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PREFACE

The solution to the problem of unsteady free-surface gravity
flow of liquids through a porous dam with vertical faces is the goal of
this study. Since the results of the steady state casé of this problem
are to be used in the solutiqn of the unsteady state case, Part I of this
thesis is devoted to an extension of the existing results of the steady
state case and their presentation in a more applicable form.

In Part IT of this thesis, the differential equations governing
the unsteady gravity flow of liquids through porous media are first de-
rived, Next, the numerical solution of these equations is presented.

In Part IIT, the applicability of a viscous flow analogy to this
problem is demonstrated. The experimental setup and the test data are
discussed next. Finally, by comparing the experimental data with the
results obtained through the numerical solution of the differential e-
quations, the conclusions with regard to the limitations on the assumptions
used in the theoretical part of this study are drawn.

Because of the large amount of numerical work, digital}computers
were used throughout this study. The computer programs written for the
numerical solution of the differential equations of the unsteady state
case are discussed and included in this thesis.

The author wishes to express his gratitude to Professor
Victor L. Streeter for his suggestion of the topic and his valued advice
throughout the course of this study. The author is also indebted to the
members of his doctoral committee and would like to express his appreci-

ation for their helpful counsel.
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INTRODUCTION

As mentioned in the preface, this study will deal only with
a two-dimensional problem. It will also be assumed that compressibility
effects are negligible. The effect of surface tension 1s neglected in
the development of the fundamental equations. The capillary rise due
to surface tension can, however, be estimated(lo) and considered in the
evaluation of the experimental results.

Other basic assumptions are:

1. Density of the liquid is constant

2. The porous medium has constant permeability and
is isotropic

3. The region of flow is fully saturated

4., The temperature of the liquid is constant.

From Darcy's law and the equation of continuity, it is known
that there must exist a velocity potential function that satisfies the
Laplace equation. Although the existence of a velocity potential implies
irrotational flow,(lo) one must remember that since Darcy's law deals
only with velocitiés in a macroscopic and not microscopic way, the flow
through a porous medium is not irrotational.

Because of the existence of a velocity potential function, one
may at first glance think that the problem reduces to one of finding a
velocity potential function which satisfies both the Laplace equation
and the boundary conditions. If, however, one recalls that one of these

boundaries, namely the free surface, is the solution to the problem and



hence is unknown a priori, the difficulty inherent in the nature of the
problem becomes evident.

The solution to the problem of confined flow, whether steady
or unsteady, of fluids through porous media is known.(B) It is a much
simpler problem because the geometry of the region of interest is well-
defined beforehand. In the problem of unconfined flow of liguids, how=-
ever, the geometry of the free surface is not known. 1In these kinds of
problems, the only condition assigned to the free surface is that the
pressure at the free surface must equal atmospheric pressure. In the
case of steady flow, the free surface is also a stream line.

Another difference between unconfined and confined flow is due
to the effect of gravity. In the former case, gravity enters the equa=~
tions explicitly, while it has only an implicit effect on the latter.

In the study of unconfined flow in porous media, it is diffi-
cult to take care of the capillary layer that necessarily overlies the
main fluid body in the porous medium (e.g., sand). Although it might be
thought at first that the capillary layer does not affect the flow,
closer consideration shows that, on the contrary, it acts much like a
siphon,(B) acting in the direction of the main flow and thus increasing
it. The thickness of the capillary zone depends on the size of the parti-
cles of the porous medium. When the main fluid height is close to the
top of the sand, however, so that the capillary layer is not completely
developed, the flow in that layer may be neglected. When the thickness
of the capillary zone is large compared to that of the main fluid body,

the amount of the flow in the capillary zone can by no means be neglected.



Both the top and bottom surfaces of the capillary zone are al atmospheric
pressure, and a well dug in the sand identifies the free surface of the
main fluid body.

A Hélé-ShaW Model was used in this study in order to obtain ex-
perimental results since it is a good representation of a porous medium
which meets most of the assumptions stated in the beginning of this part.
When one chooses a sufficiently large value for the width of the channel
in the model, the amount of capillary rise can be reduced to a negligible
value.

In general, the steady unconfined flow problems can be easily
solved by Dupuit's assumptioﬁs(B) (presented in 1863) which, essentially
are based upon the hypotheses: (1) the liquid in a gravity flow system
moves in shells (i.e., the stream lines are horizontal), the horizontal
velocity being independent of the depth, and (2) the value of the hori-
zontal velocity is proportional to the slope of the free surface. The
above assumptions were gquestioned in 1927°<5) From that time on, attempts
have been made to attack unconfined flow problems by direct potential
theory methods. Special cases of such problems have been solved by the
mefhods of conformal mapping and conjugate functions,(5) Relaxation
methods can also be of use in solving unconfined flow problems.(lQ)

The problem of unsteady gravity flow of liquids through porous
media has not yet been solved by exact potential theory, even for special
cases of simple boundary geometry. Some examples of this problem have
been solved only under certain assumptions.(h’l6)

In this study, an attempt has been made to apply the equations

for shallow water waves(7> to the problem of unsteady gravity flow of
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liquids through porous media. The main supposition underlying those
equations is that the pressure is hydrostatic in any vertical section
throughout the region of flow. It follows from the above hypothesis
that the horizontal component of the velocity is independent of the
depth. The resultant equations can then be solved by the method of
characteristics.(6)

Because of the existence of a seepage surface(5) (see Figure 1)
at the outflow boundaries, the above assumptions become fallacious near
these boundaries. The following two assumptions are therefore made to
compensate for the failure of previous assumptions near the outflow sur-
faces:

1. The elevation of the liquid in the reservoir adjacent

to the outflow surface is assumed to be at the same
elevation as the top of the surface of seepage.

2, The coefficient of permeability of the porous medium is
increased in such a way as to keep the amount of dis-
charge for the theoretical steady state case (see Section
C, Part I) constant in spite of supposition 1. This is
done because the fundamental equations of unsteady flow,
derived in Part II, give the correct fluxes (see Section
F, Part II).

Supposition 1 can be easily applied in the solution of unsteady

gravity flow for the particular geometry concerning the problem in this
study. The only assumption which has to be made is that the height of

the surface of seepage in the unsteady case is the same as in the case



of the steady state when the following two conditions are present:

1. The outflow height H_ (see Figure 1) in the unsteady
state case is the same as the one in the steady state
problem.

2. The discharge through the outflow surface of the unsteady
state problem is the same as the discharge through the
dam in a steady state.

Based on the above conditions, one can, as mentioned later in
the text, solve the fundamental equations of unsteady gravity flow, de-
rived in Part IT of this study, by the method of characteristics as follows:

a. Disregarding the existence of a seepage surface at the out-
flow boundary, solve the fundamental equations of the un-
steady gravity flow of liquids through porous media for
the variables H (height of the free surface) and u (the
horizontal component of the velocity). One can therefore
compute the value of discharge through the outflow surface
as a function of time +t. One can also calculate the height
of the surface of seepage as a function of time (see Section
C, Part I).

b. Apply assumptions 1 and 2 mentioned above, and solve the
fundamental equations of flow for the variables H and wu.

As one can see from the results obtained, this theory provides
a larger range of validity than the approximate theories suggested by

other authors,(43l6’l7)



I

THE STEADY STATE SOLUTION TO THE PROBLEM OF
SEEPAGE THROUGH A DAM WITH VERTICAL FACES

A. The Present, Potential Theory

The analytical theory relating to this problem is presented
in Reference 3. A diagrammatic representation of the problem is shown
in Figure 1. The theory leads to a set of very complicated integral
formulas for determining Hy/k, Hg/k, Q/EQ, I/k, He/k, and other char-
acteristics of the flow such as the velocity distributions along the
outflow and inflow faces of the dam and the shape of the free surface
according to the potential theory (see Appendix IV).

All of these formulas contain three arbitrary parameters a,
b, and c¢c. The third parameter c enters the formulas as a multiplying
coefficient and therefore can be eliminated from the computations by

calculating the quantities He/L, Hy/L, Hg/L and Q/KL.

B. Extension of the Results for Practical Application

As mentioned in Section A, one must start with two arbitrary
values for a and b (a >b > 1) and then compute the values of
HW/L; HS/L, He/L, Q/EL and the shape of the free surface. In practice,
however, the value of Hg and the velocity distribution along the outlet
and inlet faces are the ones which are desired. In this part of the
study, an attempt has been made to provide a set of graphs by means of
which one can solve the problem from a practical standpoint, i.e., having
been given the values of L, He, and Hy, one can find the value of Hg
and the shape of the free surface (Plates 13 = 25)0

-6



In order to accomplish the above task, one starts with a set
of values for a and b and then computes the values of HS/L, HW/L,
He/L and the shape of the free surface. The procedure used in these
computations is found in Reference 2. By repeating this same procedure
for other sets of values for a and b, one can plot the curves given
in Plates 13 - 15. Then, if one starts with the values of He, Hy, and
L as in a practical problem, one can find the values of a and b
using the curves in Plates 13 and 14. Having discovered the values of
a and b, the value of Hg can be computed by making use of the curves
in Plate 15. The shape of the free surface can be plotted from
the curves in Plates 16 - 23,

In Reference 13, one can find curves which give the values of
Hs/He vs. L/He for different values of Hw/He° It was discovered that
the results given in that reference are neither accurate nor complete.
Since, as méntioned in the introduction, the results of the steady state
solution are of use in the solution of the unsteady state problem of
seepage through a dam with the same geometry as the one in the steady
state problem, they are computed with greater precision as one part of
this study (see Appendix IV).

As for the shape of the free surface, this study presents origi-

nal results which are given in Plates 16 - 23.

C. Comparison of the Potential Theory with other Approximate Theories

An approximate solution to the problem of seepage through porous
media can be obtained by the Dupuit-Forchheimer theory. In this case, the

curve h (Figure 1) represents the free surface. The equation of this
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free surface is:

B® = -(HS - H2) x/L + HC (1)

The main assumptions in this theory are as follows:

1. The streamlines can be taken as horizontal.

2. The velocities are independent of the depth.

These assumptions are basically the same as the assumptions
of the existence of hydrostatic pressure on any vertical section through-
out the region of flow. This assumption fails as one approaches the sur-
face of seepage, BC in Figure 1. The only significant result of the
calculations under these assumptions is that the correct flows (computed
by the potential theory) are very closely reproduced by this theory.
The equation for the flow Q, based on this approximate theory, is as

follows:
Q = K1 - 10)/2L (2)

For practical purposes, therefore, it will suffice to compute the flux
by the simple formula of Equation (2) and thus avoid the tedious calcula-
tions of the potential theory.¥ This fact is the basis for assuming
that the fluxes predicted by the fundamental equations (derived in Part
II) of the unsteady state problem are close to the actual unsteady

fluxes. This fact 1s also used in determining the value of the height of

¥ The study of erosion of the outflow face and its effect upon the
stability of the dam, however, require the knowledge of the point of
emergence of the free surface and the veloclity distribution along the
outflow face.
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the surface of seepage in the unsteady state case as follows:
1. By making use of Equation (2), compute a theoretical
steady staté inflow height corresponding to the value
of discharge through the outflow face. A theoretical
steady state case is one in which the inflow height
is equal to this theoretical inflow height.

2. By making use of the curves in Plates 13 - 15, find

the height of the surface of seepage.

The curve Ei in Figure 1 represents a profile for the free
surface which is much closer to the one obtained by the potential theory.
It is based on Dupuit's assumption and a theoretical outflow height equal
to the sum of the real outflow height and the height of the surface of
seepage. It is worth mentioning that curve Ei is practically the same

curve as the one which is obtained for the steady state solution of the

problem of this study through the assumptions mentioned in the Introduction.
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DERIVATION OF FUNDAMENTAL EQUATIONS
OF UNSTEADY GRAVITY FLOW IN POROUS MEDIA

In the following paragraphs, the two equations of motion and
continuity are applied to a fluid element inside the region of fiow.
Only the boundary coﬁditions at the free surface and at the impervious
base (see Figure 2) are used in deriving the fundamental equations of
flow through a porous medium.

Let ox (see Figure 2) be the undisturbed surface of liquid

in the porous medium., Let also

P = gp(n-y) (3)

in which P 1is the pressure at any point (x, y) and p is the density
of the liquid flowing in the medium. This follows from the assumption
that pressure is hydrostatic on any vertical section throughout the re-

gion of flows. Then

Py = gpNy (L)

It follows from (4) that the x-component of the acceleration of the
liquid particles is independent of the depth y; hence, u, the x-
component of the velocity, is also independent of y for all time <t
if it is assumed to be independent of y at some time, e.g., at t = 0.
The assumption of hydrostatic pressure in a vertical line results from
the hypothesis that the y-component of the acceleration of the liquid

particles has only a minor effect on the pressure P.

=11~
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A. Equation of Motion*

Let u Dbe the seepage velocity, and let k be the coefficient

of permeability of the porous medium. From Darcy's law,
u = -k = (5)

one can conclude that the resisting force AR, which is due to internal

friction, is equal to
AR = pgudhdx/k . (6)

One can then write the equation of motion in the x-direction for the fluid

element shown in Figure 2:
pdAdx(uy + uuy) = (=(P + Pydx) + P) dA - pgudAdx/k

where u 1is the horizontal component of the velocity of the fluid element.

Or, after simplification:

Ut + Uy = =8Ny = &

RN ISR

Or, since U = fu, where £ is the porosity of the porous material,

(7)

Up + Uy = =gny = gf

=l le

In deriving Equation (7), use has been made of u, =0, which is a

y

direct consequence of the assumption of the existence of hydrostatic

pressure on any vertical section throughout the region of flow.

* The method employed in deriving the fundamental equations is in essence
the same as the one used in deriving the equations of shallow water
waves as described in Reference 7.
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Figure 2. Diagram Showing the Region of Flow in the Unsteady State Case.
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In deriving the equation of motion, use has been made of
Darcy's law. One must therefore recall the limitations of that law,
in particular the assumption of the existence of laminar flow.(B)

This is assured if the Reynold's number is less than unity, i.e.,

o <1, or < 1.
v

28

In the above expressions, V is the seepage velocity, V is the
velocity of a fluid particle, D 1is the average diameter of a sand
grain, v 1is the kinematic viscosity of the fluid, and f is the
porosity of the porous material. In the case of a Hé1€ -Shaw model,

D is the width of the interspace between the two walls of the channel

in the model.

B. Equation Derived from Continuity and Boundary Conditions

The equation of continuity is
Uy + Vy = 0 (8)
The kinematical condition to be satisfied at the free surface is
%% =My +UNg =V, Or
(ng + unyg - V)y:n =0 (9)

The dynamical condition at the free surface is

P| 0 (10)

y=n

At the impervious base, the condition on the component of velocity
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normal to the boundary is

Vv, = 0, or
Vp/cos @ = (uh, + v)y_ 3 =0 (11)

in which « is the angle between the impervious bottom and a horizontal

line, and

dh

hy = =— = tan ¢ .
X X

From Equation (8) one can write
1 n
Juxdy + v|' =0 (12)
-h -h

From Equations (9), (11), and (12), one can conclude

? Uydy + Mt + u]n “ My + U|opy » hy =0 (13)

But in view of Leibnitz's formula

n(x) n
_£ udy = u[n "My tuly, by + _é u,dy (14)

o/
¥

(x

The combination of Equations (14) and (13) leads to

3 1 _
= _i udy = -1y (15)

Or, since u 1is independent of Yy,

[u(n + n)]_ = e (16)

Equations (7) and (16) are a system of two first-order differential equa=-

tions for the functions u(x,t) and n(x,t). If in addition to sufficient
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side boundary conditions the values of uw and 7 at the time t =0
are given, the subsequent motion can be solved.

In deriving the above two fundamental equations, no restrictions
were made on the side boundaries. One can, therefore, apbly ﬁhose two
equations to regions having any shape or condition on the side boundaries.

