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Abstract. With the advent of petascale high-performance computing platforms, realistic multiscale 

modeling can be constructed to incorporate atomic-scale (molecular) information into macroscopic 

predictions of engineering systems. The overriding theme of the work presented in this paper is 

developing a multiscale modeling approach for soot formulation where atomistic data is integrated 

into macroscopic simulations. The prediction of soot formation remains arguably one of the most 

challenging subjects in combustion science, having an influence over a wide range of applications 

ranging from combustion efficiency to reducing emissions to slow global warming, to improved 

heat transfer designs in industrial settings, to predicting the radiation heat transfer from large scale 

fires.  Starting from the fuel structures the new multiscale simulations reveals how chemical 

changes and transformation can propagate upward in scale to help define the function of the 

particle structures. In particular, the fuel structure influences the morphology of the nanoparticles, 

which in turn is critical in determining the overall growth and agglomeration behavior. These 

simulations make use of a newly proposed combination of molecular dynamics and kinetic Monte 

Carlo methodologies that will include both chemical reactions and agglomeration processes. The 

main strength of this approach is the ability to use important atomic-scale information directly into 

large scale description of the macroscopic phenomena.  

 
1. Introduction 

Science and engineering have been revolutionized by the infusion of computational science and 
simulation in the traditional experimentation-observation-analysis-theory loop and by eliminating the 
geographic constraints for collaboration and experimentation. New means of computational discovery will 
augment the traditional discovery-innovation loop with novel computational concepts to aid knowledge 
discovery, analysis, and experimentation. Petascale computing will allow the prediction of complex 
system behaviors with unprecedented speed and accuracy. To capitalize on these advances and the 
enormous potential they hold, we require basic research into the scientific components of modeling and 
simulation.  

The scope of this work is to gain an understanding of the complex phenomena occurring in systems 
composed of reactive carbonaceous nanoparticles, developing a new paradigm that couples the 
microscopic information about fuel structures with the description of particle formation (soot) from 
combustion sources.  

The fundamental challenge in predicting soot formation lies in the fact that soot formation is a 
heterogeneous process at even atomic-length scales, ~O(10-10m), which has an enormous impact on the 
soot morphology and overall yield.  Recent work of Violi et al. [1, 2] has revealed how chemical changes 
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and transformation can propagate upward in scale to help define the function of the particle structures. In 
particular, the morphology of the nanoparticles is critical in determining the overall growth and 
agglomeration behavior. Current detailed soot-modeling approaches that have been developed for 
premixed [3-5] and nonpremixed flames [6, 7] do not account for key morphology dependent nucleation, 
surface growth, and agglomeration processes and may help explain current discrepancies between 
observed and predicted amounts of soot formed for even well controlled systems [5, 8, 9]. In addition, the 
models currently in the literature offer mathematical simplicity but do not yield chemical detail on the 
high molecular weight species.  To help resolve issues such as identification of pathways leading to soot 

formation, we need to characterize the precursors, in terms of chemical structure andcomponents.  

Studying relationships between structure and pathways, structure and properties, and structure and 
reactivity (population of active sites) can lead to a deeper understanding of nanoparticle growth 
mechanisms.  In current models, parameters related to structures are fitted to experimental data.  

The new multiscale computational approach can describe the formation of particles following the 
evolution from fuel, gas-phase species into particles, preserving chemical and physical details of the 
compounds. The work presented in this paper is designed to help reveal, through multiscale computer 

simulation, how chemistry (chemical structures or changes at the scale of the molecular building 
blocks of nanoparticle agglomerates) will influence the emergent structure and function of particle 
assemblies at significantly large length and time scales. This can be achieved by providing a 
computational infrastructure to help connect the different scales of chemistry and physics. 
Carbonaceous nanoparticles will be characterized both chemically and physically, to study their 
formation and transformation mechanisms in combustion systems.  

A major feature of this study is the identification of the chemical specificity of nanoparticles: size, 
chemical functionalities, and water solubility have a decisive role in establishing the interactions of 
aerosol with human tissues in the lungs.  The same parameters establish their optical properties relevant to 
direct radiative forcing and to their ability to act as cloud condensation nuclei.   

A timely application of this novel computation infrastructure is related to energy and transportation. 
The automotive industry is facing a challenging goal of further reducing fuel consumption and increasing 
performance while obtaining cleaner exhaust gas and greater driver comfort.  Meeting the challenge of 
developing and optimizing the combustion processes of bio-diesel fuels in new engines will require a new 
level of the understanding of the physical and chemical phenomena common to diesel engines and low-
temperature combustion engines, which will be strongly affected by the different fuel properties, which in 
turn affect fuel/air mixture preparation, combustion and emissions. Soot formation is one of the major 
constraints in engine performance.   

