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1. Introduction

Recently it has been shown that a 3-algebraic structure is relevant for the supersymmetry

and gauge symmetry transformations [1 – 3] of the worldvolume theory of multiple coinci-

dent M2-branes. A candidate Lagrangian description of this theory has been found after

obtaining on-shell equations of motion, arising from demanding the on-shell closure of the

supersymmetry algebra. Earlier work on the non-propagating nature of the gauge fields

in this theory includes the conjecture in [4] in which a Chern-Simons type self-coupling of

the gauge fields was proposed to be part of the dynamics in the multiple M2-brane theory.

This type of couplings not only does not introduce new independent degrees of freedom,

but also has the right conformal dimension in three dimensions. The 3-algebraic structure

of this theory has also been hinted at by the early study of a system of M2-branes ending on

M5 [5], in which a Nambu-Poisson type 3-bracket [6] played an important role and had the

ingredient for making all the transverse scalars on equal footing. The complete Lagrangian

with all the requisite symmetries and a 3-algebraic gauge symmetry including a particular

so(4) example were found in the illuminating work of [1 – 3], and the Lagrangian theory

has recently been studied from various perspectives [7]–[42].

In order to better understand the nature of the algebraic structure of the fields on the

worldvolume of multiple M2-branes, in this paper, we study the 3-algebraic structure itself.

We extend the 3-algebraic structure considered in [1 – 3, 7] in two directions. In the first

direction, we make extensions of the finite dimensional 3-algebras into infinite dimensional

3-algebras by adding a mode number to each generator. This extension is similar in spirit

to the Kac-Moody extension of Lie algebras. A central charge naturally appears on the
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right hand side of the algebraic relations. We also present a different extension for the

Lorentzian 3-algebras [23 – 25]. This extension may be relevant to the fields on M2-branes

if they are also valued in an internal circle, which may be viewed as the boundary circle

of open membranes stretching between M2-branes. In the second direction, we explore the

finite dimensional 3-algebra, but with different signatures of the metric for the generators,

with the motivation of embedding general Lie algebras, and present a very simple 3-algebra

with a zero eigenvalue in the metric. However, the gauge theory for this simple algebra is

not very appealing and is a decoupled abelian gauge theory together with a theory with

global symmetries of an arbitrary Lie algebra, from the point of view of the Lagrangian.

The organization of this paper is as follows. In section 2, we focus on the derivation

of the extensions of the 3-algebras into infinite dimensional ones with mode numbers. In

section 3, we explore 3-algebras with different metric signatures, and related Lagrangian

theories. In subsection 3.1, after revisiting the derivation of the algebras with a negative

eigenvalue in the metric, independently obtained by [23 – 26], we discuss 3-algebras with a

zero eigenvalue in the metric. In subsection 3.2, we study Lagrangians before contracting

with the metric and study the theory corresponding to the algebra with a zero eigenvalue

in the metric. We also emphasize the study of a Lagrangian 2-tensor which falls in the

algebra of gauge transformations. In section 4, we make brief conclusions and discuss mass

deformed theories and related work.

2. Extensions and infinite dimensional algebras

2.1 Infinite dimensional extensions with general metrics

The algebras in [1, 2] and [3] are intimately connected with each other. As was speculated

in [3], the scalars and spinors on the M2-branes may live in an algebra A, and the gauge

fields may live in a possibly different algebra B. In the case of a conventional Yang-Mills

theory, these two algebras are the same. A natural generalized possibility for M2-branes is

that these two may not be the same. Thereby there are 3 types of 2-brackets, as formulated

in [3]:

〈· , ·〉 : A⊗A → B (2.1)

(· , ·) : B ⊗ A → A (2.2)

[· , ·] : B ⊗ B → B (2.3)

The first bracket (2.1) means that we can form an antisymmetric product of two

elements in A to obtain a gauge transformation. The second bracket (2.2) is a gauge

transformation of the element in A by the action of an element in B. The third bracket (2.3)

means that applying two gauge transformations is again a gauge transformation. It may

be worth mentioning that if the first product (2.1) is a symmetric product instead of an

antisymmetric product, then the algebra may be viewed as a super Lie algebra. However it

is not, since the first bracket is an antisymmetric product, and is not a symmetric product.
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If we make the combined operation of the first bracket (2.1) and the second

bracket (2.2), we obtain the 3-bracket formulated in [1, 2] as well as [3]:

[· , · , ·] = (〈· , ·〉, ·) : A⊗A⊗A → A (2.4)

In principle, we may also consider the case that some elements in B are not reached

by all possible products in (2.1), and similarly the case that some elements in A are not

reached by all possible products in (2.4). However, we will not discuss these aspects in this

section, and they will not influence the general discussion below.

