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Abstract. A fully connected qubit network is considered, where every qubit
interacts with every other one. When the interactions between the qubits are
homogeneous, the system is a special case of the finite Lipkin–Meshkov–
Glick (LMG) model. We propose a natural implementation of this model using
superconducting qubits in state-of-the-art circuit QED. The ground state, the
low-lying energy spectrum and the dynamical evolution are investigated. We
find that, under realistic conditions, highly entangled states of Greenberger–
Horne–Zeilinger (GHZ) and W types can be generated. We also comment on
the influence of disorder on the system and discuss the possibility of simulating
complex quantum systems, such as Sherrington–Kirkpatrick (SK) spin glasses,
with superconducting qubit networks.
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1. Introduction

The development of quantum information science has provided us with a fresh perspective on
condensed-matter physics. In the last few years, new tools from quantum information theory
have been applied to several problems in many-body physics [1]. At the center of this novel
approach lies the problem of entanglement, that is, how to quantify the genuinely quantum
correlations [2] in a many-body system and what these correlations can tell us about the system
itself. The entanglement in a given system is also a resource for various quantum information
processing tasks. Spin chains and lattices with short-range interactions have been studied
extensively in this context. Although interactions between neighbors are more common, there
are instances where long-range interactions give a better description of physical systems, such
as certain types of spin glasses [3, 4]. It would be very interesting to be able to use quantum
networks as simulators of such complex quantum systems. Furthermore, connected networks
are attracting considerable interest in quantum information science [5] and in many other
fields [6].

Here, we study a fully connected network, where every qubit interacts with every
other one, irrespective of the distances between them. Crucially, the proposed model is
readily implementable with superconducting qubits [7]. The emerging field of circuit quantum
electrodynamics (QED) [7]–[11] provides a natural system in which a large number of qubits
can be coupled together. In such systems, superconducting qubits play the role of atoms, and a
harmonic-oscillator circuit element plays the role of a cavity with which they interact. If a single
‘cavity’ is simultaneously coupled to a number of qubits, it will mediate coupling between all the
possible qubit pairs (see, e.g. [12])5. If, in addition, the cavity is far off resonance with the qubits,
its degrees of freedom can be integrated out of the problem and we obtain a system in which all
the qubits are pairwise interacting. Previous studies have considered similar circuits for coupling
arbitrarily distant superconducting qubits [13]. However, these studies relied on time-dependent
pulses to selectively couple one qubit pair at a time, whereas here we consider the simultaneous
coupling of all qubit pairs. An important incentive for studying the fully connected network is
that all the different elements for its construction are already in place in the laboratory.

5 The derivation of the mediated-coupling Hamiltonian in the multi-qubit case follows closely that of the two-qubit
case.
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Next, we introduce the model, study its low-lying energy spectrum and its dynamical
response, and discuss the influence of disorder. Our analysis mainly concerns the entanglement
properties of small networks and the generation of highly entangled states in near-future
experiments with existing technologies of superconducting qubits in circuit QED. We also
discuss the possibility of simulating spin glasses with these systems.

2. Model and Hamiltonian

To begin with, we consider N charge (flux) qubits that are coupled capacitively (inductively)
and assume that each qubit is operated at its degeneracy point [7]. Therefore the Hamiltonian is

H= −

N∑
i=1

1i

2
Z i −

∑
(i, j)

Ji j X i X j , (1)

where the second sum runs over all possible qubit pairs. Here, 1i > 0 is the level splitting
and Ji j is the strength of the coupling between qubits i and j . X i , Yi and Z i denote the Pauli
matrices for qubit i . Multi-qubit entanglement generation has been analyzed in trapped ions
and atoms using Hamiltonians of the form in equation (1) [14]6. In a circuit QED setup, which
is the focus of this work, the macroscopic qubits allow individual addressing and readout, in
addition to relatively straightforward scalability. Although additional terms will appear in the
Hamiltonian of this system, these terms can be made negligibly small under realistic conditions,
as was shown in [12].

