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Abstract — In recent years there have been a number of proposals to utilize the specificity
of DNA-based interactions for potential applications in nanoscience. One interesting direction
is the self-assembly of micro- and nanoparticle clusters using DNA scaffolds. In this letter we
consider a DNA scaffold method to self-assemble clusters of “colored” particles. Stable clusters of
identical microspheres have recently been produced by an entirely different method. Our DNA-
based approach self-assembles clusters with additional degrees of freedom associated with particle
permutation. We demonstrate that in the non-equilibrium regime of irreversible binding the self-
assembly process is experimentally feasible. These color degrees of freedom may allow for more
diverse intercluster interactions essential for hierarchical self-assembly of larger structures.
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DNA has attracted significant attention for its potential
applications in nanoscience [1-10]. One recent non-DNA-
based advance is the self-assembly of stable clusters
composed of identical microspheres [11]. In this letter
we consider the self-assembly of micro- and nanoparticle
clusters similar to those of [11], where DNA scaffolds
govern the self-assembly process. The plan for the letter
is the following. We first introduce the basic strategy of
our self-assembly proposal. The goal is to maximize the
yield for a particular type of cluster we call the star
cluster. We analytically calculate the yield of the star
cluster in the regime of irreversible binding. The analytical
results are compared to the numerical results for the full
aggregation equations. From an experimental perspective,
the most important result is the determination of an
optimal concentration ratio for experiments (see eq. (8)).
To conclude we discuss the experimental feasibility of the
self-assembly proposal.

The basic idea behind the procedure is as follows (see
fig. 1). Particles are functionalized with single-stranded
DNA (ssDNA) markers which determine the particle color.
There may be many DNA attached to each particle, but
on any given particle the marker sequence is identical.
One then introduces DNA scaffolds to the system. The
scaffold is a structure with f ssDNA markers, each marker
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DNA scaffold Colored particle

Fig. 1: (Colour on-line) DNA scaffolding. A graphical depiction
of the scheme for self-assembling star clusters using DNA
scaffolds. In the diagram (not drawn to scale) the scaffold
funcionality f =4.

complementary to one of the particle colors. Hybridization
of the ssDNA markers on the particles to those on
the scaffold results in the formation of colored particle
clusters. Because there are many DNA attached to each
particle, clusters can form which contain more than one
scaffold. The essential goal of the procedure is to maximize

20010-p1



N. A. Licata and A. V. Tkachenko

the concentration of a particular type of cluster which we
denote the star cluster. The star cluster contains one and
only one scaffold to which f particles are attached, each
particle having a distinct color.

We should note that the role of the scaffold could also
be played by a patchy particle [12-14]. For example, these
patches are regions on the particle surface where one can
graft ssDNA markers. In this case there may be several
DNA connections between a patch and colored particle.
Our conclusions will still be valid, provided the patch
size is chosen so that a patch interacts with at most one
particle.

Previously we performed an equilibrium calculation to
determine the yield of the star cluster [15]. The results
of that study indicated that the concentration of scaf-
folds must be kept very small to prevent the aggregation
of larger clusters. From an experimental perspective this
result is somewhat disappointing, since the overall yield of
the star cluster is proportional to the scaffold concentra-
tion. The situation is considerably improved in the regime
of irreversible binding of particles to scaffolds. In what
follows we present a calculation for the yield of the star
cluster far from equilibrium.

The remainder of the paper is divided into two major
sections. In the first part, we introduce a set of simplifying
assumptions which permit an analytical calculation of
the star cluster yield. The major assumption is that
the aggregation process between scaffolds and particles
is diffusion limited. Motivated by the disparity in size
between the particles and scaffolds, we discuss how the
aggregation is effectively a two stage process. In the
second section we remove these simplifying assumptions.
In general the rate constants will depend on both the
clusters’ diffusion coefficients, as well as the finite chemical
rates for cluster-cluster aggregation. The cost associated
with making these changes is that we must resort to
a numerical solution of the aggregation equations. The
results of the analytical calculation can then be checked
against the numerical results.

