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This paper investigates the interaction between transient wave and non-stationary and non-conservative basic flow.

An interaction equation is derived from the zonally symmetric and non-hydrostatic primitive equations in Cartesian

coordinates by using the Momentum–Casimir method. In the derivation, it is assumed that the transient disturbances

satisfy the linear perturbation equations and the basic states are non-conservative and slowly vary in time and space.

The diabatic heating composed of basic-state heating and perturbation heating is also introduced. Since the theory

of wave–flow interaction is constructed in non-hydrostatic and ageostrophic dynamical framework, it is applicable to

diagnosing the interaction between the meso-scale convective system in front and the background flow.

It follows from the local interaction equation that the local tendency of pseudomomentum wave-activity density

depends on the combination of the perturbation flux divergence second-order in disturbance amplitude, the local change

of basic-state pseudomomentum density, the basic-state flux divergence and the forcing effect of diabatic heating. Fur-

thermore, the tendency of pseudomomentum wave-activity density is opposite to that of basic-state pseudomomentum

density. The globally integrated basic-state pseudomomentum equation and wave-activity equation reveal that the

global development of basic-state pseudomomentum is only dominated by the basic-state diabatic heating while it is

the forcing effect of total diabatic heating from which the global evolution of pseudomomentum wave activity results.

Therefore, the interaction between the transient wave and the non-stationary and non-conservative basic flow is realized

in virtue of the basic-state diabatic heating.

Keywords: wave–flow interaction, pseudomomentum wave activity, diabatic heating, Momentum–

Casimir method
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1. Introduction

The interaction between the transient wave (or

‘eddy’) and the basic flow is an important content

of atmospheric dynamics. As a powerful tool to in-

vestigate this interaction, the E–P flux firstly pro-

posed by Eliassen and Palm[1] has been widely used

in the studies of wave propagation,[2−4] wave–mean

flow interaction[5−8] and stratosphere warming.[9,10]

Andrews and McIntyre (1976, 1978) developed and

generalized the E–P flux theory by defining residual

circulation components in the transformed Eulerian

mean equations.[11,12] Edmon et al (1980) established

‘Eliassen–Palm Cross Section’ method to measure the

total forcing of zonal-mean state by eddies and a net

wave propagation from one height and latitude to

another.[13] Huang and Gambo (1983) studied the E–P

theorem in a three-dimensional spherical atmosphere

and brought forward the dynamics theory of the quasi-

stationary planetary wave that propagates alongside

the two waveguides.[14] Gao et al (1990) employed the

E–P flux to diagnose the acceleration and decelera-

tion of zonal mean flow,[15] and they discussed the

interaction between transient wave and westerly jet

stream at upper level and gave a very comprehen-

sive explanation to the mechanism of upper-level jet

stream acceleration.[16] It is for the first time that the

E–P flux is creatively extended into upper-level jet

stream. This is an important progress in the appli-

cation of E–P flux. Gao et al (2004) formularized a

new expression of E–P flux in baroclinic atmosphere

and constructed an ageostrophic generalized E–P flux

theory that is a complement to their previous per-

tinent investigations.[17] Pfeffer (1992) examined the

dynamics of eddy-induced acceleration of the zonal-

mean flow in the troposphere and lower stratosphere
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from the perspective of conventional and transformed

Eulerian diagnostics.[18]

In the most of previous E–P flux theories, the hy-

drostatic balance or quasi-geostrophic approximation

is often used. Due to this, the E–P flux theories are

suitable for large-scale weather systems and cannot ex-

actly present the interaction between non-hydrostatic,

ageostrophic meso-scale waves and basic flow. In fact,

the interaction between wave and basic flow includes

two aspects, namely, the feedback of basic flow to wave

and the forcing effect of wave on basic flow. In this

sense, E–P flux represents the effect of wave on basic

flow, but cannot reveal the feedback of basic flow to

wave.