If we let 1i = 1 and Ji j = J for all qubits, the system is homogeneous and it corresponds
to a special case of the Lipkin–Meshkov–Glick model (LMG) [1, 16]. In this case, the
Hamiltonian can be expressed as

H= −
1

2
ZTotal −

J

2
X 2

Total +
N J

2
, (2)

where ZTotal =
∑N

i=1 Z i and XTotal =
∑N

i=1 X i . From equations (1) and (2) it is clear that the
Hamiltonian commutes with the square of the total pseudo-spin operator,

∑
i(X i + Yi + Z i)

2,
and possesses spin-flip symmetry, i.e. it also commutes with 5i Z i [16].

3. Ground state properties

Two parameter regimes can be identified, namely, 1 � N |J | and 1 � N |J |. In the first case,
the single-qubit term in H dominates and the preferred basis is the eigenbasis of Z , {|0〉, |1〉},
with Z |0〉 = |0〉 (the eigenstates of X are denoted by {|+〉, |−〉}). As |J | → 0 the ground state of
the system becomes equal to the fully separable state

|9SEP〉 = |0〉
⊗N . (3)

We shall employ a pseudo-spin language for convenience; when Ji j < 0 we say that the
interaction is ‘antiferromagnetic’ (AFM), and when Ji j > 0 we say that the interaction is
‘ferromagnetic’ (FM).

6 Multipartite entangled states were also studied in the related system of a Bose–Einstein condensate whose
constituent atoms possess an internal spin (or pseudospin) degree of freedom [15].
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Figure 1. Fidelity |〈9G|φ〉| between the ground state, |9G〉, and the states |9SEP〉,
|9GHZ〉, |9ENT〉 against J for a network of N = 3 qubits. We show (a) the ideal
case and (b) the case where a small perturbation gX i of strength g = 1/100 is
applied to qubit i .

Secondly, if 1 � N |J | then the interaction term in H dominates and the preferred basis
is the {|+〉, |−〉} basis. In this case, the sign of J becomes important. For large, positive J (FM
regime) the interaction term tends to set all the qubits in the same state in the {|+〉, |−〉} basis.
The ‘ideal’ ground state of the system is approximately

|9GHZ〉 =
1

√
2

(
|+〉

⊗N + |−〉
⊗N

)
, (4)

which is known as the Greenberger–Horne–Zeilinger (GHZ) state [2]. In practice, however,
this ideal state is typically fragile under small external perturbations. By contrast, for large and
negative J (AFM regime) the interaction term favors a state in which pairs of neighboring qubits
are antiparallel in the {|+〉, |−〉} basis. Clearly, in a fully connected geometry this condition
is impossible to satisfy because every qubit neighbors every other qubit. This high degree of
frustration in the system leads to highly entangled states, as we show below. For the particular
case of N = 3, there is a relatively simple ground state, namely,

|9ENT〉 =
1

√
3

(|+ − 0〉 + |−0+〉 + |0 + −〉) . (5)

We illustrate the above statements by means of an exact numerical diagonalization,
H|9n〉 = En|9n〉 (for n = 1, 2, . . .). In all numerical simulations, we let 1 = 1 and hence
express the results in units of 1. In figure 1(a), we show the fidelity |〈9G|φ〉| between the
ground state of the system, |9G〉, and the three states |φ〉 of equations (3)–(5) for N = 3, in
the ideal case. In figure 1(b), we calculate the same fidelities but now we apply a small
perturbation gX i , of strength g � 1, to qubit i (it does not matter which one). The symmetry-
breaking term only affects the FM regime, where the |9GHZ〉 becomes increasingly fragile as J
is increased beyond a certain optimal value. This result holds for all small networks with N∼10:
it is always possible to find an optimal value of the coupling strength such that the ground state
is very close to a GHZ state, even in the presence of a small external perturbation. For larger
networks, or stronger perturbations, the behavior is more abrupt and we do not obtain exact or
almost exact GHZ states, in practice.
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Figure 2. (a) Full energy spectrum for a system of size N = 3 against J .
(b) Lower half of the energy spectrum, versus J , for a system of size N = 4.

In figure 2(a), the full energy spectrum for the N = 3 case is presented. In figure 2(b), the
lower half of the spectrum for N = 4 is presented. One can see that the ground state is unique
in the AFM regime and twofold degenerate in the FM regime. Also, there is a finite energy gap
between the ground states and the first excited states, which remains constant with increasing
|J | in the AFM regime and increases with |J | in the FM regime.

