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Abstract. Mixing refers to the homogenization of concentrations of passive
scalars in fluids. On small scales it is dominated by diffusion and on large
scales it is assisted by stirring. In the presence of scalar sources and sinks the
concentration field remains inhomogeneous, but the combined effect of stirring
and dissipation may lead to a statistically stationary state. One measure of
the quality of mixing is then the standard deviation of the scalar concentration
from the mean, and the effectiveness of a stirring velocity field can be gauged
by comparing the concentration fluctuations in the presence of stirring to those
in its absence. It was recently noted that the maximum possible effectiveness
of any stirring depends on the detailed structure of the sources and sinks. We
present results from particle-based simulations that confirm this strong source–
sink dependence of the mixing enhancement by stirring.
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1. Introduction

Mixing by fluid flows is a ubiquitous natural phenomenon that plays a central role in many
of the applied sciences and engineering. A geophysical example is the mixing of aerosols
(e.g., CO2 supplied by a volcano, say, or by human activity) in the atmosphere. Aerosols
are dispersed by molecular diffusion on the smallest scales but are more effectively spread
globally by atmospheric flows. The density—and density fluctuations—of some aerosols
influence the albedo of the Earth and thus have a significant environmental impact.
Hence it is important to understand fundamental properties of dispersion, mixing, and
the reduction of concentration fluctuations produced by stirring flow fields.

Various aspects of mixing have been the focus of many review articles [1]–[8]. At the
most basic level, the mixing of a passive scalar can be modeled by an advection–diffusion
equation for the scalar concentration field with a specified stirring flow field. In this work
we will focus on problems where fluctuations in the scalar field are generated and sustained
by temporally steady but spatially inhomogeneous sources. The question of interest here
is this: for a given source distribution, how well can a specified stirring flow mix the scalar
field?

Mixing effectiveness can be measured by the scalar variance over the domain. A
well-mixed scalar field will have a more uniform density with relatively ‘small’ variance
while increased fluctuations in the scalar density will be reflected in a ‘large’ variance. We
put quotes around the quantifiers small and large because the variance is a dimensional
quantity that needs an appropriate dimensional point of reference from which it is being
measured.

Several years ago Thiffeault et al [9] introduced a notion of ‘mixing enhancement’ for
a velocity field stirring a steadily sustained scalar by comparing the bulk (space–time)
averaged density variance with and without advecting flow. Mixing is accomplished by
molecular diffusion alone in the absence of stirring, which can be quite effective on small
scales but is not generally so good at breaking up and dispersing large scale fluctuations
quickly. Stirring can greatly enhance the transport of the scalar from regions of excess
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density to depleted regions, suppressing the variance far below its diffusion-only value.
The magnitude of this variance suppression by the stirring—the ratio of the variance
without stirring to the variance in the presence of stirring—is a dimensionless quantity
that provides a sensible gauge of the mixing effectiveness of the flow. Different advection
fields will have different mixing efficiency stirring scalars supplied by different sources. It
is then of obvious interest both to determine theoretical limits on mixing enhancements for
various source configurations and to explore whether those limits may be approached—or
even perhaps achieved—for particular flows.

There have been many studies of stirring and mixing of a scalar with fluctuations
sustained by spatially inhomogeneous sources and sinks. Some of the earliest are by
Townsend [10, 11], who was concerned with the effect of turbulence and molecular diffusion
on a heated filament. He found that the spatial localization of the source enhanced the role
of molecular diffusivity. Durbin [12] and Drummond [13] introduced stochastic particle
models to turbulence modeling, and these allowed more detailed studies of the effect of
the source on diffusion. Sawford and Hunt [14] pointed out that small sources lead to a
dependence of the variance on molecular diffusivity. These models were further refined
by [5, 15, 16]. Chertkov et al [17]–[21] and Balkovsky and Fouxon [22] addressed the case
of a random, statistically steady source.

