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Abstract. In this paper, we consider the eigenvalues and eigenvectors of finite, low
rank perturbations of random matrices. Specifically, we prove almost sure convergence
of the extreme eigenvalues and appropriate projections of the corresponding eigenvectors
of the perturbed matrix for additive and multiplicative perturbation models.

The limiting non-random value is shown to depend explicitly on the limiting spectral
measure and the assumed perturbation model via integral transforms that correspond
to very well known objects in free probability theory that linearize non-commutative
free additive and multiplicative convolution. Moreover, we uncover a remarkable phase
transition phenomenon whereby the large matrix limit of the extreme eigenvalues of the
perturbed matrix differs from that of the original matrix if and only if the eigenvalues
of the perturbing matrix are above a certain critical threshold. This critical threshold is
intimately related to the same aforementioned integral transforms.

We examine the consequence of this eigenvalue phase transition on the associated
eigenvectors and generalize our results to examine the singular values and vectors of finite,
low rank perturbations of rectangular random matrices. The analysis brings into sharp
focus the analogous connection with rectangular free probability. Various extensions of
our results are discussed.

1. Introduction

Let Xn be an n×n matrix with real eigenvalues λ1(Xn), . . . , λn(Xn) and Pn be an n×n
matrix with rank r ≤ n and real eigenvalues θ1, . . . , θr. A fundamental question in matrix
analysis is the following [12, 2]:

How are the eigenvalues and eigenvectors of Xn + Pn related to the eigen-
values and eigenvectors of Xn and Pn?

When Xn and Pn are diagonalized by the same eigenvectors then we have λi(Xn+Pn) =
λj(Xn)+λk(Pn) for appropriate choice of indices i, j, k ∈ {1, . . . , n}. In the general setting,
however, the answer is much more complicated because the eigenvalues and eigenvectors of
their sum depend on the relationship between the eigenspaces of the individual matrices.
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In this scenario, one can use Weyl’s interlacing inequalities [20] to obtain coarse bounds
for the eigenvalues of the sum in terms of the eigenvalues of Xn. When the norm of Pn

is small relative to the norm of Xn, tools from perturbation theory (see [20, Chapter 6]
or [33]) can be employed to improve the characterization of the bounded set in which the
eigenvalues of the sum must lie. Exploiting any special structure in the matrices allows
us to refine these bounds [22] but this is pretty much as far as the theory goes. Instead of
exact answers we have a system of messy, coupled bounds. The eigenvector story is even
more convoluted.

Surprisingly, adding some randomness to the eigenspaces permits further analytical
progress. Specifically, if the eigenspaces are assumed to be isotropically random and “in
generic position with respect to each other”, then analytical elegance returns in the limit
of large matrices.

In place of eigenvalue bounds we have simple, exact answers that are to be interpreted
probabilistically. The results bring into sharp focus a remarkable phase transition phe-
nomenon of the kind illustrated in Figure 1 for the eigenvalues and eigenvectors ofXn+Pn.
In this paper, we also uncover a similar phase transition behavior for the eigenvalues and
eigenvectors of Xn(I +Pn) and, in the case where Xn, Pn are rectangular, for the singular
values and singular vectors of Xn + Pn. A precise statement of the results may be found
in Section 2.

Examining the structure of the analytical expression for θc and ρ in Figure 1 reveals
a common underlying theme in the additive, multiplicative and rectangular cases. The
critical values θc and ρ in Figure 1 are related to integral transforms of the limiting spectral
measure µX of Xn. It turns out that these G, T and D integral transforms that emerge
in the respective additive, multiplicative and rectangular cases are deeply related to very
well known objects in free probability theory [34, 19] that linearize (non-commutative)
free additive, multiplicative [34] and rectangular [9, 8] convolutions respectively.

The emergence of these transforms in the context of the study of the extreme/isolated
eigenvalue behavior should be of independent interest to free probabilists. This justifies
our anointment of the study of finite, low rank perturbations of large random matrices as
“spiked” free probability theory. In this framework, regular free probability theory would
correspond the study of full rank perturbations of large random matrices.

The development of spiked free probability theory is the main contribution of this
paper. In doing so, we dramatically extend the results found in the literature for the
eigenvalue phase transition in such finite, low rank perturbation models well beyond the
Gaussian [3, 4, 28, 21, 17, 13, 6], Wishart [16, 27, 25] and Jacobi settings [24]. In our
situation, the distribution µX in Figure 1 can be any probability measure. Consequently,
the aforementioned results in the literature can be rederived rather simply using the
formulas in Section 2 by substituting µX with the semi-circle measure [35] (for Gaussian
matrices), the Marčenko-Pastur measure [23] (for Wishart matrices) or the free Jacobi
measure (for Jacobi matrices [14]). See Section 3 for some concrete computations.

The development of the eigenvector aspect of the story is another important contri-
bution that we would like to highlight. Generally speaking, the eigenvector question has
received much less much attention in random matrix theory and in free probability theory
despite impressive breakthroughs [11]. A notable exception is the recent body of work on
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(a) Largest eigenvalue ρ > b in blue when
θ > θc

u

ũ

(b) Associated eigenvector
when θ > θc

(c) Largest eigenvalue ρ = b in blue when
θ ≤ θc

u
ũ

(d) Associated eigenvector
when θ ≤ θc

Figure 1. Informally speaking, suppose that the histogram of the eigen-
values of Xn, normalized to have area one, falls on the solid curve µX in (a)
with largest eigenvalue b. Consider the matrix Pn := θuu∗ with rank r = 1
and largest eigenvalue θ(> 0 say). The vector u is an n × 1 vector cho-
sen uniformly at random from the unit n-sphere. The largest eigenvalue of
Xn +Pn will differ from b if and only if θ is greater than some critical value
θc. In this event, the largest eigenvalue will be concentrated around ρ with
high probability. The associated eigenvector ũ will, with high probability,
lie on a cone around u as in (b). When θ ≤ θc, a phase transition occurs
so that with high probability the largest eigenvalue of the sum will equal
b as in (c) and the corresponding eigenvector will be uniformly distributed
on the unit sphere as in (d). For details, see Section 2.

the eigenvectors of spiked Wishart matrices [27, 21, 25] which corresponds to µX being
the Marčenko-Pastur measure. In this paper, we extend their results for multiplicative
models of the kind Xn(I+Pn) to the setting where µX is an arbitrary probability measure
and obtain new results for the eigenvectors for additive models and the singular vectors
for rectangular models.
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Our proofs rely heavily on the derivation of master equation representations of the
eigenvalues and eigenvectors of the perturbed matrix and the subsequent application of
concentration inequalities for random vectors uniformly distributed on high dimensional
unit spheres to these implicit master equation representations. Consequently, our tech-
nique is simpler, more general and more transparently reveals the source of the phase
transition phenomenon than other proofs found in the literature.

The paper is organized as follows. In Section 2, we state the main results and present
the G, T and D integral transforms mentioned above, in Section 3, we give examples, and
the rest of the paper is devoted to the proofs (sketches of the proofs in Section 4, master
equations for the eigenvalues and eigenvectors of perturbed matrices in Section 5, proofs
of the main results in Sections 6 to 10 and proofs of technical results needed here in the
Appendix).

2. Main results

Let Xn be an n×n symmetric (or Hermitian) random matrix with eigenvalues λ1(Xn) ≥
· · · ≥ λn(Xn). We denote by µXn the empirical distribution on the set of its eigenvalues,
i.e., the probability measure defined as

µXn =
1

n

n∑

j=1

δλj(Xn).

Assume that the probability measure µXn converges almost surely weakly, as n tends to
infinity, to a non-random, compactly supported probability measure µX . Let the smallest
and largest eigenvalues of Xn converge almost surely to a and b which are, respectively,
the infimum and supremum of the support of µX .

Let us fix a positive integer r and some non-random real numbers θ1 ≥ · · · ≥ θr not
equal to zero. For each n, let Pn be an n × n symmetric (or Hermitian) random matrix
independent of Xn, which non null eigenvalues are θ1, . . . , θr. Let s ∈ {0, . . . , r} where
θ1 ≥ · · · ≥ θs > 0 > θs+1 ≥ · · · ≥ θr.

We suppose that either Xn or Pn is invariant, in law, by conjugation by any orthogonal
(or unitary) matrix.

For M an Hermitian n × n matrix, we denoted by λ1(M) ≥ · · · ≥ λn(M) the ordered

eigenvalues of M . Let
a.s.−→ denote almost sure convergence. At last, let, for F a subspace

of an Euclidian space E and x ∈ E, 〈x, F 〉 denote the norm of the orthogonal projection
of x onto F . We are now ready to state our main results.

2.1. Extreme eigenvalues and eigenvectors under additive perturbations. Let
us define

X̃n = Xn + Pn.

Theorem 2.1 (Eigenvalue phase transition). The extreme eigenvalues of X̃n exhibit the
following behavior as n −→ ∞. We have that for each i = 1, . . . , s,

λi(X̃n)
a.s.−→

{
G−1

µX
(1/θi) if 1/θi < GµX

(b+),

b otherwise,
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while for each i = s + 1, . . . , r,

λn−r+i(X̃n)
a.s.−→

{
G−1

µX
(1/θi) if 1/θi > GµX

(a−),

a otherwise.

where

GµX
(z) =

∫
1

z − t
dµX(t) for z /∈ supp µX ,

is the Cauchy (or G) transform of µX.

Theorem 2.2 (Norm of eigenvector projection). Consider indices i0 ∈ {1, . . . , r} such
that 1/θi0 ∈ (GµX

(a−), GµX
(b+)). For each n, define

zn :=

{
λi0(X̃n) if θi0 > 0,

λn+r−i0(X̃n) if θi0 < 0,

and let xn be a unit eigenvector of X̃n associated with the eigenvalue zn. Then we have

(a)

〈xn, ker(θi0In − Pn)〉2 a.s.−→ −1

θ2
i0
G′

µX
(ρ)

where ρ = G−1
µX

(1/θi0) is the limit of zn;

(b)

〈xn,⊕j 6=i0 ker(θjIn − Pn)〉 a.s.−→ 0,

as n −→ ∞.

Theorem 2.3 (Eigenvector phase transition). Suppose here that r = 1 and denoted the
non-null eigenvalue of Pn by θ. Suppose that

1

θ
/∈ (GµX

(a−), GµX
(b+)), and

{
G′

µX
(b+) = −∞ if θ > 0,

G′
µX

(a−) = −∞ if θ < 0.

For each n, let xn be a unit eigenvector of X̃n associated with either the largest or smallest
eigenvalue depending on whether θ > 0 or θ < 0 respectively. Then we have

〈xn, ran(Pn)〉 a.s.−→ 0

as n −→ ∞.

Remark 2.4 (Subtlety regarding the eigenvector phase transition). Let us say a few
words about the hypotheses of Theorem 2.3. The strong hypotheses we make here (r = 1
and a certain function has infinite integral), compared to the ones of Theorem 2.2, could
convey the impression that the phase transition for the localization of the eigenvectors
associated with the extreme eigenvalues of Xn + Pn has not been treated in its full gen-
erality. Specifically, one might still hope that the statement of Theorem 2.2 remains true

for an eigenvalue zn having limit ρ ∈ {a, b} as long as −G′
µX

(ρ), which is equal to
∫ dµX(t)

(ρ−t)2
,

is finite and that the statement of Theorem 2.3 might stay true for arbitrary r.
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In fact, if stronger hypotheses on the manner in which the spectral measure of Xn tends
to µX as n −→ ∞ were incorporated, then both of these theorems could be generalized
in this direction. Indeed, the key, in the proof of Theorem 2.2, is that

∫
dµ

(n)
i,j (t)

zn − t
−→
n→∞

1i=jGµX
(ρ),

∫
dµ

(n)
i,i (t)

(zn − t)2
−→
n→∞

∫
dµX(t)

(ρ− t)2
(1)

and the key, to generalize the proof of Theorem 2.3 for r > 1, would be to have

∫ dµ
(n)
i,j (t)

(zn−t)2

(∫ dµ
(n)
i,i (t)

(zn−t)2

∫ dµ
(n)
j,j (t)

(zn−t)2

) 1
2

−→
n→∞

1i=j . (2)

Simulations, however, suggest that stronger hypotheses on the λi(Xn)’s are needed to
generalize (1) and (2). That said, it appears that when the spacings between the λi(Xn)’s
are more “random matrix like” than “independent sample like”, then (1) and (2) seem to
hold without imposing any particular requirements on µX .

