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ABSTRACT 
 
Beech bark disease (BBD) was first reported in Michigan in 2000, though experts believe it 
to have been present in the state for 10-15 years prior to that. The exotic insect/fungal 
complex is composed of the beech scale (Cryptococcus fagisuga Lind.), and at least one of 
three species of Nectria fungi. BBD has caused mortality of American beech (Fagus 
grandifolia Ehrh.) in some of Michigan’s northern hardwood forests, and it is a threat to 
those forests not yet infested. The purpose of this study was to 1) determine the continuing 
impacts of beech bark disease on the state’s beech resource, and 2) monitor changes to 
forest composition and health in disease infested stands. Plots that were first sampled in 
2001 were visited again in 2007, and comparisons made on the progress of the disease. 
Stands visited were divided between the Upper Peninsula and Lower Peninsula. Evidence 
of disease was noted in 9 plots where it was previously undocumented, showing a pattern 
of rapid westward movement of the disease.  

Overall, stands infested with beech bark disease exhibited reduced health (exhibited by 
poorer levels of foliage transparency, higher levels of crown dieback, and higher severities 
of damage)    and high mortality of beech trees, with a 16% increase in dead basal area in 
infected areas. The disease is more advances in the Lower Peninsula, likely due to a more 
recent establishment of the disease there. However, most of the new cases were in the 
Upper Peninsula. A significant factor contributing to variation in tree and stand condition 
throughout the state is the wide range of climatic conditions and geomorphologic features 
over which beech occurs in Michigan.   
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Introduction  

Forest pests and pathogens 

Threats to global biodiversity are increasing at an extraordinary rate, in response to 

human-induced changes in the global environment (IPCC 2007). While the impacts of the 

threats vary across biomes, land-use change is expected to have the most drastic effect on 

global biodiversity, followed by climate change (especially at high latitudes), changes in 

atmospheric CO₂, biotic exchange (in the form o f successful establishment of exotic 

species), and nitrogen deposition (Sala, Chapin et al. 2000).  Invasive species have long 

threatened the productivity and stability of forest ecosystems throughout the world.  

There is some debate over the correlation between species richness and ecosystem 

function (Chapin, Zavaleta et al. 2000). For instance, early theoretical models show that 

species-poor communities on  islands are more susceptible to invasion because they offer 

more empty niches, whereas studies of more intact ecosystems found positive correlations 

between species richness and propensity for invasion (Levine and HilleRisLambers 2009). 

There is no doubt that northern temperate forests are heavily affected by biotic exchange, 

and the most severe current threat to the forests of eastern North America is exotic pests 

and pathogens (Lovett, Canham et al. 2006). 

Pathogens and pest insects are major forces driving the disturbance patterns in these 

ecosystems. Forests can be altered either directly (from predation on specific tree species) 

or indirectly (for example, from insect frass falling to the forest floor, increasing soil 

nutrient inputs).  The allocation of resources by plants to chemical and structural defenses 

against pathogens and herbivores decreases growth by diverting resources away from leaf 

growth and other vegetative structures (Herms and Mattson 1992). Disturbances caused 

by insects and pathogens are as important a function of ecosystem dynamics as the more 

sudden abiotic disturbances such as wind and fire. An additional factor to take into 

consideration is current climate change. Changing climate and increased pollution levels 

alter the susceptibility of trees to pests and pathogens, making forecasting disease 

outbreaks more difficult (Simberloff 2000). 
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Forests in eastern North America host a variety of invasive pests and pathogens that are 

problems unique to this area. The gypsy moth (introduced in 1869), which feeds primarily 

on oaks but will feed on more than 300 species of trees and shrubs, is a major defoliator of 

eastern forests (Liebhold, Elmes et al. 1994). The gypsy moth populations are cyclical, with 

severe and relatively synchronous outbreaks at roughly 10 year intervals. However, over 

the last decade, the moth populations have been kept in check by pathogens (particularly 

the fungus Entomophaga maimaiga). The insect is continuing to spread but its outbreaks 

may become less severe. For instance, the moth larvae can be an important food for some 

birds and mammals, when at high density (Ostfeld, Jones et al. 1996), and the nitrogen 

pulse resulting from insect feces, dead caterpillars, and leaching of nitrogen from 

unconsumed green foliage can be incorporated into soil organic matter or taken up by 

growing plants(Lovett and Ruesink 1995). However, unused nitrogen may be leached from 

the ecosystem in drainage water, resulting in a dramatic rise in stream water nitrate 

concentrations (Eshleman, Morgan et al. 1998). 

The hemlock wooly adelgid was first observed in the United States in the 1950s in Virginia. 

It is destructive to forest and ornamental hemlock trees, feeding on the phloem of small 

hemlock twigs. In the Eastern U.S., the only two species susceptible to foliar attack are the 

eastern hemlock (Tsuga canadensis) and Carolina hemlock (Tsuga caroliniana).  When 

infestations are high and populations have grown rapidly, tree death can occur in 4-5 years 

(Young, Shields et al. 1995). This problem is specific to eastern forests, as the insect does 

not appear to attack western hemlock (Tsuga heterophylla) in western forests.  

Most recently, the emerald ash borer (Agrilus planipennis) has decimated the majority of 

the ash (Fraxinus) populations in Michigan. Introduced from Asia, most likely via shipping 

crates, this insect has received a great deal of attention due to the importance of the ash as 

a street tree, and therefore its economic significance to the state (Poland and McCullough 

2006). The larvae feed on the inner bark of the ash trees, disrupting its ability to transport 

nutrients and water.  

Among these pests, beech bark disease stands out as particularly damaging from the 

ecological point of view, as it affects the most dominant late successional species in Eastern 

North American, the American beech (Fagus grandifolia) (Houston 1980). Along with sugar 
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maple (Acer saccharum), beech trees dominate the canopy in beech-maple mesic forests 

which were once the most common forest type in the northeastern United States (Fahey 

1998).  