To understand the basic physics behind the aggregation
process we consider the mobility mismatch between the
particles and the scaffolds. In solution, a particle with
radius R~ 1pum has a diffusion coefficient given by the
Stokes-Einstein relation D =kpT/6mnR. On the other
hand, the size of the scaffold a~10nm. As a result
the scaffolds diffuse R/a~100 times faster than the
particles. To first approximation the resulting aggregation
is a two-stage process. In the first stage the particles
recruit different numbers of scaffolds via the fast scaffold
diffusion and subsequent DNA hybridization. Since we
consider the regime of strong binding where these bonds
are irreversible, the result is a Poisson distribution over
the concentration of particles with m scaffolds attached.
Let C; denote the concentration of particles with color i,
and ¢ denote the total concentration of scaffolds. The total
particle concentration Cyor = E{Zl C;. The concentration

Ci(m) of particles of color ¢ with m scaffolds attached is

m p" exp(—p
cim - ¢ 2 eelp) 1)
C
P=G (2)

In the second stage there are no free scaffolds left in
solution, and these particles decorated with scaffolds
aggregate to form the final clusters. The seed to build
a star cluster is a particle of any color with exactly one
scaffold attached. This seed must aggregate with f—1
particles of different colors, each of which has no scaffolds.
We now calculate the concentration of the star cluster C,.
The yield of the desired star cluster is quantified in terms
of the star mass fraction M, = (fC.)/Cior-

/ C(»O)
—— =zexp(—2x).

M, = J
Cj

/ (1)
Ctot Z Ci

1=1

3)
j=1
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Here z = fp is the scaffold functionality f multiplied
by the concentration ratio p. By choosing p=1/f the
mass fraction attains a maximum of exp(—1) ~0.37! This
result indicates that by selecting the appropriate scaffold
concentration, in the non-equilibrium regime up to 37%
of the particles will aggregate to form star clusters. This
is a significant improvement over the situation in the
equilibrium regime.

This treatment of the problem captures the physics of
star cluster formation, but it does not account for the
loss of star clusters due to aggregation. In particular,
as long as there are scaffolds with markers available
for hybridization, when these scaffolds encounter a star
cluster they can aggregate to form a larger cluster.
We now estimate how this aggregation effects the final
concentration of star clusters.

Consider the beginning of the second stage in our aggre-
gation process. There are no longer any free scaffolds in
solution, but a scaffold can have up to f —1 DNA markers
still available for hybridization. We would like to deter-
mine how the star cluster mass fraction M, (y) changes
as a function of the fraction of saturated scaffolds y.
Here a saturated scaffold has particles hybridized to all
f of its DNA markers, and is therefore unreactive. If s is
the expectation that a slot on the scaffold is filled, then
the fraction of saturated scaffolds is y = s/~1. The aver-
age number of open slots on a scaffold is (f —1)(1—s).
Consider filling an open slot on the scaffold. The proba-
bility that the particle which filled the slot was part of a
star cluster is M, (y). The average rate r(y) at which star
clusters are lost to aggregation is then

d

M (y)— [(f = DA = )] = M. (y)y

i) = M. ()5 (4)
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Here the exponent a=(f—2)/(f—1). We can then
construct a differential equation for M, taking into
account this loss due to aggregation.

aM,  dm!”
dy — dy

—zr(y). (5)
In the absence of this loss term the result of the calculation
should recover our previous result eq. (3). This zeroth-
order approximation is just Mio)(y) = zy exp(—xy) which
gives the correct star cluster concentration once all of the
scaffolds are saturated (y=1). To simplify the analysis
a bit we take a=1 which is an excellent approximation
in the limit of large scaffold functionality f. This is an
inhomogeneous first-order differential equation which can
be solved by introducing an integrating factor u(y) = y*.
The initial condition which must be satisfied is M, (0) = 0.
We are interested in the final star mass fraction M, which
is M.(y=1). The result is

2 (—x)k 1 x
M, = .
> B |z+k+1 z4+k+2

k
= zexp(—2)+2?E_,(x) — 2" "T(1+2). (6)
Here T'(z) is the gamma function and FE,(z)=
[ 7Y exp(—at)dt is the exponential integral of order v.

We can perform a similar type of analysis in the case
when there is only one particle color. In this case the f
ssDNA markers on the scaffold all have identical sequences
complementary to this color. It turns out that the result
for the mass fraction is the same. Because the mass
fraction is the same in both cases, we can gain insight into
the behavior of the system with many colors by analyzing
the much simpler one-color system.

