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Abstract

In radionuclide treatment, tumor cells are primarily destroyed by charged
particles emitted by the compound while associated higher energy photons
are used to image the tumor in order to determine radiation dose and monitor
shrinkage. However, the higher energy photons are difficult to image with
conventional collimated Anger cameras, since a tradeoff exists between
resolution and sensitivity, and the collimator septal penetration and scattering
is increased due to the high energy photons. This research compares imaging
performance of the conventional Anger camera to a Compton imaging system
that can have improved spatial resolution and sensitivity for high energy photons
because this tradeoff is decoupled, and the effect of Doppler broadening at
higher gamma energies is decreased. System performance is analyzed by
the modified uniform Cramer–Rao bound (M-UCRB) algorithms based on the
developed system modeling. The bound shows that the effect of Doppler
broadening is the limiting factor for Compton camera performance for imaging
364.4 keV photons emitted from 131I. According to the bound, the Compton
camera outperforms the collimated system for an equal number of detected
events when the desired spatial resolution for a 26 cm diameter uniform disk
object is better than 12 mm FWHM. For a 3D cylindrical phantom, the lower
bound on variance for the collimated camera is greater than for the Compton
imaginer over the resolution range from 0.5 to 2 cm FWHM. Furthermore,
the detection sensitivity of the proposed Compton imaging system is about
15–20 times higher than that of the collimated Anger camera.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

High-resolution imaging for γ rays with energies above 250 keV such as those emitted
by 131I, 113 mIn, 137Cs or 22Na could well become clinically useful for diagnosing cancer,
studying physiological and chemical processes of various tumors, monitoring tumor therapy,
and tracking the metabolic activity of essential trace elements. These radionuclides and
corresponding radiopharmaceuticals cannot be replaced by low-energy radiotracers because
they have unique chemical properties that make them organ and/or tumor specific. For
example, 131I or radiotracers labeled with it can be used for both diagnostic imaging and
internal radiotherapy to the thyroid gland. 131I primarily emits detectable gamma-rays at
284 keV (6.05%), 364.4 keV (81.2%), 636 keV (7.26%) and 723 keV (1.8%); it also emits
β− particles for cancer radiotherapy. During 131I radiotherapy, it is necessary to employ an
effective imaging system to determine radiation dose and monitor tumor shrinkage.

Imaging performance of conventional collimated Anger camera systems (Anger 1958,
1964) for detecting γ -ray photons is primarily determined by properties of the collimator. An
Anger camera system with a parallel-hole high energy general purpose lead collimator (HEGP)
imposes an efficiency–resolution tradeoff because of the physical constraints resulting from
the mechanical collimation. As the imaged γ -ray photons exceed ∼250 keV, the collimator
septal thickness must be increased to reduce the penetration and scattering of higher energy
photons in the collimator material. Since collimator sensitivity is reduced as the square of hole
diameter, resolution must be sacrificed by increasing hole size if sensitivity is to be maintained.
Moreover, since the photoelectric cross section of material decreases as the cube of incoming
photon energy, the sensitivity of the collimated Anger camera is also reduced when imaging
higher energy photons.

Compared to the collimated Anger camera, the Compton imaging system (Todd 1974,
Singh 1983, Solomon and Ott 1988, Philips 1995, Leblanc 1998, 1999) is an image formation
technique that has the potential for significantly improved performance in both detection
efficiency and spatial resolution for imaging higher energy photons even though at 140 keV
(Hua 1999), a ring Compton imaging system requires at least 40 times the sensitivity of an
Anger camera with low energy general purpose lead collimator to achieve similar imaging
performance. According to the basic principle of Compton scattering (Compton 1923), an
incident γ -ray photon with energy E0 scatters from and transfers part of its energy E1 to an
electron in the first detector. If the transferred energy exceeds the electron’s binding energy,
the electron will be released from the atom. The photon with reduced energy E2 is scattered
at a scattering angle θ with respect to its initial direction, and finally absorbed in the second
detector. If the initial electron is assumed to be free and at rest, following the conservation laws
of energy of momentum (Evans, 1982, Knoll, 2000), the relationship between the scattered
photon energy E2 and the scattering angle θ is expressed as

cos θ = 1 + m0c
2

(
1

E0
− 1

E2

)
, (1)

where m0c
2 = 511 keV is the rest energy of the electron.

Using the positions and energies of the interaction in time-coincidence in the first and
second detectors in conjunction with the above Compton kinematics expression, each incident
photon can be localized within a conical ambiguity in image space. Measurements recorded
from an ensemble of incident photons can be used to reconstruct and estimate the source
distribution. In essence, the Compton system uses ‘electronic collimation’ instead of absorbing
collimation to form an image and has the potential for improving detection efficiency and
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spatial resolution simultaneously by eliminating the efficiency–resolution tradeoff imposed by
the conventional collimator.

