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Abstract. Motivated by the possible existence of other universes, with possible
variations in the laws of physics, this paper explores the parameter space of
fundamental constants that allows for the existence of stars. To make this
problem tractable, we develop a semi-analytical stellar structure model that
allows for physical understanding of these stars with unconventional parameters,
as well as a means to survey the relevant parameter space. In this work, the most
important quantities that determine stellar properties—and are allowed to vary—
are the gravitational constant G, the fine structure constant α and a composite
parameter C that determines nuclear reaction rates. Working within this model,
we delineate the portion of parameter space that allows for the existence of
stars. Our main finding is that a sizable fraction of the parameter space (roughly
one-fourth) provides the values necessary for stellar objects to operate through
sustained nuclear fusion. As a result, the set of parameters necessary to support
stars are not particularly rare. In addition, we briefly consider the possibility
that unconventional stars (e.g. black holes, dark matter stars) play the role filled
by stars in our universe and constrain the allowed parameter space.
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1. Introduction

The current picture of inflationary cosmology allows for, and even predicts, the existence
of an infinite number of space–time regions sometimes called pocket universes [1]–[3]. In
many scenarios, these separate universes could potentially have different versions of the
laws of physics, e.g. different values for the fundamental constants of nature. Motivated
by this possibility, this paper considers the question of whether or not these hypothetical
universes can support stars, i.e. long-lived hydrostatically supported stellar bodies that
generate energy through (generalized) nuclear processes. Toward this end, this paper
develops a simplified stellar model that allows for an exploration of stellar structure with
different values of the fundamental parameters that determine stellar properties. We then
use this model to delineate the parameter space that allows for the existence of stars.

A great deal of previous work has considered the possibility of different values of the
fundamental constants in alternate universes or, in a related context, why the values of
the constants have their observed values in our universe (e.g. [4, 5]). More recent papers
have identified a large number of possible constants that could, in principle, vary from
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universe to universe. Different authors generally consider differing numbers of constants,
however, with representative cases including 31 parameters [6] and 20 parameters [7].
These papers generally adopt a global approach (see also [8]–[10]), in that they consider
a wide variety of astronomical phenomena in these universes, including galaxy formation,
star formation, stellar structure and biology. This paper adopts a different approach by
focusing on the particular issue of stars and stellar structure in alternate universes; this
strategy allows for the question of the existence of stars to be considered in greater depth.

Unlike many previous efforts, this paper constrains only the particular constants of
nature that determine the characteristics of stars. Furthermore, as shown below, stellar
structure depends on relatively few constants, some of them composite, rather than on
large numbers of more fundamental parameters. More specifically, the most important
quantities that directly determine stellar structure are the gravitational constant G, the
fine structure constant α and a composite parameter C that determines nuclear reaction
rates. This latter parameter thus depends in a complicated manner on the strong and
weak nuclear forces, as well as the particle masses. We thus perform our analysis in terms
of this (α, G, C) parameter space.

The goal of this work is thus relatively modest. Given the limited parameter space
outlined above, this paper seeks to delineate the portions of it that allow for the existence
of stars. In this context, stars are defined to be self-gravitating objects that are stable,
long-lived and actively generate energy through nuclear processes. Within the scope of
this paper, however, we construct a more detailed model of stellar structure than those
used in previous studies of alternate universes. On the other hand, we want to retain a
(mostly) analytic model. Toward this end, we take the physical structure of the stars to
be polytropes. This approach allows for stellar models of reasonable accuracy; although it
requires the numerical solution of the Lane–Emden equation, the numerically determined
quantities can be written in terms of dimensionless parameters of order unity, so that one
can obtain analytic expressions that show how the stellar properties depend on the input
parameters of the problem. Given this stellar structure model, and the reduced (α, G, C)
parameter space outlined above, finding the region of parameter space that allows for the
existence of stars becomes a well-defined problem.

As is well known, and as we re-derive below, both the minimum stellar mass and the
maximum stellar mass have the same dependence on fundamental constants that carry
dimensions [11]. More specifically, both the minimum and maximum mass can be written
in terms of the fundamental stellar mass scale M0 defined according to

M0 = α
−3/2
G mP =

(
�c

G

)3/2

m−2
P ≈ 3.7 × 1033g ≈ 1.85M�, (1)

where αG is the gravitational fine structure constant:

αG =
Gm2

P

�c
≈ 6 × 10−39, (2)

where mP is the mass of the proton. As expected, the mass scale can be written as

a dimensionless quantity (α
−3/2
G ) times the proton mass; the appropriate value of the

exponent (−3/2) in this relation is derived below. The mass scale M0 determines the
allowed range of masses in any universe.

In conventional star formation, our Galaxy (and others) produces stars with masses
in the approximate range 0.08 ≤ M∗/M� ≤ 100, which corresponds to the range
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0.04 ≤ M∗/M0 ≤ 50. One of the key questions of star formation theory is to understand,
in detail, how and why galaxies produce a particular spectrum of stellar masses (the
stellar initial mass function, or IMF) over this range [12]. Given the relative rarity of
high-mass stars, the vast majority of the stellar population lies within a factor of ∼10
of the fundamental mass scale M0. For completeness we note that the star formation
process does not involve thermonuclear fusion, so that the mass scale of the hydrogen
burning limit (at 0.08M�) does not enter into the process. As a result, many objects with
somewhat smaller masses—brown dwarfs—are also produced. One of the objectives of
this paper is to understand how the range of possible stellar masses changes with differing
values of the fundamental constants of nature.

This paper is organized as follows. We construct a polytropic model for stellar
structure in section 2 and identify the relevant input parameters that determine stellar
characteristics. Working within this stellar model, we constrain the values of the stellar
input parameters in section 3; in particular, we delineate the portion of parameter space
that allows for the existence of stars. Even in universes that do not support conventional
stars, i.e. those generating energy via nuclear fusion, it remains possible for unconventional
stars to play the same role. These objects are briefly considered in section 4 and include
black holes, dark matter stars and degenerate baryonic stars that generate energy via dark
matter capture and annihilation. Finally, we conclude in section 5 with a summary of our
results and a discussion of its limitations, including an outline for possible future work.

2. Stellar structure models

In general, the construction of stellar structure models requires the specification and
solution of four coupled differential equations, i.e. force balance (hydrostatic equilibrium),
conservation of mass, heat transport and energy generation. This set of equations is
augmented by an equation of state, the form of the stellar opacity and the nuclear reaction
rates. In this section we construct a polytropic model of stellar structure. The goal is to
make the model detailed enough to capture the essential physics and simple enough to
allow (mostly) analytic results, which in turn show how different values of the fundamental
constants affect the results. Throughout this treatment, we will begin with standard
results from stellar structure theory [11, 13, 14] and generalize to allow for different stellar
input parameters.

