THE UNIVERSITY OF MICHIGAN
COMPUTING RESEARCH LABORATORY'!

ON ENHANCING THE IDEALIZED CPU-1/0 AND
170-170 OVERLAP MODFELS THROUGH
THE USE OF MARKOV PROCESSES

Mark C. Maletz

CRL-TR-7-83

APRIL 1983

Room 1079, East Engineering Building
Ann Arbor, Michigan 48109

USA

Tel: (313) 763-8000

1 Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the
authors and do not necessarily reflect the views of the funding agencies.



Abstract

A Modeling technique is developed for studying processor overlap
in time-shared and multiprogrammed computing systems, based on
the Markov process methodology. Measures of resource
utilization, response time, and system throughput are derived
from the statistics of the Markov process equilibrium.

Techniques for identifying potential system bottlenecks and for
determining summary statistics about user transition behavior are
also discussed. The result is an enhancement of traditional

overlap models with greater generality and improved system
characterization capabilities.

1. Introduction

As the complexity of modern time-shared and multiprogrammed
computing systems continues to increase, the need for cost-
effective analytical models of the performance of these systems

also increases. System complexity can be broadly classified as
belonging to one of four areas:

1. Changes in the number and speed of
Central Processing Units (CPU's).
2. Changes in the number and nature of
system peripherals (e.g., 1/0 devices).
3. Changes in the complexity of user behavior.
4. Changes in the amount of main storage available.

A computing system model is developed that is highly flexible
with respect to the first three of the above areas. This model
provides information that is of value when evaluating the
performance of existing computing systems, selecting new systems,
and identifying system resource bottlenecks.

The idealized CPU-1/0 Overlap model was first proposed by
Hellerman and Smith to analyze the expected throughput of a
computing system under certain "ideal" conditions.?® This
computing system consisted of one central processing unit (CPU),
one or two I/0 channels, and main storage that could be
partitioned into one, two, or three equally sized partitions.
The "ideal" conditions, aside from the particularly restrictive
definition of the configuration of the computing system, were
contained in a set of five assumptions:

Fixed record size.

For each input there must be an output.
Fixed number of records per block.
Fixed CPU compute time per record.
Fixed device access time per block.

AP WN -
e © o o o

The authors of this model acknowledged that these assumptions are
not at all realistic; however, the assumptions did permit the
development of the basic CPU-I/O overlap model, using analysis of



timing diagrams.

The basic CPU-I1/0 overlap model was generalized into a set of
equations that were used to compute the maximum main storage
utilization given the number of CPU's, the number of I/0
channels, the number of main storage partitions, and the ratio of
CPU time to I/0 time to process a block of data.'' With the
development of these general equations, the use of timing
diagrams and graphical analysis became obsolete. The generalized
equations approach suffered, however, from an unrealistic
definition of the system "user", restricted by a strictly
deterministic precedence order of input, compute, output.

This paper develops a more general model of the user tasks
involved in the CPU-I1/0 and I1/0-1/0 overlap models, based on
Markov processes. Section Two develops the basic Markov model of
user behavior. Sections Three and Four attempt to resolve the
weaknesses of the basic Markov model by introducing queue states
and limiting system resource availability. Finally, Section Five
reviews the development of the Markov model, discusses the
conclusions arrived at, and suggests areas for further research.

2. Development of the Basic Markov Model

We will consider finite first-order ergodic Markov chains, and
begin by defining the states of the Markov process. A user task
is said to be in a particular state when the computing system is
involved in processing for that task using a processor associated
with that particular state. This means that every state must
have associated with it a unique class of processors. Five
states are considered:

Input - user task initiated input of one record
Output - user task initiated output of one record
Compute - CPU computation performed on a user task
Page-in - system initiated paging disk activity
Page-out - system initiated paging disk activity

N> Wh -

These states correspond to classes of processors which are
functionally defined. The same physical processors may be
assigned to different states at different times depending on the
function that they are performing. As long as the states of the
Markov model are unique with respect to occupancy by user tasks
(state uniqueness criterion), the states may be defined in
whatever way is most appropriate to the particular application.

A corollary to the state uniqueness criterion is the state
exhaustion criterion. This requires that every state in which
the user task might be found must be a state of the Markov model.
This can be accomplished by a thorough enumeration of states.