 

History and biology of BBD  

Beech bark disease (BBD) is a disease complex consisting of a scale insect, Cryptococcus 

fagisuga Lind. in the family Erioccidae, and at least one of three species of Nectaria fungi. 

BBD was introduced into Nova Scotia around 1890 on nursery stocks imported from 

Europe (Bouvarel 1980). The current range extends south to North Carolina, and as far 

west as Michigan (Witter, Stoyenoff et al. 2005). 

The scale insects are small (under 10 mm), and easily identifiable by the white wooly 

material the female secretes as a covering. This material aids in the dispersal of the insect, 

being windborn and attaching to mobile sources, due to its somewhat sticky nature. One 

generation occurs annually, overwintering as small nymphs.  The insect is disseminated 

primarily via wind in the late summer to early winter (Houston, Parker et al. 1979). The 

nymphs resume their feeding in the spring, and the parthenogenetic females begin laying 

eggs in early June. Surveys to determine scale cover are best conducted around this time, as 

the females are present along the bole of the tree. Once the first-instar nymphs hatch after 

approximately 4 weeks, they move about until an acceptable feeding site is found, and 

nymphs then insert their mouthparts into the host beech. When the nymph begins feeding, 

the waxy covering is secreted, and the insect remains immobile under this protective 

covering, feeding through the thin beech bark, until spring. This feeding ruptures the 

smooth bark and creates an entry point for infection by one of three fungal pathogens of 

the genus Neonectaria: N. galligena which is native, N. coccinia var. faginata, which is 

believed to be introduced (Houston 1994), and a second exotic species (N. ochroleuca) 

which has been found associated with BBD in Pennsylvania, West Virginia, and Ontario, 

Canada (McCulloush et al. 2001). All three of these Nectaria species are present in Michigan 

(Witter, Stoyenoff et al. 2005). The fungi are identifiable by their bright red perithecia 

(Shigo 1972), which are visible during the wet seasons. This fungus penetrates the 
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cambium and sapwood, interrupting many functions of the tree’s conduction and nutrient 

storage. Beech scale alone rarely causes tree death. It is a combination of the scale creating 

a wound, along with an infection by the secondary fungus that causes tree mortality (Shigo 

1964). 

 

Impact and management  

Beech bark disease has not received the media attention or resources for research that 

chestnut blight or gypsy moth have, in part because the American beech is not valued as 

highly as some other tree species (Twery and Patterson 1984). However, interest has 

increased as recent research has focused on the adverse effects of the loss of beech 

overstory on other trees, such as a decline in sugar maples (DiGregorio, Krasny et al. 1999). 

Although the American beech is used for a variety of wood products, its ecological 

significance as a climax species in the northern hardwood forest type of eastern North 

America outweighs its economic significance (Munck and Manion 2006). Beech trees 

provide habitat for several species of mammals and birds, including raptors, fishers, and 

woodpeckers (Johnson and Adkisson 1985), and the importance of beech mast for wildlife 

(the trees produce nutrient-rich nuts), especially for black bear (Ursus americanus), is well 

documented (Costello and Sage 1994). This is especially important for Michigan in the 

eastern UP where oaks are not abundant and therefore acorns are not an available seed 

source.  

Models have been used to predict the rate and extent of the spread of BBD across the 

country. Using historical maps of confirmed BBD presence in combination with the 

ordinary kriging procedure to interpolate a surface basal area/ha for the host species, the 

estimated rate of spread is 14.7 +/- 0.9 km/year (Morin, Liebhold et al. 2007). The greatest 

concentration of beech is in the Adirondacks, and smaller concentrations are in Maine, New 

Hampshire, Vermont, West Virginia, and northern Pennsylvania, and in low levels through 

a range that extended over most forested areas of the Eastern United States. Current 

occupation of the disease is estimated at only 27% of its potential range in land area 

(factoring in all the locations with beech present). However, the disease has already 
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invaded more than 54% of its potential area in total host density, with eastern Kentucky, 

northern Ohio, and northern Indiana as areas with the highest risk that are currently 

infected (Liebhold, Morin et al. 2005). 

 

Changes in stand dynamics 

One of the major consequences of BBD is the loss of a late successional dominant species. 

For example, in the Catskill Mountains of New York, some forests formerly co-dominated 

by American beech (Fagus grandifolia Ehrh.) and sugar maple (Acer saccharum Marsh.) are 

shifting to sugar maple dominance (Griffin, Lovett et al. 2005). However, other studies have 

concluded that with the removal of large beech from the overstory, there is  a decrease in 

sugar maple seedlings and sprout survival (Hane 2003). The heavy vegetative reproduction 

of beech from root sprouts shades out the sugar maple seedlings, and below ground 

competition for resources is favorable for beech (Houston 1975). Gap dynamics are an 

important part of the succession of a beech-maple forest where natural disturbances are 

common and allow for the continuous generation of moderate-sized gap sites where beech 

regeneration can occur in canopy openings (Krasny and Whitmore 1992). However, the 

rate and overall spread off BBD results in more and larger gaps than are usual, as old, large 

beech are killed. Studies of beech bark disease in infested stands in New-England 

concluded that the highest mortality of beech occurs in stands with heavy eastern hemlock 

dominance, which then replace the beech (Twery and Patterson 1984). Later studies in the 

same forests have concluded that there is an associated decline in yellow birch (Betula 

alleghaniensis) (Runkle 1990), though this may be attributable to a pathogen or insect 

specific to that species. 