2.1. Hydrostatic equilibrium structures

In this case, we will use a polytropic equation of state and thereby replace the force
balance and mass conservation equations with the Lane–Emden equation. The equation
of state thus takes the form

P = KρΓ where Γ = 1 +
1

n
, (3)

where the second equation defines the polytropic index n. Note that low-mass stars
and degenerate stars have polytropic index n = 3/2, whereas high-mass stars, with
substantial radiation pressure in their interiors, have index n → 3. As a result, the
index is slowly varying over the range of possible stellar masses. Following standard
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methods [15, 11, 13, 14], we define

ξ ≡ r

R
, ρ = ρcf

n, and R2 =
KΓ

(Γ − 1)4πGρ2−Γ
c

, (4)

so that the dimensionless equation for the hydrostatic structure of the star becomes

d

dξ

(
ξ2df

dξ

)
+ ξ2fn = 0. (5)

Here, the parameter ρc is the central density (in physical units) so that fn(ξ) is the
dimensionless density distribution. For a given polytropic index n (or a given Γ),
equation (5) thus specifies the density profile up to the constants ρc and R. Note that, once
the density is determined, the pressure is specified via the equation of state (3). Further,
in the stellar regime, the star obeys the ideal gas law so that the temperature is given
by T = P/(Rρ), with R = k/〈m〉; the function f(ξ) thus represents the dimensionless
temperature profile of the star. Integration of equation (5) outwards, subject to the
boundary conditions f = 1 and df/dξ = 0 at ξ = 0, then determines the position of the
outer boundary of the star, i.e. the value ξ∗ where f(ξ∗) = 0. As a result, the stellar
radius is given by

R∗ = Rξ∗. (6)

The physical structure of the star is thus specified up to the constants ρc and R (see
figure 1). These parameters are not independent for a given stellar mass; instead, they
are related via the constraint

M∗ = 4πR3ρc

∫ ξ∗

0

ξ2fn(ξ) dξ ≡ 4πR3ρcμ0, (7)

where the final equality defines the dimensionless quantity μ0, which is of order unity and
depends only on the polytropic index n.

2.2. Nuclear reactions

The next step is to estimate how the nuclear ignition temperature depends on more
fundamental parameters of physics. Thermonuclear fusion generally depends on three
physical variables: the temperature T , the Gamow energy EG and the nuclear fusion
factor S(E). The Gamow energy is given by

EG = (παZ1Z2)
2 2m1m2

m1 + m2
c2 = (παZ1Z2)

22mRc2, (8)

where mj are the masses of the nuclei, Zj are their charge (in units of e) and where the
second equality defines the reduced mass. For the case of two protons, EG = 493 keV.
The parameter α is the usual (electromagnetic) fine structure constant:

α =
e2

�c
≈ 1

137
, (9)

where the numerical value applies to our universe. Thus, the Gamow energy, which
sets the degree of Coulomb barrier penetration, is determined by the strength of the
electromagnetic force (through α). The strength of the strong and weak nuclear forces
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Figure 1. Density, pressure and temperature distributions for the n = 3/2
polytrope. The solid curve shows the density profile ρ(ξ)/ρc, the dashed curve
shows the pressure profile P (ξ)/Pc and the dotted curve shows the temperature
profile f(ξ) = T (ξ)/Tc. For a polytrope, the variables are related through the
expressions P ∝ ρ1+1/n and ρ ∝ fn.

enters into the problem by setting the nuclear fusion factor S(E) which in turn sets the
interaction cross section according to

σ(E) =
S(E)

E
exp

[
−

(
EG

E

)1/2
]

, (10)

where E is the energy of the interacting nuclei. The temperature at the center of the
star determines the distribution of E. Under most circumstances in ordinary stars,
the cross section has the approximate dependence σ ∝ 1/E so that the nuclear fusion
factor S(E) is a slowly varying function of energy. This dependence arises when
the cross section is proportional to the square of the de Broglie wavelength, so that
σ ∼ λ2 ∼ (h/p)2 ∼ h2/(2mE); this relation holds when the nuclei are in the realm of
non-relativistic quantum mechanics.

The nuclei generally have a thermal distribution of energy so that

〈σv〉 =

(
8

πmR

)1/2 (
1

kT

)3/2 ∫ ∞

0

σ(E) exp [−E/kT ] E dE. (11)
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As a result, the effectiveness of nuclear reactions is controlled by an exponential factor
exp[−Φ], where the function Φ has contributions from the cross section and the thermal
distribution, i.e.

Φ =
E

kT
+

(
EG

E

)1/2

. (12)

The integral in equation (11) is dominated by energies near the minimum of Φ, where

E = E0 = E
1/3
G (kT/2)2/3, and where the function takes the value

Φ0 = 3

(
EG

4kT

)1/3

. (13)

If we approximate the integral using Laplace’s method [16], the reaction rate R12 for two
nuclear species with number densities n1 and n2 can be written in the form

R12 = n1n2
8√

3παZ1Z2mRc
S(E0)Θ

2 exp[−3Θ], (14)

where we have defined

Θ ≡
(

EG

4kT

)1/3

. (15)

2.3. Stellar luminosity and energy transport

The luminosity of the star is determined through the equation

dL

dr
= 4πr2ε(r), (16)

where ε is the luminosity density, i.e. the power generated per unit volume. This quantity
can be written in terms of the nuclear reaction rates via

ε(r) = Cρ2Θ2 exp[−3Θ], (17)

where Θ is defined above, and where

C =
〈ΔE〉R12

ρ2Θ2
exp[3Θ] =

8〈ΔE〉S(E0)√
3παm1m2Z1Z2mRc

, (18)

where 〈ΔE〉 is the mean energy generated per nuclear reaction. In our universe C ≈
2 × 104 cm5 s−3 g−1 for proton–proton fusion under typical stellar conditions.

The total stellar luminosity is given by the integral

L∗ = C4πR3ρ2
c

∫ ξ∗

0

f 2nξ2Θ2 exp[−3Θ] dξ ≡ C4πR3ρ2
cI(Θc), (19)

where the second equality defines I(Θc), and where Θc = Θ(ξ = 0) = (EG/4kTc)
1/3. Note

that, for a given polytrope, the integral is specified up to the constant Θc: T = Tcf(ξ),
Θ = Θcf

−1/3(ξ).
At this point, the definitions of equation (4), the mass integral constraint (7) and the

luminosity integral (19) provide us with three equations for four unknowns: the radial
scale R, the central density ρc, the total luminosity L∗ and the coefficient K in the
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equation of state. Notice that, if the star is degenerate, then the coefficient K is specified
by quantum mechanics, Γ = 5/3, and one could solve the first two of these equations for
R and ρc, thereby determining the physical structure of the star. Note that the quantum
mechanical value of K represents the minimum possible value. If the star is not degenerate,
but rather obeys the ideal gas law, then the central temperature is related to the central

density through RTc = Kρ
1/n
c , so that Tc does not represent a new unknown, and the

stellar luminosity L∗ is the only new variable introduced by luminosity equation (19).
For ordinary stars, one needs to use the fourth equation of stellar structure to finish

the calculation. In the case of radiative stars, the energy transport equation takes the
form

T 3dT

dr
= −3ρκ

4ac

L(r)

4πr2
, (20)

where κ is the opacity. In the spirit of this paper, we want to obtain a simplified set
of stellar structure models to consider the effects of varying constants. As a result, we
make the following approximation. The opacity κ generally follows Kramer’s law so that
κ ∼ ρT−7/2. For the case of polytropic equations of state, we find that κρ ∼ ρ2−7/2n.
For the particular case n = 7/4, the product κρ is strictly constant. For other values
of the polytropic index, the quantity κρ is slowly varying. As a result, we assume
κρ = κ0ρc = constant for purposes of solving the energy transport equation (20). This
ansatz implies that