After the states have been defined, we compute the state
transition matrix. This is accomplished using the following



procedure:

1. Determine the "real time equivalent" of one
step in the Markov process. This is the amount
"real time" that corresponds to a single time
step in the process.

2. Assign the non-returning transition probabilities
(which will be modified later). A non-returning
transition probability, N.., is defined as
the probability that a usé? task moves to state j
given that it is currently in state i, where i
and j must be different.

3. Calculate the expected number of time steps that
a user task remains in a each state. Note that
the "real time equivalent" of the Markov process
time step must be sufficiently small so that a

user task, on average, will remain in each state at
least one time step.

4., Determine the probability of return for each state:
P(r); = (E(ts); - 1)/E(ts); [2.1]

where E(ts). is the expected number of
time steps that a user task will remain

in state i, and P(r). is the calculated
probability of returf.

The solution of this eguation, for each state, yields
that state's probability of return (P.. = X).

5. Scale the non-returning transition probabilities
using the probability of return for each state:

for each state i, P.. is the
transition probabillay to state j

(where i#j).

The Markov process transition probability matrix is given by P,
at the conclusion of step five.

The problem with this development is that the Markov model based
on the transition matrix P assumes that a user task will be able
to enter any state that it is probabilistically directed to
enter. Implicit in this is an assumption of unlimited system
resources. Such an assumption is clearly unrealistic. Moreover,
since an unlimited resource computing system degenerates into a
series of single user systems, there is little benefit in
considering such systems when constructing overlap models. To
resolve this problem a queueing system is required.



3. Simulation of Queues in the Markov Model

There are four major limitations which result from the use of
Markov processes:

1. The requirement that a fixed time step be used.

2. The fixed number of states requirement.

3. The requirement that transition probabilities
be fixed throughout the life of the model.

4., The requirement that once a user task enters
a state, it must remain for an entire time step.
Related to this is the requirement that there
must be a non-zero probability that the user task
will leave the state at the end of the time step.

The problems caused by these limitations are greatly reduced when
one considers the fact that this model was developed as an
enhancement of the basic overlap models, where all processing
times are required to be fixed and state transitions are strictly
deterministic. Each of the four limitations discussed above is
also present in the basic CPU-I1/0 and 1/0-1/0 overlap models.

One way to reduce the limitations of fixed states and transition
probabilities would be to construct several Markov models for a
given computing system, where each model presented information
about the equilibrium conditions of the computing system using
its respective parameters. This might, for example, be useful if
the system was utilized differently during day and evening hours.
The requirement that there be a non-zero probability of leaving a
state at the end of the time step eliminates the possibility of
absorbing states. This is not a serious limitation, however,
since computing systems do not typically have absorbing states.

We are now ready to eliminate the unlimited system resources
assumption by introducing queues into the Markov model.
Ultimately, queues will be included as states of the Markov
model. Before this can be accomplished, however, the transition
probabilities for entering a queue when attempting to move from
one state to another (queue transition probabilities) must be
known. To simplify this problem somewhat, we will assume that
once a user task enters a state, it can retain control of the
processor that it is assigned until it leaves the state. This
eliminates the possibility of a user task leaving a state,
entering a queue for that same state, and then returning to the
state. This assumption seems reasonable in general, since most
computing systems do behave in this manner. There are, of
course, exceptions such as the time slice interrupt which forces
a user task to relinquish the CPU after some prescribed time
limit. Such exceptions can be handled by using the flexibility
that is available directly through the Markov model (e.g., a
ready state can be defined, so that a user task can go from use
of a CPU to the ready state and then back to a CPU).



The determination of queue transition probabilities is dependent
on the basic transition probabilities, the number of user tasks,
and the number and types of system resources. While the queue
transition probabilities may be obtained by empirical data
collection (in the case of existing computing systems), it is
easier to make use of their dependence on the basic transition
probabilities and derive the gqueue transition probabilities using
computing system simulation technigues. We will use a program
that simulates a computing system in which user task transitions
are governed by a basic transition probabilities matrix.*‘ One of
the summary statistics produced by this program is the queue

transition probabilities matrix for the simulated computing
system,

Table 1 displays the starting conditions for a sample run cf the
simulation program. This run involved eight processors and
twelve user tasks, and was run for 40 time steps.