It has been known for a long time that some beech trees are resistant to the disease 

(Houston 1980). Those that support only low populations or do not show any sign, in high 

infestation areas, have bark that contains less total amino nitrogen than do susceptible 

trees (Wargo 1988). The low nitrogen concentration is known to limit the establishment 

and the growth of sucking insects (Gange and West 1994). Resistant trees in a stand are 

generally observed in close proximity to one another; the spatial arrangement of these 

trees has led researchers to conclude that there is a genetic resistance that is transferable 

both vegetatively and sexually (Mielke, Houston et al. 1986, March 24- 27). More recent 
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research on DNA analysis from cross pollinated trees confirms that resistance to scale is a 

hereditary trait (Koch and Carey 2005).    

In light of this knowledge, foresters debate if it is the best management strategy to 

encourage natural resprouting of resistant trees in forest stands, or to utilize propagation 

techniques in a greenhouse and then replant. Conventional techniques have not worked 

well. Grafting has proven useful for resistance screening and developing seed orchards, but 

is not a practical solution for mass production of resistant genotypes (Loo, Ramirez et al. 

2005).  

Management practices in the past have varied. Houston originally thought that a winter 

harvest in diseased stands, when roots and soil are frozen or snow covered (resulting in 

fewer root wounds and fewer sprouts compared to summer harvests), would be the 

optimal time to remove diseased trees (Houston 2001). However, there were no significant 

differences in sprout numbers. Further analysis showed that resistant trees have greater 

number of root sprouts than susceptible trees, whether cut or not. The most effective way 

to encourage healthy grow-back is to leave the resistant trees standing (resulting in the 

largest number of sprouts), but to clear out all diseased trees (Houston 2001). 

Biological control does not appear to be a viable option. There are no known insect 

parasites of the C. fagisuga in Europe or the U.S. Some predators are known, such as the 

twice-stabbed lady beetle, Chilocorus stigma. However, the predation appears to be limited 

to the sedentary life forms of C. fagisuga, and other predators are limited to the heavily 

infested trees. They can be productive in reducing populations on individual trees, but 

influence over the spread of the disease is inconsequential (Morris, Small et al. 2002)l. 

While bark epiphytes typically provide favorable habitats for establishing C. fagisuga, not 

all lichens are favorable. In Nova Scotia, some stems of beech trees on steep south-facing 

slopes remain free of beech scale and BBD defect, despite presence in nearby sites.  The 

stems of these trees were heavily colonized by the crustose lichen Graphis scripta,  which 

have thalli that are thick and elevated above the bark surface, with smooth surfaces that 

provide limited spatial habitat for the scale (Houston 1994). The conditions that favor this 

lichen include a low level of damaging air pollution and slow tree diameter growth due to 

the lower moisture availability on steep slopes.  
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Climatic warming could be beneficial to insect populations by reducing insect mortality 

from extreme cold in northern latitudes (Ayres and Lombardero 2000; Bale, Masters et al. 

2002), while also facilitating the scale’s spread north where temperatures are increasing. 

Conversely, in cold winter climates where dieback is common, residual scale colonies are 

often able to persist in low levels below the snowline on trees and in root collars. There, a 

reduction of snow cover could lead indirectly to insect population decline, attributed to the 

reduction of these refugia (Dukes, Pontius et al. 2009). As for increases in atmospheric 

pollutants, observations of beech bark disease affected trees in more or less severely 

polluted areas and in a non-polluted control areas in Europe where development of beech 

bark disease decreased with increasing pollution levels. The development of both disease 

agents is modified, Nectaria development is clearly slowed down and the distribution of 

Cryptococcus outbreak is modified in a complex manner  (Decourt, Malphettes et al. 1980). 

In Poland, there is evidence that sulfur pollution in the form of acid rain may decrease 

beech bark disease populations on European beech (Fagus sylvatica) (Godbold and 

HÃ¼tterman 1994). Research has been, as of yet, inconclusive as to the exact effects of 

climate change and increased pollutants in the atmosphere on the rate of spread of beech 

bark disease. 

 

BBD in Michigan 

The presence of beech scale with the corresponding BBD symptoms was first noted in 

Michigan in the summer of 2000 in Ludington State Park in the Lower Peninsula, and 

several locations in Luce County in the Upper Peninsula. Upon inspection, experts familiar 

with the disease etiology estimated that the disease had been there from 10-15 years 

(Houston 2001).  

For centuries, Michigan’s hardwood forests have faced disturbances. Periods of moderate 

drought have been fairly common throughout Michigan during the past 30 years and 

severe drought more prevalent in the last decade (Witter, Leutscher et al. 1999). These 

summers of low moisture have put forests under tremendous stress, and have most likely 

made beech trees more susceptible to attack. Lack of adequate moisture during the 
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growing season is one important type of stress that has been shown to increase 

susceptibility to the disease (Lonsdale 1980).  By 2004, the beech scale had spread to six 

counties in the LP and five counties in the UP, with the disease confirmed in most of these 

locations. Michigan is the western boundary of where the scale and disease have spread to, 

and potential spread to neighboring states is cause for alarm for state foresters. 

 

BBDMIAS: history, goals, results to date 

The Beech Bark Disease Monitoring and Impact Analysis System (BBDMIAS) was 

established in the summer of 2001 to survey Michigan’s forests with the following 

objectives: 1) assess the presence or absence of the scale, 2) monitor the effects of BBD, 

where present, over time 3) understand the outbreak dynamics of BBD in Michigan and 4) 

determine current and potential impacts on hardwood forests in the region (Yocum 2002). 

A total of 206 monitoring sites were set up in both diseased and non-diseased stands to 

provide baseline information on beech health prior to disease infection, and make 

comparisons to stands with and without well established disease. 

