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ABSTRACT

The hardness of manganese selenide (MnSe) was
determined up to 900°C (1650°F). Although harder than
MnSe at ambient temperatures, iron is softer than MnSe
at high temperatures. This accounts for the globular
shape of MnSe inclusions in free-machining steels. This
is in contrast with MnS inclusions which deform more than
the surrounding metal matrix. It represents a favorable
feature for the use of selenium in free-machining steels.
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Previous work by Chao, et a provided a comparison

between the hot-hardness values of MnS inclusions and unalloyed
ferrite in steel. Those data covered the temperature range of
20° to 960°C (Figure la). The data were interesting because
the relative hardnesses of the two phases have a significant

effect upon inclusion deformation and fracture.(2’3’4)

Sub-
sequent work by Riewal showed that the hardness of MnSe was
less temperature sensitive than MnS in the -70° to 135°C range.
Although softer than MnS at ambient temperatures (Figure 1lb),

an extrapolation of Riewald's data indicated to Aborn(6)

that
MnSe would be harder than MnS at steel-rolling temperatures.

He proposed this as an explanation for the more globular shape
of selenide inclusions than of sulfide inclusions in commercial
steels. While plausible, the authors of this note felt that
the extrapolation values should be replaced with experimental
data.

Hardness data were rerun for ferrite (Ferrovac-E) and
manganous sulfide (MnS) from 20° to 800°C., Data were also
obtained for manganous selenide (MnSe) from 20° to 900°C. The
present hot hardness testing apparatus utilized the same furnace

(1)

as Chao used. It was evacuated and backfilled with purified
argon to restrict sample oxidation. Titanium "getters" were
used in the furnace to scavenge any oxygen leakage. Improvements

were made in the load application. Specifically the Vickers



machine was replaced by a dead-weight load counter balance
over ball-bearing pulleys. Depending on the temperature, loads

were chosen between 1200 gms and 200 gms with sensitivities to

(7)

less than 1%. The hardness was calculated according to

1.85 L

d2

DPH =

where L is the load in kilograms, and 4 is the average length
of the diagonal of the impression in millimeters.

The results are shown in Figure 2. In general the data
corroborated the previous work by Chao, et al.(l). There is
a slight modification of the high temperature hardness of iron.
The current data are preferred in view of the insensitivity of
the Vickers machine used by Chao to the light loads required
for the higher temperatures. While there is some evidence that
larger loads reduce the calculated hardness values a few per-
cent, other unidentified variables are equally if not more
important.

Figure 3 shows the lines of central tendency for the hard-
nesses of ferrite, MnS and MnSe from the present data, plus
the o-y hardness shift detected by Chao. The crossover of the

(6)

MnS and MnSe curves predicted by Aborn was observed. Thus
his hypothesis still remains plausible, - specifically that the
globular selenide and the elongated sulfide inclusions shapes
are a consequence of the relative hardnesses of these two phases
compared to the hardness of the iron phase. Caution should be
used, however, in applying this conclusion to most steels since

selenium-bearing steels usually contain high chromium contents.

Kiessling(8) has shown that chromium affects the hardness of the



selenide phase, and of course, chromium will harden the metal

phases by solid solution.,
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. Fig, la, Hot-hardness curves by Chao(')
for MnS and &% -Fe,
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Fige Ib, Hardness a‘ues for Mn3e near

room temperature'™) compared to MnS.
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Fige 3. Comparative high-temperature
hardnesses of iron, MnSe, and Mn3

- based on data from this study plusthe
0= hardness differential of the pre=-

vious study.

These relative hardness-

es could account for the different
shapes of MnS and Mn3e inclusions in
hot=-rolled steel as discussed by

Abornt6),
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