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Abstract

We present a scheduling heuristic for the stochastic job shop. In a
stochastic job shop. operation processing times may vary randomly, or
machines may fail at random intervals. or both. Dispatching rules based
on substituting expected values for random quantities are often used for
scheduling in this uncertain environment. The scheduling heuristic we
propose performs restricted dvnamic updating of an initial schedule for the
shop, using limited distribution information about the random quantities.
In particular. we allow general dependence among the stochastic quantities
and require at most two moments of each distribution function. Our
objective is to minimize expected tardiness. We investigate the benefits
of the scheduling heuristic versus a dispatching rule using a simulation
study.
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Introduction

In the static job shop problem, n jobs must be scheduled for processing on m
machines. Each job consists of a number of operations; each operation runs on
a specific machine or group of machines. The order of machines a job must visit
is known. In the deterministic job shop problem, machines are continuously
available and processing times for all operations are deterministic. In stochastic
versions of the problem, operation processing times may be random or the ma-
chines may be subject to random disruptions or both. We consider a stochastic
version of the job shop problem. We assume that preemption of one operation
by another is not allowed. In addition, we assume that setup times are negli-
gible in comparison to operation processing times and that material handling
time between operations is insignificant. Basically, ignoring our consideration
of stochastic elements, these assumptions define a simple job shop as described
in Conway et. al. (1967).

We concentrate on minimizing the expected tardiness in a job shop. We
chose to minimize tardiness because reducing tardiness is a goal in many actual
job shops. Smith et. al. (1986) report that tardiness is the single most im-
portant objective to practitioners today. In addition, since tardiness costs are
nonstationary in time. results for tardiness may be extended to more general
functions than results for stationary objectives such as completion time.

A schedule that is optimal with respect to minimizing expected tardiness
may perform quite poorly given the actual situation in the job shop. Ideally,
we desire a schedule that performs well in a variety of situations. One option is
to select a schedule that does well in the worst case scenario. This minimizes
the maximum cost of any scheduling problem. However, it does not insure good
average performance. Nevertheless. in manyv cases, managing the worst case
scenarios is important. In this paper. we describe a heuristic scheduling proce-
dure which combines the average and worst-case concepts by selecting schedules
which minimize over the set of possible schedules the maximum expected sched-
ule cost over distributions with known limited information.

This paper is organized as follows. The remainder of this section describes
the stochastic job shop problem and reviews the relevant literature. The second
section describes the heuristic scheduling algorithni. The third section presents a
simulation study which compares the expected tardiness of schedules developed
using the heuristic with schedules developed under a dispatching rule. The
section concludes with observations from the study and indicates directions for
future research.



1 Background

1.1 Stochastic Job Shop Problem

Under the scenario of random processing times or machine disruptions, the
stochastic job shop problem can be modeled as a stochastic program with gen-
eral recourse. This means the optimal schedule may vary with the realized
outcomes of the random components. In this model, the decision of which job
to schedule next can depend on any decisions made and events that have oc-
curred in the past, i.e., only nonanticipative decisions are allowed. Thus, the
sequence of operations actually processed on a machine depends on the events
which occurred during processing. This flexibility may make the general re-
course schedule extremely complicated to implement. Simplification is possible
by restricting consideration to simple recourse solutions, although the solution
obtained is no longer guaranteed to be optimal.

In simple recourse, decisions are independent of all but the initial condi-
tions. A simple recourse schedule for the job shop is completely specified by the
processing order on each machine. Simple recourse schedules are inflexible be-
cause they do not permit scheduling changes once processing begins. In reality,
it is often desirable to update the schedule periodically during processing, us-
ing current information on the job shop status. Our heuristic performs limited
updating of an initial schedule based on current shop status.