Table 1. Starting conditions for a sample run
of the simulation program.

The processor/state service matrix is:

Input Output CPU Page_1I Page_O
proc 1: Yes Yes No No No
proc 2: Yes Yes No No No
proc 3: Yes Yes No No No
proc 4: No No Yes No No
proc 5: No No Yes No No
proc 6: No No Yes No No
proc 7: No No No Yes Yes
proc 8: No No No Yes Yes

The transition probabilities matrix is:

Input Output CPU Page_I Page_O
Input: .30 .00 .40 .20 .10
Output: .10 .30 .30 .20 .10
CPU: .25 .25 .30 .10 .10
Page_1I: .00 .00 .60 .30 .10
Page_O: .00 .00 .50 .30 .20

The user task distribution matrix is:

Input Output CPU Page_I Page_O

1 In State
task 2: In State



task
task
task
task
task
task
task

task 10: In State

task 11: On Queue
task 12: On Queue

o

In State

In State
In State

(Voo JEN B o NS 4 L VA

On Queue

In State

On Queue

In State

The processor/state service matrix indicates which states are

The user task
distribution matrix indicates the starting state of each user
task and whether it is in the state or on the gueue for the
state. After the simulation program has completed processing, it
produces a table of summary statistics, shown in Table 2.

serviced by each processor in the simulation.

Table 2. Simulation program summary statistics

with 8 processors.

The queue length and wait time statistics

(in time step units) are:

Cumulative Average Cumulative
Queue Queue Queue Wait
Length Length time
Input: 26 0.650 26
Output: 1 0.025 1
CPU: 141 3.525 138
Page_1I: 13 0.325 10
Page_O: 8 0.200 8

The average distribution of user tasks

among system states and queues 1is:

Input Output CPU
In State: .121 .092 .250
On Queue: .054 .002 .294

The queue transition probabilities matrix is:

Input Output CPU

Queue Queue Queue
Input: 0.000 0.000 0.893
Output: 0.500 0.000 1.000
CPU: 0.457 0.034 0.000

Page_1I

.087
.027

Page_I
Queue

0.556
0.400
0.417

Average
Queue Wait
time

1.368
1.000
1.816
1.000
1.600

Page_O

.056
.017

Page_O
Queue

0.667
0.000
0.375



Page_1I: 0.000 0.000 0.926 0.000 0.000
Page O: 0.000 0.000 0.917 0.200 0.000

In this table, there is a difference between the cumulative queue
length and cumulative task wait time for the CPU and Page_I
states. This difference is based on the time at which these
quantities are updated and on the queue distributions at the end
of the simulation. The average task queue wait time is of
importance in computing the transition probability matrix. The
queue transition probabilities matrix indicates the probabilities
of moving from every state to the queue for every other state.

The first four statistics presented in Table 2 are useful in
identifying system bottlenecks. In the example run, the CPU
state has a cumulative task queue wait time of 138 which is
greater than the other four states combined. This indicates that
the CPU state represents a system bottleneck, and that it might
be desirable to add a fourth CPU. A lesser bottleneck is the
Input state which has a cumulative task queue wait time of 26.
Because the Input and Qutput states share three processors (I/0
processors), and because the Output state has a cumulative queue
length of only one, it might be desirable to assign one of the
three processors to the Input state alone, while the other two
continue to service both the Input and Output states. Table 3
shows the results of adding a fourth CPU state processor, and
assigning one of the three 1/0 processors uniquely to the input
state. All other starting conditions are the same as the
previous example.

Table 3. Simulation program summary statistics
with 9 processors (4 CPU's).

The queue length and wait time statistics
(in time step units) are:

Cumulative Average Cumulative Average
Queue Queue Queue Wait Queue Wait
Length Length time time
Input: 27 0.675 27 1.588
Output: 14 0.350 13 1.444
CPU 22 0.550 22 1.100
Page_1: 83 2.075 78 2.438
Page_O: 32 0.800 18 2.571

An analysis of this table shows that the addition of a CPU and
the 1/0 processor assignment change has had the desired effect.
Neither the CPU state nor the Input state appear to be

bottlenecks. A new potential bottleneck, the Page_I state, has

appeared. This could be resolved by adding another processor to
the Page_1 state.