Now we can introduce the basis of the elements in A, B for the extension of the 3-

algebra into the one with integer mode numbers:

A: {T a
m} (2.5)

B: {V ab
m , Cm,n} (2.6)

where a, b are gauge indices, m,n are integers, which are mode numbers. Fixing all the

modes to 0, we get back the ordinary 3-algebra with zero-mode generators.

We postulate a realization of the algebraic relations (2.1), (2.2), (2.4) as:
〈
T a

m, T b
n

〉
= V ab

m+n + habCm,n (2.7)

(V ab
m , T c

n) = fabc
d T d

m+n (2.8)

(Cm,n , T c
l ) = gmn,lpT

c
p (2.9)

[T a
m, T b

n, T c
l ] = fabc

d T d
m+n+l + habgmn,lpT

c
p + hbcgnl,mpT

a
p + hcaglm,npT

b
p (2.10)

hab and fabc
d are the metric and structure constants in the ordinary 3-algebra. The in-

variance of them demands respectively that fabcd = fabc
e hed is totally antisymmetric and

fabc
d satisfies the fundamental identity. V ab

m is antisymmetric in a, b, and Cm,n is antisym-

metric in m,n, while hab is symmetric in a, b. From (2.9), we see that gmn,lp is antisymmetric

in m,n.

We need to check the Jacobi identities for the above assumed algebra. We first check

the identity: 〈
(V ab

m , T c
n) , T d

l

〉
−

〈
(V ab

m , T d
l ) , T c

n

〉
= [V ab

m ,
〈
T c

n , T d
l

〉
] (2.11)

If we use the relations (2.7), (2.8), (2.9), we find that the above is equivalent to

[V ab
m , Cn,l] = 0 (2.12)

[V ab
m , V cd

n+l] = fabc
e V ed

m+n+l − fabd
e V ec

m+n+l + fabcd(Cm+n,l + Cm+l,n) (2.13)

Further if we set l = 0, due to antisymmetry property in m,n, we see that

Cp,0 = 0 (2.14)

for any integer p. So (2.12), (2.13) become simplified to

[V ab
m , Cn,l] = 0 (2.15)

[V ab
m , V cd

n ] = fabc
e V ed

m+n − fabd
e V ec

m+n + fabcdCm,n (2.16)
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In appendix A, we have shown that the fV terms on the right hand side of (2.16) are in

fact antisymmetric under the exchange of abm, cdn pairs, by virtue of the fundamental

identity, and by using that fabc
d furnishes a faithful and matrix representation of (V ab

0 )cd.

We then check the Jacobi identity:

[V fg
l , [V ab

m , V cd
n ]] = [[V fg

l , V ab
m ], V cd

n ] − [[V fg
l , V cd

n ], V ab
m ] (2.17)

We use the relations in (2.16) to simplify the above. The above is equivalent to two

equations. One equation with the V terms are satisfied due to the fundamental identity

for the structure constant fabc
d .

The other equation imposes restrictions on Cm,n.

(fabc
e f fged − fabd

e f fgec)Cl,m+n

= (f fgb
e f cdea − f fga

e f cdeb)Cn,l+m + (f fgc
e fabed − f fgd

e fabec)Cm,l+n (2.18)

The coefficients for Cl,m+n and Cm,l+n are negative with respect to each other. This

is because of the identities

fabd
e f fgec = −fabd

e f fgc
e′ hee′ (2.19)

f fgc
e fabed = −fabd

e′ f fgc
e hee′ (2.20)

Thereby

fabd
e f fgec = f fgc

e fabed (2.21)

since the metric hee′ is symmetric, and similarly for another term. The derivation

in (2.19), (2.20), (2.21) only assumes that the metric hab is symmetric and is indepen-

dent of the signature of the metric. So this holds for any signature, including Euclidean,

Minkowski signatures and the case when there are zero eigenvalues in the metric.

The coefficients for Cl,m+n and Cn,l+m are also negative with respect to each other,

and this is because

fabc
e f fged − f fgecfabd

e − f fga
e f cdeb + f fgb

e f cdea

= (fabc
e f fge

d′ − f fgc
e fabe

d′ − f fga
e f bce

d′ − f fgb
e f cae

d′ )hdd′ = 0 (2.22)

This is zero since it is the fundamental identity in the bracket contracted with the metric.