L∗

∫ ξ∗

0


(ξ)

ξ2
dξ = aT 4

c

4πc

3ρcκ0
R, (21)

where we have defined 
(ξ) ≡ L(ξ)/L∗. The full expression for 
(ξ) is given by the
integral in equation (19). For purposes of solving equation (21), however, we make a
further simplification. We assume that the integrand of equation (19) is sharply peaked
toward the center of the star, and that the nuclear reaction rates depend on a power-
law function of temperature. Consistency then demands that the power-law index is Θc.
Further, the temperature can be modeled as an exponentially decaying function near the
center of the star so that T ∼ exp[−βξ]. The expression for 
(ξ) then becomes


(ξ) = 1
2

∫ xend

0

x2 e−x dx where xend = βΘcξ. (22)

Using this expression for 
(ξ) in the integral of equation (21), we can write the luminosity
in the form

L∗ = aT 4
c

4πc

3ρcκ0

R

βΘc
. (23)

2.4. Stellar structure solutions

With the solution (23) to the energy transport equation, we now have four equations
and four unknowns. After some algebra, we obtain the following equation for the central
temperature:

ΘcI(Θc)T
3
c =

(4π)3ac

3βκ0C

(
M∗

μ0

)4 (
G

(n + 1)R

)7

, (24)
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or, alternatively,

I(Θc)Θ
−8
c =

212π5

45

1

βκ0CE3
G�3c2

(
M∗

μ0

)4 (
G〈m〉
(n + 1)

)7

. (25)

The right-hand side of the equation is thus a dimensionless quantity. Further, the
quantities μ0 and β are dimensionless measures of the mass and luminosity integrals
over the star, respectively; they are expected to be of order unity and to be roughly
constant from star to star (and from universe to universe). The remaining constants
are fundamental. Note that, for typical values of the parameters in our universe, the
right-hand side of this equation is approximately 10−9.

With the central temperature Tc, or equivalently Θc, determined through
equation (25), we can find expressions for the remaining stellar parameters. The radius
is given by

R∗ =
GM∗〈m〉

kTc

ξ∗
(n + 1)μ0

, (26)

and the luminosity is given by

L∗ =
16π4

15

1

�3c2βκ0Θc

(
M∗

μ0

)3 (
G〈m〉
n + 1

)4

. (27)

The photospheric temperature is then determined from the usual outer boundary condition
so that

T∗ =

(
L∗

4πR2
∗σ

)1/4

. (28)

For this simple polytropic stellar model, figures 2 and 3 show the H–R diagram and
the corresponding luminosity versus mass relation for stars on the zero age main sequence
(ZAMS). The three curves show different choices for the polytropic indices: the dashed
curves show results for n = 3/2, the value appropriate for low-mass stars. The dotted
curves show the results for n = 3, the value for high-mass stars. The solid line (marked by
symbols) show the results for n varying smoothly between n = 3/2 in the limit M∗ → 0
and n = 3 in the limit M∗ → ∞. We take this latter case as our standard model (although
the effects of changing the polytropic index n are small compared to the effects of changing
the fundamental constants—see section 3).

One can compare these models with the results of more sophisticated stellar structure
models [13, 14] or with observations of stars on the ZAMS. In both of these comparisons,
this polytropic model provides a good prediction for the stellar temperature as a function
of stellar mass. However, the luminosities of the highest-mass stars are somewhat low,
mostly because the stellar radii from the models are correspondingly low; this discrepancy,
in turn, results from our simplified treatment of nuclear reactions. Nonetheless, this
polytropic model works rather well and produces the correct stellar characteristics
(L∗, R∗, T∗), within a factor of ∼2, as a function of mass M∗, over a range in mass of ∼1000
and a range in luminosity of ∼109. This degree of accuracy is sufficient for the purposes
of this paper, and is quite good given the simplifying assumptions used in order to obtain
analytic results. More sophisticated stellar models would include varying values of C to
incorporate more complex nuclear reaction chains, detailed energy transport including
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Figure 2. H–R diagram showing the main sequence for polytropic stellar model
using standard values of the parameters, i.e. those in our universe. The three
cases shown here correspond to the main sequence for an n = 3/2 polytrope
(lower dashed curve), an n = 3 polytrope (upper dotted curve) and a model that
smoothly varies from n = 3/2 at low masses to n = 3 at high masses (solid curve
marked by symbols).

convection, a more refined treatment of opacity, and a fully self-consistent determination
of the density and pressure profiles (i.e. the departures from our polytropic models). In
particular, we can achieve even better agreement between this stellar structure model and
observed stellar properties if we allow the nuclear reaction parameter C to increase with
stellar mass (as it does in high-mass stars due to the CNO cycle). In the spirit of this
work, however, we use a single value of C, which corresponds to the case in which a single
nuclear species is available for fusion (this scenario thus represents the simplest universes).

3. Constraints on the existence of stars

Using the stellar structure model developed in the previous section, we now explore the
range of possible stellar masses in universes with varying values of the stellar parameters.
First, we find the minimum stellar mass required for a star to overcome quantum
mechanical degeneracy pressure (section 3.1) and then find the maximum stellar mass
as limited by radiation pressure (section 3.2). These two limits are then combined to find
the allowed range of stellar masses, which can vanish when the required nuclear burning
temperatures become too high (section 3.3). Another constraint on stellar parameters
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Figure 3. Stellar luminosity as a function of stellar mass for standard values of
the parameters. The three curves shown here correspond to the L∗–M∗ relation
for an n = 3/2 polytrope (dashed curve), an n = 3 polytrope (dotted curve) and
a model that smoothly varies from n = 3/2 at low masses to n = 3 at high masses
(solid curve marked by symbols). All quantities are given in solar units.

arises from the requirement that stable nuclear burning configurations exist (section 3.4).
We delineate (in section 3.5) the range of parameters for which these two considerations
provide the limiting constraints on stellar masses and then find the region of parameter
space that allows the existence of stars. Finally, we consider the constraints implied by the
Eddington luminosity (section 3.6) and show that they are comparable to those considered
in the previous subsections.

3.1. Minimum stellar mass

The minimum mass of a star is determined by the onset of degeneracy pressure.
Specifically, for stars with sufficiently small masses, degeneracy pressure enforces a
maximum temperature which is below that required for nuclear fusion. The central
pressure at the center of a star is given approximately by the expression

Pc ≈
( π

36

)1/3

GM2/3
∗ ρ4/3

c , (29)

where the subscript denotes that the quantities are to be evaluated at the center of the star.
This result follows directly from the requirement of hydrostatic equilibrium (e.g. [15]).
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At the low-mass end of the range of possible stellar masses, the pressure is
determined by contributions from the ideal gas law and from non-relativistic electron
degeneracy pressure. As a result, the central pressure of the star must also satisfy the
relation

Pc =

(
ρc

mion

)
kTc + Kdp

(
ρc

mion

)5/3

, (30)

where mion is the mean mass of the ions (so that ρc/mion determines the number density
of ions) and where the constant Kdp that determines degeneracy pressure is given by

Kdp =
�

2

5me

(
3π2

)2/3
, (31)

where me is the electron mass. Notice that we have also assumed that the star has
neutral charge so that the number density of electrons is equal to that of the ions, and
that me � mion.