We now turn to the entanglement properties of the different possible ground states. We
consider both the entanglement between pairs of qubits and also between blocks of qubits.
Among the various measures of two-qubit entanglement [2], we calculate the logarithmic
negativity [17]. It is defined as

EN(ρi j) ≡ log2 ‖ρ
Ti
i j ‖, (6)

where ‖.‖ denotes the trace norm of a matrix and ρ
T i
i j is the partial transpose of the reduced

density matrix ρi j of two qubits i and j . We also use the von Neumann entropy of a state ρk , for
a block of k < N qubits,

S(ρk) ≡ −tr(ρk log2 ρk). (7)

S(ρk) quantifies how mixed the reduced density matrix ρk is and, if the system as a whole is in
a pure state, it also quantifies the amount of entanglement between the qubits in the set k and
those in the rest of the system.

The pairwise entanglement, EN(ρi j), is shown in figure 3(a) against J for systems of size
N = 3, 4, . . . , 12. We observe that EN(ρi j) decreases with the size of the system N . This can be
explained by the fact that as N increases so does the number of interactions for each individual
qubit. This higher degree of connectivity places stronger monogamy constraints that generally
reduce the two-party entanglements [18]. To study the many-body correlations of the ground
state, we show in figure 3(b) the entanglement of a single qubit i with the rest of the system,
using the von Neumann entropy S(ρi). In the FM regime, the ideal ground state is a GHZ state,
in which every qubit is maximally entangled with the rest of the network. In practice, however,
under the influence of an external perturbation, the system chooses one of the two degenerate
eigenstates and becomes fully separable in the deep FM regime. This is seen in the inset of
figure 3(b), which shows the ground state of a small network perturbed by gX i with strength
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(b)

Figure 3. (a) EN(ρi j) against J for networks of size N = 3 to N = 12 (from top
to bottom). (b) S(ρi) against J for N = 3 to N = 10. Solid lines correspond to
N = 3, 5, 7, 9 (from bottom to top) and broken lines to N = 4, 6, 8, 10 (from top
to bottom), as indicated. In both (a) and (b), the insets correspond to the N = 5
case with a small perturbation gX i of strength g = 1/100.

g = 1/100. In the AFM regime, S(ρi) increases with the size of the network for odd N and it
decreases for even N . This is due to the different symmetries in the two cases, which appear
for small networks but disappear in the thermodynamic limit (see, e.g. [16]). In summary, in the
AFM regime, the system achieves multi-qubit entanglement for any |J | > 0; in the FM regime,
the system achieves a high degree of multi-qubit entanglement in practice, approaching a GHZ
state, for an optimal value of the interaction strength, whereas deep in the FM regime it becomes
fully separable.

4. Dynamical evolution

Next, we study the system’s evolution, which is determined by the state

|9(t)〉 = exp(−iHt)|9(0)〉. (8)

We consider two simple initial states: the state |9SEP〉 of equation (3), and the state |9
(1)

SEP〉 =

|1〉 ⊗ |0〉
⊗N−1, which is the same as |9SEP〉 except that the state of one qubit is flipped. Both of

these states are separable and easy to prepare experimentally. For definiteness, we assume that
J > 0, and we only consider the case of weak coupling, which is most relevant to near-future
experiments.

In the weak-coupling limit, J � 1/N , one can classify the low-lying states according
to the number of elementary excitations they contain. The ground state |9SEP〉 contains no
excitations and does not evolve in time. At an energy ∼1 above the ground state, there
are N energy eigenstates that can be identified as one-excitation states. These states have
the ‘spin-wave’ form |81,k〉 =

1
√

N

∑N
j=1 e2π i jk/N

|01 · · · 0 j−11 j 0 j+1 . . . 0N 〉, where k = 0, 1, . . . ,

N − 1. Their energies (relative to the ground state) are given by 1 − (N − 1)J for k = 0 and
1 + J otherwise. As these N energy eigenstates are separated from all other states by an energy

New Journal of Physics 10 (2008) 113020 (http://www.njp.org/)

http://www.njp.org/


7

at least ∼1, their dynamics can be analyzed in the restricted Hilbert space containing only these
N states. Using the above spectrum, we find that the initial state |9(t = 0)〉 = |9