C. The Numerical Solution of Equations (7) and (16)
by the Method of Characteristic

Since the partial differential Equations (7) and (16) governing
the flow are of the hyperbolic type, they can be solved numerically by

the method of characteristics.*

1. Characteristic Equations

Since this study deals only with a region having a horizontal

base, let
dh
h = const., or = - 0.
Let also
n+h=H

Equations (7) and (16) can be written as follows:

Ip =uug + Ut + gy + gf 2 =0 (17)
k
Lo = Huy + uly + By =0, (18)
where
ou oH

Uy = 3¢ Hy = 5t °

* For a more thorough mathematical treatment of hyperbolic partial differ-
ential equations by the method of characteristics, see Reference 6.
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Equations (17) and (18) are two simultaneous quasi-linear partial dif-
ferential equations of the first order containing two independent and

two dependent variables. Consider a linear combination of Iq and ILo:

L =1L + Al = ug(u + M) + ug + (g + M)Hy + Ay

+gf 2 =0 (19)
k

One also knows that

du = uxdx + ugdt , and

dH = Hydx + Hpdt , (20)
or

du dx

Ut =y, =2+ u and

at Fa ¢’

dH dx

=~ = H, — 4+ H 21

it Xag ¢ (21)

Now, by examination of Equation (19), with Equations (21) in mind, let

(uw + MH)uy + up = Uy %% +up = %% , and (22)
g dx _dH
(R +wHg + Hy = He 32+ By = 3¢ (23)

Then Equation (19) may be written as

dtL = du + MH + gf = dt . (2k)

~lle

Tn order for Equation (19) to be in this form, the following must be true:

d
%% =u + A, and E% = % +u (25)
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from which one obtains
u+}\H=%+u

or

A=+ VB (26)

and the characteristic equations for u and H become

atL dt =0 , (27)

I

du +'J%-dH + gf

e

dtL

]

du=-\/%dH+gf dt =0 (28)

wlle

By substituting A from Equation (26) into Equations (25), the two dif-

ferent characteristic directions at the point (x,t) are given by

e oGt 1 P R (29)
=4t . e =40
todx  u +VgH dx u - Vgl

Equations (27) and (28) are two separate total differential equations

with t as an independent variable and u and H as dependent variables.
If u=u(x,t) and H = H(x,t) satisfy Equations (17) and (18), then
Equations (29) become two separate ordinary differential equations of the
first order. These determine two families of characteristic curves, or

in short, "characteristics,” C, and C. in the (x,t) plane belonging
to this solution u(x,t), H(x,t).

Equations (27) = (29) can be rewritten as follows:

dx

at - —2— =
u + Vel

0 (30)
along C+

\du+\[€.dH+ngdt=O (31)
H k



at - — _ _ 0 (32)
u - Vgl
along C.
du-\/_%dH+ngdt=O (33)
k

Equations (30) = (33) are of a particularly simple form and are
satisfied, according to the derivation, by every solution of the original

system (17) and (18).

2. IFinite Difference Approximation

Let first-order linear finite difference approximation be used
for solving Equations (30) =- (33); this finite difference approximation
i1s expressed by

X1

] f(x)ax = £(x5)(x1 = %) : (34)

%o

Referring to Figure 3, let it be assumed that Xps tp, up, Hpyy xp, tp,
up, and Hg are known, and that xp, up, tp and Hp are to be found. By
applying Equation (34) to Equations (30) = (33), the following equations

are obtained:

tP*tA-(u_'_l\/gﬁA(XP'XA):O (55)

up - up +~f§i’(HP - Hy) + gf ;é (tp = tp) =0 (36)
k

tp~%~(uf@gBuP—@)=o (57)

!
(@)

vy g By )+ 8 ) - 2
k

Equations (35) = (38) form a set of four linear equations with these

unknowns :

xp. tp, Hp and up
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D. Specified Time Intervals

There are several ways by which a numerical solution of
Equations (35) - (38) can be obtained. The one used in this study is
called "Specified Time Intervals." This method is preferred because
xp and tp can be pre-assigned so that only two values, Hp and up,
are to be determined. The procedure can be described as follows: Let
u and H be given at Aj, A} ... Ag as shown in Figure 4. Then u
and H can be computed at By, By --o B55 Co, 05, Cy, and D3. It
further information is given along x =0 and x =L, then the values
of u and H can also be computed for the points lying outside the
triangle A DzAg (Figure L4).

To compute u and H at P from ug, Hp, up, Hp, up, and
Hy first obtain the values of wug, Hg, ug, and Hg (see Figure 3-a)

by making use of linear interpolation:

(e.) At At
+/R = ug-uRr ~= Ho=-HR
Sugmy, M Egm,
At At . At
(€.)g :Ax ug-ug :AX ARy M Pk
ug-up He=-HB
then
-1 -1
R =ug [1 - 6(e,)p ) + upb(e,)s (39)
-1 =1
Hr = Ho [1 - 6(&4)g ] + Hpo(E4)g (%0)
-1 -1
ug =ug [1 +6(k.)g ] - ugd(t.)g (k1)
-1 -1
Hg = Ho [1 +6(E.)g"] - Hpo(E )g (k2)
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It has been assumed that At is sufficiently small so that PR and PS
are straight lines with slopes of (§+)R and (g_)s respectively. up

and HP can now be calculated from

up - ug + VE (Hp - Hg) + gf 2B (tp - tg) =0 (43)
R k
and
- - VE&_ - us - =
up - ug JﬁS (Hp - Hg) + gf = (tp - tg) =0 (44)
or
up = ug - V&— (Hp - Hg) - gf R dt (45)
Hp i
up = ug +-J%—.(HP - Hg) - gf %ﬁ dt (46)

S
A simultaneous solution of Equations (45) and (46) will result in the

values of Hp and up.

E. Boundary Conditions

At the left boundary (see Figure 5), x =0 and H = Hy(t).

One can therefore find ug, Hg, and up from Equations (L41), (L42), and
(46) respectively. Having found up, one can then proceed to obtain the
values of u and H at the points lying outside the triangle AgD3A4
(Figure 4).

At the right boundary (see Figure 6), x = L (width of the medium)
and H = H(t); one can therefore find ug, Hy and up from Equations
(39), (40) and (45) respectively. Having found up, one can then pro-
ceed to obtain the values of u and H at the points lying outside the

triangle AoDzAg (Figure k).
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Conditions ,
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F. Application of the Method of Characteristic to the

Solution of Unsteady Gravity Flow of Liquids Through

a Porous Dam with Vertical Sides

By making use of the results in Part I of this study, and by

following the steps outlined below, one can obtain a solution to this

problem:

By assuming that hydrostatic pressure prevails on any
vertical section throughout the region of flow, make use
of the fundamental Equations (7) and (16) and the
characteristic Equations (45) and (L46).

Vary the given quantities of H, and H (see Figure l)
with time as required by the problem; these values are
used as the boundary conditions in applying the method

of characteristics.

Compute by the method of characteristics the values of

H and u at any section and for any time.

Compute the quantity of discharge Q at any time at the
boundary or boundaries with a surface of seepage, i.e.,

a boundary from which fluid flows to an adjacent reservoir.
Using Plates 13 = 15, obtain the values of Hg for any
time (see Section C, Part I).

Replace the value of Hy at the boundary having a surface
of seepage with H,; + Hgy for any time.

Recompute, by using the method of characteristics and the
new boundary conditions stated in Step 6, the values of

H and u at any section and for any time.
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Since, as one can tell by looking at the curves in Plates
13 - 15, in é general case it is difficult to find any empirical formula
which relates Hg to @Q and to carry out Step 5 along with the rest
of the computations, this step will be handled as follows:

A. TFollow Steps 1 - 4 for the entire time before the steady

state condition is established.

B. Use the values of Q, computed in Step 4 of the first

computer program, to find Hg vs. time by making use
of Plates 13 - 15 (see Section C, Part I).

Only when the height of the outflow surface remains constant
and the height of the inflow surface is changed (Experiment 1), can one
carry out Step 5 along with the rest of the computations. This may be
done as follows: Calculate the height of the surface of seepage for
some arbitrary values of discharge which fall within the range of the
values of discharge encountered in the computations. Then, interpolate
for the values of the height of the surface of seepage from the above
informatioﬁ which is available as part of the read-in data of the program.

As is discussed later, however, in order to avoid the restric=-
tions on the solution by the method of characteristics, one mustvcarry
out Step 5 aiong with the rest of the computations when Hy,; =0 or when
He >> Hy.

Even when H, changes with time, one can try to carry out
Step 5 simultaneously with the rest of the computations. In this case,
however, one must make use of double-interpolation on the read-in data

for different sets of values of Q, Ho and H.
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Note:

In Step 7, use a hypothetical coefficient of permeability com-

puted by the following equation:

2 2
Heyy - Hw

kh:‘uk

Hgth - (HW + HS)2

in which Heth is the theoretical steady state inflow height (see
Section C, Part I).

This value of the coefficient of permeability allows one to
obtain as a steady solution a parabolic free surface passing through

points C and D (curve Ei in Figure 1) and yet permits the same

flux as the one obtained by curve h. Thus, this change in permeability
is a way of compensating for the incorrect assumption of the existence
of hydrostatic pressure on any vertical section. One should therefore
remember that since Heyys Huws and Hg are only functions of time, Eh
is also dependent on it. If the free surface profiles encountered in the
unsteady state flow are of the type shown in Figﬁre T=a, Eh does not
depend on x. In this case, the value of E£ computed by Equation (L47)
is the same for the entire region of Figure T-a. The only time Eh
could depend on x 1s when the unsteady free surfaces have shapes such
as the ones shown in Figures T7-b and T=-c. In these cases, the hypotheti-
cal coefficient of permeability in different regions of flow is taken to
be as follows:

for region A;C1DDy of Figure T-b,

2 2

Hetp - Hny (48
. a)
By = (i + Hgp)°

h = k
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for region A CoFF) of Figure T=b

H2 H2
— - €th = Hw
ky = k 5

He_th = (HW2 + H52

2 E (48b)

for region ACFF; of Figure T-c,

S - B

— —_ H
kh =k Sth

Hgth - (H, + Hy)?

and in all the other regions of Figures T=b and T=-c,
Ky =K

In Equations (48a) - (48c), Hey, 1s computed by means of
Equation (2) on the basis of discharge through the outflow boundary,
the width of the region (e.g., Ly in region AjC1DD;), and the out-
flow height.

In the computer programs written for the two experiments of
this study, the method of specified time intervals was used (see Section
D of Part II). The slope of the characteristic lines at any point of
the characteristic grid depend on the value of the variables u and H
at that point. One can, therefore, in order to save machine time, make
use of the following:

Since the required number of points (see Section G of Part I1I)
along the x-axis of the characteristic grid depends on the curvature of
the free surface, one can change this number during the execution of the
program to match the expected curvature of the free surface. The value

of the time interval At will, therefore, also be changed accordingly.
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One can even choose points unevenly spaced along the entire length be-
tween the two boundaries of the characteristic grid. The distribution
of the points along the x-axis will depend on the distribution of the
expected values of the curvature of the free surface along that axis.
In other words, since the slopes of the characteristic lines
depend on H and u, and hence on x and t, one can let At and

Nx depend on x and t as well.
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F
VISCOUS FLOW ANALOGY (HELE-SHAW MODEL)

In order to show that the laminar flow between two closely-
spaced vertical plates is analogous to the two-dimensional flow of
liquids through porous media, it 1s necessary to prove that the former
is a potential flown<8’9) It is shown in the following paragraphs that
only the average velocity of the fluid particles (averaged in the direc-
tion perpendicular to the plane of the Héié;Shaw model) can be derived
from a potential function. One can therefore conclude that the flow of
liquids in a Hele-Shaw model is irrotational only in a macroscopic sense
and is not irrotational microscopically. The flow of a viscous fluid
in a narrow slit belongs to the group of "creeping" flowsa(S) One can
then neglect the inertia terms in the Navier-Stokes eauations. One can

also neglect

3u. du. 3 and v

]

%2 6y2’ ox2 dy2

The Navier=-Stokes equations may then be written in the following form:

2
0 = ~g %% + Vv %E% (48)
L, o0 %y
Ougg-b;-FVg-Z*g (”‘9)
0=, (p=y+5) (50)
dz ’ o8

where u, v are the components of velocity at a point (x,y,z), v is
the kinematic viscosity of the liquid, and b i1s the width of the inter-

space (Figure 8).

~30=-
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a HE1é-Shaw Model .



-32-

From Equation (50), one concludes that ¢ 1is not a function

of z. Hence, from Equation (48) one obtains:

-gz g% + v %% =(C1 , and
2
-g g— %% +vu = C12 + Dy ;

put % =0, for z =0; and u =0, for z:ig-,

Sz
therefore
_8 (2 _ D% dp a
L i
+b/2
g 2 _ e
& 5% _big (z Z_) dz
Uy = » -

et & 12y ox

By the same procedure it can be shown that

I )
Vm T "8 157 oy (52)

From this, it is clear that the average component of velocity of the flow

of a fluid in a narrow slit does possess a potential.

A. Derivation of Model Scales

Let F(x,y,t) = O describe the phreatic surface. For the

phreatic surface (P =0), the potential ¢ =y + gg =y, therefore
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F=¢ =-y. Hence

DF .00 , 09 dx ., 0o dy . dy .o ; (53)
Dt ot oxdt OJdy dt dat

dX gand 4¥ describe u and v respectively. By Darcy's law,
dt dt

N Lol
21y

(54)

<
i
1
il |
Q/|Q/
18

The substitution of (54) into (53) yields

I{[(%}‘%) + (%‘3%) - %‘YE] = f g% (55)

In the case of laminar flow between two parallel plates, the equation

2 2

corresponding to Equation (55) is

=02 02 Ogy gy
ki — —— - 0 = iy —— 6
M[(BXM + (BYM) ayM] M atM (5 )
where
- 1 'b2

kM::I—E—gV—, and szl,'

M is a subscript describing model quantities. By substituting

k:E—M: X':Z'C'M‘) y:m;
k.. Xr Ir
(57)
£ .
@:m; f:_ﬂ; t:EM;
O I Ty
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into (54), one gets

d ¥2,9 3 ty O
[ (_(P_M y M2 Ve T L g r TP (58)
axM ¢§ 8 Py ayM Iy Py atM

By comparing Equations (43) and (58), the following relationships are

obtained:
2 2
oL Y LY L 5 (59)
- 2 2
Ky rPr rPr rPr
or
Xp = Yp = Qp = Ly
tI‘ = err/Er (60)
where
P
r f f

Time Scale

From Equation (60), one can obtain

2
b
ME M (61)

t

Equation (61) indicates that an appropriate time scale can be selected
for a given length scale by manipulating the width of the interspace by

and the kinematic viscosity of the liquid

Discharge Scale

The discharge scale is obtained from Darcy's law,

- e
S = S 6
= = — = 2
Ur WM oy ! OPy Ay rorer (62)
aXM
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similarly

Qyr = Qgr = kpbrxy (63)

Velocity Scale

From Equation (60), and (54)

= 8 I;M Xy BCPM uM (6)4-)

u = =k R

and

ngj_gﬂkéﬂl:m (65)

<1
it
[}
I

B. The Experimental Setup

Plate 1 shows the experimental setup. A schematic representa-
tion of this apparatus is shown in Figure 9.

The equipment is made up of the following main elements:

1. Two pieces of 1/L4" plate glass, 24" x 20", spaced .112"
apart. The two pieces of plate glass are fastened with
C=clamps along the top of the channel and with thumb
screws along the bottom. The spacing is maintained by
strips of opaque plexiglass.

2. Two regulating reservoirs Bl and B2.

5. Two regulating overflows Cl and C2 which maintain the
desired heights of fluid along the upstream and downstream
sides of the channel.