In the above derivation we also only used that the metric is symmetric and the derivation

is independent of the signature of the metric.

Thereby we have

Cl,m+n + Cn,l+m + Cm,n+l = 0 (2.23)

This relation implies the recursion relation

Cm,k−m = Cm−1,k−m+1 + C1,k−1 (2.24)

Using this we get C2,k−2 = 2C1,k−1, and using this recursion relation (2.24) m − 1 times

we get

Cm,k−m = mC1,k−1 (2.25)
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Thereby

kC1,k−1 = 0 (2.26)

So we have Cm,k−m = mδk,0C1,k−1, or equivalently

Cm,n = mδm,−nC1,−1 (2.27)

We see that C1,−1 is the only independent non-zero central charge, and we may define

C ≡ C1,−1 (2.28)

Then (2.16) is simplified to (see also [7] without the C term)

[V ab
m , V cd

n ] = fabc
e V ed

m+n − fabd
e V ec

m+n + fabcdmδm,−nC (2.29)

By using the analysis in appendix A, we can rewrite the above in a way that is manifestly

antisymmetric under the exchange of abm, cdn pairs:

[V ab
m , V cd

n ] =
1

2
(fabc

e V ed
m+n − fabd

e V ec
m+n + f cdb

e V ea
m+n − f cda

e V eb
m+n) + fabcdmδm,−nC (2.30)

(2.29) and (2.30) are equivalent modulo the fundamental identity, see appendix A. We

then need to check (2.17) for the new expression (2.30), and we find that the equation with

the C terms yields the same equation, and the equation with the V terms again satisfies,

by using the fundamental identity multiple times.

Now we see that gmn,lp and (2.9) are simplified to

gmn,lp = mδm,−n gl,p (2.31)

(C, T c
l ) = gl,pT

c
p (2.32)

where gl,p is a function of l and p. We have not assumed any symmetry property for gl,p.

We next look at the Jacobi identity:
〈
(C, T c

n) , T d
l

〉
−

〈
(C, T d

l ) , T c
n

〉
= [C,

〈
T c

n , T d
l

〉
] (2.33)

This identity is equivalent to two equations, one for the V terms, and another for the C

terms:

gn,pV
cd
p+l + gl,qV

cd
q+n = 0 (2.34)

gn,pδp,−lp − gl,qδq,−nq = 0 (2.35)

where p or q is summed over. By just looking at the case l = n for the first equation, we

infer

gl,p = 0 (2.36)

So far, the rest of the Jacobi identities involve two elements in B, and one elements

in A, and is equivalent to an identity of five elements in A. This equation, in the present

case, is the fundamental identity for the 3-bracket algebra (2.10), and since gl,p = 0, or

gmn,lp = 0, this is the same as the fundamental identity for the structure constant fabc
d .
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To summarize, the extension with mode numbers, under various consistency condi-

tions1 and assuming the ansatz (2.7)–(2.10), is

〈
T a

m, T b
n

〉
= V ab

m+n + habmδm,−nC (2.37)

(V ab
m , T c

n) = fabc
d T d

m+n (2.38)

(C, T c
l ) = 0 (2.39)

[V ab
m , V cd

n ] =
1

2
(fabc

e V ed
m+n−fabd

e V ec
m+n+f cdb

e V ea
m+n−f cda

e V eb
m+n) + fabcdmδm,−nC (2.40)

[V ab
m , C] = 0 (2.41)

[T a
m, T b

n, T c
l ] = fabc

d T d
m+n+l (2.42)

This algebra has various subalgebras. If we look at the generators with zero modes,

i.e. if we truncate the algebra keeping only the modes m,n, l = 0, we get the ordinary

3-algebra. This extended algebra of course includes the infinite dimensional extension of

the so(4) 3-algebra and the direct sum of the so(4) 3-algebras, by adding mode numbers to

each generators. The central charge C appears on the right hand sides of (2.40) and (2.37),

and may introduce normal ordering issues in the products of operators.

If we start from (2.40), we can look at the subalgebra by fixing a = c = ∗, where ∗ is

a specified gauge index, we get (see also [7])

[V ∗b
m , V ∗d

n ] = f∗bd
e V ∗e

m+n (2.43)

which is a Lie algebra, and the Jacobi identity for the 3-index structure constant f∗bd
e ,

that is f
∗[bd
e f

g]e∗
h = 0, is a component equation of the fundamental identity for the 4-index

structure constant fabd
e , and is satisfied as long as the fundamental identity is satisfied.