In this paper we study the enhancement of mixing by an advection field using
a particle-based computational scheme that is easy to implement and applicable to a
variety of source distributions. The idea is to develop a method that accurately simulates
advection and diffusion of large numbers of particles supplied by a steady source, and to
measure density fluctuations by ‘binning’ the particles to produce an approximation of
the hydrodynamic concentration field. Unlike a numerical PDE code, a particle code does
not favor specific forms of the flow or the source (PDE methods generally work best with
very smooth fields). There is, however, no free lunch: the accuracy of the particle code is
ultimately limited by the finite number of particles that can be tracked. The limitation
to finite numbers of particles inevitably introduces statistical errors due to discrete
fluctuations in the local density and systematic errors in the variance measurements due
to binning. But these problems are tractable, and as we will show, the method proves to
be quantitatively accurate and computationally efficient for some applications.

2. Theoretical background

In this section we review basic facts about the mixing enhancement problem as formulated
by Thiffeault, Doering and Gibbon et al [9] and developed by Plasting and Young [23],
Doering and Thiffeault [24], Shaw et al [25], and Thiffeault and Pavliotis [26]. The
dynamics is given by the advection–diffusion equation for the concentration of a passive
scalar ρ(t, x) with time-independent but spatially inhomogeneous source field S(x):

∂ρ

∂t
+ u · ∇ρ = κΔρ + S(x), (1)

where κ is the molecular diffusivity and u(t, x) is a specified advection field that satisfies
(at each instant of time) the incompressibility condition

∇ · u = 0. (2)
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For simplicity, the domain is the d-torus, i.e., [0, L]d with periodic boundary conditions.
We limit attention to stirring fields that satisfy the properties of statistical homogeneity
and isotropy in space defined by

ui(·, x) = 0, ui(·, x)uj(·, x) =
U2

d
δij , (3)

where the overbar denotes time averaging and U is the root mean square speed of the
velocity field, a natural indicator of the intensity of the stirring. These are statistical
properties of homogeneous isotropic turbulence on the torus, but they are also shared by
many other kinds of flows.

We are interested in fluctuations in the concentration ρ so the spatially averaged
background density is irrelevant. It is easy to see from (1) that the spatial average of ρ
grows linearly with time at the rate given by the spatial average of S. Hence we change
variables to spatially mean-zero quantities

θ(t, x) = ρ(t, x) − 1

Ld

∫
ddx′ ρ(t, x′) (4)

and

s(x) = S(x) − 1

Ld

∫
ddx′ S(x′) (5)

that satisfy

∂θ

∂t
+ u · ∇θ = κΔθ + s(x). (6)

(We must also supply initial conditions for ρ and/or θ but they play no role in the long
time steady statistics that we are interested in.)

The ‘mixedness’ of the scalar may be characterized by, among other quantities, the
long time averaged variance of ρ, proportional to the long time averaged L2 norm of θ,

〈θ2〉 := lim
T→∞

1

T

∫ T

0

dt
1

Ld

∫
ddx θ2(t, x). (7)

The smaller 〈θ2〉 is, the more uniform the distribution. The ‘mixing enhancement’ of a
stirring field is naturally measured by comparing the scalar variance to the variance with
the same source but in the absence of stirring. To be precise, we compare 〈θ2〉 to 〈θ 2

0 〉
where θ0 is the solution to

∂θ0

∂t
= κΔθ0 + s(x) (8)

(with, say, the same initial data although these will not affect the long time averaged
fluctuations). The dimensionless mixing enhancement factor is then defined as

E0 :=

√
〈θ 2

0 〉
〈θ2〉 . (9)

This quantity carries the subscript 0 because we can also define multiscale mixing
enhancements [24, 25] by weighting large/small wavenumber components of the

doi:10.1088/1742-5468/2008/07/P07018 4

http://dx.doi.org/10.1088/1742-5468/2008/07/P07018


J.S
tat.M

ech.
(2008)

P
07018

Mixing effectiveness depends on the source–sink structure

scalar fluctuations:

Ep :=

√
〈|∇pθ0|2〉
〈|∇pθ|2〉 , p = −1, 0, 1. (10)

As discussed in Doering and Thiffeault [24], Shaw et al [25] and Shaw [27], E±1 provide
a gauge of the mixing enhancement of the flow as measured by scalar fluctuations on
relatively small and large length scales, respectively. We refer to them as enhancement
factors because if one were to define an effective, eddy, or equivalent diffusivity κe,p as the
value of a molecular diffusion coefficient necessary to produce the same value of 〈|∇pθ|2〉
with stirring, then we would have κe,p = κEp. In this paper, however, we will focus
exclusively on E0, the mixing enhancement at ‘moderate’ length scales.