Although most job shops are stochastic. scheduling models usually ignore
uncertainty (Graves (1981)). In these models, expected values are substituted
for their actual random counterparts. Research on stochastic problems in vari-
ous applications shows that this procedure of substituting expected values yields
disappointing results. see Igelmund (1983b), Kallberg et.al. (1982), Mittenthal
(1986). and Wets (1983). In practice, the schedules produced by these deter-
ministic models must be adapted to constantly changing circumstances. In very
uncertain environments, a priori schedules are abandoned altogether. Instead,
each time a machine becomes idle, a dvnamic priority rule is used to choose one
operation to process next among the operations queued at the machine. The
priority rule assigns an index. based on local operation information, to each
operation in the queue. Priority rule scheduling ignores future implications of
current decisions. In addition. it reduces the possibility of closely coordinating
a job shop with its associated manufacturing processes.

The heuristic described here creates an initial schedule for the job shop be-
fore production begins. As processing proceeds, this schedule is updated based
on current information on the job shop status. Thus, the heuristic incorpo-
rates the strengths of both simple recourse scheduling and dynamic priority
rule scheduling. It uses up-to-date information about the job shop status and
analyzes the effects of current decisions on the future schedule.



1.2 Literature Review

Much of the existing literature on the stochastic job shop problem is devoted
to special cases, either restricting the number or type of machines or requiring
explicit distributions for the random elements. The processing times may be
stochastic or the machines may be subject to random breakdowns or both.

Many of the stochastic scheduling articles focus on the single machine prob-
lem. Both the stochastic job and stochastic machine cases are represented.
Some early work on a stochastic job problem was done by Blau (1973). More
recently, Glazebrook (1983, 1984, 1987a, b) considered both stochastic job and
stochastic machine scenarios. Mittenthal (1986), Mittenthal and Birge (1987),
and Birge et. al. (1990) used stochastic programming to model the stochastic
single machine problem. Most of these papers require complete knowledge of
the distribution function of the random elements. Independence among random
elements is also a common assumption.

There is little published work on the multi-machine, stochastic job shop
problem. Assuming independent, exponential job processing times, Weiss and
Pinedo (1980) found rules for processing n jobs on non-identical processors to
minimize stationary objectives.

Igelmund and Radermacher (1983a,1983b) and Mohring, Radermacher and
Weiss (1984,1985) studied a stochastic, resource constrained, project scheduling
problem. They assumed that the durations of project activities, equivalent to
operations in job shop scheduling, were random. They also assumed that the
joint distribution of the durations of the activities was known. They considered
simple recourse solutions as well as schedules created from a combination of sev-
eral simple recourse solutions. The authors proved various analytical properties
for these classes of schedules.

Solel (1986) presented a general precedence constrained stochastic scheduling
model which encompasses the models of Mohring et. al. and Weiss and Pinedo.
She modeled the problem as a Piecewise Deterministic (Markov) process and,
assuming that the joint distribution of the job durations was known, obtained
existence results and characterized the optimal strategy when the objective was
to minimize the expectation of a cost function. The cost functions she considered
had to be linearly bounded and monotonically increasing as a function of the
completion times of the jobs.

All of the models discussed so far explicitly take uncertainty into account.
Job shop rescheduling is a heuristic for the stochastic problem that ignores
randomness during the planning stage. In job shop rescheduling, a schedule
for the job shop is initially constructed using deterministic methods. When a
disruption occurs, the job shop is rescheduled from that point onward. The basic
dilemma in this heuristic is how to reschedule quickly enough that work flow in
the job shop is not disturbed. Of issue are the frequency of rescheduling, whether
the whole job shop should be rescheduled. and which deterministic scheduling
heuristic should be used. Rescheduling has been studied by Muhleman et. al.



(1982), Bean et. al. (1991), Bean and Birge (1986), and Birge (1986), among
others.

The stochastic scheduling problem we study is more general than most of
the models discussed in the stochastic scheduling literature. We consider mul-
tiple machines and assume only limited information about the distributions of
the random elements. In particular, we allow general dependence among the
stochastic quantities and require at most the first two moments of each distri-
bution function. Due to the computational difficulty of solving general recourse
stochastic programs, and the complexity of the resulting solutions, we consider
a heuristic solution procedure in this paper.

