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Abstract – The dynamics of particles interacting by key-lock binding of attached biomolecules
are studied theoretically. Examples of such systems include DNA-functionalized colloids as well
as nanoparticles grafted with antibodies to cell membrane proteins. Depending on the coverage
of the functional groups, we predict two distinct regimes. In the localized regime at low coverage,
the system exhibits an exponential distribution of particle departure times. At higher coverage,
there is an interplay between departure dynamics and particle diffusion. This interplay leads to
a sharp increase of the departure times, a phenomenon qualitatively similar to aging in glassy
systems. This diffusive regime is analogous to dispersive transport in disordered semiconductors:
depending on the interaction parameters, the diffusion behavior ranges from standard diffusion
to anomalous, subdiffusive behavior. The connection to recent experiments and implications for
future studies are discussed.
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Selective key-lock interactions are quintessential
for biology. Over the past several years, they have
also attracted substantial attention in the context of
nanoscience. It is becoming common practice to attach
biomolecules capable of key-lock binding to colloidal parti-
cles or other microscopic objects to achieve controllable,
specific interactions. Examples include nanoparticles
functionalized with complementary single-stranded DNA
(ssDNA) [1–7], or with antibodies to a particular protein.
The possible applications range from self-assembly of
smart nanomaterials to biosensors and cell-specific drug
delivery [8–10]. In this new class of systems, the collective
character of the binding may lead to non-trivial and often
prohibitively slow dynamics.
In this letter we report several remarkable results

dealing with the dynamics of particles with reversible key-
lock interactions. These results are of both conceptual
and practical interest. In particular, we will demonstrate
that depending on the coverage of the functional groups
(e.g., ssDNA or proteins), the system exhibits two distinct
regimes. At low coverage, particles are localized on the
finite cluster to which they are attached before departing.
There is an exponential distribution of departure times,
but limited lateral diffusion. If the coverage is sufficiently
high, the particle is unable to fully explore the cluster
to which it is attached before departing. In this regime

the finite cluster behaves effectively as an infinite cluster,
and the overall particle dynamics is a result of the
interplay between diffusion and desorption. The lateral
motion is analogous to dispersive transport in disordered
semiconductors: it may range from regular diffusion with
a renormalized diffusion coefficient, to anomalous, sub-
diffusive behavior.
In our model, a single particle interacts with a flat

two-dimensional surface via multiple key-lock binding
(see fig. 1). At each position of the particle, there are m
key-lock bridges which may be closed or open, and there is
a binding energy ε for each of the key-lock pairs (the varia-
tion in ε is neglected). Therefore, the m-bridge free energy
plays the role of an effective local potential for the particle:
U(m) =−kBTm∆, where ∆≡ ln(1+ exp[ε/kBT ]) [11].
In a generic case, the number of bridges m is a Poisson-
distributed random number Pm =m

m exp (−m) /m!,
where m denotes the mean of the distribution. After stay-
ing for some time at a particular site, the particle either
breaks all its bridges and departs, or hops a distance a to
a new site characterized by a new value for the number
of bridges m. In this sense we have coarse-grained the
particle motion by discrete steps of the correlation length
a, the distance after which the number of bridges becomes
statistically independent of the value at the previous loca-
tion. Below, we calculate the departure time distribution
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Fig. 1: (Color online) A snapshot of particles interacting with a
two-dimensional substrate. Particles are alternately bound to
the substrate by bridges, or unbound and free to diffuse in a
direction normal to the substrate plane.

Φ(t) in both the localized and diffusive regimes, provide
an estimate of the crossover between the two regimes, and
study the random-walk statistics in the diffusive regime.