There is a theoretical upper bound on E0 valid for any statistically stationary
homogeneous and isotropic stirring field [24, 25, 27]:

E0 ≤
√ ∑

k�=0 |ŝ(k)|2/k4∑
k�=0 |ŝ(k)|2/(k4 + Pe2/L2dk2)

, (11)

where ŝ(k) are the Fourier coefficients of the source and the Péclet number,

Pe := UL/κ, (12)

is a dimensionless measure of the intensity of the stirring. Generally, we anticipate that E0

is an increasing function of Pe and the estimate in (11) guarantees that E0(Pe) � Pe as
Pe → ∞, the ‘classical’ scaling necessary if there is to be any residual variance suppression
in the singular vanishing diffusion limit. That is, if E0(Pe) ∼ Pe then κe,0 has a non-zero
limit as κ → 0 with all other parameters held fixed. It is natural to refer to any of the
possible subclassical scalings as ‘anomalous’.

The upper limit to the mixing enhancement in (11) depends on the stirring field only
through U via Pe, but it depends on all the details of the source distribution. As studied
in depth in [24, 25, 27], the structure of the scalar source can have a profound effect on the
high Pe scaling of E0, notably for sources with small scales. It is physically meaningful
to consider measure-valued source–sink distributions, like delta functions, with arbitrarily
small scales. It is precisely this source size dependence of E0(Pe) that motivates the
development of a computational method that can handle singular source distributions.

In this study, for computational simplicity and efficiency, we utilize the ‘random sine
flow’ as the stirring field. In the two-dimensional case this is defined for all time by

u(t, x) =

{
w sin (2πy/L + φ) ı̂, nT < t ≤ nT + 1

2
T ;

w sin (2πx/L + φ′) ĵ, nT + 1
2
T < t ≤ (n + 1)T ,

(13)

where T is the period, n = 0, 1, 2, . . ., and φ and φ′ are random phases chosen
independently and uniformly on [0, 2π) in each half-cycle, which assures the homogeneity
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of the flow field. In this case, w =
√

2U . In the three-dimensional case, we employ

u(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

w [sin α sin (2πy/L + φ2) + cos α sin (2πz/L + φ3)] ı̂,

nT < t ≤ nT + 1
3
T ;

w [sin α sin (2πz/L + ψ3) + cos α sin (2πx/L + φ1)] ĵ,

nT + 1
3
T < t ≤ nT + 2

3
T ;

w [sin α sin (2πx/L + ψ1) + cos α sin (2πy/L + ψ2)] k̂,

nT + 2
3
T < t ≤ (n + 1)T,

where again w =
√

2U , n = 0, 1, 2, . . ., and α, φ1,2,3 and ψ1,2,3 are uniform random numbers
in [0, 2π) chosen independently every T/3. The angle α randomizes the shear direction to
guarantee statistical isotropy of the flow.

3. Numerical method

In a particle code for solving the advection–diffusion equation, the concentration field
ρ is represented by a distribution of particles. Particles are introduced by generating
random locations using the properly normalized source S(x) as a probability distribution
function, then they are transported by advection and diffusion. The particle density,
ρ(t, x), is measured by covering the domain with bins counting the number of particles
per bin.

A discrete particle method is employed because it can easily deal with small scale
sources such as δ functions. It is also straightforward to implement with any advection
field. The downside of a particle method is that it necessarily involves two kinds of errors:
the number density of particles calculated by dividing the domain into bins is only resolved
down to the size of the bins, and the measurement of ρ always includes statistical errors
due to the use of finite numbers of particles.