Under the truncation (2.43), the central charge C disappears on the right hand side,

due to the total antisymmetry of fabcd in the last term of (2.40), thereby this extension

is not equivalent to the usual infinite dimensional extension of Lie algebras with central

charges, and is intrinsically 3-algebraic. This also means that the effects of C may not be

seen after taking the limit to a D2-brane gauge theory. We also mention if we hypothetically

had a term

gabcdmδm,−nC (2.44)

where

gabcd = hbchad − hachbd (2.45)

on the right hand side of (2.40), we could have kept the C charge on the right hand side

of (2.43), but this term (2.44) will not satisfy the Jacobi identities, primarily due to that

gabcd is not totally antisymmetric, in contract with fabcd.

1More analysis on the manifest antisymmetry under the exchange of abm, cdn pairs in (2.40) is in

appendix A. We used expression (2.30) instead of (2.29) in (2.40).
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2.2 Infinite dimensional extensions with a Lorentzian metric

In this subsection, we discuss a different infinite dimensional extension of the 3-algebra,

that is different from the ansatz (2.7)–(2.10) used in subsection 2.1, and we focus on the

algebra with a metric of Minkowski or Lorentzian signature.

If we consider the 3-bracket algebra with a Lorentzian metric [23 – 25], we may start

from the ansatz in [27],

[T a, T b, T c] = tr(T a)[T b, T c] + tr(T b)[T c, T a] + tr(T c)[T a, T b] + T−tr(T a, [T b, T c]) (2.46)

where T− is a central element in the 3-bracket algebra. This ansatz will be equivalent

to [23 – 25] if we single out an identity matrix 1
N

1 and make other T as traceless.

We may directly start from a standard KM algebra for a Lie algebra,

[T a
m, T b

n] = λab
c T c

m+n + habmδm,−nT− (2.47)

[T a
m, T−] = 0 (2.48)

We can plug these 2-brackets into2 the defining equation for the 3-brackets in (2.46), and

then we have

[T a
m, T b

n, T c
l ] = λbc

d tr(T a
m)T d

n+l + λca
d tr(T b

n)T d
l+m + λab

d tr(T c
l )T d

m+n + λabcδm+n+l,0T
−

+{hbctr(T a
m)nδn,−l + hcatr(T b

n)lδl,−m + habtr(T c
l )mδm,−n}T

− (2.49)

[T+, T a
m, T b

n] = λab
c tr(T+)T c

m+n (2.50)

[T−, T a
m, T b

n] = 0 (2.51)

in which we used the metric of the 3-algebra, and T+ is another null generator in the

Lorentzian 3-algebra. Two habtr(T+)mδm,−nT− terms with opposite signs in (2.50) are

cancelled. Other brackets are zero.

In this case, the fundamental identity for the 3-brackets (2.46) will be satisfied, if the

Jacobi identities for the 2-brackets are satisfied [7, 15, 28]. This is indeed the case since the

Jacobi identities for (2.47)–(2.48) are satisfied. If we set m = n = 0, the equation (2.50)

defines the Lie algebra where [T+, · , ·] defines the Lie algebra commutator, and if we keep

the general m,n, (2.50) also defines an ordinary KM algebra but with the central term

disappeared, similar to the discussion in subsection 2.1.

If we make the T a
ms traceless, and make a redefinition T+ → kT+, where tr(T+) =

k 6= 0, then the algebra becomes simplified:

[T a
m, T b

n, T c
l ] = λab

c δm+n+l,0T
− (2.52)

[T+, T a
m, T b

n] = λab
c T c

m+n (2.53)

[T−, T a
m, T b

n] = 0 (2.54)

All 6 types of fundamental identities are satisfied. This can be viewed as an infinite

dimensional extension of the Lorentzian algebra [23 – 25], ([26, 27, 7]), and reduces to the

2We thank Andreas Gustavsson for making a suggestion of this different type of extension.
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latter when keeping m = n = l = 0. The T− generator in the Lorentzian algebra can

thereby have an interpretation of a central term in a underlying KM algebra (2.47).

We may look for a generating function for the generators with different modes, for

example, if we look at the T a
m generators, we may derive them from the expansion of

T a(σ) =
1

2π

∑

m

T a
meimσ (2.55)

where σ is periodic with periodicity 2π, and m ∈ Z. The generating functions T a(σ) may

be viewed as valued in an internal direction σ. This may be relevant if the world volume

fields on the multiple M2-branes carry not only gauge indices and Lorentz indices, but also

internal indices corresponding to boundary lines of open membranes stretching between

M2-branes. This is also relevant for the explanation of the M2 to D2 reduction. In the

above assumption, this limit may involve integrating the σ circle, when one of the transverse

scalars has an abelian component which under a gauge choice is identified with the σ circle,

and receives a periodicity and is then integrated out. The above assumption seems to be

rather natural in explaining the appearance of the periodicity.

