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Abstract
This paper provides a discussion of the properties of hydrodynamic systems at high energy
density, discusses the methods of doing hydrodynamic experiments and discusses studies to
date of the three primary instabilities—Richtmyer–Meshkov (RM), Rayleigh–Taylor (RT) and
Kelvin–Helmholtz (KH). The first two of these have been systematically observed, but have
not yet produced a system with a clear transition to turbulence. The KH instability remains to
be systematically observed in its pure form, although some related effects such as spike tip
broadening have been seen. However, the KH effects seen in some simulations of RT systems
and supersonic jets have not been seen to date in experiments. We note that the
time-dependent condition for turbulence of Zhou et al (2003 Phys. Plasmas 10 1883) is
roughly equivalent to the Reynolds-number threshold of Dimotakis in that eddies will
dissipate by turbulence in about one eddy-turnover time. We suggest that a plausible
explanation of the absence of KH in several experimental systems may be that finite velocity
gradients have quenched the instability. Finally, we argue that despite the smearing of the
shear layer caused by viscous diffusion, KH instabilities have the potential to contribute to the
generation of fluctuations at all scales, but only if the local shear layers are initially formed
with a sufficiently steep velocity gradient.

PACS numbers: 52.35.Py, 52.35.Ra, 47.20.Ft, 47.27.Cn

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

The emergence of high-energy-density physics (HEDP) as a
field of study followed the development of energy sources
that can concentrate energy to densities above a kilojoule
per cubic millimeter on timescales rapid compared with
cooling mechanisms [1, 2], and of effective diagnostics
for experiments using such sources. The present definition
of the HEDP regime corresponds to one-tenth this value,
which is 1012 ergs cm−3, corresponding approximately to
1 megabar (1 million atmospheres) of pressure. This definition
is not without problems, but will suffice for our purposes
here, where our focus will be on the fluid-like behavior of
dense, ionized, high-pressure plasmas. HEDP experiments
typically involve shock waves having very high Mach
numbers, corresponding to strongly compressible flow. These
experiments are also brief in comparison with a hydrodynamic
timescale τh, defined as the ratio of some distance scale

of interest, δ, to the characteristic velocity of the flow, U .
Experiment durations vary from of the order of τh to a few
tens times τh. This raises the natural question of whether and
to what extent one may observe a transition to turbulence in
HEDP flows. HEDP flows are inherently unsteady, and so the
approach to turbulence in these flows is directly relevant to the
‘Turbulent Mixing and Beyond’ conference.

Turbulence, of course, has a wide range of definitions
across subfields of physics that deal with fluid-like systems,
so some discussion of what is meant here is in order at
the outset. One can find publications that refer to any of
the following as ‘turbulence’: (i) any process that increases
structure at an interface, (ii) the early nonlinear behavior of an
instability at interface, (iii) the development of substantially
convoluted structure at an interface, having spectral content
or spatial extent far beyond those of the initial state, (iv) the
appearance of an inertial range in the fluctuation spectrum,
with power-law decay of the spectral energy density, and (v)
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Figure 1. Some boundaries and regimes of fluctuation behavior are
shown versus Reynolds number.

the development of strong mixing as indicated by supra-linear
growth of the thickness of the mixing layer in time. Here
our main interest is in processes that can lead to a mixing
transition, in which fluctuations are present on a wide range
of scales and quite thorough interpenetration of materials from
the two sides of an interface is taking place. In a paper that will
provide a useful reference point for our discussion, Dimotakis
identifies the mixing transition as corresponding to item (iv)
above, by analyzing the spatial scales present, and finds a
minimum threshold Reynolds number for this transition. To
set the context for further discussion, we briefly review the
argument here.

Figure 1 shows some boundaries in a plot of normalized
length versus Reynolds number Re, with the length
normalized to the spatial scale on which structure is driven.
This spatial, driving scale corresponds to the top edge of the
figure. Over some range of sizes below this, the structure
of the fluctuations present is directly affected by the energy
source responsible for their existence. Below some spatial
scale, however, one can expect that the spectral properties
of the fluctuations will be determined primarily by their
interactions with other fluctuations that do not differ greatly
in scale. This limiting scale has some connection with the
Taylor microscale, the largest physical scale on which the
turbulent energy could possibly be dissipated by viscosity.
Dimotakis identifies a spatial scale of this order as the
Liepmann–Taylor scale, given by 5δRe−1/2 and shown in
the figure. Moving to the other end of the possible range
of sizes, the Kolmogorov scale, given by δRe−3/4, is the
smallest spatial scale on which the turbulent energy present
in the system can be dissipated. Energy in fluctuations on this
scale is dissipated in one corresponding unit of hydrodynamic
time. Fluctuations on a somewhat larger spatial scale than
this are affected by viscous dissipation. Dimotakis chooses
this region to correspond to a factor of 50 in size. This
identifies the ‘inner viscous scale’, given by 50δRe−3/4, with
the notion that fluctuations on a larger spatial scale than this
are not significantly affected by viscosity. As Re increases, a

range of spatial scales appears within which the fluctuations
are decoupled both from the nature of the energy source
and from viscous dissipation. It is this range within which
energy-flow arguments like those of Kolmogorov [3] apply,
so the appearance of this range should correspond to the
development of an inertial range in the fluctuation spectrum.
Dimotakis goes one step further and suggests that this also
corresponds to the appearance of the mixing transition,
supporting this suggestion by quite a few specific cases. This
perspective, based on analysis of steady-state cases, provides
a starting reference for discussions below.