Many studies have shown that the concept of

wave activity can theoretically underlie the wave–flow

interaction.[19−21] Haynes (1988) took into account

the effects of forcing and dissipation to investigate

the finite-amplitude, local wave–activity relations for

disturbances to zonal and nonzonal basic-state flows

in isentropic coordinates by using the Momentum–

Casimir and Energy–Casimir methods.[22] Scinocca

and Shepherd (1992) constructed the non-hydrostatic

finite-amplitude wave–activity conservation laws for

pseudomomentum and pseudoenergy from the two-

dimensional anelastic and Boussinesq equations.[23]

Ran and Gao (2007) derived a three-dimensional, non-

hydrostatic and ageostrophic local wave–activity rela-

tion for pseudomomentum from the non-hydrostatic

primitive equations in Cartesian coordinates by us-

ing the Momentum–Casimir method.[24] This form of

wave–activity relation is constructed for the first time

and may be used as a diagnostic for mesoscale flows

poorly described by the quasi-geostrophic or hydro-

static approximation. In the previous studies of wave–

activity relation, it is generally assumed that the basic

states are stationary, which means that there is not the

effect of wave on basic flow. This is a shortcoming in

the investigation of wave–flow interaction.

It is pertinent to ask whether we are able to con-

struct an equation which may present the interaction

between non-hydrostatic, ageostrophic and meso-scale

transient wave and non-stationary basic flow and syn-

chronously link the two aspects of wave–flow interac-

tion. The studies of Haynes (1988)[22] and Scinocca

and Shepherd (1992)[23] enlighten us on this question.

They showed that for the pseudomomentum wave–

activity law derived in Hamiltonian system with the

Momentum–Casimir method, the basic states may not

be stationary, but must be symmetric with regards to

some coordinate axis.

The purpose of this paper is to construct an

equation representing the interaction between non-

hydrostatic, ageostrophic and meso-scale wave and

basic flow with the Momentum–Casimir method on

the bases of Haynes (1988),[22] Scinocca and Shepherd

(1992)[23] and Ran et al (2007).[24] The zonally sym-

metric governing equations on f -plane in Cartesian

coordinates are presented in the next section. The

derivation of wave–flow interaction equation for dis-

turbances to non-stationary and non-conservative ba-

sic states is addressed in Section 3. In Section 4, the

discussion is given.

2. Governing equations

We start with the momentum, continuity, thermo-

dynamic and state equations in Cartesian coordinates

on an f -plane, under zonally symmetric, diabatic and

frictionless conditions

∂u

∂t
+ v · ∇u − f0v = 0, (1)

∂v

∂t
+ v · ∇v + f0u = −

1

ρ

∂p

∂y
, (2)

∂w

∂t
+ v · ∇w = −

1

ρ

∂p

∂z
− g, (3)

∂ρ

∂t
+ ∇ · (ρv) = 0, (4)

∂θ

∂t
+ v · ∇θ = Q, (5)

p = ρRT. (6)

In this system, v = (u, v, w), is the velocity vector

in which u, v, w are the eastward, northward and up-

ward components of wind; f0 is the Coriolis parameter

(assumed constant), p is the pressure, ρ is the density,

R is the air constant, g is the gravitational acceler-

ation, Q is the diabatic heating, θ = T

(

ps

p

)
R

cp

in

which T is the temperature, ps is the reference surface

pressure, cp is the specific heat at constant pressure,

is the potential temperature, and ∇ =
∂

∂y
j +

∂

∂z
k.

