
T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Superfluidity of fermions with repulsive on-site
interaction in an anisotropic optical lattice near
a Feshbach resonance

B Wang1 and L-M Duan
FOCUS Center and MCTP, Department of Physics, University of Michigan,
Ann Arbor, MI 48109, USA
E-mail: binwz@umich.edu

New Journal of Physics 10 (2008) 073007 (7pp)
Received 9 April 2008
Published 3 July 2008
Online at http://www.njp.org/
doi:10.1088/1367-2630/10/7/073007

Abstract. We present a numerical study on ground state properties of a
one-dimensional (1D) general Hubbard model (GHM) with particle-assisted
tunnelling rates and repulsive on-site interaction (positive-U), which de-
scribes fermionic atoms in an anisotropic optical lattice near a wide Feshbach
resonance. For our calculation, we utilize the time evolving block decimation
(TEBD) algorithm, which is an extension of the density matrix renormalization
group and provides a well-controlled method for 1D systems. We show that
the positive-U GHM, when hole-doped from half-filling, exhibits a phase with
coexistence of quasi-long-range superfluid and charge-density-wave orders.
This feature is different from the property of the conventional Hubbard model
with positive-U, indicating the particle-assisted tunnelling mechanism in GHM
brings in qualitatively new physics.

The combination of Feshbach resonance and optical-lattice techniques has opened up
possibilities for investigating strongly interacting ultracold atoms under tunable configura-
tions [1]. Ability to control such strongly interacting systems provides an unprecedented
opportunity to explore interesting states of matter. Much interesting physics has been predicted
for ultracold atom systems with fundamental Hubbard model Hamiltonians. For example, with
the Bose–Hubbard model and its derivations, people have studied the transition from superfluid
to Mott-insulator [2], the existence of supersolid order [3], etc for ultracold bosons, whereas
with the Fermi–Hubbard model, Luther–Emery [4] and FFLO [5] phases are predicted to be
observable for ultracold fermions with attractive interaction. In particular, it is well known that
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for the repulsive (positive-U) conventional (Fermi–)Hubbard model the susceptibility for super-
fluid and charge-density-wave (CDW) orders are suppressed at low temperatures and the leading
quasi-long-range (QLR) order is given by a spin density wave (SDW) at any filling fraction [6].

However, in this work, we show that coexistence of QLR superfluid and CDW orders can
be observed for fermionic atoms with repulsive on-site interaction in an anisotropic optical
lattice near a wide Feshbach resonance. The interactions in this strongly interacting system
can be described by a one-dimensional (1D), positive-U, general Hubbard model (GHM) with
particle-assisted tunnelling rates [7]. The GHM is an effective one-band Hamiltonian that
takes into account the multi-band populations and the off-site atom–molecule couplings in
an optical lattice near a wide Feshbach resonance (see the detailed derivation in [7]). It is
interesting to note that the GHM with similar particle-assisted tunnelling also arises in different
physical contexts, as proposed in [8]. In contrast to the case of the conventional positive-U
Hubbard model, we show that the superfluid and CDW emerge as dominant QLR orders over
spin orders for the positive-U GHM when the system is significantly hole-doped below half-
filling, although at or very close to half-filling, the dominant correlation in GHM is still anti-
ferromagnetic. This feature indicates that the particle-assisted tunnelling in GHM brings in
qualitatively new physics. It makes the effective interaction in GHM doping-dependent, showing
different behaviours with a possible phase-transition in between. We get our results through
numerical calculations based on the time-evolving block-decimation (TEBD) algorithm [9, 10],
which, as an extension of the density matrix renormalization group (DMRG) method [11], is a
well-controlled approach to deal with 1D systems. We compare our numerical results with some
known exact results for the conventional Hubbard model and the remarkably precise agreement
shows that the calculation here can make quantitatively reliable predictions.