2 Heuristic Scheduling Procedure

The first step in the heuristic algorithm is to create an initial schedule for the
job shop prior to actual processing. This schedule dictates the first operation to
load on each machine. The remaining steps of the scheduling heuristic control
sequencing once production begins. Each time an operation finishes processing,
the heuristic updates the current schedule and selects an operation to put on the
machine next. The heuristic stops when all operations have finished processing.
This section consists of two subsections. The first subsection describes a
method for creating an initial schedule for the job shop. The second subsection
discusses a method for updating this schedule as production progresses.

2.1 Initial Schedule

The heuristic algorithm begins by creating an initial schedule for the job shop.
In realistic scheduling environments. initial schedules which balance several ob-
jectives may be desired. Here. we schedule with the objective of minimizing ex-
pected tardiness. The initial schedule may be created by substituting expected
values for random quantities and using a deterministic scheduling method. For
example, a deterministic dispatching rule may be used. On a small problem, a
branch and bound algorithm discussed in Maddox (1988) may be used to create
an initial schedule which has the minimum worst-case expected tardiness among
all such schedules. Evaluating the true expected tardiness of the initial schedule
is difficult because of the stochastic nature of the problem and the number of
possible alternatives.

2.2 Updating the Schedule

When an operation finishes processing. the heuristic updating procedure de-
termines the next operation to place on that machine. The heuristic chooses
either the operation specified in the current schedule or selects a replacement
operation. Since the procedure sequentially updates the initial schedule, there



is always a complete schedule available. This permits evaluation of the future
effects of current decisions. If the updating is too extensive, the heuristic es-
sentially becomes a dispatching rule, since the future sequencing information
it utilizes is unreliable. If the information the algorithm uses is incorrect, the
algorithm could potentially create schedules with higher tardiness than an algo-
rithm which ignores such information. On the other hand, not allowing enough
revisions may make the heuristic algorithm too inflexible, given the stochastic
nature of the job shop. When an operation finishes processing, the key question
is what operation to put on the machine next. Hence, in our heuristic algorithm
we only permit updates of the next operation to be placed on the machine.

We refer to the machine involved in the current decision as the current
machine, M. Any machines identical to the current machine are identified as
the current machine group, N. M is included in machine group N. The process
of deciding which operation to load on machine M involves four steps:

o Identify the set of potential "replacement operations” for operation I, the
operation scheduled next on machine M in the current schedule.

o For each replacement operation, develop a replacement schedule in which
the replacement operation is scheduled next on machine M.

o Choose the “best™ replacement operation from the set of potential replace-
ments.

e Load either operation I or the “best™ replacement operation on machine
M. The first three steps are described in more detail below.

Step 1: Identify Potential Replacement Operations

The number of potential replacement operations affects both the speed and
the effectiveness of the algorithm. If a large number of potential replacements
are identified. evaluating which one is “best™ mayv require a significant amount
of time. On the other hand. limiting the number of replacements limits the
flexibility of the algorithm.

The set of potential replacements could include all unprocessed operations on
machine group N. However. unless the current job shop conditions are drastically
different from the expected ones. operations currently sequenced " farther” from
the current time T are less likelv to be good replacements than operations
scheduled closer to T. Technological precedence constraints are also likely to
prohibit moving operations not currently scheduled "near” T.

Of particular interest as replacements are operations that are now sched-
uled to start before or soon after the expected completion time of operation I
in the current schedule. When the variance of operation I increases, the set
of replacement operations should increase as well. Therefore, we included an
operation in the set of replacement operations if it ran on machine group N,



and it was expected to start before the expected completion time of operation
I plus a constant times the standard deviation of operation I's processing time.
The constant is a parameter of the algorithm.

Step 2: Develop Replacement Schedules

Once an operation has been identified as a potential replacement, the heuris-
tic develops a schedule with that operation placed next on machine M. Let J
denote a replacement operation. If J is originally scheduled on machine M the
operations scheduled between operations I and J are bumped back one position
in the replacement schedule. If operation J is scheduled on another machine
in machine group N, the two operations are interchanged in the replacement
schedule.