Combining the two expressions for the central pressure and solving for the central
temperature, we obtain

kTc =
( π

36

)1/3

GM2/3
∗ mionρ

1/3
c − Kdp(ρc/mion)

2/3. (32)

The above expression is a simple quadratic function of the variable ρ
1/3
c and has a

maximum for a particular value of the central density [11], i.e.

kTmax =
( π

36

)2/3 G2M
4/3
∗ m

8/3
ion

4Kdp

. (33)

If we set this value of the central temperature equal to the minimum required ignition
temperature for a star, Tnuc, we obtain the minimum stellar mass:

M∗min =

(
36

π

)1/2
(4KdpkTnuc)

3/4

G3/2m2
ion

. (34)

After rewriting the equation of state parameter Kdp in terms of fundamental constants,
this expression for the minimum stellar mass becomes

M∗min = 6(3π)1/2

(
4

5

)3/4 (
mP

mion

)2 (
kTnuc

mec2

)3/4

M0. (35)

As expected, the minimum stellar mass is given by a dimensionless expression times the
fundamental stellar mass scale defined in equation (1). Notice also that the gravitational
constant G enters into this mass expression with an exponent of −3/2, as anticipated by
equation (1).
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3.2. Maximum stellar mass

A similar calculation gives the maximum possible stellar mass. In this case the central
pressure also has two contributions, this time from the ideal gas law and from radiation
pressure PR, where

PR = 1
3
aT 4

c , (36)

where a = π2k4/15(�c)3 is the radiation constant. Following standard convention [11], we
define the parameter fg to be the fraction of the central pressure provided by the ideal
gas law. As a result, the radiation pressure contribution is given by PR = (1− fg)Pc. The
central temperature can be eliminated in favor of fg to obtain the expression

Pc =

(
3

a

(1 − fg)

f 4
g

)1/3 (
4ρc

〈m〉

)4/3

, (37)

where 〈m〉 is the mean mass per particle of a massive star. By demanding that the star
is in hydrostatic equilibrium, we obtain the following expression for the maximum mass
of a star:

M∗max =

(
36

π

)1/2 (
3

a

(1 − fg)

f 4
g

)1/2

G−3/2

(
k

〈m〉

)2

, (38)

which can also be written in terms of the fundamental mass scale M0, i.e.

M∗max =

(
18
√

5

π3/2

) (
1 − fg

f 4
g

)1/2 (
mP

〈m〉

)2

M0, (39)

where this expression must be evaluated at the maximum value of fg for which the star
can remain stable. Although the requirement of stability does not provide a perfectly well-
defined threshold for fg, the value fg = 1/2 is generally used [11] and predicts maximum
stellar masses in reasonable agreement with observed stellar masses (for present-day stars
in our universe). For this choice, the above expression becomes M∗max ≈ 20(mP/〈m〉)2M0.
Since massive stars are highly ionized, 〈m〉 ≈ 0.6mP under standard conditions, and hence
M∗max ≈ 56M0 ≈ 100M� for our universe. As shown below, this constraint is nearly the
same as that derived on the basis of the Eddington luminosity (section 3.6).

3.3. Constraints on the range of stellar masses: the maximum nuclear ignition temperature

As derived above, the minimum stellar mass can be written as a dimensionless coefficient
times the fundamental stellar mass scale from equation (1). Further, the dimensionless
coefficient depends on the ratio of the nuclear ignition temperature to the electron mass
energy, i.e. kTnuc/mec

2. The maximum stellar mass, also defined above, can be written
as a second dimensionless coefficient times the mass scale M0. This second coefficient
depends on the maximum radiation pressure fraction fg and (somewhat less sensitively)
on the mean particle mass 〈m〉 of a high-mass star. For completeness, we note that the
Chandrasekhar mass Mch [15] can be written as yet another dimensionless coefficient times
this fundamental mass scale, i.e.

Mch ≈ 1

5
(2π)3/2

(
Z

A

)2

M0, (40)

where Z/A specifies the number of electrons per nucleon in the star.
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These results thus show that, if the constants of the universe were different, or if
they are different in other universes (or different in other parts of our universe), then the
possible range of stellar masses would change accordingly. We see immediately that if the
nuclear ignition temperature is too large, then the range of stellar masses could vanish.
If all other constants are held fixed, then the requirement that the minimum stellar mass
becomes as large as the maximum stellar mass is given by

(
kTnuc

mec2

)
≥ 5

4

(
360

3π4

)2/3
(√

1 − fg√
8f 2

g

)4/3 (
mion

〈m〉

)8/3

≈ 1.4

(
mion

〈m〉

)8/3

, (41)

where we have used fg = 1/2 to obtain the final equality. For high-mass stars in our
universe, 〈m〉/mion = 0.6, and the right-hand side of the equation is about 5.6. For the
simplistic case where 〈m〉 = m = mion, the right-hand side is 1.4. In any case, this value
is of order unity and is not expected to vary substantially from universe to universe. As
a result, the condition for the nuclear burning temperature to be so high that no viable
range of stellar masses exists takes the form kTnuc/(mec

2) � 2. For standard values of
the other parameters, the nuclear ignition temperature (for hydrogen fusion) would have
to exceed Tnuc ∼ 1010 K. For comparison, the usual hydrogen burning temperature is
about 107 K and the helium burning temperature is about 2 × 108 K. We stress that the
hydrogen burning temperature in our universe is much smaller than the value required for
no range of stellar masses to exist—in this sense, our universe is not fine-tuned to have
special values of the constants to allow the existence of stars. The large value of nuclear
ignition temperature required to suppress the existence of stars roughly corresponds to the
temperature required for silicon burning in massive stars (again, for the standard values
of the other parameters). Finally we note that the nuclear burning temperature Tnuc

depends on the fundamental constants in a complicated manner; this issue is addressed
below.

Equation (41) emphasizes several important issues. First, we note that the existence
of a viable range of stellar masses—according to this constraint—does not depend on the
gravitational constant G. The value of G determines the scale for the stellar mass range,

and the scale is proportional to G−3/2 ∼ α
−3/2
G , but the coefficients that define both the

minimum stellar mass and the maximum stellar mass are independent of G. The possible
existence of stars in a given universe depends on having a low enough nuclear ignition
temperature, which requires the strong nuclear force to be ‘strong enough’ and/or the
electromagnetic force to be ‘weak enough’. These requirements are taken up in section 3.5.
Notice also that we have assumed me � mP, so that electrons provide the degeneracy
pressure, but the ions provide the mass.