With the analytic solution at hand, we now turn to
the second part of the paper. To study the aggregation
process in further detail, we numerically solved a system
of differential equations which models the irreversible
aggregation between particles (one color) and scaffolds.

dCr; 1

% 2 Z Kiji’j’CijCi’j’_CIJZKijIJCij~ (7)
i+i'=I 2%}
i+i'=J

This equation is the Smoluchowski coagulation

equation [16] adapted to our system. C;; is the concen-
tration of the cluster with ¢ scaffolds and j particles.
K;jij is the rate constant for the irreversible reaction
Cij +Cyjr — Ciryjyj. There are two contributions
to the rate constant [17,18]. The first is the Smolu-
chowski rate Kgpmoi =4m(Rij + Rirjr)(Dij + Dyrjr). Here
the hydrodynamic radius for the cluster R;; ~ 413 and
D;; = kpT/6mnR;; is the diffusion constant for the clus-
ter. The second contribution is the finite chemical rate
for cluster formation. In analogy to the Flory-Stockmayer
model for gelation in branched polymers [19,20], by count-
ing the number of ways to connect the two clusters, we

0.2 T T T T T
0.18f
0.16
0.14fF

0.12f

0.08f |

0.06f f

*
8

o
o
[=)
S

p

Fig. 2: (Colour on-line) Star cluster mass fraction. The mass
fraction M, as a function of p for scaffolds with functionality
f =3 (red circles), 4 (blue asteriks), 5 (green triangles), and 6
(black diamonds). The results determined numerically from the
full solution of the Smoluchowski coagulation equation (mark-
ers) can be compared to results of the anlaytical calculation
(lines) eq. (6). In the plot the parameter ko is chosen so that
in the f =3 system (Ksmot) = (Kchem)-

have Kchem :kO[(l + (f - ]-)Z _.7).7/ + (1 + (f - 1)7’l _.7/).7]
Together these two rates determine the overall aggrega-
tion rate by Kijli/j/ = K;noz + Kcim. To simply matters
we only consider tree like structures, i.e. we do not
consider the formation of clusters with internal loops.
We have truncated the set of equations by considering
clusters with a maximum of 10 scaffolds.

By solving these equations we can determine the concen-
tration of stars C, = Cis in this notation and test the
validity of our two stage ansatz. As indicated in fig. 2,
the results of our analytical calculation are in good agree-
ment with the results of the full numerical calculation,
even upon introduction of a finite chemical rate compara-
ble to the Smoluchowski rate. Several points are in order.

The optimal concentration ratio p for experiments is
easily determined from dé\i = = (). The result is z,,4, ~ 0.47.
For scaffolds of functionality f the concentration ratio

should be chosen as

047

p I

Note that the maximum attainable star cluster yield
M, (Zmaz) =20% does not decrease with increasing f.
Solving the aggregation equations becomes computation-
ally expensive, but it can still be done by reducing the
maximum number of scaffolds in a cluster. For exam-
ple, considering clusters with up to 5 scaffolds for f =10
gives M, (Zmaz)~0.2. These results are important from
the perspective of experimental feasibility for the self-
assembly method. This is to be contrasted with the earlier
equilibrium treatment. There the condition to suppress
the aggregation of larger clusters imposed a fairly strict

(8)

F-1
constraint [15] on the concentration ratio p < f1/2 (%) .

From the perspective of self-assembling stars with large
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f this renders the regime of irreversible binding far more
appealing than the equilibrium regime.

If an experiment is performed with the optimal concen-
tration ratio, the clusters which self-assemble are easily
separated by density gradient centrifugation [21]. In this
regime most of the particles are monomers, in star clus-
ters, or in saturated two scaffold clusters. These clus-
ters contain, 1, f, and 2f—1 particles, respectively.
The disparity in hydrodynamic radius and sedimentation
velocity of these clusters makes the separation procedure
experimentally feasible.

In this letter we considered a DNA scaffold method
for self-assembling star clusters of f colored particles.
By taking advantage of the mobility mismatch between
particles and scaffolds, we were able to formulate a
non-equilibrium calculation of the star mass fraction. The
results of the calculation were compared to the numerical
results of the full Smoluchowski coagulation equation for
the system. Good agreement is established between the
analytical calculation and the numerics. In the regime of
irreversible binding the yield of the desired star cluster is
drastically improved in comparison to earlier equilibrium
estimates. In non-equilibrium we find an experimentally
feasible regime for the self-assembly of star clusters
with a maximum mass fraction ~20%. We determined
the optimal concentration ratio for an experimental
implementation of our proposal. The additional color
degrees of freedom associated with particle permutation
in these clusters makes them ideal candidates as building
blocks in a future hierarchical self-assembly scheme. In
addition, these clusters can serve as the starting point to
self-assemble structures of arbitrary geometry [22]. The
experimental realization of self-assembling star clusters
using DNA scaffolds would constitute an important step
towards realizing the full potential of DNA mediated
interactions in nanoscience.
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