It remains unclear how the turbulent spectrum comes
to be full, so that the growing boundary layer encounters
a continuously saturated spectrum of fluctuations. This is a
fundamental idea in discussions of turbulence. (Dimotakis
notes in a footnote that Kolmogorov [4] attributes it to
Richardson.) Yet there is no general physical law which
guarantees that saturated fluctuations will be present across
a broad range of wavenumbers. We offer a speculation
regarding this in section 5.

We begin in section 2 with an overview of HEDP systems.
We discuss how their production leads to their fundamental
properties, and discuss the correspondence between HEDP
systems and some astrophysical ones. In section 3, we
introduce the HEDP fluid dynamics experiments, illustrating
their key features. In section 4, we discuss specific instabilities
that have been studied in the laboratory, showing how
they develop differently in HEDP systems than in some
other environments. There we draw a connection between
a time-dependent analysis (by Zhou et al [35]) and the
analysis of Dimotakis mentioned above. Motivated by some
of the observations, we turn, in section 5, to a more detailed
discussion of the role of the KH instability relative to
turbulence. Those with a previous understanding of HEDP
systems are likely to find this section of the greatest interest.
Section 6 concludes the paper.

2. Properties of HEDP systems and correspondence
to astrophysics

There are a very wide range of existing or potential laboratory
systems at high energy density. The systems of concern
here are those in which substantial quantities of energy are
delivered to a material target on ns timescales. In more detail,
energies of at minimum hundreds of joules must be delivered
on the time and space scales necessary to create energy
densities above 0.1 TPascal (1012 ergs cm−3), corresponding
roughly to mm spatial scales and ns timescales, and increasing
with the total energy. Other HEDP laboratory systems, not
our focus here, include the delivery of mJ of energy to
µm spatial scales by ultrafast (fs to ps) lasers, the potential
creation of high-energy-density radiation environments on the
forthcoming National Ignition Facility in the USA, and the
environments found in nuclear quark-gluon plasmas.

The creation of our systems of interest typically involves
the delivery to a surface of laser light or x-rays (the
latter generated by somehow heating high-Z material). This
generates a pressure at the surface of the order of 10 megabars,
which drives a shock wave into the material. For a typical
solid plastic material, having a density of about 1 g cm−3,
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the corresponding shock velocity is roughly 3 × 106 cm s−1,
which is 30 km s−1. The sound speed in the material is of
the order of 1 km s−1, so that the shock waves produced
are typically of the order of Mach 30. However, the sound
speed is often rather uncertain because the ‘preheating’ of
the material ahead of or ‘upstream’ of the shock wave by
penetrating photons or electrons is often poorly known. On
the one hand, the temperature of this upstream material may
be somewhat smaller than 1/40 eV (room temperature, 1 eV =

11 600 deg K), because of radiative cooling of the target in
vacuum before the experiment. On the other hand, if of
the order of 0.1% of the initial energy from the laser or
other source is deposited in the upstream material, then the
temperature of this material can rise to of the order of 1 eV.
Many experiments would show changes in their behavior if
the upstream temperature were much larger than this, but
experimenters have also been fooled more than once by
preheat effects. It is worth noting that even when it does
not affect the shock significantly, preheat can alter the initial
conditions of structured interfaces [5].

It turns out that this uncertainty in Mach number, M ,
matters little for the fluid dynamics, because the compressible
equations can be cast to involve terms scaling as 1/M2. For
example, the density jump produced by a shock wave can be
written as

ρ0

ρ1
=

(γ + 1)

(γ − 1) + 2/M2
(1)

for a polytropic gas of index γ . Here, the mass density is ρ

and the subscripts 0 and 1 are for upstream and downstream
of the shock, respectively. For γ ∼ 1.5, the impact of finite
Mach number drops below 10% for M = 4.5. (The index
γ is typically below the ideal-gas value of 5/3 because of
the degrees of freedom involved in ionization.) For HEDP
media, which may have variable amounts of ionization, the
post-shock temperature is

kBT =
Amp

(1 + Z)

2(γ − 1)

(γ + 1)2
u2

s (2)

in which us is the shock velocity, A and Z are the average
atomic mass and ionization of the material, respectively, T
is the temperature, and kB is the Boltzmann constant, given
by 1.6 × 10−12 for T in eV and cgs units otherwise. For
plastics or other low-Z materials, T is of the order of 5 eV (∼
50 000 deg K) for a 30 km s−1 shock, but note that it increases
as the square of us. HEDP materials in this regime are
typically ionized from one to a few times, so that 16 Z 6 10.
Much higher temperatures and ionizations can be achieved
in higher-atomic-mass materials, when they can be shocked
at densities below solid density (in foams or gasses). Once
the temperature becomes of the order of 100 eV the transport
of energy by radiation becomes an essential aspect of the
dynamics and the shock wave becomes a radiative shock [2].
The actual transition to the radiative shock regime is quite
abrupt but the transition temperature depends on specific
details. Radiative shocks are beyond the scope of the present
discussion.

A few details remain to complete the identification
of key dimensional parameters for HEDP plasmas. The
typical ion density is the density of ions in solids, of the
order of 1023 cm−3, although many experiments work with

Table 1. Typical parameters in high-energy-density experiments.

Parameter Typical value Low High

Flow velocity U 10 km s−1 1 km s−1 <1000 km s−1

Turbulent driving 100 µm 10 µm 1 mm
scale δ

Kinematic 10−5 m2 s−1 10−6 m2 s−1 10−4 m2 s−1

viscosity ν

Reynolds 105 104 107

number Re

densities some orders of magnitude smaller than this and
inertial-fusion experiments seek to produce densities some
orders of magnitude larger. The electron density is typically
a few times the ion density, corresponding to the ionization.
The material is dense and collisional enough that the ion
and electron temperatures are tightly coupled and have the
same value (for non-radiative shocks). Magnetic fields in the
shock-heated matter, if present, are typically small enough to
have no dynamic significance. Collisional magnetic diffusion
times are in the range of a few ns. The collisional mean free
path is short compared with the spatial scales of interest, so
that using a fluid description rather than a particle description
of the physical system is sensible.