In the real case, equation (1) is an oversimplification: electrons in the scattering detector
are neither free nor at rest. The random momentum distribution of electrons introduces a
corresponding uncertainty or blur into the scattering angle associated with a given deposited
energy. This blurring is referred to as Doppler broadening (Ordonez et al 1997). Due to the
uncertainty in the recoil electron energy measurement and the effect of Doppler broadening in
the first detector combined with the intrinsic spatial resolution of the first and second detectors,
the scattering angle is not precisely determined and the source location is known only within
a conical surface with finite angular thickness. In a well-designed Compton camera, spatial
resolution is principally influenced by Doppler broadening and finite energy resolution of
the scattering detector. Nevertheless, a Compton camera still offers the potential for a joint
improvement in image noise and spatial resolution compared to mechanically collimated
cameras because the greatly increased sensitivity can overcome the reduced information
carried per detected photon. Imaging high energy γ -ray photons, as we propose, substantially
reduces the influence of Doppler broadening and detector noise resulting in the potential for
further improving the spatial resolution.

This research compares the theoretical imaging performance of a dual-planar silicon-
based Compton imaging system with that of an Anger camera with HEGP collimator using
statistical analysis tools, and the modified uniform Cramer–Rao bound (M-UCRB). The bound
was proposed to compare the minimum achievable variance in reconstructed images at a given
target spatial resolution defined as a symmetric point-spread function (PSF) specified by the
desired full width at half-maximum (FWHM). For this particular medical application, we are
interested in diagnostic imaging tracers and therapeutic agents labeled with 131I that emits
predominately 364.4 keV energy photons. The choice of energy not only corresponds to a
medically important radionuclide but is also in a regime where the performance of conventional
collimation is rapidly decreasing while that of Compton collimation is rapidly increasing.

2. Methods and algorithms

In order to compare performance between imaging systems, both a well-defined task and a
figure-of-merit for accomplishing that task must be specified. For this study we focus on the
ability to quantify activity at given point in the object. For such a task in the non-Bayesian
estimation setting, the two most important performance parameters are the variance of the
estimate (i.e., noise in the reconstructed images), and its bias or systematic error. For a given
radioactivity distribution, variance is introduced by the conditional Poisson measurement noise
in combination with the resolution recovery or reconstruction procedure. Bias, on the other
hand, can be the result of incompletely removing the effects of finite spatial resolution or
it can be introduced intentionally in order to stabilize variance. For example, smoothing a
reconstructed image can decrease noise at the expense of increasing bias and degrading the
image resolution. The conditional mean-squared error (MSE) of an estimate is the sum of the
variance and the square of the bias. While zero bias or perfect resolution may be desirable,
reducing bias typically increases variance leading to a tradeoff. Moreover, minimum MSE is
typically not obtained at zero bias and it is therefore important to characterize performance
over a range of bias or, more correctly, a range of bias gradients.

Since absolute bias is highly object dependent, we compare systems on the basis of their
‘potential’ for bias as quantified through a desired point-spread function (PSF) or local impulse
response in reconstructed images and their variance at each width of PSF. Accordingly, each
imaging system will exhibit a corresponding noise–resolution tradeoff curve. Although not
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often used outside of tomography, resolution can also be recovered in planar scintigraphy
and in performing system comparisons, it is important that this be taken into account. A
system that achieves lower noise than another irrespective of desired resolution (as referenced
through the PSF), is uniformly better. Nevertheless, it may well be that one system is better
than another only over a specific range of resolution in reconstructed images.

It is desirable to compare system performance based only on the intrinsic quality of
their measurements and not with the confounding influence of image reconstruction or post-
processing procedures, which are easily changed. To this end, we use the fact that the limiting
variance of any unbiased estimator or reconstruction method is lower bounded by the inverse
of the Fisher Information Matrix (FIM) also known as the Cramér–Rao bound (CRB) (Kay
1993, Van Trees 2001). As noted above, unbiased estimation is not necessarily a desirable
attribute and we employ a modification to the uniform CRB introduced by Usman and Hero
(Usman 1994, Hero 1996) to quantify the performance of biased estimators. In the modified
uniform CRB (M-UCRB) introduced by Meng and Clinthorne (Meng 2004) and detailed in
section 2.1.1, the variance for each imaging system is compared at essentially the same target
PSF (or more accurately, mean estimator gradient) in reconstructed images and traced as a
function of the width of the target PSF (e. g., FWHM of a Gaussian response). Although,
the M-UCRB provides a lower bound on the variance independent of any reconstruction or
resolution recovery procedure, it is important to note that use of the penalized maximum-
likelihood estimate that has been post-smoothed by the desired PSF asymptotically achieves
the limiting variance.