It would be interesting to understand the relevance and the problem of the classification

of the physical unitary representations of such algebras, especially the one for the so(4) 3-

algebra and the direct sum of the so(4) 3-algebras, as well as the Lorentzian 3-algebra. In

subsection 3.2, we also emphasize that a Lagrangian 2-tensor naturally lives in the algebra

of B.

3. Extensions with different signatures of the metric

3.1 Algebras with different signatures

In this section, we first study the algebra with different signatures of the metric, with

the motivation of embedding a general Lie algebra, including the case of semisimple Lie

algebras and the case of their direct sum with abelian ones. We consider both the cases

when the metric has a negative eigenvalue and when it has a zero eigenvalue.

If we want to form a Lie subalgebra, we may pick a index +, similar to the relation

in (2.43) when we pick a index ∗, so that

f+ab
c = λab

c (3.1)

where λab
c is a Lie algebra structure constant.

In this case, the covariant derivative

DµXI
a = ∂µXI

a − fdbc
aAµcdX

I
b (3.2)

contains a piece

∂µXI
a − λbc

a A′

µcX
I
b (3.3)

where A′

µc = 2Aµc+, which looks the same as in a conventional gauge theory.

– 8 –
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However we do not want T+ to appear also on the right hand side of the 3-brackets,

since if that is the case we will have a very strong Plucker type relation

λcdeλab
g = λab[cλde]

g (3.4)

from the fundamental identity, when checking [T a, T b, [T c, T d, T e]]. This identity will only

allow so(3), direct sum of so(3)s, and the direct sum of them with u(1)s, as solutions. We

want to avoid this identity so we let

fabc
+ = 0 (3.5)

Then we need to check the total antisymmetry of f+abc :

f+abc = f+ab
c

= λab
c (3.6)

fabc+ = fabc
+ h++ + fabc

−
h−+

= fabc
−

h−+

= −λab
c (3.7)

where we used that the metric in the Lie algebra subspace is Euclidean.

Since fabc
−

h−+ is non-zero, we infer that we must pick another generator T− which has

mixing with T+ in the metric. We want to check the total antisymmetry of f−abc :

f−abc = f−ab
c (3.8)

fabc− = fabc
−

h−− + fabc
+ h−+

= fabc
−

h−−

= −f−ab
c (3.9)

We can rotate the subspace of T− and T+, so there is no need to put f−ab
c as another copy

of the Lie algebra structure constant, since we can redefine T− and T+ by T− − T+ and

T−+T+. Because of this symmetry, we can choose that f+ab
c gives the Lie algebra structure

constant, while making

f−ab
c = 0 (3.10)

From the first derivation in (3.7) we know fabc
−

6= 0, thereby from (3.9) we see

h−− = 0 (3.11)

Without loss of generality we can choose

fabc
−

= λab
c (3.12)

h−+ = −1 (3.13)

from (3.7). If we choose opposite signs for fabc
−

and h−+, this would be equivalent to

redefining T− as −T−, so this sign option is not necessary.

– 9 –
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The total antisymmetry of the fab+− = 0 is trivially satisfied in this algebra, and we

have assumed that there is no mixing of metric between the +,− subspace and the a, b

subspace.

We look at the determinant of the metric

det h = h−−h++ − (h−+)2 = −1 (3.14)

Now we look at the value of h++. The value of it will not change the det h = −1.

Thereby there is still a symmetry. This value can be shifted away by redefining T+ as

T+ +
1

2
h++T− (3.15)

which completely fixed that symmetry. Now the new T+ has metric

h++ = 0 (3.16)

which is a simplified choice.

Thereby for this algebra, the bracket [T+, · , ·] defines the Lie algebra commutator.

The fundamental identity is satisfied due to the Jacobi identity of the Lie algebra structure

constant, which is the only non-trivial identity for this case. This algebra has been obtained

independently by [23 – 25] and independently by the author [26] before the appearance

of [23 – 25]. In the above, we present a modest derivation, with the new emphasis that this

embedding is a very rare solution to the fundamental identity and does not admit obvious

alternatives. The above eq. (3.4) would also imply that we can add at most products of

so(3)s or abelian ones to the Lorentzian 3-algebra. The above derivation also makes a

preparation for the discussion below in the case of a zero eigenvalue in the metric.