Table 1 gives typical values of some of the parameters
relevant to turbulence. The Reynolds number Re is large,
nearly always being above the approximate value of 104

identified by Dimotakis [6] as the minimum for the mixing
transition. Other parameters of interest are as follows.
The Kolmogorov scale is typically of the order of 0.02 µm.
The kinematic mass diffusion coefficient is of the order of the
kinematic viscosity, so the Schmidt number is of the order
of 1. Heat flow, by both conduction and radiation, is typically
negligible in comparison with convective energy transport [7],
so that the corresponding dimensionless Peclet numbers are
both large. One consequence of the above is that the Euler
equations accurately describe the large-scale evolution of
these physical systems. The limiting spatial scales of any
turbulence are as always determined by viscosity. In addition,
viscous effects are important in the dynamics of instabilities;
with both the Rayleigh–Taylor (RT) and Richtmyer–Meshkov
(RM) instabilities being damped for wavelengths below a
few µm [8]. It is notable but likely accidental that this
corresponds roughly to the Liepmann–Taylor scale discussed
in section 1.

Connections to astrophysics arise readily because there
are also numerous astrophysical systems whose large-scale
behavior is accurately described by the Euler equations.
These include supernovae, supernova remnants and the
interactions of clumps or clouds with shocks or winds, among
others. One consequence of this is that a well-designed
laboratory experiment can provide a well-scaled model of a
specific astrophysical process of interest, as was discussed
by Ryutov et al [7]. Zhou [9] argues that to obtain
detailed correspondence of the turbulent dynamics between
an experiment and a typical astrophysical system with very
high Re, the experiment must achieve a minimum Re of
1.6 × 105. A second consequence is that one may learn things
in the laboratory about the dynamics of strongly shocked,
compressible systems that turn out to have applications in
astrophysics. We will develop this correspondence further
below.
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Figure 2. Generic sketch of experiment.

3. HEDP fluid dynamics experiments

As many readers of this topical issue will have little familiarity
with HEDP, we discuss here the basic methods used in
HEDP experiments to address issues in hydrodynamics or
fluid dynamics. Figure 2 shows the essential elements of a
typical experiment. There is an energy source that strikes
a driven surface, represented here by three ‘drive beams’.
An actual laser experiment may use from one to dozens
of drive beams. Alternatively, an experiment using a laser
or using a type of device [10] known as a ‘z-pinch’ may
irradiate the driven surface with x-rays, typically having a
thermal spectrum with a temperature of 100–300 eV. The
driven surface is typically a low-Z material and often a plastic,
to avoid unnecessary radiation generation in the event that the
second layer is a material of higher Z. The second layer is
often the densest material in the target. The detailed reasons
for this are complex, but have to do with maximizing the
duration of the experiment without interference by unwanted
shock waves or rarefactions. At times, these first two layers
are of the same material.

Beyond these first two layers of material, the detailed
structure of the target is determined by the experiment. The
second layer may include a tracer strip, as indicated, designed
to match the layer in hydrodynamic behavior but to include
a high-Z dopant that will preferentially absorb diagnostic
x-rays. The second layer may end at a structured interface, and
certainly does so for studies of the RT and/or RM instabilities.
In these cases and others observing interface evolution, there
is a third layer of lower density material, as indicated in
the figure. This material is often a cellular foam, such as
an aerogel, which to date has been the only practical way
to introduce densities of tens to hundreds of mg cm−3 into
these targets. A lower density third layer of material also may
be of use if a faster shock is needed than the one produced
naturally by the energy source. In other cases, the second layer
of material may extend throughout the target, and structures
intended to interact with the shock wave might be placed
within it or even beside it. The target typically includes shields
or other structures required by diagnostics, in addition to
features required for alignment or for spatial calibration of
diagnostics, none of which are shown here.

Mid-1990s

2006

Figure 3. Radiographic images from the mid-1990s (left) and from
2006 (right).

The workhorse diagnostic for hydrodynamic HEDP
experiments is x-ray radiography. One uses an additional
energy source—additional laser beams in a laser
experiment—to irradiate a target designed to produce
the x-rays of interest. Current experiments most often
irradiate a thin layer of material to produce radiation in the
‘Helium-alpha’ line(s), which are the n = 1–2 transitions
from a mid-Z material ionized into a helium-like state.
Under properly chosen conditions, this radiation dominates
the emission spectrum, permitting the use of relatively
simple filters in front of the detector to select a spectral
band. The x-ray energies obtainable by this method range
from 1.5 to 10 keV. Advances in technique have greatly
improved the resolution and have greatly decreased the noise
in images obtained this way, in part by developing ungated
imaging directly onto x-ray film, without any intervening
(and noisy) detection or gating elements. It is now possible
to obtain two simultaneous orthogonal images by these
techniques [11]. Figure 3 illustrates the progress that has been
made, comparing a radiograph from the mid-1990 s to one
obtained in December 2006. In both cases, a laser-generated
shock front, followed by rarefaction, first shocks and then
decelerates and interface that is initially imprinted with a
small-amplitude pattern. The RM and RT instabilities lead to
the outward penetration of spikes of denser material and the
relative inward penetration of bubbles of less-dense material.
In the earlier image, one can see the spikes of dense material,
but cannot see much detail and can barely make out the shock
wave propagating to the right. In the later image, one can see
the detailed structure within the unstable material, can see the
shock clearly, and can see very well the 43-µm openings in
the calibration grid. Other radiographic diagnostics are also
sometimes used. Two examples include the use of a spherical
imaging crystal to form a monochromatic image [12] and the
use of a very intense, ultrafast laser to produce higher energy
x-ray sources [13].