3.4. Constraints on stable stellar configurations

In this section we combine the results derived above to determine the minimum
temperature required for a star to operate through the burning of nuclear fuel (for
given values of the constants). For a given minimum nuclear burning temperature Tnuc,
equation (35) defines the minimum mass necessary for fusion. Alternatively, the equation
gives the maximum temperature that can be attained with a star of a given mass in
the face of degeneracy pressure. On the other hand, equation (25) specifies the central
temperature Tc necessary for a star to operate as a function of stellar mass. We also note
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Figure 4. Profile of ΘcI(Θc) as a function of Θc = (EG/4kTc)1/3. The integral
I(Θc) determines the stellar luminosity in dimensionless units and Θc defines
the central stellar temperature. This profile has a well-defined maximum near
Θc ≈ 0.869, where the peak of the profile defines a limit on the values of the
fundamental constants required for nuclear burning, and where the location of
the peak defines a maximum nuclear burning temperature (see text).

that the temperature Tc is an increasing function of stellar mass. By using the minimum
mass from equation (35) to specify the mass in equation (25), we can eliminate the mass
dependence and solve for the minimum value of the nuclear ignition temperature Tnuc.
The resulting temperature is given in terms of Θc, which is given by the solution to the
following equation:

ΘcI(Θc) =

(
223π734

511

) (
�

3

c2

) (
1

βμ4
0

)(
1

mm3
e

) (
G

κ0C

)
. (42)

Note that the parameters on the right-hand side of the equation have been grouped to
include numbers, constants that set units, dimensionless parameters of the polytropic
solution, the relevant particle masses and the stellar parameters that depend on the
fundamental forces. Within the treatment of this paper, these latter quantities could
vary from universe to universe. Notice also that we have specialized to the case in which
〈m〉 = mion = m.

The left-hand side of equation (42) is determined for a given polytropic index. Here we
use the value n = 3/2 corresponding to both low-mass conventional stars and degenerate
stars. The resulting profile for ΘcI(Θc) is shown in figure 4. The right-hand side of
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equation (42) depends on the fundamental constants and is thus specified for a given
universe. In order for nuclear burning to take place, equation (42) must have a solution—
the left-hand side has a maximum value, which places an upper bound on the parameters
of the right-hand side. Through numerical evaluation, we find that this maximum value is
∼0.0478 and occurs at Θc ≈ 0.869. The maximum possible nuclear burning temperature
thus takes the form

(kT )max ≈ 0.38EG, (43)

where EG is the Gamow energy appropriate for the given universe. The corresponding
constraint on the stellar parameters required for nuclear burning can then be written in
the form

�
3G

c2mm3
eκ0C

≤ 511βμ4
0

223π734
[ΘcI(Θc)]max ≈ 2.6 × 10−5, (44)

where we have combined all dimensionless quantities on the right-hand side. For typical
stellar parameters in our universe, the left-hand side of the above equation has the
value ∼2.4 × 10−9, smaller than the maximum by a factor of ∼11 000. As a result,
the combination of constants derived here can take on a wide range of values and still
allow for the existence of nuclear burning stars. In this sense, the presence of stars in our
universe does not require fine-tuning the constants.

Notice that, for combinations of the constants that allow for nuclear burning,
equation (42) has two solutions. The relevant physical solution is the one with larger
Θc, which corresponds to a lower temperature. The second, high temperature solution
would lead to an unstable stellar configuration. As a consistency check, note that for
the values of the constants in our universe, the solution to equation (42) implies that
Θc ≈ 5.38, which corresponds to a temperature of about 9 × 106 K. This value is thus
approximately correct: detailed stellar models show that the central temperature of the
Sun is about 15 × 106 K and the lowest possible hydrogen burning temperature is a few
million degrees [11, 13, 14].

3.5. Combining the constraints

Thus far, we have derived two constraints on the range of stellar structure parameters that
allow for the existence of stars. The requirement of stable nuclear burning configuration
places an upper limit on the nuclear burning temperature, which takes the approximate
form kT � 0.38EG. In addition, the requirement that the minimum stellar mass (due to
degeneracy pressure) not exceed the maximum stellar mass (due to radiation pressure)
places a second upper limit on the nuclear burning temperature, kT � 2mec

2. As a result,
the reason for a universe failing to produce stars depends on the size of the dimensionless
parameter

QF = 2α2 m

me
, (45)

where m is the mass of the nuclei that would experience reactions. Note that QF is
proportional to the ratio of the Gamow energy to the rest mass energy of the electron
and has the value QF ≈ 0.2 in our universe. For QF > 1, stars can fail to exist due to
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the range of allowed stellar masses shrinking to zero, whereas for QF < 1 stars can fail to
exist due to the absence of stable nuclear burning configurations.

We can combine the constraints to delineate the portion of parameter space that allows
for the existence of stars. For the sake of definiteness, we fix the values of the particle
masses and specialize to the simplest case where the nuclear burning species has a single
mass m. We also assume that the stellar opacity scales according to κ0 ∝ α2, as expected
since κ ∼ σT/m and σT ∝ α2. With these restrictions, the remaining stellar parameters
that can be varied are the fine structure constant α, the gravitational constant G and the
nuclear burning parameter C. Note that α depends on the strength of the electromagnetic
force, G depends on the strength of gravity and C depends on a combination of the weak
and strong nuclear forces, which jointly determine the nuclear reaction properties for a
given universe. Notice also that, since we are fixing particle masses, the gravitational
constant G is proportional to the gravitational fine structure constant αG (equation (2)).

Figure 5 shows the resulting allowed region of parameter space for the existence of
stars. Here we are working in the (α, G) plane, where we scale the parameters by their
values in our universe, and the results are presented on a logarithmic scale. For a given
nuclear burning constant C, figure 5 shows the portion of the plane that allows for stars
to successfully achieve sustained nuclear reactions. Curves are given for three values of C:
the value for p–p burning in our universe (solid curve), 100 times larger than this value
(dashed curve) and 100 times smaller (dotted curve). The region of the diagram that
allows for the existence of stars is the area below the curves.

Figure 5 provides an assessment of how ‘fine-tuned’ the stellar parameters must be in
order to support the existence of stars. First we note that our universe, with its location
in this parameter space marked by the open triangle, does not lie near the boundary
between universes with stars and those without. Specifically, the values of α, G and/or C
can change by more than two orders of magnitude in any direction (and by larger factors
in some directions) and still allow for stars to function. This finding can be stated another
way: within the parameter space shown, which spans 10 orders of magnitude in both α
and G, about one-fourth of the space supports the existence of stars.

Next we note that a relatively sharp boundary occurs in this parameter space for
large values of the fine structure constant, where α ∼ 200α0, and this boundary is
nearly independent of the nuclear burning constant C. Strictly speaking, this well-defined
boundary is the result of the required value of G becoming an exponentially decreasing
function of α/α0, as shown in section 3.7 below. For the given range of G and for values
of α above this threshold, the Gamow energy is much larger than the rest mass energy
of the electron, so that the maximum nuclear burning temperature becomes a fixed value
(that given by equation (41)) and hence the nuclear reaction rates are exponentially
suppressed by the electromagnetic barrier (section 2.2). On the other side of the graph,
for values of α smaller than those in our universe, the range of allowed parameter space is
limited due to the absence of stable nuclear burning configurations (section 3.4). In this
regime, for sufficiently large G, the nuclear burning temperature becomes so large that the
barrier disappears (and hence stability is no longer possible). Since the nuclear burning
temperature Tnuc required to support stars against gravity increases as the gravitational
constant G increases, and since Tnuc is bounded from above, there is a maximum value of
G that can support stars (for a given value of C). For the value of C appropriate for p–p
burning in our universe, we thus find that G/G0 � 2× 105. Finally, we note that ‘stellar’
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Figure 5. Allowed region of parameter space for the existence of stars. Here
the parameter space is the plane of the gravitational constant log10[G/G0] versus
the fine structure constant log10[α/α0], where both quantities are scaled relative
to the values in our universe. The allowed region lies under the curves, which
are plotted here for three different values of the nuclear burning constants C:
the standard value for p–p burning in our universe (solid curve), 100 times the
standard value (dashed curve) and 0.01 times the standard value (dotted curve).
The open triangular symbol marks the location of our universe in this parameter
space.

bodies outside the range of allowed parameter space can exist, in principle, and can even
generate energy, but they would not resemble the stable, long-lived nuclear burning stars
of our universe.