As shown in [7], a generic Hamiltonian for describing strongly interacting two-component
fermions in an optical lattice (or superlattice) is given by the following GHM:

H =

∑
i

[
Uni↑ni↓ − µni

]
−

∑
〈i, j〉,σ

[
t + δg

(
niσ + n jσ

)
+ δtniσ n jσ

]
a†

iσ a jσ + h.c., (1)

where niσ ≡ a†
iσ aiσ , ni ≡ ni↑ + ni↓, µ is the chemical potential, 〈i, j〉 denotes the neighboring

sites and a†
iσ is the creation operator for generating a fermion on the site i with the spin index

σ . The symbol σ stands for (↓, ↑) for σ = (↑, ↓). The δg and δt terms in the Hamiltonian
represent particle-assisted tunnelling, for which the inter-site tunnelling rate depends on whether
there is another atom with opposite spin on these two sites. The particle-assisted tunnelling
comes from the multi-band population and the off-site atom–molecule coupling for this strongly
interacting system [7]. For atoms near a wide Feshbach resonance with the average filling
number 〈ni〉6 2, each lattice site could have four different states, either empty (with state |0〉),
or a spin ↑ or ↓ atom (a†

iσ |0〉), or a dressed molecule (d†
i |0〉) which is composed of two atoms

with opposite spins. The two atoms in a dressed molecule can distribute over a number of lattice
bands due to the strong on-site interaction, with the distribution coefficient fixed by solving
the single-site problem. One can then mathematically map the dressed molecule state d†

i |0〉 to
a double-occupation state a†

i↓a†
i↑|0〉 by using the atomic operators a†

iσ [7]. After this mapping,
the effective Hamiltonian is transformed to the form of equation (1). The GHM in equation (1)
reduces to the conventional Hubbard model when the particle-assisted tunnelling coefficients
δg and δt approaching zero, as one moves far away from the Feshbach resonance. Near the
resonance, δg and δt can be significant as compared with the atomic tunnelling rate t due to the
renormalization from the multi-band populations and the direct neighboring coupling [7].
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We consider in this work an anisotropic optical lattice for which the potential barriers along
the x- and y-directions are tuned up to completely suppress tunnelling along those directions.
The system becomes a set of independent 1D chains. We thus solve the GHM in 1D through
numerical analysis. For this purpose, first we transfer all the fermion operators to the hard-core
boson operators through the Jordan–Wigner transformation [12]. In the 1D case, we can get rid
of the non-local sign factor, and after the transformation the hard-core boson operators satisfy
the same Hamiltonian as equation (1). On each site, we then have two hard-core boson modes
which are equivalent to a spin-3/2 system with the local Hilbert space dimension d = 4. We can
therefore use the TEBD algorithm for solving this pseudo-spin system [9]. Similar to the DMRG
method [11], the TEBD algorithm is based on the assumption that in the 1D case the ground
state |9〉 =

∑d
i1=1 · · ·

∑d
in=1 ci1...in |i1 · · · in〉 of the Hamiltonian with short-range interactions can

be written into the following matrix product form:

ci1...in =

χ∑
α1,...,αn=1

0[1]i1
αnα1

0[2]i2
α1α2

0[3]i2
α2α3

· · · 0[n]in
αn−1αn

, (2)

where 0[s]i s denotes the matrix associated with site-s with the matrix dimension χ . When χ = 1,
the assumption reduces to the mean-field approximation, and for a larger χ , the matrix product
state well approximates the ground state as it catches the right entanglement structure for 1D
systems [9, 10]. To use the TEBD algorithm, we just start with an arbitrary matrix product state
in the form of equation (2), and evolve this state with the Hamiltonian (1) in imaginary time
through the propagator e−Ht . The state converges to the ground state of the Hamiltonian pretty
quickly. From the final ground state in the matrix product form, one can efficiently calculate
the reduced density operator and various correlation functions. This calculation has a well-
controlled precision since at each time step to update the matrix product state, the Hilbert space
truncation error can be suppressed by choosing an appropriate matrix dimension χ [9]. In this
calculation, we use the infinite lattice algorithm by assuming that the lattice is bipartite and
the ground state has a translational symmetry for each sublattice [9]. This allows us to directly
calculate the system in the thermodynamic limit.