4. Specific instabilities in the laboratory and
astrophysics

We now proceed to address the three iconic primary
instabilities: RM, RT and KH. In each case, we will discuss
how these processes are produced in experiments, will show
some experimental data and will discuss the advent of
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turbulence in that case. We also draw some connections with
astrophysics.

4.1. RM

The RM process is most often defined as the growth
of structure at an interface that initially is not planar,
following the passage of a shock wave through it. More
generally, it involves the growth of structure due to transverse
velocity perturbations at an interface, however they may be
generated [14]. RM is generally referred to as an instability,
although this is not technically an accurate description [2].
In HEDP experiments, one can most readily produce RM
by driving a steady shock through a structured interface. In
principle, one has the choice whether to drive the shock
through a dense layer into a less-dense layer or vice versa.
In practice, the issue of experiment duration and wave
speeds makes the dense-to-less-dense case the only practical
choice.

Figure 4 illustrates the resulting one-dimensional (1D)
dynamics, by showing the spatial profile of the density.
Once the incoming shock wave overtakes the interface, the
interface begins moving at a speed ui and a transmitted shock
moves through the less-dense material. Simultaneously, a
reflected rarefaction moves backward, in a Lagrangian sense,
through the incoming, shocked, dense material. The dynamics
near the interface, in both this RM case and in analogous
RT cases, develops at subsonic speeds in the post-shock
plasma environment. As a result, incompressible theory is a
reasonable model for this aspect of the system evolution. In
an experiment, the initial interface is rippled or otherwise has
structure, so that the passage of the shock creates transverse
velocity perturbations at the interface. (Alternatively, one
can say that the shock deposits vorticity at the interface.)
These transverse perturbations lead the interface to become
more structured with time. In traditional experiments and
simulations at low Mach number, the shock wave moves
far from the interface and RM produces spikes whose tips
broaden and roll up due to the lift generated as they divert
the material they penetrate (a process often described as ‘KH
roll up’). Turbulence then may develop within these rollups.

Data

Simulation Shock
Spike

Bubble

Figure 5. A high-Mach-number RM experiment, adapted from
Glendinning et al [15].

This does not occur in RM at high Mach number for the
following reason. A standard expression for the rate of
increase of a sinusoidal perturbation of amplitude η, attributed
to Meyer and Blewett, is

dη

dt
= A

k(η0 + η1)

2
ui, (3)

where A is the post-shock Atwood number and k is the
wavenumber of the perturbation. In the strong shock limit, the
speed at which the shock separates from the interface is

usT − ui =
γ − 1

2
ui, (4)

in which the transmitted shock speed is usT. In systems with
strong shocks, the growth rate of equation (3) can easily
exceed the separation speed of equation (4). In this case, the
spikes push against the shock, distorting it and slowing their
own growth. This phenomenon was most clearly observed
in experiments by Glendinning et al [15], whose results are
shown in figure 5.

RM certainly occurs in high-Mach-number astrophysical
contexts. For example, in supernova remnants the stellar ejecta
drive a nearly steady shock through the circumstellar medium
for an extended period of time. This is a very strong shock.
One would expect the effects of RM to be present and to
increase the structure in the medium after the passage of
the shock through density changes. One paper has explored
this [16], finding that such effects are present but also that they
fade with time, under standard assumptions, as the system
evolves.

When RM is present in either HEDP experiments or
astrophysical systems driven by strong shocks, one must
conclude that it is a poor candidate to produce turbulence in
any sense related to a mixing transition or even to producing
significantly convoluted structures. There might be some
potential that perturbations of initially very small amplitude,
for which RM did not overtake the shock, could develop such
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a structure. In the laboratory at least these would be hard to
see. In addition, it is well known that, once a second shock
wave passes through the structure generated by RM, very
complex fluctuations develop.

4.2. RT

The simple version of the RT instability occurs when a less
dense fluid supports a more dense fluid against gravity or
some other acceleration. More generally, RT occurs whenever
the gradients of pressure and density are opposed, and also
in cases having a sufficiently steep pressure gradient in
comparison with the density gradient [17]. The evolution of
this instability into a turbulent state has long been an active
area of study. Two examples, out of a large body of work,
are experimental [18] and simulation [19] papers by Dimonte
et al. RT can enter a turbulent state by at least two paths.
In the work just cited, a multimode initial condition leads to
a competition between modes, in which longer wavelength
modes with higher nonlinear terminal velocities overtake
shorter wavelength modes that initially grow quickly, a regime
known as the bubble-merger regime [20, 21]. Alternatively,
RT from a single-mode initial condition can develop spikes
whose tips broaden and roll up (just as those for RM do),
after which instabilities within the tip rolls initiate a turbulent
transition [22]. A further possibility, seen only in simulations
to date, is that broadened RT spike tips may interact to
initiate a turbulent transition [23]. In addition, in the event
that the spike tips do not greatly broaden, the shear flow
along the boundary between the spikes and the bubbles seems
a likely source of KH instabilities that also might lead to
turbulence. Simulations using some numerical schemes show
such structures [24, 25], although the numerical Reynolds
number is small enough in these simulations that they cannot
indicate whether a turbulent transition occurs. We discuss this
specific issue further in the next section.