L., Two head reservoirs D1 and D2, connected to each other by

a gate valve Gl. Gate valve G2 connects D2 to B2, and



Plate 1
Experimental Setup
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gate valve G3 connects D1 to Bl. When gate valve Gl is
open, the two head reservoirs act as one.

Two sump reservoirs El and E2 with connections to each
other and to the two regulating reservoirs. When gate
valve G4 is open, the two sump reservoirs act as one,

By supplying two sump reservoirs, the discharge through
the apparatus can be measured by closing the valves Gl
and G4 and by using the storage equation. The two head
reservoirs make possible the elimination of long connec=-
tions which are undesirable because they create large
head losses which in turn reduce the rate at which the
height of the fluid in the regulating reservoirs is raised.
A hand pump which raises the fluid from the sump to the

head reservoir.

Castor oil is the fluid used in this setup for the following

IT.

Castor oil is highly viscous. High viscosity is necessary
in order to obtain an appropriate time scale, i.e., enough
time to observe and.take photographs of the unsteady state,
after a disturbance has been introduced and before the re-
establishment of the steady state.

Glycerin, though highly viscous, absorbs moisture, and
thus its viscosity is lowered. It also requires measure-

ment of its viscosity at the time of each experiment.
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ITI. Castor oil has a smaller value of surface tension than
glycerin; thus by using castor oil, the effects of capil-
lary rise are lessened.

The larger the width of the channel, the smaller the value of
the capillary rise but the larger the coefficient of permeability of
the model. As mentioned in I, however, smaller values of the coeffi-
cient of permeability are desired. Thus, thé¢ width of the channel is
chosen to be equal to 0,112". This value of the width creates a capil-
lary rise equal to 0.10".

In order to be able to photograph the surfaces of the liquid,
the castor oil is dyed with Sudan III. A sheet of graph paper is at-
tached to the back of the channel so that one can read the coordinates

of the free surfaces from the photographs.

C. FExperiment No. 1

In this experiment, the starting steady state free surface 1is
a horizontal line with a height of two inches above the bottom of the
channel. The unsteady state is introduced by raising the elevation of
the liquid in the reservoir Bl by opening valve G5. The top of the regu-
lating overflow in the regulating reservoir Bl is kept at an elevation
of 12" above the bottom of the channel. The top of the regulating spill=~
way in the regulating reservoir B2 is maintained at an elevation of 2"
above the bottom of the channel. In other words, the elevation of the
liqguid in the regulating reservoir B2 is kept constant while the eleva-
tion of the liquid in the reservoir Bl is raised to 12" above the bottom
of the channel with a net rise of 12" = 2" = 10" above the starting hori-

zontal free surface.
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The elevations of the liquid in the regulating reservoir
Bl and the corresponding times during the experiment at which the
liquid reached those levels are shown in Table I. Photographs (see

Plates 2 - 7) have been taken at the times shown in Table I.

D. Experiment No. 2

In this experiment the starting steady state free surface
is a horizontal line with a height of 18 inches above the bottom of
the channel. The unsteady state is introduced by lowering the eleva-
tion of the liquid in reservoir B2 by opening valve G5. The top of
the regulating spillway C2 is kept at an elevation of 12.15" above
the bottom of the channel. Having opened the valve G5, the elevation
of the top of the liquid in the regulating reservoir B2 is lowered to
12.15". The elevation of the liquid in the regulating reservoir Bl
is, however, kept at the initial elevation of 18" -- this can be accom-
plished by adjusting valve G3. The elevations of the ligquid in the
regulating reservoir B2 and the corresponding times at which the liquid
has reached the levélsvare shown in Table I.

Photographs of the varying shapes of the free surface, taken
at different intervals (see Table I) between the introduction of the
disturbance and the establishment of a steady state, are shown in
Plates 8 - 12,

E. Comments on the Computer Programs of
the Unsteady State Solution

In order to reduce machine time, one can use a large value
for the length scale and thus carry out the computations for a computa-

tional model much smaller than the Hele-Shaw model used in the experiments.
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This has the advantage of increasing the slope of the characteristic
lines and hence one can use a much larger value for At in the char-
acteristic grid.

The resulting computations obtained for the computational
model correspond, however, to those obtainable by using the full=-scale
model in the equations derived for the model scales at the beginning
of this chapter._

Because of the problem of instability, At has to be smaller
than Eﬁ/g. Therefore, if the length scale were equal to unity, the
number of iterations along the t-axis of the characteristic grid would
be as large as:

total time taken in the experiment before
the steady state is establish/(Ky/g).

The use of a large length scale, however, reduces the number of iterations
along the t-axis considerably. The maximum value of Ax 1in the char-
acteristic grid is limited by the minimum number of points required along
the x-axis., One can therefore conclude that the use of a large length
scale minimizes the number of iterations along the t-axis in the follow-
ing ways:

1. A large length scale reduces the value of Ax, and thus
the value of At (which must be smaller than or equal to
the minimum slope of the characteristic lines times Ax)
can be assumed less than EM/g without increasing the
number of iterations along the t-axis.

2. A large length scale increases the value of the minimum
slope of the characteristic lines and thus increases the

value. of At.
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The maximum value of the length scale is, however, limited
by the maximum of the velocities of the fluid particles. This is so
because of the restriction imposed on the slope of the characteristic
lines, i.e., & >0 and &_<O0. The above restriction leads to a

maximum value for the scale length xy, as follows:

gHmin
rpax w2 (66)
max

Another way of reducing machine time is to let the coefficient
of permeability of the computational model be much larger than that of
the experimental model. By doing so, the maximum value of the time in-
terval At -- as far as the stability is concerned =-- is increased and
thus machine time is reduced. Also, as 1t follows from the equations
derived for model scales, by choosing a large value for the coefficient
of permeability for the computational model, the amount of time before
which the steady state is reached is reduced and hence machine time will
decrease. By this method, however, since the value of the velocities in-
crease, the nature of flow in the computational model may become turbu-
lent. This is contrary to the assumptions under which the equations for
model scales were derived, and hence they cannot be used to correlate

the results of the computational model to those of the experimental model.

F. Discussion of the Theoretical and Experimental Results

The results of the two experiments stated previously are shown
both on the photographs of Plates 2 - 12 and by the solid curves of

Figures 10 - 20,
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In order to obtain the theoretical results, the same data used

in the experiments are fed into the digital computer. These data are

shown in Table I. The following sources of error is present in the re-

sults:

Because of the heat produced by the camers lights the
temperature of the viscous liquid in the #é1€-Shaw model
rises during the course of the experiment and an average
temperature, as considered in the computation, produces

a source of error in the theoretical results.

Because of mechanical difficulties, the width of the
channel changes by five per cent and an average value

of this width, as considered in the computations, does
create a source of error in the theoretical results.
Errors involved in measuring the rate of raising or lower-
ing the elevations of the liquid in the reservoirs effects
the theoretical results.

The use of incorrect assumptions such as the presence of
hydrostatic pressure on any vertical section and hypotheti-
cal coefficient of permeability is another cause of the
small differences between the theoretical and experimental
results.

Although in plotting the curves of Figures 10 - 20, the
amount of capillary rise which equals .1 inch has been
deducted from the elevation of the corresponding curves

in Plates 2 - 12, due to the unsteady nature of the flow

and also due to the curvature of the varying free surface,
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.1l inch is only an average value for the amount of the capillary rise

and depends both on the location of the point on the free surface and

time.

G. Limitations to the Solution by

the Method of Characteristics

When applying the method of characteristics to the solution

of unsteady gravity flow through a dam with vertical faces, these fac-

tors must be considered:

1.

If a) H, (height of the outflow surface) equals zero,
and D) thé computations are carried out in two computer
programs so that the existence of seepage surfaces is
disregarded in the first program, then the horizontal
component of the velocity near the outflow surface ap-
proaches infinity. This makes the slope of the charac-
teristic lines equal to zero and hence the solution by
the method of characteristics impossible.

Furthermore, when H,; =0, the nature of the flow may
become turbulent since the velocities near the outflow
surface increase very rapidly. This is again contrary
to the assumption under which the fundamental equations
were derived.

If a) He (inflow height) is much greater than Hy
(outflow height), and b) all the calculations are not
done in a single computer program so that the existence
of the seepage surfaces is ignored in the first program,

then the curvature of the free surfaces near the outflow
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Taces become very large at or about the time of steady condition. Hence
the required number of points along the x-axis of the characteristic grid
increase rapidly and thus as mentioned before, machine time will increase
considerably. This was noticed in the program written for the first ex-
periment where H, = 6H_.

The required number of points along the x=-axis of the charac-
teristic grid can be estimated from the following equation:

aF _ £k
dx  Ax <

or

ai; . Blxer/w - Blxo
dxlx¢o _ L/N

dh

dx|x=0

IN
m
—
[OA
3
S—r

Where h is the steady state solution of the free surface based on
Dupuit's assumptions and computed by means of Equation (1), N is the
required number of points along the x-axis, and ¢ 1is the required
accuracy for the value of the discharge computed by the method of char-
acteristics. If the computations are carried out in a single computer
program, Ei should be substituted for h (see Figure 1).

In the above equation, it is assumed that the maximum curva-
ture of the free surfaces occurs at the time of the steady state and at
the outflow surface (x = 0). The above assumption is well justified in
the case of the two experiments of this study.

If, however, one deals with a problem involving boundary con-

ditions which do not justify the assumption underlying Equation (67),
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one must estimate the required number of points along the x-axis on
the basis of the maximum curvature of the free surfaces encountered
in the course of the unsteady state.

The number of points along the x-axis of the characteristic
grid in Experiment No. 1 were taken to be equal to 200. This intro=-
duces a maximum error of 5.4% in the value of discharges computed in
that program. In Experiment No. 2, however, 40 points along the x-axis
of the characteristic grid are sufficient and the maximum error intro-
duced in the value of the discharges does not exceed 1%.

The seriousness of the above limitations is, however, reduced
when one considers the use of the supposition of a theoretical outflow
height (equal to the sume of the real outflow height plus the height
of the surface of seepage) along with the rest of the computations in a
single computer program. By doing so, the danger of failure of the
method of characteristics when the above-mentioned éonditions are pres-

ent will disappear or decrease to a great extent.

H. Conclusions

In the first part of this study, after a short presentation
of the existing theory of the solution of steady free surface seepage
through a porous bank with vertical faces, numerical results concerning
the height of the seepage surface as a function of inflow height, outflow
height, and the thickness of the porous bank are given. Although similar
numerical results, presented in Reference 13, are already available, the

results given in this study were obtained in much more detail and show
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some discrepancies with the results in Reference 13. Furthermore,
results concerning the shape of the free surface are presented in
this study (see Plates 16 - 23).

The results of the second part of this study (see Figures
10 - 20) are highly satisfactory and demonstrate the workability of
the various assumptions introduced in the course of this study. One
must, however, in solving problems of this kind, be aware of the
limitations mentioned in Section G of this part.

In spite of the incorrect assumptions made in deriving the
fundamental equations of flow in porous media, the experimental free
surfaces check very closely with the theoretical ones. Determination
of the other features of flow, such as the pressure or the velocity
of a fluid particle at any point, has not been the goal of this study.
Obviously, the value of pressure at any point, based on the previous
assumptions, is different from the true pressure, especially at the
points near the outflow surfaces. The horizontal component of the
velocity at any vertical section, as computed in this study, is only
an average value for the horizontal components of the velocities of
all the points over that section. The vertical component of the velocity
of the fluid particles was eliminated from the fundamental equations and
was not studied. As for the shape of the free surface and the amount of
discharge, one can claim that the fundamental equations derived in this
study are valid for any shape of the region of flow and the method of
characteristics can be applied for a numerical solution of these equa-
tions. Even when the surfaces of seepage exist, one can solve any two-
dimensional unsteady state problem of seepage through porous media if

the solution of the steady state case of the problem is known.



-49=

The existence of a capillary zone above the water table was
neglected in this study. The theoretical results are compared with
the experimental results obtained in a Hele-Shaw model. As mentioned
in the introduction, comparison of the theoretical results with the
actual field measurements is meaningless because of the existence of
a capillary layer. Not only does the capillary layer increase the
amount of discharge, but because of the unsteady nature of the flow,
it is not easy to estimate the amount of discharge in the capillary
layer and thus the correction of the actual discharges measured in
field.

A more realistic distribution of the pressure and the velocity
at any time may be determined by drawing a flow net in the region of
flow for that time.(la) This can be accomplished as follows:

1. From the successive profiles of the free surface, the
direction of the stream lines at the point of their inter-
section with the free surface will be found.

2. By the relaxation method, the flow net for the entire
region of flow can be drawn.

It is believed that under the same assumptions as were used

in deriving the two-dimensional fundamental equations, the differential
equations of flow through axi-symmetric porous regions are also of the
hyperbolic type. They can therefore be solved numerically by the method
of characteristics. Unlike the case of this study, however, the lack
of a steady state solution makes unsteady state problems of flow through

axi-symmetrical regions difficult. This difficulty can be overcome if
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one finds either an empirical or an analytical formula which relates
the height of a seepage surface to other properties of the flow such
as the outflow height, amount of discharge, etc. Even in the absence
of such formulas, experimental data gathered by means of models [e.g.,
electrical conduction models(l9)] can serve as the solution of the

steady state case.



-51-

AYVANNO8 J.HE)IH—/

AVIIL3™¥O3IHL ———-
AVLNIWIHIAXT ——

*T quawtaadXy UT *098 Og = 4 9B 20BIANG 931d *OT 2In3TH
S3HONI- X
e €2 2¢ 12 02 6l 8l Ll 9l Sl 14 ) 2l I 0l 6 8 A 9 0
) T T T T T T T T T | T T ] 1 1 ) i ﬁ
I
q) =
_3
——= x
x \\\ . n Qv—-
] \\\ o

1
m
3 T
3 1° '
= =
S s O
E m
.A/hms
Hs
Ho1
41
1z

el



-52_

*T quauwtsadXq UT ‘098 O = 94 38 90BIING 99X *TT SINSTL
S3HONI - X
b2 €2 22 i 02 6l :]] PA| 9ol Sl bl el 2l 1 (o]} 6 8 VA 9 S 0
[ T T T T T T T T T ! T T T T T T Y ! T o 4
4. MH
- +
- - - ] m
- X
= d
- ] ¢
2 g%
o ® P r
o X - m J¢
- P m
-
o -
o - @ 19
Cc e (o]
-4 7~ Pt
o -~ 2
> \\ o - b
) - >
< -~ P
\ ~ T 18
'
Z —46
— 0Ol
AVIOILIYNO3INHL ———- _E
AVLINININIAIXT ———
—121i

€l

S3HONI-H



*T guowtsadXy UWT 095 09 = 3 9B 20BJING 9aid -ZT omItd
S3HONI - X
v €2 22 12 02 6l 8I VA ol Sl bl ¢l 2l 1 Ol 6 8 L 9 € (o]
1 I | 1 1 | ! [ I I T ] I 1 I 1 I T

AVIOILIYOIHL ———-— =
TVANINIYILX3 - -
\\\ /
] g N

T 24 - m
o - \\\ - ]

“ \\\ e 2]
[ - o

4 - [l

o g 4

> -7 o
b ] -7 >

< : - =]

4 -~ <

-
\\ -
\\
\\
P .
\\
~ -

\\ -

0=%H I——MH——’-'

0]

2l

S3HONI - H



=5k

*T quswtiadxg U ‘098 Og = 3 38 IVBJING I3IJ

*¢T aan3Tg

S9Ydu} - X
e €2 22 12 02 61 8 2 9 Sl & €l el N ol 6 8 L 9

W T T T T T T T T T T T T T T T T T T ﬂ
I
£ -

SH

e of "
’ .
| B
—_ - =

3 ~ ﬂ
W. P - h

[ 4

— - M -

— c

— 2
— qu 7]

~ -

— 2

e < 1
=
\

— i

AYVANNOSY

1HOWY

|DOl2I03Y | — —

|oawiiadx3

ol

el

sayou|] - H



_55_

juswigodXy UT 928 Q0T = 3 9B 99BJING 93Id T 2In3Td
S3HONI - X
b2 €2 2¢ 12 02 61 81 Ll 9l Gl bl €l 4 1 (o]] 6 L 9
1 I 1 ! i [ ! I 1 |} I I | 1 I 1 T !
AVIILIYOIHL — ———
AVANIWIYIAX3
2
(2] —
: 2
T -]
[ o \\ -
o = @
c -~ o _]
Zz — c
o — -4
> - o
P - - >
=< — X
\ — <
— - - -
\\\ - ]
1

S3HONI -H



*T quawTaiadXy UT 20vJAING 29I 29838 Lpesairg (T 2an3td

S3HONI - X

ve €2 @22

_56 -

2 02 61 8 20 91 sI H1 € 2l n ol 6 8 l

°n

X-AHVGNNOS LHOIY

!

| ! I T I

AVIIL3Y¥O3HL - ————

AVLINIWINIAX3I

AYVANNO8 14371

L

o
]

0ol

2l

el

gA'-s.H—J

S3HONI -H

"



‘2 juswtxadx® Uf 098 OZ = 3 38 IBIJING 93I4 9T 2InITd
S3HONI - X

-57-

3y

v €2 22 12 02 61 81 2 91 G &HI ¢ 2 Il 0l 6 8 L 9 S
T T T T ! T T T T T T T T T T T T T T

AVIOIL3Y¥O3IHL ———
AVLNINWIYIdX3 —

\'AHVG NNO8 L1HOIY

e ——
 ——
—

My
S3HONI -H

AYYANNOB8 1437

.