2.2. Extreme eigenvalues and eigenvectors under multiplicative perturbations.

In this section, the hypotheses are the ones introduced at the beginning of Section 2. We
suppose moreover that for all n, Xn is a non-negative definite matrix and that µX 6= δ0.

Let us define

X̃n = Xn(In + Pn).

Theorem 2.5 (Eigenvalue phase transition). The extreme eigenvalues of X̃n exhibit the
following behavior as n −→ ∞, assuming that µX 6= δ0. We have that for each i = 1, . . . , s,

λi(X̃n)
a.s.−→

{
T−1

µX
(1/θi) if 1/θi < TµX

(b+),

b otherwise,

while for each i = s + 1, . . . , r,

λn−r+i(X̃n)
a.s.−→

{
T−1

µX
(1/θi) if 1/θi > TµX

(a−),

a otherwise,

where

TµX
(z) =

∫
t

z − t
dµX(t) for z /∈ supp µX ,

is the T-transform of µX (defined in Section 2.4.2).

Theorem 2.6 (Norm of eigenvector projection). Consider indices i0 ∈ {1, . . . , r} such
that 1/θi0 ∈ (TµX

(a−), TµX
(b+)). For each n, define

zn :=

{
λi0(X̃n) if θi0 > 0,

λn+r−i0(X̃n) if θi0 < 0,

and let xn be a unit eigenvector of X̃n associated with the eigenvalue zn. Then we have
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a)

〈xn, ker(θi0In − Pn)〉2 a.s.−→ −1

θ2
i0
ρT ′

µX
(ρ) + θi0

,

where ρ = T−1
µX

(1/θi0) is the limit of zn;

b)

〈xn,⊕j 6=i0 ker(θjIn − Pn)〉 a.s.−→ 0,

as n −→ ∞.

Theorem 2.7 (Eigenvector phase transition). Suppose here that r = 1 and denoted the
non-null eigenvalue of Pn by θ. Suppose that

1

θ
/∈ (TµX

(a−), TµX
(b+)), and

{
T ′

µX
(b+) = −∞ if θ > 0,

T ′
µX

(a−) = −∞ if θ < 0.

For each n, let xn be an eigenvector of X̃n associated with either the largest or smallest
eigenvalue depending on whether θ > 0 or θ < 0, respectively. Then, by we have

〈xn, ran(Pn)〉 a.s.−→ 0

as n −→ ∞.

The analogue of Remark 2.4 also applies here.

Remark 2.8 (Eigenvalues and eigenvectors of a similarity transformation ofX). Consider

the matrix Sn = (In + Pn)1/2Xn(In + Pn)1/2. The matrix Sn and X̃n = Xn(In + Pn) are

related by a similarity transformation Sn = (I + Pn)1/2X̃n(I + Pn)−1/2 so that they share
the same eigenvalues and consequently the same limiting eigenvalue behavior in Theorem
2.5. Additionally, if xn is a unit norm eigenvector of X̃n then yn = (In + Pn)

1/2xn/ ‖
(In + Pn)1/2xn ‖ is an eigenvector of Sn. Consequently, we have

〈yn, ker(θi0In − Pn)〉2 =
(θi0 + 1)〈xn, ker(θi0In − Pn)〉2
θi0〈xn, ker(θi0In − Pn)〉2 + 1

.

It follows that we have the same phase transition and that when 1/θi0 ∈ (TµX
(a−), TµX

(b+)),

〈yn, ker(θi0In − Pn)〉2 a.s.−→ − θi0 + 1

θi0T
′
µX

(ρ)
and 〈yn,⊕j 6=i0 ker(θjIn − Pn)〉 a.s.−→ 0,

so that we have proved the analogue of Theorems 2.6 and 2.7 for the eigenvectors of Sn.

2.3. Extreme singular values and singular vectors under additive perturba-

tions. Let us now treat the problem of the extreme singular values and of the associated
singular pairs of vectors for rectangular random matrices. In the particular case where our
rectangular matrices appear to be square, our results also allow treat the case of smallest
singular values1.

For this section, we adapt the hypotheses introduced in the beginning of Section 2 to
the rectangular setting. For each n, Xn is a real (or complex) n×m random matrix which

1This particularity of the “square case” is due to the fact that for c = 1, for any probability measure
µ with support contained in (0, +∞), the function Dµ(c, ·) is positive and increasing between 0 and the
minimum of the support of µ (see Section 2.4.3 for more details).
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is not anymore symmetric (or Hermitian), with singular values σ1(Xn) ≥ · · · ≥ σn(Xn).
The integer m ≥ n shall also tend to infinity2 in such a way that n/m tends to a limit
c ∈ [0, 1].

Assume that the empirical distribution on the set of its singular values, i.e.

1

n

n∑

j=1

δσj(Xn)

converges almost surely weakly, as n,m tend to infinity, to a non-random, compactly
supported probability measure µX . Let the smallest and largest singular values of Xn

converge almost surely to a and b which are, respectively, the infimum and supremum of
the support of µX .

For each n, Pn is an n×m real (or complex) random matrix independent of Xn, which
non null singular values are θ1 ≥ · · · ≥ θr (which are non-random and independent of n,
as in the Hermitian context).

We suppose that either Xn or Pn is invariant, in law, by multiplication, on both sides,
by any orthogonal (or unitary) matrix.

We define

X̃n = Xn + Pn.

For X an n × m matrix, we denoted by σ1(X) ≥ · · · ≥ σn(X) the ordered singular
values of X.

2.3.1. Singular values.

Theorem 2.9 (Singular value phase transition). The r largest singular values of the n×m
perturbed matrix X̃n exhibit the following behavior as n,m→ ∞ and n/m→ c. We have
that for each i = 1, . . . , r,

σi(X̃n)
a.s.−→

{
D−1

µX
(c, 1/θ2

i ) if 1/θ2
i < DµX

(c, b+),

b otherwise,

where

DµX
(c, z) =

[∫
z

z2 − t2
dµ(t)

]
·
[
c

∫
z

z2 − t2
dµ(t) +

1 − c

z

]
for z > b,

is the D-transform of µX.

In the special case where a > 0 and m is always equal to n, so that n/m → 1, we also
have, for each i ∈ {1, . . . , r},

σn−1+i(X̃n)
a.s.−→

{
D−1

µX ,[0,a)(1/θ
2
i ) if 1/θ2

i < DµX
(a−),

a otherwise.

where DµX ,[0,a)(z) is defined as DµX
(1, z) above, but with z ∈ [0, a).

2To be as rigorous as possible, one should make m depend on n, thus write mn. However, in order to
lighten the notation, we omit the index n and only write m.
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2.3.2. Brief review on pairs of singular vectors. Let X be an n ×m matrix with entries
in the field K (which can be either R or C) with singular values σ1 ≥ · · · ≥ σn. For
i = 1, . . . , n, a pair of singular vectors of X associated with σi is a pair (u, v) of non-zero
column vectors such that

‖u‖ = ‖v‖, Xv = σiu and X∗u = σiv.

These pairs are closely related to the decomposition of

X = U



σ1

. . .
σn


V ∗ (U, V n× n, m× n matrices, UU∗ = In = V ∗V ),

since for all i = 1, . . . , n, the i-th columns of U and V form a pair of singular vectors of
X associated with σi. Note also that for such a pair (u, v),

u ∈ ker(σ2
i In −XX∗) and v ∈ ker(σ2

i Im −X∗X).

2.3.3. Results in the singular vectors. Let us first consider a singular value θi0 of Pn which
gives rise to a singular value zn of Xn + Pn with limit ρ /∈ [a, b]. The following theorem
says that a pair of unit-length singular vectors (un, vn) of Xn + Pn associated with zn

somehow “keeps something” from the pairs of singular vectors of Pn associated with θi0 .
Indeed, for all j = 1, . . . , r, the norms of the orthogonal projection of un and vn onto
respectively ker(θ2

j In − PnP
∗
n) and ker(θ2

j Im − P ∗
nPn) have positive limits for j = i0 and

null limits for j 6= i0 and the relation Pnvn = θi0un, though false in general, has a “non
null true component”.

Theorem 2.10 (Norm of projection of singular vectors). Consider indices i0 ∈ {1, . . . , r}
such that 1/θi0 ∈ (0, DµX

(c, b+)). For each n, define zn = σi0(X̃n) and let (un, vn) be the

corresponding pair of unit singular vectors of X̃n. Then we have

a)

〈un, ker(θ
2
i0
In − PnP

∗
n)〉2 a.s.−→ −2ϕµX

(ρ)

θ2
i0
∂zDµX

(c, ρ)
, (3)

b)

〈vn, ker(θ
2
i0Im − P ∗

nPn)〉2 a.s.−→ −2ϕµ̃X
(ρ)

θ2
i0
∂zDµX

(c, ρ)
, (4)

as n −→ ∞, where ρ = D−1
µX

(c, 1/θ2
i0) is the limit of zn, the probability measure

µ̃X = cµX + (1 − c)δ0 and

ϕµ(z) =

∫
z

z2 − t2
dµ(t).

Furthermore, in the same asymptotic limit we have

c)

〈un,⊕j 6=i0 ker(θ2
j In − PnP

∗
n)〉 a.s.−→ 0, and 〈vn,⊕j 6=i0 ker(θ2

j Im − P ∗
nPn)〉 a.s.−→ 0,

d)

〈ϕµX
(ρ)Pn(vn) − un, ker(θ

2
i0In − PnP

∗
n)〉 a.s.−→ 0,
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e) in the case where a > 0 and m is always equal to n, a), b), c) and d) are also valid
for zn = σn−1+i0(Xn + Pn) and ρ = D−1

µX ,[0,a)(1/θ
2
i0
).

Remark 2.11. Note that in the case where c = 1 (as in Part e)), the quantities of (3)
and (4) are equal and reduce to

− 1

θ2
i0
ϕµX

(ρ)
.

The quantity ϕµX
(ρ), which appears in Part d), also reduces to 1/θi0.

Let us now consider the pairs of singular vectors corresponding to extreme singular
values which are asymptotically in the boundary of the support of µX , in the case where
r = 1. Here, unlike in the previous theorem, these pairs are asymptotically orthogonal to
the pairs of singular vectors associated with the non null singular value of Pn.

Theorem 2.12. Suppose here that r = 1 and denote the unique nonzero singular value
of Pn by θ. Suppose that

1/θ2 ≥ DµX
(c, b+) and ϕ′

µX
(b+) = −∞. (5)

Let, for each n, (un, vn) be a pair of unit singular vectors of Xn + Pn associated with its
larger singular value zn. Then

〈un, ker(θ
2In − PnP

∗
n)〉 a.s.−→ 0, and 〈vn, ker(θ

2Im − P ∗
nPn)〉 a.s.−→ 0.

This result stays true for the smallest singular value if m is always equal to n and instead
of the hypotheses of (5), one supposes that

a > 0, 1/θ2 ≥ DµX ,[0,a)(a
−) and ϕ′

µX
(a−) = −∞.

The analogue of Remark 2.4 also applies here.

2.4. The G, T and D transforms in free probability theory.

2.4.1. The Cauchy or G-transform and its relation to additive free convolution. Let µ be
a compactly supported law on the real line. Let us define

Gµ(z) =

∫
dµ(t)

z − t

for z out of the support of µ. Let [a, b] be the convex hull of the support of µ. Since we
have

• ∂zGµ(z) = −
∫ dµ(t)

(z−t)2
out of the support of µ, which implies that Gµ is decreasing

on each of the intervals (−∞, a) and (b,+∞),
• Gµ < 0 on (−∞, a) and Gµ > 0 on (b,+∞),
• Gµ(z) → 0 as |z| → +∞,

it follows that Gµ(a
−) := limz↑aGµ(z) and Gµ(b

+) := limz↓bGµ(z) exist in respectively
[−∞, 0) and (0,+∞] and Gµ realizes decreasing homeomorphisms from (−∞, a) onto
(Gµ(a

−), 0) and from (b,+∞) onto (0, Gµ(b
+)).