After describing the methodology employed to compute chemical and physical properties of 
nanoparticles in different environments, we present a section on petascale computations and the need to 
develop a multiscale architecture to study the phenomena involved in soot formation such that the 
atomistic-level processes (chemistry) can be coupled with the very long length and time-scale processes.  
 
2. Multiscale computational approach: the AMPI code 
 

In high-temperature environments, particle formation from small gas-phase species is a fascinating 
multiscale problem of nanoparticle growth, both in length scale and in time scale. Starting from simple 
gas-phase molecules, such as ethylene and acetylene, polycyclic aromatic hydrocarbons including 
naphthalene and pyrene are formed. The system then undergoes a nucleation process, and the first particles 
are formed by reactions with the gas-phase species. Coagulation and agglomeration of these nanoparticles 
lead to particle size of the order of hundreds of nanometers in diameter [10]. The processes involved in the 
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formation of particles exhibit a wide range of time scale, spanning pico- or nanoseconds for intramolecular 
processes to milliseconds for intermolecular reactions.  

For these systems, the coupling between scales can be very strong, and “bidirectional,” and microscopic 
phenomena not only are driven by macroscopic forces but also change these macroscopic forces. In this 
case, there is a feedback loop between the microscopic and macroscopic scales. For example, particle 
clusters explicitly contain both micro- and macroscale dimensions in their structure, and the proper 
modeling of trans-temporal and trans-spatial structures involves crossing this microscopic/macroscopic 
barrier to incorporate an adequate degree of information transfer between these disparate scales [11]. 
Because of the small time-step required to integrate the equations of motion, molecular dynamics (MD) – 
the standard method for dynamical simulations at the atomistic level – is generally limited to nanoseconds. 
However, the relevant thermally activated processes typically take place over time scales of microseconds 
or even longer. Although MD simulations provide a powerful tool for investigating complex systems, their 
substantial computational costs limit their application to investigations on time scales that are less than 
microseconds and length scales that are significantly less than micrometers [12, 13].  

The novel multiscale approach is embedded in the Atomistic Model for Particle Inception (AMPI) code, 
which combines the MD methodology with kinetic Monte Carlo to allow the extension of the accessible 
time scales by orders of magnitude relative to direct MD, while retaining full atomistic details of the 
systems of interest [14].  
 
2.1 The Kinetic Monte Carlo method 

Kinetic Monte Carlo (KMC) method is part of a broad class of algorithms that solve problems through 
the use of random numbers [15, 16]. It was developed for evolving systems dynamically from state to state 
[17]. The underlying principle in all KMC algorithms is the random selection of a process based on the 
transition probabilities of all processes, execution of the selected process, and updating the time clock and 
the transition probabilities [18]. 

The starting point for a stochastic description of a system is the underlying master equation given by 
[19]: 
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with �� �'  , which gives the evolution of the probability density function ( )�P  of observing a state � , 

( )'�� �G  is an element of the transition matrix for the transition from state �  to state 
'

�  [20]. Atoms 
or molecules vibrate around locations separated by large free energy barriers and occasionally jump from 
one location to a nearby one. The momentum degrees of freedom of all atoms and molecules and thermal 
vibrations are integrated out to compute the microscopic rates used in a stochastic description of a system. 
The resulting microscopic state variable �  is a function of only spatial and time coordinates. The atomic 

jump results in a change in �  once the jump has occurred. Recently Chatterjee and Vlachos have 
published a thorough overview of the kinetic Monte Carlo methods and we refer the reader to their paper 
[21] and citations therein for detailed information on the microscopic and accelerated KMC 
methodologies.  

In summary, in the kinetic Monte Carlo method, the system starts in some state and equations of motion 
are never directly evolved, but a set of escape pathways connect a state to neighboring states. The key 
requirement is to specify these escape paths and the rate constant for each one. Given this set of rates, a 
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stochastic algorithm is employed to advance the time and to choose a neighboring state to which the 
system is moved. The rate constants for the possible moves out of each state are either computed by using 
first-principles calculations and transition state theory or determined by using the reaction class theory to 
make a rate catalog [13].  

 
2.2 Molecular dynamics  

In the broadest sense, molecular dynamics is concerned with molecular motion and conformational 
transitions together with local vibrations are the usual subjects of MD. Molecular dynamics alters the 
intramolecular degrees of freedom in a stepwise fashion, where the steps meaningfully represent the 
changes in atomic position over time (i.e., velocity) [20, 22]. Newton’s equation is used in the molecular 
dynamics formalism to simulate atomic motion. The rate and direction of motion (velocity) are governed 
by the forces that the atoms of the system exert on each other as described by Newton's equation. 
Knowledge of the atomic forces and masses can then be used to solve for the positions of each atom along 
a series of extremely small time steps (on the order of femtoseconds = 10–15 seconds).  