3.6. The Eddington luminosity

For a star of given mass, the maximum rate at which it can generate energy is given by
the Eddington luminosity. This luminosity defines a minimum lifetime for stars. The
Eddington luminosity can be written in the form

L∗max = 4πcGM∗/κem, (46)

where κem is the opacity in the stellar photosphere. For the sake of definiteness, we take
κem to be the opacity appropriate for pure electron scattering, which is applicable to hot
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plasmas where the Eddington luminosity is relevant, i.e.

κem =
1 + X1

2

σT

mP
, (47)

where σT is the Thompson cross section and X1 is the mass fraction of hydrogen. Since
the maximum luminosity implies a minimum stellar lifetime, for a given efficiency ε of
converting mass into energy, we obtain the following constraint on stellar lifetimes:

t∗ > t∗min = ε

(
1 + X1

3

)
α2

αG

�mP

(mec)2
. (48)

Since atomic timescales are given (approximately) by

tA ≈ �

α2mec2
, (49)

the ratio of stellar timescales to atomic timescales is given by the following expression:

t∗min

tA
= ε

(
1 + X1

3

)
α4

αG

mP

me
, (50)

where the expression has a numerical value of ∼4×1030 for the parameters in our universe.
We can also use the Eddington luminosity to derive another upper limit on the

allowed stellar mass. Within the context of our model, the stellar luminosity is given
by equation (27). This luminosity must be less than the Eddington luminosity given by
equation (46), which implies a constraint of the form

M∗

M0
� 4

π

√
60

(
βμ3

0κ0mPΘc

σT

)1/2

, (51)

where we have specialized to the case of polytropic index n = 3 (appropriate for high-
mass stars with large admixtures of radiation pressure) and have taken 〈m〉 = mP. Note
that, since κ0 ∼ σT/mP, and since β and μ0 are given by the polytropic solution (and
are of order unity), the right-hand side of the above equation is approximately 50

√
Θc, as

expected. In other words, the requirement that the stellar luminosity must be less than
the Eddington limit (equation (46)) produces nearly the same bound on stellar masses as
the requirement that the star not be dominated by radiation pressure (equation (39)).

Notice also that we expect κ0 ∼ σT/mP for other universes, so that the general
constraint takes the approximate form M∗/M0 � 50

√
Θc. In addition, as shown by

figure 4, the parameter Θc is confined to a narrow range—the function ΘcI(Θc), and hence
the left-hand side of equation (42), varies by 8 orders of magnitude for 1 �

√
Θc � 3.

3.7. Limiting forms

For much of the allowed parameter space where stars can operate, the value of Θc is large
compared to its minimum value; specifically, this claim holds for the region of parameter
space that is not near the upper left boundary in figure 5. In this case, we can derive an
analytic asymptotic expression for the integral function I(Θc), which takes the form

I(Θc) ∼ 3Θc e−3Θc−1

(
3π

Θc + 4/3

)1/2

→ (3/e)
√

3πΘc e−3Θc . (52)
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Comparing this asymptotic expression to the numerically determined values, we find that
equation (52) provides an estimate that is within a factor of 2 of the correct result over
the range 1 ≤ Θc ≤ 100, where I(Θc) varies by ∼128 orders of magnitude.

With this asymptotic expression in hand, we can find the relationship between the
gravitational constant and the fine structure constant on the boundary of parameter space
(as shown in figure 5). We find that

G ∼ G0 exp

[
−3

2

(
α

α0

)2/3
]

. (53)

At the edge of the allowed stellar parameter space, G is thus an exponentially decreasing
function α, which results in the nearly vertical boundary shown in figure 5.

4. Unconventional stars

The results of the previous section show that stars can exist in a relatively large fraction
of the parameter space. On the other hand, in order for stars to exist at all, the
nuclear burning parameter C must be nonzero; otherwise, stars, as objects powered by
nuclear reactions, cannot exist. In situations where C = 0, or where the values of the
other parameters conspire to disallow stars (see figure 5), other types of stellar objects
could, in principle, fill the role played by stars in our universe. This section briefly
explores this possibility with three examples: black holes that generate energy through
Hawking evaporation (section 4.1), degenerate dark matter stars that generate energy via
annihilation (section 4.2) and degenerate baryonic matter stars that generate energy by
capturing dark matter particles which then annihilate (section 4.3). We note that a host
of other possibilities exist (e.g. astrophysical objects powered by proton decay), but a
proper treatment of such cases is beyond the scope of this present work.

4.1. Black holes

Black holes can exist in any universe with gravity and will generate energy (at some rate)
through Hawking evaporation (e.g. [17]). Further, the stellar structure of these objects
depends only on the gravitational constant G. In order to consider black holes playing
the role of stars, however, we must invoke additional constraints. For the purposes of
illustration, this section finds the values of the fundamental constants for which black
holes can serve as stellar bodies to support ‘life’. Specifically, in order for black holes to
fill the role played by stars in our universe, two constraints must be satisfied: first, the
black holes must live long enough to allow for life to develop. Second, the black holes must
provide enough power to run a biosphere. The first constraint implies that black holes
must be sufficiently massive, whereas the second constraint implies that the black holes
must be sufficiently small. The compromise between these two requirements provides an
overall constraint that must be met in order for black holes to play the role of stars.

The lifetime of a black hole with mass Mbh is given by

τbh =
2650π

g∗�c4
G2M3

bh, (54)

where g∗ is the total number of effective degrees of freedom in the radiation field produced
through the Hawking effect. This lifetime should be compared with the typical atomic
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timescale τA given by equation (49). We thus have a constraint of the form

τbh

τA

=
2560π

g∗(�c)2
α2G2M3

bhme ≥ Nbio, (55)

where Nbio is the number of atomic timescales required for life to evolve. In our solar
system, the number Nbio ≈ 1034, which is also the number of atomic timescales in the life
of a solar-type star. Although the minimum value of Nbio remains uncertain, we expect
it to be within a few orders of magnitude of this value. For the sake of definiteness, we
take the (somewhat optimistic) value of Nbio = 1033 for this analysis.

The second constraint is that the black hole must provide enough power to run a
biosphere. In our solar system, the Earth intercepts about 100 quadrillion watts of power
from the Sun. We thus expect that the black hole must have a minimum luminosity and
obey a constraint of the form

Lbh =
g∗�c6

7680π
(GMbh)

−2 ≥ Lmin, (56)

where Lmin is the minimum luminosity of a stellar object required to support life. In
general, this minimum value of luminosity will vary with the values of the fundamental
constants. In the absence of a definitive theory, we adopt the following simple scaling law:
the energy levels EA of atoms vary according to EA ∝ α2, and the atomic timescale varies
as tA ∝ α−2. In order for the luminosity to provide the same number of atomic reactions
over the total lifetime of the system, the luminosity should scale with the fine structure
constant as

Lmin = Lmin0(α/α0)
4, (57)

where Lmin0 is the minimum necessary luminosity in our universe. Although the value of
this latter quantity is uncertain, we adopt Lmin0 ≈ 1017 erg s−1 as a representative value.
The scaling law of equation (57) is also not definitive, but rather illustrative.