Now we discuss the situation when there is a zero eigenvalue in the metric, for example

if the metric has the signature (0,+,+, . . . ,+). We denote the null generator as T 0. So we

have

h00 = 0, hab = δab (3.17)

We want to consider the value of f0ab
c . If we make this as a structure constant of a Lie

algebra, like (3.1), then in order to avoid the strong relation in (3.4), we need another null

generator, which has mixing with T 0 in the metric, see e.g. (3.7). This goes back to the

det h = −1 case in the previous discussion. So we would try to make simply

f0ab
c = 0 (3.18)

However, we can still make fabc
0 as a structure constant λab

c of a Lie algebra, without

violating any constraints. Thereby we have the simple algebra

[T a, T b, T c] = λab
c T 0 (3.19)

[T 0, T a, T b] = 0 (3.20)

The metric invariance is satisfied since

fabc
0 = λab

c , fab0
c = 0, fabc

d = 0 (3.21)

fabc0 = 0, fabcd = 0 (3.22)

– 10 –
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The fundamental identity is also satisfied.

The theory corresponding to this algebra (3.19), (3.20), (3.17) will be studied in the

second part of the subsection 3.2. It is much less appealing than the det h = −1 case,

however it has an advantage that there is no any negative components in the metric, and

the resulting theory is manifestly unitary.

3.2 Lagrangians with different signatures

The Lagrangian of the corresponding theory was derived by first obtaining the on-shell

equations of motion, after examining the closure of the supersymmetry algebra in [1 – 3],

and later contracted with a metric. We may write the Lagrangian in the form

L = Labh
ab (3.23)

L must be invariant under gauge transformations. In the component form, Lab is

Lij = −
1

2
(∂µXI

i − Ãµ
b
iX

I
b )(∂µXI

j − Ãµb
jX

I
b ) +

i

2
Ψ̄iΓ

µ(∂µΨj − Ãµ
b
jΨb)

−
1

12
fabc

i f efg
j XI

aXJ
b XK

c XI
e XJ

f XK
g +

i

4
fabc

i Ψ̄bΓIJXI
c XJ

j Ψa (3.24)

+
1

2
εµνλ

(
fabc

i Aµab∂νAλcj +
2

3
f cdb

i f efa
j AµabAνcdAλef

)

where we used i, j indices in place of a, b for clarity purpose, and the gauge connection is

(Ãµ)ai = (Aµ)cdf
cda
i . In this component form, the structure constants only appear with

3 upper indices and 1 lower indices, and the gauge indices in the fields XI
a ,Ψa, Aµab only

appear as lower gauge indices, so we have not used the metric yet and this expression is

independent of the metric choice hij . So far the only assumption on the metric is that it

is symmetric and gauge invariant.

The first term in the third line of (3.24) may be replaced by the term

+
1

2
εµνλfabc

i Aµcj∂νAλab (3.25)

since they differ by a total derivative term which may not be important for the theory

defined on R2,1 with no boundaries.

We may look at a gauge invariant 2-tensor

Lab = habL (3.26)

This is gauge invariant since both hab and L are gauge invariant, and Lab is an element in

the algebra B, as discussed in section 2. In other words,

[V cd
0 , Lab] = 0, [C, Lab] = 0 (3.27)

where V cd
0 is V cd

m=0, the zero-mode generators discussed in section 2, and is an arbitrary

gauge transformation.

– 11 –
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It is interesting to note that (F̃µν)ba is in the algebra B, and the on-shell equation of

motion [1]–[3] relates it to

(F̃µν)ba = −ǫµνλf cdb
a (XJ

c DλXJ
d +

i

2
Ψ̄cΓ

λΨd) (3.28)

which means that (F̃µν)ba contains no new independent degrees of freedom, and is, on-shell,

the Hodge dual of the bilinear current of the scalars and spinors. This equation is intimately

related to that the self-coupling of the gauge fields is of the Chern-Simons type [4] or the

like. Both sides of (3.28) are the sources coupled to the gauge fields. Moreover, since the

XJ
d and Ψd fields live in the algebra A, this equation is also very supportive of the view

that elements in B are formed by anti-symmetric bilinear products of the elements in A.

In the rest of this subsection, we discuss the theory for the case when there is a zero

eigenvalue in the metric, as in the algebra (3.19), (3.20), (3.17) in subsection 3.1. In this

case h00L00 = 0, so L00 does not contribute to the Lagrangian L. However, L00 has its own

equations of motion. Let’s discuss the equations of motion corresponding to L00 = L′.