The work done in previous years to analyze data collected from the BBDMIAS has given 

new insight into the effects of BBD on beech radial growth (Yocum 2008) and overall 

effects on forest composition (Thompson 2003). The long term effects of this disease in 

Michigan forests will not be known for many years. However, from data collected over the 

span of 2001 to 2007, we can begin to answer some pressing questions about how the 

beech resource in Michigan will be impacted, which species will experience adverse effects  

due to BBD presence in an ecosystem, as well as BBD’s distribution and rate of spread 

throughout the state. My goal in continuing this research was to utilize the data over the 

course of the seven years the project was run by Dr. John Witter with the assistance of his 

students in the Forest Pests lab and determine any further changes in the disease spread in 

Michigan, and impact on beech health.  

This information can subsequently be used to look at mode of spread and how to control 

the disease. Results to date have been on par with research in more eastern forests 

(Petrillo, Witter et al. 2005). In general, north and east –facing sides of beech boles have 

greater abundance of beech scale than the south and west-facing sides (Witter 2004). The 
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greater temperature fluctuations and increased solar radiation on those sides places scales 

under greater environmental stress. Larger diameter trees are favored by beech scale 

populations because they have a greater amount of bark surface area available to colonize. 

Tree crown conditions can also affect beech scale populations on trees, partially due to 

microclimate effects. Trees with below-normal crown transparency and reduced foliage 

allow more light to penetrate the crown and warm the tree bole (Petrillo and Witter 2005). 

Also, the tree is less able to photosynthesize, potentially reducing food quality and quantity 

available to the scales. However, trees of lower vigor appear to be the first to succumb to 

the disease in an area (Witter 2004, Yocum 2002, Thompson 2003).   

Overall, stands containing BBD exhibit significantly reduced radial wood growth relative to 

stands without the disease. The magnitude of growth reduction and overall impact of beech 

bark disease has been greater in the Lower Peninsula than in the Upper Peninsula. These 

differences could be attributed to the temporal and spatial differences in scale arrivals, 

abundance levels of the scale, and the relative abundance of the different Nectaria species 

in different forest stands. Figures generated from the monitoring of the 206 plots in the 

study, along with field data from other sources, make readily apparent that the advancing 

front of disease is spreading more rapidly in the Upper Peninsula as compared to the 

Lower. This difference is thought to be correlated with the much more contiguous nature of 

the Upper Peninsula beech stands compared to the highly fragmented nature of stands in 

the Lower Peninsula. However, the scale’s spread is not abated by fragmentation of forests 

or lack of habitat alone. Spatially continuous range expansion has dominated the spread of 

the disease, as short-range continuous spread is typical for a disease of this nature, owing 

to the dispersal of scale insects by wind. But a simple model for the spread of an invading 

species, like that proposed by (Skellam 1951), predicting that invading organisms proceed 

at a constant radial rate does not account for isolated populations of an insect. A stratified 

dispersal results in a pattern colonized by the formation of several isolated colonies ahead 

of the advancing front. Though rare, the 10 “jumps” of smaller scale populations from the 

larger advancing front (Morin, Liebhold et al. 2007) are important to consider when 

determining where the disease will continue its spread. Natural barriers (e.g. the Great 

Lakes or large areas of farmland) exist across the northern U.S. that could impede the 
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spread of the beech scale, but much evidence that such feature function as barriers is 

lacking. In reality, observations of the spread of gypsy moth over an area of concern for 

future beech bark disease spread (from Michigan to Wisconsin) has not indicated that the 

Great Lakes has impeded its spread (Tobin and Blackburn 2008).   

Building on seven years of monitoring collected by the Witter lab this project expanded to 

answer these specific questions:  

1) Has beech bark disease affected beech health and mortality in Michigan?  

2) Is the level of infestation correlated with higher mortality of beech and other species? 

3) Where is the rate of spread greater, and what are the outlying factors possibly 

contributing to this increased spread?   

4) Are certain trees thriving (increased growth) in plots with or without the disease? 

Which species? To answer these questions I specifically looked into the effect of continued 

BBD on radial growth of beech and the radial growth of other tree species (in plots with 

BBD and those without). 

As the disease moves from its advancing front to its killing front stage, the final aftermath 

forest phase results in the ecological accommodation of the disease, with either a change in 

species composition or the reemergence of beech after high mortality. With the continued 

monitoring of these BBDMIAS stands, researchers will be able to witness the transition of 

the forests into this final stage and answer more specific questions about what Michigan 

forests will look like in the future. 
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Beech bark disease impact in Michigan  

Objectives 

Beech bark disease was first discovered in Michigan in 2000, although experts now believe 

that it has been present in the state for at least 20 years. The University of Michigan and the 

Michigan Department of Natural Resources established the Michigan Beech Bark Disease 

Monitoring and Impact Analysis System (BBDMIAS) in 2001 in response to the presence of 

BBD in Michigan’s northern hardwood forests. The objectives of BBDMIAS are to: 1) 

identify the extent of Michigan’s beech resource that is affected by BBD, 2) collect baseline 

data on current conditions of the beech resource and northern hardwood stands containing 

beech before this resource is affected by BBD, and 3) monitor changes in the condition of 

beech resources and northern hardwood forests due to BBD and other disturbances. 

 

General Methods 

The BBD monitoring system consists of two types of sampling plots, “extensive” and 

“intensive”. Extensive plots are composed of a matrix of 30 sampling points (Figure 1). Data 

taken at extensive plots are: diameter at breast height,  measured at 1.37 meters above the 

forest floor from the uphill side of the tree (DBH), tree crown and damage data (described 

below), along with presence and abundance of BBD indicators, collected from the 

individual American beech (Fagus grandifolia) tree nearest each sampling point. Currently, 

202 extensive plots have been established throughout the western Lower Peninsula (LP) 

and eastern Upper Peninsula (UP). Extensive plots are sampled every three years. 

Intensive plots were established during the first three years of BBDMIAS (2001, 2002, and 

2003). They consist of five circular subplots established within the sampling point matrix 

of an extensive plot (Figure 2). Currently, a total of 62 intensive plots have been established 

within a subset of the extensive plots, with 30 intensive plots in the LP and 32 in the UP. In 

intensive plots, data are collected from all tree species and from both live and dead trees. 