The M-UCRB requires calculation of the FIM and inversion of large matrices. For
imaging systems that have a high dimensional measurement space—in particular, Compton
camera measurements are indexed by energy and by first and second detector locations—
direct calculation can be computationally prohibitive. Here, Monte Carlo integration (MCI)
methods (Press et al 2002, Meng and Wehe 2003, Parra and Barrett 1998) are used to calculate
the FIM and are described in section 2.1.2. Inversion of the large matrices necessary to
compute the M-UCRB is accomplished by assuming that the response of each imaging system
is approximately shift-invariant. Accordingly, the fast Fourier transform (FFT) can be used
to reduce computational complexity from O(N3) to O(N log N) where N is the dimension of
FIM as detailed in section 2.1.3. Finally, sections 2.2 and 2.3 describe how the two imaging
systems are modeled for the performance calculations.

2.1. Modified Uniform Cramer–Rao Bound

2.1.1. Background. The M-UCRB imposes a constraint on the mean gradient of the estimator
∇θmθ(θ̂j ), and is

∇θmθ(θ̂j ) = ∇θbθ (θ̂j ) + ej

=
[

∂Eθ(θ̂j )

∂θ1
,
∂Eθ(θ̂j )

∂θ2
, . . . ,

∂Eθ(θ̂j )

∂θp

]
· (2)

The mean gradient describes the sensitivity of a single reconstructed pixel to the
perturbations in true parameter values. Under the conditions (Fessler and Rogers, 1996,
Kragh, 2002), that the mean of the estimator is Eθ [θ̂ ] = Lθ̂ and the matrix L is symmetric, the
mean estimator gradient at the jth pixel is close or equal to the PSF of the jth pixel. The PSF
specifies the influence of a perturbation of a single source parameter on all estimated pixel
values in the reconstruction. Stated another way, the mean estimator gradient for the jth pixel
is give by a row of L while the PSF at the jth pixel is a column of L.
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By using the M-UCRB, the Euclidean norm of error vector between a desired mean
gradient vector f, i.e. the target PSF and the actual PSF g are less than a small pre-specified
tolerance δ, is given as

‖g − f ‖ � δ and δ = ‖λ[FY + λI ]−1 · f ‖. (3)

From the biased Cramer–Rao bound, that is

Var(θ̂j ) � [∇θEθ (θ̂j )]
T F−1

Y [∇θEθ (θ̂j )],

= gT · F−1
Y · g (4)

the optimal actual mean gradient is equal to

goptimal = arg min
‖g−f ‖�δ

{
gT · F−1

Y · g
}
.

= [F + λI ]−1 · F · f (5)

Thus, the M-UCRB can be derived as

V ar(θ̂j ) = σ 2 � f T · [FY + λI ]−1 · FY · [FY + λI ]−1f, (6)

where FY is the Fisher information Matrix, λ is a small positive scalar and I is the identity
matrix with same size as FY. Therefore, the lower bound of variance imposed by the target
PSF can be calculated. It is meaningful to use the M-UCRB to evaluate imaging performance
of different imaging systems by comparing the difference in variance in the image at the same
PSF.

2.1.2. Monte Carlo calculation of FIM. The FIM—essentially the generalized signal-to-
noise ratio of the measurements—is a key element for calculating M-UCRB, but calculation
suffers from the computation and memory requirements for high dimensional images and
measurements, such as the Compton imaging system. The conventional calculation of FIM
for medical imaging systems is based on a statistical model of the detection process governed
by Poisson statistics:

Y ∼ Possion(	Aθ), (7)

where A is the system response matrix, 	 is the mean total number of events in the measurement
interval, Y = [Y1, . . . , YD], is a vector of the projection measurements, θ = [θ1, . . . , θP]T is the
parameterized image space vector normalized as

D∑
i=1

P∑
j=1

aij θj = 1. (8)

Therefore, the FIM has the following form:

FY (θ) = 	AT[diag(Aθ)]−1A · (9)

The inverse of the FIM provides a lower bound on the covariance matrix of any unbiased
estimate of θ . To solve the calculation problem involved in directly calculating and inverting
a non-sparse FIM, an alternative method is required to reduce the computational complexity
and size of memory required to calculate the FIM and M-UCRB.