Equations (1) and (4) may be combined to derive an

equation which expresses conservation of zonal angu-

lar momentum about rotation axis, being

∂

∂t
(ρU) + ∇ · (ρvU) = 0, (7)

where U = u − f0y.
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An equation for Ertel potential vorticity may be

formed from equations (1)–(5), being

∂q

∂t
+ v · ∇q =

1

ρ
ω · ∇Q, (8)

where q = ω · ∇θ/ρ is the Ertel potential vorticity

with ω = (∂w/∂y − ∂v/∂z, ∂u/∂z,−∂u/∂y + f0). In

the two-dimensional flow, we exploited the fact that

in the conservative case any function, C(q, θ) say, of

Ertel potential vorticity and potential temperature is

constant following the fluid motion. If we multiply

Eq.(5) by
∂C

∂θ
and Eq.(8) by

∂C

∂q
and then add the

results, we obtain

∂

∂t
(ρC) + ∇ · (ρvC) =

∂C

∂q
ω · ∇Q + ρ

∂C

∂θ
Q, (9)

in which the continuity equation (4) has been used.

The sum of Eqs.(7) and (9) may give

∂

∂t
[ρ(U + C)] + ∇ · [ρv(U + C)]

=
∂C

∂q
ω · ∇Q + ρ

∂C

∂θ
Q. (10)

We now proceed to calculate wave–flow interac-

tion relations for flows described by these equations.

3. Equation for interaction be-

tween wave and basic flow

In order to determine the interaction between

wave and basic flow, we consider a basic state in which

the various flow quantities (denoted by the subscript

‘0’) are functions of y, z and t, but slowly vary in

space and time compared with the disturbance quan-

tities (denoted by the subscript ‘e’). Thus, all quan-

tities are composed of two parts: the basic-state part

and the disturbance part, being

u = u0(y, z, t) + ue(y, z, t),

v = v0(y, z, t) + ve(y, z, t),

w = w0(y, z, t) + we(y, z, t),

p = p0(y, z, t) + pe(y, z, t),

ρ = ρ0(y, z, t) + ρe(y, z, t),

T = T0(y, z, t) + Te(y, z, t),

θ = θ0(y, z, t) + θe(y, z, t),

q = q0(y, z, t) + qe(y, z, t),

Q = Q0(y, z, t) + Qe(y, z, t). (11)

Note that the diabatic heating in basic state Q0 does

not vanish.

Under the assumption of small-amplitude distur-

bance, we may obtain the linearized form of distur-

bance equations by substituting Eq.(11) into Eqs.(1)-

(5)

∂ue

∂t
= −v0 · ∇ue − ve

∂u0

∂y
− we

∂u0

∂z
+ f0ve, (12)

∂ve

∂t
= − v0 · ∇ve − ve

∂v0

∂y
− we

∂v0

∂z
− f0ue

−
1

ρ0

∂pe

∂y
+

ρe

ρ2
0

∂p0

∂y
, (13)

∂we

∂t
= − v0 · ∇we − ve

∂w0

∂y
− we

∂w0

∂z

−
1

ρ0

∂pe

∂z
− g

ρe

ρ0
, (14)

∂ρe

∂t
= −∇ · (v0ρe) −∇ · (veρ0) , (15)

∂θe

∂t
= −v0 · ∇θe − ve

∂θ0

∂y
− we

∂θ0

∂z
+ Qe, (16)

where v0 = (u0, v0, w0) is the basic-state velocity vec-

tor and ve = (ue, ve, we) is the perturbation velocity

vector. In deriving these disturbance equations, we

have used the series expansion that

1/ρ = 1/ρ0 − ρe/ρ2
0 + ρ2

e/ρ3
0 + · · ·. (17)

Subtraction of the disturbance equations from the

primitive equations results in the basic-state equations

∂u0

∂t
= −v0

∂u0

∂y
− w0

∂u0

∂z
+ fv0 − ve · ∇ue, (18)

∂v0

∂t
= − v0

∂v0

∂y
− w0

∂v0

∂z
− f0u0 −

1

ρ0

∂p0

∂y
− ve · ∇ve

−
ρ2
e

ρ3
0

∂p0

∂y
+

ρe

ρ2
0

∂pe

∂y
, (19)

