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PREFACE

This paper is the twenty-seventh in a series growing out of studies of radar cross
sections at the Engineering Research Institute of The University of Michigan. The
primary aims of this program are:

1. To show that radar cross sections can be determined analytically.

2. A. To determine means for computing the radiation patterns from
antennas by approximate techniques which determine the pattern
to the accuracy required in military problems but which do not
require the unique determination of exact solutions.

B. To determine means for computing the radar cross sections of
various objects of military interest.

(Since 2A and 2B are inter-related by the reciprocity theorem it is
necessary to solve only one of these problems.)

3. To demonstrate that these theoretical cross sections and
theoretically determined radiation patterns are in agreement
with experimentally determined ones.

Intermediate objectives are:

1. A. To compute the exact theoretical cross sections of various simple
bodies by solution of the appropriate boundary-value problems
arising from electromagnetic theory.

B. Compute the exact radiation patterns from infinitesimal solutions
on the surface of simple shapes by the solution of appropriate

boundary-value problems arising from electromagnetic theory.

(Since 1A and 1B are inter-related by the reciprocity theorem it is
necessary to solve only one of these problems. )

vi



THE UNIVERSITY OF MICHIGAN
2713-1-F

2. To examine the various approximations possible in this problem
and to determine the limits of their validity and utility.

3. To find means of combining the simple-body solutions in order
to determine the cross sections of composite bodies.

4, To tabulate various formulas and functions necessary to enable
such computations to be done quickly for arbitrary objects.

5, To collect, summarize, and evaluate existing experimental
data.

Titles of the papers already published or presently inprocess of publication are
listed on the preceding pages.

The major portion of the effort in this report was performed for the Hughes Aircraft
Company and under Air Force Contracts AF-33(038)-28634 and AF-33(600)-36192.

K. M. Siegel
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I

INTRODUCTION AND SUMMARY

This is the final report on Purchase Order Numbers L-265165-F47; 4-500469-F C-47-D;
and 4—526406;FC-89-3 entered into between The University of Michigan and the Hughes
Aircraft Company on Air Force Contracts AF-33(038)-28634 and AF-33(600)-36192, The
ultimate purpose of this study is to replace radome-dish combinations (postulated but
not yet researched and developed) with arrays of slots on the nose cone of a high speed
vehicle, Such a replacement would eliminate the many problems associated with radomes,
e.g., rain erosion, thermal stress, boresight error rate, and weight and balance
problems.

Theoretically, it is always possible to duplicate a pattern produced by one type of
antenna using another antenna of equal or larger surface area. For example, the pattern
produced by a radome and parabolic dish combination can be duplicated by using any
given covering surface as an antenna by correctly distributing the current on that surface.
The required current distribution can be calculated by an application of Huygen's
Principle. In particular, if the surface is chosen to be a semi-infinite cone, assume
that the parabolic dish lies within the conical surface and compute the "dish field" on
this surface; this field, then, if induced on a real cone, would reproduce the "dish
pattern". Such a calculation serves two purposes: (1) it yields the precise current
necessary to duplicate the parabolic-dish pattern, and (2) it yields results which serve

as design criteria for arrays of slots, indicating a possible interim slot array design.
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Such a computation is presented in Appendix C. The current distribution required varies
as a function of the scan angle and the problems involved in attempting to instrument
this distribution on a conical surface appear to be extremely difficult; however, since
more promising methods are available, e.g., optimized slot arrays, a serious attempt
at instrumentation is not warranted.

The value of most theoretical studies on either radiation or scattering problems is
that the theoretical analysis very often has in it the seeds of better methods of design.
Experiments can only determine the characteristics of existing designs. The approach
uased here was to:

1. Determine the theoretical means of computing the complete pattern of
a single slot on a conical surface.

2. Determine the means of computing the pattern for any given array of
slots using the: methods of 1.

3. Determine optimization techniques for various design criteria.

4, Given a design configuration, to compute the pattern, e.g., the 65-slot
array chosen by the Hughes Aircraft Company for analysis.

5. Apply the optimization techniques of 3, to the pattern of 4.
This report gives the results of 1 through 4.

The slot location is illustrated in Figure 1-1 which also indicates the coordinate
system employed in the theoretical analysis of the 65-slot problem. Figures 1-2 through
1-5 contain comparisons of results obtained in the theoretical study with results obtained

in the experimental program at the Hughes Aircraft Company. * The formulas employed

*See Appendix A (Section A, 3) for a discussion of these comparisons, and additional
experimental data obtained by HAC.
2
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in the theoretical analysis of this 65-slot problem together with all of the theoretical
results obtained are presented in Appendix A. This paper reports the first analysis
which theoretically determines the pattern resulting from a many slot array on a

conical surface,

j
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In order to obtain theoretically the far field radiated in all directions, it is
necessary to employ different methods of approximation to account for different con-
tributions to the field. Geometric Optics suffices for main beam calculations. For the
receiver not in the main beam, other techniques are required to describe both the effect
of the cone's tip on the radiated field and the effect of energy which appears to have
crept along the body before being radiated, since these effects predominate out of the
line of sight of the array. Physical Optics was used to determine the tip effect while
the method available to treat the creeping waves was that due to V. A. Fock (Ref. 1) and
this application used analyses of N. A. Logan (Ref, 2), J. B, Keller (Ref, 3) and one of
the authors (R. F. Goodrich). The generalized arguments for Fock's universal functions
were obtained for application to a conical surface; this work was performed under another
Air Force Contract (AF-19(604)-1949) and is discussed in Reference 4,

In the calculation reported on in Appendix A, the Fock technique was employed
only when the slots were in the cone's shadow relative to the receiver, and Geometric
Optics was used in the lit region. In addition, the tip effect was examined and found
(for a 159 half angle cone with the first slot 16 wavelengths from the tip) to be of a
lower order of magnitude than the other contributions to the field, These three methods
for the analysis of a single slot on a cone are discussed in Section II and the regions
of their applicability in the 65-slot problem are indicated graphically in Figure 1-6.

As mentioned above, although a pattern obtained from a single analysis such as

the 65-slot program is, in and of itself, of extreme interest, the seeds of improvement
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contained in the analysis are of even greater importance. That is, for many arrays of
practical interest it is possible to find a method of predicting how to alter the array to
produce a better pattern for a given purpose from the given (or computed) pattern until
we have reached a satisfactory practical solution to many particular radiation problems.
There are several methods of optimization possible and these are associated with the
particular problems present in a given system, Various systems might require as
criterias

1. that a maximum amount of energy be in the main beam for a
given amount of power put into the system,

2, that there be a maximum gain for a fixed amount of input
power,

3. that the ratio of main beam power to side lobe level be a
maximum,

4, that there be a certain spread of power in many side lobes
as compared with the admissable power in a few side lobes, etc.

In a given application the criteria which are used will depend upon the specific system
requirements. Rather than consider a specific system we have selected two more
general criteria for analysis here. We feel that the results obtained are highly important
contributions to the optimization problem and that these optimization methods should be
applied to slot array computations. The first of these deals with obtaining a low side lobe
level for a given maximum beam power; this method of optimization is discussed in

Section IIl. The second method utilizes a special purpose analog computor which we feel

10
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may yield the excitation for the maximum gain possible in surface arrays. This
second optimization procedure is discussed in Section IV,

Thus, in summary, we have established the fact that radiation patterns from
slots on cones can be computed, we know what current distributions are required to
duplicate radome-dish patterns, and we have methods which give every indication of
leading to patterns which will be an improvement over the radome-dish type. One would
expect this on theoretical grounds since utilizing the entire surface of a cone as an
antenna increases the area available over a radome-dish combination (thus obtaining
a larger effective aperture) and also because the bias errors due to the radome would
be withdrawn from the system.

Although the results reported here represent a definite breakthrough for the sur-
face antenna problem, considerably more work is required before this program can be
considered to be complete, For example, the optimization methods should be explored
more fully and applied to particular cases of interest, e.g., the 65--slots on a cone
generator. Further basic research is required on the nature of the radiated field in the
vicinity of the transition region (that region of space which separates the ""geometric
optics region' from the '"Fock theory region'). It is our belief that the amplitude is a
slowly varying function in this transition region although the phase is a rapidly varying
function. However, this belief is based upon physical principles and should be substan-
tiated by basic mathematical analysis. In addition to the consideration of optimization

from the viewpoint of a particular array, considerable attention should be given to

11
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optimization on the basis of a variable array; such an approach (if sucecessful) would lead
to a method of optimization which would be applicable to almost any system regardless of
what basic input parameter philosophy was inherent in that system.

In considering the optimization procedures, it is necessary to keep sight-of the
final applications. Indeed, the optimization goal is, given a certain antenna requirement,
to reduce to a minimum the complexity, value, and number of the input parameters. As
an illustration, it has been shown that point by point control of the field on the entire sur-
face will permit the reproduction of a dish pattern but at the cost of a greatly complicated
excitation mechanism. On the other hand; a series of linear arrays of the kind considered
in this report may be quite sufficient for a given application at a much reduced cost in the
complexity of the input mechanism. An understanding of this approach to optimization
needs to be an aim of future study.