Diffusive regime. – We first determine the departure
time distribution in the diffusive regime, as this regime is
typical for all but the sparsest coverage. In the diffusive
regime the particle can move around to find a more favor-
able state on the surface. This leads to a much longer
lifetime of the bound state, a phenomenon similar to
aging in glassy systems. The hopping rate between two
neighboring sites is given by the Arrhenius law, κi→j =
1
τ0
exp [−∆(mi−mj)θ (mi−mj)]. Here θ(x) is the Heav-

iside step function, and τ0 is a characteristic timescale for
bridge formation. The problem can be greatly simplified
since the ensemble-averaged dwell time τm at a site with
m bridges can be well approximated by an effective Arrhe-
nius relation:

τm = τ0 exp [∆(m−m)] . (1)

In the case when ∆m is sufficiently large, the proba-
bility of staying attached to the surface after an n step
random walk is (1−Kmτm)n−1 = [1− exp (−∆m)]n−1.
Here Km =

1
τ0
exp (−∆m) is the departure rate from a

site with m bridges. It follows that the average number of
steps for the random walk is 〈n〉= exp (∆m). The depar-
ture time distribution Φ(t) can then be calculated by aver-
aging over the departure time distribution φn(t) for walks
with a given n:

Φ(t) = 〈φn(t)〉n . (2)

The calculation [12] is simplest in the frequency domain
where φn(ω) =X(ω)

n. Here Z = 6 is the coordination
number for the triangular lattice:

X(ω) =

〈
κ̃

iω+ κ̃

〉
m,m1,···,mZ

, (3)

κ̃=
Z∑
i=1

κm→mi . (4)
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Fig. 2: (Color online) Departure time distribution function vs.
time with m= 3. The dotted lines for ∆= 5 and 7 show the
exponential approximation Φ(t) =Km exp(−κ∗t).

One can then sum the resulting geometric series for Φ(ω)
and perform the inverse Fourier transform to derive the
following result:

Φ(t) = exp(γ)[exp(γ)− 1]
∞∑
r=1

exp(−zrt)
Y (zr)

, (5)

Y (zr) = i
dX(ω)

dω

∣∣∣∣
ω=izr

. (6)

Here zr labels the roots of the equation exp(γ)−X(iz) = 0
with γ =− ln[1− exp(−∆m)].
We now discuss the behavior of the departure time

distribution in several regimes of interest. At fixed m,
for small ∆ the behavior is non-universal. The departure
time distribution exhibits multi-stage behavior, where the
initial departure and long-time behavior may both take
the shape of a power law, albeit with different exponents
(see ∆= 0.5, 1 curves in fig. 2).
As the strength of the key-lock binding increases

(∆� 1) there is a crossover from non-universal behavior
to universal power law behavior for the first several
decades in time (see ∆= 2, 3 curves in fig. 2):

Φ(t)∼ t−0.7. (7)

For ∆� 3 we enter the regime of multiexponen-
tial beating. The initial departure behavior is well
described as an exponential with initial departure
rate Km = exp(−∆m)/τ0 and characteristic timescale
1/κ∗ � 15τ0:

Φ(t)�Km exp(−κ∗t). (8)

We attribute κ∗ to the diffusive cascade of particles from
states with m bridges into more highly connected states.
Since this process involves particles finding a lower-energy
state, κ∗ does not depend on ∆. As indicated by the small

48009-p2



Dynamics of particles with “key-lock” interactions

10
0

10
1

10
2

10
3

10
4

10
5

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

t/τ0

Φτ0

m =1

m =3

m =10
t−1.5

Fig. 3: (Color online) Departure time distribution function vs.
time with constant average binding energy � 4kBT .

departure probability, the binding is nearly irreversible in
this regime (see ∆= 5, 7 curves in fig. 2).
We also plot the departure time distribution relevant

to the experimental situation where the average binding
energy is held constant [11]:

∆m

1− exp(−m) + ln(1− exp(−m)) = const. (9)

The optimal regime for fast departure is to have a large
number (m∼ 10) of weakly bound bridges (see fig. 3). In
this fast departure regime the departure time distribution
is well approximated as a single exponential, Φ(t) =
Km exp(−Kmt).
The results of this calculation can be compared to a

recent experiment which measured the time-dependent
separation of two DNA-grafted particles in an optical
trap [1]. In the experiment the tail of the departure time
distribution was observed to be a power law Φ(t)∼ t−1.5.
A similar behavior is indeed reproduced with a binding
free energy of a few kBT (see m= 1 curve in fig. 3).