∂w0

∂t
= − v0

∂w0

∂y
− w0

∂w0

∂z
−

1

ρ0

∂p0

∂z
− g

− ve · ∇we −
ρ2
e

ρ3
0

∂p0

∂z
+

ρe

ρ2
0

∂pe

∂z
, (20)

∂ρ0

∂t
= −

∂

∂y
(ρ0v0) −

∂

∂z
(ρ0w0) −∇ · (ρeve) , (21)

∂θ0

∂t
= −v0

∂θ0

∂y
− w0

∂θ0

∂z
+ Q0 − ve · ∇θe. (22)

The above basic-state equations are distinct in that

they contain the disturbance quantities quadric in

small disturbance amplitude. This implies two things:

one thing is that the basic-state quantities are not a
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steady solution to the primitive equations, and an-

other thing is that the spacial and temporal variations

of basic-state quantities are smaller than those of dis-

turbance quantities. For a given data, the common

way to obtain this kind of basic states is band-pass

filter of time and space.

If the quadric disturbance quantities are neglected

in Eqs.(18)–(22), the basic states become a steady so-

lution, which indicates that the transient wave does

not impose on the basic flow. Therefore, the inclusion

of the quadric disturbance quantities in Eqs.(18)–(22)

is quite important in the investigation of wave–basic

flow interaction.

Furthermore, the dynamic and thermodynamic

fields in basic state are assumed to also satisfy the

ideal gas law and definitions of potential temperature

and Ertel potential vorticity

p0 = ρ0RT0, (23)

θ0 = T0

(

ps

p0

)R/cp

, (24)

q0 =
ω0 · ∇θ0

ρ0
, (25)

where ω0 = (∂w0/∂y − ∂v0/∂z, ∂u0/∂z, f0 − ∂u0/∂y)

is the basic-state absolute vorticity. In a similar man-

ner, if one takes the individual derivative to Eq.(25)

and employs the basic-state equations to eliminate the

local time changes of u0, v0, w0 and θ0, then an equa-

tion in a flux form for q0 may be given by

∂

∂t
(ρ0q0) +

∂

∂y
(ρ0v0q0) +

∂

∂z
(ρ0w0q0)

=
∂

∂y

(

∂θ0

∂z
ve · ∇ue −

∂u0

∂z
ve · ∇θe

)

−
∂

∂z

[

∂θ0

∂y
ve · ∇ue +

(

f0 −
∂u0

∂y

)

ve · ∇θe

]

+ ∇ · (ω0Q0) , (26)

which suggests that the global integration of ρ0q0 is

conservative for periodic boundary conditions.

At small disturbance amplitude, we perform a

Taylor series expansion of C(q, θ) about (q0, θ0). Con-

sidering the low-order contribution, we determine the

expression for C(q, θ) to be

C(q, θ) =C0 +
∂C0

∂q0
qe +

∂C0

∂θ0
θe

+
1

2

(

∂2C0

∂q2
0

q2
e +

∂2C0

∂θ2
0

θ2
e

)

+
∂2C0

∂q0∂θ0
qeθe, (27)

where C0 = C(q0, θ0) is the evaluation of C at (q0, θ0)

and

qe =
1

ρ
(ωe · ∇θ0 + ωe · ∇θe + ω0 · ∇θe − ρeq0) (28)

is the perturbation potential vorticity in which ωe =

(∂we/∂y − ∂ve/∂z, ∂ue/∂z, −∂ue/∂y) is the relative

perturbation vorticity.