~58-

o4

€2 22

‘g quowraedxy UT ‘098 Of = 3 3B 20BIING 2314
.S3HONI- X

12 02 6l gl LI 91 &1 b1 € & 1 Ol 6

*LT san3td

AHVANNOB 1HONY

AN

I |

I I | | 1 1 I | I 1 | I I

AVIIL3Y¥O3HL ~——---

IVLININIY3ILX3

(o]
OJw
1!
12
4¢€
1¢v
S
19
- b o
Q1L =
-
nnlwlw
c
=
O 16
b4
2
ﬂho_
-1l
121
ey
T
bl o
n
o
Gl
91
1
8l

S3HONI - H



-59_

*Z quamTaedXg UT 998 09 = 3 3B 90BJING 9L

QT 2anSTE

S3HONI-X
144 2e 02 81 9l | 4] 4 [o]] 8 0
) T T T T T T T T o [
12
1¢
- £
m
mn
L) -
: 2 |7
- M —
=2
3 % o
I c < o of
® W 401 | m
> wn
2
\A
—12i
=
]
L 1]
o
_ - uid
\\\
== 91
8l



-60-

‘2 quawrtaadXy Ul "098 0g = 3 3B 20BIJING sagd AT 2InSTd
S3HONI - X
ve 22 8l 9l vl 2l Ol 8 9 | 4 o]
T T T T T T I T T ‘aw
—e
AVIIL3HO3HL ———~-
IVANIWINIX3 1v
mlo x
i B
-
3
2
9 S
0 —
- W 8
3 =<
[
& m /
-] 101
J
> P
-
T
(]
— L]
o
— - midl
— -—
\\\\\
== H91
8l

S3HONI - H



‘g quamiaadxg UT 90eJIng 9314 21838 Apeajs Oz 9InITd

-61-

S3HONI- X
pz €2 22 12 02 61 8l 2 9 S v € 2 N 0O 6 8 L 9 S ¢ € 2 | oo
T T T T T T T T T T T T T T T T T T T T T T T 1
= 1
L i K
= —He
AVIOIL3¥O03IHL ————
B IVLNIWIY3dX3 1¢v
- & L
%
= = A
o
S 2
g 2
> Wlm
= =
Nx /“o_
— 11t

S3HONI - H



6(
Lad ot Rl

e

e

e
o

S

L S
. ﬁ%@.\@%’é@?@%&@ L
...
...
e
<f§<® Ch e
. .

Plate 2
Experimental ¥ree Surface (Bxperiment No. 1, T = 20 Sec.)

-

e
-

\\w}iz;}@s\g .
.

Plate %
Experimental Free Surface (Experiment No. 1, T = 40 Sec.



w )

o
L

e
-
>‘? Q\\\\%\\i\\\
L

.
i
\'%\@2 .

& \\\

\»»W .
®><"§< o g&

_— w::?%
v“@‘”’«/%%%%} . \%\ §< >
»;g . gg <«>§§2 >%\« m\ *"

7
2@%%\ >§<‘§°\2\<§\ @ - > <">§\\>@@ Q’

S

Plate
mental Free Surface (Experiment No. 1, ' = 60 Sec.)

b

Experin

Plate 5
> (Experiment No,

T o 80 S@C.)

Experimental Free Surfac




s
o Zi><<§$§@

=

s

o
o
.

s

Plate 6
Experimental Free Surface (Experiment No. 1, T = 100 Sec.)

5
e
S

Plate 7
ixperimental Free Surface (Experiment No. 1, Steady State)



iy
i

-

.
.
@
<®:\§§§§R}?®§" .
e
o
S

S
S \8\\@\@@(\ g«}}‘&&

. (,
.
-

G .

T e

.
K'\@‘g’\@g 2

e

.
-

G
-

. e\;
.
.
.

o %\%@%%ggg%

G

o

S
-
.
-

-
o
e
- -
. gﬁ»
o o >§‘3\»S®
.
.
G

e
o
.

\\\‘\/\t&%\@\

Plate 8 |
Experimental Free Surface (Experiment No. 2, T = 2 Sec.,)

S S
L
3<‘9\é‘>§§2§?§§3@§w L
.
Ea e
.
e -

o .

: :5% >\Q’S"{“>Gs
o o .
- - e -
L
%ﬁ\}w&i@%ﬁ\g@ . @;{;%g@ .

e
.

e
. .

-

Plate 9
Bxperimental Free Surface (Exp@riment No. 2, T = 40 Sec.)



s

.

§>@<@§‘*
e
i

.
Q\tg\@ %@; -
L
L
e
.
e
L
,&,\\ﬁ%\z@

-

o
&*&i@“} G
.

Plate 10
Experimental Free Surface (Experiment No. 2, T = 60 Sec,)

e

-
- L
. i S
e
S L
L .

e
. 2?@1@@\@%

S S
*k@%»g‘\«%@%» .
- >>§<«§>§®x«>>@\®
. é@\ . gg@\«\

. ...
e L
- . é%?%?»@ . .

-
.

. e
L
>‘5\§;>‘§§§§§ <§§> .
=

.
.
. .
.
.
.
-
L

.
v .

G o
... Qéﬁ%;&%&g&?@% -
> i N
... .

- -
. e

L
G °>>2>\"”§<® o §\\§ .
e
-

o
o
o

=
§°§§@>§2§§§% .
.

Plate 11
Experimental Free Surface (Experiment No. 2, T = 80 Sec.)




i
e
e

L
e
A\W@;@

. o
Lo

Plate 12
Experimental Free Surface (Experiment No. 2, Steady State)



APPENDIX I

MAD LANGUAGE PROGRAMS
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The MAD language programs written for Experiment No. 1 are pre-
sented on pages 70 and 75. In the first program on pages 70 - T1, the
existence of the seepage surface was disregarded while the computations
were carried out. In the second program (see pages 75 - 76 ), however,
the height of the surface of seepage was taken into consideration (see
Section F of Part II). Use has been made of the results obtained in the
first program (see Figures 21 and 22) in order to compute the height of
the seepage surface versus time (see Section C, Part I). Then, in the
second program, the sum of this height and the actual outflow height is
substituted for the value of the variable H at the boundary with the

surface of seepage.
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A COMPUTER PROGRAM WRITTEN FOR EXPERIMENT NO. 1
(The Existence of the Seepage Surface is not Taeken Inbd Consideration)

EXECUTE FTRAP« (O

D EMERSTOR- -t 30T U I+300 ) sHE3GO 20 s ELRETA Py FHRATEO Ny - - =
1TCR(10)sTSC(10)aTSMILL) sKP (10)

PRINT—FORTAET— T E
VECTOR VALUES TITLE=$1H $53Us54UNSTEADY GRAVITY FLOW OF

-t YIS TN POROUS ——MEDTA/#*E
INTEGER IsJJsLLsFFIskKoiansITsKUsNUsLLL

L S I,
1=

JJ=6

AP ——FORMA D AT TR X R Rt e e Rt TRt oo T
1) sTSM{L1)eaeTSMIJJ)ols DT DXy KP{1)eseKP(JJ) oMMygNN

KE=KM

DD=DT/KC

For T sz
1TTC=TT197AT

VECTOR VALUES DATA=S(6F1245)%8

- N e L -
RO FeoR— =t I ieGetd

ELR(M)=ELR(M)/XR

2 D LA A e T LD et A £ YD
AT FORTMTT=TRATTT7A

LL=L/DX

Ctir=tht A T o 01

FF=TTC/DT

=TS

TH=DT/(DX/XR)

£z
ol
-
-
r.L
i
3
-
-l
j
+
-+
@
¥
™
&
-+~
=)
T
|
1
|
|
I

READ - FORMAT DA FAT s Fasatitis
VECTOR VALUES DATAL1=3(1uFTe5

Tk LN bl St

JERY
=3
) %5

o) I ate] I 1 1 {~ i
IRAASVAYASI N A I N IT=0F I 7 I gyl
A H(I)=H(I)/XR
Fon Sl W Bl W W B 1 W N Wl W ¥ Ll e bt
NAY U UINTO AT ARTARCY PN
VECTOR VALUES DATAZ=%2I1u%*$
K=K0

N=NO

| gl B W oy n Ly er o
TGN Pt trt
THROUGH ANNs FOR I=LLs=1slele0
NG Wt R 5 W B I R A A B S B

BB=TH/KESPC

P EREVER I Ev O FRARSFER—F6 17

UR=U(I)#(1e=BB)+U(I~-1)%BB

R =t et =B et e ¥ S

FEE=SQRTe (HR)

T ENEVE R e S S TRANSFER—Fo—RI=HT
A10 KESMC=14/(U(1)=SQRT o (3242%H(1)))

CCETH7RESMC

US=U(I)#*(1e+CCI=U(I+1)*CC

I B e A 0 G o B W e i B

EE=SQRTs (HS) ‘

WHAENEVER et Uy TRANSFER—TO—CETT
H1(1)=EEXEEE*(1e+(( (US—UR)*(5467%#DD=e1765) )/ (EE+EEL)))
Yt =R 2 s R AT Dt TR It S 6T/ ETED

ANN CONTINUE
FHROGEHE-——A9yFOR =0y Icttos Tt
A9 WHENEVER  oABSe ((HL(I)=H({I))/H(I))eGeMiMs TRANSFER TC ON
FRANSFFR Fo—PRTNTT
ON WHENEVER KeEeKP {N)s TRANSFER TO RESULL
AN EVFER KA T
T=T#XR
THRGUCH Ay O I_"l,I-GULL

X=I1#DX
AU N RS Y L R BN
A4 PRINT RESULTS UL(I)sHL(I)»XsT
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TRANSFET FO—START
OTHERWISE
FRANSFER Fo—COURT
END OF CONDITIONAL
Faya vl INE, 3 K A W |
COOTNT N L) L
THROUGH - LOOPs FOR I=UslsleGell
b= e e
WHENEVER  Ul(I)eGuUs
=03
OTHERWISE
trti-reti -1} B -
LOOP END OF CONDITIONAL
-FRANSFER--——-FO-—HBEGIN
RESUL1 T=T*XR
TN ==TNT L
THROUGH PRINTs FOR I=UsLLLsleGelL
= T 30)
H1(I)=H1(I)*XR
PRINT - PRENF-—RESUEFS—Frodttirhiti)
QOUTP==H1{0)*UL(0)/ (L*KC)
oo e ol A A BT B CACAT A N W o o o I -
LPCHE=L/HECS
HHP-CHE=M 1 GI-AHEES
HEPCL=1e/LPCHE
HP-CEaHA- o7
Hi=H1{0)
PRI RS —Fy RO P HEC oy =P Pyt R
THROUGH A2sFOR I=0sLLLsIeGalLlL
AP FE-F =t ARR
TRANSFER TO COUNT
R-EGHT- WHHEN R =T G e FER4-E
H1(I)=ELR(II)
FRAMSE Fo—AH
OTHERWISE
TRANSFER TO A7
END-—OF ONBHF ML
AT WHENEVER TeLESTCRIM+1)
R —F e R b R =T
TRANSFER TO A8
OTHERWISE
M=M+1
END -~ CF—CORDITIONAL
TRANSFER TO A7
%3] SO Rt — Dt Rt S TR
TRANSFER TO  ANN
CEFT AT T=HTUY
Ul(I):US+(H1(I)—HS)*(5-67/EE)‘(32.2%U5*DD)
TRANSFER——FO——ARR
PRINT1 THROUGH AUsFOR [=CyLlLsTaGalll=LLL)
o e T S P I T 03  m  B R A B R )
THI(I))) ) eGeNNsTRANSFER TO ON
TRANSFER-——-FO——PRINT4 )
PRINT4 T=T#*XR
FHROUGH——PRENTF2FOR j-=oytt-by POt
HI(T)=H1{I)#*XR
X=URTL
PRINT2 PRINT RESULTS. XeTsHL(I)sUL(I)
ST S EVAEE AR SN BATKWASIE T ¥of i
HECS=L*SGR

PN o VTR D R S W ¥l
L LTTE=TT7 1T

o (24%QOUTP+(HL(G) /L) ePa2)

HWPCHE=H1 (C) /HECS

HEPEt-atsALPCHE --

HWPCL=H1{0) /L

b ¢ : oo
BEINTF RESULTS  TsQOUTPsHECSsL sHi s LPCHE s HWP CrE sHEPCL s HWPCL
FRARSFER—FO—START

END  OF PROGRAM
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{The Existence of the Seepage Surface is Not Taken Into Considera.tion)

