
DISTRIBUTED ALGORITHMS BASED ON

FICTITIOUS PLAY FOR NEAR OPTIMAL

SEQUENTIAL DECISION MAKING

by

Esra Sisikoglu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Industrial and Operations Engineering)

in The University of Michigan
2009

Doctoral Committee:

Associate Professor Marina A. Epelman, Co-Chair
Professor Robert L. Smith, Co-Chair
Associate Professor Hyun-Soo Ahn
Assistant Professor Dushyant Sharma

c© Esra Sisikoglu 2009
All Rights Reserved

To my love, Mustafa

ii

ACKNOWLEDGEMENTS

I am heartily grateful to my academic advisors, Marina Epelman and Robert

Smith, for their encouragement and guidance from the beginning to the end of my

doctoral studies. Professor Epelman’s and Professor Smith’s energy and enthusiasm

for research had motivated me all these years. They are and will always be role

models for me through my academic career. I especially would like to thank both

of them for providing the financial support during my Ph.D. studies and helping

me to get a 50% Graduate Student Research Assistantship (GSRA) appointment

during my 4th year to help me concentrate on my research. I also would like to

thank them for supporting me on my decision to accept an adjunct position at the

University of Missouri in my last year. I am thankful to Professor Smith for signing

all the work permit paperwork for my internships. I also thank Professor Epelman

for nominating me for Rackham Graduate School travel grant and for lending me

her laptop so that we were able to continue our weekly meetings online in my last

year. I am grateful to both of my advisors for diligently reading my thesis and

going over my all presentations. I have learnt a great deal from their comments

and suggestions. Today, considering the last five years my life, I realize once again

how lucky I have been to have both Professor Epelman and Professor Smith as my

advisors and mentors.

I am also thankful to my committee members, Professor Hyun-Soo Ahn and Pro-

fessor Dushyant Sharma, for their insightful comments on my dissertation. I greatly

iii

appreciate Professor Ahn’s recommendation to look into unigraphs formed by the

induced Markov Chain from Markov Decision Processes and suggesting possible jour-

nals to submit our work. I also thank Professor Sharma for his insightful comments

on the computational complexity of the algorithms developed in my dissertation.

I would like to acknowledge National Science Foundation (NSF) as this work was

supported in part by grants CCF-0830092, CMMI-0422752 and CMMI-0244291. I

also would like to acknowledge the Graduate Student Instructor (GSI) support I

received from the Department of Industrial and Operations Engineering (IOE) and

the travel grant I received from Rackham Graduate School.

I am indebted to IOE staff in many ways. Tina Blay, not only helped me with

all the questions and problems I had in the last five years, but she also has been

the source of joy with her smiles. I remember how talking to her in the mornings

immediately changed my mood and made me smile. Matt Irelan helped me with all

the graduate school and work permit paperwork. His help during my last year surely

saved me several trips between Missouri and Michigan. Mary Winter helped me with

all the complications about my Research Assistantship (RA) support because of my

decision to move to another state in my last year. Wanda Dobberstein helped me

to process my grade for one of the classes I had taken for my Curricular Practical

Training (CPT). Liz Fisher and Nancy Murray processed all my time sheets even

when I was away and helped me to resolve the problems with my health insurance.

Mint Rahaman and Chris Konrad helped me with all my computer/technology re-

lated problems. Chris also helped me setup the conference room for my defense

presentation. Thank you all very much for your patience and support.

I would like to express my gratitude to Professor Occeña, Professor Noble and

Professor Klein from the University of Missouri for their support and encouragement.

iv

I especially thank Professor Occeña for being very understanding and accommodating

and agreeing to decrease my teaching load towards the end of my Ph.D. studies.

Without his help I would not be able to finish on time. I also thank the staff at the

University of Missouri, Sally Schwartz and Paula McDonald, for helping me and my

husband to adjust to our new life in Missouri and also for patiently helping us with

all the paperwork. Our conversations with Paula and her comforting smiles have

definitely decreased my stress level during my doctoral studies.

I owe my deepest gratitude to my parents, Sukran and Hasan Sisikoglu. I would

not be able to finish this adventure without their love, support and prayers. Every

week, I was looking forward to our phone conversations which gave me the inspiration

I needed the most. Mom and Dad: knowing that you were always with me and feeling

your constant support has been and will always be invaluable for me and words are

not sufficient to show my gratitude. I am also thankful to my brother Selman, sister-

in-law Esra and of course little Bertug for enriching my life. I am grateful to my

mother-in-law Kerime, father-in-law Mehmet and brother in laws Fatih and Mirac

for their prayers and support. I am grateful to all of them for welcoming me as if I

had been part of the family all my life and for supporting me during this journey.

Special thanks to Mirac for all the SMS messages he sent on my birthdays and on

our wedding anniversaries. He did not miss a single occasion so far.

I also would like to express my gratitude for my uncle Hadi Adanali. Following

his example, I decided to pursue a Ph.D. degree in US. His dedication to science

and his passion for teaching has been my inspiration. I also would like to thank him

for all the witty emails he sent me. I will never forget waiting for his emails and

impatiently reading them as I knew his emails would make me smile and change my

mood when I needed.

v

I am thankful to our wonderful friends Selen, Burak, Kubra, Serkan, Burcin and

Yasin for being our true “dost” and always being there for us. Our rafting trips are

surely among the unforgettable memories of my Ph.D. years. I also will never forget

the friendship of Burde, Melih, Yasemin, Mahmut, Tubanur and Seyda. Our paths

have crossed once in Ann Arbor and I sure hope they will cross again in the future.

I am also thankful to Irina with whom I shared a lot of memories as office mates, as

neighbors and as classmates. I will never forget all the wonderful time I spent with

Sarah, Shankara, Betzabe, Raul, Fernando, Eren, Blake, Tim, Stan, Ada, Archis,

Tara, John, Iva, Oben, Gayu, Reza, Damon, Shervin, Pierre and Joy. An extra

thanks to Shervin for being a mentor to me in my first semester of GSI experience.

I had to spend my last year away from these great friends; however, I was also lucky

to meet new great friends in Missouri: Nilufer, Muserref, Mehmet, Lale, Munevver,

Sebnem, Sinan and Ayse. Thank you all for your kindness and warmth. Muserref

Abla and Mehmet Abi, thank you very much for calling me every day before my

defense and for all your support and prayers.

The last but not the least, I feel indebted to our dear friends Suleyman and

Emel and their lovely daughter Zeynep for hosting us for one month in Ann Arbor

before my defense. I will never forget the dinners we prepared together, the Turkish

soap operas we watched and most importantly the long heart-warming conversations

we had during that month. I am also grateful to Suleyman for listening to my

defense presentation and making the suggestions which significantly improved my

presentation.

Finally, my love, the meaning of my life, my husband, Mustafa. Thank you

very much for always being there for me, for trusting me, for believing in me, for

supporting me, for teaching me to be patient and pious, for making my life joyful

vi

and rich, for making me feel loved, for cheering me up, for putting up with my

frustrations, for sparing me your shoulder every time I needed you, for holding my

hand and for promising to hold it forever. I love you.

vii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . x

CHAPTER

I. Introduction . 1

II. Sampled Fictitious Play Based Stochastic Search Algorithms for Dynamic
Programming Problems . 6

2.1 Introduction . 6
2.2 Problem Formulation . 10
2.3 Sampled Fictitious Play (SFP) Algorithm . 12

2.3.1 SFP Algorithm . 15
2.3.2 Convergence of SFP to a Nash equilibrium 17

2.4 Using SFP to Find an Optimal Solution . 19
2.4.1 Repeated Sampled Fictitious Play (RSFP) 20
2.4.2 An SFP Based Local Search (SFPLS) 24

2.5 Numerical Results . 26
2.6 Conclusions . 31

III. Application of RSFP and SFPLS to Traveling Salesman Problem 33

3.1 Introduction . 33
3.2 Traveling Salesman Problem . 33
3.3 Application of RSFP and SFPLS to TSP . 35
3.4 Conclusions . 41

IV. Sampled Fictitious Play Based Online Learning Algorithms for Markov
Decision Processes . 42

4.1 Introduction . 42
4.2 Notation and Assumptions . 48
4.3 SFP Based Learning Algorithm (SFPL) . 50

4.3.1 Outline of Algorithm SFPL . 52
4.4 Convergence of SFPL . 54
4.5 Numerical Results . 62

4.5.1 Q-Learning and SARSA . 62
4.5.2 Dynamic Location Problem . 64
4.5.3 Windy Gridworld . 68

viii

4.6 Conclusions . 74

V. Conclusions and Future Research Directions 76

5.1 Summary and Conclusions . 76
5.2 Future Research Directions . 78

5.2.1 Future Research Directions for the work in Chapter II 78
5.2.2 Future Research Directions for the work in Chapter IV 79

BIBLIOGRAPHY . 81

ix

LIST OF FIGURES

Figure

2.1 Acyclic Network Example . 12

2.2 Histogram of NE path lengths returned by SFP for an inventory control problem.
SFP is run 2000 times with random initial strategies. 20

2.3 An illustration for the proof of Lemma II.3. 23

2.4 An example to illustrate the number of iterations required for SFPLS to find a
shorter path than the current one. 26

2.5 Performance of RSFP and SFPLS on a 20 period DLSP. The algorithms are run
on the same problem 50 times with random initial strategies. 29

2.6 Histogram of solutions with objective values within 1% of the optimum returned
by RSFP and SFPLS on DLSP. Both algorithms are run 50 times with random
initial strategies. 30

2.7 Histogram of solutions with objective values within 1% of the optimum returned
by RSFP and SFPLS on DLSP network with random arc costs. Both algorithms
are run 30 times with random initial strategies. 31

3.1 Average performance of RSFP and SFPLS on a 15-city TSP. The algorithms are
run 15 times with random initial strategies. 35

3.2 Average performance of RSFP, modified RSFP with L = 1 and SFPLS on a 12-city
TSP. The algorithms are run 30 times with random initial strategies. 39

3.3 Average performance of RSFP with L = 1 and L = 5 on a 12-city TSP. The
algorithms are run 30 times with random initial strategies. 40

3.4 Average performance of modified RSFP with L = 1 and L = 5 on a 12-city TSP.
The algorithms are run 30 times with random initial strategies. 40

3.5 Histogram of solutions that are within 1% neighborhood of optimum returned by
RSFP, modified RSFP an SFPLS on DP network of 12-city TSP. All algorithms
are run 30 times with random initial strategies. 41

4.1 Comparison of the values returned by SFPL, Q-Learning and the optimal values of
MDP and MDPt (a) γ = 0.25, (b) γ = 0.50, (c) γ = 0.75, (d) γ = 0.9. 66

4.2 Comparison of difference of the values returned by SFPL, Q-Learning and the
optimal values of each state for (a) γ = 0.5, (b) γ = 0.75. 67

x

4.3 Windy GridWorld Problem. 69

4.4 The value estimates of the initial state S returned by SFPL, SARSA and by running
value iteration on the intermediate estimated system MDPt. The optimal value
under the true probabilities is also included for comparison. 71

4.5 Difference between the value estimate of the initial state S by SFPL and the optimal
values of the estimated system MDPt calculated using value iteration. 71

4.6 Absolute value difference of the final estimated values returned by SFPL (a) and
SARSA (b) and the optimal values under the true probability distribution. The
graphs are adapted from the code developed by John Weatherwax available online
at [46]. 72

4.7 The final policy returned by SFPL (a) and SARSA (b) (represented with black
arcs) vs. the optimal policy obtained using the values returned by value iteration
(represented with red arcs). 73

xi

CHAPTER I

Introduction

Development of the theory of Dynamic Programming (DP) started following the

period after World War II when it was realized that there were a large number of

practical problems that can be modeled as multistage (sequential) decision making

problems [11]. One important aspect of sequential decision making problems is that a

decision with a low immediate cost (i.e., the cost of the decision at the present time)

might lead to situations where decisions available in the future are costly. Therefore,

the decisions at different time periods cannot be viewed in isolation. DP methods

take the effect of current decisions on the future states of a system into account by

finding a decision at each time period that minimizes the sum of the immediate cost

and the “cost-to-go” (i.e., expected cost that will be accrued in the future) [12].

Well known examples of DP applications include inventory control [40], machine

replacement, resource allocation [11] and job scheduling [12]. DP techniques not only

break such complex problems into smaller and simpler subproblems but also make it

possible to model complex constraints and objective functions which would be hard

to handle with other optimization models such as linear programming [38]. Despite

all the advantages that DP techniques offer, computationally, they are not effective

on large-scale problems due to “curse of dimensionality.” Curse of dimensionality is

1

2

a term, first used by Bellman [9], that refers to the exponential increase in the state

space as the dimensionality of the problem increases. For example, an inventory con-

trol problem of a single product with storage capacity of K units can be represented

by a DP model with K × T states. However, the DP model of an inventory control

problem of N products will have O(KN × T) states. Powell extends the notion of

curse of dimensionality to include the growth of the state space, the outcome space

and the action space as the dimensionality of the problem increase and refers to it as

“three curses of dimensionality” [39]. As a result of the curse(s) of dimensionality,

the computational requirements to solve DP problems increases tremendously as the

dimensionality of the problem increases. In Chapter II of this thesis, we will discuss

this issue in greater detail.

DP models cover a wide of range of problems with different model characteris-

tics such as: discrete/continuous state space and decision space, discrete/continuous

time, finite/infinite time horizon or deterministic/stochastic problem data. Our

contribution in this well studied area is to design computationally efficient new al-

gorithms using game theory concepts for specific classes of large-scale DP problems.

We mainly focus on the following two subclasses of problems:

• Deterministic, discrete and finite time, large-scale DP problems.

• Stochastic, infinite horizon, discounted DP problems (also called Markov Deci-

sion Processes or MDPs).

The first subclass of problems have traditionally been solved with label correcting

algorithms such as Dijkstra’s Algorithm [20], which lose their effectiveness for large-

scale problems. We propose an alternative approach in Chapter II to find “good”

(if not optimal) solutions very quickly. In addition, the algorithms developed in

3

Chapter II are also applicable to problems in which the costs of decisions are not

readily available but can be obtained via complex calculations or simulations.

The second subclass of problems, namely MDPs, are studied in Chapter IV. The

small-scale MDPs can be effectively solved with methods such as Value Iteration

and Policy Iteration [13]. For large-scale and complex MDPs, several methods such

as Approximate Dynamic Programming [39] and Neuro-dynamic Programming [13]

have been proposed. Most of these methods, however, assume that the probability

distribution governing the random disturbance in an MDP problem is known. In

many practical applications this assumption may be invalid. The decision maker

may have a limited information about a system and may have to learn the system

dynamics through observation. Therefore, in addition to determining optimal deci-

sions, one needs to estimate the unknown parameters in the system. We achieve this

(i.e., simultaneously learn and optimize a system) by using game theory concepts.

We compare our approach with other approaches from the Reinforcement Learning

literature reviewed in Chapter IV.