4. The Generalized Markov Model with Queue States

This section presents an example of the generalized Markov model.
With every state in the model of Section Two there is associated
a queue state. To avoid confusion, we will refer to non-queue
states simply as states and queue states as queues. The ten
state transition probabilities matrix is derived from the basic
transition probabilities matrix and the queue transition

probabilities matrix provided by the simulation using the
following procedure:

Let P denote the basic transition
probabilities matrix.

Let Q denote the queue transition
probabilities matrix output by the
simulation,

Let R denote the new 10 state transition
probabilities matrix. Row (or column)
2i-1 corresponds to state i, and row

(or column) 2i corresponds to the queue
for state 1. Notice that states have
odd numbers and queues have even numbers.

1. State to state: for each state i (i odd) and
for each state j (j odd)

Rij = Pij X (1-Qij)

2. State to queue: for each state i (i odd) and
for each queue j (j even)

ij
3. Queue to associated state: for each queue i (i even)

and for the associated
state j (j=i-1)
where P(r). is the solution to equation 2.1

when E(ts)i is set to the average task
queue wait“time for queue 1i.

4, Queue to other state: for each queue i (i even)
and for each state j (j#i-1)



Rij"-'O

5. Queue to same queue: for each queue i (i even)

R.. = P(r).

ii i
where P(r), is as computed in (3) above.

6. Queue to other queue: for each queue i (i even) and
for each queue j (j even, j#i)

Using the above procedure, we compute the ten state transition
probabilities matrix for the the example computing system
presented in Section Three. This matrix appears in Table 4.

Table 4. Ten state transition probabilities matrix.

1 2 3 4 5 6 7 8 9 10

1 .300 .000 .000 .000 .043 .357 .089 .111 ,033 .067
2 .731 .269 .000 .000 .000 .000 .000 .000 .00O .0OO
3 .050 .050 .300 .000 .000 .300 .120 .08B0 .100 .00O0
4 ,000 .,000 1,000 .000 .000 .000 .000 .000 .000 .00O
5 .136 .114 .292 .,008 .300 .000 .058 .042 .062 .038
6 .000 .000 .000 .000 .555 .445 .000 .000 .000 .000
7 .000 .000 .000 .000 .044 .556 .300 .000 .100 .000
8 .000 .000 .000 .000 .000 .000 1.000 .000 .000 .0OO
9 .000 .000 .000 .000 .042 .458 .240 .060 .200 .0OO
10 .000 .000 .000 .000 .000 .000 .000 .000 .625 .375
State 1 Input State State 2: Input Queue
State 3: Output State State 4: Output Queue
State 5: CPU State State 6: CPU Queue
State 7: Page_In State State 8: Page_In Queue
State 9: Page_Out State State 10: Page_Out Queue

We can now calculate the limiting vector for the Markov process
which gives the equilibrium distribution of user tasks among the
ten states of the model, the mean first passage matrix, and the
mean recurrence vector. The results of these calculations appear
in Table 5.

Table 5. Markov model summary statistics.

The limiting vector is:



[.104

The

[9.65

The
1

.000
1.37
12.2
13.2
9.64
11.4
13.0
14.0
13.3
0 14,9

SOOI WN —

.046

mean

21.8

mean
2

28.4
.000
26.7
27.7
24.3
26.1
27.7
28.7
27.9
29.5

'106

.002

.248

10

.291

recurrence vector 1is:

9.42

first passage times matrix is:

3

13.1
14.5
.000
1.00
8.97
10.8
12.3
13.3
12.6
14.2

505.

4

503.
505.
504.
.000
499.
501.
503.
504,
503.
504.

4.04

5

4.14
5.51
4.49
5.49
.000
1.80
3.38
4.38
3.62
5.22

In comparing the limiting vector

distribution of user tasks among the states and queues of the

model (found in Table 2), we find that the two vectors are very
This is expected, since the simulation program was

similar.

designed to simulate a Markov process, and the same basic

3.44

6

2.92
4.92
2.97
3.97
4.40
.000
2.04
3.04
2,32
3.92

.120

8.36

7

9.10
10.5
8.84
9.84
9.24
11.0
.000
1.00
8.13
9.73

.034

29.6

8

24.6
25.9
25.5
26.5
25.5
27.3
28.6
.000
26.8
28.4

.057

17.7

9

19.5
20.9
19.3
20.3
19.7
21.5
19.7
20.7
.000
1.60

.006]

157.]