Under University of Michigan Purchase Order No. 154216 (under the prime
Contract No. AF-33(038)-28634) the University of Illinois investigated the problem of
establishing a criterion for approximating a continuous source distribution by a discrete
source distribution for line sources under various conditions of excitation. A further
investigation considered the approximation of the radiation pattern of an electric dipole
in free space by a distribution of dipoles on the surface of a perfectly conducting sphere.

This work is reported in Reference 5.

12
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Under subcontract to The University of Michigan (University of Michigan Purchase
Order Numbers 154700, 239327 and E-500183) the Polytechnic Institute of Brooklyn
carried out studies concerned with the computation of the radiation patterns from leaky
wave and surface wave ring sources distributed over a finite area on a perfectly con-
ducting semi-infinite cone, The theoretical formulas for the far radiated fields
(including geometric optics and diffraction effects) were obtained by integration over
the assumed source distribution of the ring source Green's functions. Explicit results
for various source polarizations were obtained for two types of variation of the source
distributed over a finite distance along the radial dimension of the cone. In order to
gain a better understanding of the radiation from sources distributed on a cone, the
simpler problem of radiation from sources on a semi-infinite wedge was also
investigated as a preliminary. The results of these and related investigations carried
out at the Polytechnic Institute of Brooklyn under these purchase orders are reported
in References 6, 7, 8, 9 and 10.

The authors wish to acknowledge the assistance of the following members of
the Radiation Laboratory during the computational phase of the study: H.E.Hunter,
S.E.Stone, D.Way, D, M. Raybin, M. Plonus, T, Hon, L.S. Gregory, T.B. Curtz,

J.W. Crispin,Jr. , K, Najita and N. E, Reitlinger,

13
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11

INFINITESIMAL SLOTS

2.1 Introduction

We wish to find an expression for the far field radiated by a transverse infinitesi-
mal slot located on the surface of a cone at a large distance {in wavelengths) from the tip
of the cone. The infinitesimal slot can be considered as a magnetic dipole. To find its
far field we make use of the Reciprocity Theorem (see Section 2. 6), This theorem
requires us then to find the field induced on the cone (at the point where we wish to
locate the slot) by a magnetic dipole, The dipole is arbitrarily oriented at an arbitrary
point in space but has to be located far from both the cone tip and the point where the
slot is to be placed.

If the dipole is located sufficiently far from the cone, the wavefronts of the
dipole field near the cone are essentially plane, Hence, we approximate the field incident
upon the coné by the field of a plane wave, whose magnitude is carefully adjusted so that
the dipole nature of the incident field is retained. Thus our problem becomes one of
determining the fields induced on the cone surface by a plane wave incident from an
arbitrary direction,

We treat this field induced on the cone surface as a quantity having two dominant
contributions, One of these contributions arises from energy which either impinges
directly upon a neighborhood of the point where the slot is to be placed or travels to

this point along a geodesic from the shadow boundary. We call the former part of this

14
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contribution the '"geometric optics' term and the latter the 'creeping wave" term, The
other of these contributions consists of energy which is scattered by the tip of the cone
to the point where the slot is to be located. We call this the "tip' term. In the succeeding
sections we present the methods by which these two contributions are obtained and the
procedures for using them to describe the far field radiated by an infinitesimal slot on a
cone. The "geometric optics' term is given implicitly in Section 2. 4 and discussed more
fully in Reference 16,

2.2 Notation

We adhere to the following notation throughout this section. Let 1, 6, be the usual
spherical coordinates describing a field point in the radiation problem, a source point in
the reciprocal problem. Primed, these variables designate a field point in the reciprocal
problem; double-primed, they refer to points on the cone 6= a, a<7/2,

We specify that all electromagnetic fields have a time dependence given by e"ikCt

where c is the velocity of light and k = 27/X, X designating wavelength. The unit vector(f)

designates the magnetic field direction for a plane wave and is called polarization by us.

2.3 Fock Theory

We obtain the creeping wave contribution to the field on the surface of a cone due
to an incident plane wave by suitably extending an analysis due to V. A. Fock (Ref. 1).

We can consider the Fock formulation as a modification of geometric optics

15
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based on a local analysis of the field in the region of the shadow boundary. In particular,
Fock defines two universal scalar functions, F and G, whose argu‘ment,s is a function of
distance measured from the shadow boundary. The polarization of the incident radiation
determines the linear vector combination of the Fock functions which is approximately
proportional to the field inducéd on the scatterer,

The creeping wave term, i.e., the magnetic field'ﬁc evaluated on the surface
at apoint 5 which is a function of distance into the shadow region along a geodesic, can

AN A A
be given in terms of the unit vectors 6", T, and 6" x T as

H, (%) R

A A AN N 'S A
={p- o F(5)T +{p- 0" x T' G(5)6" x T (2.3.1)
Ho shadow. shadow.

where fi‘ is the tangent to the geodesic, 3" is the normal to the surface, 'f) is the polari-
zation of the incident plane wave, and F(§) and G(3) are Fock's functions. It is impor-
tant to note that in this expression for ﬁcg ﬁ 3” and'fS o g" X /'i‘ are evaluated at that
point on the shadow boundary where the creeping wave is launched, while F(’g)',f‘ and
G( 3‘)3" X % are evaluated at the point of interest in the shadow region, i.e., at the
point where the slot is to be placed.

We now need to determine the geodesics on a cone, the shadow boundary for a
given incidence of a plane wave, and curvature along a geodesic (to find Fock's

argument 5 ),

16
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We find the equation of a geodesic on the cone 6" = a to be

r'=asinl sec {( | g - ¢g) sina +£ - \/)J - a sin WV (2.3.2)
sin [q/-(\sbnl -0y sina]
where
= tan o 1"
"=arccos ——=_, 0<Q <7, af6<T-a0, (2.3.3)
¢S tan 6 ¢S

gives the equation of the generator forming the shadow boundary (for incidence in the

xz-plane); where

Y =arccos<-99_§_9_), 0¢ Y «m, (2.3. 4
cos «

is the angle the incident direction forms with the shadow boundary; and where a is the
distance from cone tip to point where slot is to be located. The curvature K along a

geodesic is given by
2 in2
K= & cgsas.ln '% (2.3.5)
r" sin «

Finally, 3‘ , the argument of the Fock functions for the creeping wave term, is

VE

5 -(Sesnt) () g sima @.5.9

2,4. Tip-scattering

We use the expression "Physical Optics field" to denote the scattered far field,

ﬁ;, obtained by using Geometric Optics (i.e., the magnetic field on the surface is given

by twice the tangential component of the incident magnetic field inithe lit region and zero

in the shadow) in the Kirchhoff-Huygens integral representation for a scattered field.,

17
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HS is, for a plane wave of magnitude H incident from an arbitrary direction,

. ikr'
=y HO ike

o — A - A - A
Hg = g, B=r.p-(r'-Hp

2rr'

where NS

o -ikr' (r+r)

f= /ﬂﬁe ds .
S

(2.4,1)

(2.4.2)

S is the portion of the cone surface illuminated by the plane wave and 1 is the outward

normal to the cone, Equation (2. 4. 2) may be written

e M
» Ot} B ~ R -ikr M
f= | ; (cosacos §"iy +cosasing"iy-sinai,le r''sine dg'dr",
o A |

(2.4.3)

A and B are generator shadow boundaries cast on the cone by the incident plane wave;

they are
A=f@-arc cosi/ﬁinié#—ﬂsg B=(f+arccos [fana \
tan@ | tan 6 .

when no shadow exists, i.e,, the cone is entirely illuminated or 6> 7 - @, A=@-r and

B=@+r. The quantity M is given by
M=qg+bcos @ +csing"
where

q = cos a {cos O0' + cos 6),

i

b = sin @ (cos ' sin 6' + sin 6 cos 0},

sin a (sin @' sin 6' + sin § sin 6),

Q
[}

18
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The r'" integration is accomplished by an Abelian limit argument (Ref. 11), yielding

for f ,
B
-, . " A A A
f=-_8Sme —dL(cosacos i +cosasinP'i_ -sinai); (2.4.4)
A

this integration can be expressed in finite terms (Ref. 12);

?":‘_-‘ - _Sina cos a c+q sin Q " ZbQ-B/Z arctan (q-b) tan(¢”/2) +c ]/1\
K MQ \Q 1 x

-cos a [Ei‘ﬂ.}l&s__@f +ch“3/2 arctan (d-b) tan (§'/2) +c ‘J 1
MQ Ja y

B
- sina [ c cos §"' b sin f" ZqQ—B/z arctan {4-b) tan (9''/2) +c} ’;Z } )

MQ fé
A
where

Q=¢*-p - .
Care must be taken with the value of the arctangent to note where its value has moved
from one Riemann surface to the next as the value of §" moves from A to B.