The idea of using game theory concepts in an optimization framework is moti-

vated by the convergence results obtained for an algorithm called Fictitious Play

(FP). FP is a learning algorithm, at each step of which players compute their best

replies based on the assumption that their opponents’ decisions follow a probabil-

ity distribution in agreement with the historical frequency of their past decisions

[16]. FP has been proven to converge to Nash Equilibria [36] on identical interest

games [35]. Nash Equilibrium (NE) is a strategy from which none of the players

can unilaterally deviate and obtain a better payoff. By modeling an optimization

problem as a game (see Chapter II for details) and defining the objective function

of the optimization problem to be the identical payoff each player receives, it is easy

4

to see that the optimal solution of the optimization problem is also a NE of the

game. Therefore concepts from FP can be used to develop algorithms to find the

optimal solution of an optimization problem. This idea was first studied by Lambert

et al. for solving an optimization problem with box constraints [33]. To improve the

computational efficiency of FP, they implemented a sampling scheme and named this

modified algorithm Sampled Fictitious Play (SFP). The convergence results of SFP,

proven by Lambert et al. , and its successful applications to various problems such

as traffic routing [24], coordinated traffic signal control [19], manufacturing [6] and

network flow problems [23] are what motivated us to use a similar approach to solve

DP problems.

Our contribution in combining SFP with DP are two fold. First of all, we

provide several SFP based algorithms to quickly find good solutions for large-scale,

deterministic, finite horizon DP problems. Further, we show that our algorithms

converge to the optimal solution of the DP problem. We also present promising

empirical results on the Traveling Salesman Problem (see Chapter III) and provide

possible modifications that can improve the performance of the algorithms.

Our second contribution is in the field of Markov Decision Processes. We use SFP

concepts to design an efficient online learning algorithm that simultaneously learns

the system dynamics and finds the optimal solution of a given MDP. We prove

that the algorithm converges to the optimal solution and empirically show that the

convergence rate of our algorithm is less sensitive to the discount rate parameter

given in a problem (compared to other learning algorithms such as Q-Learning and

SARSA).

The dissertation is organized as follows: In Chapter II, we discuss the details of the

Fictitious Play and Sampled Fictitious Play algorithms and present our motivation

5

for designing SFP based algorithms to solve deterministic, discrete, large-scale DP

problems. In particular, we present two different algorithms, prove their convergence

to an optimal solution, and compare their performances on deterministic inventory

control problems. In Chapter III, we provide a brief literature review of the Traveling

Salesman Problem (TSP) and present the numerical results obtained from applying

the two algorithms developed in Chapter II to TSP. Furthermore, we discuss possible

modifications to improve the performance of these algorithms. In Chapter IV, we

provide a literature review of MDPs, with a focus on discounted, infinite horizon

problems and discuss how SFP can be applied to such problems. We also highlight

the differences between the algorithms that have been studied in the literature and

our algorithm. Following the presentation of the theoretical convergence results,

we provide several numerical experiments using the windy gridworld and dynamic

location problems as examples. Finally, in Chapter V we conclude and discuss future

research directions.

CHAPTER II

Sampled Fictitious Play Based Stochastic Search Algorithms
for Dynamic Programming Problems

2.1 Introduction

Sequential (or multi stage) decision problems have been extensively studied in

the Operations Research literature. Shortest path, knapsack and dynamic lot sizing

problems are just a few examples of sequential decision problems which have been

solved using dynamic programming techniques. Dynamic programming is a useful

mathematical technique for making a sequence of interrelated decisions. The main

advantage of dynamic programming is that it divides a large problem into smaller

subproblems which are easier to solve. However, due to the curse of dimensionality,

a phenomenon first described by Bellman [9], the practical applications of dynamic

programming are somewhat limited; they involve certain problems in which the cost-

to-go function has a simple analytical form or problems with a manageable state space

[45]. To overcome this problem, we propose new algorithms based on concepts of

Fictitious Play (FP) and Game Theory.

Fictitious Play is an iterative procedure designed to mimic the behavior of players

engaged in a repeated game. At each step of SFP, players compute their best replies

based on the assumption that their opponents’ decisions follow a probability distribu-

tion in agreement with the historical frequency of their past decisions [16]. Monderer

6

7

et al. showed that historical frequencies of decisions made by players in Fictitious

Play converge to Nash equilibrium for identical interest games [35]. Lambert et al.

extended the work of Monderer et al. by proving the convergence of Sampled Ficti-

tious Play (SFP) in which players compute their best replies to a set of strategies

they sample from the histories of prior plays [33].

Sampled Fictitious Play algorithms have been successfully applied to several large-

scale optimization problems such as computing optimal routings in a dynamic traffic

network [24], finding efficient coordinated signal timing plans for large number of

traffic signals [19], finding the optimal decisions in a manufacturing system [6] and

optimization in network flow problems [23]. In these examples, the proposed SFP

based algorithms are designed to solve a specific optimization problem. However, in

this chapter, we use SFP to provide a general framework to solve any generic problem

that can be modeled as a DP. Such problems arise in many important contexts

such as resource allocation [20], production scheduling [30], vehicle routing [34] and

equipment replacement [8], [7]. Therefore, our algorithms can be used effectively to

solve a large variety of problems.

In order to apply equilibrium concepts of Game Theory and Fictitious Play to

DP problems, we first need to define players, actions, and payoff/cost parameters

of a game that represents the DP problem under consideration. In this chapter we

concentrate on discrete DP problems that can be represented as a network such that

nodes and arcs correspond to states and decisions available in each state, respectively.

Moreover, the length of each arc is defined to be the cost/payoff of the decision it

represents. We define an identical payoff game on this network assuming the players

and actions available to each player are represented by nodes and arcs emanating

from each node, respectively. The identical payoff/cost that players receive by play-

8

ing a certain action is the total length of the path that is formed by the arcs that

correspond to the actions of all players. We introduce the concept of local optimal

solution of a DP as the collection of actions that form an equilibrium solution of the

game. Equilibrium of a game, a notion introduced by Nash [36], is the collection of

actions corresponding to each player such that no player has incentive to unilaterally

deviate from his action, given the actions of the other players. Based on this defi-

nition, it is easy to see that the globally optimal solution of the DP network is also

a Nash equilibrium of the defined identical payoff game. Therefore, in theory, one

can enumerate all the local optimal solutions of DP network and identify the glob-

ally optimal solutions. In this chapter we propose two algorithms called Repeated

Sampled Fictitious Play (RSFP) and Sampled Fictitious Play Based Local Search

(SFPLS) that find the globally optimal solutions. RSFP identifies a globally optimal

solution by intelligently enumerating local optimal solutions such that in each run

an equilibrium point with the same or lower objective value (higher objective value

if it is maximization problem) then the current solution is identified. SFPLS, on the

other hand, is a modified version of RSFP and it finds the optimal solution without

identifying the local optimal solutions. In the remainder of the chapter we will use

the term “action” for the decision of a single player and the term “strategy” to refer

to the collection of actions of all players.

The convergence of SFP algorithms to a globally optimal solution on staged DP

networks was first analyzed by Ghate et al [26]. They designed an SFP based al-

gorithm in which the players have the flexibility of sampling from their set of all

feasible actions instead of just sampling from their history of past plays, with a pos-

itive probability. As a result, they have proved that their SFP algorithm converges

to a globally optimal solution with probability one.

9

Our approach differs from that of Ghate et al in the following ways:

1. We restrict players to sample only from their history of past plays. In doing

so, we aim at identifying the Nash Equilibrium (local optimal) strategies very

quickly.

2. We use a multi-start approach in which the SFP algorithm is restarted with

different initial strategies, whereas Ghate et al. ’s algorithm finds globally opti-

mal strategies in one run. By restarting the SFP, we obtain “improving” local

optimal strategies which eventually converge to the globally optimal solution.

Our motivations for applying SFP based algorithms to large-scale DP problems

are as follows:

• SFP does not depend on the structure of the DP network or the type of the

objective function. Therefore, such algorithms can be used for solving black-box

optimization problems that require simulation of a system or computationally

intensive calculations to evaluate the value (or cost) of different decisions.

• With an SFP based approach, improving solutions are obtained through rela-

tively simple best reply calculations. Therefore, instead of using complex algo-

rithms requiring intensive calculations, we aim at finding the solutions that are

close to the optimum via simpler (and therefore faster) calculations. Moreover,

these calculations can easily be parallelized and therefore the running time of

these algorithms can be significantly reduced.

• The best reply calculations of SFP algorithms only require the knowledge of a

small portion of the system. For example, to calculate the best reply for a player

only the strategies of the relevant players need to be known. Since SFP based

10

algorithms do not require the knowledge of the entire system initially, they can

be easily designed to optimize and learn (or discover) the system simultaneously.

• In SFP, players calculate best replies based on their beliefs about what other

players are playing. These beliefs are formed using the historical data on the

previous observations in the system. Therefore, our approach can be extended

to solve stochastic DP problems by generating the beliefs that take into account

the randomness within the system.

The chapter is organized as follows. In the next section the basic problem is

introduced and notation is defined. In Section 2.3 the SFP algorithm is formally

defined and then in Section 2.4 two new algorithms that use SFP to find globally

optimal solutions are presented. Finally, numerical results are discussed in Section

2.5. Section 2.6 concludes the chapter.

2.2 Problem Formulation

We first present the notation and basic problem formulation:

• (N ,A) is a directed acyclic network, where

– N is the set of nodes and n = |N | <∞ is the number of nodes, and

– A is the set of arcs.

• If there exists an arc from node i to node j, we denote it by the ordered pair

(i, j). That is,

A ≡ {(i, j) : i, j ∈ N and ∃ an arc from node i to node j}.

• For a node i ∈ N , Ai is the set of arcs emanating from that node:

Ai ≡ {(i, j) : j ∈ N , (i, j) ∈ A}.

11

• cij is the cost of the arc (i, j) ∈ A.

• We assume, without loss of generality, that there is a unique root node, denoted

by r ∈ N : {i ∈ N : (i, r) ∈ A} = ∅.

• Nl is the set of leaves. That is,

Nl ≡ {i : i ∈ N and Ai = ∅}.

• Connectivity Assumption: There exists a sequence of nodes that connects

the root node to any other node in the network (N ,A), i.e. ∃(r, i1, . . . , im, j), ∀j ∈

N such that,

– m ∈ Z+

– (r, i1), (ik−1, ik) and (im, j) ∈ A, ∀k = 2, . . . ,m.

• A path is a sequence of nodes, starting with the root node r and ending at one

of the leaves, of the form p = (i1, i2, . . . , im), where

– m is some positive integer specific to each path,

– there exist an arc (ik−1, ik) ∈ A for k = 2, 3, . . . ,m, and

– i1 = r and im ∈ Nl.

Since in this chapter we consider directed acyclic networks, root node r exists,

Nl 6= ∅ and nodes in a path are not repeated. In the remainder of the chapter,

we use the term “path” to refer to “directed path”. Therefore, the sequence of

nodes in a path is sufficient to define the path, and this sequence also provides

the information on the sequence of arcs that form the path.

• P is the set of all paths.

12

1

2

3

4 7

6

5

8

c12 = 3

c14 = 7

c24 = 5

c13 = 2
c34 = 1

c47 = 2

c26 = 1

c68 = 8
c67 = 4

c78 = 3

c58 = 5

c27 = 4

c35 = 5

Figure 2.1: Acyclic Network Example

• The cost of a path p = (i1, i2, . . . , im) is given by

c(p) =
m∑
k=2

cik−1ik .

Finding the optimal solution on a deterministic, discrete DP network can be viewed

as a deterministic shortest-path problem on a finite acyclic directed network which

can be formulated as:

min
p

c(p)

s.t. p ∈ P . (2.1)

2.3 Sampled Fictitious Play (SFP) Algorithm

The shortest-path problem on an acyclic network described above can be viewed

as a strategic game with identical payoff by considering the nodes as players and

the arcs emanating from each node as the actions available to that player. In this

context, N represents the set of players and Ai represents the set of feasible actions

available to player i ∈ N .

Let ai ≡ (i, j) ∈ Ai denote an action played i.e., arc chosen, by player i ∈ N . Let

S = (a1, a2, . . . , an) represent an n-tuple of actions played by all players. S defines a

unique path p ∈ P from the root node r to one of the leaves due to the connectivity

13

assumption [26]. We define the negative of the cost of this path, c(p), to be the

identical payoff 1 that each player receives. Therefore, the payoff player i receives by

playing the action ai depends not only on ai but also the actions played by all other

players.

For example, Figure 2.1 shows an acyclic network with 8 nodes/players. The cost

of each arc/action is shown next to it. Node 1 is the unique root node and node 8

is the only leaf node of the network. The red arcs in the figure represent the actions

played by each player. Note that, the actions played by players 1, 2 and 7 define a

unique path from the root node 1 to the leaf node 8. The cost of this path is 10,

which is the payoff that all players including ones not on this path receive.

In this chapter, we analyze a Sampled Fictitious Play (SFP) algorithm for iden-

tifying the Nash equilibrium (NE) strategies of the identical payoff game described

above. A NE strategy is a strategy such that such that no player can unilaterally

switch to another action and obtain a lower cost. In other words, no improvement

can be obtained via local changes. Therefore, we refer to a NE strategy as a local

optimal solution of the underlying shortest-path problem. On the example in Figure

2.1, the red arcs represent a strategy that forms a Nash equilibrium with a payoff of

10. If player 1 deviates and plays (1,3) or (1,4), the cost of the path will increase to

12. Thus, player 1 cannot unilaterally deviate and obtain a lower payoff. Since this is

true for all other players, the strategy represented by red arcs is a Nash equilibrium.

It is important to note that a local optimal strategy is not necessarily globally opti-

mal. For example, in Figure 2.1, the global optimal path with a cost of 8 is formed

by the arcs (1,3), (3,4), (4,7) and (7,8).

1In this chapter, we set up the optimization problem to minimize the cost of the path to be consistent with
the standard “shortest-path” problem, however, in the game theory literature the players maximize the payoff they
receive. To be consistent with the game theory terminology we defined the negative of the path length to be the
payoff of the game defined on the network.

14

Each iteration of SFP Algorithm is composed of sampling an action, calculating

a best reply and updating the history for each player. At the beginning of each iter-

ation all players sample an action from their corresponding histories. As mentioned

before, the list of sampled actions (i.e., arcs) defines a path. It is important to

differentiate between on-the-path and off-the-path players, since the arcs selected by

the latter do not contribute to the identical payoff (the path length) of the game.

Therefore, assuming everybody is playing the action they sampled at the beginning

of an iteration, on-the-path players calculate their best replies and these best reply

actions are added to their history of past plays. Off-the-path players, on the other

hand, do not make any best reply calculations and their histories are updated with

the latest entry from their histories. In other words, since they are indifferent to

the action they play, the action they played the last time they were on a path is

chosen as the best reply for them. Finally, if the history size of any player exceeds

a predefined fixed value, say L, then the earliest entry in the history is deleted. As

we will explain in the subsequent sections, a fixed finite history size is necessary to

prove the convergence of the algorithm.

The following notation is used to describe the algorithm:

• xki = (i, j) ∈ Ai is the action sampled by player i in iteration k.

• Sk = (xk1, x
k
2, . . . , x

k
n) is the n-tuple of actions sampled by all players in iteration

k.

• p(Sk) = (ik1, i
k
2, . . . i

k
m(k)) is the sequence of nodes that form the unique path

defined by Sk. The components of p(Sk) are referred to as on-the-path players.

For example, in Figure 2.1, if the red arcs are the sampled actions, then the

players 1, 2, 7 and 8 are the on-the-path players, whereas the players 3, 4, 5

15

and 6 are the off-the-path players. In an abuse of notation, we use i ∈ p(Sk) to

indicate the player i is on the path formed by Sk.

• yki = (i, j) ∈ Ai is the action played by player i in iteration k, i.e., the best

reply.

• Hk
i is the history of past plays of player i at iteration k.

• L is the size of history kept in the memory for each player.

In the next two sections, we formally define the SFP algorithm and prove that

it converges to a NE, and therefore to a locally optimal solution of the underlying

shortest-path problem.