If the potential gives an accurate description of the atomic forces of the system, then the dynamical 
evolution will be an accurate representation of the real physical system. This explains the popularity of the 
MD method.  

A serious limitation, however, is that accurate integration requires time steps short enough (~10–15 s) to 
resolve the atomic vibrations. The total simulation time is typically limited to less than one microsecond, 
while important processes such as diffusion, annihilation, nanoparticle assembly, often take place on much 
longer time scales. 

To summarize, MD simulations follow the dynamical evolution of a system and generate a sequence of 
points in phase space as function of time corresponding to different conformations of the system and their 
momenta. This process requires choosing an interatomic potential for the atoms and a set of boundary 
conditions.  

 
2.3 The AMPI code: synergy between KMC and MD 
The AMPI code combines the strengths of KMC and MD methodologies in a unique way. The two 
modules are placed on an equal footing, and the code alternates between MD and KMC steps during the 
simulation. This feature represents the peculiarity of the new proposed methodology; the two approaches 
have been widely used [23] but never been integrated in this way. The novelty of this code lies in the 
synthesis of methods used to describe reacting systems over long time scales while retaining fully 
atomistic detail of the system itself.  

The algorithm used in the AMPI code includes the following steps [14]: 
1. The code reads a set of inputs, such as reaction rates for the KMC module and MD-related quantities. 
2. It counts the number of sites available for reactions in the system by identifying each atom as belonging 

to a specific reaction class, and a rate catalog of possible reactions at a specific time t is constructed. 
3. After classifying the reactions as either accepted or rejected, a KMC step is performed, and the structure 

of the growing species is modified according to the selected reaction. The clock is then incremented in 
a way that is consistent with the average time for escape from that state, which can be determined 
easily from the rate constants for the possible escape paths in the list.   

4. The code relaxes the newly formed structure using a MD run, allowing for relaxation of the structure 
towards thermal equilibrium.  The potential used to describe hydrocarbon interactions is the adaptive 
intermolecular reactive bond order (AIREBO) [24]. The potential describes the covalent bonding 
interactions largely as in Brenner’s REBO potential [25].   
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At this point a new kMC step is performed, and the sequence of steps is repeated. Before performing the 
next kMC step, the global update method is used in order to re-evaluate all interparticle interactions and 
all process transition probabilities after a process is executed. 
 
3. Results 
The AMPI code is used to understand the physical and chemical processes involved in the formation of 
nanoparticles in different conditions of temperature, pressure and species concentrations starting from 
small aromatic compounds. The initial system, used in this example, is composed of 300 gas-phase species 
at 1500K and 1 atm. The goal is to understand how one of these species, for example benzene evolves into 
a three dimensional structure of thousands of atoms over long time scales. The three main modules are 
gas-phase species that can react with the growing species, reaction sites on the growing particle, and 
reaction rates. For the gas-phase input, the user defines the temperature and the concentrations of the 
species that contribute to the formation of the nanoparticles. Examples of common gas-phase species for 
the high-temperature environment are H, OH, H2, and aliphatic and aromatic species CxHy with x and y 
varying from 1 to 24.  

Once the species are defined, it is important to list the possible reactions that can occur over time and 
describe them in terms of reaction sites, that is, atoms where a particular reaction can occur. The reaction 
site module governs the definition and counting algorithm of reaction sites, which are capable of 
undergoing modification (for example, additional reactions). Examples of reaction sites included in the 
AMPI code are an tom on a 5- or 6-membered ring and an sp3 carbon. 

The third input to the AMPI code is the list of the rate constants that are extracted from smaller length 
and time scales simulation tools, such as density functional theory (DFT) [26-28], transition state methods, 
transition state theory (TST) [29], and molecular dynamics [30]. The reactions included in the AMPI code 
can be broadly classified into three categories. 

The unique capability of AMPI code has been succesful in reproducing physical and chemical 
characteristics of nanoparticles in different environments [14, 31-36]. Nanoparticles have been 
characterized in terms of chemical structure/components and relationships between structure and 
pathways, structure and properties, and structure and reactivity population of active sites have been 
addressed. Results show the comparison between computed properties and experimental data in terms of 
H/C trends, particle morphology, depolarization ratio, and free radical concentration [2, 14, 19, 34, 35, 
37]. 

The AMPI code also has been successful in identifying reaction mechanisms for the formation of 
nanoparticles. For example, the 
AMPI code can identify the role of 
accessibility to reaction sites on the 
relative rate of reactions of different 
molecules. During the site-counting 
procedure, the code identifies every 
atom with a local environment that 
fits the definition of each site listed as 
input to the code.  At the same time, 
it also checks whether there is 
sufficient space next to the site for a 
gas-phase species to penetrate and 
react.  In this way, an atom is 
considered as a possible site for 
termination or addition by a gas-

Example of nanoparticles of different morphology produced with 

the AMPI code. 