Combining the two constraints allows for the elimination of the mass, and thereby
provides an overall constraint of the from

Nbio�
1/2(G/α)2

me
≤ c7

96(15π)1/2Lmin
3/2

. (58)

If we scale this constraint using measured values of the constants, we obtain the relation(
G

G0

) (
α

α0

)4

≤ 24

(
Nbio

1033

)−1 (
Lmin0

1017 erg s−1

)−3/2

. (59)

In our universe, black holes must have masses greater than about 6 × 1013 g in order to
last for Nbio = 1033 atomic timescales, and must have masses less than about 2 × 1014 g
in order to produce enough power (Lmin). As a result, a biosphere could be powered by a
black hole, although we have adopted somewhat optimistic requirements, e.g. the required
luminosity is only Lmin, which is much less than a solar luminosity. The largest obstacle,
however, is the production of black holes with this mass scale.

Figure 6 shows the region of parameter space for which black holes can play the role
of stars. To construct this diagram, we assume that black holes must live Nbio = 1033

atomic timescales and produce enough luminosity. For this latter requirement, we use
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Figure 6. Allowed region of parameter space for the existence of black holes that
can play the role of stars. The parameter space is the plane of the gravitational
constant log10[G/G0] versus the fine structure constant log10[α/α0], where both
quantities are scaled relative to the values in our universe. The allowed region lies
under the curves, which are plotted here for three cases: the black hole luminosity
is required to be greater than that of the Sun (solid curve), a low-mass star
(dashed curve) and the solar luminosity intercepted by the Earth (dotted curve).
The open triangle marks the location of our universe in this parameter space.

the power intercepted from the Sun by the Earth (as a minimum value; dotted curve),
the luminosity of a low-mass star (L ∼ 10−3L�; dashed curve) and 1.0L� (solid curve),
all scaled according to equation (57). If the black hole is required to have luminosity
in the stellar range, then the allowed region of parameter space is highly constrained,
in that the parameters (α, G) must have values quite far from those in our universe. In
particular, the gravitational constant must be small (so that the luminosity is large), and
the fine structure constant must also be small (so that atomic energy levels are low). If
the necessary luminosity is determined by Lmin0 = 1017 erg s−1, however, black holes can
play the role of stars over a much wider range of parameter space.

4.2. Degenerate dark matter stars

In principle, alternate universes can produce degenerate stars made of dark matter
particles. Such stars could exist in our universe as well, although their formation is
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expected to be so highly suppressed that they play no significant role. This section
considers the structure of these hypothetical objects in possible other universes.

A degenerate star has the structure of an n = 3/2 polytrope, with the constant K in
the equation of state given by

K = (3π2)2/3 �
2

5m
8/3
d

, (60)

where md is the mass of the dark matter particle. Since the constant K is specified, we
can solve directly for the stellar properties. The mass–radius relation is given by

M∗R
3
∗ = ξ3

∗μ0
9π2

128
�

6m−8
d G−3, (61)

and the central density is given by

ρc =
32

9π2μ2
0

G3m8
dM

2
∗

�6
. (62)

For completeness, we note that the Chandrasekhar mass for these dark matter stars is
given approximately by the expression

Mch = μ0
(3π)1/2

2

(
�c

Gm2
d

)3/2

md, (63)

where μ0 ≈ 2.714 for an n = 3/2 polytrope; this expression does not include general
relativistic corrections (e.g. [18]). For reference, note that a typical expected value for the
dark matter particle mass, md = 100mP, implies that this mass scale Mch ≈ 0.0007M�.

For these stars, the luminosity is provided by annihilation of the dark matter particles.
The annihilation rate per particle Γ1 is given by

Γ1 = n〈σdv〉 ≈ σd�n4/3/md, (64)

where σd is the cross section. To find the stellar luminosity due to dark matter
annihilation, we must integrate over the star to find the total annihilation rate ΓT:

ΓT =
M∗σd�

μ0m2
d

n4/3
c γ0, where γ0 ≡

∫ ξ∗

0

ξ2f 7/2 dξ. (65)

For this n = 3/2 polytrope, γ0 ≈ 0.913. As a result, the total annihilation rate is given by
ΓT ≈ NTΓ1/3, where NT is the total number of particles in the star and Γ1 is evaluated
at the stellar center. The corresponding stellar luminosity is then given by

L∗ =

(
32

9π2

)4/3
γ0

μ
11/3
0

c2

�7
σdG

4M11/3
∗ m

25/3
d . (66)

If the mass of the degenerate star were close to the Chandrasekhar mass, the luminosity
would be enormous and its lifetime would be short (see below). To put this in perspective,
if we use reasonable values of the dark matter properties for our universe (md = 100mP

and σd = 10−38 cm2), then the mass required to produce L∗ = 1.0L� is only about
M∗ ∼ 10−13M� ∼ 1020 g (about the mass of a large asteroid). As a result, for the range
of parameter space for which these objects play the role of stars, the masses are far below
the Chandrasekhar mass.
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If the dark matter star starts its evolution with initial mass M0 and later has a mass
M(t) � M0, then its age Δt(M) is related to its current mass through the expression

Δt(M) =
3

8

(
9π2

32

)4/3
μ

11/3
0

γ0

�
7

σd
G−4M−8/3m

−25/3
d =

3

8

Mc2

L∗
, (67)

where L∗ is the luminosity of the star when it has mass M . For example, if M = 1020 g
(the mass scale that generates L∗ = 1.0L�), the timescale from equation (67) is only
about 100 d. In order for the timescale to be 1 Gyr, say, the mass scale must be about
3×1016 g and the corresponding luminosity is only ∼10−13L� = 4×1020 erg s−1, i.e. still
substantially larger than the expected value of Lmin0.

When the masses are well below the Chandrasekhar mass (see above), the star must
satisfy two constraints. The first requirement is that the star is sufficiently luminous,
which implies that

L∗ = B
c2σdG

4m
25/3
d

�7
M11/3 ≥ Lmin0(α/α0)

4, (68)

where we have defined a dimensionless constant B:

B =

(
32

9π2

)4/3
γ0

μ
11/3
0

≈ 0.0060. (69)

Next we require that the stellar lifetime is sufficiently long. In rough terms, this constraint
can be written in the form

Δt(M) =
3

8B

�
7

σdG4m
25/3
d

M−8/3
∗ ≥ �Nbio

mec2α2
, (70)

where we have not made the distinction between M and M∗ in using equation (67). The
first constraint puts a lower limit on the mass and the second constraint puts an upper
limit on the mass. By requiring that both constraints be met simultaneously, the mass
can be eliminated and a global constraint can be derived:

(
α

α0

)21/8 (
Gm2

d

�c

)3/2

≤ CB
mec

2

Lmin0

(
m3

ec
10

σ3
dmd�2

)1/8 (
α2

0

Nbio

)11/8

, (71)

where the constant CB = (3/8)11/8B−3/8 ≈ 1.75. This result defines the parameters
necessary for dark matter stars to play the role of ordinary stars (keep in mind that the
formation of these bodies remains a formidable obstacle). The luminosity is determined
by the dark matter annihilation cross section, which is independent of the constants that
determine the physical structure of the star. As a result, the parameter space of constants
(α, G) considered here always contains a region where these stars can operate. For fixed
properties of the dark matter (md and σd), equation (71) delineates the portion of the
(α, G) plane that allows these degenerate dark matter objects to act as stars. On the
other hand, one can use equation (71) to constrain the allowed dark matter properties for
given values of α and G.
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4.3. Other possibilities for unconventional stars

If the nuclear burning constant C = 0, then baryonic objects can still, in principle,
generate energy in a variety of ways. In the absence of nuclear reactions, stellar bodies
will often tend to form degenerate configurations, analogous to white dwarfs in our
universe (provided that their mass is below the relevant Chandrasekhar mass scale). These
degenerate objects can generate energy through several channels, including residual heat
left over from formation, proton decay and dark matter capture and annihilation.

