPROXIMATION
The results of the second approximation to the sglution
when the depth is equal to or very nearly equal to either of the second-
order critical depths are given below. When H % ,19811, Q = 3 and
when H % 34698, = k4 in these expressions.
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in which the functions Cp, Cg, &nd C of H and A, in equatians (1v-3)
and (IV-14) have been defined previously by equations (55), (56), and
(57) on pp. 19-20, and the function f; of H has been defined by
equation (42) on page 14. All other Ay, By,, and Z,(:n')) are either

2
zero or of order higher than 0 (ﬁ“).



APPENDIX V

FUNCTIONS OF H APPEARING IN THE ENERGY EXPRESSIONS

The functions C, of H, (5¢1n{13), in the expressions

for the potential (92) and kinetic (93) energy are:
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