T = 20.30
Xx= . 0060865 ULT0Y = 73.502364E-08,  RI(0Y = .166670C
X = . 206006, U1(20) = -2.749190E-06, H1(20} = 1666175
X = . 4000005 UL(40) = -2.617029E-05, HI(40) = ~166746
X = .600000, ULT(60) = -1.586491E-04, H1{60) = TUU1eT197
X = . 800000, UL(B0) = ~7.232803E-04, H1{80) = .169355
X = 1.000000. UL(100) = -2.538783E-03, H1(100) = .177383
X = 1.200000, J1(120) = -6.553812E-03, H1(120) = 2199930
- X = 1.460000, U1(140) = -.o12107, H1(140) = $246331
X = 1.600000, UIl160) = -.CL7170, H1(160) = .317253
X = 1.800000, U1(182) = -.0207178, H1(180) = .408369
T X = 2.000000, u1(2090 = 523107, HLC200) = .513009
QOUTP = -6.924543E-08, HECS = .166668, L= 2.300000
"""" HW = 166670, HWPCL = .083335
LPCHE = 11.999880, HWPCHE = 1.0600010, “HEPCL = .IB3334
T = 40.00
X = .000000, TULIC) = -1.195539E-03, H1(0) = .166670
""""" X = .2C0000, Ul(20) = -1.840494E-03,  H1(20) = 174352
X = .400000, Ul{43) = -3.983651E-03, HL(40) = .188301
X = 600000, UL(6D) = -7.582569E-03, H1(60) = .216662
TTx = .B00060G, Ul(B0) =  -.0l1734, H1(80) = .263749
""""" X = 1.000000, J1(102) =  -.015363, H1(100) = 329151
X = 1.200000, 91(120) = -.018066, H1{120) = .409232
TTx = TTTT1.400000, 0 UL(140) = -.019946,  HL(140) = .499812
X = 1.600000, Ull162) = -.021229, H1(160) = .597735
X = 1.800000, U1(182) = -.022102, H1(180) = .700662
T x = 2.000000,  UL(200) =  =-.G22684, T HI(200) = .B06938
Qoute = 2.363707E-03, - _HECS = _.+216075, L= 2.200020 _
HW_= 2166670, _ HWPCL = ..+083335 HEPCL = .108038
HWPCHE = .771351, LPCHE = 9.256031, ] i
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T = 60,00
777777 X = .000000, -.016686y ___HL(O0) = .166670
X = .200000, ~.014113, H1(20) = .240308
. X_ = +400000, ... b1ead) = -.015305, HL(40) = +311290
X = . 600000, Ul(s0) = -.017075, HL(60) = .389043
X = .800000, U1(80) = -.018521, H1(80) = - 473934
X = 1.000000, y1{100) = -.019355, H1(100}. = .563610
777777777 X = 1.200000, U1{120) = -.019582, H1(120) = .555323
X = 1.400000, U1(149) = -.019294, H1(140) = .746579
. x.= 1.600000, J1(162) = -.018605,  HI(160)} = .B35374
 Xx= 1.800000, J1(180) = -.017623, _H1(180) = .9202C1
X = 2.000000, UL(200) = -.016443, H1(200) = 1.200000
QouTP = .032990, HECS = .540088, L= 2.200009
,,,,,,,,, HW = 166670, HWPCL = .083335 . HEPCL = 270044
_HAPCHE = .308598, LPCHE = 3.703097,
T = 80.00
X = __.000000, J1to) = —.043962, HI(0) = .166670
________ X = _________ 200600, ul(20) = -.024358, H1(20) = +3234%82
X_= . 400000, U1(40) = -.019848, H1(40) = . 428677
X = .600000, _ . ______UL(50) = __—eU17754, _ H1{60) = «518143
X_= .800000, Ul(80) = —+016484, H1(80) = +599452
X_= 1.000000, 410193) = -.015552, H1(100) = 2575403
X = 1.200000, L Ul0120) = =.014767, H1(120) = . 147197
X = 1.400000, __U1(140) = _____ —.0l4045, H1l140) = £8153172
CXE 1.600008, . U1I1160) = -.013350, H1(16Q) = .880162
X = ____ 1.800000, Ul(180) = -.012667, . HL(180) = .941686
X = . 2.000000, U1(203) = -.011991, __________H11200) = 1.300030
QOUTP .=... ... _._..086917,. e HELS = 2850360, . L= 2.200033
HW = .166670, HWPCL = .083335 e HEPCL = 425180
HAPCHE = +195999, LPCHE = 2.351944,




T = 100.00

~Th-

7 X = R .500003, _Je) = -.053725, . _HI(0) = 166670

= .200000, . Ult2d) = --026879, _HL20) = .349786

o 7W”;Nﬂﬁii 400000, UlL(40) = -.020798, HL(40) = +%63133
7ix = .600000, U(50) = = UlT748, CHLL60) =  .554882

X = 800000, _ul(sc) = -.015834, HL(80) = . =834167

- 7X = 1.000000, ___UL{100) = -.014479, HL(100) = 706824
X = 1.200000; UL(120) = =.013440, A1(120) = -773148

X = 1.400000,  Ul(14D) =  -.012595, H1(140) = 4834966

. x.= 1.68000, _J1U162) = -.Cl1878, HLLL60) = -893C57

X_= 1.80C000, UL(183) = -611250, H1(180) = 2941944

= 2.00000C, V12000 = -.010688, Hl(200) = 1.390039

QOUTP = .106220, | HECS = 936770, . . ... L= -22300000
HW = .1666705 HWPCL = .083335 HEPCL = .468385

HWPCHE = .177920y LPCHE = 2.134995,
T = 160,00

X = .006000, J1(9) = -.057221, HL(0) = 2166670
o X.= 200000, UL(22) = -.027711, H1{20) = 4359029
,,,,, X = _.400000, U1(40) = _-.021128, ____H1(40) = .475123
,,,,,,,,, X = .600000, Ul(59) = -.017766, _ HL{60) = 567716
_ %= 800000, U1480) = =«015634, _HL{80) = .647211

X = 1.,000000, .. U1100) = -.014125, __HL(100) = 718013
X = 1.2060000, U1(129) = ~+012984, H1(120) = . 182433
X = 1.400000, Ul142) = -.012082, H1(140) = «842092
_X_=_.___ . 1.6G000G, __U1(162) = -.011345, H1(160) = 891181

X = ___ 1.800000, U1(180) = -.010728, H1(180) = 950256 _
. X.= 2.000000, U1(200) = ~+010202, H1(200) = 1.200090

QOUTP = 1131325 .. HECS = 965835, . ko= 2,000000
_HW = « 166670, HWPCL = 083335 HEPCL = < 482917

_HAPCHE = 1725664 _LPCHE = __ 2.070747,

NOTE: The above results are used (see Figures 21 and 22) to determine the height
as a function of time in Experiment No. 1.

of the seepage surface Hg
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A COMPUTER PROGRAM WRITTEN FOR EXPERIMENT NO. 1

(The Existence of the Seepage Surface is Taken Into Consideration)

EXECUTE FTRAP.(G)
DIMENSION U(300),Ul(300) ,H(300),H1(300),ELR{10),TMR(10)},  __

LTCR(10),TSC(10)5TSM(10) ,KP(10),TML(10),TCL(10},ELL(10])
PRINT _FORMAT__ TITLE

VECTOR VALUES TITLE=$1H ,530,54HUNSTEADY GRAVITY FLOW oF
1 LIQUIDS _IN POROUS_ _MEDIA//%$

INTEGER I,JJsLLyFFI,KsMyN,I1,KO,NO,LLL

11=4 —
JJd=6
START READ FORMAT DATA,KM,TTM, XRLELR(O)...ELR(II)'TMR(O)...TMR([I
1), TSM(1) s TSM{JJ) L, DT, DXsKP(1)eaoKP(JJ) s MMyNN,HO,
_ 1TML(O) e e e TMLUJJ) s ELL(O0) oo ELL (JJ) __
KC=KM
DD=DI/KC _
TTC=TTM/XR
HO=ZHO ZXR e e
VECTOR VALUES DATA=$(6F12.5)*%
THROUGH Al1,FOR__ M=0,1sM.G.1I —
ELR{M)=ELR(M)/XR
Al TCR(M)=TMR (M) /XR —
THROUGH A2,FOR M=0,41,M.GeJJ
ELL(M)=ELR(L)/XR —
A2 TCL(M)=TML(M)/XR
LTl K e s
LLL=(L/10)+.01
FE=TIC/DT .
FFI=FF+.5
TH=DT/(DX/XR) I —
READ FORMAT DATAl, H(I)...H(LL) Ull).eUlLL)H(O),U(O)
VECTOR___VALUES DATAl=$(10F7.5)#% _ ——
THROUGH A3,FOR [=0,1,1.6G.LL
A3 H{I)=H{I)/XR _
READ FORMAT DATA2,K0,NO
[ . VECTOR _VALUES . _DATA2=%$2110#% . ___. P
K=KO0
- N=NO . e ——
BEGIN T=K#DT
. IHROUGH __ANN FOR I1=0,101aGalt —_
KESPC=1./{U(I)+SQRT.(32.2%H(I)))
e BB=TH/KESPC . R o
WHENEVER I.E. OyTRANSFER TO AlO
___________________ UR=U(T1)%(1.-BR)+U(I-1)*BB I I
HR=H(I)%({1.-BB)+H(I-1)*BB
EFE=SQRIL(HR) . —_—
WHENEVER T.E.LL, TRANSFER TO RIGHT
_ Al0 KESMC=1la/(UL1)= SQRL_(BZ.zluu_l),,L —
CC=TH/KESMC
I US=ULI)#(1.4CCLI-U(I+1)*CC _ B e s e
HS=H{I)*{1.+CC)-H(I+1)*CC
o e EE= an'r lu(\ - . - R
WHENEVER 1.E.Q, TRANSFER T0 LEFT
[ H1{I)=EE#EEE* (] +l(LUS.UR)*lSJAJtDDr¢11ﬁ51)j1£Ei££EJJlMN“¢* -
11 (1)=UR~32,2%UR*DD-(HL(I)-HR) #(5.67/EEE)
‘_ ANN CONTINOE e
THROUGH A9,FOR I=0,LLL,[.G.LL
A9 WHENEVER  JABS ((HI (I)=HII))/H(I)).G. MM, TRANSFER T0 DN
TRANSFER TO PRINT1
,,,,,,,,,,,,,,,,, ON  WHENEVER K.E.KP (N),TRANSFER TO RESUL1
WHENEVER KJ.EJFFI
I T=T#%XR I
THROUGH A4,FOR I 0,1 I .G. LL
X=12DX e -
H1{I)=HL{I)&XR
. A4 PRINT._RESULTS _UL(I)oHL(I)aXsT

TRANSFER TO START

__END.._QF _CONDITIONAL . I . —




-76-

COUNT  K=K+1
= %* 1 - -
THROUGH LOOP, FOR 1=0,1,1.G.LL
H{I)=H1 (1)
WHENEVER UL(1).G.0.
. U(1)=0. .
OTHERWISE -
Ur)=ur 1)
LOGP END OF CONDITIONAL
TRANSFER __TI0__BEGIN
"RESUL1  T=T#XR
N=N+1 A
THROUGH PRINT, FOR I=0,LLL,I.G.LL
H1(I)=H1(I)*XR
X=I#DX
PRINT PRINT __RESULTS __TaXsULl(I),HL1LI) —
: QOUTP=-H1(C)*U1(0)/ (L*KC)
PRINT__RESULTS ___QOUTP,T
THROUGH A5, FOR 1=0,LLL,I.G.LL
__A5 H1(I)=HI1(1)/XR ‘
TRANSFER - TO COUNT
RIGHT WHENEVER __ T.GE.TCR(IIL) e
H1(I)=ELR(II)
TRANSFER __TO A8
OTHERWISE
M=0
TRANSFER TO A7
END.__QF __CONDITIONAL .
A7 WHENEVER T.LE.TCR(M+1)
_______________ HI(I)=ELRIMI+(T-TCR(M)I#(ELR(M+tI)-ELR(M)I/A{TCRIM+1)-TCR(M))
TRANSFER TO A8
OTHERWISE
M=M+1
END___OF __ CONDIJTIONAL e i
TRANSFER TO A7
AR UL(1)=UR=32,2%UR%{ DD )=(HL(I)-HR)*{(5.6T/EEE) ____________________
TRANSFER TO ANN
LEEFT _WHENFVER T.GE.ICL (.4.3) R R
H1(1)=ELL(JJ)
IRANSFER___T0O__.ARQ I
OTHERWISE
M=Q .
TRANSFER TO A70
END 2l CONODITIONAL
AT0 WHENEVER T.LE.TCL(M+1)
e HI(I)=ELL M+ (T=TCLAMI)# (ELL(M#T) =ELL(MI)/ATCLIM#L)=TCLEMIY
TRANSFER TO A80
OTHERMWISE
M=M+1
TRANSFER 0 A170
END OF CONDITIONAL
A80 ULL1)=US+(HL{I)-HS)*#(5.67/EE)={32.2*US*DD)
TRANSFER TO ANN
_PRINTL____THROUGH _AOsFOR __I1=0,LLL,01sGs(LL=-LLL)
AO WHENEVER .ABS.(((UL(I+LLL)#HL(I+LLL)-UL(I)*H1(I))/(UL(I)«
1H1(I)))}.G.NN,TRANSFER TO ON
" TRANSFER TO PRINT4
PRINT4__ T=T#XR _
THROUGH PRINT2,FOR  I=0,LLL,I.G.LL
HL(I)=H1 (1) *XR
X=DX#I ,
__PRINT2 PRINT RESULTS X ToH1(I),U1(I)

QOUTP=-H1({0)#U1(0)/ (L#KC)
PRINT __RESULTS QOUTP,T

TRANSFER TO START
END__OF _.PROGRAM
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THEORETICAL RESULTS OF EXPERIMENT NO. 1
(The Existence of the Seepage Surface is Taken Into Consideration)

T = 20.¢C
T x' = " .oooo00, TTUIM0) = 3.6153436-08,  HL(0) = .166670
X = . .200000, UL(20) = -2.758953E-06, TuLtzoy = L166675
X = 400000, UL140) = -2.616679E-05, THL(40) = 166746
X = le00000, UL{60] = ~1.586478E~04, H1160) = TreTivr
X.=  .800000, U1180) = -7.232857E-04, T HLI80) = S I169355
X = 1.000000, U1{100) = -2.538786E~03, TH1(100) = NS IETEN
" x = 1.200000, U1(120) = -6.553812E~03, HL(120) = 199935
Tx s 1.460000, ui(140) = -.o12107, THI(140) = .246031
X = 1.600000, Ul(160) = -.017170,  Hl(le0) = .317253
X = 1.800000, Ul(180) = -.020778, H11180) = .408369
TXx= 2.000000, 0112060 = -.023107, CHL(2000 = J5130689
T = 40,00
X = .000000, UL(G) = -1.195536E-03,  HL{0) =  .166670
X = 7200000, T U200 = <1.840495E-03, H1(20) = .174052
X = - .400000, UT(40) = -3.9836456-03, H1{40) =
X = 600000, ULT60) = ~7.582561E-03, TUUHIt60) = .216662
X = T 800000, U1(80) = -.011734, H1(80) = C.263149
""" X = 1.000000, U1(100) = ~.015363, TWitloo) = .329151
X = 1.200000, U1(120) = Z.018066, CUUHL(20) = .409202
X = 1.400000, = UL(140) = .019946,  HL(140) =  .499812
Tx e 1.600000, U1(160) = ~.021229, H1(160) = .597735
X = 1.800000, U1(180) = ~.622102, HI(180) = . 700662
X = 2.000000, U11(200) = -.022684, H1(200) = 806938
T = 60.00
X = .000000, Urio) = -.016054, HL1(0) = 170270
X =  .200000, Uil20) = ~.013902, HL{20) = .241951
X = 400000, Ult40) = -.015218,  HL(40) = 312148
X = .600000,__ Ul(60) = ~.017045, CHL{60) = 389528
_X.= 800000, . ._____ UI(BO) = =.018518, __ H1(80) = 474233
X_=....___1.000000, ULI100). = =.019364, _ H1(100)_= 563809
X = ._.1.200000, JULIR0) = -.019596, HIC120) = . .. 655460 _
— . X.= . 1.400000s .. UJ(140) = =,019310, . HI(140) = .T746673
e K.= .. 1.600000, .| ULL160) = -.018621, H1{160) = .835432
S X .= . ....1.800000. . . ____ UI(180) = .= 017639, . _HILUBOL = 2920228
X = . ...2.000000, U11200) = ~.016458, .. HI(200) = 1.0000Q0