In this paper, we shall denote by G−1
µ the inverses of these homeomorphisms, even

though Gµ shall sometimes define other homeomorphisms on the holes of the support of
µ.
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The so-called R-transform

Rµ(z) := G−1
µ (z) − 1

z
is the analogue of the logarithm of the Fourier transform for the free additive convolution,
since for all probability measures µ1, µ2, µ1 ⊞ µ2 is characterized by the fact that

Rµ1⊞µ2(z) = Rµ1(z) +Rµ2(z).

The coefficients of the series expansion of Rµ(z) are the so called free cumulants of µ (see
[26, 1]).

2.4.2. The T -transform and its relation to multiplicative free convolution. Let µ 6= δ0 be
a law with compact support contained in [0,+∞). Let us denote by [a, b] the convex hull
of the support of µ. Let us define the T -transform of µ

Tµ(z) =

∫
t

z − t
dµ(t)

for z out of the support of µ. Since we have

• ∂zTµ(z) = −
∫

t
(z−t)2

dµ(t) out of the support of µ, which implies that Tµ is de-

creasing on each of the intervals (−∞, a) and (b,+∞),
• Tµ < 0 on (−∞, a) and Tµ > 0 on (b,+∞),
• Tµ(z) → 0 as |z| → +∞,

it follows that Tµ(a
−) := limz↑a Tµ(z) and Tµ(b+) := limz↓b Tµ(z) exist in respectively

[−∞, 0) and (0,+∞] and Tµ realizes decreasing homeomorphisms from (−∞, a) onto
(Tµ(a−), 0) and from (b,+∞) onto (0, Tµ(b+)).

In this paper, we shall denote by T−1
µ the inverses of these homeomorphisms, even

though Tµ shall sometimes define other homeomorphisms on the holes of the support of
µ.

The so-called S-transform

Sµ(z) :=
1 + z

z
· 1

T−1
µ (z)

(6)

is the analogue of the Fourier transform for the free multiplicative convolution, since for
all probability measures µ1, µ2, µ1 ⊠ µ2 is characterized by the fact that

Sµ1⊠µ2(z) = Sµ1(z)Sµ2(z).

2.4.3. The D-transform and its relation to rectangular additive free convolution. Let µ
be a law with compact support contained in [0,+∞). Let us denote by [a, b] the convex
hull of the support of µ. We define, for any probability measure τ on the real line,
ϕτ (z) =

∫
z

z2−t2
dτ(t). For c ∈ [0, 1], the D-transform with ratio c of µ is the function

Dµ(c, z) = ϕµ(z)ϕcµ+(1−c)δ0(z) (z > b).

For any fixed c, we have

• Dµ(c, z) > 0 for all z ∈ (b,+∞),
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• for all z,

−∂zDµ(c, z) = ϕcµ+(1−c)δ0(z)

∫
z2 + t2

(z2 − t2)2
dµ(t)+ϕµ(z)

∫
z2 + t2

(z2 − t2)2
d[cµ+(1−c)δ0](t), (7)

which implies that Dµ(c, ·) is decreasing on (b,+∞),
• Dµ(c, z) → 0 as |z| → +∞,

it follows that Dµ(c, b+) := limz↓bDµ(c, z) exist in (0,+∞] and Dµ(c, ·) realizes a decreas-
ing homeomorphism from (b,+∞) onto (0, Dµ(c, b

+)).

In this paper, we shall denote by Dµ(c, ·)−1 the inverses of these homeomorphisms, even
though Dµ(c, ·) shall sometimes define other homeomorphisms between other intervals.

In the special setting where a > 0, Dµ,[0,a)(z) is defined as Dµ(1, z) but with z ∈ [0, a).
It defines another increasing homeomorphism from [0, a) onto [0, Dµ,[0,a)(a

−)).

The function3

Dµ(c, z) = Hµ(1/z
2) (8)

plays a key role in the computation of the rectangular free convolution (see [9, Th. 3.13]
or [8, Intro.]). Indeed, the rectangular R-transform with ratio c of µ, defined to be

Cµ(z) = U

(
z

H−1
µ (z)

− 1

)
,

where U(z) =
−c−1+[(c+1)2+4cz]

1/2

2c
for c > 0 and U(z) = z for c = 0, is the analogue of the

logarithm of the Fourier transform for the rectangular free convolution with ratio c, since
for all probability measures µ1, µ2, µ1 ⊞c µ2 is characterized by the fact that

Cµ1⊞cµ2(z) = Cµ1(z) + Cµ2(z).

The coefficients of the series expansion of Cµ(z) are the so called rectangular free cumulants
with ratio c of µ (see [7, Eq. (4.1)]).

2.5. Extensions.

Remark 2.13 (Phase transition in non-extreme eigenvalues). Theorem 2.1 can easily
be adapted to describe the phase transition in the eigenvalues of Xn + Pn which fall in
the “holes” of the support of µX . Consider c < d such that almost surely, for n large
enough, Xn has no eigenvalue in (c, d) (which implies that (c, d) does not intersect the
support of µX and that GµX

induces a decreasing homeomorphism GµX ,(c,d) from (c, d)
onto (GµX

(d−), GµX
(c+))). Then almost surely, for n large enough, Xn + Pn has no

eigenvalue in (c, d), except if some of the 1/θi’s are in (GµX
(d−), GµX

(c+)), in which case,
every such θi gives rise to an eigenvalue with almost sure limit G−1

µX ,(c,d)(1/θi) as n tends

to infinity.

Remark 2.14 (Isolated eigenvalues of Xn outside the support of µX). When Xn itself
has isolated eigenvalues in the sense that the limit a of its smallest eigenvalue and the
limit b of its largest eigenvalue are out of the support of µX , the phase transition occurs

3The functions Hµ and Cµ are often defined only for µ a symmetric measure, but in [10, Sect. 2], the
theory is adapted to non-symmetric measures.
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at the same values as in Theorem 2.1. Indeed, everything, in the proof, still works, except
(22). It follows that for each i ∈ {1, . . . , s},

lim
n→∞

λi(Xn + Pn) = G−1
µX

(1/θi) if 1/θi < GµX
(b+),

lim sup
n→∞

λi(Xn + Pn) ≤ b in the other case,

and that for each i ∈ {s+ 1, . . . , r},

lim
n→∞

λn−r+i(Xn + Pn) = G−1
µX

(1/θi) if 1/θi > GµX
(a−),

lim inf λn−r+i(Xn + Pn) ≥ a in the other case.

Remark 2.15 (Random matrices with Haar-like eigenvectors). Let G be an n×m Gauss-
ian random matrix with independent real (or complex) entries that are normally dis-
tributed with mean 0 and variance 1. The eigenvectors U of the matrix X = GG∗/m, will
be Haar distributed. Informally speaking, when G is a Gaussian-like matrix in the sense
that its entries are i.i.d. with mean zero and variance one, then upon placing adequate re-
strictions on the higher order moments, we label the eigenvectors of X as being Haar-like.
Formally speaking, following the development in [30, 31, 32], when U is Haar-like, then for
non-random unit norm vector xn, the vector U∗xn will be close to uniformly distributed
on the unit real (or complex) sphere. Since our proofs rely heavily on the properties of
unit norm vectors uniformly distributed on the n-sphere, they can be easily adapted to
the setting where the unit norm vectors are close to uniformly distributed. Hence, we
assert without proof, the applicability of our results to the setting where X or P or both
have independent Haar-like distributed eigenvectors.

Remark 2.16 (Setting where eigenvalues of Pn are not fixed). Suppose that Pn is a
random matrix independent of Xn, with exactly r non-zero eigenvalues values given by

θ
(n)
1 , . . . , θ

(n)
r . Let θ

(n)
i

a.s.−→ θi as n −→ ∞. Using [20, Cor. 6.3.8] as in Section 6.2, one
can easily see that our results will also apply in this case.

The analogues of Remarks 2.13, 2.14, 2.15 and 2.16 for the multiplicative and rectangular
settings also hold here.

3. Examples

We now illustrate our results with some concrete computations. The key to applying
our results lies in being able to compute the G, T or D transforms of the spectral measure
µX and their associated functional inverses. In what follows, we focus on settings where
the transforms and their inverses can be expressed in closed form. In settings where the
transforms are algebraic so that they can be represented as solutions of polynomial equa-
tions, the techniques and software developed in [29] can be utilized. In more complicated
settings, one will have to resort to numerical techniques.

3.1. Random Gaussian matrices and the square additive case. Let Xn be an
n×n symmetric (or Hermitian) matrix with independent, zero mean, normally distributed
entries with variance σ2/n on the diagonal and σ2/(2n) on the off diagonal. It is known
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that the spectral measure of Xn converges to the famous semi-circle distribution with
density

dµX(x) =

√
4σ2 − x2

2σ2π
dx for x ∈ [−2σ, 2σ].

It is known that the extreme eigenvalues converge to the bounds of this support [1].
Associated with the spectral measure, we have

GµX
(z) =

z − sgn(z)
√
z2 − 4σ2

2σ2
, for z ∈ (−∞,−2σ) ∪ (2σ,+∞),

Gscσ(±2σ) = ±σ and G−1
scσ

(1/θ) = θ + σ2

θ
.

Thus for Pn with r non-zero eigenvalues θ1 ≥ · · · ≥ θs > 0 > θs+1 ≥ · · · ≥ θr, for any
fixed i ∈ {1, . . . , s} (resp. i ∈ {s+ 1, . . . , r}), by Theorem 2.1, we have

λi(Xn + Pn) (resp. λn+1−i(Xn + Pn))
a.s.−→

{
θi + σ2

θi
if |θi| > σ

2σ( resp. − 2σ) otherwise,
(9)

as n −→ ∞. This result has already been established in [17] for the symmetric case and
in [28] for the Hermitian case. Remark 2.15 explains why our results hold for Wigner
matrices of the sort considered in [28, 17]. Now, onto the eigenvectors.

In the setting where r = 1 and θ := θ1 > 0, let xn be an eigenvector of Xn + Pn

associated with its largest eigenvalue. By Theorem 2.2 we have

〈xn, ker(θIn − Pn)〉2 a.s.−→
{

1 − σ2

θ2 if θ ≥ σ,

0 if θ < σ.
(10)

Figure 2 illustrates the agreement between theory and experiment and the asymptotic
nature of the eigenvector phase transition result.

3.2. Random sample covariance matrices and the multiplicative case. Let Gn

be an n×m real (or complex) matrix with independent, zero mean, normally distributed
entries with variance 1. Let Xn = GnG

∗
n/m. It is known [23, 18] that, as n,m −→ ∞

with n/m→ c > 0, the spectral measure of Xn converges to the famous Marčenko-Pastur
distribution with density

dµX(x) :=
1

2πcx

√
(b− x)(x− a)1[a,b](x)dx + max

(
0, 1 − 1

c

)
δ0

where a = (1 − √
c)2 and b = (1 +

√
c)2 are the end points of the support of µX . It is

known that the extreme eigenvalues converge to the bounds of this support.

Associated with this spectral measure we have 4

T−1
µX

=
(z + 1)(cz + 1)

z
,

TµX
(z) =

z − c− 1 + ε
√

(z − c− 1)2 − 4c

2c
(ε = 1 if z ≤ a and ε = −1 if z ≥ b),

TµX
(b+) = 1/

√
c, TµX

(a−) = −1/
√
c.

4The most easy way to make these computations is to note that Sµc
(z) = (1 + cz)−1 (see the proof of

Theorem 1 of [8]) and to use (6).
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Figure 2. The theoretical predictions in Section 3.1 for the eigenvalues and
eigenvectors of Xn +Pn are verified using empirical averages of the relevant
quantities over 400 Monte-Carlo simulations. Here we have Pn = θunu

∗
n

and un is a unit norm vector.
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When c > 1, there is an atom at zero so that the smallest eigenvalue of X equals
zero. For simplicity, let us first consider the setting when c < 1 so that the extreme
eigenvalues of X tend almost surely to a and b. Thus for Pn with r non-zero eigenvalues
θ1 ≥ · · · ≥ θs > 0 > θs+1 ≥ · · · ≥ θr, with li := θi − 1, for any fixed i ∈ {1, . . . , s} (resp.
i ∈ {s+ 1, . . . , r}) and c < 1, by Theorem 2.5, we have

λi(Xn(In + Pn)) (resp. λn+1−i(Xn(In + Pn)))
a.s.−→

{
li

(
1 + c

li−1

)
if |li − 1| > √

c

b (resp. a) otherwise,

as n −→ ∞. Consider the matrix Sn = (In+Pn)
1/2Xn(In+Pn)1/2 which can be interpreted

as a Wishart distributed sample covariance matrix with “spiked” covariance In + Pn. By
Remark 2.8, the above result applies for the eigenvalues of Sn as well. This result for the
largest eigenvalue of spiked sample covariance matrices was established5 in [3, 27] and for
the extreme eigenvalues in [4]. Now, onto the eigenvectors.