According to the definition of expected Fisher information, given the observable random
variable Y, unknown parameters θ with P elements, and conditional probability, pY (Y |θ), the
P × P FIM is defined as

FY (θ) = −E

{
∂2

∂θ2
log pY (Y |θ)

}
(10)



7034 L Han et al

For the numerical calculation, the alternative method is referred to as the observed Fisher
information (Berger, 1994), which is equivalent to using a Monte Carlo calculation. The one
element with index of ij in the FIM for N observed random variables is given as

Fij = −
〈

∂2

∂θi∂θj

log pY (Y |θ)

〉

≈ − 1

N

N∑
l=1

∂2

∂θi∂θj

log pY (Yl|θ) (11)

Where 〈 〉 denotes mean. According to the properties of the observed Fisher information, the
Yi are independent and identically distributed, and the value of the element in the FIM for 	

number of desired events is equivalent to 	 times the value of the element in the observed
FIM for a single desired event. This is given as

F(	)ij = 	 · F(1)ij (12)

Thus, the average value of one element of the observed Fisher information matrix may
be calculated by a Monte Carlo Integration instead of using the implied multidimensional
integration.

If the FIM corresponds to a desired mean number of detected events 	, and N is the fixed
number of measured or simulated events for the Monte Carlo integration, the estimated value
for one element in the observed Fisher information matrix is defined as

F	(θ)ij = 	 · F1(θ)ij

≈ 	

N
·

N∑
l=1

p(Yl/i)p(Yl/j)(∑M
n=1 p(Yl/n) · fn

)2 (13)

where p(Yl/i) is the probability that an event generated in source bin i leads to a measurement
Yl by the imaging system; fn is the expected number of photons emitted from source bin n, i.e.
the object intensity in the nth source bin; and M is the total number of source pixels.

Clearly, the estimated value of each entry in the FIM approaches the real value
asymptotically and the variance of individual elements in FIM decreases with increasing N.
Moreover, the calculation of observed Fisher information matrix by the Monte Carlo integration
not only decreases the computational complexity to M × Nfloating point calculations for one
element of the FIM but also requires only moderate system memory space.

2.1.3. Fast Fourier transform for M-UCRB estimation. Another primary computational
issue of the M-UCRB is the inversion of the matrix [FY + λI ], and multiplication of several
matrices which have the same size as the FIM FY . Fortunately, if employing a source with
uniform activity and assuming local spatial invariance, the matrices of both FY and [FY + λI ]
are approximately circulant-block-circulant (CBC) matrices (Davis, 1994), in which the block
rows are circular right shifts of the block elements of the preceding block row, and each block
is still a circulant matrix.

According to the properties of block circulant matrices, the CBC square matrix F or
F−1 multiplying a vector equals the first column of a CBC matrix cyclically convolved with
the vector. This can be realized using a Fourier Transform. The DFT of an N-dimensional
complex vector can be defined as matrix W, in which Wkn = (

e−(i 2π
N

)
)kn

. Thus, with unitary
normalization constants 1/

√
N , the above DFT matrix is further defined by a unitary matrix:

Q = W/
√

N . A corresponding IDFT unitary matrix is its Hermitian transpose matrix Q∗ and
Q · Q∗ = 1 and the circulant matrix C can be separated as C = Q∗ diag(QC1c)Q, where Cc

is the first column of C.
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      (a)                                               (b)  

Figure 1. (a) The ADAC Lab ARGUS imaging system. (b) The simulated ARGUS camera head
with parallel hole HEGP lead collimator (white represents lead collimator, yellow represents NaI
crystal, and gray represents phototube array).

Therefore, the calculation of modified uniform Cramer–Rao bound is given as

σ 2 � f T [F + λI ]−1 · F · [F + λI ]−1f

= f T Q∗((Qf ) · /(Q[F + λI ]1c) · ∗(QF1c) · /(Q[F + λI ]1c)), (14)

where ‘.∗’ and ‘./’ are element-wise multiplication and division, respectively.

2.2. System modeling for anger camera with HEGP collimator

2.2.1. Description of an Anger camera with HEGP collimator. The conventional Anger
Camera used in this study is an existing commercial Anger camera head with high energy
general purpose lead collimator, as shown in figure 1. The camera is part of the ARGUS
imaging system manufactured by ADAC laboratories (ADAC).

According to the ARGUS system specifications, the NaI crystal thickness is 9.5 mm
designed for a maximum energy of 400 keV, the intrinsic spatial resolution is 4 mm (FWHM),
and intrinsic energy resolution is 10.6% (FWHM) for 364.4 keV. For detecting the 364.4 keV
photons from 131I, the hole size, septa and length of HEGP collimator are 3.81 mm, 1.727 mm
and 60.0 mm, respectively. The collimator spatial resolution is around 12.6 mm for a 364.4 keV
point source at 10 cm from the front face of the collimator. Figure 1(b), illustrates the Anger
Camera with collimator model simulated by GATE (Geant4 Application for Tomographic
Emission) and GEANT4 Monte Carlo simulation system (Jan et al 2004).