NOTE: The above results were used in plotting the dotted curves in Figures 10 ~ 15.
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T = 80.00
X = .000000, uli(Q) = ~<.036268, H1(0) = .196670___
X = 200000, _U120) = -.3023185, HI(20) =_ _ ____a334149
X = .400000, Ul(4c) = —a019442,. _H1l40) = 2534504
X o= _«600000, ul{e0) = ~.017616, _H1(60) = 2521619
X_= _  ..__.80C000, . ulisn) = =+ 016469, __H1(80) = ______.6Q011017 __
XoE 1.000000, ul(log) = -+Q15600, _ H1(100) = 2676819
X = 1.2G0000, ul{120) = -.014847, . H1(120) = - 148161
_Xx= 1.400000, U1(140) = —.014141, H1(140) = 815991
e K= 1.600000, ulilesl = -~ 4013453, HIL160) = . > _.880528
X = _.1.800000, . ul(l8c) = —+0Q12770, . CHI(1B80). = .941852
X.= .. ... 2.000000, - Ul(2Q0) = ._,-,,.,,6120324,,,‘.,,ﬁ,,,t H10200) = . . .. 1.000Q00 .
T = 100.00
X = 2000000, e ULLC) = =.039016, H1(Q0) = 225670
X = .200000, ur(20). = . —.024864, Hi(20). = - 371995
X = .v.ﬁ.,,,.,ztcoeo.a. . QlL4C) = =.020080, . HL(40) = 476393
e Xem 600000, ulisgl = ~e 17469, e HLLB0) = 563642
X = .800000, Ul{8g) = -.015758, HL(80) =..._____  .640798 .
X = 1.000000, _UL(100) = . . -.014509, H1(10C) = .. _.711034 .
X. = 1.200000 4 — ul{l12¢) = —o(13529, . ... HLL120) = 116061
X = . 1.40000C, Ul(140) = -.312718, H1(140) = ee-eB3690T.
X = ... 1.600000, U168} = =.012018y_. H1(160) = $94232
e e Z e 1 860000 g - — o o AL B 1L B39 By o HH L1 80 = 948488
X 2000000, - S Ul{200) .= ~o0l0B364 ... ._H1{200) = 1.000003
T = 160.00
X = _._ .0C0000,. . - Ulig) = . =e042920,. HI(Q) = . 2227670
. X_=. . ..200000, o UL20) = _ . =.025955, H1{20) = 4385102
X = 400000, Ul4Q) = -.020437, H1(40) = .492808
X o= »600000,. . ulten) = ~e0l742GC, H1(60) = «580/34
X = .._._ +800000, ... UMBG) = -.015444, _HL(80) = . .657Ce9
X = 1.000000, ul(100) = ~-.014020, H1(100) = .725403 -
X = 1.200000., _u1120) = ~,012931, H1(120). = . .. .781924
e Xo® . . 1.400000s . Ul(140) = -.012061, ... . H1(140) = .845885
X = 1.600000, _Ul(160) = ~-.011347, H1{160) = . «900161
X = 1.800000, . ULLL8G) = ~.010746, H1(180) = _ .. .951318& __
LXo= . 2.0000004 . U1{200) = =e010230,. . . . .H1{200). = 1.000008
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MAD LANGUAGE PROGRAMS
FOR EXPERIMENT NO. &
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The MAD Language programs written for Experiment No. 2 are
presented on Pages 8l and 86. The computations, as in Experiment No. 1,
were planned to be carried out in two programs (on pages 81 - 82 and
86 - 87, respectively),

The results of the computations of the first program, however,
suggest that their refinement by the second program is not necessary,
(this can be noted in Figures 23 and 24) the reason being that the height

of the surface of seepage is very small (of the order of .03").
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A COMPUTER PROGRAM WRITTEN FOR EXPERIMENT NO. 2
(The Existence of the Seepage Surface is Not Taken Into Consideration)

EXECUTE FTRAP«(0)

DIFENSTUN T~ Ut308 T3 UT 300 s HESUO T It 30Ty ELE TTO Ty TMLEtTOT s

ITCL{10)sTSCH10) sTSM{1U) sKP(10)

FPRINT FURFA [T'TCE

VECTOR VALUES TITLE=51H »sS3Us54+4UNSTEADY . GRAVITY  FLOW OF

- -ttt Frs———TR-—-POROUS ——HED ITw7/ /%5

INTEGER IsJJsLisFFIsKeidaNsIlaKusNUsLLL

Fi=4

JJ=6 .
START A E— ORI TP T AT T R e et o s t et e o e Tt

1)sTSM(L)eaeaTSMIJI) 9l DToDXsKP (1) ee o kP (JJ) oriMig NN

KC=KM
DD=DT/KC
F-TC=TFM7XR -
VECTOR VALUES DATA=${6F1245)%%
MHROOGH AT Ot M=o M Ge T
ELL(M)=ELLIM)/XR

Kt TCimtt4 =Tzt 7 AR
LL=L/DX
CL=TCLC7 iU FeUl
FF=TTC/DT
FEI=FFTe D
TH=DT/{DX/XR)
READ- - FORMAT—DATATIH I vttty sutliravstttt st o uto)
VECTOR VALUES DATALI=$(1UrT7+5}%*%
THROUGH ASF-FOR-——t=uyIyIstost

A3 H({I)=H(I)/XR
READ—FORMAT—DATAZI < TNT
VECTOR VALUES DATA2=3%2110%%
K=RO
N=NO

BEGTN F=K*O-F

THROUGH ANNs FOR I=UslsleGell

o P ol IR SR
RLOPGC=Le/ tOV LI TPTOWRT® VI Z ¢TIV LT T

BB=TH/KESPC ‘

A ENEVER -t E7 Oy FRARSHFER—TO #10

UR=U(I)%*(1le=BB)+U(I~-1)%*BB

HR =Mt ¥t =B85 F+Ht =188

EEE=S5QRTa {HR)

WHEREVER ISttt TRARSFER —FO—RIHT
Al10 KESMC=1e/{U(I)=SQRTe(32¢2%H(I)))

CCTH7RESMC
US=U(T)*(1e+CC)=U(I+1)%CC
HS=Rr I et e+ CCratt I+ MCe
EE=SQRT e (HS)
WAENEVER I3 07 TRANSFER Fo—tEFT
H1(I)=EEH#EEE*(Llo+( { {US=UR)#(5467%DD=e1765) )/ (EE+EEE)))
Ot TTEUR= 3 ¢ ZRURFDD=TH I T I T=HRI* {518 77EEE]
ANN CONTINUE

THROTGH A9y FOR-——I=Cyitisy TGttt

A9 WHENEVER  «ABSe ((H1(I)=H(I})/H(I))eGeMMs TRANSFER TO ON
TRANSFER 10 PRINTT
ON WHENEVER KeEoKP (N)sTRANSFER TO RESULIL
WHEREVER " RKVEZFFT
T=T%XR
“““ FHROYGH A&y FOR-—t=Uy Iy sGett
X=1%DX

HITIT=HITI)*AK
A4 PRINT RESULTS UL(I)sHL(I)sX»T
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OTHERWISE
TRANSFER—TO  COUNT
END OF CONDITIONAL
COUNT K2EKFT
THROUGH LOOPs FOR I=UslsleGell
H{TY=HT T
WHENEVER Ul{I)eGeOUs
U1 7=0Ue
OTHERWISE
Ut r=Uitiy

LOOP END OF CONDITIONAL
TRANSFET TO—-BEGIN
RESUL1 T=T*XR
N=NFT
THROUGH PRINTs FOR I=0sLLLsleGell
X=F#rX *
H1(I)=H1(I)*XR
PRINT PRENT-—RESUL TS T Xt yHI (1)

QOUTP==H1(0)*Ul(0)/ (L*¥KC)
ST SR T 2 O TRt Tt T e P )
LPCHE=L/HECS

HWPCHE=HI{OT/MECS

HEPCL=1s/LPCHE

P CE=HTtO 7L

Hi=H1(0)
PRI T RS F ST OO Py ECST T P Oy I P CHE T REPCE HIPCE
THROUGH A2sFOR L=0sLLLsTeGol'\
A2 BT Tt T 7 XR
TRANSFER TO COUNT
CEFT WEENEVYER T GE+TCI-t T+

HI(I)=ELL(II)
TRANSFER—TOU A8
OTHERWISE
AV
TRANSFER. TO A7
RO OF—CONDTTFIONK

A7 WHENEVER TeLEsTCL(M+1)
15 VS 0 13 0 WD I O O O 1 B 0 s e VO 4 0 W 23 O Rl B S B
TRANSFER TO A8
UTHERWISE
M=M+1
END~=~OF~———CONDTTIONAL

TRANSFER TO A7

2% Ol I =SUST I HITTI =S TR T3 e 6 1 /CL I =1 32s 70 DU
TRANSFER TO = ANN
RIGHT R1IULIy=/01])
U1(1)=UR=3242%UR%( DD )=(HL(I)=HR)*(5467/EEE)
TRANSFER—~TO~"ANN
PRINT1 THROUGH AOsFOR I=CsLLLsTeGe(lLL~LLL}
AU WHENEVER s ABSe t I IO TFLC O AT CIFLCC =0Tt LT 7 (0T e rr
IH1(I))))eGeNNsTRANSFER TO ON
TRANSFER—TO~PRINT#

PRINT4 T=T#XR
THROUGH—~PRENTZFFOR—I=0rti-bsi<Gatt:
X=DX*1

PRINTZ  PRINT —RESULTS X3 TI3RITTTsUITIY
QOUTP==H1(0)}*U1l(0)/(L*¥KC)
HECS=t#3QR TV (e *QOUTP+{HI (U7t Pv2)
LPCHE=L/HECS
I_IV‘!I"\.!"!E“'I—LL (AL
HEPCL=1s/LPCHE

INENT Wl I R AN
TTWITCITR|TTINUU I~/

HW=H1(0)

————————————————— PRINT -~ RESHETS—TrROUTPYHECS sty Hibs LPCHE T HWP EHESHEP CEyHWP €=
TRANSFER TO START
CiNU Ul FRUURNAY




THEORETICAL RESULTS OF EXPERIMENT NO. 2
(The Existence of the Seepage Surface is Not Taken Into Consideration)

T = 20.00

X = .000000, UL(0) = -9,905467E-03, H1(0) = 1.281008

X = «200000, UL(10) = -8.196860E~03, H1(10} = 1.323226

X = .400000, Ul(20) = -6,775485E~03, H1(20) = 1.358292

X = .600000, Ul(30) = -5,577T906E-03, H1(30) = 1.387444

X = +800000, UL(40) = -4,561073E-03, H1(40) = 1.411636

X = 1.000000, UL({50) = -3,694367€-03, H1(50) = 1.431625

X = 1.200000, Ul(60) = -2.967504E-03, HL{60) = 1.448222

X = 1.400000, UL(70) = -2.399962E-03, HL(70) = 1.463211

X = 1.600000, Ull80) = ~1.989871E~03, H1{80) = 1.476649

X = 1.800000, UL(90) = -1,744364E-03, H1(90) = 1.488694

X = 2.000000, U1(100) = -1.656149E-03, H1(100) = 1.50000¢

QOUTP = «130949, HECS = 1.639687, L= 2.000000

KW = 1.281008, HWPCL = + 640504 HEPCL = +819844
HWPCHE = .781251, LPCHE = 1.219745,

T = 40.00

X = .000000C, Ul(o) = -.014995, H1(0) = 1.10340¢

X = .200000, ul(10) = -.012750, H1(10) = 1.167520

X = -400000, ul20) = -.011052, H1(20) = 1.22192¢

X = .600000, UL(30) = ~9,727736E-03, H1(30) = 1.269176

X = .800000, Ul(40) = -8.677352E-03, H1(40) = 1.311004

X = 1.000000, U1(50) = -7.845240E-03, H1(50) = 1.348582

X = 1.200000, U1160) = -7.193926E-03, HL(60) = 1.382837

X = 1.400000, ULIT70) = -6.697672E-03, HL(70) = 1.414515

X = 1.600000, Ul{80) = -6.336263E-03, H1(80) = 1.444257

X = 1.800000, Ul(90) = -6.090462E-03, H1(90) = 1.472620

X = 2.000000, UL(100) = -5.940947E-03, H1(100) = 1.500000

QOUTP = .170747, HECS = 1.607316, L= 2.000000

HW = 1.103400, HWPCL = .551700 HEPCL = -803658
HWPCHE = .686486, LPCHE = 1.244310,



QouTP

HW

HWPCHE

Qourp
HW

HWPCHE

]

+000000,
200000,
+400000,
+600000,
800000,
1.000000,
1.200000,
1.400000,
1.600000,
1.800000,
2.000000,
158395,
1.012500,

«668741,

«000000,
.200000,
400000,
. 600000,
«800000,
1.000000,
1.200000,
1.400000,
1.600000,
1.800000,
2.000000,
«150706,
1.012500,

.677898,

-8l

T = 60.00

ut(o) = -.015159, H1(0)
Ulr(10) = -.014293, H1(10)
Ul(20) = ~+013504, H1(20)
ul(3Q0) = ~.012779, H1(30)
Ul(40) = -.012112, H1(40)
Ul(s0}) = -.011484, H1(50)
Ul(eo0) = -.010775, H1(60)
ul(70) = ~.010099, H1{70)
Ul{80) = -9.575599E-03, H1(80)
U1(90) = -9.183768E-03, H1(90)
Ul{100) = -8.903473E-03, H1{100)
HECS = 1.514039, L
HWPCL = «506250 HEPCL

LPCHE = 1.320970,

T = 80.00

uito) = ~.014423, H1{0)
ul(l10) = ~.013644, HL1(10)
u1(20) = -.012989, HL (20}
Ul1{30) = -+012425, H1(30)
Ul(40) = -.011933, H1(40)
u1l(so) = ~+011497, H1(50)
ul(60) = -.011107, H1(60Q)
Ur(70) = -.010753, H1{7G)
ul(so) = -.010430, H1(80)
u1(90) = -.010131, H1(90)
U1(100) = -9.854734E~03, H1(100)
HECS = 1.493588, L
HWPCL = «506250 HEPCL

LPCHE = 1.339058,

1.01250¢C
1.072080
1.128414
1.181881
1.232788
1.281552
1.329496
1.375592
1.418994
1.466286
1.50000¢
2.000000

«757019

1.012500
1.071540
1.127318
1.180356
1.231078
1.279792
1.326732
1.372084
1.41600C
1.458603
1.500000
2.000000

« 746794
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T = 100.00
X = .000000, UL(o) = -.014498, H1(0) = 1.012500
X = +200000, U110} = -.013706, H1(10) = 1.971539
X = .400000, U120y = -.013031, H1(20) = 1.127401
X = .600000, UL(30) = -.012448, H1(30) = 1.180556
X = .800000, Ul(40) = -.011936, H1(40). = 1.231366
X = 1.000000, U150} = -.011483, HL{50) = 1.280121
X = 1.200000, UL(60) = -.011079, HL(60) = 1.327055
X = 1.400000, U1L70) = -.010714, H1(70) = 1.372361
X = 1.660000, yiiec) = -.010384, H1(80) = 1.41620C
X = 1.800000, U1190) = -.010083, HIL{90) = 1.458708
X = 2.000000, U1(100) = ~9.806606E-03, H1(100) = 1.500000
QOUTP = .151488, HECS = 1.495680, L= 2.000000
HW = 1.012500, HWPCL = .506250 HEPCL = .T747840
HWPCHE = .676950, LPCHE = 1.337184,
T = 120.00
X = .000000, uLlo) = ~.014493, H1(0) = 1.012500
X = .200000, ull1c) = -.013702, H1(10) = 1.071527
X = 400000, U1(20) = -.013028, H1(20) = 1.127379
X = .600000, Ull30) = - 012446, HL(30) = 1.180528
X = 800000, Ul(40) = -.011936, H1(40) = 1.231337
X = 1.000000, Ul{50) = -.011484, HL(50) = 1.280095
X = 1.200000, U1(60) = -.011081, H1(60) = 1.327034
X = 1.400000, Ul(70) = -.010717, H1(70) = 1.372346
X = 1.600000, ul(se) = -.010387, H1(80) = 1.416191
X = 1.800000, Ul(90) = -.010086, H1(90) = 1.458704
X = 2.000000, UL1(100) = =-9.B09406E-03, H1(100) = 1.500000
QouTP = .151438, HECS = 1.495547, L = 2.000000
HW = 1.012500, HWPCL = +506250 HEPCL = LT4T774
HWPCHE = .677010, LPCHE = 1.337303,
999994

NOTE: Since, as it is noticed in Figures 23 and 2k, HS is negligible, the
above results are used in plotting the dotted curves of Figures 16 - 20.