In the setting where r = 1, let us denote l1 = θ1 − 1 by l, and let be xn a unit norm
eigenvector of Xn(I + Pn) associated with its largest (or smallest, according to whether
l > 1 or l < 1) eigenvalue. By Theorem 2.7, we have

〈xn, ker(lIn − Σ)〉2 a.s.−→
{

(l−1)2−c
(l−1)[c(l+1)+l−1]

if |l − 1| ≥ √
c,

0 if |l − 1| < √
c.

(11)

Let yn be a unit eigenvector of Sn = (In + Pn)1/2Xn(In + Pn)1/2 associated with its
largest (or smallest, according to whether l > 1 or l < 1) eigenvalue. Then, by Theorem
2.7 and Remark 2.8, we have

〈yn, ker(lIn − Σ)〉2 a.s.−→





1− c
(l−1)2

1+ c
l−1

if |l − 1| ≥ √
c,

0 if |l − 1| < √
c.

(12)

This result has been established in [27]. We generalize it to the case where Σ ≤ In.

3.3. The rectangular case.

3.3.1. Gaussian rectangular random matrices with non-zero mean. Let Gn be an n ×m
real (or complex) matrix with independent, zero mean, normally distributed entries with
variance 1/m. It is known [23, 18] that, as n,m −→ ∞ with n/m ∈ [0, 1], the spectral
measure of the singular values of Xn converges to the distribution with density

dµX(x) =

√
4c− (x2 − 1 − c)2

πcx
1(a,b)(x)dx,

where a = 1 −√
c and b = 1 +

√
c are the end points of the support of µX . It is known

that the extreme eigenvalues converge to the bounds of this support.

5The model considered in [3], which takes into consideration the sample mean, is slightly different from
the one of this section, but our results also apply to this model.
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Associated with this singular measure, we have, by an application of the result in [7,
Sect. 4.1] and the relationship in (8),

D−1
µX

(c, z) =
√

(z+1)(cz+1)
z

,

DµX
(c, z) =

z2−(c+1)−
√

(z2−(c+1))2−4c

2c
, DµX

(c, b+) = 1√
c
.

Thus for any n × m deterministic matrix Pn,m with r non-zero singular values θ1 ≥
. . . ≥ θr (r independent of n,m), for any fixed i ≥ 1, by Theorem 2.9, we have

σi(Xn + Pn)
a.s.−→

{√
(1+θ2

i )(c+θ2
i )

θ2
i

if θi > c1/4

1 +
√
c otherwise.

(13)

as n −→ ∞. This is a new result. Now, onto the singular vectors.

In the setting where r = 1, let un be a unit norm eigenvector of X̃n,mX̃
∗
n,m associated

to its largest eigenvalue, then, by Theorems 2.10 and 2.12, we have

〈un, ker(θ
2In − Pn,mP

∗
n,m)〉2 a.s.−→

{
1 − c(1+θ2)

θ2(θ2+c)
if θ ≥ c1/4,

0 otherwise.
(14)

The phase transitions for the eigenvectors of X̃∗
n,mX̃n,m or for the pairs of singular vectors

of X̃n,m can be similarly computed.

3.3.2. Square Haar unitary matrices. Let Xn be Haar distributed unitary (or orthogonal)
random matrix. All of its singular values are equal to one so that it has the spectral
measure

dµX(x) = δ1,

with a = b = 1 being the end points of the support of µX .

Associated with this spectral measure, we have

DµX
(1, z) =

z2

(z2 − 1)2
for z ≥ 0, z 6= 1,

thus for all θ > 0,

D−1
µX

(1, 1/θ2) =
θ +

√
θ2 + 4

2
and D−1

µX ,[0,1)(1/θ
2) =

−θ +
√
θ2 + 4

2
.

Thus for any n × n, rank r deterministic matrix Pn with r non-zero singular values
θ1 ≥ · · · ≥ θr where neither r, nor the θi’s depend on n, for any fixed i = 1, . . . , r, by
Theorem 2.9 we have

σi(Xn + Pn)
a.s.−→ θ +

√
θ2 + 4

2
and σn+1−i(Xn + Pn)

a.s.−→ −θ +
√
θ2 + 4

2

while for any fixed i ≥ r + 1, both σi(Xn + Pn) and σn+1−i(Xn + Pn)
a.s.−→ 1.
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4. Sketches of the proofs

Let us explain briefly how Theorems 2.1, 2.2 and 2.3, about extreme eigenvalues and
associated eigenvectors of X +P , can be proved (the index n in Xn and Pn has been sup-
pressed for brevity). Similar arguments can be used for the multiplicative and rectangular
models considered in this paper.

Consider the setting where r = 1, so that P = θ uu∗, with u being a unit norm column
vector. Since either X of P is supposed to be invariant, in law, under unitary (or orthog-
onal) conjugation, one can, without loss of generality, suppose that X = diag(λ1, . . . , λn)
and that u is uniformly distributed on the unit n-sphere.

4.1. Largest eigenvalue phase transition. For any z ∈ C such that z is not an eigen-
value of X, we have

z − (X + P ) = (z −X) × (I − (z −X)−1P ),

so that z is an eigenvalue of X + P if and only if 1 is an eigenvalue of (z −X)−1P . But
(z − X)−1P = (z − X)−1θ uu∗ has rank one, so its only non-null eigenvalue is its trace,
which is equal to θGµn(z), where µn is a “weighted” spectral measure of X, defined by

µn =

n∑

k=1

|uk|2δλk
(the uk’s are the coordinates of u). (15)

Thus any z out of the spectrum of X is an eigenvalue of X + P if and only if

Gµn(z) =
1

θ
. (16)

Equation (16) describes the relationship between the eigenvalues ofX+P and the eigenval-
ues of X, as illustrated in Figure 3. Here, u is a random vector with uniform distribution
on the unit n-sphere. Hence, for large n, we have that |uk|2 ≈ 1

n
with high probability,

so that we have µn ≈ µX and consequently Gµn(z) ≈ GµX
(z). Inverting equation (16)

after substituting these approximations yields the location of the largest eigenvalue to be
G−1

µX
(1/θ) as in Theorem 2.1.

The phase transition for the extreme eigenvalues emerges because under our assumption
that the limiting probability measure µX is compactly supported on [a, b], the Cauchy
transform GµX

is defined outside [a, b] and unlike what happens for Gµn , we do not
always have GµX

(b+) = +∞. Consequently, in settings of the sort depicted in Figure

4, when 1/θ < GµX
(b+), we have that λ1(X̃) ≈ G−1

µX
(1/θ) as before. However, when

1/θ ≥ GµX
(b+) then the phase transition manifests and λ1(X̃) ≈ λ1(X) = b.

An extension of these arguments for fixed r > 1 yields the general result and constitutes
the most transparent justification, as sought by the authors in [3], for the emergence of
this phase transition phenomenon in such perturbed random matrix models. We rely on
concentration inequalities to make the arguments rigorous.

4.2. Eigenvectors phase transition. Let x be a unit eigenvector of X + P associated
with the eigenvalue z such that Gµn(z) = 1/θ. From (X + P )x = zx, we deduce

(z −X)x = θuu∗x

= (θu∗x).u (because u∗x is a scalar),
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λ1
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λ2

λ̃2
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λ̃3

λ4

λ̃4

λ5

λ̃5

1/θ

Gµn(z)

z

Figure 3. Graph illustrating how the relationship between the eigenvalues
of X̃ = X + θuu∗ and the eigenvalues of X for some θ and unit norm n× 1
vector u is implicitly described by (16). Here, when n = 5, λ1, . . . , λn are

the eigenvalues of X and λ̃1, . . . , λ̃n are the eigenvalues of X̃. The function
Gµn(z) plotted is the Cauchy or G-transform of the probability measure µn

given by (15).

implying that x is proportional to (z −X)−1u. Hence, since x has norm one and z −X
is Hermitian,

x =
(z −X)−1u√
u∗(z −X)−2u

(17)

and

〈x, ker(θI − P )〉2 = |u∗x|2 =
(u∗(z −X)−1u)2

u∗(z −X)−2u
=
Gµn(z)2

∫ dµn(t)
(z−t)2

=
1

θ2
∫ dµn(t)

(z−t)2

. (18)

Again, since µn ≈ µX , if z ≈ ρ > b, then
∫ dµn(t)

(z−t)2
≈

∫ dµX(t)
(ρ−t)2

<∞ and we get

〈x, ker(θI − P )〉2 a.s.−→ 1

θ2
∫ dµX (t)

(ρ−t)2

=
−1

θ2G′
µX

(ρ)
> 0.
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a b

GµX
(z)

1/θ

ρ

z

(a) When 1/θ < GµX
(b), λ1(X + P ) → ρ = G−1

µX
(1

θ
).

a b

GµX
(z)

1/θ

z

(b) When 1/θ > GµX
(b), λ1(X + P ) → b.

Figure 4. Graphical illustration of why a phase transition occurs for the
largest eigenvalue of X + P . The limiting probability measure µX for the
eigenvalues of X is supported on [a, b]. The Cauchy or G-transform of
µX is plotted outside the support. Following the argument in Figure 3
and Section 4, the location of the largest eigenvalue is determined by the
relationship between 1/θ and GµX

(z) as shown. A similar argument can be
used to illustrate the phase transition for the smallest eigenvalues and for
the multiplicative and rectangular models considered in this paper.

On the other hand, if z ≈ b and G′
µX

(b+) =
∫ dµX (t)

(b−t)2
= ∞, then

〈x, ker(θI − P )〉2 a.s.−→ 0.

Again, rigorous arguments rely on concentration inequalities.
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5. The exact master equations

In this section, we shall give r-dimensional analogues of the key-formulas (16) and (17)
given in the sketches of the proofs.

5.1. Eigenvalues and eigenvectors of X + P .

Proposition 5.1. Let X be an N ×N matrix and P = VΘV ∗, with Θ an R×R matrix
and V an N × R matrix which columns are orthonormal (i.e. such that V ∗V = IR). Let
z be a complex number out of the spectrum of X. Let us define the (possibly null) spaces

Ez = ker[zIN − (X + P )], Fz = ker[IR − V ∗(z −X)−1VΘ].

a) Then the mappings

ϕz : Fz → Ez and ψz : Ez → Fz

v 7→ (z −X)−1VΘv w 7→ V ∗w

are linear isomorphisms, which are inverses one of each other. Moreover, for all v, w,
‖ϕz(v)‖ ≥ ‖v‖ and ‖ψz(w)‖ ≤ ‖w‖.

b) Let us denote N by n and R by r, lets us suppose that X = diag(λ1, . . . , λn) and
Θ = diag(θ1, . . . , θr) and let us denote the entries of V by vk,l (1 ≤ k ≤ n, 1 ≤ l ≤ r).
Then firstly, any z /∈ {λ1, . . . , λn} is an eigenvalue of X+P if and only if the r×r matrix

Ir − V ∗(z −X)−1VΘ

is not invertible and secondly, for all i, j = 1, . . . , r, the (i, j)-th entry of this matrix is1i=j − θjGµi,j
(z),

where µi,j is the complex measure defined by

µi,j =
n∑

k=1

vk,ivk,jδλk

and Gµi,j
is the Cauchy or G-transform of µi,j.

Proof. Part b) follows directly from a) and from a straightforward computation of the
(i, j)-th entry of V ∗(z − X)−1VΘ. Part a) is proved, for example, in [2, Th. 2.3] (the
assertions about the norms follow from the fact that for all w ∈ Ez, ‖ψz(w)‖2 = |w1|2 +
· · ·+ |wr|2, where w1, . . . , wn are the coordinates of w on an orthonormal basis having the
columns of V for first r vectors). �

5.2. Eigenvalues and eigenvectors of X(I + P ). The following proposition can be
proved in the same manner as Proposition 5.1.