3.1. Time evolution

At each time step the system is evolved by advection, diffusion, the source, and sinks.
An advection-only equation would be solved by moving particles along characteristics,
and a diffusion-only equation would be solved by adding independent Gaussian noises to
each coordinate of each particle. With both advection and diffusion we need to solve
a stochastic differential equation to determine the proper displacement of the particles
during a time step. The stochastic differential equation is

dX = u(t, X) dt +
√

2κdW , (14)

where W (t) is a standard vector-valued Wiener process.
In order to solve (14), we will consider cases where the displacement due to the

noise in a subinterval of length T/d (where d is the dimension) is much smaller than
the wavelength of the random sine flow. This condition is realized better and better
as Pe increases. Then, during each subinterval, the drift field u(t, X) experienced by
each particle can be approximated by a steady flow with a linear shear. In 2D, for the
first half of the period for a particle starting at (x0, y0) = (X(t = 0), Y (t = 0)) we
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approximate (14) by

dX = w sin(2πy0/L + φ) dt + w cos(2πy0/L + φ)
2π

L
(Y − y0) dt +

√
2κ dW1,

dY =
√

2κ dW2,
(15)

and for the second half of the period, starting from (x′
0, y

′
0) = (X(t = T/2), Y (t = T/2)),

dX =
√

2κdW1,

dY = w sin (2πx′
0/L + φ′) dt + w cos(2πx′

0/L + φ′)
2π

L
(X − x′

0) dt +
√

2κ dW2.
(16)

Therefore, during the first half-period we evolve the position of a particle through a time
interval Δt (where Δt ≤ T/2 need not be small) by the map

x0 → x0 + w sin(2πy0/L + φ)Δt + R1,

y0 → y0 + R2,
(17)

where R1 and R2 satisfy

dR1 = S2R2 dt +
√

2κdW1 (S2 := 2πwL−1 cos(2πy0/L + φ)),

dR2 =
√

2κ dW2.
(18)

The variance–covariance matrix of R1 and R2 is
(

E(R 2
1 ) E(R1R2)

E(R2R1) E(R 2
2 )

)
=

(
2
3
S 2

2 κt3 + 2κt S2κt2

S2κt2 2κt

)
, (19)

which is realized by

R1 =
√

1
6
S 2

2 κt3 + 2κt × N1 +
√

1
2
S 2

2 κt3 × N2, (20)

R2 =
√

2κt × N2, (21)

where N1 and N2 are independent N(0, 1) random variables (normally distributed with
mean 0 and standard deviation 1). The matrix (19) describes the evolution of a passive
scalar field in a shear flow [28]–[30].

Therefore the time evolution map during the first half-period is

x0 → x0 + w sin (2πy0/L + φ) Δt +
√

1
6
S 2

2 κ(Δt)3 + 2κΔt N1 +
√

1
2
S 2

2 κ(Δt)3 N2, (22a)

y0 → y0 +
√

2κΔt N2. (22b)

A similar map is employed during the second half of the period. These stochastic maps
include the shear—in the approximation that the shear remains constant for each particle
during each half-cycle—that causes a ‘distortion’ of a Gaussian cloud of particles; see
figure 1.
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Figure 1. (a) A circular Gaussian distribution of particles transported and
sheared into (b) an elliptical Gaussian cloud.

The same calculations apply for the three-dimensional case: for the first subinterval,
the time evolution map is

x0 → x0 + w[sin α sin(2πy0/L + φ2) + cos α sin(2πz0/L + φ3)]

+
√

1
6
(S 2

2 + S 2
3 )κ(Δt)3 + 2κΔt N1

+ S2

√
1
2
κ(Δt)3/2 N2 + S3

√
1
2
κ(Δt)3/2 N3, (23a)

y0 → y0 +
√

2κΔt N2, (23b)

z0 → z0 +
√

2κΔt N3, (23c)

where S2 = 2πwL−1 sin α cos(2πy0/L + φ2), S3 = 2πwL−1 cos α cos(2πz0/L + φ3), and
N1, N2 and N3 are independent N(0, 1) random variables. The maps for the other
subintervals can be obtained by cyclic permutation of the coordinates.