The field Es given by Equation (2.4.1) is called the tip-scattered field because
in the Abelian evaluation of the integral for ? (Eqn. 2.4.4) the major contribution,
for M bounded away from zero, is obtained from a neighborhood of the point r''=0,
i.e., the tip of the cone. The cases for which M=0 for all values of §' in
Equation (2.4.4), correspond to forward scattering situations and these cases are

dealt with by Geometric Optics. The cases for which M=0 at only one value of l ¢”(

19
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in the region of integration either correspond to specular reflection where again

Geometric Optics is used or require a re-examination of the Physical Optics approximation.
Although the integral in (2, 4. 4) does not exist in this last case we know how to correctly
handle this situativn. In Appendix B we make a closer examination of the Physical Optics
integral (Eqn, 2.4.1) for this case and find that the evaluation given above can be for-
mally extended to include it, Since the major contribution to the Physical Optics integral,
when it éxists, comes from a neighborhood of the cone tip we now require only that the
field point be far from this neighborhood. In this way we obtain a representation of the
tip-scattered contribution to the field on the cone surface far from thé tip.

There are substantial indications that the Physical Optics field closely approxi-
mates the exact field scattered by a cone. For example, the Physical Optics method
produces, for lé.rge and small angle cones, a result for the nose-on monostatic radar
cross section which is in excellent agreement with the result produced by an exact
expansion of the cross section in powers of the cone angle(Refs. 13,14). In addition,
the rigorous bistatic radar cross section for an electromagnetic plane wave incident
along the cone axis agrees well with the Physical Optics result (Ref. 14). We know

also that it has exactly the right wavelength dependence.,

2,5, Plane Waves versus Dipoles

In the previous sections we dealt with an incident plane wave, The field of the
plane wave on the cone surface is given by A —
— ~ikr. r"

A
H=pH e . (2.5.1)

20
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Since we are really interested in an incident field due to a magnetic dipole far from the
cone, we relate these fields as follows:

Let a magnetic dipole with orientation r’h, such that i . 7 vanishes, be located at
the point (r,6,@). Then its far field is
ikR

Ce Rx@Rxm),

where C is the dipole strength coefficient and R is the distance from the point (r, 8, §)

to the point of observation (r', 6', §'),

1
R=[r2+r'2-2.?~?"]é,
~ A -
= r-r.r" forr» r',
and n
R = VR,

For large r, ﬁ may be replaced by -T. Since the dipole is far from the cone its field

at the cone surface is given approximately by

—

ik(r-T- ")

A e
= - B 2.5,2
ﬁi mC T ( )

Thus we see from Equations (2. 5. 1) and (2. 5. 2) that, at the cone surface, we
may replace the incident field of a plane wave by the incident field of a dipole placed at

a very large but finite distance from the cone simply by plaeing; '13 = -m and

ikr
e

r

2.6 The Reciprocity Theorem

We now present the Reciprocity Theorem in a form which, with the results of the

previous sections, will enable us to obtain the far field radiated by an infinitesimal slot
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on a cone.

The Lorentz Reciprocity Theorem may be stated in the form

—  —p s —»
5H1°M2dV=JH2°MIvdV

where _ﬁ:(ﬁ;) is the field due to the magnetization_l_\-/fl(ﬁ;) and the integration is over all

space. If M; , are of the form ™y 5 5(F- F;gz)» that is, point sources, then we find

H(T) - m, = H(ry) - my

(2.6.1)

A
Let m, designate the direction of some specifically oriented dipole located by the

vector T,. We wish to determine its ﬁeldﬁ; at some far point 3. Suppose

Hy(ry) = AT + AT,

where 1?1 . \/)1 = 0. Let {1\1 and 91 designate in turn the orientation of 1/1\11 of a dipole

located by T,. Its field at T, is in turn Hy(T3, 1) and Hy(T;,¥,).

1t follows from (2.6, 1) that

~

- PaS A
Hy(T. ) - mp = [Al(ﬁ)ﬁl + Az(?l)v1]“ U,

from which

— A

{Hl(rzaﬁﬂ ‘ mzl] = A(F)

Similarly, from (2. 6. 1)

H(T, %) = {A1(1—';,)31 +A2(I—‘:)$1]° v

from which

(B0 - = 2D

Therefore

B(E)= {00 8] i+ B0 ) 9

22
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Equation (2. 6.4) gives the radiated far field of a slot on the surface of a cone if we let

— — —_ —" Pay . . A A R
ri>r, rs > r', my —> direction of slot, u,,v;—> successive values

—

A - — o) —
for polarization, p; H— H + Hcv' and H, — H.

2.7 The Far Field Radiated by an Infinitesimal Slot

The final part of the preceding section explains exactly how to employ the
Reciprocity Theorem to obtain a radiated far field due to an infinitesimal slot on a cone.
In Section 2.3 we have, without loss of generality, restricted the direction of
incidence to lie in the xz-plane. We may treat the results of Section 2.4 in a similar

fashion, again without loss of generality.

Now employing the regults of Section 2.6 we may express the radiated far field
at a point (r, 8, 0) due to an infinitesimal slot located at (a,a, ') in the direction pr
on the cone as

o ) ] §1) b {[Fos o) 9] b
where the results of Section 2.5 must be used to define the quantity Ho appearing in
expressions for -ﬁ: and Tfs given by Equations (2.3.1) and (2.4. 1), respectively. Note
that ﬁ;, for a point in the lit region, is given by geometric optics.

If the slot has a small but finite length, L, then the expression for the radiated
far field obtained above can be adjusted so as to include the length and voltage, V,,
across the slot. As long as a radiating magnetic dipole is equivalent to a slot in a

plane we can relate the dipole strength coefficient, C, of Section 2.5 with the voltage
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across the slot as follows

o dk VoL
T T gy

(see Section A. 1,3, p.68 of Reference 15).
It is significant to note that the term "Geometric Optics field" is a misnomer
when applied to radiated fields obtained via reciprocity from scattered ""Geometric

Optics fields", since such radiated fields are no longer wavelength independent,

24



THE UNIVERSITY OF MICHIGAN
2713-1-F

I

A THEORY OF LOW SIDE LOBE ANTENNA ARRAYS

In the problem which will be considered in this Section it is assumed that there are
a number of current distributions for the array which can be excited independently, and
for each of which the radiated field is known. We might assume that the array consists of
a number of elements which can be separately excited, and that the field radiated when
any one of these elements is excited is known. For example, we have shown in Section 2
how to find the radiated fiéld of an infinitesimal slot on a cone. The problem we set for
ourselves is that of determining the excitation coefficients for an array in such a way as
to minimize the .side ldbe level (compared to the main beam) for a beam of a fixed width.

To restate the above symbolically let the currents L, give the radiated fields, Fy,.
We now want to determine coefficients A, which are related to the current, I = ZAnI )

and field, F = ZAnFn , in such a way that the largest value taken on by the ratio

F(9, §)

F(0, 0) _
is as small as possible (6 and ¢ are the polar angles of the field point).

in a given region, R, which excludes a neighborhood of the point 6 = 0, ¢ =0

We will consider a series of less ambitious problems which will finally lead us to

the desired problem. Rather than minimizing the largest value taken on by l F(6, 0) '
F(0, 0)

___LF(G» ) l at a

F(0, 0)

set of points 0j, ¢i in R. We will eventually let the number of points cover R densely

for all points 6, f} in R we will minimize the largest value taken on by

so as to solve the original problem. Throughout the discussion we will not insist on any
more mathematical rigor than is necessary to put forward a convincing argument for the

methods used. 25
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As a matter of notation let
Fp(6;. B;) = Fin
Fn(O, 0) = Fon

Then we seek the values of Ay, Ay, ... ’AN which will give

2_a_F,
Min Max n n_in

A Ag.. A i 2_A_F_

) (3.1)

that is we seek the values of A;, Ay, ..., AN which will minimize the largest value taken

on by | Z An Fin . Let M be the number of values taken on by i (excluding zero).

l Z Ap Fon

First of all assume M < N. Then we can make ZAnFin =0 forall i 0

while ZAHFOn # 0. This disposes of this case which will not be of interest hereafter.
Next consider the case M = N. This case, as it will turn out, is fundamental to
the rest of the analysis. We are assuming that the matrix Fj, is non-singular which

will ordinarily be the case. For simplicity we now let

Bj = g Fin A - (3.2)

We can solve for the A, in the form

A
A, = zi___(F )pi By - (3.3)

Thus we have
> > -1 -

where

_ -1
Gri - ; Fon(F )ni :
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Now our problem is to determine the values of By, Bs,...,B. which will give

N
Min Max ___BA___
By, By....By i 2.6 B (3.5)

It is clear that the B's are not unique to the extent that we can make the replacement

. B.
ZGj B;

this later to simplify the form of the problem. Let us now assume that all of the B's

B;j— 2 B; ‘'without affecting the value of Max We will make use of
i

except B; have theé correct value (or rather a correct value in view of the non-uniqueness).
We will now proceed to evaluate B; in terms of the other B's.