(1)

SEP〉 evolves,
up to an overall phase factor, into

|9(t)〉 = |9
(1)

SEP〉 +
exp(iN Jt) − 1

√
N

|WN 〉, (9)

where the ‘W state’ [2] is |WN 〉 =
1

√
N

∑N
j=1 |01 · · · 0 j−11 j 0 j+1 · · · 0N 〉. From this result, we

observe that the evolved state is a time-dependent superposition of |9
(1)

SEP〉 and |WN 〉. For large
networks (N → ∞), the second term can be neglected, and the system remains close to its initial
state (the initial excitation is localized). For N = 3 and N = 4, on the other hand, equation (9)
reduces to variants of the W state (when |eiN Jt

− 1| =
√

N ),

|W3〉 =
e±iπ/6

√
3

|100〉 +
e±5iπ/6

√
3

(|010〉 + |001〉)

|W4〉 =
1

2
(−|1000〉 + |0100〉 + |0010〉 + |0001〉).

(10)

For larger, but still weak, coupling we study the evolution using the fidelity between |9(t)〉
and the GHZ and W states. If the initial state is |9SEP〉, then the system evolves into a state that
is close to a GHZ state; if the initial state is |9

(1)

SEP〉, then the system evolves into a state that is
close to a W state, for small networks. For N = 3 and N = 4, |9(t)〉 can be made arbitrarily
close to |9GHZ〉 or |W〉 for properly chosen values of J (see figure 4). It is possible to achieve
multi-qubit entanglement of these two types with networks of size N > 4, but the window for
the required coupling strengths is much sharper and the fidelity maxima decrease below 1. For
instance, for N = 6 and 0 < J < 1/2 the maximum fidelity of the evolved state with the GHZ
state is 0.96, which is still a relatively high fidelity7 [19].

Thus, the fully connected network is well suited for the fast (one-step) preparation of GHZ-
and W-entangled states. This result should be contrasted with the recent work on the generation
of entangled states in superconducting qubit circuits using generally long sequences of basic
operations [20]. For networks with N > 4 and the simple initial states used above, we obtain
entangled states that are different from the GHZ and W states, but still highly entangled and
therefore of potential value for future quantum information technologies (e.g. we only mention
applications related to quantum secret sharing and quantum average estimation [21]).

Finally, we note that the dynamics of entanglement has simple periodicity only in the case
of N = 3, which corresponds to a closed chain. In general, for N > 3, the behavior of the
logarithmic negativity EN(ρi j) is complicated and there are time intervals for which it drops
to zero. As the system size increases, so do the durations of these time intervals. During most
of the intervals in which the pairwise entanglements vanish, the block entanglements increase
to their local maxima. Therefore, the system achieves a form of multi-qubit entanglement. On
the other hand, for small and negative J , we find that the evolution of entanglement shows
more periodic features. The block entropies S(ρk) (for different block sizes k) have their local
maxima at the same times as the EN(ρi j). Hence, in the AFM regime, the system evolves into
an entangled state that is different from the GHZ and W states.

7 Recently it was shown that, in the weak-coupling limit and by applying appropriate single-qubit rotations at
appropriate times, GHZ states with fidelity 1 can be prepared for an arbitrary number of qubits in this system (with
a preparation time that is independent of the number of qubits). It can be expected that the application of the proper
single-qubit rotations will result in high-fidelity preparation of W states as well [19].
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correspond to N = 4, J = 1/3.

5. Static disorder

In the presence of disorder, a system with the Hamiltonian H(1i , Ji j) of equation (1) is
inhomogeneous. As a result, different partitions of the network that correspond to the same
number of qubits are no longer equivalent. We study the influence of uniform, static disorder
on the system by assuming that the Ji j and the 1i are chosen randomly from the intervals
[1 − δ1, 1 + δ1]J and [1 − δ2, 1 + δ2]1, respectively, where δ1,2 ∈ [0, 1] quantify the amount of
disorder in each parameter. We neglect the type of disorder that can move a qubit away from its
degeneracy point, but this is a valid approximation for realistic implementations. The properties
of the low-lying energy sector and the dynamics are studied as an average over many realizations
of H(1i , Ji j) . We only consider the weak-coupling regime, and the case of small networks.