2.3.1 SFP Algorithm

Initialization

• Set k ← 0

• Randomly sample an action x0
i ∈ Ai for each player i.

• Set y0
i = x0

i ∀i ∈ N and add it to the history, i.e., H1
i = [y0

i] (i.e., the histories

of all players are initialized with a random action).

• Set k ← k + 1.

Iteration k ≥ 1

Step 1 Sample:

Step 1a. For each player i, sample an action xki ∈ Ai from the history Hk
i

uniformly at random.

Step 1b. Set Sk = (xk1, x
k
2, . . . , x

k
n).

16

Step 1c. Identify the unique path, p(Sk) = (ik1, i
k
2, . . . , i

k
m), defined by Sk.

Step 2 Play:

For each player i,

• If i ∈ p(Sk), player i plays the best reply strategy calculated by

yki = arg min
x∈Ai

c(xk1, x
k
2, . . . , x

k
i−1, x, x

k
i+1, . . . , x

k
n).

If there are multiple actions that minimize the function above (i.e., multiple

best replies), choose one according to a lexicographic tie breaking rule. To

elaborate further, suppose that all the arcs (or actions) are indexed either

arbitrarily or according to a certain rule. If there are two or more actions

which result in the same minimum cost, then choose the one with lowest

index number.

• If i /∈ p(Sk), player i plays the last entry in his history, i.e.,

yki = yk−1
i .

Step 3 Update History:

• Add the played action to the history: Hk+1
i = [Hk

i ; y
k
i].2

Step 4 Termination Criteria:

• If 1 ≤ k ≤ L and y0
i = y1

i = y2
i = . . . = yki for all i ∈ N , then terminate.

• If k ≥ L + 1 and yk−Li = yk−L+1
i = yk−L+2

i = . . . = yki for all i ∈ N , then

terminate.

• Otherwise

– If the size of Hk+1
i > L, then delete the earliest entry of Hk+1

i .

2[Hki ; ·] denotes the concatenation function.

17

– Set k ← k + 1

– Go to Step 1.

2.3.2 Convergence of SFP to a Nash equilibrium

Without loss of generality, we assume that the network (N ,A) has a unique sink

node and that the nodes in the network are numbered in such a way that, if an arc

from node i to node j exists then j > i. Under these assumptions, node n is the

unique sink node and node n−1 is connected only to node n. Thus, player n−1 has

only one feasible action and it always samples and plays this action. For example, in

Figure 2.1, player 7 will always sample and play the action represented by arc (7, 8).

Below, we prove that the SFP algorithm converges to a NE in finite time.

Theorem II.1. There exists an n-tuple of actions S∗ = (a∗1, a
∗
2, . . . , a

∗
n) and M ∈ Z+,

M <∞ such that

Prob{xki = a∗i } = 1 ∀k ≥M, ∀i = 1, 2, . . . , n,

and the n-tuple of actions S∗ = (a∗1, a
∗
2, . . . , a

∗
n) is a Nash equilibrium (i.e., a local

optimal solution) of the game defined on the acyclic network (N ,A) that represents

a finite horizon DP problem.

Proof. At the sampling step of the SFP algorithm (Step 1), a sample is drawn from

the histories of players, Hk
i , i = 1, 2, . . . , n. Therefore, to prove the first part of the

theorem, it is sufficient to show that ∃M <∞ such that:

Prob{Hk
i = [a∗i , . . . , a

∗
i]} = 1, ∀k ≥M, ∀i = 1, . . . , n. (2.2)

Suppose an infinite sequence of actions for each player i, denoted by Ti, is obtained

by running the SFP indefinitely without the termination criteria. Since player n− 1

18

always plays the only action available to him, we have

Tn−1 = (y0
n−1, y

0
n−1, . . .) (2.3)

Hk
n−1 = [y0

n−1, . . . , y
0
n−1] (2.4)

where y0
n−1 = (n− 1, n). Thus letting a∗n−1 = y0

n−1,

Prob{Hk
n−1 = [a∗n−1, a

∗
n−1, . . . , a

∗
n−1]} = 1, ∀k ≥Mn−1 = L

Now assume that ∃Mi <∞ such that,

Prob{Hk
i = [a∗i , . . . , a

∗
i]} = 1, ∀k ≥Mi, ∀i = j + 1, . . . , n.

This implies that the actions sampled by the players j + 1, j + 2, . . . , n will be fixed

after iteration M ′ = max{Mj+1,Mj+2, . . . ,Mn−1}. Then, one of the following state-

ments holds for player j:

Case 1: player j is never on a sampled path after iteration M ′ and he plays the

last entry in his history for all iterations k ≥M ′,

Case 2: player j becomes on-the-path for the first time in an iteration k′ ≥ M ′,

he plays the best reply action, denoted by āj, to the (fixed) strategies of players

j + 1, j + 2, . . . , n, in all iterations k ≥ k′.

Therefore, the following holds for the Tj:

Tj =


(yM

′−1
j , yM

′−1
j , . . .) if player j /∈ p(Sk) ∀k ≥M ′

(yM
′−1

j , yM
′−1

j , . . . , āj, āj, . . .) otherwise

This implies:

Prob{Hk
j = [a∗j , . . . , a

∗
j]} = 1, ∀k ≥Mj

where a∗j = yM
′−1

j and Mj = M ′ + L or a∗j = āj and Mj = k′ + L.

19

Therefore, by induction, theorem holds for all players 1, . . . , n with

M = max{M1,M2, . . .Mn−1}.

This proves the first part of the theorem. To prove the second part, note that

equation (2.2) implies ∃M ∈ Z+ and ∃S∗ = (a∗1, . . . , a
∗
n) such that,

Prob{xki = a∗i } = 1, k ≥M ∀i = 1 . . . n

which in turn implies

Prob{yki = a∗i } = 1, k ≥M ∀i = 1 . . . n.

Thus, at iteration M +L+ 1 every player i will sample and play the action a∗i . This

implies that a∗i is the best reply of player i when all other players play a∗j , j 6= i,

thus player i cannot obtain a lower cost strategy by unilaterally deviating from the

action a∗i and this is true for all players. Therefore, S∗ is a Nash equilibrium.

Note that, in iterations k ≥ M + L + 1 all players sample and play the same

strategy. Thus, the algorithm can be terminated in finite time.

2.4 Using SFP to Find an Optimal Solution

A DP network may have many Nash Equilibrium strategies, the path lengths of

which are not necessarily close to the optimal path length. One way to improve

the quality of solutions found by SFP is to run SFP several times with randomly

initialized strategies and identify the “good” NEs. Figure 2.2 shows the histogram

of the equilibrium strategies returned by the SFP algorithm for an inventory control

problem, the details of which will be given in section 2.5, by restarting the algorithm

with random strategies 2000 times.

As it can be seen from the histogram in Figure 2.2, in many cases a NE is far from

the optimal solution as measured by the objective function value. Large number of

20

Figure 2.2: Histogram of NE path lengths returned by SFP for an inventory control problem. SFP
is run 2000 times with random initial strategies.

NEs makes it difficult to identify the optimal solution by enumerating all NEs. In

the next section, we show how the SFP algorithm can be recursively used to learn

the dynamics of the problem and find solutions that are closer to the optimum.

2.4.1 Repeated Sampled Fictitious Play (RSFP)

In this section, we develop an algorithm referred to as Repeated Sampled Ficti-

tious Play (RSFP) that runs SFP in a repeated fashion and uses the information

gathered from each SFP run in the subsequent iterations in order to find NEs with

shorter path lengths than the ones discovered in previous iterations. Note that, each

iteration of RSFP is a full run of SFP.

In the initialization phase of RSFP (i.e., the first run of SFP), a NE is obtained by

running SFP with randomly initialized set of actions. Next, on-the-path and off-the-

21

path players from this NE are identified. In the iterations following the initialization

phase (i.e., the subsequent SFP runs), an SFP algorithm is run with initial strategies

determined as follows:

• If a player is on-the-path in the NE from the previous iteration, add his action

to the n-tuple of initial actions.

• If a player is off-the-path in the NE from the previous iteration, randomly sample

an action for this player and add this sampled action to the n-tuple of the initial

actions.

Once the initial strategy is determined, regular steps of SFP are carried out. Intu-

itively, RSFP tries to find a NE with a shorter path length by improving the previous

one via best reply calculations.

The following notation is used in the definition of RSFP:

• E t is the NE returned at the end of iteration t.

• p(E t) is the list of players that are on-the-path defined by the equilibrium strat-

egy E t.

• E t(i) denotes the action of player i in E t.

RSFP Algorithm

Initialization:

• Randomly sample an action xi ∈ Ai for each player i.

• Run SFP with the randomly sampled actions and obtain a NE strategy, denoted

by E0.

• Set t← 1

22

Iteration t > 0:

Step 1 Initialize S as follows:

For each player i,

• If i ∈ p(E t−1), S(i) = E t−1(i).

• If i /∈ p(E t−1), S(i) = xi, where xi is a randomly sampled action from Ai

Step 2 Run SFP with the initial strategy S to obtain a NE strategy E t.

Step 3 Set t← t+ 1, and go to Step 1.

Convergence of RSFP to an Optimal Solution

In this section, we prove that RSFP converges to an optimal solution when the

history size L used in each SFP run is 1.

Lemma II.2. When L = 1, c(p(E t)) ≥ c(p(E t+1)), ∀t.

Proof. When L = 1, in each iteration of SFP, players calculate a best reply to the

most recent actions played by all other players. Thus, in each SFP run of RSFP a

new NE is obtained only when it has shorter path length than the previous one, or

it has the same length. The latter may happen if one of the players deviates to an

action with a lower index (due to lexicographic tie breaking rule) even though the

path length is the same.

Lemma II.2 shows that RSFP will either improve or stall in each SFP run. Next,

we prove that if the current NE is not globally optimal, RSFP will eventually find a

better NE.

Lemma II.3. Let S = {s1, s2, . . . , sn} be a set of actions and p(S) be the list of on-

the-path players defined by S. Also let Sp(S) denote the actions from S corresponding

23

Figure 2.3: An illustration for the proof of Lemma II.3.

to on-the-path players. If c(p(S)) is not optimal, then there exists a list of actions

for off-the-path players, denoted by S ′N\p(S) = {s′j|j /∈ p(S)}, such that the best reply

of at least one of the on-the-path players to the strategy Sp(S) ∪ S ′N\p(S) is to deviate

to obtain a strictly better (shorter) path.

Proof. Let S∗ = {a∗1, a∗2, . . . , a∗n} be an n-tuple of strategies such that c(p(S∗)) <

c(p(S)). Select two consecutive players u and v (u < v) in p(S) ∩ p(S∗) such that

au 6= a∗u and the length of the corresponding sub-path between u and v in S∗ is

strictly shorter than that of S (see Figure 2.3). Note that such two players exist

since the two paths intersect at root and sink nodes and one of the paths is strictly

shorter. Construct S̄ = (ā1, . . . , ān), where

āj =


aj if j ∈ p(S),

a∗j otherwise.

By construction, when best replying to S̄, player u will deviate from his current

action au to action a∗u (or an even better one) to obtain a strictly shorter path.

Theorem II.4. With L = 1 in each SFP run, RSFP will converge to an optimal

solution in finite time with probability one on finite horizon DP problems.

Proof. By lemmas II.2 and II.3, there is a strictly positive probability that in each

24

of the SFP runs of RSFP on-the-path players will deviate to obtain a shorter path

length unless the optimal solution is already found. In addition, the path lengths

returned in each SFP run are monotone non-increasing, i.e., either shorter than or

the same as the path length from the previous iteration. Since there are finitely

many paths in finite horizon problems, RSFP will converge to an optimal solution

in finite time with probability one.

To show that RSFP converges to the optimal solution in finite time we used the

monotonicity of the path lengths returned by SFP when the history size L = 1. If

the history size L > 1, the monotonicity property no longer applies. However, the

numerical experiments suggest that even when L > 1, the RSFP converges to an

optimal solution.

2.4.2 An SFP Based Local Search (SFPLS)

Like any other search algorithm, RSFP has to explore the entire feasible set in

order to confirm that it has found an optimal solution. The randomization between

SFP runs and sampling from the history in each SFP run provide the necessary

exploration. On the other hand, RSFP also has to use exploitation to reach its

goal rapidly, which is achieved through best reply calculations. Each SFP run uses

exploitation until it finds a local optimal solution (a NE strategy), and it is beneficial

to spend time and effort in this fashion to find the local optimal solutions if the

problem in consideration only has a few of them. However, for problems with a very

large number of local optimal solutions, it might be undesirable to spend resources on

identifying the local optimal solutions that may not be close to the optimal solution.

Therefore, we also develop a slightly different version of RSFP called the SFP Based

Local Search Algorithm (SFPLS), which instead of running a full SFP in each run,

25

randomizes actions of off-the-path players immediately after best reply calculations

are made. In other words, we combine best-reply calculations and randomization of

actions in each iteration of SFP instead of running a full SFP and identifying local

optimal solutions.

SFP Based Local Search Algorithm

Initialization:

• Randomly sample an action xi ∈ Ai for each player i.

• Set S0 = (x0
1, x

0
2, . . . , x

0
n)

• k ← 1

Iteration t:

Step 1 Best Reply: Calculate best reply of on-the-path players:

yti = arg min
x∈Ai

c((xt1, x
t
2, . . . , x

t
i−1, x, x

t
i+1, . . . , x

t
n)), ∀i ∈ p(St−1).

Step 2 Randomize: Sample a random action yti ∈ Ai for all off-the-path players.

Step 3 Set St = (yti , . . . , y
t
n).

Step 4 t← t+ 1, go to Step 1.

The convergence proof of SFPLS is identical to that of RSFP algorithm and

therefore omitted.

As explained above, in each iteration of SFPLS, the off-the-path players randomly

sample an action from their set of feasible actions in search for a shorter path than the

current one. Since the samples are independent of the ones in previous iterations,

the worst case bound on the number of iterations required to find a shorter path

would be close to that of a pure random search algorithm. For example, consider the

26

1

2 5

3

4

6

7

8

9

10

11

2 2

22

1

1

1

1

10

10 10 10

10 10

10

10

Figure 2.4: An example to illustrate the number of iterations required for SFPLS to find a shorter
path than the current one.

network given in Figure 2.4. Suppose that the red arcs represent the path formed

by the initial set of actions. The length of this path is 8 units. The blue arcs

on the network represent the only path that is shorter than the initial (red) path.

Note that, SFPLS can successfully identify this path only if the players 4, 7 and 10

sample the blue arcs. Since the samples are chosen from the entire set of feasible

strategies, the number of iterations required to identify the blue path would be close

to a pure random search. In addition, note that in RSFP off-the-path players sample

random strategies once the algorithm is trapped at a local optimal solution (i.e.,

NE). Therefore, the example in Figure 2.4 also illustrates the number of SFP runs

RSFP can take to find a NE with shorter path length. Due to these observations

we are not going to pursue worst-case convergence rate analysis, but rather compare

the algorithms based on their empirical performance.