Intensive plots are sampled yearly.  

During the 2006 field season of BBDMIAS, extensive plots established in 2003 were re-

sampled along with all intensive plots. In 2007, we revisited extensive plots that were 
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established in 2001 and re-sampled in 2004. We also re-sampled a majority of intensive 

plots. 

 

Detailed Methods 

A. Extensive Plots. Extensive plots were designed to provide baseline data on northern 

hardwood forests and American beech trees before major disturbances due to beech bark 

disease occur. Extensive plots generally follow one of two transect matrix layouts: 5 X 6  

prism points or 3 X 10 prism points (Figure 1).  The particular transect matrix depends on 

stand dimensions. If possible, the matrix is positioned so that one edge is parallel to the 

nearest road. Observations within the plot are made at 30 prism points that are spaced 40 

meters apart, with the first sample point being at least 40 meters into the plot.  

An example of a layout is six transect lines of five sampling points each, running parallel to 

one another (Figure 1). The azimuth and distance from the first sampling point to the 

reference point on the road is recorded. The location of the first sampling point in the plot 

is determined using a Trimble Geoexplorer® GPS unit. If the location of the first prism 

point cannot be determined due to GPS interference, a GPS location for the witness tree is 

taken. The azimuth and distance from each prism point to the beech tree sampled at that 

point is recorded. In most cases, sampled beech trees are tagged with a numbered metal tag 

placed on the buttress root. Exceptions to this are on National Park Service and some 

Michigan State Parks and Recreation lands where metal tags are not allowed. At these sites, 

trees were marked with white paint. A site description data sheet is filled out for each 

stand, including a detailed description and small map indicating how to locate the plot and 

first prism point. For each beech tree sampled, the following variables are measured: 

infestation status, DBH, tree number, live crown ratio, crown density, crown dieback, 

foliage transparency, crown light exposure, tree vigor/condition, crown class/position, tree 

damage, and % beech scale coverage. Extensive plots are re-sampled every three years. 

 

B. Intensive Plots. Intensive plots are sub-plots located within extensive plots. About 30% 

of the extensive plots host intensive plots. Intensive plots are equally divided between the 

Lower Peninsula and Upper Peninsula. Plots are occasionally located on private land to 

ensure examples of certain silvicultural treatments, beech densities, levels of beech scale 
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infestation, and forest types. Intensive plots were chosen based on level of beech scale 

infestation, beech tree density, and geographic location. Beech scale infestation levels are 

represented by including control plots that contain no scale and plots ranging from slight 

infestation to those plots with heavy scale, beech snap, and heavy cankering. Intensive 

plots allow us to collect long-term information on the impact of beech bark disease on 

beech trees in Michigan and can be used to address additional questions concerning the 

impact of beech bark disease on northern hardwood forests in general. In the intensive 

plots, health data on all species is taken. This is used to determine the impact of beech 

mortality and poor health due to BBD, on any other tree species.  

 

After sampling of the surrounding extensive plot, the center of the intensive plot is located. 

Intensive plots consist of a series of fixed-area, circular subplots tied to a cluster of five 

points with a subplot at the center and four others 36.6 m (120 ft) apart radiating in the 

four cardinal directions (Figure 2). Each subplot center is marked with a metal stake and a 

ribbon wrapped around the stake. A GPS location of each subplot center is recorded so that 

the stands can be relocated for additional sampling. These GPS locations are used to 

produce a stand map showing the layout of all subplot centers. The individual circular 

subplots are 1/59th ha (1/24th ac) in size with a 7.32 m radius (24 ft). In each subplot, 

every living and dead tree 12.5 cm (5 in) or greater in diameter at DBH is marked with a 

numbered metal tag attached to the base of the tree (buttress root). The azimuth and 

distance from subplot center to the midpoint of these trees also is recorded. For each tree 

within the subplot the following variables are measured (methods below): tree status, DBH, 

tree number, live crown ratio, crown density, crown dieback, foliage transparency, crown 

light exposure, tree vigor/condition, crown class/position, tree damage, and % beech scale 

coverage. Intensive plots are re-sampled annually. 

 

A brief description of each measured variable is provided below. Unless otherwise stated, 

variables listed are measured in both extensive and intensive plots. 

 

Tree Status—Tree status is the condition of the tree at the time of sampling. It is 

determined using the following codes: 1=live tree; 2=dead tree; 3=removal; 4=missed live 
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tree; 5=missed mortality tree; 6=missed dead tree; and 7=no history (USDA Forest Service 

2006). 

 

DBH—DBH is recorded to the nearest 0.1 cm using a metric diameter tape at 1.37 m from 

ground level on the uphill side of the tree. Standardized methods to handle DBH 

measurements in unusual circumstances follow Forest Inventory Analysis (FIA) protocol 

(USDA Forest Service 2006). 

 

Tree Number and Location—An aluminum tag is placed at the base of each American beech 

tree sampled in extensive plots. In intensive plots, each tree greater than 12.5 cm receives a 

base tag. Trees are mapped spatially using GPS coordinates. 

 

Live Crown Ratio (LCR)—LCR is recorded in both plot types as a percentage determined by 

dividing the live crown length by the total live tree height, according to FIA protocol (USDA 

Forest Service 2006). 

 

Crown Density—Crown density estimates the amount of plant material, such as leaves, 

branches and fruit that block skylight from shining through the tree crown. It is measured 

as the % of total light that is blocked by tree material, according to FIA protocol (USDA 

Forest Service 2006). 

 

Crown Dieback—Crown dieback is measured as the % of branch tips in the crown that are 

dead, according to FIA protocol (USDA Forest Service 2006). 