First we note that

EENI - é
ZG]B] i ZGJ B l ll
= 1 Max | B , (3.8
IGI’ i Gj B.
G,

Next we make use of the non-uniqueness to replace BJ by B e’ (oz real) where o is

chosen so as to make f .__GJ_ Bj a positive real number, ¥ . Finally we let x = - By,
jF1l 1
Now what we seek is
. By |
Min Max Max —_r s | —X . (3.7)
X i ;é 1 ¥ -x f-x

Let iy be a value of i (other than 1) for which ‘__EL__

takes on its maximum
£ -x

value. Thus we want

BiM

v 3.8
P (3.8)

¥ - x

l x
s

27
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Figure 3-1 is a contour plot of Max ¢ |~ M | KX in the x-plane
-X -X
for B; M ¥/2. The contour lines are for the indicated side lobe levels. The dotted

circle divides the region lBiMl >|x| from the region lBiM\ <|x| . Itis clear that the
minimum occurs for x = - \BiM\ . From this we see that |B;| = lBiMl . Since we
could equally well have chosen any of the other B's in place of B; we see that the mini-
mum occurs when all of the B's are equal in magnitude. Due to the non-uniqueness we

can take the B's to all be equal to one in magnitude. Then (3.5) can be written

Max 2 6B, (3.9)
By, By,..., By
1Byl = B2 = ... =B | =1.
But |ZGij| < Z]GijI_ = ZlGjl (IB;] = 1), so that it is clear that the
maximum will be attained for Bj = ‘%'l.l_ . Thus we have
J
Min Max \___Ei___ = 1 (3. 10)
By,Bp,....B, 1 2 G;B; 2 1l
is attained for
B = |6 (3.11)
] Gj

To get the corresponding values of the A's we use (3.3). This completes the solution of
the problem M = N.

Next we consider the case o > M > N. Suppose we had a correct set of Ay.
Z An Fin
Z Ap Fon

smallest. Pick out the first N of these.

Now order the M quantities starting with the largest and ending with the
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BiM
Y-Xx

FIG. 3-1: CONTOUR PLOT OF MAX {

|

IN THE COMPLEX x-PLANE FOR THE CASE OF BIM = 3/2 .

\ X
D X—x
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Suppose, in the first instance, that the N quantities are not all equal for the
solution when all M are involved. Then we can make a small change in the A's in such
a way as to decrease the largest of the N quantities while, if the change in the A's is
small‘enough, none of the»other M - N values will be larger' than the largest of the N
values. Thus the N values are equal.

Next suppose that the N choseh quantities are larger than the next largest of the
M. Then unless the N A's have the values théy wbuld have if the remaining M - N
quantities were ignored, we can again make Small changes in the A's which will reduce
the Ny quantities uniformly while keeping any of the remaining M - N all smaller than
the chosen N.

Thus we see in this case (when the N largest quantities are larger than the
remaining M - N if the A's havev been correctly chosen to solve the problem) that we
need to consider only N of the M quantities in order to arrive at the correct solution.
The question is, which N of the M quantities must we deal with. We will now answer
this question. | We assert that we must choose the N quantities which yield the largest
value of iar (note that the Gj depend on which N of the M quantities are chosen).
To establish thJis assertion we show a contradiction in the converse assumption. Let us

assume, then, that the solution is obtained for a choice which does not lead to the maxi-

mum value of ____1_6__ . Now let us consider the N quantities which lead to the largest
value of _z‘l__E_? !o J\EWe know that not all of these N quantities can be made smaller than
the largest %ﬂ_ and thus the assumption that none of them are larger than one of
the smaller lj is false. This establishes the assertion.

e

216Gy
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We are thus led to the following method of attacking our original problem. First
we start with N arbitrary points. We then vary these points so as to maximize the value
of 'f‘[lf}_]_ We would then hope that the A's which correspond to the N points which
maximine _1  would solve the problem. We can easily test to see if they do solve

2| Gjl
our problem by computing the field resulting from this choice of the A's. If the side-lobe
level is nowhere greater than it is at the N chosen points we have solved our problem
since the side-lobe level cannot be made any lower at the N points. However, if the
side-lobe level is higher at some other point then we have not solved our problem.

Now it turns out that in some cases the above method works, and in some cases
it does not. We can get some insight into the question of how frequently we can expect
the method to work by considering the following analogous problem (it is, in fact, a special
case of our general problem but we will not bother to make the exact connection). Suppose
that we have a number of points in the complex plane, Zy s and that we wish to find a point z

such that Mr?x I Z-Z is made as small as possible. A method of attacking this problem

n|

which is exactly analogous to the method described above is the following. Find the pair

or points, z, and z m’ from the given set which maximize ‘zm - zn‘ (this is analogous
to maximizing __Z__ILG__‘_ ). Thenlet z =(zy +z ) / 2 . This value of z will sometimes
solve the problem, a;d sometimes not. It depends on whether the rest of the points in the
set lie inside the circle having z as a center and |z, - zn] /2 as a radius. In the figure

below (Figure 3-2) we show some sets of points for which the method would work, and

some for which it would not work.
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Among the cases where this method does work is the design of a broadside linear
array where the results of this method coincide with those of the Dolph-Chebychev method.
We can certainly expect the method to work also in cases which do not differ too radically
from this oné, as well as in some of the cases which do differ radically. It is expected

that future study will yield methods which work in all cases.

The method works for the . The method does not work for any
following four sets of points: of the following four sets of points:

FIG. 3-2: THE PROBLEM OF MINIMIZING MAX ,z - znl - EXAMPLES
. n
OF SETS OF POINTS FOR WHICH ME THOD WORKS AND SETS

OF POINTS FOR WHICH METHOD DOES NOT WORK
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In order to give an idea of how this method goes we will now consider a very
simple numerical examp'le. We will take the case of a linear broadside array of four
isotropic elements where the ratios of fhe currents in the elements is to be chosen so
as to produce a low side-lobe level. This problem can also be treated by standard
methods so that we have a standard of comparison.

Let the inter-element spécmg be MA/2. We will consider the case where there
are only foux; elements which we take to be located at

x=y=0; z=%t)/4, 322 . (3.12)

The radiated field in the direction (6, @) is given by

E = olkr F=A, eXp[ik(r +§%COS 6)] +A_ 4 e){p [ik(r +% cos 9)] (3.13)
r r r

exp [ik(r - —%cos 6)] + A, exp [ik(r --3%- cos 9)]
r r

+ A

Let us first of all consider a standard design of such an array. In the Dolph-~
Chebychev design we would have A; = A_1, Ay =A_3, A;and Ay real. In this case we

et
& 37

5 cos 6) . (3. 14)

F =2A; cos (_12f_ cos 0) + 2A, cos (

Now the field broadside (6 = 7/2) is F 0= 2(A; + Ay). There will be sidelobes symmetrically

situated relative to @ =#/2 which are located by the condition __QE___ = 0 or
dcos 0
- #A; sin (72T_cos_9) - 37 A, sin ( _32'!_ cos @) = 0 . (3.15)
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Making use of the relation sin 3x = sin x (3-4 sin® x) we put (3. 15) in the form

A+9A,= 124, sin? (F- cos 6)

(3. 16)

A+ 9
sin( X cos 6) =/——3————1}—2 .
2 12A,
Using this value of (6) in (3. 14) we get 3/
2
3A,-A 3A,-A A;+9 (3A,-A,)
CF=2A, ..1_.?_._1_ +2A, i S R A | _ 2 BArA) 7 (3.17)
24,

3a, | 3 (3A,
The value of 6 for which the main beam has decreased to the value given by (3. 17) is

also of interest, It is given by

2(3A,-A,) e

3,34,

or | o ‘ (3.18)

2A, cos( 7_2r cos 0)+2A, cos( §.2_7L cos 6) =

3A. - A
cos(% cos 0) = _%?KZ___L

Figure 3-3 gives 6 as given by Equationé (3. 18) and (3. iG) as a function of A;/A, while
Figure 3-4 gives the side-lobe level in db down from the main dobe as a function of
A/As.

The results given above from Equation (3, 14) on are essentially taken from
Dolph's "A Currernt Distribution for Broadside Arrays which Optimizes the Relationship
Between Beam Width and Side-Lobe Level". With these results available for comparison

we are prepared to treat the same pfoblem with the method discussed previously.
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If we take the main lobe to be constrained to 60° £0¥%€ IZOOg then (3.18) and
(3. 17) show that the side lobes will be about 17 DB down from the main lobe. The

relationship between the currents is A; = 3 A,.
2
In our method if we were to take the 6; to be symmetrically placed about 9 = 900,
we would obtain symmetric current distributions automatically. We will avoid this by

taking the initial values of 6; to be

6, = 0°

9, = 60°

03 = 120° (3.19)
6, = 120°+ € ,

where by 120° + € we mean to take the limit as €— 0. Using (3.13) and (3. 19) we

find
ZGn n - ZAnFon;'-‘A—Z"'A-I +A; +Ap (3.20)

w
|

B, = 2 AF; =-iAp+iA_j -iA; +iA,

B, = Fopo= oiH A 41l a4 100 A 4 =1
2 ZA'n 2n ’7\72‘_ 2 \/‘7:" 1 7‘2=\— 1 JZ 2
B, = A Fo =21-1 A , 4 1-1 A+ 1H IH A, +-14H A
By = ZAnF4n“ -1-4 A, + 1-1 A4+ 1HA, + +-1H A,

vz J2r iz Iz

+¢ [Sﬂ’F (-1+)A_ 2+rf( 1-)A_; + xl3 (- 1+)Aq +_J:7r 3 (-1
42’ 42 4/2

Rather than solve for the A's in terms of the B's for the special values given by

(3.19) we will find it more profitable to carry through the work for general 0;.