To show that our calculation is capable of making reliable predictions, we first test our
results by comparing them with some known exact results of the Hubbard model in certain
cases. For the Hubbard model at half-filling 〈ni↑〉 = 〈ni↓〉 = 0.5, the ground state energy per site
is known to have the analytic expression E = −4

∫
∞

0
J0(ω)J1(ω)dω

ω[1+exp(ωU/2)] in the thermodynamic limit
from the exact Bethe ansatz solution [13], where J0 and J1 are Bessel functions and we have
chosen the tunnelling rate t as the energy unit. In figure 1(a), we show our numerical results for
the ground state energy of the Hamiltonian (1) with δg = δt = 0, and one can see that it agrees
very well with the exact energy of the Hubbard model, in particular when U > t . The error is
in general smaller than 10−3 as shown in figure 1(b). In this and the following calculations, we
choose the matrix dimension χ = 40. We have tried larger χ which gives better precision, but
we choose χ = 40 to have a faster speed and its precision is enough for our purpose.

We have also tested the final state from our calculation by comparing its correlation
functions with some known results. It is difficult to get correlations analytically from the
Bethe ansatz solution, but from the bosonization approach to the 1D Hubbard model, we
know its correlation functions take certain asymptotic forms. For instance, one can look at the
spin–spin correlation, defined as Sr ≡ 〈si · si+r〉, where the spin operator for the site i is given by
si ≡ a†

iασαβaiβ/2 with α and β = ↓, ↑ and σ standing for the Pauli matrices. The correlation Sr is
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Figure 1. The numerical result for the Hubbard model compared with some
known exact results. (a) Ground state energy as a function of U at half-filling
(energy in the unit of t), where data points marked by solid dots are from the
exact Bethe ansatz solution, while those marked by pentagrams are from our
numerical program; (b) the relative error in the ground state energy; (c) real-
space spin correlation function at the filling fraction 〈ni〉 = 0.5 and U = 8t ,
compared with the asymptotic form in equation (3) (solid curve) with Kρ = 0.62
and A = 0.13. (d) Similar to (c), except that 〈ni〉 = 0.75, and the corresponding
Kρ = 0.60 and A = 0.19.

independent of i because of the translational symmetry. The Hubbard spin correlation function
has the following asymptotic form [14]:

Sr = −
1

(πr)2
+

A

r 1+Kρ
cos(2kFr) ln1/2(r) + · · · , (3)

where Kρ is the Luttinger parameter whose value has been determined before from the exact
Bethe ansatz solution [14, 15], kF is the fermi momentum related to the filling number 〈ni〉

through kF = 〈ni〉π/2, and A is a non-universal model-dependent constant. In figure 1(c) and
(d), we compare our calculation results for Sr with this asymptotic form for filling number
〈ni〉 = 0.5 and 0.75, and the agreement is again remarkable as long as r is not too small (the
expression of Sr in equation (3) is not accurate for small r ).

With the confidence in numerics built from the above comparison, we now present our
main calculation results for the repulsive GHM in equation (1) with U > 0. Apart from the
spin correlation Sr defined before, we also calculate the CDW correlation, defined as Dr ≡

〈ni ni+r〉 − 〈ni〉〈ni+r〉, and the pair (superfluid) correlation, defined as Pr ≡ 〈ai↑ai↓a†
i+r↓

a†
i+r↑

〉.
The results are shown in figure 2 for different filling fraction 〈ni〉 and for models with different
particle-assisted tunnelling rates δg and δt . First at half-filling with 〈ni〉 = 1, the correlation
functions Sr , Dr and Pr for the GHM with different δg and δt , all look qualitatively similar to
the corresponding results for the conventional Hubbard model, although with increase of the
coefficient δg the spin correlation reduces a bit, while the CDW and superfluid correlations
increase slightly. Clearly, the dominant correlation in this case is in spin which suggests a QLR
anti-ferromagnetic order. In this and the following calculations, we take U = 8t for all the cases,
which corresponds to a significant on-site repulsion.
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Figure 2. The numerical results for the spin (Sr ), the CDW (Dr ) and the pair
(Pr ) correlation functions for the GHM with different particle-assisted tunnelling
rates and at different filling fractions, where δg = 0, δt = 0 for solid curves,
δg = 3t , δt = −6t for dashed curves, δg = 3t , δt = −3t for dotted curves and
δg = 7t , δt = −14t for dashed–dotted curves.