The positions of the predecessor and successor operations of operation J
should also be updated in the replacement schedule. This increases the impact
of the schedule change. The predecessor and successor operations must be
resequenced carefully, since incorrectly placing them may cause unwanted delays
and machine idle time. Determining their new positions is difficult, however,
since the exact completion times of the unprocessed operations are unknown.

In the heuristic algorithm. if replacement operation J is now sequenced before
an operation H which it was originally scheduled after, the algorithm checks to
see if any successors of H are scheduled before successors of J on a machine. If
any such successors are found. interchanges are made to rectify the situation.
In the simulation. a version of the heuristic with no successor updates is tested
as well, to judge the viability of this approach.

Step 3: Choose the “Best™” Replacement Operation

Ideally. once each potential replacement schedule has been developed, the sched-
ule with the lowest expected tardiness is selected as the replacement schedule.
If the expected tardiness of this replacement schedule is less than that of the
current schedule. the replacement operation is loaded on the current machine
and the replacement schedule becomes the current schedule.  Unfortunately,
the expected tardiness of a schedule cannot be caleulated exactly. The tardi-
ness random variable has a complicated distribution since it is a function of
the maximum of a sum of possiblv dependent random variables. It is possible.
however, to bound the expected tardiness of a schedule. Birge and Maddox
(1995) and Maddox (195881 derive i upper bound on the expected tardiness
of a schedule. A lower bound on the expected tardiness of a schedule can be
obtained by substituting expected vadues for the random processing times and
determining the resulting tardiness.

These bounds bracket expected tardiness in some interval. We use this in-
terval to determine the operation to schedule. Using the lower bound assumes a
"best-case” distribution. The upper bound assumes a “worst-case” distribution.



The schedule with either the minimum best-case or worst-case expected tardi-
ness becomes the current schedule. The operation dictated by this schedule is
loaded onto machine M.

Developing and bounding the expected tardiness of each replacement sched-
ule may be time consuming. An alternative is to choose one replacement oper-
ation and build only one replacement schedule. This requires a procedure for
determining the “best” replacement from the set of potential replacement oper-
ations. The goal is to determine the operation which is most likely to have the
schedule with the smallest bound on expected tardiness. One possible way to
pick the operation is to use a dispatching rule. Dispatching rules which perform
well in studies minimizing tardiness are most appropriate. In the version of
the heuristic tested in the simulation, a replacement schedule is built for each
replacement operation.

3 Simulation

3.1 Simulation Description

The purpose of the simulation was to compare the average tardiness performance
of the heuristic algorithm and a dynamic dispatching rule. Dynamic dispatch-
ing rules are often used to schedule stochastic, multiple machine job shops.
The heuristic algorithm tested was described in the previous section. The ini-
tial schedule was generated assuming operation processing times equaled their
expected values. The Apparent Tardiness Cost (ATC) dispatching rule (Vep-
salainen and Morton (1987)). described below, was used to generate the initial
schedule. Each time an operation completed processing, a set of potential re-
placement operations was identified and two replacement schedules were devel-
oped for each. In one replacement schedule. only the position of the potential
replacement operation was altered. In the other. the position of the replacement
operation and the positions of all of its technological successors were updated.
The length of the time interval in which replacements are chosen is a param-
eter of the simulation. The length is a function of the standard deviation of
operation I's processing time.

Under each set of experimental conditions, two forms of the heuristic were
tested. In one. the schedule with the minimum worst-case expected tardiness,
among the replacement schedules and the current schedule, was chosen as the
new current schedule. The bounding procedure discussed in Birge and Mad-
dox (1995) and Maddox (1988), utilizing two moments of each processing time
distribution, was used to determine the value of each schedule. In the other
version of the heuristic. the schedule with the minimum best-case expected tar-
diness was chosen. Note that both of these approaches recognize the stochastic
nature of the problem but make different assumptions about the distribution
of processing times. The choice of best-case versus worst-case depends on the



decision-maker’s risk aversion. The ATC dispatching rule was chosen for test-
ing against the heuristic because of its superior performance in deterministic
studies. The ATC of operation j of job i is

1 Ti-t-§~ Zf;=j+1<Wq +&) +
E(gj)e:rp( [ kp 1),

where

t = current time,
W, = expected wait time for remaining operation g,
[; = number of last operation in job i,
p = exected average processing time of waiting operations,
k = lookahead parameter.