2.5 Numerical Results

We use the classical dynamic lot sizing problem (DLSP) to test the performance

of the algorithms developed in previous sections. DLSP is the problem of finding a

schedule of order quantities (or lot sizes) to satisfy a given demand in each period

while minimizing the sum of fixed and variable production and inventory holding

costs for a planning horizon of N periods [21]. Algorithms to solve this problem

27

has been studied under several different assumptions. Federgruen et al. developed

an algorithm to solve the general model with n periods in O(n log n) time and also

described an O(n) time algorithm for models with nondecreasing setup costs and also

for models where in each interval of time per unit order cost increases by less than the

cost of carrying a unit in stock [21]. Ahuja et al. also studied capacitated dynamic lot

sizing problems without setup costs. They used successive shortest-path algorithms

for minimum-cost flow problems to solve dynamic lot sizing problem in O(n log n)

time [2]. In these papers, the authors used the structure of the problem to quickly find

the optimal solutions; however, our aim is to model the problem without exploiting

the structural properties and apply our algorithms on the network obtained from

this model. We formulate DLSP within a dynamic programming (DP) framework by

defining the states to be the tuple (s, Is), where s and Is denote the period and the

inventory level at the beginning of that period, respectively. Optimal value function

f(s, Is) of the DP recursion can be written as:

f(s, Is) = min
(ds−Is)+≤xs≤

∑N
j=s dj

{cs1{xs>0} + hs(Is + xs − ds) + psxs

+f(s+ 1, Is + xs − ds)}

for s = 1, . . . , N − 1 and Is = 0, . . . ,
N∑
j=s

dj

with terminal condition:

f(N, IN) = cN + pN(dN − IN) for IN = 0, . . . , δN ,

where

• ds = demand in period s

• cs = fixed cost of production in period s

• ps = variable cost per unit of production in period s

28

• hs = cost of carrying a unit of inventory during period s

• xs = decision variable that denotes amount of production in period s.

Random data for the test problems are generated using the first order autoregres-

sive equations proposed in [21] to generate random data. Specifically, the following

equations are used:

d1 = ed1, c1 = ec1, p1 = ep1, h1 = eh1

and for s > 1:

ds = αds−1 + (1− α)eds,

cs = αcs−1 + (1− α)ecs,

ps = αps−1 + (1− α)eps,

hs = αhs−1 + (1− α)ehs ,

where the random variables e
(.)
s , s = 1 . . . N , are independent and uniformly dis-

tributed on the interval [1, 5] and α ∈ [0, 1] represents the correlation between peri-

ods. Note that α = 0 corresponds to i.i.d. data in each period and α = 1 results in

constant values over time.

Random data generated for a 20 period DLSP resulted in a DP network with

approximately 400 nodes. We ran RSFP and SFPLS on this problem 50 times with

random initial strategies. The results are shown in Figure 2.5. Figures 2.5(a) and

2.5(b) are obtained with the same data, where Figure 2.5(b) is the zoomed in version

of Figure 2.5(a). The magenta and blue lines in Figure 2.5 show the change in percent

distance between incumbent solution and the optimal solution for the SFPLS and

RSFP, respectively. The percent distance is calculated by

incumbent value - optimal value

optimal value
.

29

(a) (b)

Figure 2.5: Performance of RSFP and SFPLS on a 20 period DLSP. The algorithms are run on the
same problem 50 times with random initial strategies.

As can be seen in Figure 2.5, while both algorithms take several minutes to find the

optimal solution, they can identify good (but not necessarily optimal) solutions very

quickly.

During the experiments, CPU times were recorded when a solution with objective

value within 1% of the optimal value was identified and the results are presented in

Figure 2.6. As can be seen in Figure 2.6, 90% of SFPLS runs identified a solution

within 1% of the optimal in less than 10 seconds. On the other hand, only 30% of

RSFP runs found a solution within 1% of the optimal in less than 10 seconds. Note

that each run of RSFP and SFPLS is started with a randomly generated solution.

Therefore, these results also show the benefit of using our algorithms compared to

randomly searching the feasible region.

The numerical results obtained using DLSP suggest that SFPLS performs better

than RSFP on the test problems. One possible explanation is that RSFP aims

to identify the best Nash Equilibrium strategy by identifying a better NE than

the current one in each iteration. However, the network in consideration has large

30

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

45

Time (sec.)

N
um

be
r

of
 R

un
s

SFP Based Local Search
RSFP

Figure 2.6: Histogram of solutions with objective values within 1% of the optimum returned by
RSFP and SFPLS on DLSP. Both algorithms are run 50 times with random initial
strategies.

number of NEs. (The histogram in Figure 2.2 is obtained using the same problem

and it gives an idea of the number of NEs on the network.) On the other hand,

SFPLS is searching for better solutions, not necessarily for equilibrium strategies,

and achieves its goal faster. Therefore, on a network with large number of local

optimal solutions, a more greedy approach such as SFPLS performs better.

To show that SFPLS does not always outperform RSFP, we generated DLSP

network for a 10 period problem with random data. However, instead of using the

generated cost data, we assigned a random number between 1 and 100 to each arc

of the network. With this approach we were able to obtain a densely connected

DP network with random arc costs which eliminated any structural properties the

algorithms may have benefit from. The results of running both algorithms on this

DP network are given in Figure 2.7. In this case, SFP based local search and RSFP

gave comparable results.

31

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

Time (sec.)

N
um

be
r

of
 R

un
s

SFP Based Local Search
Repeated SFP

Figure 2.7: Histogram of solutions with objective values within 1% of the optimum returned by
RSFP and SFPLS on DLSP network with random arc costs. Both algorithms are run
30 times with random initial strategies.

In conclusion, the performance of both algorithms is highly dependent on the

network structure of the DP at hand. Therefore, depending on the type of the

problem, one algorithm may outperform the other.

2.6 Conclusions

RSFP and SFPLS are designed for deterministic large-scale DP problems, where

a good solution is needed fairly quickly. Both algorithms are stochastic algorithms

that learn from the past decisions and aim to improve solutions in each iteration.

The classical DP algorithms (such as Dijkstra’s Algorithm), on the other hand, are

designed to find the optimal solutions by searching the feasible set with backward

or forward recursion. As mentioned before, due to curse of dimensionality, these

classical DP algorithms lose their effectiveness as the dimensionality of the problem

increases. For large-scale problems, we propose using SFP based algorithms to find

good (if not optimal) solutions quickly.

32

The numerical results presented in this chapter were obtained using a small test

problem for which we were able to calculate the optimal solution. Note that our

algorithms do not explicitly exploit any structural property of the test problems.

Therefore, they can be easily applied to sequential decision making problems with

more complex objective functions requiring intensive computations or to black-box

optimization problems which do not have a closed form objective function.

The algorithms we designed are parallelizable as the best replies can be computed

on parallel computers. Unfortunately, in our tests we were unable to use parallel

computing techniques and thus could not present the full potential of the algorithms.

However, clearly the performance of the algorithms will be much better when run on

parallel computers.

In each iteration of the SFP based algorithms presented in this chapter, best reply

of an on-the-path player is calculated by comparing the length of the path sampled

at the beginning of the iteration with the possible path lengths that can be obtained

if the on-the-path player deviates. To calculate a best reply, information on only a

limited portion of the network is needed. In other words, with our algorithms it is

possible to obtain good solutions by searching only a portion of the DP network.

In addition, this provides us the flexibility to design these algorithms in an online

fashion to simultaneously learn and optimize stochastic DP problems, which is a

future research direction we will pursue.

CHAPTER III

Application of RSFP and SFPLS to Traveling Salesman
Problem

3.1 Introduction

In Chapter II, we described the Sampled Fictitious Play (SFP) algorithm and

how it can be used to find a globally optimal solution of a Dynamic Programming

(DP) problem. We specified two algorithms based on SFP: Repeated SFP (RSFP)

and SFP Based Local Search (SFPLS). We showed that both algorithms converge

to the optimal solution on deterministic and finite horizon DP problems. We also

tested the performance of both algorithms on small test problems.

In this chapter, we will present the empirical results on the performance of these

algorithms applied to the DP formulation of the Traveling Salesman Problem (TSP)

to show their potential for solving larger-scale problems. We will also discuss possible

modifications that can improve the performance of the algorithms.

3.2 Traveling Salesman Problem

Given a set of cities and the distances between them, TSP aims at finding the

shortest tour that visits each city exactly once [14]. The problem was first formulated

in the 1930s [3] and it has been extensively studied since then. The popularity of

the problem stems from the fact that it is an NP-complete problem [37] and has var-

33

34

ious practical application areas such as machine scheduling, cellular manufacturing

and frequency assignment problems [28]. Possible approaches to solving the prob-

lem include using branch-and-bound and branch-and-cut methods based on integer

programming formulations or designing heuristics such as 2-opt search, k-opt search

and Lin-Kernighan heuristics that exploit the structure of TSP. There is also a vast

literature on the applications of well known heuristics to TSP such as simulated

annealing, genetic algorithms and tabu search [41]. In addition, approximation al-

gorithms for finding upper and lower bounds on the optimal solution of TSP have

also been extensively studied. While the list provided here represents a small subset

of the literature on TSP, it is representative of the importance of TSP’s.

Since RSFP and SFPLS are designed specifically for DP problems, we only con-

sider the DP formulation of TSP in this chapter . Held et al. [29] and Bellman [10]

provided the DP formulation of TSP along with the computational requirements of

the method and some numerical results. As Held et al. has argued, DP is not an

efficient method to solve TSP; however, it offers several advantages when used in an

approximation framework [29]. Therefore, in this chapter we propose using RSFP

and SFPL as the means to obtain close to optimal solutions for TSP quickly and

we aim to show the potential of these algorithms on a large-scale DP network that

represents TSP.

To formulate TSP as a DP, we consider a directed graph denoted by G = (V,A)

where V and A represent the sets of cities and the links connecting cities, respectively.

Let cij denote the length of link (i, j) and assume cij = cji i.e., the problem is

symmetric. We can consider TSP as a time staged decision making problem, where

given the current city k we are in and the list of cities that haven’t been visited so

far, we need to decide the next city to visit. Assuming that we start in city 1, define

35

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

35

40

45

50

CPU Time (sec.)

%
 D

is
ta

nc
e

to
 th

e
O

pt
im

al
 V

al
ue

RSFP, L=1
SFPLS

Figure 3.1: Average performance of RSFP and SFPLS on a 15-city TSP. The algorithms are run
15 times with random initial strategies.

the states to be (S, k) where S is the set of cities that have not been visited and k is

the current city. The DP recursion is:

f(S, k) = min
m∈S

(ckm + f(S \m,m))

with the boundary condition:

f(∅, 1) = 0.

The number of nodes on the DP network defined by the above recursion for a

TSP with n cities is in O(n2n) [14].

3.3 Application of RSFP and SFPLS to TSP

We used a problem instance with 15 cities and ran RSFP and SFPLS 15 times

with different starting points. We recorded the value of the incumbent solution as a

function of CPU time (in seconds) during each run. The DP network generated for

36

this problem has 114,700 nodes including the root and the sink nodes. The problem

data are generated by using the coordinates given in [1] as city locations and the

Euclidean distance between the cities as the link lengths.

Figure 3.1 shows how the average percent distance of the incumbent solution

to optimum changes as time progresses based on the 15 runs. As it can be seen

from Figure 3.1, the values obtained with both RSFP and SFPLS decrease rapidly;

however, they both stall at a local optimal solution for a long time before they find a

new improving solution as they get closer to the optimum. It is important to note that

these algorithms do not take advantage of the symmetry or the Euclidean distances,

which algorithms in the literature often rely on. In addition, the performance of

the SFP based algorithms can be increased significantly with parallel computing

techniques. In the remainder of this section, we will present a simple modification

that further improves the performance of RSFP and also discuss the effect of history

size on the performance of RSFP and modified RSFP.

One straightforward way to improve the performance of RSFP is to help the

algorithm search the feasible region more efficiently as the incumbent solution gets

closer to the optimum. In the original algorithm, when a player is off-the-path, the

action it plays is not considered in the payoff function (recall that the identical payoff

is defined to be the path length). Therefore, given the actions of all players, which

also define the path, the best reply of off-the-path players can be any feasible strategy.

However, in Chapter II the best reply action of off-the-path players was specified to

be the last entry in their history of best replies. The motivation behind this was to

have off-the-path players’ histories fixed as soon as possible in order to speed up the

convergence of an SFP run to a NE. This approach, however, limits the capability

of the algorithm to explore and is one of the reasons that the algorithm can not

37

easily find an improving solution once a “close” to optimum solution is reached. To

address this issue, we have slightly modified RSFP by leaving the histories of off-the-

path players unchanged. The details of an SFP run in the modified RSFP are given

below.

Modified SFP Algorithm

Initialization

• Set k ← 0

• Randomly sample an action x0
i ∈ Ai for each player i.

• Set y0
i = x0

i ∀i ∈ N and add it to the history, i.e., H1
i = [y0

i] (i.e., the histories

of all players are initialized with a random action).

• Set k ← k + 1.

Iteration k ≥ 1

Step 1 Sample:

Step 1a. For each player i, sample an action xki ∈ Ai from the history Hk
i

uniformly at random.

Step 1b. Set Sk = (xk1, x
k
2, . . . , x

k
n).

Step 1c. Identify the unique path, p(Sk) = (ik1, i
k
2, . . . , i

k
m), defined by Sk.

Step 2 Play:

For each player i,

• If i ∈ p(Sk), player i plays the best reply strategy calculated by

yki = arg min
x∈Ai

c(xk1, x
k
2, . . . , x

k
i−1, x, x

k
i+1, . . . , x

k
n).

38

If there are multiple actions that minimize the function above, choose one

of them according to a lexicographic tie breaking rule (see the original

algorithm description in Section 2.3.1 for details).

Step 3 Update History:

• Add the played action to the history: Hk+1
i = [Hk

i ; y
k
i].1

Step 4 Termination Criteria:

• If 1 ≤ k ≤ L and y0
i = y1

i = y2
i = . . . = yki for all i ∈ N , then terminate.

• If k ≥ L + 1 and yk−Li = yk−L+1
i = yk−L+2

i = . . . = yki for all i ∈ N , then

terminate.

• Otherwise

– If the size of Hk+1
i > L, then delete the earliest entry of Hk+1

i .

– Set k ← k + 1

– Go to Step 1.

We compared the performance of RSFP and modified RSFP on a problem instance

with 12 cities by running both algorithms 30 times with history size L = 1. In this

experiment we used the data of the first 12 cities of the previous 15-city example is

used. We recorded the value of the incumbent solution as a function of CPU time

(in seconds). As can be seen from Figure 3.2, even though SFPLS still outperforms

the modified RSFP, the modification has significantly improved the performance of

RSFP. The empirical results suggest that modified-RSFP converges to the optimal

solution. However, the convergence proof of modified RSFP is omitted here and will

be a future research topic.

1[Hki ; ·] denotes the concatenation function.

39

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

CPU Time (sec.)

%
 d

is
ta

nc
e

to
 th

e
O

pt
im

al
 V

al
ue

RSFP, L=1
Modified RSFP, L=1
SFPLS

Figure 3.2: Average performance of RSFP, modified RSFP with L = 1 and SFPLS on a 12-city
TSP. The algorithms are run 30 times with random initial strategies.

In Chapter II, we presented the convergence results for RSFP with history size of

1 (i.e., L = 1) and had a conjecture based on empirical results that the algorithm

converges even with L > 1. Figure 3.3 shows the performance of RSFP on a 12-city

TSP with L = 1 and L = 5. The results suggest that while the algorithm still

converges with L = 5, the rate of convergence is much slower.

The effect of changing the history sizes on the performance of modified RSFP is

presented in Figure 3.4. Similar to previous results history size of 1 performs better

compared to history size of 5.

All the experiments for 12-city TSP were run until the optimal solution was found.

During each run, we recorded the time at which the algorithms found a solution

within 1% of the optimum. Figure 3.5 presents a histogram of this time data for 30

runs. As can be seen from the figure, the algorithms with L = 5 get stuck at a local

optimal solution more often.