36



THE UNIVERSITY OF MICHIGAN
2713-1-F

In the general case

i 3mi
oxp [3§IXI‘X A_z +exp l:lg_ S A_, +exp [.-lg—xl] A, +exp 1— 1X1 ]Az B
ox T31r1 , +exp .7_7_ +exp |- T Aj+exp |- 2T Ay=B,
p I Thx| A tem| Tx, P 7 % Mrex -5
) (3.21)

exp Fnzn ] A.2 +exp[z£— ] A_;+exp l-- %—x;g] A;+exp [_ 3;1 x3:| A2=BS

o . . i 37i
exp-{~——~3.72r1 x4:, A_,+exp [%X4}A-1+3XP [‘ %’1' X4] Ay +exp [‘ - X4] A=By ,

[

where X; = CO8 Hi .

The solution to the set of Equations (3.21) is

exp [371’1 Xl] Bl
2
Ay = — - . . . : e
( eTiX; _o mxz) ( eixy _ emxg) ( eMxy _ e7r1X4)

exp[Sm < —J (671X 4 oTiX3 +ezru<4) B,
A_ - - —t e o e
1 (7% _oTiXp) (oTiXg e7r1X3) (emx1 _eTixg

A= 2 [37” x, | (eHrt3), FHratag)ye milng X4))Blp Ce (3. 22)
1= (emxl-emxz) (emxl_e1r1x3> (e i-xl_eﬂ'lX4)

- exp [Szzrl Xi] o TiE(XFx3xy)

+ o o »

Ay=

i i i i TixX Tix
(emxl _emxz) (emxl _e1r1X3) (e l—e 4)

where the dots indicate similar terms involving B,, B,, BSJ B4
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From (3.20) and (3. 22) we find

G, = (1= - X - T exp 22 )]

Tix; gix, #ix; i wix; wix
(e -e He -e xz)(e e 4

with similar expressions for G,, Gg,

ZGIIBH Z lGn l

IXZ

sin —= sin

2

G

4 .

Sinc;e we take Bi =

TXg sin LA
2

sin

W(Xl_—xz) sin 1r(x3~x1) sin 17(X4-'X1)

2

o TXy o .
sin - sin

1253_ sinﬂ
2 2

sin

ﬂ(ﬁ _Xz) sSin

1r(x3 -X;)

T(x, -
sin 4 XZ)

7IX1

1TX4

sin -
+ ' 2

ﬂXZ .
sin 5 Sin

S1

2

X
sin 1

in 7ix;X3) sin 7{x,x3) sin I(X42- X

1[X3

+ 2

. w)(2 ..
sin > sin

2

mix, -x,)

sin sin

7(x,-x4)

S1

2

In order to restrict the beam in the desired way, we must keep X3 =1 / 2, x3 =-1 /2.

Thus (3. 24) becomes

T(Xq-x,)
. TXg-x,
2 n—

38
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X X
sin ~_‘l sin __1_ sin Exi
Z \Gn\ = ‘ 2 T = + 2 2
cOS TX{ sin __‘_1—12 \E sin <1r_x_1_ - E) sin (EXA - 1’)
2 2 4 2 4
X X (3.25)
sin’-—1 sin 4 \ sin 1—?(——
+ 2 + 2(
ﬁsin(.’.’fl + 7 sin(ﬁ+£) ] coS X, sin.’.r__)fl-_@ \
2 4 2 4 2

What we now seek is a minimum of (3.25) with respect to x; and x4 (|x4},|x4| > 1/2).
It is clear that it will be simpler to vary x,, then xy, then Xy again, etc. rather than
computing the gradient of (3. 25) and varying Xy and Xy along the gradient. Thus,

instead of (3. 19) we have initially

X = 1
X, = 1/2 (3.26)
xg = -1/2

where x; is to be chosen to minimize (3.25), which becomes due to (3. 26)

ZIGH‘ = tan’ixi, + \ (2 s 2 + 1 . (3.27)

X
2 1 —cotﬁ \1+°°tﬂl cos_—icos TXy
2 2 2

It is clear that (3.27) is unchanged if we replace x4 by Xy Thus we will take
-1 s -1 /2. With this restriction we are able to remove the absolute value

signs in (3.27) obtaining

z- \Gn\ = -tan ”:4 . 2 7% \Eﬂx B 11'X41 (3.28)
- 4
1 cot.z_ 1+ cot —2—4 COS —= COS 7Xy

1

]l—cosqrx4 +ﬁ cos1rX4—1_ \[-z—‘ ‘
' 1 + cos XY COS Xy CcoS TX, / 1 +cos Xy
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Figure 3-5 shows the variation of ZlGn\ with Xy for x; =1. The minimum occurs
approximately at Xy = -0.73. The value of Z IGn] at the minimum is approximately 9.43
(19.5 DB). Since the predicted side lobe level is appreciably below that actually obtainable,

the true side lobe level is probably a few DB higher than the ultimate limit. Thus we

/

25 —

20 b——

T I I

1 -0.9 -0.8 -0.7, -0.6 -0.5

%4
L FIG. _3-5
will postpone the calculation of the corresponding current distribution until we have gone

through at least one more step. For this step we take

x, = 1/2
Xy = -1/2 (3.29)
Xy = -0.73 ,

and choose x;, S0 as to minimize (3.25).

Using (3. 25) in (3. 29) we obtain
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] 1rx1
a . 0 s e e 10}
> ‘Gnl = sin 65. 7 + sin 3 sin 65.7
T cos 7x, sin (65.7°+ ___._”;‘1 ) /2 sin (Ez’il - 459) sin 69. 3°

X
sin ZX1 gin 65.7° sin 1
+ 2 + —2 —
JZ sin (XL 4 45°) sin 20, 7° cos 48. 6° sin (__Z.l +65. 79
2 (3. 30)
9114 sin 1
~ . o ix]. + °.689 1rx'1
\cos TX) sin ( +65.7° i - gin (_2.-— - 459)
> <
+ 1.824 < + 1.512 |
l sin (—2-1— +459) l sin (1’%1_ +65.7°

Figure 3-6 shows the variation of ZlGnl with x; in the allowable region

!xﬂ > 1/2 for X, = +0.73. The minimum occurs approximately at x; =.775. The

25

20

Gy|
15

10
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value of 7 \Gn\ at the minimum is approximately 7.17 (17.1 DB). Since the predicted
side lobe level is now only slightly below that actually obtainable, we can expect the true
side lobe level to be only slightly above that actually obtainable. Thus we will compute

the actual pattern with

x; = .775
XZ = .5
(3.31)
X3 = -5
X4 =-.73
We have
G1 = -1.707
G2 = 1,553
(3. 32)
G3 = 1.896
G4 = -2,037
Since B, = |G we have By =By = -1, B, =B, = 1. For simplicity i
ince B; G e hav 1 4 ,» B2 g = 1. For simplicity in

computing the A's it is convenient to rewrite (3.22) in the form

42



THE UNIVERSITY OF MICHIGAN
2713-1-F

exp [%—i—(l'xz-x:g-xél)} B; .
(X, -X,) . T(Xi-Xq) . #(XK]-X4) c.E A,
1 -2 sin ; 3 sin 4

>
®
i

8 sin

Ay =P [T (-1, ‘X3;Xé)] +exp [ (-1-xptxgxa )](" exp l):’”( 1-x5-%3 +x4ﬂ
8 sin é %2) sin 1r(x1 X3 gin T %) xlz—x

} expf (1-x,+xgx )-J +exp[2 (1+x2 ~Xg+X 4)] +exp[ i (14x +x3— 4J

Ay = 7(x-x,) (X -Xq) 7(x,-Xx,)
8 sin ——L1 72" gin 13’ sin 1774
2 2 2
exp [_§1 (-1+x2+x3+§;‘4)] B,
AZ ) (x4 -%5) (X, -Xq) 7(x{-x,) tooo (3.33)
8 sin —1-=2° gin 12 3" sin %2 4

where the fact that A_; = AJ.* follows from the fact that the B's are all real.