The RT instability has been observed in HEDP systems,
both at the ablation surface [26], where the action of the
energy source causes hot, low-density plasma to accelerate
cooler, denser plasma, and at an embedded interface [27],
a case closer to the simple RT case. Other extensive work
has also been undertaken and is ongoing in the context of
inertial fusion research. In addition, RT growth has been
studied when a blast wave first shocks and then decelerates an
embedded interface, in experiments motivated by supernova
explosion dynamics [28–31]. In these cases, there is an initial
RM response followed by a longer period of RT growth. In
published work, however, none of these RT experiments have
entered a turbulent phase in the sense of cases (iv) or (v) in
section 1.

As an example, the radiograph on the right in figure 4
is from one of the experiments with a blast-wave-driven
interface. In this specific case, the interface had a 3D initial
perturbation including an egg-crate-like pattern made up
of sinusoidal perturbations having 71-µm wavelengths in
two orthogonal directions and a peak amplitude of 2.5 µm
combined with a sinusoidal perturbation in one of these
directions having a 424-µm wavelength and a peak amplitude
of 2.5 µm. The data are from 25 ns into the experiment. The
target included a tracer strip, as discussed above, so that the

Numerical Re  in simulation ~ 103 

Actual Re in supernova ~ 1010

RT has evolved to  
  overall low mode number 

Long spikes show: 

   > tip broadening and rollup 

   > shear flow regions 

Figure 6. A color display of the logarithm of density from a
simulation of Supernova 1987A, adapted from Kifonidis et al. One
can see both tip rollups and shear layers that in principle might be
sites of a transition to turbulence, were the Reynolds number larger.

intensity variations in the image are primarily due to structure
near the mid-plane of the shock tube. The bubbles and spikes
are about 250 µm long, having grown at an average of about
10 µm ns−1 (10 km s−1) throughout the experiment. Using this
velocity, a transverse dimension of 100 µm and a kinematic
viscosity of 106 µm2 s−1, one finds R to be 106. Note also
that in this case, there are no indications of rollups at the
spike tips. Experiments using 2D initial perturbations, having
a comparable value of R, do observe definite rollups at the tips
but also do not show an onset of turbulence [29], in contrast
with results from low-energy-density, low-Atwood-number
experiments [22].

The laser experiments just discussed were performed
with the intention that they would be relevant to the explosion
phase of supernovae. Both the experiment and a supernova
have a large Reynolds number, a large Peclet number, and
small radiative energy transport. Both involve a very strong
shock and ionized post-shock plasma. Both systems are
sensibly described by the Euler equations. In both cases, the
passage of a blast wave produces a large-Atwood-number
interface that decelerates subsequently. As a result, the
experiment is a good model of a small patch of the star
during the explosion phase, until the finite lateral size of the
experiment begins to affect its behavior. This corresponds to a
few tens of ns in the experiment and a few thousand seconds
in the stellar explosion. The comparison of the experiment
with simulations of supernovae would be of great interest if
the experimental system were to undergo a mixing transition,
which is precluded in the simulation by its low numerical
Reynolds number. Figure 6 shows results of a simulation
of Supernova 1987A by Kifonidis et al [32], in order to
illustrate that a turbulent transition seems likely. It requires
very special initial conditions [33] to produce the outward
motion of inner material observed in Supernova 1987A. The
specific simulation shown, like most others, did not produce
enough motion. It is unclear at present whether a mixing
transition would increase or decrease the outward motion.

In the context of the picture developed by Dimotakis,
the above results are all puzzling. The laboratory experiments
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all have Re above 105, and the astrophysical systems have
values of Re that are orders of magnitude larger. Yet the
laboratory experiments do not produce a mixing transition.
It is harder to tell in the astrophysical cases, but there is
also no strong evidence that such a transition has occurred.
Observationally, various elements do seem to remain in
distinct clumps. This raises the question of why such systems
have not become turbulent. An answer to this question has
been provided in the papers by Robey et al [34] and Zhou
et al [35]. The Zhou–Robey hypothesis is that the uncoupled
fluctuations develop within laminar-flow regions established
in the boundary layers created by viscous diffusion at
locations of significant shear, and that, in order for a turbulent
transition to occur, these boundary layers must grow for a long
enough time that their extent exceeds the inner viscous scale.
In these papers, this hypothesis is shown to explain the onset
of turbulence in several specific cases. The hypothesis also
explains the absence of turbulence in the blast-wave-driven
instability experiments discussed above—the experiments did
not endure long enough.

Mathematically, the Zhou–Robey hypothesis states that
there are two necessary conditions for the transition to
turbulence. The first is that of Dimotakis discussed above,
that the Liepmann–Taylor scale, λLT = 5δRe−1/2, be greater
than the inner viscous scale, λv = 50δRe−3/4. The second
is that the viscous boundary layer thickness, λb = 5(nt)1/2,
exceed the inner viscous scale λv. There is an explicit time
dependence in λb, but the Reynolds number may also be
time-dependent, as it is in systems where the scale of the
turbulent layer increases with time. Even so, one typically
finds that the viscous boundaries take longer to exceed the
inner viscous scale than R does to reach ∼104 where λLT

exceeds λv.
Here, we would like to offer an observation that connects

these two conditions with a well-known aspect of turbulent
systems. If one solves the Zhou–Robey condition for turbulent
onset, λb = λv, for t , one finds

t =
100
√

R

δ

U
. (5)

For typical turbulence, δ/U ∼ d/u, where the eddy scale is
d and the turbulent velocity scale is u, and the ratio d/u is
the scale of the eddy-turnover time. Thus, one sees that for
R near its threshold value of 104, t is near one eddy-turnover
time. This is consistent with the experimental observation that
large turbulent eddies are typically seen to dissipate through
turbulence in about one eddy-turnover time. Another way to
state this point is to say that when R is near its threshold value,
an eddy-turnover time is required to initiate the turbulent
mixing transition.