The steady scalar source is realized by introducing new particles one by one using
normalized S(x) as a probability distribution function. Numerically, such a probability
distribution function can be realized by mapping uniform random numbers over [0, 1] with
the inverse of the cumulative probability distribution function in question.

New particles are added constantly so the total number of particles continues to
increase, which slows down the computation. To cope with increasing numbers of particles,
we implement a particle subtraction scheme. Particles eventually get well mixed and
‘older’ particles do not contribute to the value of the hydrodynamic variance. There
is no added value in keeping track of particles that have been in the mix for a very
long time, and we can simply remove them from the system after a sufficiently long
time. It is very important to keep track of the ‘age’ of each particle, however, and to
only remove sufficiently old well-mixed particles. (For example, if a random fraction of
particles are removed at regular time intervals, then the simulation becomes one of a
system of particles with a random finite lifetime, described by an advection–diffusion
equation with an additional density decay term.)

In order to determine how old particles must be in order to safely remove them without
affecting the hydrodynamic variance, prior to a full simulation run a test is performed as
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follows. Starting from an initial set of Ni particles located in space according to the source
distribution, the flow and diffusion are allowed to act and the variance of the number of
particles per bin, which decays with time, is monitored. The number Ni is of the order of
the number of particles that are introduced in the full simulation during, say, an interval
of length T characteristic of the random sine flow. The variance does not decay all the
way to zero, however, but rather to the variance expected when Ni particles are randomly
distributed among the bins. The time when the variance achieves this random-distribution
variance, measured beforehand for a given flow and diffusion strength, is then the required
‘ageing’ time before particles can be safely removed in the full simulation with the steady
source. Such a trial run is performed for each flow, diffusion strength, source distribution
and particle number because this ‘mixing time’ depends on all these factors. Further
details of the criteria for removing old particles and extensive tests and benchmark trials
may be found in [31].

3.2. Variance calculation and background noise

The variance 〈θ2〉 is measured by monitoring the fluctuations in the number of particles
per bin, and time averaging. In d dimensions the domain is divided into ld bins and the
code calculates 〈n2〉, where n is the number of particles in a bin. Then 〈θ2〉 is initially
approximated by

〈n2〉 − 〈n〉2 = (L/l)2d 〈θ2〉. (24)

We say ‘initially’ because the expression above includes both the hydrodynamic
fluctuations of interest and discreteness fluctuations resulting solely from the fact that
each bin contains a finite number of particles.

The subtraction scheme eliminates the ‘well-mixed’ particles that do not contribute
to the value of the hydrodynamic variance. But even if the system were completely mixed
so that theoretically, 〈θ2〉 = 0, the measured variance 〈n2〉 − 〈n〉2 would be (very close
to, for small bins) 〈n〉, which is on the order of N/ld, where N is the total number of
particles in the domain. This follows from the fact that θ(t, x) is represented in this
particle method by only a finite number of particles in each finite-size bin. That is, 〈θ2〉
as defined by (24) is non-zero even when the particles are uniformly distributed: then
the bulk variance includes fluctuations as if N particles were randomly thrown in ld bins.
The helpful fact is that the bulk variance contribution from these background fluctuations
due to finite numbers of particles in the bins does not depend on (i.e., is uncorrelated
with) the hydrodynamic density variation from bin to bin. The total contribution to
the variance is the sum of the ‘extra’ variances in each of the bins which is linear in
the (mean) number of particles in each bin. Hence the sum of the variances is ∼N and
the bulk variance contribution from the background fluctuations, Nld/L2d, can simply be
subtracted from the initial estimate for 〈θ2〉 in (24). The net result is our measured value
of the hydrodynamic variance.

In addition to the inevitable fluctuations due to discreteness, density variations are
observed only down to the length scales ∼L/l because of the binning density, which is
another source of error in this procedure. We use l ≥ 100, which tests and benchmark
studies indicate is sufficient for the examples studied here [31].