Diffusion. – We now discuss the statistics of the in-
plane diffusion of the particle. We notice that the in-plane
trajectory of the particle subjected to a delta-correlated
random potential remains statistically equivalent to an
unbiased random walk. Therefore, the mean-squared
displacement after n steps is given by 〈r2〉= na2.
However, as the particle explores the landscape the
average hopping time becomes longer and the diffusion
gets slower. In the limit n→∞, the average hopping time
can be determined from the equilibrium canonical distri-
bution. Note that to perform this calculation we use the
Arrhenius approximation for the dwell times. For the case
of Poisson-distributed m, this corresponds to a finite yet
renormalized diffusion coefficient D∗ with D0 = a2/4τ0:

D∗ ≡ 1
4

∂
〈
r2
〉

∂ 〈t〉 =D0
exp (∆m) [exp (m)− 1]
exp (me∆)− 1 . (10)
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Fig. 4: (Color online) Rms displacement vs. time with m= 1.
The inset is the dimensionless diffusion coefficient defined as

D= 1
4D0

∂〈r2〉
∂〈t〉 plotted against time.

However, it may take a very long time to achieve this
“ergodic” behavior. In the transient regime, an n-step
random walk cannot typically visit sites with an arbitrarily
large number of bridges m. Instead, one should average
the hopping times only over sites with m<m∗. In the
language of the statistics of extreme events, m∗− 1 is
the maximum “expected” value of m in a sample of n
independent events [13]. Both the average diffusion time
〈t〉, and mean square displacement 〈r2〉= na2, can be
expressed in terms of m∗, which defines their relationship
in parametric form:

〈
r2
〉
=

a2

P (m,m∗)
, (11)

〈t〉=
〈
r2
〉

D∗

(
1− P (me∆,m∗)
1− exp (−me∆)

)
. (12)

Here P (x,m∗)≡ γ(x,m∗)/Γ (m∗) = exp (−x)
∞∑
k=m∗

xk/k!

is the regularized lower incomplete Γ-function. It is
easy to see that in the limit m∗→∞ we recover the
renormalized diffusion relation 〈t〉= 〈r2〉/D∗. However,
this generally occurs after a very long time which is not
accessible experimentally. In the transient regime we
expect anomalous, subdiffusive behavior. As shown in
fig. 4, this regime is typical for strong enough key-lock
interactions. By approximating the incomplete gamma
functions, the transient behavior may be well described
by a power law with a single free parameter β � 0.15 (see
fig. 5):

〈
r2
〉 1
2

a
�
( 〈t〉
τ0

)η
, (13)

η=
1

2
− 1+ [∆− 1] exp(∆)
2∆[exp(∆)− 1]− 2

βm
ln [1− exp(−βm)] . (14)
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Fig. 5: (Color online) Comparison of the power law exponent
determined numerically to eq. (14) in the transient regime.

Crossover. – As the coverage is reduced, the lateral
diffusion of the particle is limited, and particles enter
the localized regime. In the localized regime the particle
remains close to the original location until breaking all its
bridges and departing. Note that the crossover from the
diffusive to localized regime occurs at lower coverage than
the percolation threshold where one first encounters an
infinitely connected cluster of sites with m> 0. For site
percolation on the triangular lattice the percolation transi-
tion occurs at m= ln 2. The first estimate for the location
of the crossover is obtained by comparing the average
number of steps for the random walk 〈n〉= exp(∆m) to the
characteristic cluster size sc = 1/ln(1/λp) below the perco-
lation threshold. The numerical constant λ= 5.19 for the
triangular lattice, and for the Poisson-distributed bridge
numbers the occupancy probability p= 1− exp(−m).
The crossover condition 〈n〉= sc can be expressed as

∆=− 1
m
ln
[− ln{λ (1− e−m)}] . (15)

To provide an alternative estimate we consider the confine-
ment of the particle’s random walk by the radius of gyra-
tion of the characteristic cluster. Below percolation, the
radius of gyration of the cluster is Rs ∼ sρ where ρ= 0.641
in two dimensions. By comparison to the radius of gyra-

tion for the particle’s random walk 〈n〉 12 , the crossover
condition is 〈n〉 12 = (sc)ρ. The values 2ρ and 1 differ by
less than 30%, so both conditions give similar crossovers
(see fig. 6).