The expected wait time for operation ¢ is set equal to b-fq , where b is a
parameter of the simulation. In our simulation, b = 2 and k = 3. Vepsalainen
and Morton (1987) suggest k = 3 as a reasonable value for dynamic job shops.

Here, the expected processing time of an operation was used in calculating its
ATC. Initially, the ATC of each operation without a predecessor was calculated.
The one with maximum ATC was loaded on machine M. This process continued
by selecting the operation with maximum ATC from the set of operations whose
predecessors had been scheduled. until all operations completed processing.

The job shop selected for study is part of an automobile manufacturing
facility consisting of 14 machine groups and 26 machines. Ten machine groups
contain a single machine, two groups consist of three machines, one machine
group contains four machines and the last machine group includes six machines.
The machines are all subject to random breakdowns, with a mean time of 2400
minutes between breakdowns. The time to repair each machine is 60 minutes.
Means and variances for operation processing times are calculated from this
machine information. Fifteen jobs require scheduling on these machines. In
total, ninety-three operations must be scheduled. The due dates for the jobs
are based on total work content.

The ATC dispatching rule and the two versions of the heuristic were sim-
ulated under four parameter combinations of due date tightness and variance
in the operation processing times. The due dates were set to 2 or 2.21 times
the expected processing times. When the due dates were set to 2 times the ex-
pected processing times. there were no replications with zero tardiness. When
the due dates were set to 2.21 times the expected processing times, the ATC
dispatching rule produced schedules with zero tardiness in two thirds of the
replications. Two variance levels were tested in the simulation. In one case, the
variance in the processing times was calculated assuming 2400 minutes between
breakdowns and 60 minute repair times. In the other case, the variance in the
processing times was calculated with double or triple the repair times.



3.2 Simulation Results

The simulation consisted of three experiments. Each experiment used a different
distribution to generate the operation processing times. The three distributions
tested were: a lognormal distribution with independent processing times, a
bi-modal distribution with independent processing times, and a bi-modal dis-
tribution with totally correlated processing times.

The results of the simulation study using lognormal operation processing
times appear in Table 1 .The ATC dispatching rule is identified by ATC in the
table. In Table 1, BC,c=x refers to the version of the heuristic which chooses the
schedule with the minimum best-case expected tardiness at each decision point.
Replacements are chosen from the interval of length equal to the expected pro-
cessing time plus c¢ times the standard deviation of operation I. WC,c=x refers
to the version of the heuristic which chooses the schedule with the minimum
worst-case tardiness at each decision point. Table 1 lists the median and mean
sample tardiness for each scheduling procedure under each parameter combina-
tion. Under each parameter combination, the scheduling procedures are entered
in order of median tardiness. The table also lists the confidence level that the
probability of a negative difference between the tardiness of schedules created
by adjacent scheduling procedures is greater than the probability of a positive
difference. It includes, for each parameter combination, the number of replica-
tions (out of 15 total for each combination) in which a schedule created by the
WC,c=x or ATC procedures has lower tardiness than the corresponding sched-
ule created by the BC,c=2 algorithm. The final column in Table 1 summarizes
the tardiness range, rounded to the nearest integer, of the schedules obtained
under each parameter combination.

Initially, using tight due dates and low variance, the WC version of the
heuristic was run with different ¢ values to judge the effect of ¢ on the re-
sults. Table 1 shows that the median and mean tardiness values were similar
under the various choices of ¢. Setting c=10 gives the worst results for the WC
algorithm. Increasing the number of potential replacements, while allowing ad-
ditional flexibility in the algorithm, does not necessarily produce schedules with
lower tardiness, because inaccurate future information is being used in decision
making. Since the version of the algorithm with ¢=2 performed best in these
tests, the remainder of the simulation runs were completed with ¢c=2.