 

Foliage Transparency—Foliage transparency measures the amount of light that shines 

through the live portion of a tree’s crown as a % of total light that would be visible if the 

light were unblocked, according to FIA protocol (USDA Forest Service 2006). 

 

Crown Light Exposure—Crown light exposure estimates the number of sides of the tree 

that would receive direct sunlight if the sun was directly above the tree, according to FIA 

protocol (USDA Forest Service 2006). 
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Tree Vigor/Condition—Each of the 30 beech trees in extensive plots and all trees in the 

intensive plots greater than 12.5 cm DBH are assigned a tree crown condition rating from 1 

to 8 based on the amount of dead wood in the crown. 

 

Crown Class/Position—Crown class/position is recorded for each tree and is a composite 

of light exposure and tree height (USDA Forest Service 2006). Values range from 1 (open-

grown) to 5 (overtopped). 

 

Tree Damage—Identifying the signs and symptoms of damage provides valuable 

information concerning the forest condition and indicates possible causes of deviation 

from expected conditions. Damage signs and symptoms are only recorded if, by definition 

in FIA protocol (USDA Forest Service 2006), the damage could kill the tree or affect the 

long-term survival of the tree. 

 

Beech Scale Measurements—Presence or absence of the beech scale is recorded for each 

American beech tree in both plot types. If the scale is present, there are a number of other 

measurements recorded at the tree level. The level of scale infestation is the first of these 

measures. Infestation level is estimated using a transparency frame of size 12.5 cm x 28 cm 

that is placed on the northern, eastern, southern, and western sides of the bole of the tree 

at a level of 1.5 to 2.0 m above the ground. The level of infestation is recorded as a 

percentage of the tree bark covered by scale. The presence or absence of both tarry spots 

and Nectria fungi spores is recorded. The lower bole of the tree from approximately 0.33 m 

up to 2.0 m is examined for signs of Nectria fungal spores and tarry spots. Discolored 

foliage and the amount of foliage that is affected is recorded if 30% or greater of the foliage 

is affected. 

 

Results and Discussion 

The following analysis is from the results from sampling of extensive plots conducted 

during 2007 (i.e. those established in 2001 and re-sampled in 2004) and sampling of 

intensive plots conducted during 2006 and 2007. While all intensive plots were sampled in 
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2006, only 42 of the 62 intensive plots were sampled in 2007, largely because of illness of 

the PI. Nonetheless, the 42 intensive plots sampled during 2007 provide excellent coverage 

of established plots in Michigan. We detected some observer bias in certain estimates of 

stand and tree health (e.g. transparency, dieback, and crown density) that may influence 

the comparison of measurements among sampling years. As a consequence, we have 

chosen to analyze some of the 2007 data independently, while other data can be safely 

analyzed and compared among years. 

 

1. Distribution and Severity of Infestations. Between 2005 and 2007, BBD has continued its 

spread throughout Michigan’s northern hardwood forests. In 2007, 59% of the plots in 

Michigan’s BBD monitoring system had documented scale presence (9 new plots), 

compared to 54% in 2005, 36% in 2004 and 30% in 2001. A caveat here is that not every 

plot was sampled every year, due either to time restrictions, safety or changes in the forest 

management type (a recent harvest, for example). In the first several years of the project, 

there was a more significant spread of beech scale in the LP compared to the UP, as many of 

the plots in the UP were established in 2001 with beech scale already pervasive. Beech 

scale is still much more widespread in the UP compared to the LP. However, the 

concentrated severity of BBD in the Lower Peninsula (notably in the plots along Lake 

Michigan, Figure 3) has made it devastating in some areas. Beech scale is known to occur in 

7 counties in the LP (Emmet, Grand Traverse, Leelanau, Oceana, Mason, Manistee, and 

Wexford) and 5 counties in the UP (Alger, Chippewa, Luce, Mackinac, and Schoolcraft). In 

recent years, the majority of the newly infested plots have been located in the Upper 

Peninsula, correlated with more areas of moderate to high beech density (Figure 3). 

Overall, BBD in Michigan continues to expand in distribution and increase in severity. 

Infestation levels (measured by the scale index) in plots previously noted with scale have 

generally increased from moderate to high (Table 1). Counties in the Lower Peninsula with 

new or increasing infestations included Mason, Oceana, and Wexford Counties (Table 1). 

For example, scale was observed for the first time in Plot 10 in Wexford County, the most 

northerly observation of scale in the county to date. Although scale infestations on 

individual trees in Plot 10 were still quite low, 48% of trees in the plot were already 

infested by the first recording of scale in 2007 (Table 1). On a brighter note, a few plots that 
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exhibited low scale infestation intensities during 2004, 2005, and 2006 appeared to be free 

of scale in 2007. We conclude that scale spread following establishment within a stand, 

although clearly the norm is not a foregone conclusion. We also note that some stands with 

a high proportion of infested trees nonetheless exhibit low infestation levels within 

individual trees (i.e. the proportion of the bark covered by scale remains quite low over 

several sampling seasons). 

Elsewhere in the Lower Peninsula, mortality of beech has increased most dramatically in 

Ludington State Park (where up to 100% of trees exhibit infection in some plots) and basal 

area of dead trees is near that of live beech trees (mean 3.1 m2 Ha-1 dead and 3.5 m2Ha-1 

live). We noted potential infection in one plot in Benzie County, in the form of dried 

Nectaria spp. on beech trees. Future surveys will be required to monitor possible infection 

in the county which remains putatively scale-free. 