Localized regime. – Well below the percolation
threshold a particle is thermalized, i.e. it fully explores
the finite cluster to which it is attached before departing.
The departure rate is given by the Arrhenius relation

K = 1
τ0
exp
(
F
kBT

)
. The probability that the particle

departs from the surface between time t and t+dt is
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Fig. 6: (Color online) The crossover from the localized to
diffusive regime occurs below the percolation threshold m=
ln 2. For large ∆ the crossover condition is m=− ln (1− 1

λ

)
.

Φ(t)dt=Kexp[−Kt]dt. In this regime we can calculate
the cluster free energy F =−kBT ln〈Z〉 by averaging
the partition function for the finite clusters. Since this
regime is not typical, and the results can be accurately
approximated in much simpler form, we omit the details
of the calculation. The interested reader is directed to
ref. [12].
In the localized regime with very low coverage, the char-

acteristic cluster size sc � 1 and the departure time distri-
bution is accurately approximated as a single exponential
with departure rate k= exp(−∆)/τ0:

Φ(t) = k exp(−kt). (16)

In fig. 7 the departure time distribution is plotted in the
localized regime. As indicated in the plot, increasing ∆
decreases the rate of particle departure.

Experiment. – This work provides additional insight
into the slow crystallization dynamics of key-locking parti-
cles (see fig. 8). Recent experimental studies demonstrated
that micron diameter particles grafted with ssDNA form
reversible aggregates. The resulting structures were
mainly disordered aggregates [2], or random hexagonal
close-packed crystals [1]. Controlled colloidal crystalliza-
tion into the various phases predicted theoretically [14]
remains elusive. Crystallization requires that colloids
repeatedly depart and reattach to the growing structure,
in an effort to find their desired lattice location [15].
We can attempt to quantify this optimal experimen-

tal regime of fast departure by determining the time
Tdep required for 90% of the particles to depart: 0.1 =∫∞
Tdep
Φ(t)dt. Figure 9 is a plot of Tdep vs. m at constant

binding free energy. The optimal regime is to have a large
number (m∼ 10) of weakly bound bridges. For comparison
we have also plotted the time Tdif required for the parti-
cle to diffuse along the surface of a particle to which it is
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Fig. 7: (Color online) Departure time distribution function
vs. time in the localized regime (solid lines) at m= 0.1. For
comparison the dash-dotted curves are the exponential relax-
ation Φ(t) = k exp (−kt) with departure rate k= exp (−∆)/τ0.

Fig. 8: (Color online) Schematic depiction of key-lock bind-
ing between nanoparticles functionalized with complementary
ssDNA. The resulting structures can be disordered, fractal-like
aggregates, or crystalline.

attached. Since Tdif >Tdep, in the DNA-colloidal system
departure and reattachment is the dominant mechanism
for relaxation, as opposed to surface diffusion.
To realize this regime experimentally we propose the

introduction of long, flexible DNA linkers to a system
of particles with a high coverage of short ssDNA. This
scheme increases the number of key-lock bridges between
particle pairs as compared to previous experiments, and
therefore has the potential to substantially reduce the time
required for crystallization.

Conclusions. – In this work we studied the dynamics
of particles which form multiple, reversible key-lock
bridges. There is a crossover which separates the regime
in which particles are localized near their original

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

m

T
τ0

Tdep

Tdif

crossover

Fig. 9: (Color online) Plot of the time Tdep required for 90% of
the particles to depart vs. m.

location from the regime where they exhibit diffusive
behavior by breaking and reforming bridges. At low
coverage the key-locking system exhibits an exponential
distribution of departure times, and particles remain local-
ized on the finite cluster to which they first attach. Above
the crossover diffusion allows the particle to cascade
into deeper energy wells with a large number of key-lock
bridges. This leads to an increase in the bound-state
lifetime similar to aging in glassy systems. The statistics
for the particles’ in-plane diffusion were determined.
For relatively weak key-lock interactions there is a finite
renormalization of the diffusion coefficient. However, as
∆ increases, the system exhibits anomalous, sub-diffusive
behavior analogous to dispersive transport in disordered
semiconductors. We discussed the connection between our
work and recent experiments with DNA-coated colloids.
The findings indicate that the optimal regime for colloidal
crystallization, where particle departure is a relatively
fast process, is to have a large number of weakly bound
key-lock bridges.
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