40

20 40 60 80 100 120 140 160
0

1

2

3

4

5

6

7

8

CPU Time (sec.)

%
 D

is
ta

nc
e

to
 O

pt
im

al
 V

al
ue

RSFP, L=1
RSFP, L=5

Figure 3.3: Average performance of RSFP with L = 1 and L = 5 on a 12-city TSP. The algorithms
are run 30 times with random initial strategies.

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

CPU Time (sec.)

%
 D

is
ta

nc
e

to
 th

e
O

pt
im

al
 V

al
ue

Modified RSFP, L=1
Modified RSFP, L=5

Figure 3.4: Average performance of modified RSFP with L = 1 and L = 5 on a 12-city TSP. The
algorithms are run 30 times with random initial strategies.

41

0 1000 2000 3000 4000 5000 6000 7000
0

5

10

15

20

25

30

CPU Time (sec.)

N
um

be
r

of
 R

un
s

RSFP, L=1
RSFP, L=5
Modified RSFP, L=1
Modified RSFP, L=5
SFPLS

Figure 3.5: Histogram of solutions that are within 1% neighborhood of optimum returned by RSFP,
modified RSFP an SFPLS on DP network of 12-city TSP. All algorithms are run 30
times with random initial strategies.

3.4 Conclusions

In this chapter, we studied the potential of the algorithms described in Chapter II

for solving large-scale DP problems and investigated possible ways to improve their

performance. It should be noted that the performance of these algorithms can be

significantly improved by utilizing parallel computing. As was discussed previously,

SFP can be easily implemented using parallel computing and therefore the running

times of RSFP and modified RSFP can be significantly reduced.

CHAPTER IV

Sampled Fictitious Play Based Online Learning Algorithms
for Markov Decision Processes

4.1 Introduction

In this chapter, we propose an online learning algorithm [15] based on Fictitious

Play concepts for homogeneous Markov Decision Problems (MDPs) where the tran-

sition probabilities are unknown. MDPs are characterized as sequential decision

making problems that involve choosing actions, observing the information provided

within the system, and then modifying these actions based on the new information

[39]. The nature of these problems makes it possible to propose solution approaches

even when the dynamics of the system (e.g., cost of a decision, the probability of

random disturbances in the system, etc.) are unknown. More specifically, by design-

ing a learning algorithm that simultaneously observes the “unknowns” in the system

and optimizes the decisions using information obtained via these observations, the

optimal solution of the problem can be approximated. Ideally such an algorithm uses

simple calculations to generate approximate solutions in each iteration. Therefore,

Fictitious Play (FP) concepts can be very useful in this framework. FP is an itera-

tive learning algorithm designed to imitate behavior of players engaged in a repeated

game and for a subclass of games, to find a Nash Equilibrium1 solution of a game
1A Nash Equilibrium is a collection of probability distributions over each player’s strategies with the property

that no player can unilaterally improve its utility in expectation by changing its own distribution [22].

42

43

[16]. Therefore, our approach is to model an MDP problem as a game (by defining

players, strategies, and the payoff function) such that the optimal solution of the

problem is a Nash Equilibrium of this game. This way, FP can be effectively used

to find the optimal solution of the MDP.

Learning algorithms for MDPs have been extensively studied in the literature.

Q-Learning, SARSA, actor-critic methods [5], [13], Approximate Dynamic Program-

ming [39] are well known examples of such algorithms. Q-Learning and SARSA (a

variant of Q-Learning) have been very popular in recent years due to the fact that

they do not require the knowledge of the system model [5]. Therefore these algo-

rithms can be applied to a large variety of problems without making any structural

assumptions about the problem at hand. Both of these algorithms estimate the

expected value of each state-action pair and update these estimates as more infor-

mation becomes available. Q-Learning is an off-policy learning algorithm, i.e., the

update of the value of a state-action pair is independent of the policy that is being

followed, whereas SARSA is an on-policy learning algorithm, in which the policy

that is being followed is directly used in the value updates [5]. Actor-critic method

is also a learning algorithm, in which the beliefs on the optimal actions in each state

are recorded in addition to the value estimates.

In contrast to the above algorithms, in this chapter we design an SFP based

learning algorithm that not only keeps an estimate of the optimal value and the

optimal action for each state but also estimates the system parameters (the transition

probability distribution). We assume that the randomness in the system depends on

the state but is independent of the action taken. This assumption holds for many

practical problems. For example in inventory control problems [40], the demand is

usually independent of the production amount. In dynamic location problems [43], in

44

which an equipment trailer has to be placed in one of the predefined locations so that

the expected cost of completing a work order from a random location is minimized,

the probability that a work order comes from a particular location is independent of

where the equipment trailer is placed. Note that, if this assumption is not satisfied

(i.e., the random disturbance depends on not only the state but also the action),

the algorithmic approach we propose in this chapter can still be used with slight

modifications and the convergence analysis can easily be adapted for the modified

approach.

The target classes of problems for our algorithm are the ones with finite state space

and discrete probability transition functions with finite sample space. However, the

results of our work can be generalized for problems in which the state transitions

are governed by a parameterized continuous distribution by estimating the parame-

ters of this distribution. We empirically show that using the estimate of the system

dynamics can considerably speed up the convergence of learning algorithms by com-

paring the performance of our algorithm to those of SARSA and Q-Learning. We

chose SARSA for comparison since our algorithm, like SARSA, can be classified as

an on-policy method. We also compare our algorithm with Q-Learning since both

algorithms are “learning” via observing the system in an online fashion.

The algorithms that estimate the model parameters such as ours are also clas-

sified as Indirect Algorithms [27]. Various indirect learning algorithms are studied

in [4], [31], [32] and [27]. In [4], Barto et al. discuss connections between control

theory, online learning algorithms and indirect algorithms. They present simula-

tion results showing the difference between online and offline algorithms as well as

direct and indirect algorithms by comparing several algorithms such as Real Time

Dynamic Programming (RTDP), Adaptive-RTDP, Q-Learning and conventional Dy-

45

namic Programming. In [31] and [32], Kearns et al. study the convergence rate of

Q-Learning and analyze an alternative algorithm that simulates the system until

enough information is collected on a set of states and then uses optimization rou-

tines to update the value of these “known” states. The difference in our algorithm

from that of Kearns et al. is that we perform the simulation and the optimization op-

erations simultaneously. Our numerical experiments, presented in Section 4.5, show

promising results.

In learning algorithms, such as the ones described above, the performance strongly

depends on the sampling rules employed to explore the action space. The most

straightforward approach is to randomly sample actions and update values based on

the information obtained from these sampled actions. However, biasing the sampling

procedure to choose “better” actions can significantly improve the performance of

these algorithms [18]. To achieve this, one can go to the other extreme and use a

greedy approach that always samples the best action based on the current beliefs.

However, such an approach would introduce too much bias and possibly force the

algorithm to get “stuck” at a local optimal solution. To deal with this, one of the

most common approaches is to use ε-greedy sampling. In this sampling method,

the best action based on the current information is sampled with high probability

while with ε probability a random action from the feasible set is sampled to facilitate

more exploration. As an alternative to these sampling approaches, Chang et al. [17]

designed an adaptive sampling algorithm for finite horizon stochastic dynamic pro-

gramming problems in which they incorporate the regret analysis developed for the

multiarmed bandit problems into the action sampling process. With this adaptive

sampling approach, they save the effort of sampling “poor actions” (and this would

significantly improve the algorithm performance if the sampling is relatively time

46

consuming) without sacrificing the convergence properties of the algorithm. The

notion of adaptive sampling (and therefore its possible advantages) is naturally in-

herent in our algorithm through the utilization of “best action” histories, which are

part of the FP framework. The details on how exactly we use these histories will be

explained further after the details of the algorithm are given.

As mentioned earlier, we use FP concepts in designing our algorithm. FP is

an iterative algorithm used to imitate the behavior of players engaged in a repeated

game [16], [42] and it has been shown to converge to a Nash Equilibrium for identical

interest games [35]. At every iteration of FP, each player (or decision maker) selects

the best pure action (i.e., a best reply) given all other players play an action according

to the empirical distribution of their own best replies from the previous iterations [16].

Finding a best reply to the actions of all other players, which follow the probability

distribution defined by the history of past best replies, requires making best reply

calculations for every possible combination of actions in the histories of players.

This approach is computationally time consuming since the history size grows in

each iteration. Lambert et al. proposed a Sampled Fictitious Play (SFP) algorithm,

in which best replies to a sample of actions drawn from the history of best replies are

calculated, and showed that it converges to a Nash Equilibrium [33]. Computational

requirements of the SFP algorithm are dramatically less compared to that of FP,

since the best reply calculation of each player is made only for a given sample of

actions.

To facilitate application of these concepts in our algorithm, similar to our approach

from Chapter II, we define a game on a homogeneous infinite horizon MDP by

treating the states and feasible decisions in each state as the players and actions

available to each player, respectively. In this framework, a collection of actions

47

played by all players defines a policy for the MDP problem. The identical payoff

each player receives is then naturally defined to be the expected total discounted

reward (or cost) of this policy. The value of a policy can be found either using

the knowledge of system dynamics, or by simulating the policy and observing the

system. Since here we consider problems for which the probability distribution of the

random disturbance in the system is not readily available, we are bound to simulate

and estimate the unknowns in the system. A direct application of SFP in this setting

would be to have each player randomly sample an action from the history of best

replies and then calculate a best reply for each player given the sampled actions of

all other players. However, a best reply calculation will require the simulation of

the system several times to be able to compare the payoff of every feasible action

of all players. In this approach, these simulations can only be run offline since it

is computationally infeasible to perform them in an online fashion. In contrast, in

the proposed algorithm we simultaneously estimate the probability distribution, the

optimal value of each state, and the optimal action of each state in an online fashion

during a single simulation of the system by using the value estimates of the states

to calculate the best reply. Specifically, in each iteration we record an estimate of

the probability that a given random event occurs in each state, an estimate of the

optimal value, and history of best reply actions of each state. Note that the empirical

probability distribution on the best reply actions from the history can be viewed as

the probabilistic estimate of the optimal action in that state. Given the most up-to-

date values of each state, we randomly draw an action from the history of best replies

for the current active state, and then observe the random disturbance and the state

to which the system transitions. Using these observations, we update the estimate

of the random disturbance probability and the estimate of the optimal value. We

48

calculate the new best reply and add it to the history. Note that adding the best

reply action to the history can be viewed as updating the estimate of the optimal

action (i.e., history of best replies) of the current state as it increases the probability

that this action is sampled next time the system enters the same state. Therefore,

as the algorithms proceeds, the values of states will get closer to the optimal values,

and thus the optimal actions will be identified via best reply calculations. As a

result, the probability of sampling the “right” action will increase in an adaptive

fashion. We show that the estimates of the values converge to the optimal values

with this approach. We present the empirical results on the dynamic location and

windy gridworld problems.

This chapter is organized as follows. In Section 4.2, notation and assumptions are

given. In Section 4.3, the algorithm is described. Section 4.4 presents the convergence

proofs. The algorithm’s performance is tested on the dynamic location and windy

gridworld problems in Section 4.5. The chapter is concluded in Section 4.6.

4.2 Notation and Assumptions

In this chapter we consider an infinite horizon, discrete time, homogeneous Markov

Decision Process (MDP) defined by the collection of objects

(S;As, p(·|s, a), c(s, a), ∀s ∈ S)

where

• S is the set of states (|S| <∞, where |S| is the cardinality of set S).

• As is the set of feasible actions in state s ∈ S (|As| <∞).

• p(s′|s, a) = Prob(st+1 = s′|st = s, at = a) is the probability the system transi-

tions into state s′ at time t + 1 given the system is in state s and the action

49

a ∈ As is chosen at time t.

• c(s, a) ∈ R is the immediate cost of choosing action a in state s.

Once an action a is chosen in state s, an exogenous random disturbance is realized

and the system transitions into state s′. We assume that the random disturbance

depends on the current state s but is independent of the action a chosen. As men-

tioned earlier, inventory control problem [40] and dynamic location problems [43] are

examples of problems that satisfy this assumption. We use the following notation to

represent the random disturbance and the transitions in the system:

• ω(s) ∈ Ω(s) denotes the random disturbance, which is assumed to be indepen-

dent of action taken in state s. Sample space |Ω(s)| is assumed to be finite for

every state s: |Ω(s)| <∞, ∀s ∈ S.

• p(ω(s) = ω̂(s)|s) is the probability that the random disturbance ω̂(s) occurs

when the system is in state s. In the reminder of the chapter we will use the

shorthand notation p(ω̂(s)) to represent this probability.

• f(s, a, ω̂(s)) is the system evolution equation function. That is, given a realiza-

tion ω̂(s) of ω(s) and action a ∈ As, the system will transition from state s to

the (deterministic) state f(s, a, ω̂(s)).

Using the notation defined above, the transition probabilities can be written as fol-

lows:

p(s′|s, a) =
∑

ω(s)∈Ω(s)

p(ω(s))1{f(s,a,ω(s))=s′}, (4.1)

where 1{·} is the indicator function.

In this chapter, we specifically focus on the problem of minimizing discounted

expected cost with γ ∈ (0, 1) denoting the discount factor. We assume that feasi-

ble states, actions in each state of the problem and the costs of these actions are

50

known, but no or little information is available about the probability distribution

of the random disturbance within the system. That is, p(ω(s)), ∀s ∈ S, are not

known. But a realization of ω(s) can be observed every time the system visits state

s. One approach for solving the problem in this setting is to observe and learn about

the system dynamics under an implemented strategy by updating this strategy in

an online fashion as more information about the system becomes available. In an

online updating, the updates are done simultaneously while observing the system [5].

Therefore, the iteration count of the algorithm coincides with the real time during

which the system evolves. In this chapter, we use SFP concepts to develop an on-

line algorithm, therefore, we use the subscript t to refer to both the iteration of the

algorithm and the real time.

4.3 SFP Based Learning Algorithm (SFPL)

The following notation is used to describe the SFP Based Learning Algorithm

(SFPL):

• MDP denotes the infinite horizon homogeneous Markov Decision Process under

consideration.

• Jt(·) : S → R is the estimate of the optimal cost function for MDP returned

by the algorithm at iteration/time t.

• pt(·|s, a) and pt(ω̂(s)) denote estimates of, respectively, transition and random

disturbance probabilities at iteration/time t.

• MDPt is the Markov Decision Process defined on the same state and action

space as MDP with the difference that the transition probabilities are given by

pt(·|s, a), ∀s ∈ S, a ∈ As. In other words, MDPt is the homogeneous MDP

51

defined by the collection of objects (S;As, pt(·|s, a), c(s, a), ∀s ∈ S).

• H(s) is the history of actions taken in state (or played by player) s.

• It(s) is the number of times the process has visited state s up to (and including)

iteration/time t.

• W (s) is the vector of realizations of ω(s) observed up to (and including) the

current iteration. By definition, the size of vector W (s) at iteration t is equal

to It(s) for all s except possibly the current state of the system (for which the

associated objects are being updated during the current iteration).

SFPL is initialized at a random state (unless the starting state is already identi-

fied) and all histories are set to be empty. In each iteration t ≥ 1, a random strategy

from the history of the current state is selected (if the history is empty a feasible

strategy is sampled) and the random disturbance in the system is observed. Based

on this observation, the beliefs (or estimates) on the random disturbance probabil-

ities are updated and a best reply is calculated with the updated beliefs. The best

reply strategy is then added to the history of the current state and the system tran-

sitions into the next state according to the played action and the realized random

disturbance. It is worth pointing out again that the action that is played (and thus

affects the transition) is randomly sampled from the history in the beginning of the

iteration, whereas the action added to the history is the one obtained through the

best reply calculation.