Employing Eqs.(11), (27) and (28), the quantity

ρ (U + C) may be expanded to be

ρ (U + C) =
∂

∂y

[

∂C0

∂q0

(

∂u0

∂z
θe −

∂θ0

∂z
ue

)]

+
∂

∂z

{

∂C0

∂q0

[

∂θ0

∂y
ue +

(

f0 −
∂u0

∂y

)

θe

]}

+ ue

[

ρ0 +
∂θ0

∂z

∂

∂y

(

∂C0

∂q0

)

−
∂θ0

∂y

∂

∂z

(

∂C0

∂q0

)]

− θe

[

∂u0

∂z

∂

∂y

(

∂C0

∂q0

)

+

(

f0 −
∂u0

∂y

)

∂

∂z

(

∂C0

∂q0

)

− ρ0
∂C0

∂θ0

]

+ ρe

(

U0 + C0 − q0
∂C0

∂q0

)

+ ρ0 (U0 + C0) + J, (29)

where U0 = u0 − f0y is the zonal basic-state absolute momentum density, and

J = ρe

(

ue +
∂C0

∂θ0
θe

)

+
∂C0

∂q0
(ωe · ∇) θe + ρ0

[

1

2

(

∂2C0

∂q2
0

q2
e +

∂2C0

∂θ2
0

θ2
e

)

+
∂2C0

∂q0∂θ0
qeθe

]



1142 Ran Ling-Kun et al Vol. 17

is interpreted as the pseudomomentum wave–activity

density which is quadratic in small disturbance ampli-

tude.

Following the Momentum–Casimir method used

by Haynes (1988),[22] we should choose that function

C which makes the third, fourth and fifth terms on the

right-hand side of Eq.(29) associated with the leading-

order wave vanish. It is therefore required that

ρ0 +
∂θ0

∂z

∂

∂y

(

∂C0

∂q0

)

−
∂θ0

∂y

∂

∂z

(

∂C0

∂q0

)

= 0, (30)

∂u0

∂z

∂

∂y

(

∂C0

∂q0

)

+

(

f0 −
∂u0

∂y

)

∂

∂z

(

∂C0

∂q0

)

− ρ0
∂C0

∂θ0
= 0, (31)

U0 + C0 − q0
∂C0

∂q0
= 0. (32)

The three conditions (30), (31) and (32) may be shown

to be equivalent by firstly taking partial derivatives

of Eq.(32) with respect to y and z, respectively, and

then substituting the results into the left-hand sides

of Eqs.(30) and (31).

Under the conditions (30)–(32), Eq.(29) becomes

ρ (U + C)

=
∂

∂y

[

∂C0

∂q0

(

∂u0

∂z
θe −

∂θ0

∂z
ue

)]

+
∂

∂z

{

∂C0

∂q0

[

∂θ0

∂y
ue +

(

f0 −
∂u0

∂y

)

θe

]}

+ ρ0 (U0 + C0) + J. (33)

Employing Eqs.(30)–(32) again, we may further sim-

plify Eq.(33), being

ρ (U + C)

= ρ0

(

ue +
∂C0

∂θ0
θe

)

+
∂C0

∂q0
(ωe · ∇θ0 + ω0 · ∇θe + ω0 · ∇θ0) + J. (34)

We may express the time derivative of the local wave–

activity density J in flux form by substituting Eq.(33)

into the first term and Eq.(34) into the second term

on the left-hand side of Eq.(10), and then eliminate

the local time changes of disturbance quantities with

Eqs.(12)–(16)

∂J

∂t
+

∂

∂y

{

v0J + ve

[

ρ0

(

ue +
∂C0

∂θ0
θe

)

+
∂C0

∂q0
(ωe · ∇θ0 + ω0 · ∇θe)

]}

+
∂

∂z

{

w0J + we

[

ρ0

(

ue +
∂C0

∂θ0
θe

)

+
∂C0

∂q0
(ωe · ∇θ0 + ω0 · ∇θe)

]}

= −
∂

∂t
[ρ0(U0 + C0)] −

∂

∂y
[ρ0v0(U0 + C0)] −

∂

∂z
[ρ0w0(U0 + C0)] + S, (35)

where

S = −
∂

∂y

{[

∂C0

∂q0

∂ue

∂z
+

1

q0

∂u0

∂z

(

∂C0

∂θ0
θe + ue

)]