We shall not show any details on these Monte Carlo simulations, as they do not add
any insight beyond the main conclusions. From the numerical calculations, we observe that
disorder in the Ji j is more important than disorder in the 1i . More crucially, we find that the
results reported here, including those on the ground state entanglement and the dynamics of
entanglement, remain largely unaffected for disorder of amount δ1,2 6 10%. This result is in
agreement with previous studies on disorder [22], and it is an experimentally achievable upper
bound.

6. Spin glasses

The simplest examples of glassy systems are spin glasses and they offer the possibility of
studying the behavior of complex systems away from equilibrium. Spin glasses arise when
the interactions between spins are FM for some bonds and AFM for others, in which case the
spin orientation cannot be uniform in space even at low temperatures [3]. In this case, the spin
orientation can become random and frozen in time. A particularly illuminating and extensively
studied model of spin glasses is the Sherrington–Kirkpatrick (SK) model. The SK model in
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a transverse field [4] is given by the Hamiltonian H of equation (1) for interactions that are
disordered in both magnitude and sign. In fact, if the distribution of Ji j is Gaussian, then for
J∼1 the system is a spin glass for temperatures lower than kBT ∼1/4 (see, e.g. [4]).

There are various important open problems in this field, both theoretical and experimental.
For instance, in relation to the proposal of the present work, one such problem is the behavior of
spin glasses in the low temperature phase region, where quantum phenomena dominate (see, e.g.
Parisi in [3]). Some of the advantages of using qubit networks as quantum simulators include the
fact that the states of all the qubits can be prepared controllably and that the dynamics of all the
qubits can be monitored as a function of time, yielding the ‘microscopic’ dynamics of individual
spins and not just averaged spin quantities. Therefore the implementation of fully connected
networks with superconducting qubits, which can be addressed and measured individually,
can offer valuable additional tools for the study of complex quantum systems, such as spin
glasses.

7. Outlook and summary

In this work, we have focused on X X -type interqubit couplings (equation (1)) since this is
relevant to present-day experiments in circuit QED. A modified version of the flux qubit was
proposed recently, which implements Z Z -type couplings [23]. This form of the coupling could
give rise to other types of many-body entangled quantum states [24]. We have also focused on
the case where the cavity is far off resonance with the qubits. Bringing the cavity into resonance
with the qubits would lead to a star geometry with the cavity at the center of the star. In this
case, the Hamiltonian of equation (1) is no longer valid; instead, each qubit interacts only with
the cavity and not other qubits. The addition of a nonlinearity to the cavity can be used to make
the center of the star an effective two-level system [25].

In conclusion, we have proposed an implementation of a qubit network where all qubits
are coupled in pairs, independently of the relative distances between them, as in the finite
LMG model of spin systems. Such a network supports a highly entangled ground state in
the case of AFM interactions, which is robust against small external perturbations. Under
suitable conditions, separable initial states evolve into exact GHZ- and W-type states in the
case of small networks, or other highly entangled states for larger networks. The qualitative
behavior of the system is unaffected by the presence of static disorder, as long as the amount
of disorder is under about 10%. Thus, the system is well-suited for the generation of many-
body entangled states with macroscopic superconducting qubits. The presence of entanglement
in such systems can be witnessed experimentally via combinations of two-qubit correlation
measurements, as for example described in [22]. Another promising prospect is the simulation
of spin glasses. The fully connected network could be realized experimentally in the near future
with superconducting qubits in circuit QED.

Acknowledgments

We would like to thank A Galiautdinov for useful discussions. This work was supported in
part by the NSA, LPS, ARO, NSF (grant no. EIA-0130383) and the JSPS-CTC program.
DIT acknowledges the support of the EPSRC (EP/D065305/1).