4.3. KH

The KH instability develops in the presence of velocity shear
for which small perturbations produce lift forces that tend to
increase the size of the perturbations. It is only a semantic
point whether or not one describes all lift-generated responses,
such as spike-tip broadening in RM or RT, as KH, or whether
one limits the use of KH to unstable growth at extended shear
layers. KH plays a role in transitions to turbulence that involve

the initial growth and saturation of structure at shear layers.
After this, secondary instabilities from the initial condition
established by KH initiate the growth of further structure and
the subsequent, explosive amplification of vorticity [36, 37].

To set some context for the discussion that follows, we
first review some aspects of KH theory. The theory of the KH
instability begins in all cases with the equations describing a
fluid in motion (or with the magnetohydrodynamic (MHD)
equations for magnetized systems). For the unmagnetized
case, without gravity or surface tension, these are

ρ
∂ui

∂t
+ ρuk

∂

∂xk
ui = −

∂

∂xi
p +

∂

∂xk
pik (6)

∂ρ

∂t
+

∂

∂xk
(ρuk) = 0. (7)

Here we sum over repeated indices and follow the notation of
Chandrasekhar [38], with time t , components of displacement
xi , density ρ, fluid velocity components ui , scalar pressure p
and viscous stress tensor pik given by

pik = ρν

(
∂uk

∂xi
+

∂ui

∂xk

)
(8)

in which ν is the kinematic viscosity. In addition, one
takes ∇ · u = 0 if the fluid is incompressible. Further details
are discussed in the standard references and do not bear
repeating here. The equation of the interface, the jump
conditions across the interface, and the boundary conditions
also may be required to develop a solution. By analyzing
perturbations about an initial state that specifies the density,
flow velocity and kinematic viscosity in the fluid on each side
of the interface, one can seek the growth rate of unstable
modulations of the interface. Throughout this discussion,
we will ignore surface tension and other effects that might
complicate specific cases. We also ignore gravity, even in
systems with RT-produced shear layers. This is to some degree
justified as the strongest shear layers, between bubbles and
spikes, admit modulations that are perpendicular to gravity.
Of course, the detailed response of the entire system will
involve the coupled RT and KH responses, which will have
to be calculated numerically. Nonetheless, we will see that
an evaluation of the isolated KH response proves to be
informative.

For the simplest case, in which two uniform
incompressible fluids, flowing at different velocities in
the same (x) direction, meet at a boundary, the KH growth
rate is found to be

γ = kx1U 1
2

√
1 − A2 (9)

in which kx is the x-component of the wavevector (along the
direction of flow), 1U is the difference in velocity between
the two fluids, and A is the Atwood number of the interface,
given by A = (ρ1 − ρ2)/(ρ1 + ρ2), where ρ1 and ρ2 are the
densities of the two fluids.

If the two fluids are compressible but the problem
is otherwise unchanged, then Gerwin [39] shows that the
dispersion relation is

F(φ) = φ2
√

(φ − M)2 − 1 − (φ − M)2
√

φ2 − 1 = 0 (10)
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Figure 7. The dependence of Im(F) on Im[φ], for Re(φ) = M/2,
which makes Re[F] = 0. One of the two imaginary roots is
unstable.

in which φ is the frequency (with the growth rate being the
imaginary part), normalized by ks, and M is an effective
Mach number, kx1U/(ks). Here, k is the total wavenumber
and s is the sound speed. Note that the ratio Im(φ)/M equals
γ /(kx1U ). The effective Mach number has a maximum value
of

√
8, so that at large flow velocities only sufficiently oblique

waves are unstable. The roots of interest of this equation occur
when Re(φ) = M/2, so that Re(F) = 0. Figure 7 shows the
dependence of Im(F) on Im(φ) for this case, for M = 2.5.
The curves shown are typical for 1 < M <

√
8. The roots

occur near Im(φ) = 0.5, so that γ /(kx1U ) is in the range of
0.2–0.5, not unlike the incompressible case. In the following,
we will not explicitly discuss compressible results. We will
make the reasonable assumption that the growth rates in such
cases are similar enough to those in incompressible systems
that the arguments we make apply to both. There may be some
exceptions, but their identification remains for future work. It
is also often the case in HEDP experiments that the mixing
layer is at nearly constant pressure and its growth is subsonic,
so it would be sensible to apply an incompressible theory in
any event.

Turning to HEDP experiments, KH has been remarkable
by its absence. Firstly, consider the RT experiments described
above. The size of the mixing layer containing the bubble
and spikes increased at 10 km s−1. About half of this was
stretching due to the rarefaction that followed the blast wave
(similar to that illustrated in figure 4). Using 5 km s−1 as
the effective incompressible shear velocity and at Atwood
number of 0.8, one finds from equation (9) that a structure
of 10 µm wavelength along the spike/bubble interface would
have a growth rate of nearly 1 e-foldings per ns. If such a
growth had occurred, then the atomic-scale structure would
have long since grown to saturation amplitude before the time
of the image in figure 4. In contrast, in 3D simulations of
RT, initialized by a 2D sinusoidal perturbation and subject
to constant acceleration, Calder et al [25] found substantial
growth of the structure along the spike/bubble shear layer,
as figure 8 shows. This calculation used the purely Eulerian
FLASH code.