Note that ranking the scheduling algorithms by sample mean expected tardi-
ness produces a different order. This is primarily because of an extremely large
expected tardiness value, an order of magnitude greater than any other, on one
of the replications. The ATC dispatching rule always produced the schedule
with the lowest tardiness on this case. Removing this replication, the order of
the means is the same as the order of the medians.

Altering the due date tightness and variance levels does not influence the
ranking of the scheduling procedures. Under every parameter combination with
lognormal processing times. the BC version of the heuristic produces schedules

10



Parameter Scheduling | Median Mean Confidence | # Better | Tardiness
Combination | Procedure | Tardiness | Tardiness Level Than BC Range
tight due date | BC,c=2 27.277 200.26 99 - 22-2256
low variance WC, ¢c=2 54.485 222.26 50 1 22-2261

WC, ¢=0 54.485 354.12 60 2 22-4256

WC, ¢=10 57.510 353.94 50 1 50-4109

ATC 76.201 213.86 - 1 23-1861

tight due date | BC, ¢=2 25.971 412.71 99 - 21-5346
high variance | WC, c¢=2 54.893 443.15 50 0 24-5351
ATC 78.173 367.83 - 1 51-4021

loose due date | BC, ¢=2 0.000 129.1 99 - 0-1729
low variance WC, ¢=2 8.818 136.03 60 0 0-1730

. ATC 16.011 110.06 - 1 0-1285
loose due date | BC, ¢=2 0.000 339.37 99 - 0-4818
high variance | WC, ¢=2 7.897 348.2 50 0 0-4820
ATC 14.030 261.19 - 1 0-3446

Table 1: Simulation Results with Lognormal Processing Times

with the lowest median expected tardiness. In every case, there is 99algorithm
is more likely to produce lower expected tardiness schedules than the other al-
gorithms. Comparing the WC.c=2 and ATC procedures, the highest confidence
that the probability of a negative difference in tardiness is greater than the
probability of a positive difference in tardiness occurs when the due dates are
tight and the variance is low.

In Maddox (1988). Chapter 4. for two test problems, the simple recourse
schedule with minimum best-case expected tardiness was tested against the
simple recourse schedule with minimum worst-case tardiness. There, when a
lognormal distribution was used to generate the processing times, it was con-
cluded that the worst-case schedule performed well only in extreme situations.
In light of this, it is not surprising that the BC version of the heuristic performs
better in these tests. in terms of average tardiness, than the WC version of the
heuristic. Given the small number of replications in the current study, statis-
tics on the behavior of the algorithmms in extreme situations is inappropriate.
The cost of greatly increasing the number of replications in this study was pro-
hibitive. We conclude. however. that the behavior of the BC and WC heuristic
algorithms is similar to the hehavior of the optimal simple recourse schedules.

The use of lognormal processing times is not likely to be representative of
a shop in which machines generally perform in a fixed amount of time unless a
tool breaks or another disruption occurs. In this case, the distribution of each
operation processing time is more likely to follow a bi-modal distribution. The
distribution achieving the worst-case expected tardiness is also a bi-modal dis-
tribution (see Birge and Maddox. 1995). For this reason, bi-modal distributions
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Parameter Scheduling | Median Mean # Best | Tardiness
Combination | Procedure | Tardiness | Tardiness | (of 30) Range
tight due date | BC,c=2 120 168.4 0.5 30-240
low variance WC, c=2 60 85.2 24 120-540
ATC 120 118.1 4.5 30-240
tight due date | BC, ¢=2 330 479.1 0.5 120-2190
high variance | WC, c=2 60 301.0 17.5 30-1080
ATC 120 225.5 11.5 30-750
loose due date | BC, c=2 0 18.8 12 0-216
low variance WC, ¢c=2 18 33.9 0 0-234
ATC 0 10.7 18 0-156
loose due date | BC, ¢=2 0 168.2 10.83 0-1215
high variance | WC, ¢=2 18 159.7 1.33 0-1146
ATC 0 92.2 17.83 0-474

Table 2: Simulation Results for Bi-Modal, Independent Processing Times

were also tested. The first set of results considers only independent process-
ing times. This represents the situation in which processing is only loosely
connected among machines. It is not the worst-case distribution because the
worst-case distribution has many correlated processing times. The results of
this experiment appear in Table 2. In these results, many of the values were the
same because the set of possible processing times was limited. Instead of calcu-
lating confidence levels for achieving lower tardiness, we simply list the number
of times out of 30 replications in which each method achieved the lowest overall
tardiness. Ties were split equally among the tying methods.