Q0

}

+
∂

∂z

{[

∂C0

∂q0

∂ue

∂y
−

1

q0

(

f0 −
∂u0

∂y

) (

∂C0

∂θ0
θe + ue

)]

Q0

}

−
∂C0

∂q0
ω0 · ∇Qe − ρ0

∂C0

∂θ0
Qe +

∂C

∂q
ω · ∇Q + ρ

∂C

∂θ
Q (36)

is the source or sink which involves the forcing of di-

abatic heating. The equation is quite important be-

cause it associates the transient wave (the terms on

the left-hand side) with the basic flow (the first three

terms on the right-hand side) and concisely describes

the two-way local interaction between wave and basic

flow.

If Eq.(35) is globally integrated over a two-

dimensional space σ on whose boundaries the normal

complement of flux vanishes, we obtain
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d

dt

∫∫

σ

Jdydz

= −
d

dt

∫∫

σ

ρ0(U0 + C0)dydz

+

∫∫

σ

Sdydz. (37)

The equation represents the global interaction be-

tween wave and basic flow with non-conservative ef-

fect. In the equation the global tendencies of pseu-

domomentum wave activity and basic-state pseudo-

momentum are opposite, which means that the de-

crease of basic-state pseudomomentum may result in

the increase of pseudomomentum wave activity and

vice versa.

We now proceed to analyse how the interaction

takes place. Employing the basic-state equations

(18)–(25), we may rewrite the first three terms on the

right-hand side of Eq.(35) as

∂

∂t
[ρ0 (U0 + C0)] +

∂

∂y
[ρ0v0 (U0 + C0)] +

∂

∂z
[ρ0w0 (U0 + C0)]

=
∂

∂y

[

∂C0

∂q0

(

∂θ0

∂z
ve · ∇ue −

∂u0

∂z
ve · ∇θe

)]

−
∂

∂z

{

∂C0

∂q0

[

∂θ0

∂y
ve · ∇ue +

(

f0 −
∂u0

∂y

)

ve · ∇θe

]}

+
∂C0

∂q0
ω0 · ∇Q0 + ρ0

∂C0

∂θ0
Q0. (38)

Besides the basic-state flux divergence (the second and

third terms on the left-hand side of Eq.(38)) and the

basic-state diabatic heating (the last two terms on

the right-hand side of Eq.(38)), the transports of per-

turbation momentum and potential temperature (the

first two terms on the right-hand side of Eq.(38)) con-

tribute to the local evolution of basic-state pseudomo-

mentum, representing the influence of wave on basic

flow. Globally integrating the equation with simple

boundary conditions, we have

d

dt

∫∫

ρ0 (U0 + C0)dydz

=

∫∫

σ

[

∂C0

∂q0
ω0 · ∇Q0 + ρ0

∂C0

∂θ0
Q0

]

dydz. (39)

It is evident from Eq.(39) that in the global sense,

the basic-state pseudomomentum is not conservative,

uniquely being determined by the basic-state diabatic

heating.

Replacement of the first three terms on the right-

hand side of Eq.(35) with Eq.(38) may result in a two-

dimensional ageostrophic non-hydrostatic pseudomo-

mentum wave–activity relation

∂J

∂t
+ ∇ · F = SJ, (40)

where F = (Fy, Fz) is interpreted as the pseudo-

momentum wave–activity flux which is explicitly of

quadratic order in small disturbance amplitude, and

whose components are

Fy =v0J + ve

[

ρ0

(

ue +
∂C0

∂θ0
θe

)

+
∂C0

∂q0
(ωe · ∇θ0 + ω0 · ∇θe)

]

+
∂C0

∂q0

(

∂θ0

∂z
ve · ∇ue −

∂u0

∂z
ve · ∇θe

)

, (41)