SFPL is designed for problems which satisfy the assumption that the probability

distribution of the random disturbance is independent of the action. As mentioned

before, the algorithm can easily be modified if this assumption is not satisfied. More

specifically, if the random disturbance depends on both the state and the action

52

then the count of random disturbance realizations needs to be recorded for each

state-action pair In this case, W (s, a) and pt(ω(s, a)) would denote the probability

estimate that the random disturbance ω(s, a) occurs in state s under action a. In

addition, the value estimates and the count of visits also need to be recorded for each

state-action pair (i.e., Jt(s, a) and It(s, a)). With these modifications, the algorithm

will proceed as explained above with the difference that the observations will be

recorded and the value updates will be calculated for each state-action pair. It is

important to note that these modifications increase the memory requirements of the

algorithm since data need to be kept for each state-action pair. The computational

requirements of the algorithm, however, would be similar since the expected value of

the current state-action pair has to be calculated to update its value.

4.3.1 Outline of Algorithm SFPL

Below, the notation X ← [X, x] represents the concatenation function.

• Initialization:

1. Assign initial values to J0(s) for all s ∈ S.

2. Set H(s) = [], I0(s) = 0, W (s) = [] for all s ∈ S.

3. Set t = 1 and observe s1 ∈ S. (This is the state where the process starts.)

• Iteration t (below, st ∈ S represents the state at the beginning of iteration):

State :

1. It(st) =


It−1(st) + 1 if s = st,

It−1(st) if s 6= st.

Action :

53

1. Randomly select an action at ∈ H(st) (if H(st) is empty, randomly

select an action at from Ast).

2. Observe the realization ω̂(st) of the random disturbance ω(st); update

W (st)← [W (st), ω̂(st)].

Computation :

1. Calculate the “best reply”:

a∗ = argmin
a∈Ast

c(st, a) + γ
1

It(st)

It(st)∑
i=1

Jt−1(f(st, a,Wi(st)))

 , (4.2)

where Wi(st) is the ith component of vector W (st).

2. Update the history H(st)← [H(st), a
∗].

3. Set

Jt(s) =


c(s, a∗) + γ 1

It(s)

∑It(s)
i=1 Jt−1(f(s, a∗,Wi(s))) if s = st,

Jt−1(s) otherwise,

or, equivalently,

Jt(s) =


c(s, a∗) + γ

∑
ω̂(s)∈Ω(s) pt(ω̂(s)) Jt−1(f(s, a∗, ω̂(s))) if s = st,

Jt−1(s) otherwise,

(4.3)

where

pt(ω̂(s)) =
of times ω̂(s) is observed in state s up to and including iteration t

It(s)

=

∑It(s)
i=1 1{Wi(s)=ω̂(s)}

It(s)

is the estimate of p(ω̂(s)) at iteration t, that is, the probability that the

random disturbance ω̂(s) ∈ Ω(s) occurs when the system is in state s.

54

Transition :

1. Set st+1 = f(st, ā, ω̂(st)).

2. Update t← t+ 1.

4.4 Convergence of SFPL

In this section, we first prove that SFPL converges to the optimal solution with

probability one under the assumption that the inherent randomness in the system

ensures that every state is visited infinitely often regardless of the policy employed.

Later, we discuss possible approaches when the assumption does not hold.

Assumption IV.1. Assume that every state is visited infinitely often, regardless of

the policy employed, due to the inherent randomness in the system.

Although this assumption may seem very restrictive, there are various problem

classes that satisfy this assumption. For example, for the windy gridworld problem

described in the numerical results section, it is possible to have a wind that blows in a

random direction with a random strength so that any state can be visited in the next

iteration with a positive probability. In a capacitated inventory control problem, if

the demand is allowed to be negative to represent returns and can be at any feasible

level with positive probability, this assumption would be valid. However, even for

the problems that do not satisfy this assumption, we can always incorporate the well

known ε-greedy approach in the sampling phase of our algorithm to make sure that

all states are visited infinitely often.

The following condition can be used to check if this assumption is valid for a given

problem:

Claim IV.2. If the induced Markov Chain under any stationary deterministic policy

of MDP is ergodic, then Assumption IV.1 is satisfied.

55

Proof. Follows from the definition of ergodicity.

Lemma IV.3. limt→∞ pt(ω̂(s))→ p(ω̂(s)) for all ω̂(s) ∈ Ω(s) with probability 1.

Proof. The lemma follows directly from Assumption IV.1 and Strong Law of Large

Numbers [44].

In the remainder of the chapter, J∗(s) is used to represent the optimal value of

state s in MDP .

Let Ft : R|S|× S → R denote a function that takes a value vector J ∈ R|S| and a

state s ∈ S as inputs and returns a new value for s using the probability distribution

pt(ω(s)) as follows:

Ft(J, s) = min
a∈As

c(s, a) + γ
∑

ω̂(s)∈Ω(s)

pt(ω̂(s))J(f(s, a, ω̂(s)))

 . (4.4)

Note that if Jt−1 and st are input to Ft then the value returned by the function will

be the value of state st at the end of iteration t of SFPL. Therefore, SFPL generates

a sequence of value vectors Jt such that:

Jt(s) =


Ft(Jt−1, st) if s = st,

Jt−1(s) if s 6= st.

The progress of SFPL and the values obtained in each iteration depend on the choice

of J0. However, since

c̄ ≡ max
s∈S

max
a∈As
|c(s, a)| (4.5)

is finite and the values are discounted in every iteration, all values obtained in sub-

sequent iterations will be finite as long as ‖J0‖∞ < ∞. This is formally proven

below.

56

Lemma IV.4. Suppose SFPL is started with an arbitrary finite initial value vector

J0. Let c̄ be as in Equation (4.5) and let c̃ = max{c̄, (1− γ)‖J0‖∞}. Then

|Jt(s)| ≤
c̃

1− γ
<∞ ∀t ∈ {1, 2, . . .} and ∀s ∈ S.

Proof. The lemma holds for t = 0 by definition of c̃. Assume it holds for ‖Jt−1‖∞

and consider the value update at iteration t:

• For s = st,

|Jt(st)| =

∣∣∣∣∣∣min
a∈Ast

c(st, a) + γ
∑

ω̂(st)∈Ω(st)

p̄t(ω̂(st))Jt−1(f(st, a, ω̂(st)))


∣∣∣∣∣∣

≤ c̄+ γmax
s∈S
|Jt−1(s)|

≤ c̃+ γ
c̃

1− γ
=

c̃

1− γ
,

where the last inequality follows from the inductive hypothesis.

• For s 6= st,

|Jt(s)| = |Jt−1(s)| ≤ c̃

1− γ
, ∀s 6= st,

which follows from the inductive hypothesis.

Let F̄ (J, s) : R|S| × S → R be another update function defined as follows:

F̄ (J, s) ≡ min
a∈As

c(s, a) + γ
∑

ω̂(s)∈Ω(s)

p(ω̂(s))J(f(s, a, ω̂(s)))

 , (4.6)

i.e., F̄ (J, s) can be viewed as the classic asynchronous value iteration update using

the actual probability distribution, p(ω(s)), applied to s. The proof of the following

lemma closely resembles the proof of the contractive property of value iteration.

57

Lemma IV.5. Let J ′ and J ′′ be two value vectors in R|S| and let s ∈ S. Then,

|F̄ (J ′, s)− F̄ (J ′′, s)| ≤ γ‖J ′ − J ′′‖∞.

Proof.

|F̄ (J ′, s)− F̄ (J ′′, s)| =

∣∣∣∣∣∣min
a∈As

c(s, a) + γ
∑

ω̂(s)∈Ω(s)

p(ω̂(s))J ′(f(s, a, ω̂(s)))

−
min
a∈As

c(s, a) + γ
∑

ω̂(s)∈Ω(s)

p(ω̂(s))J ′′(f(s, a, ω̂(s)))

∣∣∣∣∣∣
≤ max

a∈As

∣∣∣∣∣∣
c(s, a) + γ

∑
ω̂(s)∈Ω(s)

p(ω̂(s))J ′(f(s, a, ω̂(s)))

−
c(s, a) + γ

∑
ω̂(s)∈Ω(s)

p(ω̂(s))J ′′(f(s, a, ω̂(s)))

∣∣∣∣∣∣
= max

a∈As

∣∣∣∣∣∣γ
∑

ω̂(s)∈Ω(s)

p(ω̂(s))
(
J ′(f(s, a, ω̂(s)))− J ′′(f(s, a, ω̂(s)))

)∣∣∣∣∣∣
≤ γ‖J ′ − J ′′‖∞.

Lemma IV.6. For any ε > 0 and J ∈ R|S| with ‖J‖∞ ≤ c̃
1−γ for constant c̃ defined

as in Lemma IV.4, there exists T <∞ such that:

|Ft(J, s)− F̄ (J, s)| < ε, ∀t ≥ T, ∀s ∈ S with probability 1. (4.7)

Proof. Let s be an arbitrary state in S. Then,

|Ft(J, s)− F̄ (J, s)| =

∣∣∣∣∣∣min
a∈As

c(s, a) + γ
∑

ω̂(s)∈Ω(s)

pt(ω̂(s))J(f(s, a, ω̂(s)))

−
min
a∈As

c(s, a) + γ
∑

ω̂(s)∈Ω(s)

p(ω̂(s))J(f(s, a, ω̂(s)))

∣∣∣∣∣∣
≤ max

a∈As

∣∣∣∣∣∣
c(s, a) + γ

∑
ω̂(s)∈Ω(s)

pt(ω̂(s))J(f(s, a, ω̂(s)))

−
c(s, a) + γ

∑
ω̂(s)∈Ω(s)

p(ω̂(s))J(f(s, a, ω̂(s)))

∣∣∣∣∣∣
= max

a∈As

∣∣∣∣∣∣γ
∑

ω̂(s)∈Ω(s)

J(f(s, a, ω̂(s)))(pt(ω̂(s))− p(ω̂(s)))

∣∣∣∣∣∣
≤ γ

c̃

1− γ
∑

ω̂(s)∈Ω(s)

(pt(ω̂(s))− p(ω̂(s))) .

58

By assumption, |Ω(s)| <∞, ∀s ∈ S. Moreover, by Lemma IV.3 limt→∞ pt(ω̂(s))→

p(ω̂(s)) for all s ∈ S with probability 1. Thus, the term on the right hand side of

the above inequality converges to 0 with probability 1. Therefore, for any J with

‖J‖∞ ≤ c̃
1−γ ,

lim
t→∞
|Ft(J, s)− F̄ (J, s)| = 0, ∀s ∈ S.

This implies, for any ε > 0 and any J with ‖J‖∞ ≤ c̃
1−γ , ∃ T <∞ such that:

|Ft(J, s)− F̄ (J, s)| < ε, ∀t ≥ T with probability 1.

Lemma IV.6 states that the functions Ft(·) pointwise converges to the function

F̄ (·). Next, we show that the sequence Jt obtained by applying Ft starting from an

arbitrary initial value vector J0 converges to J∗.

Lemma IV.7. Let J0 be a finite initial value vector and let c̃ be the finite constant

defined in Lemma IV.4:

c̃ = max{c̄, (1− γ)‖J0‖∞}.

Fix ε > 0 and choose T <∞ such that,

|Ft(J, s)− F̄ (J, s)| ≤ ε, with probability 1 (4.8)

∀t ≥ T, ∀s ∈ S and ∀J with ‖J‖∞ ≤ c̃
1−γ .

Define a sequence J εt as follows:

J εt (s) =



Jt(s) if t ≤ T, ∀s ∈ S,

J εt−1(s) if t > T and s 6= st,

F̄ (J εt−1, st) if t > T and s = st.

59

Then,

‖J εt − Jt‖∞ ≤
ε

1− γ
, ∀t ≥ 0 with probability 1.

Proof. By lemma IV.4, |Jt(s)| ≤ c̃
1−γ , ∀t ∈ {1, 2, . . .} and ∀s ∈ S. Also by lemma

IV.6, a finite T specified as above always exists.

By definition, |J εt (s) − Jt(s)| = 0, for t ≤ T , ∀s ∈ S. Therefore, we only need to

consider t > T . The proof is by induction. Let t = T + 1 and consider the two cases,

s 6= sT+1 and s = sT+1, where st represents the state of SFPL at iteration t:

Case 1: s 6= sT+1:

|J εT+1(s)− JT+1(s)| = |J εT (s)− JT (s)| = |JT (s)− JT (s)| = 0,

which follows directly from the definitions of J εt and Jt.

Case 2: s = sT+1:

|J εT+1(s)− JT+1(s)| = |F̄ (J εT , sT+1)− FT+1(JT , sT+1)| (4.9)

= |F̄ (JT , sT+1)− FT+1(JT , sT+1)| (4.10)

≤ ε ≤ ε

1− γ
(4.11)

where equations (4.9) and (4.10) directly follow from the definitions of J εt and Jt and

inequality (4.11) follows from Equation (4.8).

Now assume ‖J εt − Jt‖∞ ≤ ε
1−γ , ∀t ≤ T + k and ∀s ∈ S for some k ≥ 1, and

consider the following cases for t = T + k + 1:

Case 1: s 6= sT+k+1:

|J̄ εT+k+1(s)− JT+k+1(s)| = |J̄ εT+k(s)− JT+k(s)| ≤
ε

1− γ
,

by the inductive hypothesis.

60

Case 2: s = sT+k+1:

|JεT+k+1(s)− JT+k+1(s)| = (4.12)

= |JεT+k+1(sT+k+1)− JT+k+1(sT+k+1)| (4.13)

= |F̄ (JεT+k, sT+k+1)− FT+k+1(JT+k, sT+k+1)| (4.14)

= |F̄ (JεT+k, sT+k+1)− F̄ (JT+k, sT+k+1) + F̄ (JT+k, sT+k+1)− FT+k+1(JT+k, sT+k+1)| (4.15)

≤ |F̄ (JεT+k, sT+k+1)− F̄ (JT+k, sT+k+1)|+ |F̄ (JT+k, sT+k+1)− FT+k+1(JT+k, sT+k+1)| (4.16)

≤ γ‖JεT+k − JT+k‖∞ + ε (4.17)

≤ γε

1− γ + ε (4.18)

=
1

1− γ ε (4.19)

where inequality (4.16) is by triangle inequality. Inequality (4.17) follows from

Lemmas IV.5 and IV.6. The inequality (4.18) follows from the inductive hypothesis.

Note that, J εt is obtained by applying asynchronous value iteration after an iter-

ation T < ∞. Since all states are visited infinitely often by Assumption IV.1, J εt

converges to the optimal solution of MDP [13].

Theorem IV.8.

lim
t→∞

Jt(s) = J∗(s), with probability 1,∀s ∈ S.

Proof. By Lemma IV.7, for any sequence Jt, we can find a sequence J εt (s) that is

arbitrarily close to Jt(s), ∀s ∈ S. Since J εt converges to J∗, so does Jt:

lim
t→∞

Jt = J∗ with probability 1.

In the proof of Theorem IV.8, it is assumed that the algorithm visits every state

infinitely often due to the inherent random disturbance in the system. It has been

shown that our estimate of the values for each state converges to the optimal values.