L′ = −
1

2
(∂µXI

0 − Ãµ
b
0X

I
b )(∂µXI

0 − Ãµb
0X

I
b ) +

i

2
Ψ̄0Γ

µ(∂µΨ0 − Ãµ
b
0Ψb)

+
i

4
fabc
0 Ψ̄bΓIJXI

c ΨaX
J
0 −

1

12
fabc
0 f efg

0 XI
aXJ

b XK
c XI

e XJ
f XK

g (3.29)

+
1

2
εµνλ

(
Ãµ

a
0∂νAλa0 +

2

3
AµabÃν

b
0Ãλ

a
0

)

where (Ãµ)a0 = (Aµ)cdf
cda
0 . Again, the first term in the last line of (3.29) can be replaced

by

+
1

2
εµνλAµa0∂νÃλ

a
0 (3.30)

up to a total derivative term.

The equations of motion are

D2XI
0 −

i

2
Ψ̄cΓ

I
JXJ

d Ψbf
cdb
0 = 0 (3.31)

ΓµDµΨ0 +
1

2
ΓIJXI

c XJ
d Ψbf

cdb
0 = 0 (3.32)

(F̃µν)b0 = −ǫµνλ

(
XJ

c DλXJ
d +

i

2
Ψ̄cΓ

λΨd

)
f cdb
0 (3.33)

The susy transformations and gauge transformations are

δXI
0 = iǭΓIΨ0 (3.34)

δΨ0 = (∂µXI
0 − Ãµ

b
0X

I
b )ΓµΓIǫ −

1

6
XI

b XJ
c XK

d f bcd
0 ΓIJKǫ (3.35)

δ(Ãµ)a0 = iǭΓµΓIX
I
c Ψdf

cda
0 (3.36)

and

δXI
0 = Λ̃b

0X
I
b (3.37)

δΨ0 = Λ̃b
0Ψb (3.38)

δ(Ãµ)b0 = DµΛ̃b
0 (3.39)
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where Λ̃a
0 = Λcdf

cda
0 .

We may view that L′ gives a certain theory by itself, which is a gauge theory with

the gauge connection (Ãµ)a0. L
′ is gauge invariant under the gauge transformation corre-

sponding to this connection. This theory is decoupled with the theory given by L, which

is

L = −
1

2
∂µXaI∂µXI

a +
i

2
Ψ̄aΓµ∂µΨa (3.40)

These are free theories, with global symmetry given by the Lie algebra associated with

fabc
0 . The susy and local gauge transformations are respectively

δXI
a = iǭΓIΨa , δΨa = ∂µXI

aΓµΓIǫ (3.41)

δXI
a = 0, δΨa = 0 (3.42)

since Λ̃a
b = 0.

It has global symmetry transformations associated with the Lie algebra,

δXI
a = Λ

b
aX

I (3.43)

δΨa = Λ
b
aΨb (3.44)

where Λ
b

a is a global gauge transformation parameter.

This theory is not very appealing since it is a free theory with a Lagrangian L and a

global symmetry, decoupled from another theory with a Lagrangian L′ and a local gauge

symmetry, albeit an abelian one. However the advantage is that there is no any negative

metric component in the algebra and the theory is straightforwardly unitary.

We also remark that if XI
a receives a vev, then Ãµ

a
0 gets a mass, and after integrating

out this massive gauge field (similar to [9] or [12, 13, 10]), one obtains a dynamical Yang-

Mills type term of the form, from (3.29)

−
1

4
F a

νλ0F
νλ
a0 (3.45)

which is however abelian.

4. Conclusions and discussion

We constructed infinite dimensional 3-algebras (2.37)–(2.42) corresponding to extending

ordinary 3-algebras by adding mode numbers. The consistency conditions and Jacobi

identities single out a unique central charge (2.28) that appears on the right hand side

of the algebraic relations (2.40), (2.37). This may introduce new normal ordering issues

in operator products. This effect may not be seen after the limit when the theory goes

to D2-brane gauge theory, since this centrally-extended algebra is intrinsically 3-algebraic.

We also present a different infinite dimensional extension (2.52)–(2.54) for the Lorentzian

3-algebras, and interpret one of the null generators as a central term in a underlying

KM algebra (2.47)-(2.48). These extended generators may be expanded by the generating

functions like (2.55). It would be nice to understand the relevance and the relation of the

– 13 –
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extended algebras with M2-branes, especially the open membranes or wrapped membranes,

and the problem of the classification of unitary representations of these algebras, especially

the ones with so(4) 3-algebra and their direct sums, as well as the Lorentzian 3-algebras.