New Journal of Physics 10 (2008) 113020 (http://www.njp.org/)

http://www.njp.org/


10

References

[1] Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517
[2] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2007 arXiv:quant-ph/0702225

Plenio M B and Virmani S 2007 Quantum Inf. Comput. 7 1
[3] Binder K and Young A P 1986 Rev. Mod. Phys. 58 801

Nishimori H 2001 Statistical Physics of Spin Glasses and Information Processing (Oxford: Oxford University
Press)

Parisi G 2006 Proc. Natl Acad. Sci. USA 103 7948
[4] Thirumalai D, Li Q and Kirkpatrick T R 1989 J. Phys. A: Math. Gen. 22 3339

Rozenberg M J and Arrachea L 2002 Physica B 312 416
[5] Acin A, Cirac J I and Lewenstein M 2007 Nat. Phys. 3 256
[6] Albert R and Barabási A-L 2002 Rev. Mod. Phys. 74 47

Newman M, Barabási A-L and Watts D J 2006 The Structure and Dynamics of Networks (Princeton, NJ:
Princeton University Press)

[7] You J Q and Nori F 2005 Phys. Today 58 (11) 42
Clarke J and Wilhelm F K 2008 Nature 453 1031

[8] You J Q, Tsai J S and Nori F 2003 Phys. Rev. B 68 024510
You J Q and Nori F 2003 Phys. Rev. B 68 064509

[9] Chiorescu I, Bertet P, Semba K, Nakamura Y, Harmans C J P M and Mooij J E 2004 Nature 431 159
[10] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R-S, Majer J, Kumar S, Girvin S M and Schoelkopf R J

2004 Nature 431 162
[11] Johansson J, Saito S, Meno T, Nakano H, Ueda M, Semba K and Takayanagi H 2006 Phys. Rev. Lett.

96 127006
[12] Ashhab S, Niskanen A O, Harrabi K, Nakamura Y, Picot T, de Groot P C, Harmans C J P M, Mooij J E and

Nori F 2008 Phys. Rev. B 77 014510
[13] Makhlin Y, Schön G and Shnirman A 2001 Rev. Mod. Phys. 73 357

You J Q, Tsai J S and Nori F 2002 Phys. Rev. Lett. 89 197902
[14] Molmer K and Sorensen A 1999 Phys. Rev. Lett. 82 1835

Helmerson K and You L 2001 Phys. Rev. Lett. 87 170402
Zheng S-B 2001 Phys. Rev. Lett. 87 230404

[15] Law C K, Pu H and Bigelow N P 1998 Phys. Rev. Lett. 81 5257
Ho T-L and Yip S-K 2000 Phys. Rev. Lett. 84 4031
Kuklov A B and Svistunov B V 2002 Phys. Rev. Lett. 89 170403
Ashhab S and Leggett A J 2003 Phys. Rev. A 68 063612

[16] Lipkin H J, Meshkov N and Glick A J 1965 Nucl. Phys. 62 188
Vidal J, Palacios G and Aslangul C L 2004 Phys. Rev. A 70 062304
Dusuel S and Vidal J 2004 Phys. Rev. Lett. 93 237204
Barthel T, Dusuel S and Vidal J 2006 Phys. Rev. Lett. 97 220402
Ribeiro P, Vidal J and Mosseri R 2008 Phys. Rev. E 78 021106
Orús R, Dusuel S and Vidal J 2008 Phys. Rev. Lett. 101 025701

[17] Plenio M B 2005 Phys. Rev. Lett. 95 090503
[18] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306

Ferraro A, García-Saez A and Acín A 2007 Phys. Rev. A 76 052321
[19] Galiautdinov A unpublished

Galiautdinov A and Martinis J M 2008 Phys. Rev. A 78 010305
[20] Yang C-P and Han S 2004 Phys. Rev. A 70 062323

Wei L F, Liu Y-X and Nori F 2006 Phys. Rev. Lett. 96 246803
Migliore R, Yuasa K, Nakazato H and Messina A 2006 Phys. Rev. B 74 104503
Matsuo S, Ashhab S, Fujii T, Nori F, Nagai K and Hatakenaka N 2007 J. Phys. Soc. Japan 76 054802