START

Al

A20

A3

BEGIN

Al10

ANN
A9

ON

-86-

A COMPUTER PROGRAM WRITTEN FOR EXPERIMENT NO. 2
(The Existence of the Seepage Surface is Not Teken Into Consideration)

EXECUTE = FTRAP+ (G}

DIMENSION U(300)sU1(300)sH{300)9HL1{300)sELL(10)sTMLI10)
1TCL(10)sTSC(10) sTSM(1U)sKP(10) sELLL(9)sTCLL(9) s TMLL(9)sH11(1)
PRINT FORMAT TITLE

VECTOR VALUES TITLE=%1H #S30s54HUNSTEADY GRAVITY FLOW OF
1 LIQUIDS 1IN POROUS MEDIA//*%

INTEGER IsJJsLLsFFIsKsMaNsITsKOWNOsLLL

11=¢4

JJ=6

READ FORMAT DATAsKMsTTMsXRIELL{O)eeeELL{IT)9TMLIO)eweTML(II
1)sTSM(1)seeTSMIJJ) oLy DT sDXsKP(1)eesKP{JJ) sMMeNNsTMLL{O) 0one
ITMLL{JJ)Y sELLL(O) seeELLL{JJ)

KC=KM

DDO=DT/KC

DD=DDO

TTC=TTM/XR

VECTOR VALUES DATA=3(6F1245)%%

THROUGH AlsFOR M=091lsMeGell

ELL{M)=ELL(M)/XR

TCLIM)=TML (M) /XR

THROUGH A20sFOR M=09slsMeGodJ

ELLLIMI=ELLL({M)/XR

TCLL(M)=TMLL{M) /XR

LL=L/DX

LLL=(LL/10)+e01

FF=TTC/DT

FFI=FF+e5

TH=DT/(DX/XR}

READ FORMAT DATALlsH({1)eeeH{LL)sU(L1)eesU(LL)yH(QO)sU(O)
VECTOR VALUES DATA1=%(10F7e5)%%

THROUGH A3y FOR I=09s1sIleGell

H{I)=H{I)/XR

READ FORMAT DATA23KOsNO

VECTOR VALUES DATA2=%2110+%%

K=KO0

N=NO

T=K*DT

THROUGH ANNs FOR I=UslsleGell
KESPC=1e/(U(I)+SQRTs(32e2%H(I})}

BB=TH/KESPC

WHENEVER 14EeOsTRANSFER TO Al0
UR=U(I)*(1e=BB)+U(I=1)%BB

HR=H(I)%#(1le=BB)}+H{I~1)*BB

EEE=SQRTs (HR)

WHENEVER TeEsLLsTRANSFER TO RIGHT
KESMC=16¢/{U{I1)=SQRTe(32e2%H(I)))

CC=TH/KESMC

US=U(I)%(1e+CC)=U{I+1)*CC

HS=H(I)%*(1e+CC)=H(I+1)*CC

EE=SQRTs{HS)

WHENEVER IeEesOy» TRANSFER TO LEFT
HI(I)=EE*EEE*(Lloe+({({US=UR)*(5467%DD=e1765))/(EE+EEE)))
Ul(I)=UR=32¢2%UR¥DD~(H1(I)=HR)*(5467/EEE)

CONTINUE

THROUGH A9sFOR I=09LLLsIeGelL

WHENEVER ¢ABSe((H1(I)=H(I))/H(I))aGeMMsTRANSFER TO ON
TRANSFER TO PRINT1

WHENEVER KeEsKP {N)s TRANSFER TO RESUL1

WHENEVER KeEWFF1



A4

COUNT

LOOP

RESUL1

PRINT
A2

LEFT

A7

A8

Al2

All
RIGHT

PRINT1
AO

PRINT&

PRINT2
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T=T*XR

THROUGH A4s FOR 1=0s1sleGelL
X=1#DX

H1(I)=HL(I)#XR

PRINT RESULTS UL(I)sHL(I)sXsT
TRANSFER TO START

OTHERWISE

TRANSFER TO COUNT

END OF CONDITIONAL

K=K+1

DD=DDO* { (HL(LL) 4Pe2}=(HL{O0)ePa2) )/ ((HLILL) ePe2)=(H11(0)ePs2})
THROUGH LOOPs FOR I=0slsleGalL
H{I)=H1(I)

WHENEVER UL(I)eGeOs

UlI)=0

OTHERWISE

U(Iy=ui(1)

END OF CONDITIONAL

TRANSFER TO BEGIN

T=T#XR

N=N+1

THROUGH PRINTy FOR I=0sLLLsI+GelL
X=1%DX

HL(I)=HL1(I)#XR

PRINT RESULTS TsXsUL(I)sHLI(I)
THROUGH A29FOR I=0sLLL9sTeGalL
H1(I)=H1(I)/XR

TRANSFER® TO COUNT

WHENEVER - TeGEeTCLI(II)

H11(I) =ELL(II)

TRANSFER TO A8

OTHERWISE

M=0

TRANSFER TO A7

END OF CONDITIONAL

WHENEVER TeLEsTCL(M+1)
H11(I)=ELL(M)+(T=TCL(M))* (ELL(M+1)=ELL (M)} /{TCL(M+1)=TCL{M))
TRANSFER TO A8

OTHERWISE

M=M+1

END OF CONDITIONAL

TRANSFER TO A7

WHENEVER TeGEeTCLL{JY)
HL(I)=H11(I)+ELLL{JJ)

TRANSFER TO Ail

OTHERWISE

M=0

TRANSFER TO Al2

END OF CONDITIONAL

WHENEVER  TeLE#TCLL{M+1)
H1(T)=H11(I)+{T=TCLL(M))*(ELLL(M+1)=~ELLL(M))/{TCLLIM+1)=TCLL
1(M) }+ELLL (M)

TRANSFER TO All

OTHERWISE

M=M+1

END OF CONDITIONAL

TRANSFER TO Al2
UL{1)=US+(HL{I)=HS)*(5467/EE)=(3242%US*DD)
TRANSFER TO ANN

HL(I)=H(I)

UL(1)=UR=32e2%UR%( DD )=(H1(I})=HR)*(5467/EEE)
TRANSFER TO ANN

THROUGH AOsFOR I=0OslLLLsIeGelLL=LLL)
WHENEVER  eABSe (((UL(I+LLL)¥HI (I+LLL)=UL(I)*H1(T))/(ULI(I)*

1HI(I))) ) «GeNNsTRANSFER TO  ON
TRANSFER TO FRINT4

T=T#XR

THROUGH PRINT2sFOR I=0sLLLsIeGelL
X=DX#*1I

PRINT RESULTS XseT#HL(I)sUI(I)
TRANSFER TO START
END OF PROGRAM
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Steady State Solution of Seepage Through a Porous Bank

with Vertical Faces and a Horizontal Impervious Base

The main assumptions in the analytical theory of this problem

are:

L,

5.

Two=dimensional flow

Isotropic medium

Existence of full saturation in the flow region
Negligible capillary forces

Validity of Darcy's law.

This problem has been analysed by Muskat(B’lu) by means of a

conformal mapping of the hodograph representation (Figure l-a) onto an

infinite half-plane (Figure l-c). The horizontal and vertical compo-

nents of the seepage velocity u, v at a point (x, y) referred to axes

through E (see Figure 1) are given by the following equation:

2z =x+iy =c [ Tt 18 (¥ - 1¥)

i

e | Vet &8 4T - 1) (68)

where © is the sum of the inclinations of the velocity and the accelera-

tion with the x-axis, A is the modular elliptic function, (3:14:15) o

is equal to

2 B(t) 44 , and 1 = log, | (velocity) | °
2xo  t=) | (acceleration) |
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The following is a summary of the relationships between the
different functions encountered in the theoretical analysis of the

problem:

g =1+ %(E - iv) ;

k sin 5/2 cos 5/2 , for any point on the free surface;

1
I

v = -k sin? 5/2 , Tor any point on the free surface;
2 = £ L =6
7K' = k k13 =+ 23 =
-— =Gk ) =2logg v+ —+ =k + =Kk +.
K () Ce T T 37T B} 192
u_K'_ 1 1
=Tk " 7Gx for -e <2205
4=l K'
ti(®=) = =n =2 =06(A) for 0<A<KL1;
q K - -
u _K'_ o1l £ <\ <
=% = G(X) or 1<A<w.

In the above relations, K and K' are complete elliptic integrals of
= -;2
the first kind with modulus k and Ji -k respectively. ¥
From Equation (68) and with the aid of the first three of the

above relations and Figures l=-a through 1-c, one can obtain the formulas

for the determination of the dimensions of the flow system of Figure 1:

_ B0
L k A -1 (04 B
T="17 5=£ J}x(a-}\)(}\-b) e cos 5dp (69)

I

*
The modulus of the elliptic integral K is here taken as k 1in order

to avoid confusion with the symbols k and k already used to denote
the hydraulic conductivity and the coefficient of permeability of the

porous medium.
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The determination of the free surface is carried out by the

following two integrals:

_ B
X A -1
X=-3 Bﬁn e (D e cos g-dB (73)
yo-E 5 A1 a8 (74)
2 A(a=1) (A-D) 2

P=n

where X and Y are the coordinates of a point on the free surface

(see Figure 1)

Note:

For a =o, the term a - A 1is left out of the integrands
of the above equations.(lu)

A numerical integration of the integrals of Equations (69) -
(74) can be accomplished by making use of the link between wu, B and A

in a single variable A. 1In evaluating the integrals for infinite values

of )\, as in Equations (70) and (71), the integration in A beyond
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+20 and =20 is carried out analytically (see Reference 2). Also, in
the integration of Equation (70) at the singular point (A = a), the
integration is carried out analytically from A =a to A =a plus

a small value. Since the limits of the integrals of Equations (69)

and (72) - (74) are singularities of the integral for «, those limits
are taken to be not equal to the singular values (A =0 and A = 1) but
equal to € and 1 = ¢, where ¢ 1s a very small positive value.
This can be justified if one proves that the value of the integrands

of the integrals of Equations (69) and (72) - (74) approaches zero for

A=0 and X =1, which is done as follows:

l A= 1 ea I - eTC
AMa=2)(A=b A=0
but
velocit x
Te = loge ’ le = loge L 5
3 . [0}
|acceleration|
and
T
e C 0.
Similarly, at A =1, since
lo 0
= [+)
D €e |Accel., | ’
D
. . ™
since |AccelnlD is non=-zero; then e =0 ,

As t = A 1is the point of singularity of the integrand in
the integral for «, the numerical integration of that integral, when

0 < A<1l, 1is done in the following manner:
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1
= Md’c+5(?\) loge |22

t =X A
Since one can prove that the integrand of this integral is always
bounded, its numerical integration is possible. The proof can be
demonstrated as follows:

1ig B(E) - B(Y) 4B

b B at

0<A<1 0< A<l

but %% is bounded for t =X and e€ <A <1l =-¢, where ¢ 1is a
small but finite positive number.

The MAD language program written for the computations of the
dimensions of the flow system (namely He, Hy, L, and Hs) is presented on
pages 95 = O7. The computations of the shape of the free surface are
carried out in a separate program immediately following the first pro-
gram in this appendix (see page 99).

For a more complete explanation of the procedures used in
these computer programs, one can refer to Reference 2. In this refer-
ence are (for a = 10 and b = 5) all the necessary numerical and analyti-

cal integrations involved in the computations of H,, H_, Hg, L and the

shape of the free surface.
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A COMPUTER PROGRAM WRITTEN FOR THE COMPUTATIONS OF THE
GEOMETRIC DIMENSIONS OF THE SYSTEM OF FIGURE 1

EXECUTE  FTRAPs

DIMERNSTON ATt ZO0TySCt2us Vs Xt 3v0s DTy sy 3 Sy Imy s BETRt200)y

1LAM(200) s EPS(20U) s GAMT (20u) 9 GAML (200 s TL20C ) 9B (20)

TNTEGER - T s J3K 9™
READ FCRMAT DATAls T(»).-.T(BL)sLAM ])...L\N(15),LAM

L4 o { |.’7C(

30
3G

)
34
!

1EPS(33);GANT(46)-..GANT(b‘),bAlL(l3)o.aoAuL(15)

]LH\\JU_)!DLTH\D/}QUIDLIH\%)I7uL1m\uOIuofDLlh\/D}’ N

IS

[!"H\UUUW I"lUI‘\ L—\}’,LJJ.-UIJ/

T{100-T)=1e=~T(I)

LAMS]

TROTSH A S ORI I T IS O i
LAM(30~I)=1le=LAM(I)

PUPWE W, W ST~ S BV |
TAMMTTUT=27"I% 10

THROUGH GAMTS19FOR I=15191e0e45

GAMTST

AT J ) 3 AT A = afm frmm T e D 3 E WP W VA N WA
AT VT TI=Z e "R TARINe T I%7 D¢ 1THITTHT UL Y e\
[

164 )% ( T(I)ePa2)+(234/1926)%( T(I)eP

‘GAMTS2

FHROGEH—GAMH TSy FOR—T=o3 045
GANT(lUO—I)=3.l416—GAMT(I)

AAA} T e T U Uy U

2
UHIYL.\J-I R I My i W

THROUGH GAMLS19FOR I=291914Gel2

“q
1

OAMLOL

S A bl e ) b e e of e " 4t TG\ [ S S R VS A Tk 2 A \ B v —
GAMET I =2 s AT AN T T T=Te7 3% I T~ T UUGe VLA I/ 1T 0 T T o 2L AL

13e/6Ge ) ¥ {LAM{I)aPoa2)+(230/1924)%(LAMII)ePa3) 1))

-

GAMLS2

MROTSH e Sy FOR— = e oe Sy

GAML(30-=1)=341416=CGAML(1T)

e ad DN b I = o PR S [N =
ITHROUGA™ T ET Y TUNTI=II TV eTe LV

WHENEVER JeEe30sJU=34

ot S o A O P el oY
TTOINEDVEN T J#T 60U

THROUGH EP1sFOR [=8631514Ga89

oYt PR JRY VRIS P S V- W T %
ErJ\ll“El' \1 S VLV Ty I 77 veREm UL L6/ /791 & ¢ T

J=1

v

1
(AR ™

TR
294ANDeJeGa L s TRANSFER TO BACK

il AR fad
TIRD~—OT 07T

WHENEVER JeL

-
T
.

Gag-
(o) L]

THROUGH SUMsFOR I=U391lsl1sGe99

PETURY

DAUNZ

U\YI/\"\LJ/'\IlI\llTUHKII\L"'LII A

TAS(T(I)+T(I+1)) /2

-

{
ll—l\LTL[ 1\1)

WHENEVER JoLe29eANDeJeGels TRANSFER TO SACKL

Qb
O

EP

)
QQT‘\UHII:‘/\II‘\ I_Hl\\/lll"b’l

EPS(J)=EXPe((~34/24/3e1416)%S)

BET)

FAROUGH Bcl19rvm =t ivisoes

BETA(I)=(1e/241416)%(ELOGs(16e*LAMIT))=(e5/LAM(T))=(13e/64s/

Tt LAt TP 2 r= 237 I o2 /- teartirisPs st
THROUGH BFETZ2sFOR 1=97s1lslsCulli2

TETY

SETACITE I/ T T IS Tt EEOGTtTE VTS LHM\l}}I teB71Ts
1=(13e/6be/( (1o=LAM(1))ePa?2))=(234/1926/ ((Le=LAM(I )).