Fz =w0J + we

[

ρ0

(

ue +
∂C0

∂θ0
θe

)

+
∂C0

∂q0
(ωe · ∇θ0 + ω0 · ∇θe)

]

−
∂C0

∂q0

[

∂θ0

∂y
ve · ∇ue +

(

f0 −
∂u0

∂y

)

ve · ∇θe

]

, (42)
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and

SJ = S −

(

∂C0

∂q0
ω0 · ∇Q0 + ρ0

∂C0

∂θ0
Q0

)

(43)

is the source or sink for wave activity. Globally inte-

grating Eq.(40) with the same boundary conditions as

Eq.(37) yields

d

dt

∫∫

σ

Jdydz

=

∫∫

σ

SJdydz, (44)

which reveals that the global non-conservation of pseu-

domomentum wave activity results from the total di-

abatic heating. Comparing Eq.(44) with Eq.(39), we

may infer that in the global sense, the interaction be-

tween wave and basic flow is realized in virtue of the

basic-state diabatic heating Q0 which is a key linking

tie between wave and basic flow.

It is clear that the diabatic heating in basic state

Q1 plays a crucial role in the wave-basic flow inter-

action. We now provide a proof that Q0 cannot be

chosen arbitrarily and should satisfy the certain phys-

ical restriction. Employing Eqs.(21), (22) and (26),

we get an equation for ρ0q0
∂C0

∂q0
:

∂

∂t

(

ρ0q0
∂C0

∂q0

)

+
∂

∂y

(

v0ρ0q0
∂C0

∂q0

)

+
∂

∂z

(

w0ρ0q0
∂C0

∂q0

)

=q2
0

∂2C0

∂q2
0

∇ · (ρeve) +

(

q0
∂2C0

∂q2
0

+
∂C0

∂q0

) {

∂

∂y

(

∂θ0

∂z
ve · ∇ue −

∂u0

∂z
ve · ∇θe

)

−
∂

∂z

[

∂θ0

∂y
ve · ∇ue +

(

f0 −
∂u0

∂y

)

ve · ∇θe

]}

− ρ0q0
∂2C0

∂q0∂θ0
ve · ∇θe

+ ρ0q0
∂2C0

∂q0∂θ0
Q0 +

(

q0
∂2C0

∂q2
0

+
∂C0

∂q0

)

ω0 · ∇Q0. (45)

Subtracting Eq.(45) from Eq.(38), and then using Eq.(32), we are left with an equation for Q0:

ρ0

(

∂C0

∂θ0
− q0

∂2C0

∂q0∂θ0

)

Q0 − q0
∂2C0

∂q2
0

ω0 · ∇Q0

=q0
∂2C0

∂q2
0

[

∂θ0

∂z

∂

∂y
(ve · ∇ue) −

∂θ0

∂y

∂

∂z
(ve · ∇ue) − ω0 · ∇ (ve · ∇θe) + q0∇ · (ρeve)

]

+ ρ0

[(

∂C0

∂θ0
− q0

∂2C0

∂q0∂θ0

)

ve · ∇θe + ve · ∇ue

]

. (46)

The equation, which in nature is an alternative rep-

resentation of Eq.(32), shows that Q0 is associated

with the disturbance quantities. For a specific form

of C, Q0 may be evaluated from other given basic-

state quantities and disturbance quantities through

Eq.(46).

On the bases of equations (39), (44) and (46), we

may give a simple physical procedure of wave–basic

flow interaction. The transient wave indirectly force

the basic flow to develop through Eq.(39) by directly

influencing on Q0 in Eq.(46). On the other hand, the

developed basic flow and Q0 carry out a feedback on

the transient wave through Eq.(44).