2.2.2. System Model of the Anger Camera with HEGP Collimator. In order to analyze the
performance of a conventional Anger camera equipped with an HEGP lead collimator for
imaging the high energy gamma rays from 131I, a system model of an Anger Camera with
HEGP collimator for 131I gamma rays which includes photon penetration and scattering in
the collimator is required. The goal of this model is to find a relatively simple function to
correctly describe the point-spread function at different distances from the image plane to the
surface of the lead collimator. The model primarily considers the resolution properties of a
parallel hole HEGP lead collimator and sodium iodide Anger camera.

Using the GATE simulation system, the point-spread function images at source distances
from 0 cm to 50 cm from the front face of the collimator are generated for a point 131I source
in air; the energy window is 20% around 364.4 keV. The simulated 131I point-spread function
images and their profiles at distances of 10 cm are shown in figure 2(a). The circular average
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(a) (b)

Figure 2. (a) The two-dimensional point-spread images for an I131 point source at a distance of
10 cm. (b) Right half of simulated and fitted point-spread function for an I131 point source at a
distance of 10 cm.

of simulated PSF is then fit with a Gaussian combined with an exponential function that arises
from collimator penetration and scattering by a nonlinear least-squares method. At a given
distance x, the function is given as

PSF(x) = AGauss e( −x2

2σ2 ) + Aexp e(−λx). (15)

As shown in figure 2(b), the right half profiles of the simulated normalized point-spread
function and the fitted point-spread function from equation (15) are displayed for the 131I point
source at 10 cm. There is a good match between the original simulated PSF and the fitted PSF
without consideration of the collimator hole pattern.

To derive the relationship of coefficients in the fitted point-spread function with point
source to collimator distance, the simulated point-spread images were obtained at 0 cm, 1 cm,
2 cm, 3 cm, 5 cm, 7 cm, 10 cm, 15 cm, 20 cm, 25 cm, 30 cm, 35 cm and 40 cm, respectively.
The value of coefficients AGauss,Aexp,σ and λ at different source to collimator distances and the
curve obtained by nonlinear curve fitting. The final fitted functions for the four coefficients as
a function of source to collimator distance d are

AGauss = 0.036 45 × 10(−0.059 67×d) + 0.007 193, (16)

σGauss = 0.2768 × d + 2.454, (17)

Aexp = 0.002 876 × e(−0.072 66×d) + 0.000 7339, (18)

λexp = 0.038 77 × 10(−0.043 74×d) + 0.009 312, (19)

2.3. Statistical modeling for Compton imaging system

2.3.1. Description of a dual-planar silicon-based Compton imaging system. As shown in
figure 3(a), the scatter detector studied consists of 32 × 16 × 10 silicon pad detector elements
and each silicon pad is 1.4 mm by 1.4 mm by 1 mm. Silicon pad sensors can be stacked
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(a)                              (b) 

Figure 3. (a) One silicon detector unit. (b) A parallel configured dual planar silion–NaI Compton
imaging system (the yellow cube is a stack of 10 individual 1 mm think silicon scatter detector,
and the blue cube is NaI crystal) .

together to increase the scatter detector sensitivity. Therefore, the total sensitive volume is
44.8 × 22.4 × 10 mm3, and energy resolution is 1 keV. The absorption detector is a NaI
Argus Anger camera imaging head without collimator. As demonstrated in figure 3(b), the
two planar detectors are parallel and centers of both detectors are aligned on axis.

2.3.2. Statistical model of Compton imaging system. Unlike derivation of the Anger
camera system model by simulating or measuring a series of point-spread functions, for
the relatively complex Compton imaging system, the system model must be derived by
mathematical approximation for each physical process involved including the estimation of
position resolution, energy resolution and the effect of Doppler broadening by calculation
of the Compton differential cross section. Therefore, accurate modeling of the Compton
imaging system is necessary to correctly calculate the detection sensitivity and transition
probabilities, which determine the estimated quality of image reconstruction and the accuracy
of performance evaluation by the M-UCRB. However, calculating a rigorous statistical model
suffers from the computational complexity of the multidimensional integration involved. The
tradeoff between a practical calculation and accurate estimation needs to be taken into account.
In this section, we investigate an approximate statistical model for the configuration of the
proposed Compton camera that accurately describes the sequence of physical processes.

The sequence of physical processes involved in one detected event in a Compton imaging
system is

(1) A γ -ray photon is emitted from source position x0 in the object with initial energy e0 and
direction �1.

(2) The emitted photon escapes from the object.

(3) The escaped photon is directed toward the first (scatter) detector.

(4) At location z1 of the first detector, the photon Compton scatters from an electron and
energy e1 is deposited in the first detector and the scattered photon escapes from the
first detector in direction of solid angle �2. If the energy e1 is larger than the detection
threshold, the location z1 and energy e1 are recorded.