Note the difference in the results of Table 2 compared to Table 1. Here,
tight due dates favor the WC rule with ATC again producing lower mean values
when variance is high. For looser due dates. ATC is preferred. This observation
is consistent with the small problem results in Maddox (1988). Tight due dates
tend to favor the forward looking but pessimistic WC rule over the dynamic
ATC rule and the optimistic BC rule. This characteristic appears even when
the processing times are independent.

The next set of results considers completely correlated processing times. This
situation may occur. for example. when a batch of parts or its pallet has a defect
that delays all processes. It is also representative of a shop of tightly coupled
machines, where a breakdown in one area quickly shuts down other areas of the
shop. Completely correlated processing times are not necessarily the worst-case
distribution because that distribution may impose anti-correlations in order
to achieve higher overall expectations. It is probably the worst-case in most
practical situations.

The results for this experiment appear in Table 3. Here, there are three
possible scenarios (corresponding to no disruptions, only long jobs disrupted and

12



Parameter Scheduling | Median Mean # Best | Tardiness
Combination | Procedure | Tardiness | Tardiness | (of 3) Range
tight due date | BC,c=2 120 2804 0 120-5469
low variance WC, ¢=2 60 2503 3 60-4930

ATC 120 2673 0 120-5046
tight due date | BC, ¢=2 120 12139 0 120-22371
high variance | WC, ¢=2 60 11360 3 60-20784
ATC 120 11491 0 120-20877
loose due date | BC, c=2 0 2399 1.5 0-5232
low variance WC, ¢c=2 18 2094 0 0-4269
ATC 0 2128 1.5 0-4179
loose due date | BC, c=2 0 11840 0.5 0-23091
high variance WC, c=2 18 10847 1.0 0-20244
ATC 0 10872 1.5 0-20007

Table 3: Simulation Results for Bi-Modal, Correlated Processing Times

all jobs disrupted). In this case. the WC heuristic obtains minimum expected
tardiness when due dates are tight. ATC performs well in the worst outcomes
although in the middle outcomes (only long jobs disrupted) ATC always yielded
the highest tardiness.

The computational results demonstrate that the heuristic algorithm with
limited updating is a valuable scheduling method in some scenarios. The worst-
case algorithm appears preferable when processing times are bi-modal and par-
ticularly when processing times are correlated. The best-case algorithm appears
best in expectation in the uni-modal cases. The dynamic scheduling approach.
as represented by ATC. appears best when processing time variation is high.
These results are consistent with tests on small models in Maddox (1988).

Two alternative versions of the heuristic were tested in this simulation. The
difference between them was the criterion used to pick the “best™ schedule to use
cach time an operation finished processing. Both versions could be improved
by resequencing the predecessors of o potential replacement operation in the
replacement schedule. In the current versions of the heuristic, the schedule
for each potential replacement operation i~ developed and compared with the
current schedule. An alternative is to pick a single replacement, develop the
corresponding replacement schedule and compare it with the current schedule.
This would decrease the computiation tune of the heuristic significantly but it
could also decrease the performance of the algorithm. The relative value of
these changes depends on the specibic nnplementation.

Additional tests that examine the effeet of using different objective functions
for choosing the current schedule wonld also be valuable. One possibility is to
use the probability that tardiness 1~ creater than some threshold value as the
objective. This objective may more accurately reflect the costs of tardiness as
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premium freight charges are incurred. Initial bounds for this quantity appear
in Maddox and Birge (1991).
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