Other HEDP experiments have explored supersonic jets
that penetrate another medium. These experiments typically
shock a layer of material that then accelerates and expands
down an evacuated channel, forming a supersonic directed

flow that then emerges into another material. Figure 9 shows
an example, from work by Foster et al [40]. In this case,
a Ti jet emerged into low-Z foam. The radiographic image
was taken at 200 ns. This jet has R ∼ 106 and flows at about
10 km s−1 to the right through a nearly stationary volume
of shocked foam plasma. The jet density is near the foam
density for much of the expansion, so the Atwood number is
small. The corresponding linear KH growth rate, for modes of
100-µm wavelength, is ∼0.3 per ns. Yet even earlier in time,
there are no signs in the data of KH growth along the edges of
the jet. This contrasts sharply with the subsonic jets in fluids
discussed, for example, by Dimotakis [6, 41].

A similar circumstance exists with regard to astrophysical
jets. These jets remain collimated over large distances and
do not exhibit the development of increasingly small-scale
structures or the lateral expansion of the jet material that
would correspond to the onset of turbulence at the shear layer
along the edge of the jet. Even so, astrophysical simulators,
running codes based on the Euler equations, have found,
beginning with a classic paper by Blondin et al [42], that these
jets should be KH-unstable. A large number of subsequent
papers have explored jet structure under various assumptions,
including, for example the effect of KH in 3D [43], the
effects of pulsations in the jet source combined with magnetic
fields [44, 45], and the consequences of different types of
cooling [46]. Such simulations do not easily obtain sufficient
resolution to resolve the details [47, 48]. For a jet from a
young star, a typical jet velocity is 100 km s−1. The Atwood
number varies, we assume 0.9 here. A typical jet radius is
of the order of 1010 km. For a wavelength of 1016 cm, the
corresponding KH e-folding time from equation (9) is of the
order of 100 years. This is within an order of magnitude of
the values found in more realistic theory including radiative
and other effects [49] (converting spatial growth rates into
temporal ones by multiplying the spatial growth rate by the
jet speed divided by its radius). These jets propagate for
tens of thousands of years. Given the large value of R and
the large number of KH growth times over which these
jets have endured, however, it is difficult to understand why
these jets have not become turbulent, and do not exhibit the
corresponding strong lateral transport of material that would
result.

In the following section, we suggest a solution to the
puzzle that so many shear flows, though predicted to be KH
unstable, show little evidence of a transition to turbulence.
With regard to experiments, the observations just discussed
have increased the significance of experiments aimed at
directly producing KH in supersonic HEDP systems. A
design for such an experiment, in which a propagating shock
creates a system that is KH unstable by flowing rapidly
along a modulated interface to a higher density material,
is given in [50]. Another experiment (by E C Harding
and collaborators) that creates a flowing plasma that then
encounters and flows along a modulated interface is also under
way.

5. Role of KH in turbulent onset

Two aspects of real systems are missing from the theory
discussed above: velocity gradients and viscous diffusion,

8
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Figure 8. Density display from a single RT spike calculation using the code FLASH. This case used 128 resolution elements vertically, and
periodic boundary conditions at the vertical boundaries. Adapted from Calder et al [25].

Figure 9. Supersonic jets. (a) From a laboratory experiment
(adapted from Foster et al [40]).

although diffusion does play a role in the Zhou-Robey
hypothesis. These effects are linked, as viscous diffusion
acts to weaken the gradient in velocity across a shear layer.
The simulations discussed above in principle include velocity
gradients, but in actuality often do not model the process by
which a shear layer forms and also do not accurately treat
viscous diffusion. This can limit the existence of KH or its
ability to contribute to turbulent fluctuations. We discuss the
incompressible case, which should be approximately accurate
for the reasons discussed above.

For systems that evolve in time, the free shear layer
thickness is approximately H = H0 +

√
νt , in which ν is the

kinematic viscosity, t is time, and H0 is the initial boundary
layer thickness established as it forms. The fact that H0

is finite reflects that the formation of the shear layer, and
experimental effects such as preheating that may occur prior
to shear layer formation, can limit the steepness of the velocity
gradient. This will be quite important later in our discussion.
Esch [51] provides a thorough discussion of KH in the
presence of broadened shear layers, including both analytical
and numerical results and consideration of different profiles
across the layer. In this regime of large R it is not the viscous
dissipation that directly limits KH, but rather it is the presence
and impact of the boundary layer. For large R, the results
of Esch are substantially the same as those obtained from
the simpler model of Chandrasekhar [38], which we discuss
here. This treatment assumes a linear transition in velocity
and density between the two fluids and examines the fastest
growing modes, which have k = kx . If the (full) transition
distance is H , then the normalized wavenumber is κ = k H
and the normalized frequency is n = 2γ /kx1U . With these

definitions, the dispersion relation is

e−2κ

[
1 +

1

2
Aκ(n + 1)

] [
1 +

1

2
Aκ(n − 1)

]

−

[
1 + κ(n + 1)

(
1

2
A − 1

)] [
1 + κ(n − 1)

(
1

2
A + 1

)]
= 0.

(11)

We want to explore this somewhat as we will use an
approximation to this result in our further calculations below.
One can, for example, fix A and solve this equation for the
dependence of the growth rate on wavenumber. This also
allows one to find the maximum unstable wavenumber, kth.
Figure 10 compares the solutions to this dispersion relation
with those of the H = 0 result discussed above, for A = 0.3,
0.6 and 0.9. The results for A < 0.3 change little.