-]

The general expression for F is

F=A_exp [—3%’-1 x] + A exp [1’% x] + Ay exp E%Hx]+ A, exp [-%11- ] (3.34)
Using the values of the A's given by (3. 33) we obtain

sin m(x 'Xz) sin 7(x -~ 353) sin w(x - xg)

F = ”(XZ_ ) ( 2 ) — z_x ) By +... (3.35)
sin 17%2) gin T\X17X3) gin TX17%4)
2 2 2

Figure 3-7 shows the pattern finally obtainéd after two steps. Figure 3-8 shows
the optimum (Dolph-Chebychev) pattern. Figure 3-9 shows the pattern obtained by the
above method after only the first step. Upon comparing the patterns of Figures 3-7 and
3-8 we see that the pattern obtained after two steps cannot be differentiated, graphically,

from the optimum pattern.
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In closing, a word is in order about the use of the above method when the
fields due to the individual elements are only approximately known. In this case we
go ahead with the design procedure as outlined above using the approximate patterns
of the elements. We test the result experimentally. In general the side-lobes will
not actually be as small as indicated by the design theory. We then use the array and
its experimentally determined pattern as one element in an array, with the other
elements corresponding to elements in the original array. We then apply the design
procedure to these elements. Since we are now only making a small correction to the
first design we can expect to get an array whose theoretically predicted pattern agrees
well with the experimentally determined one. If necessary, the procedure may be

repeated.
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DB

FIG. 3-7: ILLUSTRATIVE EXAMPLE - PATTERN

OBTAINED UPON THE COMPLETION OF TWO STEPS
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-1.0 1.0

FIG. 3-8: ILLUSTRATIVE EXAMPLE -

OPTIMUM (DOLPH-CHEBYCHEV) PATTERN
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DB

fA]

FIG. 3-9: ILLUSTRATIVE EXAMPLE - PATTERN OBTAINED

UPON THE COMPLETION OF THE FIRST STEP
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v

A THEORY OF MAXIMUM GAIN ANTENNA ARRAYS

To give a broad base to the method of design of surface antennas we now shall
consider a general approach.

We let ’ﬁa’(s) be a magnetic dipole distribution on a perfectly conducting surface
S. The radiation pattern arising from such a configuration is given by

R® = (HEs R as, (4.1)
S

where _I_f can be taken as the field induced on S at s by an incident plane wave of
direction ﬁ and unit amplitude. In briefer notation we put
R = Hom. (4.2)
The properties of this transformation will be our present concern.
The antenna synthesis problem is that of determining the inverse, i.e. given
a radiation pattern R we need to find
m = H's R, (4.3)
This is very difficult for most surfaces S so we seek to characterize some general
properties of the transformation. What we have accomplished is no more than some
conjectures based on analogy with the better understood case of a line source.
The principle properties we need to know are (1) how to maximize the gain and
(2) how to control the side-lobe levels. We consider these for a line source. In this
relatively simple example the radiation pattern is given by
R = f‘ el3% #(3) ay (4.4)

-a
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where the length of the source is 2a, f is the excitation and z = 2)\—” cos 6. If we
take a »> X we see that (4.4) approximates a Fourier transform. Hence the gain is
maximized for f = constant and the side lobes are reduced for f approximating a
Gaussian.

By use of our knowledge of Fourier transforms we can characterize the
transformation from the excitation f to the radiation pattern R in such a way as to
enable us to modify the pattern without any detailed treatment of the inverse trans-
formation. Ultimately we wish to find such a technique for our general surface S.

Up to now we have considered only the first problem; that of obtaining the
maximum gain configuration. Our progress is yet only a conjecture. By analogy
with the long line source we presume that for large surfaces, i.e. the characteristic
dimensions much larger than a wave length, the maximum gain configuration results
from an excitation which is just the complex conjugate of the field induced on the sur-
face by a plane wave incident from the main beam direction. As an illustration we
give the case of a circumferential slot on a large circular cylinder confining our at-
tention to the principal plane. By reciprocity the radiation pattern at an angle ¢ due
to a source at ' on the surface is given by the field induced at §' by a plane wave

incident im the direction f. Let this be denoted by k{(@, §'); then, for an excitation

f(P) we have the radiation pattern

R(f) Skmy 91 £(9") d ¢

or

R(@) = K o £(§)

49
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The problem is to determine the excitation f such that the side-lobe levels
meet the requirements of a particular application, i.e. if the main beam is in the
direction f =0 and the side lobes are required to be down A db, we have for the

set {¢n} , Which are solutions of

3

|

¢’ =0, f, #0,

that (4.6)

2
min 10 1og[_§_(9)__] > A.
n R{p,)

In our example we can express (4.6) in terms of the Fourier coefficients of

the functions R, k, f,

R, = knfn 4.7

k@, 9" = Zein@—m k.

So the inversion of the operator K results in
in
£(g) = Ze f %n_ . 4.8)

50
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a relatively simple result.

We are interested primarily in the more difficult cases in which S is not such
a simple shape. We wish, however, to approach the more difficult problem in terms of
the simpler one; so instead of solving (4. 8) we will look for a method of choosing f which
can be used in the more general cases.

In our example, if we choose the main beam to be in the direction ¢ =0 we know
that we control the side-lobe levels by tapering the excitation, i.e. £() should decrease
as \ ¢ ‘ increases in order to decrease the side lobes as compared, say, with those
resulting from a uniform excitation, f =const. A readily available tapered excitation
is just the complex conjugate of the field induced by a plane wave

#p) = k(g. 0) (4.9)
where we take the complex conjugate in order that the phase be such that the radiation
pattern be ’ma.ximized for this case. This gives

R(f) = KeK'o 3(h , (4.10)
where § (f) is the Dirac delta.

This has been computed (Fig. 4-1) in the case ka = 10 where a is the radius
of the cylinder and k = 27/X, X is the wavelength. This gives a side-lobe level of
approximately 18 db.

If such an excitation were to be used the origin of it suggests a novel means of
producing this excitation. Since the excitation is, ‘in fact, the complex conjugate of the
field induced on the surface by a plane wave, we can then devise an analog device in which

we model the antenna surface, illuminate it by a plane wave, and use the measured surface
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FIG. 4-1 RADIATION PATTERN FOR A CIRCULAR CYLINDER
WITH A CIRCUMFERENTIAL SLOT EXCITATION
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field after an appropriate phase change of 180° as the input of the excitation on the actual
antenna surface. Alternatively, the measurements could be made in the laboratory and
recorded on tape to be used in some sort of digital computer to control the excitation.
Since the above scheme uses an approximation to a continuous distribution, we
must solve two additional problems. The first is to discover the density of slot radiators
necessary for a sufficiently close approximation; the second is the method of exciting
these elementary radiators. It may be that the second problem is too difficult; i.e. if
we need control over each of the élements the scheme may not be useful for the type of
antenna we finally wish to construct. To this point little effort has been spent on this

problem.
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APPENDIX A

THE 65-SLOT PROBLEM - THE METHOD OF COMPUTATION

AND THE RESULTS OBTAINED

A.1 The Method of Computation

In this Appendix we present the formulas employed in the 65-slot problem together
with a discussion of the method of computation and the results obtained. The single slot
expressions needed for such calculations have beeﬁ discussed in Section II (these single
slot expressions also appear as Equations (4.2.4), (4.2.5), and (4.2. 11) for Geometric
Optics, Fock Theory, and Physical Optics respectively in Reference 16.

In the expressions for the 65-slot calculations given in this Appendix the
polarization, '13 will denote directions of the magnetic field with 61 =60 and 'f)z = 0.

The following parameter values are fixed throughout:

6p = (main beam direction) = 70°, 50°, 30°, 10°.

6o = 165°, denotes cone surface

d, = (distance from tip of cone to first slot = 16A.

dj = (distance from tip of cone to j‘Ell slot), j =0,1,2,...,64.

d  =djy - dj = (distance between slots) = 0.4A.

In performing the calculations for the 65-slot problem, each of the 65 values of _ﬁ
determined according to the methods of Geometric Optics, Physical Optics, or Foek Theory

(corresponding to j =0,1,2,... vg 64) are multiplied by the corresponding phase factor,

exp(ikdj (6 - 65) ), and the resulting 65 expressions summed.
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We now furn our attention to the formulas employed in the 65-slot computations;
the derivations of these expressions have been discussed in Section II.

A.1.1. The Geometric Optics Formulas

In determining the magnitudes of the Geometric Optics contributions in the 65-slot
problem we employed the following formulas.

For a single slot
H
GO - , e-ikdOD

T (cos 0 sin f f)‘l +cos f)z),
o ok ‘

r

where dO = distance from tip to slot,
D = cos 6 cos § + sin 8 sin 6, cos @, and
2C =ikv, L/2r,

with V = the voltage across the slot and L = the length of the slot.