However, we are not always required to find the optimal values of all states. For

61

example, in the windy gridworld problem [5], which involves finding the fastest route

from a starting point to a destination point on a grid subject to wind with a random

strength, we only need to find the optimal values (and actions) of the states that

are visited with positive probability under the optimal policy (see Section 4.5 for the

details of the windy gridworld problem). In other words, if the system is simulated

under the optimal policy infinitely long2, some states will be visited infinitely often

(i.e., will form a recurrent class of the induced Markov Chain under the optimal

policy). In problems like windy gridworld, we are only interested in the values of the

states in this recurrent class. Below, we argue that SFPL is able to find the optimal

actions of the states that are visited infinitely often under the optimal policy by

setting J0(s) < J∗(s), ∀s ∈ S, even if the Assumption IV.1 does not hold.

First, recall that the history of a state is populated by the actions obtained via

best reply calculations in that state and the next state the system transitions into is

defined by the action sampled from the history of the current state and the random

disturbance observed during the current iteration. Setting J0(s) < J∗(s), ∀s ∈ S,

implies that our initial estimate of the value of any given state is optimistic (i.e.,

lower than the optimal value) and its low value gives incentive to choose actions that

lead to that state in the best reply phase. Therefore, during the initial iterations of

the SFPL, most of the neighboring states of a state will be visited due to their low

value estimates. In other words, each state will try to explore and choose diverse

actions initially. However, gradually, they will start choosing the “right” actions and

therefore their histories will begin to be dominated by these actions. The numerical

results on an instance of gridworld problem given in Section 4.5 also shows that

SFPL visits the states in the “recurrent class” of the induced Markov Chain under
2Note that if it is an optimal stopping problem or has an absorbing state like windy gridworld, we would continue

the simulation by jumping into the initial state

62

the optimal policy more often than other states and discovers the optimal actions

and therefore the optimal values of these states.

4.5 Numerical Results

We use the dynamic location problem adapted from [43] and windy gridworld

problem described in [5] to test the performance of the SFPL algorithm compared to

Q-Learning and SARSA3 algorithms. In this section, we first give detailed descrip-

tions of Q-Learning and SARSA and then we present our numerical results on the

two example problems.

4.5.1 Q-Learning and SARSA

Q-Learning is a learning algorithm designed for MDPs where either the transition

probability distribution is unknown or calculating the expected value of future deci-

sions is computationally intractable [39]. Q-Learning is an off-policy algorithm that

estimates the value of each state-action pair using the following update formula:

Q(st, at)← Q(st, st) + α[c(st, at) + γ min
a∈Ast+1

Q(st+1, a)−Q(st, at)]

where (st, at) is the state-action pair that is being updated at iteration t, st+1 is the

next state the system transitions to from state st under action at, and α is the step

size parameter.

The formal description of the Q-Learning algorithm is as follows [5]:

• Initialization:

– Assign initial values to Q(s, a) for all s ∈ S, a ∈ As.

– Set t = 1 and observe s1 ∈ S (i.e., s1 is the state in which the process

begins).

3The name SARSA stands for “State-Action-Reward-State-Action”.

63

• Iteration t:

1. Find a decision at ∈ Ast using a policy derived from Q (e.g., ε-greedy).

2. Execute decision at, observe the immediate cost c(st, at) and the next state

st+1.

3. Update Q(st, at) using:

Q(st, at)← Q(st, st)+α

[
c(st, at) + γ min

a∈Ast+1

Q(st+1, a)−Q(st, at)

]
(4.20)

4. Set t← t+ 1 and go to Step 1.

The formal description of SARSA algorithm, a variant of Q-Learning, is as follows

[5]:

• Initialization:

– Assign initial values to Q(s, a) for all s ∈ S, a ∈ As.

– Set t = 1 and observe s1 ∈ S (i.e., s1 is the state in which the process

begins).

– Find a decision a1 ∈ As1 using a policy derived from Q (e.g., ε-greedy).

• Iteration t:

1. Execute decision at, observe the immediate cost c(st, at) and the next state

st+1.

2. Find a decision at+1 ∈ Ast+1 using the policy derived from Q (ε-greedy).

3. Update Q(st, at) using:

Q(st, at)← Q(st, st) + α [c(st, at) + γQ(st+1, at+1)−Q(st, at)] (4.21)

4. Set t← t+ 1 and go to Step 1.

64

As can be seen above, the difference between SARSA and Q-Learning is that

the term mina∈Ast+1
Q(st+1, a) in the Q-Learning update formula (equation 4.20) is

replaced with the termQ(st+1, at+ 1) in SARSA (equation 4.21) [13]. In other words,

Q-Learning updates the value of a state-action pair independent of the decision

chosen in the current iteration, whereas SARSA uses the decision it chooses directly

to update the values.

Given the step size parameter α satisfies usual stochastic approximation conditions

and every state-action pair is visited infinitely often, the values returned by both Q-

Learning and SARSA algorithms are proven to converge to the optimal values with

probability one [5].

4.5.2 Dynamic Location Problem

The dynamic location problem analyzed in this section is adapted from the work

of Rosenthal et al. in [43]. In this problem a workforce that serves Q facilities moves

between these facilities according to a stationary probability distribution denoted

by probability transition matrix P , where Pij is the probability that the workforce

moves from facility i to facility j. An equipment trailer can be located at any of the

facilities in Q. The cost of moving the trailer from facility i to a facility j is denoted

by Rij. If the workforce is located at facility i and the trailer is at facility j, then

Uij denotes the cost of obtaining the equipment from the trailer. The problem is

modeled as an infinite horizon MDP by defining the states to be the tuple (w, r),

where w and r are the location of the workforce and the trailer, respectively. We

assume that this system does not have an absorbing state and thus runs indefinitely.

We used a problem with 4 facilities and therefore 16 states. We used the following

data for the cost of trailer relocation, the cost of using the equipment when the trailer

65

and the workforce are at different locations:

R =



0 100 200 300

100 0 100 200

200 100 0 100

300 200 100 0


, U =



0 999 999 999

200 0 100 100

200 100 0 100

200 100 100 0


.

We also used the following probability transition matrix for the movement of the

work crew:

P =



0 0.5 0.5 0

0 0 0.6 0.4

0.1 0.4 0.1 0.4

0.25 0.25 0.25 0.25


.

It is important to note that the knowledge of the probability distribution of the

workforce location (i.e., the random disturbance) given above is only used to sim-

ulate the process and to calculate the optimal solution of the problem. SFPL and

Q-Learning do not use this information but estimate the probability distribution

through sampling.

In this section we compare the performances of SFPL and Q-Learning on the

Dynamic Location problem. For the Q-Learning algorithm we set the ε-greedy sam-

pling parameter ε = 0.1 and the step size α = 1/I(s, a) where I(s, a) is the number of

times the value of state-action pair (s, a) is updated. The convergence properties of

stochastic search algorithms (including SARSA and Q-Learning) strongly depend on

the parameters ε and α. George et al. lists various step size parameters and discusses

the effect of using different step sizes in [25]. The selection of such parameters is an

active research area and beyond the scope of our experiments. The results presented

below are obtained for fixed parameters.

66

0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

CPU Time (sec.)

V
al

ue
 o

f S
ta

te
 1

Value of State 1 vs. CPU Time (γ = 0.25)

SFPL
Optimal value under the estimated probabilities
Q−Learning
Optimal value under the true probabilites

(a)

0 0.5 1 1.5 2 2.5 3
0

50

100

150

200

250

300

350

400

CPU Time (sec.)

V
al

ue
 o

f S
ta

te
 1

Value of State 1 vs. CPU Time (γ = 0.5)

SFPL
Optimal value under the estimated probabilities
Q−Learning
Optimal value under the true probabilities

(b)

0 0.5 1 1.5 2 2.5 3
0

100

200

300

400

500

600

700

800

CPU Time (sec.)

V
al

ue
 o

f S
ta

te
 1

Value of State 1 vs. CPU Time (γ = 0.75)

SFPL
Optima value under the estimated probabilities
Q−Learning
Optimal value under the true probabilities

(c)

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000

1200

1400

1600

1800

CPU Time (sec.)

V
al

ue
 o

f S
ta

te
 1

Value of State 1 vs. CPU Time Time (γ = 0.9)

SFPL
Optimal value under the estimated probabilities
Q−Learning
Optimal value under the true probabilities

(d)

Figure 4.1: Comparison of the values returned by SFPL, Q-Learning and the optimal values of
MDP and MDPt (a) γ = 0.25, (b) γ = 0.50, (c) γ = 0.75, (d) γ = 0.9.

67

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

5

10

15

20

25

30

35

40

State Index

V
al

ue
 D

iff
er

en
ce

Difference betwee the returned values by the algorithms and the optimal value (γ = 0.5)

SFPL
Q−Learning

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

50

100

150

State Index

V
al

ue
 D

iff
er

en
ce

Difference between the returned values by the algorithms and the optimal value (γ = 0.75)

SFPL
Q−Learning

(b)

Figure 4.2: Comparison of difference of the values returned by SFPL, Q-Learning and the optimal
values of each state for (a) γ = 0.5, (b) γ = 0.75.

Figure 4.1 shows the comparison of the values returned by SFPL and Q-Learning

for state (1, 1) when both algorithms are run for the same amount of CPU time.

On this figure the optimal value of state (1, 1) in MDP (the system with the true

probability distribution p(ω(s))) and in MDPt (the estimated system at time t with

the probability distributions pt(ω(s))) are also plotted for comparison. Note that

calculating the optimal solution of MDPt is not part of SFPL. However, this com-

parison provides valuable insights about the performance of SFPL. For example, as

shown in Figure 4.1 values returned by SFPL are very close to the optimal solution

of the estimated system MDPt after a certain time. This implies that SFPL starts

choosing the best actions that can possibly be obtained with the current knowledge

of the system.

The results presented in Figure 4.1 are obtained using various discount rates

(γ = 0.25, γ = 0.50, γ = 0.75 and γ = 0.9). As can be seen from the figures,

the performances of Q-Learning and SFPL are comparable for lower discount rates

(γ = 0.25 and γ = 0.50). However, SFPL outperforms Q-Learning for higher discount

68

rates (γ = 0.75 and γ = 0.9).

Figure 4.2 shows the absolute value difference between the final values returned

by SFPL and Q-Learning and the optimal values J∗(s) of all states for γ = 0.5 and

γ = 0.75. As before, the performance of the two algorithms is comparable for lower

discount rates; however, SFPL performs better for higher discount rates.

4.5.3 Windy Gridworld

The windy gridworld problem involves going from one point to another on a grid

each column of which is subject to winds with various strengths. We use the grid

given in [5], also shown in Figure 4.3. In the figure, the numbers below each column

represents the mean strength of the wind blowing towards north (upward) affecting

only that column. We assume that in each column the wind strength can be one

unit above, one unit below, or at its mean value equally likely at any given time4.

Therefore, if the mean strength of the wind is 0 units, then with 1/3 probability

the wind blows in the south direction with unit strength, with 1/3 probability the

wind blows in north direction with unit strength and with 1/3 probability there is

no wind in effect. In each state the feasible actions are to move in one of the eight

possible directions, namely East, Southeast, South, Southwest, West, Northwest,

North and Northeast. Once a decision is made in a given state, at a given time, the

next state is determined by the current state (i.e., the current location), the decision

at the current state (i.e., the movement direction) and the realization of the wind

strength at that time. If the process transitions into an infeasible state (i.e., out of

the boundaries of the grid), then it is forced to jump back to the closest state within

the boundaries. The strength of the wind affecting a column is random and possibly

changes every time a state in that column is visited. As shown in Figure 4.3 the

4Note that the probability distribution of the random disturbance is only used to simulate the process and to
calculate the optimal solution of the problem

69

Figure 4.3: Windy GridWorld Problem.

problem is to go from point S to point F as fast as possible. The immediate reward

of each decision is defined to be -1 units and the objective is to maximize the total

reward (i.e., minimize the total travel distance).

Note that windy gridworld problem does not satisfy Assumption IV.1. In this

problem, the process ends once the destination state is reached. In the context of in-

finite horizon problems, we can view the destination state as an absorbing state i.e.,

the system is stuck in the destination state, independent of the policy employed, once

the process enters this state. Therefore, some states may not be visited infinitely of-

ten under some stationary deterministic policies. However, with small modifications,

details of which are given below, it is possible to apply SFPL to this problem. As we

will discuss further, the numerical results obtained from applying SFPL to the windy

gridworld supports our claim from Section 4.4 that the values of the states in the

“recurrent class” of the induced Markov Chain under the optimal policy converge to

the optimal values. In what follows, the details of the SFPL implementation on the

windy gridworld and the discussion of the numerical results are given.

In the implementation of SFPL on the windy gridworld problem, to facilitate

70

learning of the algorithm, the system is restarted at the initial state (point S) once

the destination (point F) is reached. One complete run, starting from the initial

state S to the final state F , is called an “episode”.

We compared the performance of SFPL with that of SARSA [5]. We used the

implementation code for SARSA developed by John Weatherwax available online at

[46]. For the SARSA algorithm we set the ε-greedy sampling parameter ε = 0.1 and

the step size α = 1
I(s,a)

where I(s, a) is the number of times the value of state-action

pair (s, a) is updated.

In SFPL, the values of all states are initialized at value 0. We ran SFPL and

SARSA for one minute of CPU time. During this time, SFPL completed around 2000

episodes, whereas SARSA completed around 15000 episodes (i.e., the system starts at

the initial state and reaches the final state 15000 times). While running SFPL, we also

calculated the optimal solution of MDPt by running the classical synchronous value

iteration algorithm with the most up-to-date estimate of the probability distribution

on the wind strength every time the system entered the initial state5.

Figure 4.4 shows the value estimates of the initial state S returned by SFPL and

SARSA every time these algorithms hit this state. The optimal value of S under the

true probability distribution and also under the estimated probability distributions

(i.e., the optimal value of S in MDPt) are also plotted for comparison. Note that

SFPL finds values closer to the optimum faster than SARSA.

Running SFPL for 2000 episodes took around 1 minute of CPU time; whereas

running value iteration every time the system entered the initial state took several

hours to complete. As can be seen in Figure 4.5, the values returned by SFPL and the

optimal values of MDPt obtained via value iteration are not significantly different.

5We stopped the clock during the value iteration algorithm so that we were able to record the time requirement
of SFPL exclusively.

71

0 10 20 30 40 50 60 70
−12

−10

−8

−6

−4

−2

0

Time (sec.)

V
al

ue
 E

st
im

at
e

of
 th

e
In

tia
l S

ta
te

Value Estimate of the Initial State vs. Time

SFPL
Optimal value under the true probabilities
Optimal value under the estimated probabilities
SARSA

Figure 4.4: The value estimates of the initial state S returned by SFPL, SARSA and by running
value iteration on the intermediate estimated system MDPt. The optimal value under
the true probabilities is also included for comparison.

0 500 1000 1500 2000 2500
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Iteration Count

J t(in
iti

al
 s

ta
te

)
−

 J
t* (in

iti
al

 s
ta

te
)

[Jt(initial state) − Jt
*(initial state)] vs. Iteration Count

Figure 4.5: Difference between the value estimate of the initial state S by SFPL and the optimal
values of the estimated system MDPt calculated using value iteration.

72

|Value Returned by SFPL − Optimal Value|

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7 0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

(a)

|Value Returned by SARSA − Optimal Value|

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

(b)

Figure 4.6: Absolute value difference of the final estimated values returned by SFPL (a) and SARSA
(b) and the optimal values under the true probability distribution. The graphs are
adapted from the code developed by John Weatherwax available online at [46].