The variance is calculated once for each subinterval, and the instant when it is
calculated is determined randomly in order to obtain an unbiased time average. Thus
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Figure 2. Square-shaped source of two different sizes; particles shown sampled
from the uniform source distribution over the squares.

each subinterval is divided into two parts, before and after variance calculation, and the
particle transport and source processes are appropriately adapted. The final measured
quantities are long time averages that are observed to have converged to within the error
indicated on the plots below.

4. Results

In order to investigate the effect of source–sink scales on maximal and actual mixing
enhancements, we performed a series of calculations and simulations for square-shaped
sources of various sizes a < L as illustrated in figure 2.

Figure 3 shows the upper bounds on E0 for square sources and a δ-function source
in 2D computed from (11). The upper bound for any finite-size source is asymptotically
∼Pe, but for the δ-function source it is ∼Pe/ lnPe in the large Pe limit. In 3D, the
distinction between cubic sources and a δ-function source is more apparent as shown in
figure 3(b): the upper bound for a δ-function source behaves ∼

√
Pe in 3D. We stress that

these mixing enhancement bounds apply for any statistically homogeneous and isotropic
flows stirring sources with these shapes.

Simulation results for the random sine flow shown in figure 4(a) for 2D and figure 4(b)
for 3D qualitatively confirm the behavior of the enhancements suggested by the upper
limits. As the source size shrinks, the measured mixing enhancement gets smaller in a way
that is remarkably similar to the bounds. In these simulations Pe is varied by decreasing
κ at a fixed values of L, U and T . Other values of T and other (shorter) wavelengths of
the stirring flow were also checked, producing similar plots. These 2D simulation results
have recently been confirmed quantitatively by a PDE computation [32].

The simulations also show that the upper estimates can give the correct quantitative
behavior of E0 as a function of Pe. Indeed, in figure 5 we plot the upper bound on E0 for
the δ-function source in 3D and the measured enhancement from the simulations. The
upper bound, which scales anomalously, ∼

√
Pe, is an excellent predictor of the data.
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Figure 3. The theoretical upper bounds for (a) square sources with sizes
a = L/2, L/10, L/50, and a δ-function source; (b) cubic sources with sizes
a = L/5, L/50, L/500, and a δ-function source (from top to bottom).

Figure 4. Measured mixing enhancements for (a) square sources with sizes
a = L/2, L/10, L/50 and a δ-function source, (b) cubic sources with sizes
a = L/5, L/50, L/500 and a δ-function source (from top to bottom).

From this we conclude that the random sine flow is an ‘almost-optimal’ mixer (among
statistically homogeneous and isotropic flows) for this source–sink distribution.

5. Summary and conclusions

We have devised an accurate and computationally efficient particle method for studying
hydrodynamic variance suppression by a mixing flow. Rigorous upper bounds for the
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Figure 5. Mixing enhancement for a δ-function source in 3D. The solid line is
the upper bound for any SHI flow and the data are mixing enhancements for the
random sine flow measured in the discrete particle simulations.

mixing enhancement E0, i.e., the effective diffusion enhancement factor, were compared to
measured enhancements for the simple random sine flow. A key prediction of the analysis
in [24, 25] is that the source–sink shape is a determining factor in the mixing enhancement
of any flow. The simulation results reported here show that the upper estimates give the
correct qualitative picture as regards the Pe and source-shape dependence of E0.

Future work should focus on investigating enhancements of other stirring flows. No
attempt has been made here to find a more efficient stirring flow (or, indeed, the most
efficient flow, if there is one) whose enhancement approaches more closely (or perhaps even
saturates) the upper bound. It is remarkable that the simple random sine flow appears

to saturate the upper bound scaling E0 ∼
√

Pe in 3D.
Stirring with appropriate turbulent solutions to the Navier–Stokes equation is also of

significant interest. The central question here is, is statistically homogeneous and isotropic
turbulence generically an efficient mixer? The answer may depend on the source–sink
distribution.
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