In the latter case, dark matter particles are captured by scattering off nuclei (which
could be simply protons in a universe with no nuclear reactions). After a scattering event,
the recoil energy of the dark matter particle can be less than the escape speed of the star
and the particle can be captured. After capture, the dark matter particles sink to the
stellar center, where they collect until their population is dense enough for annihilation to
balance the incoming supply of particles. The star thus reaches a steady state, where the
luminosity is given by the total capture rate. This process has been discussed previously
in a variety of contexts, including as a solution to the solar neutrino problem [19] and as
a means to keep white dwarfs hot beyond their cooling times [20].

The capture rate of dark matter particles is given by

Γ = ndmσ∗dmvrel, (72)

where ndm is the number density of dark matter particles, σ∗dm is the total cross section for
capture subtended by the star and vrel is the relative velocity. These quantities depend
on dynamical structure (distributions of density, velocity, angular momentum) of the
background halo of dark matter [21]. In our universe, for example, the capture rate of
dark matter particles by white dwarfs is of order Γ ∼ 1025 s−1 [20]. With the capture rate
specified, the corresponding luminosity is given by

L∗ = fνmdΓ, (73)

where md is the mass of the dark matter particles and where the efficiency factor fν takes
into account energy loss from the star due to some fraction of the annihilation products
being neutrinos.

In this scenario, the luminosity depends on the number density of dark matter
particles in the background (in the galactic halo in the context of white dwarfs in our
universe). This density is independent of stellar properties. In a similar vein, the timescale
over which the luminosity can be maintained depends on the overall supply of dark matter
particles; this quantity is also independent of stellar properties. Thus, for any values of the
constants (α, G), considered here as the relevant parameters that specify stellar properties,
a universe can have the proper values of dark matter densities and cross sections so that
degenerate stars can serve in place of nuclear burning stars. The specification of the
allowed parameter space depends on more global properties of the universe, however, and
is beyond the scope of this paper.

5. Conclusion

In this paper, we have developed a simple stellar structure model (section 2) to explore
the possibility that stars can exist in universes with different values for the fundamental
parameters that determine stellar properties. This paper focuses on the parameter space
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given by the variables (G, α, C), i.e. the gravitational constant, the fine structure constant
and a composite parameter that determines nuclear fusion rates. The main result of this
work is a determination of the region of this parameter space for which bona fide stars
can exist (section 3). Roughly one-fourth of this parameter space allows for the existence
of ‘ordinary’ stars (see figure 5). In this sense, we conclude that universes with stars
are not especially rare (contrary to previous claims), even if the fundamental constants
can vary substantially in other regions of space–time (e.g. other pocket universes in the
multiverse). Another way to view this result is to note that the variables (G, α, C) can
vary by orders of magnitude from their measured values and still allow for the existence
of stars.

For universes where no nuclear reactions are possible, we have shown that
unconventional stellar objects can fill the role played by stars in our universe, i.e. the
role of generating energy (section 4). For example, if the gravitational constant G and
the fine structure constant α are smaller than their usual values, black holes can provide
viable energy sources (figure 6). In fact, all universes can support the existence of stars,
provided that the definition of a star is interpreted broadly. For example, degenerate
stellar objects, such as white dwarfs and neutron stars, are supported by degeneracy
pressure, which requires only that quantum mechanics is operational. Although such
stars do not experience thermonuclear fusion, they often have energy sources, including
dark matter capture and annihilation, residual cooling, pycnonuclear reactions and proton
decay. Dark matter particles can also (in principle) form degenerate stellar objects (see
section 4).

In order to assess the suitability of non-nuclear power sources, one must specify how
much power is required, and for how long. In this work we have used the power that
Earth intercepts from the Sun as the minimum benchmark value Lmin0, and scaled the
necessary power according to equation (57) to account for variations in the fine structure
constant; similarly, the required amount of time is taken to ∼1 Gyr, scaled by the atomic
time of equation (49). These choices are not definitive and hence alternative scalings can
be explored.

The issue of alternative values for the fundamental constants, as considered herein,
is related to the issue of time variations in the constants in our universe. However,
current experiments place rather strong limits on smooth time variations, with timescales
exceeding the current age of the universe (see the review of [22]). Another possibility is
for the constants to have different values at other spatial locations within our universe,
although this scenario is also highly constrained [23].

This paper has focused on stellar structure properties. An important related question
(beyond the scope of this work) is whether or not stellar bodies can be readily made in
universes with varying values of the constants. Even if the laws of physics allow for stellar
objects to exist and actively burn nuclear fuel, there is no guarantee that such bodies
will be produced in significant numbers. In our universe, for example, there is a moderate
mismatch between the mass range of possible stars and the distribution of masses of stellar
bodies produced by the star formation process. At the present cosmological epoch, star
formation produces objects over the entire possible range of stellar masses, with additional
bodies produced in the substellar range (brown dwarfs). The matching is relatively good,
in that the fraction of bodies in the brown dwarf range is small, only about 1 out of 5 [24].
Since the masses of these objects are small, the fraction of the total mass locked up in
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the smallest bodies is even smaller, less than 5%. On the other hand, nearly all of the
stars in our universe have small masses. As one benchmark, only about 3 or 4 out of
a thousand stars are larger than the ∼8M� threshold required for stars to experience a
supernova explosion, whereas stellar masses can extend up to ∼100M�. The high-mass
end of the possible mass range is thus sparsely populated. The corresponding match
between the range of allowed stellar masses and the mass range of objects produced can
be quite different in other universes.

In future work, another issue to be considered is coupling the effects of alternative
values of the fundamental constants to the cosmic expansion, big bang nucleosynthesis
and structure formation. Each of these issues should be explored in the same level of
detail as stellar structure is studied in this work. With the resulting understanding of
these processes, the coupling between them should then be determined.

Finally, we note that this paper has focused on the question of whether or not stars
can exist in universe with alternative values of the relevant parameters. An important
and more global question is whether or not these universes could also support life of some
kind. Of course, such questions are made difficult by our current lack of an a priori theory
of life. Nonetheless, some basic requirements can be identified (with reasonable certainty).
In addition to energy sources (provided by stars), there will be additional constraints to
provide the right mix of chemical elements (e.g. carbon in our universe) and a universal
solvent (e.g. water). These additional requirements will place additional constraints on
the allowed region(s) of parameter space.
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