Proposition 5.2. Let X be an n × n matrix and P = VΘV ∗, with Θ an r × r matrix
and V an n × r matrix which columns are orthogonal (i.e. such that V ∗V = Ir). Let z
be an eigenvalue z of X(I + P ) which is not eigenvalue of X. Let us define the (possibly
null) spaces

Ez = ker[zIn −X(I + P )], Fz = ker[Ir − V ∗(z −X)−1XVΘ].
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a) Then the mappings

ϕz : Fz → Ez and ψz : Ez → Fz

v 7→ (z −X)−1VΘv w 7→ V ∗w

are linear isomorphisms, which are inverses one of each other. Moreover, for all v, w,
‖ϕz(v)‖ ≥ ‖v‖ and ‖ψz(w)‖ ≤ ‖w‖.

b) Let us suppose X = diag(λ1, . . . , λn) and Θ = diag(θ1, . . . , θr) and let us denote the
entries of V by vk,l (1 ≤ k ≤ n, 1 ≤ l ≤ r). Then firstly, any z /∈ {λ1, . . . , λn} is an
eigenvalue of X(I + P ) if and only if the r × r matrix

Ir − V ∗(z −X)−1XVΘ

is not invertible, and secondly, for all i, j = 1, . . . , r, the (i, j)-th entry of this matrix is1i=j − θjTµi,j
(z),

with

µi,j =
n∑

k=1

vk,ivk,jδλk
,

and Tµi,j
(z) is the T-transform of µi,j.

5.3. Singular values and singular vectors of X+P . Firstly, let us state the following
well known theorem [20, Th. 7.3.7], which relates singular values and singular vectors
of non-Hermitian matrices with eigenvalues and eigenvectors of Hermitian matrices (see
Section 2.3.2 for the definition of singular vectors).

Theorem 5.3. For σ1, . . . , σn nonnegative real numbers, the singular values of X are
σ1, . . . , σn if and only if the n+m eigenvalues of

[
0 X
X∗ 0

]
(19)

are σ1, . . . , σn,−σ1, . . . ,−σn and m− n additional zeros. Moreover, for σ a nonnegative
number, a pair (u, v) of unit-length vectors is a pair of singular vectors of X associated

with the singular value σ if and only if

[
u
v

]
is an eigenvector of the matrix of (19) for the

eigenvalue σ.

The following proposition adapts, via Theorem 5.3, the master equation of Proposition
5.1 to the rectangular setting.

Proposition 5.4. Let us now denote N = n + m, with 1 ≤ n ≤ m and R = 2r, let us
suppose that there exists σ = (σ1, . . . , σn), θ = (θ1, . . . , θr) such that for D = diag(σ) and
Ω = diag(θ), we have

X =




0n,n D 0n,m−n

D 0n,n 0n,m−n

0m−n,n 0m−n,n 0m−n,m−n


 ,Θ =

[
0r,r Ω
Ω 0r,r

]
, V =




U 0n,r

0n,r K
0m−n,r L


 .
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Then the 2r × 2r matrix V ∗(z −X)−1VΘ can be written with four r × r blocs



U∗ D
z2−D2KΩ U∗ z

z2−D2UΩ

K∗ z
z2−D2KΩ + 1

z
L∗LΩ K∗ D

z2−D2UΩ


 . (20)

(the entries of this matrix can easily be interpreted as in b) of Proposition 5.1, i.e. as
integrals of complex measures with support {σ1, . . . , σn} or {σ1, . . . , σn, 0}.

The proof of the proposition relies on a straightforward computation, inverting z −X
via the following elementary lemma, which we shall refer to several times in the paper.

Lemma 5.5. Let c, d be diagonal r× r matrices with positive diagonal entries. Then one
has
[
0 c
d 0

]
=

[√
c −√

c√
d

√
d

] [√
cd 0

0 −
√
cd

] [√
c −√

c√
d

√
d

]−1

and

[√
c −√

c√
d

√
d

]−1

=
1

2

[
c−

1
2 d−

1
2

−c− 1
2 d−

1
2

]
.

In the particular case where c = d, this can be reduced to
[
0 d
d 0

]
=

(
1√
2

[
1 1
1 −1

]) [
d 0
0 −d

](
1√
2

[
1 1
1 −1

])
,

(
1√
2

[
1 1
1 −1

])2

= I2. (21)

6. Proof of Theorem 2.1 for the extreme eigenvalues of Xn + Pn

6.1. First step: Setting where θi’s are pairwise distinct. Note first that by the
definition of ⊞ (see also [1, Cor. 5.4.11]), the random probability measure

1

n

n∑

k=1

δλk(Xn+Pn)

converges almost surely to µX ⊞ δ0 = µX , so for any i fixed independently of n,

lim inf
n→∞

λi(Xn + Pn) ≥ b and lim sup
n→∞

λn−i(Xn + Pn) ≤ a. (22)

Let us write, for each n,

Xn = U
(n)
X diag(λ

(n)
1 , . . . , λ(n)

n )U
(n)∗
X , Pn = U

(n)
P diag(θ1, . . . , θr, 0, . . . , 0)U

(n)∗
P .

The spectrum of Xn + Pn is the one of

diag(λ
(n)
1 , . . . , λ(n)

n ) + U
(n)∗
X U

(n)
P︸ ︷︷ ︸

denoted by Un

diag(θ1, . . . , θr, 0, . . . , 0)U
(n)∗
P U

(n)
X ,

and since either Xn or Pn is invariant in law by conjugation by orthogonal (or unitary)

matrices, Un is Haar-distributed and independent of λ(n) := (λ
(n)
1 , . . . , λ

(n)
n ) (see the first

paragraph of the proof of [19, Th. 4.3.5] for more details). Let us denote by [u
(n)
i,j ]ni,j=1 the

entries of Un.

Since λ1(Xn)
a.s.−→ b and λn(Xn)

a.s.−→ a, we can focus on the eigenvalues of Xn+Pn which
are out of [λn(Xn), λ1(Xn)]. By Proposition 5.1 b), these eigenvalues are the numbers z
out of [λn(Xn), λ1(Xn)] such that the r × r matrix

M(n, z) := Ir − [θjGµ
(n)
i,j

(z)]ri,j=1



24 FLORENT BENAYCH-GEORGES AND RAJ RAO NADAKUDITI

is not invertible, where for all i, j = 1, . . . , r, µ
(n)
i,j is the random complex measure defined

by

µ
(n)
i,j =

n∑

k=1

uk,i
(n)u

(n)
k,j δλ(n)

k
.

By Proposition 11.3, for all i 6= j, the random complex measure µ
(n)
i,j converges almost

surely weakly to zero and for all i, µ
(n)
i,i converges almost surely weakly to µX . Thus, by

the second statement of Lemma 11.1, for all η > 0, the matrix-valued function M(n, ·)
converges to

MGµX
(·) := diag(1 − θ1GµX

(·), . . . , 1 − θrGµX
(·))

uniformly on {z ∈ C ; d(z, [a, b]) ≥ η}, almost surely. Now, the conclusion follows exactly
from Lemma 11.4, which hypotheses are satisfied (hypotheses a), b), c) follow from the
definition of GµX

, hypothesis d) follows from Proposition 5.1 and from the fact that
Xn + Pn is Hermitian and hypothesis e) has been checked above).

6.2. Second step: Extension to the general case. We have now to treat the case
where the θi’s are not pairwise distinct. Fix i0 ∈ {1, . . . , r} and ε > 0. Assume for
example that i0 ≤ s (the other case can be treated in the same way). We denote, for
θ > 0,

ρθ =

{
G−1

µX
(1/θ) if 1/θ < GµX

(b+),

b in the other case.

Note also that the function G−1
µ is continuous on (0, Gµ(b

+)) and that limy↑Gµ(b+)G
−1
µ (y) =

b, hence the function θ 7−→ ρθ is continuous on (0,∞). Hence there is η > 0 such that for
all θ > 0,

|θ − θi0 | ≤ η =⇒ |ρθ − ρθi0
| ≤ ε. (23)

Let us consider a family (θ′1 > · · · > θ′r), of real numbers such that for all i = 1, . . . , r,
θiθ

′
i > 0 and

r∑

i=1

(θ′i − θi)
2 ≤ min(η2, ε2).

It implies that
|ρθ′i0

− ρθi0
| ≤ ε. (24)

Employing the notation in Section 6.1, for each k and each n, we define

P ′
n = U

(n)
P diag(θ′1, . . . , θ

′
r, 0, . . . , 0)U

(n)∗
P .

Note that by [20, Cor. 6.3.8], we have, for all n,
n∑

j=1

(λj(Xn + P ′
n) − λj(Xn + Pn))2 ≤ Tr(P ′

n − Pn)2 =
r∑

i=1

(θ′i − θi)
2 ≤ ε2. (25)

Since the theorem can applied to Xn+P ′
n, it follows that almost surely, for n large enough,

|λi0(Xn + P ′
n) − ρθ′i0

| ≤ ε. (26)

By the triangular inequality, we have

|λi0(Xn +Pn)−ρθi0
| ≤ |λi0(Xn +Pn)−λi0(Xn +P ′

n)|+ |λi0(Xn +P ′
n)−ρθ′i0

|+ |ρθ′i0
−ρθi0

|,
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thus, by (25), (26) and (24), almost surely, for n large enough,

|λi0(Xn + P ′
n) − ρθi0

| ≤ 3ε.

�

7. Proofs of Theorems 2.2 and 2.3 for the extreme eigenvectors of
Xn + Pn

We shall use the following elementary lemma several times in the paper.

Lemma 7.1. Let us fir r ≥ 1 and let us consider a sequence M(n) of r×r matrices which
converges, as n tends to infinity, to a matrix M . For each n, consider yn ∈ kerM(n)
such that ‖yn‖ ≤ 1. Then

〈yn, (kerM)⊥〉 −→
n→∞

0.

Proof. Since for all n, ‖yn‖ ≤ 1, one can suppose that yn converges to a limit y. Then
it suffices to prove that My = 0, which follows from the fact that My = limM(n)yn. �

7.1. Proof of Theorem 2.2. Let us write, for each n,

Xn = U
(n)
X diag(λ

(n)
1 , . . . , λ(n)

n )U
(n)∗
X , Pn = U

(n)
P diag(θ1, . . . , θr, 0, . . . , 0)U

(n)∗
P .

The eigenvectors of Xn + Pn are U
(n)
X times the ones of

diag(λ
(n)
1 , . . . , λ(n)

n ) + U
(n)∗
X U

(n)
P diag(θ1, . . . , θr, 0, . . . , 0)U

(n)∗
P U

(n)
X ,

hence it suffices to prove the result in the case where Xn = diag(λ
(n)
1 , . . . , λ

(n)
n ) and

Pn = Un diag(θ1, . . . , θr, 0, . . . , 0)U∗
n, with Un Haar-distributed. We denote the entries of

Un by [u
(n)
i,j ]ni,j=1, its columns by C

(n)
1 , . . . , C

(n)
n and the n × r matrix which columns are

respectively C
(n)
1 , . . . , C

(n)
r by Vn.