Example of nanoparticles of different morphology produced with 

the AMPI code. 
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phase species only if the gas-phase species of interest can be accommodated.  The code goes over all 
atoms in the cluster, including all the possible sites, even the “hidden” ones that may be located inside the 
structure.  The figure on the left shows particles produced from different combustion environments. It was 
found that the accessibility of the sites on the growing seed molecule decreases with increases in the 
curvature of the seed particle and size of the reacting molecule.  This result can be used to identify new 
reaction mechanisms for the formation of nanoparticles of specified morphology. 

For these systems, the presence of the MD module in the AMPI code is a determinant for a correct 
representation of the system. Rearrangements reactions are identified by MD leading to structural changes 
of the particle.  

Besides growing by surface addition, the newly formed particles can grow by coalescence/coagulation 
to produce particles of 20–40 nm [1, 37, 38]. The figure below shows the influence of morphology on 
particle clustering. The right panel shows particles formed in an aromatic flame – total number of C=189 
while the left side presents structures from an aliphatic flame (total number of C atoms is 214).  The round 
particles, characteristic of benzene flames, tend to cluster and exhibit a preferred orientation with the open 
sections of the particles facing away form each other.  The sheetlike particles produced in an acetylene 
flame, however, show a different behavior. They have more trouble getting together, and they tend to form 
stacking structures. These results demonstrate that the morphology of the nanoparticles is critical in 
determining the overall growth and agglomeration behavior. 

 
 

 
The replacement of petroleum-derived fuels by biofuels from renewable resources has gained 

worldwide interest and is scientifically investigated for its environmental costs and benefits [39]. The 
chemistry of these new fuels, however, is poorly characterized, particularly under conditions relevant to 
next generation engine designs. The trend of fuel diversification needs a comprehensive science 
foundation that must span a range of knowledge from the most fundamental facets of fuel chemical and 
physical properties to the impact of these properties on the aspects of the performance and emissions of 
the emerging new engine technologies. The multiscale approach presented in this paper makes it possible 
to bridge the chemical characteristics of new fuels including reaction pathways and new oxygenated 
species with the dynamics of particle formation and agglomeration to produce a unified description from 

Particles from an aliphatic flame – left panel – and from an aromatic flame on the right. The clustering behavio r of the 

two systems is different.

Particles from an aliphatic flame – left panel – and from an aromatic flame on the right. The clustering behavio r of the 

two systems is different.
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fuel properties, such as oxygen content, to particle characteristics, such as morphology and chemical 
composition.   
 
4. Needs for petascale computing  
The work reported in this paper describes a multiscale computational approach that makes it possible to 
correlate the structures of fuels with the morphology of nanoparticles that is critical in determining the 
overall growth and agglomeration behavior of higher molecular structures compounds (soot). Specifically, 
the method reveals how chemical changes and transformation can propagate upward in scale to help define 
the function of the particle structures. In particular, the morphology of the nanoparticles is critical in 
determining the overall growth and agglomeration behavior of higher molecular structures compounds 
(soot). The unique and powerful tool, embedded in the AMPI code, uses information on the chemistry 
occurring at the atomistic level and bridges it in a multiscale fashion to describe long timescale changes. 
The code combines the strengths of molecular dynamics and kinetic Monte Carlo and integrates them in a 
novel way. The synergy of the methods leads to a powerful computational approach that can describe the 
evolution of reactive systems over long time scales (seconds). To observe a statistically significant number 
of coagulation events, a large particle ensemble (106) has been shown to be effective [2]. 

With regard to the coagulation process, molecular dynamics simulations of systems composed of 
particles of different morphologies are used to understand the effect of shape and chemical composition on 
the clustering assemblies. Current levels of computing allow for roughly 104 nanoparticles to be formed 
using approximately 2x106 atoms over nanosecond time scales. These calculations currently take about 14 
days running on 16 processors (where each processor is a circa 2006 commodity processor) using the 
GROMACS molecular dynamics package. At this level of simulation, soot precursor clusters of 
approximately 20nm can be formed and studied numerically. For realistic predictions of soot formation, 
soot clusters of size approaching 1�m are needed, resulting in a factor of 50 increase in computational 
requirements. Furthermore, the physical dimensions will also be increased accordingly, resulting in a 
factor of 125,000 more atoms, or roughly 1011 atoms in total. With coarse-graining approaches, the 
number of computational particles will naturally be fewer but will still be on the order of 107 
nanoparticles. With petascale computing we could begin to approach these requirements.  
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