More severe infestations have occurred in the Upper Peninsula, in conjunction with a more 

rapid spread of the killing front of the disease. Luce and Mackinac Counties are heavily 

infected and several new cases were found north of the previous boundary in Schoolcraft 

County, most notably in Pictured Rocks National Park (Table 1). New infections were noted 

in plots 108, 109, 113 (all around Pictured Rocks) and at plot 121 near Manistique in 

southern Schoolcraft County. A low scale index in plot 121, with the health of scale trees 

averaging that of non-scale trees (mean transparency of 15%) indicates a very recent 

infection. Although it already has a high scale index, the infestation in plot 108 is recent as 

well, and has not yet had an effect on tree growth: average DBH for beech is up from 

34.6cm to 35.2cm, and transparency and dieback have both decreased (transparency from 

30% to 18%). A more rapid spread of scale in the county may be due to high public use of 

the park and transportation of scale into remote areas. 

In Tahquamenon Falls State Park where over 90% of the beech overstory is either dead or 

severely declining, scale index has increased and tree health has decreased dramatically. 

Mortality is so high in some UP plots that it is skewing the scale index that we have been 

using to this point. This is shown in Figure 4, where the scale index appears to be declining 

in the UP over time. Trees with the heaviest infestations have already died, and dead trees 

are not included in the scale index. As a result, only trees with lower infections remain, 

making it appear as though the health of these stands is improving (Figure 4). Figure 5 
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illustrates that declines in scale index between 2004 and 2007 are associated with high 

rates of beech mortality. In the UP, therefore, a decrease in scale index correlates with a 

higher dead basal area of beech rather than an increase in stand health. One 

recommendation to emerge from our analysis this year is to develop a new scale index that 

captures in a single value the impact of past infestation as well as the current state of 

infestation. We will explore the development of such an index in future analyses. The 

alternative is to consider past and current infestation separately, with different indices. 

Rather trivially, scale index will decline to zero if and when no beech remain alive in a 

stand. 

Despite the rising beech mortality in the UP (and their concomitant loss as “infected 

trees”), most UP counties are still exhibiting increases in the percentage of trees infested 

and the severity of those infestations. Simply put, the disease is getting worse and more 

mortality will very likely follow. For example, in plot 123 in Luce County, the number of 

dead beech trees increased from 2 to 10 trees in a single year (from 2006 to 2007); this 

represents a substantial increase in dead basal area. Infection levels in Chippewa County 

have been relatively low (compared with high scale index counties further west in the UP) 

but surveys in 2007 documented severe infection in two new areas (Table 1), indicating a 

rapid movement of scale north-east in the county toward Whitefish Bay. 

 

2. Effects on Tree and Stand Health. Beech scale tends to occur at highest densities on trees 

with the greatest surface area, as reported in previous years when the heavier scale cover 

was on larger diameter trees. New analyses now show that the average diameter of 

infected trees has fallen from 31.1cm to 28.67 cm between 2004 and 2007 (Table 2). This 

indicates that the larger beech trees that were infected in the advancing front of the disease 

have died, leaving behind smaller diameter trees that are also infected. 

Beech bark disease weakens trees, leaving them more susceptible to damage and other 

infections. In 2007, a higher percentage of beech trees exhibiting scale infection showed 

evidence of other kinds of damage than did trees without scale (56% compared with 46%, 

Table 2). It is important to note that only live trees with obvious scale were factored into 

this analysis. However, a comparison of damage on all beech trees, between diseased and 

disease-free stands, shows an even stronger pattern; 65% of beech trees in diseased stands 
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show evidence of other kinds of damage whereas only 38% of beech trees in disease-free 

stands show evidence of damage. It is not possible to tell from these data alone if BBD is 

responsible for increasing beech susceptibility to other kinds of damage. It is certainly 

possible that beech trees that appear to be disease-free may be weakened by low-level 

infections invisible to the observer. Conversely, stands with a propensity toward other 

kinds of damage may be more susceptible to BBD infection. Detailed temporal analysis of 

changes in damage over time may distinguish between these possibilities. 

Higher damage indices have also been recorded on other tree species (notably, ash and 

basswood) in scale-infested plots than on the same tree species in plots without scale 

present (Figure 6). Again, it appears as if the presence of scale in the stand in some way 

compromises the health of other tree species. However, as we just noted, it is possible that 

trees in stands with a propensity for damage are in some way susceptible to scale. In this 

particular case, our previous years of sampling may provide an indication of what is taking 

place; in years 2001 through 2004, scale infestation was negatively associated with damage 

to other tree species, suggesting perhaps that declines in beech health had a positive 

impact on other species. This early result is not consistent with the hypothesis that 

damaged stands per se are in some way better for scale. Rather, we suggest that ongoing 

beech mortality after several years of infestation changes forest stand structure in a way 

that results in more damage to associated tree species. Detailed studies should be designed 

to investigate this phenomenon in more depth. 

Beech trees in stands infested with BBD show declines in all measures of vigor and canopy 

health (Figure 7). For example, DBH, crown density, and live crown ratio of beech trees all 

decline if stands are infested with BBD. In concert, measures of crown transparency and 

dieback increase with infestation (Figure 7). We should note, however, that the loss of 

severely infested beech trees from stands will leave behind those that have lower levels of 

infestation, reducing the apparent difference in canopy health between infested and un-

infested stands (dead trees are not included in measurements of canopy health). As a 

result, the differences shown in Figure 7 will greatly underestimate the effects of BBD on 

canopy health as mortality rates start to rise and severely infested trees are lost to 

mortality. We recommend that crown variables are always analyzed along with basal area 
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of living and dead trees to get a more representative picture of the status of a particular 

stand. 