Let r0 be the number of i’s such that θi = θi0 . Up to a reindex of the θi’s (which is
then no longer decreasing, but it is not a problem here), one can suppose that i0 = 1,
θ1 = · · · = θr0 . For each n, ker(θ1In − Pn) is then the linear span of the r0 first columns

of Un, namely C
(n)
1 , . . . , C

(n)
r0 . Since these columns are orthonormal, it suffices to prove

that as n tends to infinity,

r0∑

j=1

|〈C(n)
j , xn〉|2 tends almost surely to

−1

θ2
1G

′
µX

(ρ)
=

1

θ2
1

∫ dµX(t)
(ρ−t)2

(27)

and
r∑

j=r0+1

|〈C(n)
j , xn〉|2 tends almost surely to 0. (28)

Let us introduce, for each n, for all z out of the spectrum of Xn, the r × r random
matrix

M(n, z) := Ir − [θjGµ
(n)
i,j

(z)]ri,j=1,
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where, for all i, j = 1, . . . , r, µ
(n)
i,j is the random complex measure defined by

µ
(n)
i,j =

n∑

k=1

uk,i
(n)u

(n)
k,j δλ(n)

k
. (29)

As in the proof of Theorem 2.1 (end of the first step), for all η > 0, the random matrix-
valued function M(n, ·) converges to

MGµX
(·) := diag(1 − θ1GµX

(·), . . . , 1 − θrGµX
(·))

uniformly on {z ∈ C ; d(z, [a, b]) ≥ η}, almost surely. Since zn tends almost surely to
G−1

µX
(1/θ1), which is out of [a, b], it follows that M(n, zn) tends almost surely to

diag(0, . . . , 0︸ ︷︷ ︸
r0 zeros

, 1 − θr0+1

θ1
, . . . , 1 − θr

θ1
)

Moreover, by Proposition 5.1 a), for n large enough such that zn is not an eigenvalue
of Xn, V ∗

n xn is a vector of the kernel of the r × r matrix M(n, zn) with norm ≤ 1. Since
for all n,

V ∗
n xn =



〈C(n)

1 , xn〉
...

〈C(n)
r , xn〉


 ,

Lemma 7.1 allows to claim that (28) holds.

Let us now prove (27). By Proposition 5.1 a) again, one has, for all n,

xn = (zn −Xn)−1Vn diag(θ1, . . . , θr)V
∗
n xn

= (zn −Xn)−1
r∑

j=1

θj〈C(n)
j , xn〉C(n)

j ,

= (zn −Xn)−1

r0∑

j=1

θj〈C(n)
j , xn〉C(n)

j

︸ ︷︷ ︸
denoted by x′

n

+ (zn −Xn)−1
r∑

j=r0+1

θj〈C(n)
j , xn〉C(n)

j

︸ ︷︷ ︸
denoted by x′′

n

.

Note that zn tends almost surely to ρ = G−1
µX

(1/θ1), which does not belong to [a, b], and
that the upper and lower bounds of the spectrum ofXn tend almost surely respectively to b
and a, thus almost surely, the operator norms of (zn−Xn)−1 form a bounded sequence. By
(28), it follows that ‖x′′n‖ tends almost surely to zero. As a consequence, since ‖xn‖ = 1,
‖x′n‖ tends almost surely to one. Since θ1 = · · · = θr0 and zn −Xn is Hermitian,

‖x′n‖2 = θ2
1

r0∑

i,j=1

〈C(n)
i , xn〉〈C(n)

j , xn〉 C(n)∗
i (zn −Xn)−2C

(n)
j︸ ︷︷ ︸

=
R

1
(zn−t)2

dµ
(n)
i,j (t), with µ

(n)
i,j defined by (29)

(30)

By Proposition 11.3, for all i 6= j, µ
(n)
i,j converges almost surely weakly to zero and for all

i, µ
(n)
i,i converges almost surely weakly to µX . Thus, by the second statement of Lemma
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11.1, since zn converges almost surely to ρ /∈ [a, b], for all i, j = 1, . . . , r0,

∫
dµ

(n)
i,j (t)

(zn − t)2

a.s.−→ 1i=j

∫
dµ(t)

(ρ− t)2
.

By (30) and the fact that ‖x′n‖
a.s.−→ 1, (27) follows. �

7.2. Proof of Theorem 2.3. Let us suppose that θ > 0 (the other case can be treated

in the same way). Note first that G′
µX

(b+) = −∞ implies that
∫ dµX (t)

(b−t)2
= +∞.

As in the proof of Theorem 2.2, it suffices to prove the result in the case where Xn =

diag(λ
(n)
1 , . . . , λ

(n)
n ) and Pn = θu(n)u(n)∗, with u(n) a column vector uniformly distributed

on the unit real (or complex) n-sphere. We denote by u
(n)
1 , . . . , u

(n)
n the coordinates of the

vector u(n) and define, for each n, the random probability measure

µ(n) =

n∑

k=1

|u(n)
k |2δ

λ
(n)
k
.

Note that by the r = 1 case of Proposition 5.1 b), the eigenvalues of Xn + Pn which

do not belong to {λ(n)
1 , . . . , λ

(n)
n } are the solutions of Gµ(n)(z) = 1

θ
. By the elementary

remarks made on the Cauchy transform of a probability measure in Section 2.4.1, since

lim
t↓λ(n)

1
Gµ(n)(t) = +∞, we know that the largest eigenvalue zn of Xn + Pn is > λ

(n)
1 .

Reproducing the arguments leading to (18) in Section (4.2), we get

〈xn, ker(θIn − Pn)〉2 =
1

θ2
∫ dµ(n)(t)

(zn−t)2

.

Thus it suffices to prove that, as n tends to infinity,

∫
dµ(n)(t)

(zn − t)2
tends almost surely to + ∞. (31)

Note that by hypothesis, 1
n

∑n
k=1 δλ(n)

k
converges almost surely to µX . Since, by Theorem

2.1, b − zn tends almost surely to zero, it follows that 1
n

∑n
k=1 δλ(n)

k +b−zn
, which is the

push-forward of this measure by the map t 7−→ t+ b− zn, converges also almost surely to
µX (use, for example, the Fourier transform to see it). Hence, by (47),

µ̃(n) :=

n∑

k=1

|u(n)
k |2δ

λ
(n)
k +b−zn

tends almost surely to µX . It implies that for any lower-semicontinuous function f : R →
[0,∞],

lim inf
n→+∞

∫
f(t)dµ̃(n)(t) ≥

∫
f(t)dµX(t). (32)

Equation (31) follows, by application of (32) for f(t) = (b− t)−2. �
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8. Proofs of Theorems 2.5–2.7 for the extreme eigenvalues/vectors of
Xn(I + Pn)

These proofs can easily be obtained adapting to the square multiplicative case the
proofs of the square additive case (using the master equation for the identification of the
eigenvalues and of the eigenvectors given by Proposition 5.2 instead of the one given by
Proposition 5.1).

9. Proof of Theorem 2.9 for the extreme singular values of Xn + Pn

9.1. First step: case where the θi’s are pairwise distinct. Let us first suppose the
θi’s to be pairwise distinct.

Note first that by [9, Th. 3.13] (which extends easily to almost sure convergence), the
symmetrization of the random probability measure

1

n

n∑

k=1

δσk(Xn+Pn)

converges almost surely to µX,s ⊞c δ0 = µX,s, where µX,s denotes the symmetrization of
µX . It follows that for any i fixed independently of n,

lim inf
n→∞

σi(Xn + Pn) ≥ b and lim sup
n→∞

σn−i(Xn + Pn) ≤ a.

Let us write, for each n,

Xn = U
(n)
X



σ

(n)
1 0 · · · 0

. . .
...

...

σ
(n)
n 0 · · · 0


V (n)∗

X

Pn = U
(n)
P




θ1 0 · · · 0
. . .

...
...

θr 0 · · · 0
0 0 · · · 0

. . .
...

...
0 0 · · · 0




V
(n)∗
P ,

with U
(n)
X , U

(n)
P n × n orthogonal (or unitary) matrices and V

(n)
X , V

(n)
P m ×m orthogonal

(or unitary) matrices. The singular values of Xn + Pn is the same as the ones of
[
diag(σ

(n)
1 , . . . , σ

(n)
n ) 0n,m−n

]
+ U

(n)∗
X U

(n)
P

[
diag(θ1, . . . , θr, 0, . . . , 0) 0n,m−n

]
V

(n)∗
P V

(n)
X ,

and since either Xn or Pn are biorthogonally (or biunitary) invariant in law, U
(n)∗
X U

(n)
P

and V
(n)∗
X V

(n)
P are Haar-distributed [19, Lem. 4.3.10]. Let us denote by Un (resp. Vn) the

n × r (resp. m × r) matrix which columns are the first columns of U
(n)∗
X U

(n)
P (resp. of

V
(n)∗
X V

(n)
P ). Note that σ(n) := (σ

(n)
1 , . . . , σ

(n)
n ), Un, Vn are independent. Thus, from now on,

we suppose that for Dn = diag(σ
(n)
1 , . . . , σ

(n)
n ) and Ω = diag(θ1, . . . , θr), we have

Xn =
[
Dn 0n,m−n

]
, Pn = UnΩV ∗

n ,
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with Dn, Un, Vn independent and Un, Vn respectively n × r and m × r matrices which
columns are the r first columns of uniform orthogonal (or unitary) random matrices.

By Theorem 5.3, the positive singular values of Xn +Pn are the positive eigenvalues of
[

0 Xn + Pn

X∗
n + P ∗

n 0

]

(when n = m, one can replace positive by non negative in this sentence). Moreover,
[

0 Xn + Pn

X∗
n + P ∗

n 0

]
=

[
0 Xn

X∗
n 0

]
+

[
Un 0
0 Vn

] [
0 Ω
Ω∗ 0

] [
Un 0
0 Vn

]∗
. (33)

Since σ1(Xn) tends to b and σn(Xn) tends to a almost surely, we can focus on the
eigenvalues of the matrix of (33) which are out of [σn(Xn), σ1(Xn)]. By Proposition 5.1 b),
first part, and Proposition 5.4, these eigenvalues are the numbers z out of [σn(Xn), σ1(Xn)]
such that the 2r × 2r matrix

M(n, z) := I2r −




U∗
n

Dn

z2−D2
n
KnΩ U∗

n
z

z2−D2
n
UΩ

K∗
n

z
z2−D2

n
KnΩ + 1

z
L∗

nLnΩ K∗
n

Dn

z2−D2
n
UnΩ


 (34)

is not invertible, where Kn is the n×r upper-block of Vn and Ln the (m−n)×r lower one.
As mentioned in Proposition 5.4, the entries of this matrix can be interpreted as integrals
of complex measures. Using Proposition 11.3 and the second statement of Lemma 11.1,
one easily sees that for all η > 0, the matrix-valued function M(n, z) converges almost
surely uniformly on {z ∈ C ; d(z, [a, b] ∪ {0}) ≥ η} to

MµX
(z) := I2r −

[
0 N(z)

N0(z) 0

]
, (35)

with

N(z) = diag (θ1ϕµX
(z), . . . , θrϕµX

(z)) ,

N0(z) = diag
(
θ1ϕcµX+(1−c)δ0(z), . . . , θrϕcµX+(1−c)δ0(z)

)

(in the case where m is always equal to n, one can replace [a, b] ∪ {0} above by [a, b]).

Now, as in the proof of Theorem 2.1, the conclusion follows exactly from a modified
version of Lemma 11.4. Let us explain which version of this lemma we shall need here.
To treat the first part of our theorem, firstly replace the interval [a, b] of the lemma by
(−∞, b] and secondly replace the matrix MG(z) defined in (51) by MµX

(z), which, by
Lemma 5.5, is actually non invertible if and only if one of the 1/θ2

i ’s equals DµX
(c, z). To

prove the second part of our theorem (which concerns the case where m is always equal
to n), apply again a modified version of Lemma 11.4 with the same matrix, where the
interval [a, b] is replaced by (−∞, 0]∪ [a,+∞) and where the hypothesis c) is replaced by
the fact that

lim
z↓0

DµX
(1, z) = 0.

9.2. Second step: the general case. The extension to the general case works exactly
as in the proof of Theorem 2.1, using [20, Cor. 7.3.8 (b)] instead of [20, Cor. 6.3.8]. �
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10. Proofs of Theorems 2.10 and 2.12 for the extreme singular vectors
of Xn + Pn

10.1. Proof of Theorem 2.10. We employ the notation introduced at the beginning of

the proof of Theorem 2.9. Since the pairs of singular vectors of Xn + Pn are U
(n)
X ⊕ V

(n)∗
X

times the ones of

D
(n)
X + U

(n)∗
X U

(n)
P D

(n)
P V

(n)∗
P U

(n)
X ,

from now on, we suppose that for Dn = diag(σ
(n)
1 , . . . , σ

(n)
n ) and Ω = diag(θ1, . . . , θr), we

have

Xn =
[
Dn 0n,m−n

]
, Pn = UnΩV ∗

n ,

with Dn, Un, Vn independent and Un, Vn respectively n × r and m × r matrices which
columns are the r first columns of uniform orthogonal (or unitary) random matrices.