Two observations about figure 10 will support our further
analysis. Firstly, the threshold wavenumber is approximately
given by k = 1.4. This is comparable with the result of Esch
mentioned above and corresponds to a wavelength of λ ∼ 5H .
Secondly, it is not a bad approximation to take

γ /(kx1U ) =
1

2

√
1 − A2

[
1 −

k

kth

]
, (12)

which typically will produce errors less than a factor of two.
We will use this below.

As a first application of this result, we note that H0

may at times be a significant fraction of δ. Some simulations
indicate that this may be the case for RT under conditions
similar to those of figure 4 (taking δ to be the spike width).
In addition, the production of jets like those shown in figure 9
by launching material through a tube is likely to produce a
significant radial velocity gradient within the jet material, thus
reducing the velocity gradient between the jet material and the
shocked foam. And while we have much less understanding
of jet formation in astrophysics, it is certainly possible that
the velocity gradients there will be less steep than has been
assumed in some of the simulations.

We now turn to a speculation regarding the potential
role of KH in the development of turbulence at smaller
scales. It may be that the secondary instabilities or the mode
coupling of large-scale fluctuations manage to fully populate
the fluctuation spectrum at all scales down to the inner viscous
scale. But it may also be that KH has an important role to play
in developing the fluctuations at newly formed small-scale
shear layers. We explore that here.

At the smallest scales, there is a competition between
KH growth and the growth of the boundary layer between
the fluids. Modulations at some specific k will grow in time

9
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Figure 10. Dependence of normalized growth rate, γ /(kx1U ), on
normalized wavenumber, κ = k H , for a boundary layer of thickness
H . The straight line is the H = 0 result in each case. (a) A = 0.3,
(b) A = 0.6 and (c) A = 0.9.

until the boundary layer becomes thick enough that k H ∼ 1.4.
The interesting question is: How much growth will there be?
This will determine whether KH can become large enough
to enable the secondary instabilities to generate the transition
to turbulence. The calculation of this growth proceeds as
follows. We have kth = 1.4/H . This implies that the time, t1,
when kth = k, is given by

t1 =
1

ν

(
1.4

k

)2 (
1 −

k H0

1.4

)2

. (13)

We can find the number of e-foldings by which the initial
modulations will be amplified, for k = kx as∫ t1

0
γ dt =

∫ t1

0
k1U

1

2

√
1 − A2

[
1 −

k

kth

]
dt

=

(
δ1U

ν

)
1

3kδ

√
1 − A2

(
1 − kδ

H0

1.4δ

)3

. (14)

We can use equation (9) to establish a saturation scale
for comparison with the other scales involved in the
mixing transition. Firstly, we must establish some number
of e-foldings of amplification that we assume corresponds
to the onset of secondary instabilities and then turbulence.
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Figure 11. Impact of initial shear-layer transition width.

The fluctuations that must be saturated include those with
k = kx , described by equation (6) and also those with k > kx ,
which have somewhat less amplification. Here, we will use 10
e-foldings for k = kx to approximate this level of saturation.
This should be a good upper limit, as it is sufficient to
saturate fluctuations when the initial amplitude of the noise
fluctuations is <10−5λ. In any event, the required number of
e-foldings is very likely to be within a factor of two of this
value.

For an infinitely steep initial velocity gradient (H0 = 0),
one finds that the minimum wavelength for which the KH
instability produces saturated fluctuations before its growth
is stopped by the expansion of the boundary layer is λKH ∼

220δ/R, which is below the inner viscous scale for values of R
large enough to observe a mixing transition. For a finite initial
velocity gradient, one obtains the results shown in figure 10.
The figure shows curves above which KH of that normalized
wavelength can meet our saturation criterion, overlaid on
the normalized length versus the R plane of figure 11. One
concludes that, if KH at small-scale shear layers is required
to initiate the population of the turbulent spectrum, then these
shear layers must form in a way that keeps them initially quite
abrupt.

6. Conclusion

We have seen that the development of turbulent flow in
HEDP experiments, in the sense of having produced a mixing
transition on a scale large enough to diagnose, is somewhat
difficult to accomplish and has not been achieved to date.
In this context, it is worth mentioning one result that was
not discussed above. Hansen et al [52] published data and
theory from an experiment in which a flowing HEDP plasma
interacted with and stripped away mass from a denser cloud
of material, finding clear evidence that in this case the mass
stripping was turbulent. The turbulence, however, was on
too small a scale to diagnose. The problem of observing
turbulence and its onset in HEDP flows is one of several
examples of mixing in unsteady flows that were presented at
the ‘Turbulent Mixing and Beyond’ conference.
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In the above, after providing a discussion of the properties
of HEDP hydrodynamic systems and the methods of doing
such experiments, we discussed studies to date of the three
primary instabilities: RM, RT and KH. The first two of
these have been systematically observed, but have not yet
produced a system with a clear transition to turbulence. The
KH instability remains to be systematically observed in its
pure form, although some related effects such as spike tip
broadening have been seen. However, the KH effects seen in
some simulations of RT systems and supersonic jets have not
been seen to date in experiments.

We offered three observations that are speculative
regarding the observations. We discussed the model of Zhou
et al [35] regarding the onset of turbulence in time-dependent
systems, and noted that their time-dependent condition is
roughly equivalent to the Reynolds-number threshold of
Dimotakis in that eddies will dissipate by turbulence in
about one eddy-turnover time. We suggested that a plausible
explanation of the absence of KH in several experimental
systems may be that finite velocity gradients have quenched
the instability. Finally, we argued that despite the smearing of
the shear layer caused by viscous diffusion, KH instabilities
have the potential to contribute to the generation of
fluctuations at all scales so long as the local shear layers are
formed with a sufficiently steep velocity gradient.
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