10

226.
228.
248.
249,
247.
248.
250.
251,
250.
.000

of Table 5 with the average

transition probabilities matrix was used for both the simulation
and the Markov process calculations.

The other statistics reported by the simulation program are
identical to results that can be derived from the Markov model
(except for average queue length, which is not derivable from the

Markov model directly).

The average task queue wait time for

each queue can be found in the mean first passage times matrix as

follows:

Let AW(i) be the average queue task wait
time for queue i, where i must be even.

Let j=i-1 be the number of the state
associated with queue 1i.

Let R be the ten state transition
probabilities matrix.

AW(i) = Rij

The queue transition probabilities matrix calculated by the



1"

simulation program was used explicitly in the construction of the
ten state transition probabilities matrix. It can therefore be
recovered simply by reversing the procedure used to convert from

the gueue transition probabilities matrix to the ten state
matrix.

4.1 System Bottlenecks and Resource Utilization

The limiting vector gives the average amount of time spent by
each task in each state of the system. It can also be viewed as
describing the equilibrium distribution of user tasks among the
system states. 1In this way, it provides an implicit measure of
state overlap in the computing system. The limiting vector has
two primary interpretations. The first is in the identification
of possible system bottlenecks. The Queue states can be checked,
and if any of them have particularly high values in the limiting
vector, this is an indication that the associated state may be a
system bottleneck. This can be resolved by adding more
processors to the state (either new processors, or processors
that were previously assigned to other states) or by restricting
some of the processors that are assigned to the state and to
other states so that they service only the bottleneck state
(i.e., reducing the service scope of the processors that service
the bottleneck state). One of the advantages of the Markov model
over other computing system models, especially those that require
a detailed analysis of the system every time a system
specification parameter changes, is that it is easy to change
system parameters and recompute the limiting vector to see if the
changes have produced the desired effect.

A second interpretation of the limiting vector is that it
provides a measure of resource utilization. This can be helpful
in determining whether states are under-utilized or over-utilized
relative to the number of processors that they have been
assigned. If a state has been assigned a relatively large number
of processors but has a relatively low-valued entry in the
limiting vector, then it might be beneficial to either reduce the
number of processors assigned to the state or assign some of them
to additional states. Changes in processor assignment require

that processors are flexible with respect to the states that they
can service.

It is important to distinguish between processor utilization,
which is considered in traditional overlap models, and state
utilization. The limiting vector provides information about
state utilization. This information can be interpreted along
with the processor class information contained in the processor/
state service matrix to produce one measure of processor
utilization. It cannot be used to determine the percentage of
time that a particular processor is in use or idle, but it can be
useful in providing a general measure of processor utilization
for all processors associated with each state.

4.2 System Response Time
The mean recurrence vector measures the amount of time that



12

elapses between the time that a user task enters a state, and the
time that it returns to that same state. This vector can be used
to measure system response time by assigning one of the states in
the model to be a user response state in addition to its other
assignment, The user response state is the state from which all
user interfacing is done. 1In the example computing system, the
CPU state could be designated as the response state. The
response time would then be 3.4 time steps.

Another possibility for response state is to add a new state to
the model which handles nothing but user interaction. This has
the advantage that user tasks enter the state only for user

interfacing, and therefore, the response time measure is more
accurate.,

4,3 System Throughput

The mean first passage times matrix can be used to construct a
measure of system throughput. This is done by defining a
sequence of states as representing a cycle through the system.
The mean first passage times matrix can then be used to determine
the average amount of time required to complete this cycle. 1If
there are n user tasks, then this is the amount of time that is
required to complete n cycles. As an example, if we define an
Input state, CPU Queue state, CPU state, Output state cycle for
all user tasks, then this cycle requires 25.9 time steps, and
system throughput would be 12 cycles per 25.9 time steps. This
construct allows for more than one cycle. 1In fact, each user
task can perform its own cycle.