We also explored ordinary 3-algebras with different signatures of the metric, that is

consistent with metric invariance and the fundamental identity. We revisited the algebras

with a negative eigenvalue in the metric, (3.1)–(3.16), which were obtained by the authors

of [23 – 26]. To avoid the problem of negative kinetic terms, we explored the algebras with

a zero eigenvalue in the metric, and present the simple algebra in (3.19), (3.20), (3.17).

This theory is manifestly unitary, and is a local abelian gauge theory with Lagrangian

L′ (3.29) decoupled with another global gauge theory with Lagrangian L (3.40). We also

emphasized that the Lagrangian 2-tensor Lab (3.26) lives naturally in the algebra B, and

is gauge invariant.

A particular interesting theory is the mass deformed M2-brane theory preserving

so(4) × so(4) R-symmetries, with degenerate vacua corresponding to representations of

so(4) and new BPS states due to non-central charges in the Poincare superalgebra [33].

The Jacobi identity of supercharges are non-trivial as emphasized in [33, 31, 32] (see also

the wonderful discussions in [30]), and should be checked independently, even after obtain-

ing the supercharge anticommutators. The smooth 11 dimensional gravity duals of these

multiple vacua [35],[33] not only predicts that the vacua structure can be described by

fermion bands on a cylinder, but also that there is a duality between m fivebranes wrap-

ping one S3, each constructed by n M2-branes, and n fivebranes wrapping another dual

S̃3, each constructed by m M2-branes. These vacua could be viewed as fuzzy S3 vacua,

e.g. [43]–[47, 5]. There are domain walls connecting between different so(4) representations,

e.g. [31]. This is very similar to the instantons connecting between different so(3) repre-

sentations in the plane-wave matrix model, and in the gravity dual it was found [36] that

when the so(3) representations are very close to each other, the tunneling is mediated by

Euclidean brane processes, and in the case when the so(3) representations are not close to

each other, it was proposed [36] to be described by a non-perturbative tunneling of a quan-

tum mechanical eigenvalue system. There are also bounce solutions studied recently [37].

It would be nice to understand the tunneling between different so(4) representations from

a gauge theoretical point of view, especially in the illuminating framework of [1 – 3].
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A. Proof of an identity and antisymmetry

In section 2.1 we have checked all the Jacobi identities, the upper antisymmetry of the

structure constant fabc
d , and the symmetry of the metric hab, and arrived at the general
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expression in (2.37)–(2.42), which is consistent with the above mentioned three consistency

conditions. One thing remains is that (2.29) is not manifestly antisymmetric under the

exchange of abm, cdn pairs as in V ab
m , V cd

n , although this antisymmetry property is obviously

true for the so(4) 3-algebra. In this appendix, we prove that this is not a problem, due to

the fundamental identity. Our analysis agrees with similar analysis and conclusion in [7].

We may rewrite (2.29) in two ways, which we will shown to be equivalent:

[V ab
m , V cd

n ] = fabc
e V ed

m+n − fabd
e V ec

m+n + fabcdmδm,−nC (A.1)

−[V cd
n , V ab

m ] = −f cda
e V eb

m+n + f cdb
e V ea

m+n + fabcdmδm,−nC (A.2)

We should understand V ab
m as operators acting on the linear combination of the generators

T c
l via the definition (V ab

m , T c
l ) as in (2.8). If (A.1), (A.2) are equivalent, we must have

f bcd
e V ea

m+n = fabc
e V ed

m+n + facd
e V eb

m+n + fadb
e V ec

m+n (A.3)

to be true when acting on an arbitrary linear combination of the generators, e.g. αgT
g
l . We

then would demand

f bcd
e (V ea

m+n, T g
l ) = fabc

e (V ed
m+n, T g

l ) + facd
e (V eb

m+n, T g
l ) + fadb

e (V ec
m+n, T g

l ) (A.4)

By using (2.8), this is simplified to

f bcd
e f eag

h T h
m+n+l = (fabc

e f edg
h + facd

e f ebg
h + fadb

e f ecg
h )T h

m+n+l (A.5)

This is true since the coefficients in front of T h
m+n+l form the fundamental identity, thus

this proves the equivalence of (A.1), (A.2) and the antisymmetry under the exchange of

abm, cdn pairs in V ab
m , V cd

n . Q.E.D.
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