4. Discussion

The zonally symmetric, non-hydrostatic system of

equations in Cartesian coordinates that is widely ap-

plied to meso-scale phenomena, such as squall line and

conditional symmetric instability is employed. With

the assumption of small amplitude, the disturbance

quantities are subjected to the linear perturbation

equations and the perturbation terms quadric in dis-

turbance amplitude are kept down in the basic-state

equations, implying that the basic states vary more

slowly than the transient disturbances in time and

space. Then on the bases of these equations, we em-

ploy the Momentum–Casimir method used by Haynes

(1988) to derive the local and global equations pre-
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senting the interaction between transient wave and

non-stationary, non-conservative basic flow.

It follows from the local equation (35) that the lo-

cal tendency of pseudomomentum wave–activity den-

sity is mainly dominated by the combination of per-

turbation flux divergence quadric in disturbance am-

plitude, local change of basic-state pseudomomentum

density, basic-state flux divergence, and forcing effect

of diabatic heating. The tendencies of pseudomomen-

tum wave–activity density and basic-state pseudomo-

mentum density are opposite, which indicates that

the decaying basic-state pseudomomentum density is

propitious to prompt the growth of pseudomomentum

wave activity density and vice versa. For a closed sys-

tem with vanishing flux components normal to bound-

aries, the globally integrated equation (37) shows that

the global development of pseudomomentum wave ac-

tivity depends on the global tendency of basic-state

pseudomomentum and the diabatic heating in basic

state.

Using the basic-state pseudomomentum equation

(38), we derive the wave–activity equation (40) on the

base of the wave–basic flow interaction equation (37).

It is shown that in the global sense, the basic-state di-

abatic heating uniquely gives rise to the evolution of

basic-state pseudomomentum and the pseudomomen-

tum wave activity develops under the influence of the

total diabatic heating. Compared the two equations,

it may be inferred that the basic-state diabatic heat-

ing is a key tie linking wave and basic flow. On the

one hand, the disturbances effect on the basic-state

heating in Eq.(46) to indirectly force the development

of basic-state pseudomomentum through Eq.(39). On

the other hand, the developed basic flow and basic-

state heating carry out a feedback on the pseudomo-

mentum wave activity through Eq.(44).

In the derivation, a single-valued function C(q, θ)

of Ertel potential vorticity and potential temperature

is introduced and its expression is not specified. One

may choose different forms of C(q, θ) with all kinds

of intentions, which gives a great freedom to discuss

the interaction between wave and various basic flows.

It is worth emphasizing that the specific expression of

C(q, θ) should guarantee the reasonable evaluation of

Q0 in Eq.(46).

The theory of wave–flow interaction obtained here

may prove to be an useful diagnostic in many situa-

tions. Although the effects of dissipation are not in-

cluded in this paper, if desired, one may generalize

the present result to consider the effects by taking

into account the terms of turbulent dissipation in the

primitive governing equations, as Haynes (1988) did.

As an alternative way, one may calculate the effects as

a residual of the two sides of Eq.(35). When the lat-

eral conditions are nonperiodic and the components of

flux normal to the bottom and upper boundaries do

not vanish, the globally integrated equation of wave–

flow interaction can provide a way of presenting the

role of boundary condition in the dynamics.

When the specific humidity (qv) is introduced, the

wave–flow interaction theory may be extended to the

moist atmosphere. In this situation, the state equa-

tion (6) should be replaced by p = ρRT (1 + 0.61qv),

and the equivalent potential temperature and moist

potential vorticity should be used instead of potential

temperature and potential vorticity.

Built up in non-hydrostatic and ageostrophic dy-

namic framework, the wave–flow interaction theory

is applicable to diagnose the interaction between the

meso-scale convective system in front, which often in-

duces heavy rainfall, and the background flow. Al-

though the zonal symmetry is employed in the deriva-

tion, the two-dimensional theory is still accurate with

a small error when the variations in the along-front

direction are small compared to the variations across

the front in the middle latitudes and the meridional

regional range is not too large. In addition, it seems

that there is no obstruction to generalize the present

result to β-plane approximation from f -plane approx-

imation.
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