In the general case of N slots with dj = distance from tip to the jQ‘- slot

ol
H
____%_ = 2 (cos @ sin P p; + cos P Pp) E] exp ikdj (-D + cos(fg - 6,) )] .
ikr
cE j=1

r

This becomes, for 65 slots,

=i
H . - i
——Gj%l—.— = 2(cos @ sinpp, + cos ¢r§2) sin (65(0.4rx) ) =07 67ix ,
c e sin (0.47x)
T

where x =D - cos (GB -0,).
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A.1.2. The Physical Optics Formulas

In determining the magnitudes of the Physical Optics contributions in the 65-slot

problem we employed for the entire set of 65 slots

A .
C:ilkr =411rT2 { [-fx sin 6 cos 6, sin¢+fy(-cqsesin 6, + sin 0 cos 6, cos 1) .
r *
. IN . ]A
-f, cos 0 cos 60 sin ¢] P - [fx sin Go+fz cos 0, cos f | ps
64
where T =) z (l/dj) exp [ikdj+ikdj cos (OB-OO)],
i=0
dj=do+jd9
7 2
fx=sineocoseo 2c¢c sinx -2qgsinx{g+bcos x) +2bA] ,
L ( (@ +bcos x)?-c?sin’x ) Q
fy = sin 6, cos 6, -2 be sin x - 2 e sin x cos x +20A] s
{ ((g+bcosx)?-c?sinx) Q
fz=sin290 -2 c? sin x cos x - 2bsmx(q+bcosx) +2qA] ,
( (@+becosx?-c?sin’x )Q
and
A = 6;3-3/2 arctan {Ql/z sinx [ (q cosx+b)] s
Q =q-w¥-c ,
q = cos @, (cos 6, +cos 6) ,
*

In the one slot case the expression is the same except that the factor 1’1‘/411' is replaced
by the factor 1)Le1 0 with d, being the distance from the tip to the slot.
41r2d0
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b = sin 6, (cos f sin 6, +sin 6) ,
¢ = sinf sin® 6, and
x =

arccos tan 90)
tan 0

The values of T corresponding to the four values of OB studied are
T = 0.11193 +0.34491 i  for 6y = 10°,
= 0.0273 +0.112 i for 6y =30°,
= 0.0211 +0.0209 i for g =50° and
= 0.0276 +0.0265 i  for O =170°.

The C appearing in the above expression is defined in the same manner as in

the Geometric Optics expressions.

A.1,3 Fock Theory Expressions

To determine the contribution for each of the 65 slots as determined by Fock

Theory we use the following expressions:

T
% . -
z olAn { ¢y g(5,) sin L(Zmr +§ - @) sin 6, + /2 - \lj__[

+ (icy/my) £(5p) cos [(Zmr +§ -9g) sin 6, +x/2 - ]

\
_+Z | elAn' {cl g(5,") sin [(anr - P - Pg) sin 6y + /2 —\V]

[~}
1
[y

+ (icy/m,") £(5,") cos [(Zmr - -fg) sin 6 +x/2 -v¥] ]
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where cos g = (tan 6,)/(tan 6) ; cos Y =-cos6/cos 6, ; § > fg; k=2x/x,

A (ay,P) = - ka, (sin 6, sin 8 cos fg + cos 6, cos 6) + kdj sin [(sz\';?’ = fs)sin 6] |
in

Ay = Ay (a', -,
d; cos [(Zmr +p - @g)sin 6, +7/2 -]

sin Y

an (f) =

an' =ay (-9,

dj distance from tip to jm slot,

* = sums cut off when argument of the cosine reaches #/2 ,

3 1/3
mp () = | K4 |tan ]| }
Zan2 sin’ Y

my' = my (ay)

; 1/3
o (e, M = {M} / (2nz + - P) sin 6, ,
2 tan? 6,

Sn' = afay’ P, and
2C = ikVoL/ 2w where V= the voltage across the slot and L is the length of the slot.

N P . .
For p = py , c; = -sinf,/sin b ,
c; = cos @ sin ps , and
A N .
for p = p; , c; = -cos 6, sin fig ,
c; = -sin6,/sin 0

The expressions f( ) and g( ) are the Fock functions which are tabulated (Ref. 17).
In the conical cut computations, described more fully in A. 3, ’13 was taken
in 5° intervals from =@ to § = 175° and the corresponding 6 value was

determined from the following
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i\

cos (Go -0p) = cos 6 +sin 6 cos f j cos? 6 o +sin? 6 cos?P - cos? (6, -05)

cos @ =

2 .2 2
cos® 6 + sin® 6, cos *

In the limiting case of =, we have (on the conical cut)

sin 6, cos (00 - OB))

cos fg =
j 1 - cos® 6, cos?(6, - 6p)

Upon multiplying each of the single slot expressions by the corresponding phase

factor exp (ikdj (6 - 6,)) and summing, we obtain an expression of the form

N

E F (j) &%

i=0

j/N
Approximating the function F(j) by F(0) (-E%I))—-)J/ we obtain
N io (N+1) N+l

— . 1- F(N)/F(0) | N
v F (j) ! = F(0) ° [ / —1‘
3=0 1 - [F0/FO]N

This approximate summation method was employed for all four cases (i.e. for
0B = 1003 30°, 500, and 70°); the actual sum was obtained only for the 6g = 70° case.
A comparison of the sums obtained in the GB = 70° case indicated a maximum difference
of about 20 per cent between the actual sum and the result obtained using the approximate
summation method described above. The nature of this approximate summation process
is such as to lead one to expect the greatest accuracy in the middle of the interval

between the shadow boundary and § = 180°.

59



THE UNIVERSITY OF MICHIGAN
2713-1-F

A.2 Beam Direction

The relative maximum in @ for a given § and main beam direction GB is given,

in the illuminated region, by the cone

)

sin 6 sin 6 cos § +cos 6, cos 6 = cos (0, -6

B B

about the slot array as axis, while in the shadow region, the locus of the relative maximum
departs from the conical surface and is given parametrically by

6 +ta = \y -(¢—¢S)sina B

B
cos Y = €086
‘ cos o
cos = -tana = gpd
¢S‘ tan 6
o = ‘mr-eo

Plots of the beam direction for 65 = 10°,30°,50°, 70° are included here in
Figure A.2-1, showing 6 as a function of ([ W . Although the locus of the relative
maximum in 6 is continued until it reaches the cone surface, 6 = 16503 the field is
dominated by that arising at the other shadow boundary when § > 180°. The relative

0
- maximum in 6 coincides with the conical cut out to about § =< 135 ; this is also

shown in Figure A.2-1.
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FIG. A.2-1 THE RELATIVE MAXIMUM IN 6 FOR A GIVEN
¢ AND MAIN BEAM DIRECTION 6g

0
1509
(6= 1654 - cone
surface)
120°

Relative Maximun
in 6 positions .\

' Conical Cut
‘ positions

_/

0° 90° 1800 2700 3600

61



THE UNIVERSITY OF MICHIGAN
2713-1-F

A.3 Results of the 65-Slot Computaﬁons

As pointed out at the beginning of this Appendix and in Section I computations
were performed for four different beam directions,
6y = 10°,30°,50°, and 70°,
for the 65 slots located on a generator of a cone of half-angle 15°. For each beam angle
computations were performed on two ''cuts'’
(1) a conical cut for which the receiver is restricted to lie on a conical surface
whose axis is the extension of the generator containing the slots and which has

a half-angle equal to 15° + 65, and
(2) a plane cut for which the receiver is restricted to lie in the plane of the

generator containing the slots and the axis of the 15° cone.

These two geometries are displayed in Figure 1-1 of Section I.

Values of |Hpg]| 2 and |H¢| 2 were computed at appropriate intervals in. @ (or 6)
using Geometric Optics, Physical Optics, and Fock Theory in their regions of applica-
bility. The space regions of the applicability of these three methods is shown graphically
in Figure 1-6 in Section I.

The results were obtained in db below the Geometric Optics maximum and are

tabulated in Tables A.3.1 through A.3.4. Only the Geometric Optics and Fock Theory
results are given in these tables; it was found that the Physical Optics results were

negligible. * Graphical presentations of these Physical Optics results are given in

%  As will be noted by an examination of Tables A.3.1 through A. 3.4, only values less
than 60 were recorded; that is, a value which was more than 60 db down from the
Geometric Optics maximum was not included in the final summary.
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Figure A. 3-1for the conical cut cases and a brief examination of the data contained in
Figure A. 3-1 indicates that the Physical Optics contribution is negligible in comparison
with the '""Fock Theory' contributions in the shadow region.

In the lit region where the Geometric Optics results were used, only the relative
maxima were computed except in the vicinity of the main beam.

At the time of the writing of this report experimental results were available for
the two beam directions 6pg = 10° and OB = 30°. The theoretical results of Tables A. 3.1
and A. 3.2 are compared with the experimental data in Figures 1-2 through 1-5 in Section I.
The theoretical data is superimposed upon copies of the actual patterns obtained from the
Hughes Aircraft Company. For the plane cuts the experimental data was not normalized
and thus the peak value (which would be 0‘ db) appears on the experimental curves as
approximately 4.5 db. Thus, in making the comparisons between theory and experiment,
the theoretical data has been normalized to the experimental peak value; i. e. each theo-
retical value, x, is plotted in Figures 1-2 and 1-3 as the quantity, -(x +4.5). The
slight angular variation between the theoretical and experimental patterns which can be
observed in Figures 1-2 and 1-3 is due to a slight missalignment in the experimental
tests (in fact, the main beam direction in the 30°-experimental-test was actually 299) :
no attempt has been made to normalize angularly the results in the plane cut.