(5) If the second detector lies within �2, the scattered photon passes through an attenuating
medium or air between the first detector and second detector.

(6) The scattered photon with energy (e0 − e1) strikes the second detector and may be
absorbed in the second detector. The energy e2 and position z2 are measured by the
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(a) (b)

Figure 4. (a) Geometry and parameter definition of Compton imaging system with two parallel
block detectors. �1 is the zenith angle of source photon; �2 is the zenith angle of scattered
photon; θ is the Compton scatter angle; r1 = r01 + rin; r2 = r1out + r12 + r2 in. (b) The Joint
probability density functions that includes Doppler broadening and first detector energy resolution
of a crystalline silicon detector for 364.4 keV incoming photons (the position resolution of the
silicon detector is 1.4 mm; energy resolution of silicon detector is 1 keV; The position resolution
of the second detector is 4 mm, and the distance between the two detectors is 100 mm).

second detector. The energy e2 may or may not equal to (e0 − e1). This depends on
whether the scattered photon is fully absorbed by the second detector or perhaps scatters
and escapes.

Therefore, the transition probabilities can be evaluated as

p(Y/i) = 1

8π2

ucs−1(e0)

ut−1(e0)
e−ut−o(e0)r01(1 − e−ut−1(e0)r1in) e−ut−1(e2)r1out

× e−ut−m(e2)r12(1 − e−ut−2(e2)r2in)p(θ, e′
1)

cos �1

r2
1

cos �2

r2
2

, (20)

Where μcs is the silicon linear attenuation coefficient for the Compton process, and μt is the
total linear attenuation coefficient for different materials. The definition of other parameters
is described in figure 4(a).

In equation (20), p(θ, e′
1) is the Compton scattering based joint probability density

function (JPDF) combined with energy and position measurement noise. The density is
evaluated by interpolation from the precalculated 2D table indexed by Compton scatter angle
θ and measured deposited energy e′

1 in the first detector. As shown in figure 4(b), The
matrix for crystalline silicon detecting 364.4 keV photons is indexed by the scattering angle
(horizontal axis) and deposited energy (vertical axis), which is the combined effect of Doppler
broadening, detector energy resolution and spatial resolution.

3. Results and analysis

In this section, the performance of the Compton imaging system and the Anger Camera
with HEGP collimator for imaging 364.4 keV photons are analyzed and compared using the
M-UCRB, reconstructed images using MLEM algorithms, and detection sensitivity.
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(a) (b)

Figure 5. (a) The Field of View of one pixel of the Compton imaging system with scattering angle
from 0 degree to 180 degree scattering angle (top view). (b) The Field of View of the collimated
Anger Camera (top view).

3.1. Comparison of field of view

Top views of the Compton imaging system and conventional collimated Anger camera are
displayed in figures 5(a) and (b), respectively. The size of collimated Anger camera determines
the size of the field of view (FOV), whereas the FOV of the Compton imaging system primarily
depends on the geometry of the overall system and can be considerably larger than the first
detector as illustrated by Rogers and Clinthorne (2004). Essentially, each first detector element
acquires a cone-beam projection and can be considered analogous to a ‘virtual pinhole’ after
either explicit Compton decoding or implicit decoding as part of the image reconstruction
process.

3.2. Performance comparison using M-UCRB

3.2.1. The two-dimensional thin disk object. The object used for the M-UCRB calculations
was a 26 cm diameter disk having uniform activity. The reconstructed image was quantized
into 65 × 65 pixel array with pixel size 0.4 cm by 0.4 cm. The disk faced the imaging system
and the center of the disk was aligned with the center of the detector. It was located 10 cm
from the collimator of the Anger camera and 10 cm from the first detector of the Compton
imager, in which the distance between the first and second detectors was also 10 cm. The
center pixels of the disk were selected for evaluation.

Three M-UCRB curves and the ratio of the Compton to the Anger camera M-UCRB curves
for the same number of events are displayed in figure 6(a) and (b), respectively. The Anger
camera with HEGP collimator is illustrated for two mathematical models. The Anger camera
modeled with a pure Gaussian response according to the specifications of the Argus Anger
Camera, which is 12.6 mm FWHM (Han 2008), has better performance when the FWHM
of the desired PSF is larger than 1.1 cm. The ratio of M-UCRB on variance is around 9.
This indicates that the sensitivity of the Compton Imaging system must be about 9 times
greater than the Anger Camera to obtain the same performance. However, when the Gaussian
plus exponential tails are modeled according to 161 718 19 for a target PSF less than 1.3 cm,
the Compton imaging system significantly outperforms the collimated Anger camera for the
same number of detected events. Even at the lowest reconstructed resolution, the M-UCRB
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(a) (b)

Figure 6. (a) M-UCRB curves of same number of events for a Compton imaging system and an
Anger camera with HEGP collimator for imaging 364.4 keV photons. The variance in center pixel
intensity of the 26 cm diameter uniform source disk is evaluated. The Anger Camera with HEGP
response is modeled as a pure Gaussian function (FWHM = 12.6 mm) and as a Gaussian plus
exponential tails (AGauss = 0.0164, σGauss = 5.22, Aexp = 0.0021, and λexp = 0.0235) that more
accurately represents the collimator response for 360 keV photons. (b) The variance bound ratio
of M-UCRB for a Compton imaging system over Anger Camera with 2 HEGP collimator models.

curves for the two systems with identical sensitivity are close with a ratio of approximately
1.1 for the same number of events.