5. Conclusions

A general Markov model of computing systems was developed that
enhances idealized CPU-1/0 and I1/0-1/0 overlap models in a number
of ways. First, it eliminates the need for a restrictive
configuration definition, and because the Markov process is
probabilistic, the user task state transitions no longer have to
be deterministic, which makes for a far more realistic model.

The Markov model that was initially proposed assumed an unlimited
number of resources. This assumption was removed when queues
were added to the Markov model by adding a queue state for every

non-queue state that was present in the unlimited-resource Markov
model.

The Markov model can be used to analyze a computing system by

deriving the three system parameters that are most often used by
the idealized overlap models:

1. A utilization parameter

2. A response time parameter (in time step
and real time equivalent formats)

3. A throughput parameter



13

A special case of the Markov model occurs when the basic
transition probabilities are contained in a zero-one matrix.

This models deterministic user behavior and gives the same
results as the idealized overlap models (based on test cases that
were analyzed). In fact, the Markov model provides more
information than the idealized models. An important example of
this concerns user task behavior. 1In the transition
probabilities matrix, only the probabilities of moving from state
i to state j (for every i,j combination) need to be specified.
The model, however, provides us with a matrix containing the
average number of time steps that are required by a user task to
move from state i to state j.

One interesting possibility for enhancement of the Markov
approach might be to consider Markov processes that are of order
greater than one or that are cyclic processes. The existence of

cycles might prove useful in further investigations of system
throughput.

The simplicity of constructing the Markov models, along with the
usefulness of the results derived from the model makes the
Markov-based enhancement of the idealized CPU-I1/0 and 1/0-1/0
overlap models a useful tool for those interested in the analysis
of time-shared and multiprogrammed computing systems.

Acknowledgments. The author is grateful to Toby Teorey for his
comments and advice during the development of this paper and his
thorough review of a draft of this paper.



References

0]

[2]
(3]

(4]

(5]
Lel

£7]

(8]

[9]

Feeley, J.M. A Computer Performance Monitor and Markov Analysis for
Multiprocessor System Evaluation, Statistical Computer
Performance Evaluation, New York, 1972, pp. 165-225.

Hellerman, H., and Conroy, T.F. Computer System Performance,
McGraw-Hill, New York, 1975, pp. 149-157.

Hellerman, H., and Smith, H.J. Jr. Throughput Analiysis of Some
Idealized Input, Output and Compute Overlap Configurations, Computing
Surveys, 2,2 (June 1970), pp. 111-118.

Hynes, A.C. An Equation for Throughput Under Overlap Conditions, Data
Translation Project Working Paper DE 7.3, University of Michigan,
Ann Arbor, Michigan, April 1976.

Kemeny, J.G., and Snell, J.L. Finite Markov Chains, Van Nostrand,

New Jersey, 1960,

Maletz, M.C. Computing System Simulation Using Markov Processes,
Computing Research Laboratory Technical Report CRL-TR-12-83,
University of Michigan, Ann Arbor, Michigan, February 1983.

Mills, P. The Overlapping of CPU and |/0 Processing in Multiprogramming,
Proceedings of the Seventh International Conference of the Computer
Measurement Group, Inc., Atlanta, Georgia, November 16-19, 1976.

Peterson, J., and Bulgren, W. Studies in Markov Models of Computer
Systems, Department of Computer Science, University of Kansas,
Lawrence, Kansas.

Sekino, A. Throughput Analysis of Multiprogrammed Virtual Memory
Computer Systems, Proceedings of the First Annual SIGME
Symposium on Measurement and Evaluation, Palo Alto, California,

1973, pp. L7-53.

[10] Smith, J.L. An Analysis of Time-Sharing Computer Systems Using Markov

Models, Systems Engineering Laboratory, University of Michigan,
Ann Arbor, Michigan.

[11]) Teorey, T.J. General Equations for lIdealized CPU-1/0 Overlap

Configurations, CACH 21,6 (June 1978), pp. 500-507.

[12] Towsley, D., Chandy, K.M., and Browne, J.C. Models for Parallel

Processing Within Programs: Application to CPU:1/0 and 1/0:1/0
Overlap, CACM 21,10 (October 1978).