It has  already been noted that the Scale Index will decrease over time in stands that are 

suffering significant mortality from BBD because the dead trees are no longer measured as 

part of the scale index (Figures 4 & 5, above). Similarly, declines in Scale Index between the 

2001, 2004 and 2007 samples are associated with an overall decrease in beech basal area 

(Table 3), and subsequently less host area for the scale to infest. Stands dominated by 

beech (> 20% basal area) are highly vulnerable to damage and exhibit an increase in beech 

dead basal area in plots with scale. The proportion of total dead beech basal area has 

increased drastically from 43% in 2004 to 59% in 2007. Areas with higher basal area 

(greater DBH and overall greater proportion of beech) have a higher scale index than those 

without. This is especially clear if large, old and/or decayed trees are abundant. As the 

beech trees are decimated (largely the greater DBH trees) and the scale level drops from 

high to low, there is a greater chance of recovery in the future, with some of the smaller 

diameter trees surviving the infestation and in time, growing to become more dominant 

trees. It is strongly recommend that future surveys measure the rate of beech recovery in 

areas with high mortality, especially where smaller diameter trees have withstood the 

killing front and have low scale cover. There may also be some trees that are resistant to 

the disease, as is suggested by the occurrence of plots with little to no scale, surrounded by 

high infestation areas (as witnessed in some areas of the LP). 

 

Future work 

Further sampling was completed of intensive and extensive plots during the 2008 field 

season. These data will be analyzed in the future to further monitor the spread and effects 

of BBD infestations, and will include a consideration of directionality of spread and its 

potential causes. Continued monitoring will be conducted by another Michigan research 

institution, as Dr. John Witter, the Primary Investigator at the University of Michigan, will 

not be able to complete the study. The continuation of this project is crucial, and offers the 

unique opportunity to study closely the aftermath effects of beech bark disease in 

Michigan’s forests, as the disease progresses.  
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Conclusions 

Beech trees are an integral part of northern hardwood forests, as a source of food for 

wildlife and of wood for furniture, although it’s most significant role is as a climax species. 

Beech-maple forests were once much more widespread across the United States, but forest 

clearing and fragmentation have reduced their cover. In most of the forested areas in the 

Eastern U.S. where beech is still prevalent, beech bark disease has become endemic. 

Evidence shows that the loss of large overstory beech changes the growth pattern of other 

species, such as a decline in the regeneration of sugar maples, ultimately affecting the 

structure and composition of these forests.   

Data collected for the 2007 stage of the Beech Bark Disease Monitoring and Impact 

Analysis System in the state of Michigan revealed beech scale infestations in numerously 

previously undetected areas, with several new areas of infestation found further west and 

north of the previous boundary. The contiguous nature of forested land in the Upper 

Peninsula favors the scale method of spread, leading to a more rapid increase in cover. In 

areas of heavy beech mortality, such as in Mason county (where Ludington State Park is 

located) and Chippewa county (specifically the Tahquamenon Falls State Park area), the 

understory is characterized by thickets of beech saplings that prevent regeneration of 

other tree species.  

Reduced average diameter of live beech trees in diseased plots indicates a shift of the 

disease pattern into the aftermath stage. The mean diameter of infected trees fell from 

31.1cm to 28.67 cm from 2004 to 2007. While the disease is slowing down the radial 

growth of infected trees, it is important to note that trends are mainly due to an increase in 

infection of smaller diameter trees as high mortality of older, larger diameter trees occurs.  

Beech bark disease presence and severity is very important in its effect on beech tree radial 

growth, but it is important to remember that numerous other factors are components of 

annual wood growth, such as the presence of other insects or diseases, inadequate nutrient 

supply, competition, available light levels, and weather conditions. Of these factors, the 

most important in terms of effect on annual radial growth is precipitation levels and 

average temperatures to which beech are exposed to in a given year (Fritts 1958, Tardif et 
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al 2001). Much of the Michigan had experienced levels of severe to extreme drought by the 

end of summer 2007, and in Michigan, this was particularly pronounced in the Upper 

Peninsula (NOAA report, August 2007). By the end of 2007, Marquette, Michigan had 

experienced its driest summer on record, receiving 7.20 inches of rain. The previous record 

was a total of 8.28 inches in May-August 1998. This reduced precipitation during the years 

prior to data collection on beech radial growth over the last seven years (the duration of 

the BBDMIAS project) may account for slower radial growth in recent years. 

Drought summer months, along with warmer winters has also likely contributed to the 

increase in scale intensity and subsequent mortality. The already weakened trees are more 

susceptible to attack from disease.  In areas of northern Michigan where the scale insect 

may have been limited by low winter temperature, the harsh conditions have given way to 

a milder climate, favoring the overwintering stage.  

Overall, negative effects on tree and stand health due to beech scale and BBD were visible 

throughout Michigan’s northern hardwood forests. Higher levels of beech mortality were 

positively correlated with stands with scale. Higher levels of crown dieback, poor crown 

transparencies, and higher levels of damage were also associated with the infected trees.   

Despite the research that has been done on beech bark disease, there is still a great deal 

unknown. The first sign of BBD infection is the “white wool” covering of the scale on the 

bark. However, Nectaria is more difficult to detect, and so better means of identifying and 

quantifying perithecia are sorely needed.  

In the forests in eastern North America where beech bark disease has passed into its 

aftermath stage, root sprouts from trees that have succumbed to beech snap (which occurs 

when rot has so heavily damaged the cambium that the weight of the tree causes it to snap 

somewhere along the bole) have become part of the overstory. The disease has, 

unfortunately killed off many of the large old trees that dotted the landscape.  However, 

some trees have been left uninfected, and tests have shown that there is a genetic 

resistance in some beech trees to the devastating effects of the disease. While it may not be 

practical to replant large forested areas via propagation, an effort should be made to plant 

small-size stands, in the near future, with these genetically BBD-resistant trees. Removal of 
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infected or susceptible trees from newly infested stands along the western front of the 

disease, and diligent monitoring to assure that the trees remain scale free, might be the 

best way to keep the disease isolated to present populations. It is realistic to say that the 

resources necessary to eliminate the disease from most heavily infested stands is not 

available, and so it will inevitably take its toll in these forests. 
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