3.2.2. The three-dimensional cylindrical object. The reconstruction domain for a 3D object
study was 20 cm × 20 cm × 20 cm quantized into 65 × 65 × 65 pixels array. Each pixel was
a 0.31 cm cube. The simulated object was a uniform cylinder with diameter of 20 cm. The
central axis of the cylinder is parallel to the surface of the detector, and the distance between
the axis and detector surface is 14 cm. The object was rotated in steps of 1◦ over a total of
360◦ for calculating the 3D Fisher information matrix.

The central pixel in the object was selected to calculate M-UCRB and, as for the 2D
case, the number of events for calculating the FIM was the same for both systems. As shown
in figure 7, the Compton imaging system achieves a substantially lower bound on variance
than the collimated Anger camera with HEGP per detected photon irrespective of desired
resolution. Compared with the collimated Anger camera from figure 7, the minimum ratio
between the two bound curves is about 1.9 at around 1.4 cm (FWHM). For the 3D case, both
line integrals and cone integrals are used to reconstruct the image and calculate the FIM for the
Anger camera and Compton imaging systems, respectively. Compared with the M-UCRB in
the 2D case, the effects of these integrals introduce relatively more degradation of the Anger
camera performance than for the Compton imaging system.

3.3. Comparison of detection sensitivity

The detection efficiency or sensitivity is defined as the ratio of the number of accepted
detected events to the total number of emitted gamma-rays from the source. The sensitivity
is determined by the energy of the photons, system geometry and detector and collimator
material. As shown in figure 8(a), the detection sensitivities at a different source to detector
distance of the Anger camera with HEGP collimator are evaluated by Monte Carlo Simulation.
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Figure 7. M-UCRB curves for the central element for a Compton imaging system and an Anger
camera with HEGP for detecting 364.4 keV photons for the same number of counts. The source
object is a 3D cylinder with diameter of 20 cm and height of 20 cm.

(a) (b)

Figure 8. (a) The detection sensitivity value and curve for detecting a I131 point source by ARGUS
Anger Camera with HEGP collimator. (b) Calculated detection sensitivity map for the proposed
Compton imaging system. The source plane is located at 10 cm to the first detector.

For a given distance from the source to the detector, the sensitivity of Compton imaging system
is not uniform. Using the system model of Compton imaging system presented, the histogram
of calculated sensitivities is displayed in figure 8(b) for a 65 × 0.31 cm by 65 × 0.31 cm
object located at 10 cm from the surface of the silicon detector. The maximum sensitivity for
the center point is around 3.45 × 10−3, and the average sensitivity is around 2.34 × 10−3.
Therefore, at a 10 cm source to detector distance , the average detection sensitivity of Compton
imaging system is about 20 times that of the Anger camera with the HEGP collimator.
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(a)

(b) (c)

Figure 9. Reconstructed images using 100 iterations of MLEM for the hot spot disk. Hot spots
are 0.6 cm, 0.8 cm, 1.0 cm, 1.5 cm, 2.0 cm and 2.4 cm diameter. (a) Compton imaging system
with 3 million events. (b) Anger Camera with 0.2 million events (equal imaging time). (c) Anger
Camera with 3 million events.

3.4. Performance comparison using restored 2D images

Although the M-UCRB analysis provides valuable information in regards to the relative
performance of imaging systems over a range of resolutions, the analysis in this study has its
limits. In particular the resolution-noise tradeoff was only evaluated at a single point in a large
uniformly emitting disk or cylinder. While performance at this point is likely representative
of other locations in the image, there is the chance that it is not. Furthermore, calculations
of the M-UCRB used several approximations as noted in sections 2.1.2 and 2.1.3. Because
of these issues, we corroborated bound predictions with maximum-likelihood reconstructions
from a 2D resolution phantom for each system.