New Journal of Physics 10 (2008) 113020 (http://www.njp.org/)

http://dx.doi.org/10.1103/RevModPhys.80.517
http://arxiv.org/abs/quant-ph/0702225
http://dx.doi.org/10.1103/RevModPhys.58.801
http://dx.doi.org/10.1073/pnas.0601120103
http://dx.doi.org/10.1088/0305-4470/22/16/023
http://dx.doi.org/10.1016/S0921-4526(01)01553-8
http://dx.doi.org/10.1038/nphys549
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1063/1.2155757
http://dx.doi.org/10.1038/nature07128
http://dx.doi.org/10.1103/PhysRevB.68.024510
http://dx.doi.org/10.1103/PhysRevB.68.064509
http://dx.doi.org/10.1038/nature02831
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1103/PhysRevLett.96.127006
http://dx.doi.org/10.1103/PhysRevB.77.014510
http://dx.doi.org/10.1103/RevModPhys.73.357
http://dx.doi.org/10.1103/PhysRevLett.89.197902
http://dx.doi.org/10.1103/PhysRevLett.82.1835
http://dx.doi.org/10.1103/PhysRevLett.87.170402
http://dx.doi.org/10.1103/PhysRevLett.87.230404
http://dx.doi.org/10.1103/PhysRevLett.81.5257
http://dx.doi.org/10.1103/PhysRevLett.84.4031
http://dx.doi.org/10.1103/PhysRevLett.89.170403
http://dx.doi.org/10.1103/PhysRevA.68.063612
http://dx.doi.org/10.1016/0029-5582(65)90862-X
http://dx.doi.org/10.1103/PhysRevA.70.062304
http://dx.doi.org/10.1103/PhysRevLett.93.237204
http://dx.doi.org/10.1103/PhysRevLett.97.220402
http://dx.doi.org/10.1103/PhysRevE.78.021106
http://dx.doi.org/10.1103/PhysRevLett.101.025701
http://dx.doi.org/10.1103/PhysRevLett.95.090503
http://dx.doi.org/10.1103/PhysRevA.61.052306
http://dx.doi.org/10.1103/PhysRevA.76.052321
http://dx.doi.org/10.1103/PhysRevA.78.010305
http://dx.doi.org/10.1103/PhysRevA.70.062323
http://dx.doi.org/10.1103/PhysRevLett.96.246803
http://dx.doi.org/10.1103/PhysRevB.74.104503
http://dx.doi.org/10.1143/JPSJ.76.054802
http://www.njp.org/


11

[21] Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
Schmid C, Trojek P, Weinfurter H, Bourennane M, Zukowski M and Kurtsiefer C 2005 Phys. Rev. Lett.

95 230505
Wang A M 2007 Phys. Rev. A 75 062323
Di Franco C, Paternostro M and Kim M S 2008 Phys. Rev. A 77 020303
Di Franco C, Paternostro M, Tsomokos D I and Huelga S F 2008 Phys. Rev. A 77 062337

[22] Tsomokos D I, Hartmann M J, Huelga S F and Plenio M B 2007 New J. Phys. 9 79
[23] Kerman A J and Oliver W D 2008 Phys. Rev. Lett. 101 070501
[24] Hein M, Dür W, Eisert J, Raussendorf R, Van den Nest M and Briegel H-J 2006 arXiv:quant-ph/0602096

Dür W, Hartmann L, Hein M, Lewenstein M and Briegel H-J 2005 Phys. Rev. Lett. 94 097203
[25] Hutton A and Bose S 2004 Phys. Rev. A 69 042312

New Journal of Physics 10 (2008) 113020 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevA.59.1829
http://dx.doi.org/10.1103/PhysRevLett.95.230505
http://dx.doi.org/10.1103/PhysRevA.75.062323
http://dx.doi.org/10.1103/PhysRevA.77.020303
http://dx.doi.org/10.1103/PhysRevA.77.062337
http://dx.doi.org/10.1088/1367-2630/9/3/079
http://dx.doi.org/10.1103/PhysRevLett.101.070501
http://arxiv.org/abs/quant-ph/0602096
http://dx.doi.org/10.1103/PhysRevLett.94.097203
http://dx.doi.org/10.1103/PhysRevA.69.042312
http://www.njp.org/

	1. Introduction
	2. Model and Hamiltonian
	3. Ground state properties
	4. Dynamical evolution
	5. Static disorder
	6. Spin glasses
	7. Outlook and summary
	Acknowledgments
	References