Let us define, for each n,

Xh
n =




0n,n Dn 0n,m−n

Dn 0n,n 0n,m−n

0m−n,n 0m−n,n 0m−n,m−n


 , Θ =

[
0r,r Ω
Ω 0r,r

]
, Wn =




Un 0n,r

0n,r Kn

0m−n,r Ln


 ,

where Kn the n × r upper-block of Vn and Ln the (m − n) × r lower one. Then, by
Proposition 5.4, we have, for all z out of the spectrum of Xh

n ,

W ∗
n(z −Xh

n)−1WnΘ =




U∗
n

Dn

z2−D2
n
KnΩ U∗

n
z

z2−D2
n
UnΩ

K∗
n

z
z2−D2

n
KnΩ + 1

z
L∗

nLnΩ K∗
n

Dn

z2−D2
n
UnΩ


 .

Let r0 be the number of i’s such that θi = θi0 . Up to a reindex of the θi’s (which
is no longer decreasing, but it is not a problem here), one can suppose that i0 = 1,
θ1 = · · · = θr0 . Then for each n, ker(θ2

1In − PnP
∗
n) (resp. ker(θ2

1Im − P ∗
nPn)) is the linear

span of the r0 first columns of Un (resp. of Vn). We denote the columns of Un (resp. Vn)

by U
(n)
1 , . . . , U

(n)
r (resp. V

(n)
1 , . . . , V

(n)
r ). Since these columns are orthonormal, to prove

b), it suffices to prove that as n tends to infinity,

r0∑

j=1

|〈V (n)
j , vn〉|2 tends almost surely to the RHS of (4). (36)

Moreover, for all column vector x, we have Pnx =
∑r

j=1 θj〈V (n)
j , x〉U (n)

j , thus to prove d),
it suffices to prove that

r0∑

j=1

|θ1ϕµX
(ρ)〈V (n)

j , vn〉 − 〈U (n)
j , un〉|2 tends almost surely to 0. (37)

Note that a) follows also from (36) and (37). Indeed, (36) and (37) granted,
∑r0

j=1 |〈U
(n)
j , un〉|2

tends to θ2
1ϕµX

(ρ)2 times the RHS of (4), which is equal to the RHS of (3), because
ϕµ(ρ)ϕµ̃X

(ρ) = 1/θ2
i0 . To prove d), we have to prove that

r∑

j=r0+1

|〈U (n)
j , un〉|2 + 〈V (n)

j , vn〉|2 tends almost surely to 0. (38)
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To prove e), it suffices to remark that the following proof stays valid if a > 0, m is always
equal to n, zn = σn+1−i0(Xn + Pn) and ρ = D−1

µX ,[0,a)(1/θ
2
i0
).

So let us prove (36), (37) and (38).

As in the proof of Theorem 2.9, for all η > 0, the matrix-valued function

M(n, z) := I2r −W ∗
n(z −Xh

n)−1WnΘ

converges almost surely uniformly on {z ∈ C ; d(z, [a, b]∪{0}) ≥ η} to the matrix MµX
(z)

of (35) (in the case wherem is always equal to n, one can replace [a, b]∪{0} above by [a, b]).
Since zn tends almost surely to ρ := D−1

µX
(c, 1/θ2

1), which is > b (or in (0, a) ∪ (b,+∞) if
a > 0 and m is always equal to n), it follows that M(n, zn) tends almost surely to MµX

(ρ).

The space ker(MµX
(ρ)) is the set of vectors (x1, . . . , xr, y1, . . . , yr) such that for all

i = 1, . . . , r,

xi = θiϕµX
(ρ)yi and yi = θiϕµ̃X

(ρ)xi.

Note that ϕµX
(ρ)ϕµ̃X

(ρ) = DµX
(c, ρ) = 1/θ2

1, thus ker(MµX
(ρ)) is the set of vectors

(x1, . . . , xr, y1, . . . , yr) such that for all i = 1, . . . , r0, xi = θ1ϕµX
(ρ)yi and for all i =

r0 +1, . . . , r, xi = yi = 0. Hence the orthogonal projection onto ker(MµX
(ρ))⊥ is the map

which maps any vector (x1, . . . , xr, y1, . . . , yr) onto

(x1, . . . , xr0 , xr0+1, . . . , xr, y1, . . . , yr0
, yr0+1, . . . , yr),

where for all i, (xi, yi) =
xi−θ1ϕµX

(ρ)yi

1+θ2
1ϕµX

(ρ)2
(1,−θ1ϕµX

(ρ)).

Let us define xn =

[
un

vn

]
. By the relations between eigenvectors and pairs of singular

vectors given in Theorem 5.3 and by Proposition 5.1 a), for n large enough such that zn

is not a singular value of Xn, W ∗
nxn is a vector of ker(M(n, zn)), with norm ≤ 2. Since

for all n, the 2r coordinates of W ∗
nxn are respectively

〈U (n)
1 , un〉, . . . , 〈U (n)

r , un〉, 〈V (n)
1 , vn〉, . . . , 〈V (n)

r , vn〉,

Lemma 7.1 allows to claim that (37) and (38) hold.

Let us now prove (36). Again, by the relations between eigenvectors and pairs of
singular vectors given in Theorem 5.3 and by Proposition 5.1 a), one has, for all n,

xn = (zn −Xh
n)−1WnΩW ∗

nxn

= (zn −Xh
n)−1

r∑

j=1

θj〈V (n)
j , vn〉Ũ (n)

j + θj〈U (n)
j , un〉Ṽ (n)

j ,
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where we defined, for j = 1, . . . , r, Ũ
(n)
j :=

[
U

(n)
j

0m,1

]
and Ṽ

(n)
j :=

[
0n,1

V
(n)
j

]
. For each n, we

have xn = x′n + x′′n, with

x′n = θ1(zn −Xh
n)−1

r0∑

j=1

〈V (n)
j , vn〉(Ũ (n)

j + θ1ϕµX
(ρ)Ṽ

(n)
j ),

x′′n = θ1(zn −Xh
n)−1

r0∑

j=1

(〈U (n)
j , un〉 − θ1ϕµX

(ρ)〈V (n)
j , vn〉)Ṽ (n)

j

+(zn −Xh
n)−1

r∑

j=r0+1

θj〈V (n)
j , xn〉Ũ (n)

j + θj〈U (n)
j , xn〉Ṽ (n)

j .

Note that zn tends almost surely to ρ, which does not belong to [a, b]∪{0}, thus almost
surely, the operator norms of (zn − Xn)−1 form a bounded sequence. By (37) and (38),
it follows that ‖x′′n‖ tends almost surely to zero. Since un has norm one, the norm of the
n× 1 upper part of x′n, that we shall denote by u′n, tends almost surely to one. By (21),

(zn −Xh
n)−1 =




zn

z2
n−D2

n

Dn

z2
n−D2

n
0n,m−n

Dn

z2
n−D2

n

zn

z2
n−D2

n
0n,m−n

0m−n,n 0m−n,n z−1
n


 ,

hence

u′n = θ1

r0∑

j=1

〈V (n)
j , vn〉

(
zn

z2
n −D2

n

U
(n)
j + θ1ϕµX

(ρ)
Dn

z2
n −D2

n

K
(n)
j

)
,

where for all j, K
(n)
j is the j-th column of Kn. It follows that

‖u′n‖2 = θ2
1

r0∑

i,j=1

〈V (n)
i , vn〉〈V (n)

j , vn〉Coefn(i, j),

where we defined, for all i, j = 1, . . . , r0,

Coefn(i, j) := U
(n)∗
i

z2
n

(z2
n −D2

n)2
U

(n)
j + θ2

1ϕµX
(ρ)2K

(n)∗
i

D2
n

(z2
n −D2

n)2
K

(n)
j

+θ1ϕµX
(ρ)U

(n)∗
i

znDn

(z2
n −D2

n)2
K

(n)
j + θ1ϕµX

(ρ)K
(n)∗
i

znDn

(z2
n −D2

n)2
U

(n)
j ,

By Proposition 11.3, for all i, j = 1, . . . , r0, as n tends to infinity,

Coefn(i, j)
a.s.−→

{∫
ρ2

(ρ2−t2)2
dµX(t) + θ2

1ϕµX
(ρ)2

∫
t2

(ρ2−t2)2
dµ̃X(t) if i = j,

0 if i 6= j.

Hence
∑r0

j=1 |〈V
(n)
j , vn〉|2 tends to

1

θ2
1

1∫
t

ρ2

(ρ2−t2)2
dµX(t) + θ2

1ϕµX
(ρ)2

∫
t2

(ρ2−t2)2
dµ̃X(t)

.
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The following relations:

ϕµX
(ρ)ϕµ̃X

(ρ) = DµX
(c, ρ) = 1/θ2

1

2

∫
ρ2

(ρ2 − t2)2
dµX(t) =

1

ρ
ϕµX

(ρ) − ϕ′
µX

(ρ)

2

∫
t2

(ρ2 − t2)2
dµ̃X(t) = −1

ρ
ϕµ̃X

(ρ) − ϕ′
µ̃X

(ρ)

allow to recover the RHS of (3) easily. Thus (36) is proved. �

10.2. Proof of Theorem 2.12. As in the proof of Theorem 2.10, the problem can be
reduced to the case where

Xn =
[
Dn 0n,m−n

]
, Pn = θu(P )

n v(P )∗
n ,

where Dn, u
(P )
n , v

(P )
n are independent, Dn = diag(σ

(n)
1 , . . . , σ

(n)
n ) and u

(P )
n , v

(P )
n are uniform

random vectors of the unit spheres of respectively R
n,Rm (or C

n,Cm). Then, by the
relations between eigenvectors and pairs of singular vectors given in Theorem 5.3, by
Proposition 5.1 a) and by Proposition 5.4, for n large enough such that zn is not an
singular value of Xn, we have

[
un

vn

]
=




zn

z2
n−D2

n

Dn

z2
n−D2

n
0n,m−n

Dn

z2
n−D2

n

zn

z2
n−D2

n
0n,m−n

0m−n,n 0m−n,n z−1
n




[
θv

(P )∗
n vnu

(P )
n

θu
(P )∗
n unv

(P )
n

]
.

Let us denote by Kn the column vector of the n first coordinates of v
(P )
n . We have

1 = ‖un‖2 = θ2|v(P )∗
n vn|2u(P )∗

n

z2
n

(z2
n −D2

n)2
u(P )

n + θ2|u(P )∗
n un|2K∗

n

D2
n

(z2
n −D2

n)2
Kn

+θ2v
(P )∗
n vnu

(P )∗
n unu

(P )∗
n

znDn

(z2
n −D2

n)2
Kn + θ2u

(P )∗
n unv

(P )∗
n vnK

∗
n

znDn

(z2
n −D2

n)2
u(P )

n .

Note that the hypotheses of the theorem imply that
∫ dµX (t)

(b2−t2)2
= +∞ (and that

∫ dµX(t)
(a2−t2)2

=

+∞ in the last part of the theorem). One concludes as at the end of the proof of Theorem

2.3 that |u(P )∗
n un| and |v(P )∗

n vn|2 tend almost surely to zero as n tends to infinity, which is
the statement of the theorem. �

11. Appendix: technical preliminaries needed for the proofs

11.1. Convergence of weighted spectral measures.

11.1.1. A few facts about the weak convergence of complex measures. Recall that a se-
quence (µn) of complex measures on R is said to converge weakly to a complex measure
µ on R if, for any continuous bounded function f on R,

∫
f(t)dµn(t) −→

n→∞

∫
f(t)dµ(t). (39)
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The following lemma shall be useful. It is well known for probability measures, but since
we did not find any reference on its “complex measures version”, we give a proof. Recall
that a sequence (µn) of complex measures on R is said to be tight if

lim
R→+∞

sup
n

|µn|({t ∈ R ; |t| ≥ R}) = 0.

Lemma 11.1. Let D be a dense subset of the set of continuous functions on R tending
to zero at infinity, endowed with the topology of the uniform convergence. Suppose that
the sequence (µn) is tight, that (|µn|(R)) is bounded and that (39) holds for any function
f in D. Then (µn) converges weakly to µ. Moreover, the convergence of (39) is uniform
on any set of uniformly bounded and uniformly Lipschitz functions.