A simulated two-dimensional thin sheet phantom with 131I was placed 10 cm from the
front surface of the two detectors. The diameters of hot spots on the phantom are 0.6 cm,
0.8 cm, 1 cm, 1.5 cm, 2.0 cm and 2.4 cm. The intensities of hot spots are uniform and the
background activity is zero. Images with 65 by 65 0.308 cm pixels were reconstructed by
100 iterations of MLEM for both the Compton imaging system and the Anger camera with
HEGP collimator. As shown in figure 9(a), three million events were acquired for the Compton
imaging system and its image was reconstructed by list-mode MLEM. Since the detection
sensitivity of the Compton imaging system is about 20 times of the collimated Anger camera,
200 thousand events were acquired by the Anger Camera with HEGP collimator, and its
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reconstructed image is displayed in figure 9(b). For comparison, the image for Anger Camera
with HEGP with three million events is also shown in figure 9(c). Clearly, the Compton
imaging system performance is substantially better than the conventional Anger camera, even
for the same number of events. In particular, hot spots less than 1.0 cm diameter cannot be
reconstructed for the Anger camera with HEGP, since information provided by this imaging
system is not sufficient to recover such small hot spots. However, even the smallest hot spots
for the Compton system are clearly defined. For equal imaging time the collimated camera
image is much noisier and more poorly defined.

4. Discussion and conclusion

The results of both the M-UCRB and 2D image simulations show that the Compton
imaging system studied outperforms the collimated Anger camera for imaging higher energy,
364.4 keV, photons. Even though the enhancement can be observed directly in figure 9
by comparison of restored images, the qualitative analysis is not sufficient to demonstrate
improvement at every desired reconstructed resolution since it is possible to trade resolution
against noise. The M-UCRB analysis helps to quantify this tradeoff for each imaging system
and moreover, it provides the limiting variance based only on the intrinsic properties of the
imaging system, which eliminates the confounding influence of the image reconstruction
algorithm. With this technique, the lowest achievable variance at each specific target PSF
for different imaging systems was compared. Limitations of the M-UCRB analysis still exist
due to use of approximations to reduce computation and the fact that the ability to quantify
small changes in source intensity at the central point in a large, uniformly emitting disk was
assumed to be representative of other points in the image. The qualitative information provided
by reconstructions in figure 9 provides confidence that the point evaluated for the M-UCRB
analysis is indeed representative.

In the 2D analysis, for the same number of imaged events, noise performance of the
Compton system is better than using both Anger camera collimator models when the desired
reconstructed PSF width is below ∼11 mm FWHM. Although the relative advantage decreases
below unity above 11 mm for the pure Gaussian collimator model and above 14 mm for the
more realistic Gaussian-exponential model, figure 8 shows that the Compton system model can
have a 20-fold advantage in sensitivity. This results in an overall performance advantage over
both collimator models throughout the full 5–20 mm range of reconstructed resolution. For
3D, the Compton advantage proves even more compelling. On the basis of the same number
of detected events, the limiting noise in the Compton system is uniformly lower than the
conventionally collimated system regardless of resolution. The Compton efficiency advantage
results in an additional 20 times decrease in noise.

Although the predicted performance of the Compton camera is superior to the collimated
Anger camera at the energies of 131I, the performance advantage decreases rapidly at lower
energies. This is due both to the fact that collimators at lower energies are more efficient for
a given resolution due to the rapid increase in the photoelectric absorption cross section and
the fact that Compton performance degrades rapidly for decreasing energies due to increased
scattering angle uncertainty for a given measured energy. As noted by previous investigators,
Compton cameras require significantly increased efficiency over conventional collimation at
140 keV to achieve break-even performance (Hua 1999). The large volume of low-noise
silicon detectors, needed to achieve such efficiency is likely impractical at present. In contrast,
the volume of silicon detector required to achieve the 20-fold sensitivity advantage noted
above—while not inexpensive—is readily achievable with current technology. Furthermore,
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our predictions show that each detected photon in a Compton camera carries more information
at high resolution than the conventionally collimated systems.

Despite the promise of significant performance improvements over collimated Anger
cameras at higher energies, there remain many challenges in constructing a Compton camera
practical for medical imaging. In particular, the camera requires low-noise silicon detectors
for scattering incident photons. This requirement has largely been met through the use of
silicon pad detectors and readout technology that routinely achieve 1.4 keV FWHM energy
resolution and are capable of reliable triggering at less than 10 keV. Another challenge is
the need for processing high event rates in the scattering and absorption detectors as well
as the corresponding need for good timing resolution (10–20 ns FWHM) to keep random
coincidence rates low. This has not been achieved with our experimental setup that uses a
modified Anger scintillation camera as the absorption detector but is certainly possible using
alternative technologies such as LSO-based PET detectors. Finally, the sheer computation
required for image reconstruction—especially in 3D—is an issue but the almost relentless
march of Moore’s Law in conjunction with coarse-grained parallel computing methods may
well eliminate it as such in the near future.
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