On the ''conical cut'', this normalization is partially accomplished since the
comparison between theory and experiment shown in Figures 1-4 and 1-5 is actually a
comparison between theoretical values for receiver positions on the conical cut while the

experimental values are for ''relative maxima in 6' positions. Examination of Figure A.2-1
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indicates that such a comparison loses validity only near ¢ = 180°. Also, since the
summation technique employed to obtain the Fock results was expected to be least
accurete near f = 180°, we expect the greatest deviation between theory and
experiment in Figures 1-4 and 1-5 to occur near @ = 180°, #

This program of experimentation and theoretical calculation was set up
primarily as a feasibility study and thus one would not expect ''extreme'' precision
in the results. We feel that the excellent agreement between theory and experiment
displayed in the comparisons of Section I definitely establishes that radiation patterns

for slot arrays on conical surfaces can be theoretically determined.

* During the final editing stage, the experimental data for GB=50° became available.
These results are compared with the theoretical estimates in Figures A.3-2 and A. 3-3.
For this case in addition to the slight angular misalignment, it was found necessary to
locate the slots in a manner slightly different from that used in the 6 =60° and 6,=30
cases; that is, the slots were tilted a few degrees from the transverse position. This
slight tilt in the positioning of the slots could be expected to lead to larger differences
between theory and experiment due to the polarization effects and thus the relatively poor
agreement between theory and experiment for the H¢ case shown in Figure A.3-3 is not
unexpected.
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TABLE A.3.1

Results Obtained for 65= 10°

Conical Cut Plane Cut
© | | mele| jEg || | | Hgx | |mys
0 10. >60 0 0 150 260 *x* 33.3
30 10.5 6.2 1.2 0 135 >60 34.3
60 14 1.5 6.0 0 120 >60 35.4
90 20,3 .6 760 0 105 260 36.1
100 23.1 .9 15,2 0 90 760 36,2
105 24. 6 1.1 11,7 0 75 >60 35.4
110 26.1 1.5 9,3 0 60 >60 33.5
15 27,7 1.9 7.6 0 45 > 60 30.0
120 29,2 5.8 9.6 0 28 > 60 22,5
125 30. 7 6.6 11.1 0 24 >60 20.8
130 32,2 7.8 12,6 0 22,5 |>60 >60
135 33.5 9.1 14.3 0 21 > 60 17.9
140 34. 8 10.7 16.2 0 19 >60 >60
145 36 12.5 18.3 0 17 > 60 13.5
150 37 13,9 20.2 0 15 >60 >60
155 37,9 15.6 22,0 0 12.5 760 4.0
160 38.6 17,8 24,4 0 10 >60 0
165 39.2 21.4 28.2 0 7 >60 4.0
170 39.7 30.3 37.1 0 4 >60 >60
175 39.9 28. 7 35.8 0 0 >60 13.5
180 40 32,3 39.1 180 8 >60 >60
180 16 260 17.9
180 20 22,2 20.9
180 30 34.9 39.0
180 40 32,3 39.1
/180 50 23.9 32.6
180 60 47,5 57.1
180 70 55.1 >60
‘180 80 59,2 >60

* Measured in db down from the Geometrics Optics Maximum
#x% Geometric Optics result only
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* Measured in db down from the Geometric Optics Maximum
%% Geometric Optics result only
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TABLE A. 3.2
Results Obtained for 6g= 30°
Conical Cut Plane Cut
2 2 2 2
go 6° [Hg| ¥ \H¢l * g° 6° \HQ\ * \H¢l *
0 30 > 60 0 0 150 >60 * & 35
30 31.4 7.4 1.2 0 135 >60 35.6
60 35, 8 3.1 6.0 0 120 >60 36. 1
90 42,9 2.7 >60 0 105 >60 36. 3
100 45,7 3.2 15.2 0 90 >60 35.6
105 47 6.2 14. 4 0 75 >60 34,1
110 48.4 7.9 15.6 0 60 >60 30. 7
115 49.8 9.2 17 0 43 >60 22.5
120 51.1 10. 6 18.6 0 40 >60 20,8
125 52,4 12,2 20.4 0 38.5 | >60 >80
130 53, 6 13.9 22 0 37 >60 17.9
135 54,7 15,9 24.5 0 36 >80 >60
140 55. 8 18.3 27.6 0 35 >60 13.5
145 56, 7 21.4 30, 4 0 33 >60 >60
150 57.6 25. 8 35.1 0 31.5 | >60 4
155 58. 3 32,2 41.7 0 30 >60 0
160 58. 9 41.1 50, 1 0 28.5 | >60 4
165 59, 4 37.4 46.9 0 217 >60 >60
170 59,7 38.1 47.8 0 25 | >80 13.5
175 59. 9 >60 >60 0 23 >60 >60
180 60 40,9 50. 7 0 21 >60 17.9
0 19.5 | >60 >60
0 18 >60 20.9
0 0 >60 26
180 15 >60 27.3
180 20 32.3 31.0
180 30 38.4 42,17
180 40 41.8 48.6
180 50 40.9 49.6
180 60 40.9 50, 7
180 70 33.5 44,2
180 80 55, 4 >60
! ; |
; x | z I
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TABLE A. 3.3
Results Obtained for 6= 500

MICHIGAN

Conical Cut Plane Cut
#° 6° | \Hy)'r | 1Hy ¢ e | lH x | |H)
0 50 >60 0 0 150 760 *x 36. 1
30 51.6 11,4 1,2 0 135 »60 36.3
60 56. 6 6.4 6 0 120 >60 36. 1
90 64 7.2 >60 0 105 »60 35.5
100 66. 7 12,2 18.7 0 90 »60 33.9
105 68. 1 13 19.8 0 75 >60 30.3
110 69. 4 14,4 21.6 0 61 60 22,5
115 70, 7 16.1 23,6 0 58 >60 20.8
120 71,9 17,8 25,7 0 57 »60 > 60
125 73.1 19,9 28. 1 0 56 ¥60 17,9
130 74,2 22,1 31.6 0 55 »60 Y 60
135 75. 3 27. 4 36.5 0 54 >60 13.5
140 76, 2 28.5 38.7 0 53 760 »60
145 7.1 35,6 39. 1 0 51.5 | »60 4
150 77.8 46,4 55,3 0 50 »60 0
155 78.5 | >60 »60 0 49 760 4
160 79 >60 >60 0 48 760 >60
165 79.5 52,4 »60 0 46 >60 13.5
170 79, 8 52 Y60 0 45 60 >60
175 79.9 58,5 60 0 44 760 17.9
180 80 51.3 560 0 42,5 |60 >60
0 41 >60 20,8
0 30 260 26.9
0 15 760 30,7
0 0 >60 32.1
180 15 760 32.17
180 20 54,8 58, 8
180 30 52, 3 46,5
180 40 46,6 53,3
180 50 56,7 >60
180 60 51,4 >80
180 70 52.9 > 60
180 80 51.3 >60

x Measured in db down from the Geometric Optics Maximum

x % Geometric Optics result only
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TABLE A. 3.4
Results Obtained for 6p= 700
Conical Cut Plane Cut
go 60 IHQIZ . !Hgllz . go i ° [Hyl? « \Hoi\z N
0 70 >60 0 0 150 >60 ** | 36
30 71.9 16,2 1,2 0 135 >60 35,6
60 77.2 14,4 6 0 120 >60 34,7
90 84.8 20,9 >60 0 105 >60 32,8
95 86. 2 24,7 19,7 0 90 >60 28.6
100 87.5 26.8 22.6 0 80.5 | >60 22,5
105 88.8 28.8 25.8 0 78 >60 20.8
110 90. 1 30.7 29 0 77 >60 760
115 91,3 32,6 32.5 0 76 >60 17.9
120 92.5 34,5 36.2 0 74,5 | >60 >60
125 93.6 36.5 39.9 0 73 >60 13.5
130 94,7 39.3 44,6 0 72 >60 >60
135 95.6 43,4 50, 2 0 71 >60 4
140 96.5 51,3 58. 4 0 70 >60 0
145 97,3 58.5 760 0 69 >60 4
150 08 53.1 760 0 68 >60 >60
155 98.6 58.9 760 0 67 >60 13.5
160 99.1 >60 >60 0 66 >60 >60
165 ©99.5 >60 760 0 65 > 60 17.9
170 99.8 760 >60 0 64 > 60 >60
175 99.9 >60 760 0 62.5 | >60 20.8
0 45 >60 30.2
0 30 >60 33,2
0 15 > 60 34,7
0 0 > 60 35.3
180 15 | >60 35.5
180 20 42,3 41
180 30 44,8 49,1
180 40 49,3 56, 2
180 50 53,7 > 60
180 {60 56.3 > 60
180 £ 70 58.3 >60
180 { 80 >60 >60

* Measured in db down from the Geometric Optics Maximum

*% Geometric Optics result only

68



db
—-40

THE UNIVERSITY OF

2713-1-F

MICHIGAN

FIG. A.3-1:PHYSICAL OPTICS RESULTS OBTAINED FOR
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