Proof. Firstly, note that using the boundedness of (|µn|(R)), one extends easily (39) to
any continuous function tending to zero at infinity.

Let us fix a continuous bounded function f . For any continuous function g tending to
zero at infinity, we have∣∣∣∣

∫
fd(µ− µn)

∣∣∣∣ ≤
∫

|f(1 − g)|d(|µ| + |µn|) +

∣∣∣∣
∫
fgd(µ− µn)

∣∣∣∣ , (40)

thus

lim sup
n→∞

∣∣∣∣
∫
fd(µ− µn)

∣∣∣∣ ≤ sup
n

∫
|f(1 − g)|d(|µ|+ |µn|),

which, with a good choice of g (relying on the tightness hypothesis), can be made as small
as we want. Thus the first statement is proved.

Now, consider a set A of uniformly bounded and uniformly Lipschitz functions and
ε > 0. Let M > 0 be such that for all f ∈ A, |f | ≤ M . By tightness, there is R > 0 such
that for all n, M(|µ| + |µn|)({t ∈ R ; |t| ≥ R}) ≤ ε. Let g be a continuous compactly
supported function such that 0 ≤ g ≤ 1 and g(t) = 1 for all t ∈ [−R,R]. For all f ∈ A,
for all n,

∫
|f(1 − g)|d(|µ| + |µn|) ≤ ε. Thus by (40), one can suppose that the elements

of A have all their supports contained in the same compact set. In this case, the result is
an straightforward application of Ascoli’s Theorem. �

11.1.2. Convergence of weighted spectral measures.

Lemma 11.2. Let, for each n, U (n) = (u
(n)
1 , . . . , u

(n)
n ), V (n) = (v

(n)
1 , . . . , v

(n)
n ) be the

two first rows of a uniform random orthogonal (resp. unitary) matrix. Let also x(n) =

(x
(n)
1 , . . . , x

(n)
n ) be a random family of real numbers independent of (U (n), V (n)).

a) Suppose that for all n, x(n) belongs to the unit euclidian ball of R
n. Then

u
(n)
1 x

(n)
1 + · · ·+ u(n)

n x(n)
n

a.s.−→ 0. (41)

b) Suppose that for all n, k, |x(n)
k | ≤ 1 and that 1

n
(x

(n)
1 + · · · + x

(n)
n ) tends almost surely

to a deterministic limit l. Then

|u(n)
1 |2x(n)

1 + · · ·+ |u(n)
n |2x(n)

n
a.s.−→ l. (42)

c) Suppose that for all n, k, |x(n)
k | ≤ 1. Then as n tends to infinity,

u
(n)
1 v1

(n)x
(n)
1 + · · ·+ u(n)

n vn
(n)x(n)

n
a.s.−→ 0. (43)
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Proof. Firstly, by conditioning, one can suppose the x(n)’s to be deterministic.

Let us first prove a) and b). Only U (n) is involved in a) and b), thus since a uniform
random vector on the unit sphere of Cn is a uniform random vector on the unit sphere
of R

2n, it suffices to treat the real case. Now, let us recall a well-known concentration
result [5, Lem. 14.2]6. Let g be a real-valued 1-Lipschitz function on the unit sphere of
Rn. Let mg be one of its medians: both events {g(U (n)) ≥ mg} and {g(U (n)) ≤ mg} have
probabilities ≥ 1/2. Then we have, for any ε > 0,

P{|g(U (n)) −mg| ≥ ε} ≤
√
π/2e−ε2(n−1)/2.

It follows that

|E[g(U (n))] −mg| ≤ E[|g(U (n)) −mg|] =

∫ +∞

t=0

P{|g(U (n)) −mg| ≥ t}dt ≤ π

2
√
n− 1

.

Thus, |g(U (n))−E[g(U (n))]| ≥ ε+π
2
√

n−1
implies that |g(U (n))−mg| ≥ ε

2
√

n−1
and the following

inequality follows:

P

{
|g(U (n)) − E[g(U (n))]| ≥ ε+ π

2
√
n− 1

}
≤

√
π/2e−ε2/8 (44)

As a consequence, if, for all n, gn is a 1-Lipschitz function on the unit sphere of Rn,
such that that E[gn(U (n))] converges, as n goes to infinity, to a finite limit, then gn(U (n))
converges almost surely to the same limit (indeed, by the Borel Cantelli Lemma, it suffices
to prove that for any η > 0, the series

∑
n P{|gn(U

(n))−E[gn(U (n))]| > η} converges, which
follows from (44), applied with ε = 2

√
n− 1η − π). For a), applying this principle for

gn : u 7→ 〈x(n), u〉, which gradient, x(n), actually belongs to the unit euclidian sphere,
allows to conclude. For b), use the function gn : u 7→ 1

2
u∗ diag(x(n))u, which gradient

at any point u of the sphere, is equal to diag(x(n))u, thus actually belongs to the unit
euclidian sphere.

To prove c), the strategy is quite different. Let us define the random variable Zn =

u
(n)
1 v1

(n)x
(n)
1 + · · · + u(n)

n vn
(n)x

(n)
n . Since Zn is centered, by Chebyshev’s inequality and

Borel Cantelli’s Lemma, it suffices to prove that E[Z4
n] = O(n−2). We have

E[Z4
n] =

n∑

i,j,k,l=1

x
(n)
i x

(n)
j x

(n)
k x

(n)
l E[u

(n)
i u

(n)
j u

(n)
k u

(n)
l v

(n)
i v

(n)
j v

(n)
k v

(n)
l ].

Note that by definition of the Haar measure, E[u
(n)
i u

(n)
j u

(n)
k u

(n)
l v

(n)
i v

(n)
j v

(n)
k v

(n)
l ] = 0 when-

ever among i, j, k, l, one is different of all others. It follows that

E[Z4
n] ≤ 3

∑

i,j

x
(n)2

i x
(n)2

j E[u
(n)2

i u
(n)2

j v
(n)2

i v
(n)2

j ]

≤ 3
∑

i,j

x
(n)2

i x
(n)2

j (E[u
(n)8

i ]E[u
(n)8

j ]E[v
(n)8

i ]E[v
(n)8

j ])
1
4

︸ ︷︷ ︸
=E[u

(n)8

1 ]

.

Since, by [15], E[u
(n)8

1 ] = O(n−4), the conclusion holds. �

6Usually, this result is stated for functions which are 1-Lipschitz with respect to the geodesic distance
on the sphere d(u, v) = arccos〈u, v〉, but using 〈u, v〉 = 1− ‖v − u‖2/2, it appears that ‖v − u‖ ≤ d(u, v).
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Proposition 11.3. Let, for each n, U (n) = (u
(n)
1 , . . . , u

(n)
n ), V (n) = (v

(n)
1 , . . . , v

(n)
n ) be the

two first columns of a uniform random orthogonal (resp. unitary) matrix. Consider also

mn ≥ n and a uniform random vector W (n) = (w
(n)
1 , . . . , w

(n)
mn) on the unit sphere of R

mn

(resp. Cmn), independent of U (n). Let also λ(n) = (λ
(n)
1 , . . . , λ

(n)
n ) be a random family of

real numbers independent of (U (n), V (n),W (n)). We suppose that n/mn −→
n→∞

c ∈ [0, 1],

that

the sequence (max
k

|λ(n)
k |) is almost surely bounded, (45)

and that there exists a deterministic probability measure µ on R such that as n tends to
infinity,

1

n

n∑

k=1

δ
λ
(n)
k

converges almost surely weakly to µ. (46)

Then as n tends to infinity,

µU (n) :=
∑n

k=1 |u
(n)
k |2δ

λ
(n)
k

converges almost surely weakly to µ, (47)

µW (n) :=
∑n

k=1 |w
(n)
k |2δ

λ
(n)
k

+
∑mn

k=n+1 |w
(n)
k |2δ0 (48)

converges almost surely weakly to cµ+ (1 − c)δ0,

µU (n),V (n) :=
∑n

k=1 u
(n)
k v

(n)
k δ

λ
(n)
k

converges almost surely weakly to 0, (49)

µU (n),W (n) :=
∑n

k=1 u
(n)
k w

(n)
k δ

λ
(n)
k

converges almost surely weakly to 0. (50)

Proof. We shall use the first statement of Lemma 11.1. Note first that by hypothesis
(45), almost surely, all these sequences of complex measures are tight. Moreover, we have

|µU (n),V (n) | =

n∑

k=1

|u(n)
k v

(n)
k |δ

λ
(n)
k
,

thus, by the Cauchy-Schwartz inequality, we have |µU (n),V (n) |(R) ≤ 1. In the same way,
|µU (n),W (n)|(R) ≤ 1. Since µU (n), µW (n) are probability measures, the same inequality holds
obviously for them.

The set of continuous functions on the real line tending to zero at infinity admits
a countable dense subset, so it suffices to prove that for a fixed such function f , the
convergences of (47), (48), (49) and (50) hold almost surely when applied to f . So let
us fix a continuous bounded function f on R. One can suppose that |f | ≤ 1. The
convergences of (47) and (48), applied to f , follow from an application of (42). The
convergence of (49), applied to f , follows from (43). At last, the convergence of (50),
applied to f , follows from (41). �

11.2. A technical lemma. We shall need the following result. Note that nothing, in
its hypotheses, is random. We define, for z ∈ C and E a closed subset of R, d(z, E) =
minx∈E |z − x|.
Lemma 11.4. Let us fix a positive integer r, a family θ1, . . . , θr of pairwise distinct
nonzero real numbers, two real numbers a < b, a function G which is analytic on C\[a, b]
and such that
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a) G does not take any real value out of R\[a, b],
b) for all z ∈ (−∞, a) ∪ (b,+∞), G(z) ∈ R and G′(z) < 0,
c) G(z) tends to zero as z ∈ R tends to infinity.

Let us define, for z ∈ C\[a, b], the r × r matrix

MG(z) = diag(1 − θ1G(z), . . . , 1 − θrG(z)), (51)

and denote by z1 > · · · > zp the z’s such that MG(z) is not invertible (p ∈ {0, . . . , r} is
the number of θi’s such that the equation G(z) = 1/θi has a solution).

Let us also consider two sequences an, bn with respective limits a, b and, for each n, a
function M(n, ·), defined on C\[an, bn], with values in the set of r × r complex matrices
and which coefficients are analytic functions. We suppose that

d) for all n, for all z ∈ C\R, the matrix M(n, z) is invertible,
e) for all η > 0, M(n, ·) converges, as n tends to infinity, to the function MG(·),

uniformly on {z ∈ C ; d(z, [a, b]) ≥ η}.
Then there exists p real sequences zn,1 > . . . > zn,p converging respectively to z1, . . . , zp

such that for all ε ∈ (0,mini d(zi, [a, b])), for n large enough, the z’s in R\[a − ε, b + ε]
such that M(n, z) is not invertible are exactly zn,1, . . . , zn,p. Moreover, for n large enough,
for each i, M(n, zn,i) has rank r − 1.

Proof. Note firstly that by c), there exists R > 0 such that for z ∈ R such that |z| ≥ R,
|G(z)| ≤ mini

1
2|θi| . By d) and e), it follows that for n large enough, all the z’s such that

M(n, z) is not invertible are in [−R,R]. To conclude, it suffices to prove that for all
c, d ∈ R\([a, b] ∪ {z1, . . . , zp}) such that c < d < a or b < c < d, we have:

(H) the number Cc,d(n) of z’s in (c, d) such that detM(n, z) = 0 tends to the cardinality
Cc,d of the i’s in {1, . . . , p} such that c < zi < d.

(The assumption about the ranks following then from the fact that the set of matrices
with rank at least r − 1 is open in the set of r × r matrices).

To prove (H), by additivity, one can suppose that c and d are close enough to have
Cc,d = 0 or 1. Let us define γ to be the circle with diameter [c, d]. By a), detMG(·) does
not vanish on γ, thus

Cc,d =
1

2iπ

∫

γ

∂z detMG(z)

detMG(z)
dz = lim

n→∞

1

2iπ

∫

γ

∂z detM(n, z)

detM(n, z)
dz,

the last equality following from e). Since Cc,d = 0 or 1, no ambiguity due to the orders
of the zeros has to be taken into account here, and it follows that for n large enough,
Cc,d(n) = Cc,d. �
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