Qualitatively different results show up when the system is doped with holes. At the filling
fraction 〈ni〉 = 0.75, although for the Hubbard model the spin correlation is still the dominant
one (the SDW order has been pinned to the corresponding 2kF = 3π/4), for the GHM with
a noticeable δg, the superfluid and the CDW emerge as the leading QLR orders, and their
correlations increase significantly and decay much slower in space compared with the spin
correlation when δg grows. These features become more evident when we further increase the
doping. For instance, in the right column of figure 2, we show the correlations for the filling
fraction 〈ni〉 = 0.5. The qualitative behavior is similar to the case with 〈ni〉 = 0.75, but the
CDW and superfluid correlations for the GHM get significantly larger at long distance, and
the contrast with the Hubbard model becomes sharper. One can also note that for all these
calculations, change of the coefficient δt in the GHM makes little difference to the result. This
is understandable as a significant positive-U suppresses the possibility of double occupation in
the lattice, and the δt term in the GHM has no effect without double occupation. The δg term
in the GHM, however, is critically important, which favors superfluidity in general and brings
in the qualitatively different features mentioned above.

To show the spatial structure of these QLR orders, we plot in figure 3 the spin, the CDW
and superfluid correlations in the momentum space for the GHM with δg = 3t at different
filling fractions 〈ni〉. The momentum space correlations are defined by the Fourier transform
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Figure 3. The spin, the CDW and the pair correlation functions in momentum
space for the GHM with δg = 3t and δt = −3t . The solid, dashed and
dashed–dotted curves correspond to filling factor 〈ni〉 = 1, 0.75 and 0.5,
respectively. For the calculation of the Fourier transformation, we have used the
real space correlation functions for N = 100 sites.

Xk = 1/
√

N
∑N

r=0 Xr cos(kr), where X stands for the correlations S, D, or P . From these
momentum space curves, one can clearly see that this GHM at half-filling has a QLR anti-
ferromagnetic order (characterized by the peak at k = π ), and away from half-filling a QLR
superfluid order (peak at k = 0) and CDW order (peaks at k = 2kF and 2π − 2kF, where
2kF = 3π/4 (π/2) for the filling fractions 〈ni〉 = 0.75 (0.5), respectively). The peaks in figure 3
have finite widths because these orders in 1D are only QLR with algebraic decay. Note that
if we turn on small tunnelling interaction between different 1D chains, a leading QLR order,
such as superfluid order, could be stabilized to a true long-range order [6]. The GHM thus
provides an example of a microscopic Hamiltonian that with hole doping from half-filling, an
anti-ferromagnetic phase could be transferred to a superfluid phase (or a CDW phase in some
cases depending on which order becomes more dominant with the inter-chain coupling). The
correlations that characterize these QLR orders can be detected for the cold atomic gas, for
instance, through the method described in [16].

In summary, we have investigated the ground state properties of the GHM with repulsive
on-site interaction in 1D through well-controlled numerical analysis. For the system with
significant particle-assisted tunnelling rates δg and δt , we have found coexistence of QLR
superfluid and CDW orders when the system is hole-doped from half-filling. This feature is in
sharp contrast with the conventional Hubbard model, in which case for positive-U the charge
and superfluid orders are always suppressed regardless of the filling fraction. With a combi-
nation of the Bosonization approach and the TEBD or DMRG numerical algorithm, it may be
possible to determine the complete phase diagram for GHM. The model here describes strongly
interacting fermionic atoms in an anisotropic optical lattice. The possibility of a transition from
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an anti-ferromagnetic phase to a superfluid phase for the GHM with hole-doping may also have
interesting indications for other areas.
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