-

~—

BACK

TRANSFERTO START
S=GAML(J)*ELOGe ((Le=LAM(J))/LAMIIY)

THROUGH - SATK Ty FOR - I=T3 I3 T50+99
TRANSFER TO BACK2

ORCKL

SESFtIEAMTA~GAMETIT 7t TR=tattt S r i r*DT

TRANSFER TO EP

2 AR

READ FORMAT DATAZS AT St I Teeen( 1)
THROUGH FSsFOR K=13s1sKeGa7

1 HKUUGH FS3FOR =2y vMeGe2Y
X(Kei1)=00e

Lodod oAt
rTNyYIT=J4%

THROUGH FSsFOR I=1slsleGe(¥=1)

CRAMA=(CAMI I I FLAMI LTI 11729
EPSA=(EPS(I)+EPS(I+1))/2e
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——HHENEVER -As Ev 99 9-ey TRANSFER--FO--42

RAD=SQRTe { (LAMA=14)/ ((LAMA=A)* (B (K )=LAMA)*LAMA})

COAMC At CUStGAMCt T 7 2o T CO St AT+ 72 72
SGAMLA=(SINe (GAML(I)/26¢)+SINe (GAML(I+1)/24))/24

DERMI=GAME T+ =Gttt Ty
Y{KoM)=Y (Koii)—EPSA¥RAD*SGAMLA®DGAML*65

)

XTI M I =X RKIT=EP SARRALH COAMLA¥DCAML S

TRANSFER TO ABS

A

RAU=OWR T e VILANMAT e ]/ VLAMANTTLAMA D(l)’};

TRANSFER TO Al

ADS

WHENEVER " AeESI99,
THROUGH ABS1sFOR K=1313sKeGa7

ATST

ABIKT=0V
TRANSFER TO BCS

END O CONDTTTONAT
1=30
F L

A3

4 A\ = b4 T4 R-_T
WHENCVER AU s LATMVLT T =71

RANSFE
WHENEVER I+Ge85sTRANSFER TO BC

»wQ
I
w

T=T+T

TRANSFER TO A3

AD

THROUST ABSZITOR R=IFIIReCe T
EPSA=(EPS(I}+EPS(I+1))/2

" A~ T S A Ao F b A} T
LCANMAR=VTLCAMTITTORNICIT LT 77 4%

AAL=SQRTe (LAM(I+1)=B(K))

AAZT=SQR T AMtT+TY=AY
AA3=SQRTe (A=B(K})

N Bl N S VA G YA R 2V L VoY I
WHENEVER ~ Tele39

BETAATtBETATIIRET At Ty 72%
FL=(1e/3e1416V#SQRT ¢ ((LAMA=14)/LAMA)*EPSA®((14/(LAMA=1e)=e5

203

Tt 2 It AMA =2 Se /G a e PR e AMA e P 2 B EF AR P2

VAB(I+1)=EL*COEF

UTHERWITSE
EL1=(1e/3e41416)%{1e/LAMA) *SQRT & ( (LAMA=14)/LAMA}*EPSA

Etrro=t57AMAr*ELT
EL3=(13¢/16e/LAMA)*EL2

Ft-a=t 23732/t AMAY P2 -+ EED
AB(I+1)=COEF*(EL1+EL2+EL3+EL4)

PNENE I

oMb ToNAE

WHENEVER 1¢Geb6UsTRANSFER TO A8

FHROGGH-AGFFOR—I=t T4+ vy tryIvoitl

LAMA=(LAM(J)+LAM(J+1)) /20

EPSATtER St I +ERP ST I+ 7 2%
DBETA=BETA(J+1)=BETA(J)

ARl IF [ S A I T P S A SR T (A A= I T/ Ut A= S Tt AT A T AME

1)) *DBETA

ARTETS/STURT e TARITIKTY
AA2=(SQRT e (A)+SQRT& (B(K) )}/ (SQRTe (B (K))=SQARTe (A}))

ARFTESAR T VB R T=SUR Tt AN T 20 T=3TR Y T7 120 =A17T
AA4=5QRT.(5(K))+SQRT.(A*(2uu—B(())/(ZUc—A))

ABS2

BEIRI=( e UGFARL/ 3¢ IG10) ReASOSELUCS \ARZT AR ARG TFABIGZ]
CONTINUE

A8

TRANSFER-TO™BTS
AA1=1e/SQRTe (A¥B(K)) _

;. Fmmofe e £ A T f e o ek ek . I S iy " \
RAZ=ETSGRT e VA TTIWRT « VD VNT T T/ VOUNRT e TD VRN TTIWRTe 1A

AA3=SQRT & (B(K))=SQRT 4 (A¥ (LAM(I+1)=B(K))/(LAM(I+1)—A))

AAG=SURT e (BIRTJFSURT e (AR ILAMI I FL T =B ART T 7S CAMCTFIT=AT]
AB(K)=AB(I+1)+(1a043%AA1/341416)%eABSeELOGe (AA2¥AA3/AAL)
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TRANSFER-—-TO~—ABSZ e
BCS THROUGH BCS1sFOR J=1slsoJeGe7
WHENEVYER— AT 595
AA1=SQRT«(B(J)}+204+)=SQRT(B(J}))
B AAPRSARF vt B2+ SORTw 45 b b -

BC(86)=(1e/SQART(B(J)))*(e96/341416)*ELOGs (AA2/AAL)

b IRt oUW ol ol
VTTTETNW I OT

AA1=1e/SQRTe (B{J)*A)
AR T Bt I FSOR Tt T 7t SeR =t et —SeRFtr )
AA3=SQRT«(B(J))=SQRTe (A¥{20e+B(J) ) /{20e+A))
AAE=SOR T+ (B I F+SERTw A2 e+ B3t/ 20w +A )
BC(86)=(e96%AA1/3¢1416)%eABRSeELOGS (AA2¥AAZ/AAL)
END———OF - CORDITIONAL y
THROUGH BCS2sFOR I=863s1sleGeslUl
tAMA= AT At T 7 2
WHENEVER AeEe999,
""""""""""" RAD=SORF - AAA—T v H - Ao AT A P *HBH-d = tAMA H P e

OTHERWISE

END OF CONDTIONAL
EPSA=TEP ST TFEPSTIF LT T 725
DBETA=BETA(I+1)=BETA(I)

S
1

o = o oo e monfR i o Fm e bt A oD G M
DBL32Z DCTTHT7=D T T TNRUATCTE SATUOWTR
BCS1 BC(J)=BC(102)
AN EnFaUN} i, iy W andll el Y N 3 =D, | by Il {~ yd
ITTRUCTON~RESUTTI Yy UR™— =y I 78 os

BlJ)=(=1e/2e3)*¥ELOGe(B(J)~14)
ety 23
HW=AB(J)
HS=BE-td}
HE=HW+HS+Y (J929)
R P-EHHE A ——
HWPCL=HW/L
P C =t ST
HSPCHE=HS/HE
HEP&;FHE/L
LPCHE=L/HE

DT
AW SA N

RESHHTFS A3t R EHEst
TRANSFER TO START®
TECTORVATUES DIt=23133C
VECTOR VALUES DATA1=$8F9e¢6%%

Y ECTOR-VATUES-DATAZ=$BF9v6%5

END OF PROGRAM

)
m
(A_
q
S
b

Note: The results obtained by the above computer program are used in
plotting the curves in Plates 13 - 15.



-98_

A COMPUTER PROGRAM WRITTEN FOR THE COMPUTATIONS OF THE
FREE SURFACE IN FIGURE 1

EXECUTE FTRAPe

DEMENSTON X305 Y30 J v XP { 359 s Y P30 oY PP-20 1y

LLAM200) s EPS(200) s GAMT (200) 9»GAML (200) 9T (200}

INTEGER—T5I3 KM

READ FORMAT DATALs T(U)eosT(50)sLAM(1)eeaLAMI15) sGAMT (46) e eeG

A M L5 O M. W {-E5-F

Eb b =12 G
AAM Uy TAMEA T Iy swArTER

THROUGH TSsFOR I1=0UslsleGabC

5 FAE80=~1t=1v=Tt1} -~
THROUGH LAMS1sFOR I=19191eGels
ST At o=t r=tv=tArtiy

GAMT(0)}=341416

THROUGH -GAMTS T FOR —I=tvEyIvGes5-

GAMTSL  GAMT(I)=24%ATANG((~16/3¢1416)%(ELOG(T(I)/160)+e5%T{I)+(130e/

Tews T e P2 i+t 23 v A 192w 1t T -ePe3d 17
THROUGH GAMTS2sFOR I=Usl9leGe&9
CAMTS ATt IO U= =3 v T te=ArTt iy

GAML(1)=341416

FHEOUGH -GAM- STy FOR -1=2- sy ivCei2
GAMLSY GAML(I)=2*ATANG((=1¢/341413)*(ELOGe(LAM(I)/16e)+eB5%*LAM(I)+(1

[ W I WU

A E Y e At ) NSt A —T-
1T5e7/ 0t VLAV ) e P e 2T V2087 L7 2 T VU HRTFIULTT 8«77

THROUGH GAMLS2sFOR T=1s1s1eGelé

ST W Y AR G 2 V41 50 e A v A e B I 0 5 v A o YA o i

THROUGH EPs FOR J=1919JeGe2

9
T A G
R

b A A e o e D AN = — 3 IS AL
FHONCVER TUT U Z7VANUSI#T LS P pu s MO~ TOARATRN

520

Tk R~ el 90

&b kg O~ —F 1 gT-
LERlNvAvacIn} UMy T OR=T=Us Ty 1 ¢0s

BACK?2 GAMTA=(GAMTII)+GAMT(I+1)) /2

" FENNE SIS
TA~VI VT TP T vTI Tl T T72%

DT=T(I+1)=T(I)

WHEREVER v e 2 AND e e G I3 TRANSFER - TO-ACKT

SUM S=5+{GAMTAZ/ (TA=LAM(J) ) ) DT

=P EPS =X tt=Sv/ 2 s 7 3vIFTET*S)

TRANSFER TO START

BACK SR T2 141 W GV B S A T O R O ST R A Y2 i R B
THROUGH RACK1sFOR I=UslsleGa99

FRANSFER--FO-BACK

BACK1  S=S+((GAMTA=GAMLI(J) ) /{TA=LAM(J)) )#DT

P £ Lo
ITRANSTERTTUTEYR

START READ FORMAT DATA2yAs2sHEPCLsHWPCL

PRI NESVLTOS vaT’LL’HEmL
THROUGH FSsFOR M=2919MeGe29
ATETT=%
Y(f1)=0e

FEROUGH S FOR—t=ty Ty TGttt

LAMA= (LAM(T)+LAM(I+1)) /2

EPSATtEP St rER sttt 72T

WHENEVER AeEe9994s TRANSFER TO A2

READ=SER Tt AN 1T 7t AR A A ¥t Bt AR R A A

Al CGAMLAZ (COSe (GAMLII) /24 )+C0Se (GAMLITI+1)/26))7/2,
SGAMEA=ASIM- SRRt T2 r St GAMt -t/ 2w 25
DGAML=GAML ( I+1)=GAML (1)

YT P SR R AT ST AT AN DS AT S

S X{(H) = X{i) ~ZPSA*YRAD*CGANMLA*DGAML*e5

FRANSFER-——FO——0uUT
A2 RAD=SQRT e ((LAMA=Ls )/ (LAMAR(LAMA=S)))

FRENSFER-—-TO—AT

ouT XP(1)=Us

(PTL)=0%
THROUGE  A4sFOR M=2919MeGa29

MR LAY XM AN LD QS =
Ay

INT AT AR
A4 YP{M)=Y M)/ X(29)
=
THROUGH AL11lsFOR K=1»1sK4Gel0
A2 WHHEREYER e S A
=M+l
FRANSFER-—F0-—AtL
OTHERWISE
LA B A & i e e B ¥ s A A B T 0 A3 B B 7w
1¥=1)))
PRINT RESUL-TS Koy YR P T
All CND o OF . CONDITIONAL
TRAMSFER FO STERT

VECTGR  VALUES DATA1=538FGe6%5

TECTOR—VACOES DA FRE=34T 18w 5
END  OF  PROGRAM

Note: The results obtained by the above computer program are used in
plotting the curves in Plates 16 - 23.
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APPENDIX IV

‘STEADY STATE SOLUTION TO THE PROBLEMS OF SEEPAGE
THROUGH A DAM WITH VERTICAL FACES
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TABLES II AND III
LIST OF SYMBOLS USED IN THE MAD STATEMENTS
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TABLE IT

LIST OF SYMBOLS USED IN THE MAD STATEMENTS
OF THE UNSTEADY STATE

PROGRAMS
Equivalent
Symbol in the
Symbol MAD Statements Description
u U Horizontal comp. of velocity at the
beginning of an interval (A t)
u Ul Horizontal comp. of velocity at the
end of an interval (A t)
H 1 Elevation of the free surface at the
beginning of an interval (A t)
H H1 Elevation of the free surface at the
end of an interval (A t)
HL EIR Elevation of the top of the liquid
at the right boundary
tL M TMR Time at which the fluid height at the
’ right boundary of the actual model
reaches ELR
tc L TCR Time at which the fluid height at the
’ right boundary of the computational
model reaches ELR/XR
k KM Coefficient of permeability of the model
X, XR Length scale = Length of experimental
model
Length of computational
model
Mo TML Time at which the fluid height at the
’ left boundary of the actual model
reaches ELL
te o TCL Time at which the fluid height at the
)

left boundary of the computational
model reaches ELL/XR

(&) o KESPC Slope of C4 curve at C



-117-

TABLE II
(CONT 'D)
Equivalent
Symbol in the
Symbol MAD Statements Description
(g_)c KESMC Slope of C_ curve at C
Ug; HS’ o o e Uus, HS, . . . u, H, etc., at S
Ups HR’ e o . UR, HR, . . . u, H, etc., at R
ts M TSM Time at which the photographs are taken
2
ts . TSC Time (corresponding to the computational
? model) at which the photographs are taken
t T Time
A x DEILX Distance between two adjacent points on
the x-axis of the characteristic grid
At DELT Time interval in the characteristic
grid for the computational model
%] TH
L L Length of the model
Heth HECS The value of the inflow height which
corresponds to the same amount of dis-
charge in a steady state case
QOUTP Q/ Ly
EM KM The coefficient of permeability of the

model
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TABLE III

LIST OF SYMBOLS USED IN THE MAD STATEMENTS
OF THE STEADY STATE PROGRAMS

Equivalent Symbol

Conventional in the MAD
Symbol Statements Description
t T A variable taking values between
0 and 1
)y LAM Modular elliptic function
B(x) GAML Angle B in radians (see Figure
la and 1b
BETA -1 forw>a>lor-w<ir<o
T Z Az > A
a A A parameter involved in the integral
formulas of the steady state
solution
b B A parameter involved in the integral
formulas of the steady state
solution
H,/L HWFCL Height of outflow surface/width of
the dam
H /He HWPCHE Height of outflow surface/height
of inflow surface
Hg/L HSPCL Height of seepage surface/width
of the dam
Hg/He HSPCHE Height of seepage surface/height
of inflow surface
He/L HEPCL Height of inflow surface/width
of the dam
L/He LPCHE Width of the dam/Height of inflow
surface
HS/CE BC Height of seepage surface

H,/ck AB Height of outflow surface
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TABLE IIT
(CONT 'D)

Equivalent Symbol

Conventional in the MAD
Symbol Statements Description
X X x=-coordinate of a point on the
free surface
Y Y y-coordinate of a point on the
free surface
X/L XP Dimensionless x-coordinate of a
point on the free surface
Y/L YP Dimensionless y-coordinate of a
point on the free surface
A(t) GAMT Angle B in radians (see Figures l-a
and 1-b
1
~2nx s [BE) &
5 Ot - A
EPS e

YPP YP when XP=.1, .2, .3, . . and 1
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