Figure 4.6 shows the absolute value difference between the final estimated values

returned by SFPL and SARSA and the optimal values under the true probability

distribution. As can be seen in the figure, the blue color is dominant on the states

that are to the south of the initial and final states, denoted by large black points, in

both figures. This is because both algorithms sample the optimal strategy, which is

to move in the southeast direction (also shown in Figure 4.7), more often than other

available strategies and therefore the value estimates of the states to the south of the

grid get closer to the optimal values. These figures also show that error of the value

estimates obtained by SFPL is smaller than that of SARSA on all states.

Another way to compare algorithms is to check if the algorithms successfully

identify the optimal actions in each state. The information on the policy returned

by SFPL and SARSA is presented in Figure 4.7. In this figure, different colors on the

grid represent the nominal value of the wind on each column. For example, on the

yellow states the mean wind strength is 2 units towards north, whereas on light blue

73

SFPL Policy Map

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a)

SARSA Policy Map

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b)

Figure 4.7: The final policy returned by SFPL (a) and SARSA (b) (represented with black arcs) vs.
the optimal policy obtained using the values returned by value iteration (represented
with red arcs).

and dark blue states the mean strength of the wind is 1 and 0 units towards north,

respectively. On these figures the red arrows on each state represent the optimal

action whereas the black arrows denote the action returned by the algorithms. If

the actions from the algorithms coincide with that of the optimal action for a given

state, than only the red arc is shown. As presented in figure, SFPL found the correct

actions for more states than SARSA.

In each iteration of SARSA and Q-Learning, the value assigned to feasible actions

of the current state is compared and the one with the lowest value (or the highest, if it

is a maximization problem) is selected. On the other hand, in SFPL, the best action

in the current state is obtained by calculating and comparing the expected value of

each feasible action of the current state (see Equation (4.2)). Note that while the

computational requirement of SARSA and Q-Learning per iteration is significantly

less than that of SFPL, the magnitude of improvement obtained in each iteration

of SFPL is higher. Therefore, to make the claims more meaningful, the numerical

74

results presented in this section are obtained by running the algorithms for the same

amount of CPU time.

Another important property that affects an algorithm’s performance is its memory

requirement. Q-Learning and SARSA update the values of each state-action pair.

Therefore, these algorithms need to keep a data structure of size O(|S| ×maxs |As|).

In SFPL, the history of best replies and the history of random disturbances are

recorded. However, this data is only used to sample actions (from the history of

best replies) and to estimate the probability distribution of the random distur-

bances. Therefore, in these algorithms, it is enough to keep the count of each

action in the history of best replies and the count of each random event in the

history of random disturbances. Therefore, the memory requirement of SFPL is

O(|S| ×maxs(max{|As|, |Ω(s)|})). In conclusion, the memory requirement of SFPL

may be more than those of Q-Learning and SARSA depending on the problem struc-

ture.

4.6 Conclusions

SFPL is an asynchronous, online learning algorithm designed using SFP concepts

for discounted, homogenous, infinite horizon MDPs. This algorithm is shown to

converge to the optimal solution by updating beliefs on the probability distribution

of the random disturbance in the system and the optimal value of each state, at the

same time adaptively sampling actions from the history of best replies.

Comparing SFPL with SARSA and Q-Learning provides insights in many re-

spects. First of all, one significant difference between the two classes of algorithms is

that SFPL uses the information on the probability distribution of the random distur-

bance in the system whereas SARSA and Q-Learning do not. The difference between

75

numerical results of SFPL and SARSA (and Q-Learning) suggest that incorporat-

ing the extra knowledge about the system into the approximation procedures, when

possible, can improve the performance of the algorithms. Secondly, using the history

of best replies to sample actions helps to discover the states in the “recurrent class”

of the induced Markov Chain under the optimal policy and therefore find better

values (i.e., values close to the optimal) for these states. The theoretical analysis of

the effect of using history of best replies is still an open research question, however,

the empirical experiments show promising results. The results obtained with using

various discount rates also suggest that SARSA and Q-Learning algorithms are more

influenced by discount rate than SFPL.

CHAPTER V

Conclusions and Future Research Directions

5.1 Summary and Conclusions

In this dissertation, we considered two classes of sequential decision making prob-

lems: (a) discrete, deterministic and finite horizon DP problems and (b) stochastic,

discounted, infinite horizon MDPs. Chapters II and IV are dedicated to the analysis

of Sampled Fictitious Play (SFP) based algorithms designed for the two classes of

problems listed above. In these chapters, the details of the developed algorithms

are given first, which are followed by the convergence results and the numerical ex-

periments on their performance. Chapter III presents numerical results obtained by

applying the algorithms developed in Chapter II to the Traveling Salesman Problem

and discusses some modifications that might potentially improve their performance.

The algorithms studied in Chapter II, namely RSFP and SFPLS, are stochas-

tic search algorithms for discrete, deterministic and finite horizon DP problems.

As noted earlier, stochastic algorithms cannot outperform the label correcting algo-

rithms such as Dijsktra’s Algorithm in theory if the requirement is to find an optimal

solution. However, on large-scale problems, Dijsktra’s algorithm loses its effective-

ness, and it usually is unable to find the optimal solution within a reasonable time

limit as required by most real-world applications. For such problems, we propose

76

77

using SFP methods to find close to optimal solutions quickly. As presented in Chap-

ter II, SFP based search algorithms not only converge to the optimal solution but

also find close to optimal solutions quickly. The potential of these algorithms is

also supported by numerical experiments presented in Chapter III highlighting the

performance improvement after small modifications.

In Chapter IV, we propose using SFP concepts to design an online learning al-

gorithm for infinite horizon, discounted MDPs, where the probability distribution

of the exogenous random disturbance is unknown. The learning algorithm, called

Sampled Fictitious Play based Learning Algorithm (SFPL), uses the information

(i.e., frequency of the random events) obtained by observing the system to find

the best possible decision in each iteration. This algorithm is proven to converge

to the optimal solution, and the numerical results based on the dynamic location

and windy gridworld problems show the algorithm converges quickly. The numeri-

cal experiments also suggest that learning the system dynamics and simultaneously

optimizing the system variables is more efficient than running these two routines sep-

arately (i.e., first observing the system and collecting data on unknown parameters

and then calculating the optimal solution with the estimated parameters). We also

present comparisons of SFPL with two algorithms from the Reinforcement Learning

literature, Q-Learning and SARSA (slightly modified version of Q-Learning). These

comparisons show that the performance of Q-Learning strongly depends on the step

size parameter while SFPL does not use a step size parameter and that Q-Learning

algorithm is more susceptible to discount rate of the problem than SFPL.

The advantages of using SFP based algorithms for sequential decision making

problems are as follows:

• The SFP approach does not require a closed form representation of an optimiza-

78

tion model. The algorithms presented can even be applied to complex black-box

optimization problems.

• The SFP based algorithms developed in this dissertation do not rely on struc-

tures of costs, transition functions and objective function. Therefore, these

algorithms are applicable to a wide range of problems.

• The SFP based algorithms do not need the knowledge of the entire state space

(e.g., network topology). They discover the state space of a given problem grad-

ually. It is a well known fact that the entire feasible region has to be searched

in order to confirm that an optimal solution has been found. However, with our

approach, it is possible to find good solutions by only partially discovering the

state space.

• To model a DP problem as a game, we define states to be the players and the

objective function to be the payoff function for each player. Therefore, the

best reply calculations of players naturally divides the large-scale problem into

manageable subproblems which can be solved in parallel.

• The parallel processing possibility, in some cases, is one of the considerations for

applying these algorithms to large-scale problems, since a parallel implementa-

tion can increase the performance of the algorithms substantially.

5.2 Future Research Directions

5.2.1 Future Research Directions for the work in Chapter II

• Analysis of equilibrium solutions in the game defined on a DP problem:

The number of NEs and their distance to the optimal solution depend on the

problem type, data of the problem, and the topology of the network represen-

tation (i.e., the DP network) of the problem. If the number of NEs is large

79

or if they are densely located on certain parts of the network, identifying the

optimal solution among these NEs will be more time consuming compared to

problems with fewer NEs. Therefore, the ability to estimate the number of

equilibrium strategies in a problem or identify the parts of the network where

the NEs are densely located can help us predict the performance of the SFP

based algorithms on a given problem instance before implementing it.

• Relationship between a NE returned by SFP and the initial point:

For a given initial point, there is only a subset of NEs that the SFP might con-

verge to. For example, SFP will not return a NE having a worse objective value.

Numerical experiments suggests that this subset is actually smaller compared

to the entire set of NEs. Therefore, analyzing the nature of the relationship

between the NEs returned by SFP and the initial point might inspire new ideas

to improve performance of SFP.

• The proof of convergence results for the modified algorithms developed in Chap-

ter III are omitted and are among the future research directions we will pursue.

5.2.2 Future Research Directions for the work in Chapter IV

• Analysis of the effect of using history of best replies:

In SFPL, every player samples an action from the history of best replies. Numer-

ical results suggest that this approach helps the algorithm visit “good” states

(states that are in the “recurrent class” of induced Markov Chain under the

optimal policy) more often and therefore learn the system dynamics related

to these states quickly. Our convergence analysis, however, does not capture

this property of the algorithm. Extending the convergence analysis to show

that the SFPL algorithm finds the optimal solution of the states, which are in

80

the recurrent class of the induced Markov Chain, without visiting all states in-

finitely often (possibly on a certain subclass of problems) would be a significant

contribution.

BIBLIOGRAPHY

81

82

BIBLIOGRAPHY

[1] Test Data for Traveling Salesman Problem.
http://http://www.tsp.gatech.edu/world/countries.html.

[2] R. Ahuja and D. Hochbaum. Solving linear cost dynamic lot-sizing problems in o(n log n) time.
Operations Research, 56(1):255–261, 2008.

[3] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The Traveling Salesman Problem:
A Computational Study. Princeton University Press, 2007.

[4] A. Barto, S. Bradtke, and S. Singh. Learning to act using real-time dynamic programming.
Artificial Intelligence, 72:81–138, 1995.

[5] A. Barto and R. Sutton. Reinforcement Learning: An Introduction. MIT Press Cambridge,
MA, 1998.

[6] S. Baumert, S. Cheng, A. Ghate, D. Reaume, D. Sharma, and R. Smith. Joint optimization of
capital investment, revenue management, and production planning in complex manufacturing
systems. Technical report, Department of Industrial and Operations Engineering, University
of Michigan, Ann Arbor, 2005.

[7] J. C. Bean, J. R. Lohmann, and R. L. Smith. Equipment replacement under technological
change. Naval Research Logistics, 41:117–128, 1994.

[8] R. Bellman. On some applications of the theory of dynamic programming to logistics. Naval
Research Logistics Quarterly, 1, 1954.

[9] R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press, 1961.

[10] R. Bellman. Dynamic programming treatment of the travelling salesman problem. J. ACM,
9(1):61–63, 1962.

[11] R. E. Bellman and S. E. Dreyfus. Applied Dynamic Programming. Princeton University Press,
1962.

[12] D. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models. Prentice-Hall,
1976.

[13] D. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996.

[14] D. Bertsimas and R. Weismantel. Optimization Over Integers. Dynamic Ideas, 2005.

[15] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press New York, NY, USA, 1998.

[16] G. Brown. Iterative solution of games by fictitious play. Activity analysis of production and
allocation, 13:374–376, 1951.

[17] H. Chang, M. Fu, J. Hu, and S. Marcus. An adaptive sampling algorithm for solving Markov
decision processes. Operations Research, 53:126–139, 2005.

83

[18] H. Chang, M. Fu, J. Hu, and S. Marcus. Simulation-based Algorithms for Markov Decision
Processes. Springer Berlin, 2007.

[19] S. Cheng, M. Epelman, and R. Smith. CoSIGN: A Parallel Algorithm for Coordinated Traffic
Signal Control. IEEE Transactions on Intelligent Transportation Systems, 7:551–564, 2006.

[20] E. Denardo. Dynamic Programming: Models and Applications. Dover, 2003.

[21] A. Federgruen and M. Tzur. A simple forward algorithm to solve general dynamic lot sizing
models with n periods in 0(n log n) or 0(n) time. Management Science, pages 909–925, 1991.

[22] D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1991.

[23] A. Garcia, S. Patek, and K. Sinha. A decentralized approach to discrete optimization via
simulation: Application to network flow. Operations Research, 55:717, 2007.

[24] A. Garcia, D. Reaume, and R. Smith. Fictitious play for finding system optimal routings in
dynamic traffic networks. Transportation Research Part B, 34:147–156, 2000.

[25] A. George and W. Powell. Adaptive stepsizes for recursive estimation with applications in
approximate dynamic programming. Machine Learning, 65:167–198, 2006.

[26] A. Ghate, R. L. Smith, and M. Epelman. Sampled sampled fictitious play for complex systems
optimization. Technical report, Technical Report, Department of Industrial and Operations
Engineering, University of Michigan, Ann Arbor, 2005.

[27] V. Gullapalli and A. Barto. Convergence of indirect adaptive asynchronous value iteration
algorithms. Advances in neural information processing systems, pages 695–695, 1994.

[28] G. Gutin and A. P. Punnen. The Traveling Salesman Problem and Its Variations. Springer,
2002.

[29] M. Held and R. M. Karp. A dynamic programming approach to sequencing problems. Journal
of the Society for Industrial and Applied Mathematics, 10(1):196–210, 1962.

[30] R. A. Howard. Dynamic programming. Management Science, pages 317–348, 1966.

[31] M. Kearns and S. Singh. Finite-sample convergence rates for q-learning and indirect algorithms.
Advances in Neural Information Processing Systems, pages 996–1002, 1999.

[32] M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time. Machine
Learning, 49:209–232, 2002.

[33] T. Lambert III, M. Epelman, and R. Smith. A fictitious play approach to large-scale optimiza-
tion. Operations Research, 53:477–489, 2005.

[34] C. Lee, M. Epelman, C. White, and Y. Bozer. A shortest path approach to the multiple-vehicle
routing problem with split pick-ups. Transportation Research Part B, 40:265–284, 2006.

[35] D. Monderer and L. Shapley. Fictitious play property for games with identical interests.
Journal of Economic Theory, 68:258–265, 1996.

[36] J. Nash. Equilibrium points in n-person games. Proceedings of the National Academy of
Sciences of the United States of America, pages 48–49, 1950.

[37] C. H. Papadimitirou and K. Steiglitz. Combinatorial optimization: Algorithms and complexity.
Dover Publications, Inc, 1998.

[38] S. M. Pollock and R. Smith. A Formalism for Dynamic Programming. Technical report,
Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor,
1985.

84

[39] W. Powell. Approximate Dynamic Programming: Solving the curses of dimensionality. Wiley-
Interscience, 2007.

[40] M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, Inc. New York, NY, USA, 1994.

[41] G. Reinelt. The Traveling Salesman Problem: Computational Solutions for TSP Applications.
Springer-Verlag, 1994.

[42] J. Robinson. An iterative method of solving a game. Annals of Mathematics, pages 296–301,
1951.

[43] R. Rosenthal, J. White, and D. Young. Stochastic Dynamic Location Analysis. Management
Science, 24:645, 1978.

[44] S. Ross. Introduction to Probability Models. Academic Press, 2006.

[45] J. N. Tsitsiklis and B. Van Roy. Feature-based methods for large scale dynamic programming.
Machine Learning, 22:59–94, 1996.

[46] J. Weatherwax. SARSA Implementation in MATLAB.
http://waxworksmath.com/Authors/N_Z/Sutton/sutton.html.

