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Milla – now, it is your turn… All my love, Daddy! 

 

Vanessa – focus returns home… My heart is yours forever! 

 

Mom – I understand patience… You are the model! 

 

Dad – the journey is now finished… Hunting we will go! 
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Preface 

In The Hitchhiker’s Guide to the Galaxy, the English humorist and science fiction 

novelist Douglas Adams wrote, “Space is big. You just won‟t believe how vastly, hugely, 

mind-bogglingly big it is. I mean, you may think it‟s a long way down the road to the 

chemist‟s, but that‟s just peanuts to space.” Here, when Mr. Adams refers to “the 

chemist‟s”, he is actually referring to the minute geometric distance between the reader 

and the pharmacy or drugstore (chemist is a common term for pharmacist in the UK and 

other countries like Australia and New Zealand), however the statement itself is 

accidentally ironic. When one thinks of chemists, the image comes to mind of a wild-

eyed soot streaked sinister cartoonish figure with hair blown back dressed in a white 

jacket wearing eye-protection and mixing colorful liquids in assorted glassware 

precariously situated over an open flame. The chemists‟ reaction-based environment is 

limited to the chemicals at hand. However, the witty Doug had no concept of 

cheminformatics and the even more perplexingly large concept of chemical space(s) that 

the computational chemist deals with on a daily basis. 

Chemical space refers to the space spanned by all the energetically stable 

stoichiometric combinations of atomic nuclei and electrons in molecules, including their 

isomers. It has been estimated that if one considers only molecules containing 30 or 

fewer C, N, O, and S atoms, that the number of potential molecules is 10
60

. Furthermore, 

there are well over 20
100

 conceivable protein sequences up to 100 amino acids in length. 

In fact, summing the mass of the individual small molecules would likely exceed the
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theoretical mass of the universe. Therefore, it is physically impossible to synthesize this 

list within 10‟s of orders of magnitude. The question then arises, “how does one realize 

the potentials for data mining the vastness of chemical space or at least begin to explore a 

small portion for a specific purpose, such as drug design?” 

One answer involves the use of Structure Activity Relationships (SARs), allowing 

the medicinal chemist to investigate how small modifications to the scaffold of a known 

drug can affect its overall activity, selectivity, and specificity. SAR research is based 

upon the principle of “like produces like,” or molecules with similar structure are 

expected to behave similarly. While it is well known that even minute changes can render 

compounds inactive, the principle is commonly applied in drug development in order to 

modify medications so as to optimize efficacy, minimize side-effects, and establish new 

patents. Albuterol is an example such a medication. It is a racemic mixture, acting as a 

β2-adrenergic receptor agonist, used to relieve bronchospasms in conditions such as 

asthma and chronic obstructive pulmonary disease. Marketed as levalbuterol, the r-

enamtiomer is the active component; the l-enantiomer is completely inactive. While the 

first β2-adrenergic receptor agonist was likely ephedrine extracted from Ma Huang or 

Ephedra sinica, having its roots in Chinese medicine, modern civilization accepted 

theophylline as the first β2-adrenergic receptor agonist. Theophylline and caffeine, both 

members of the xanthine family, bear a strong structural resemblance. Understanding 

this, it is obvious how caffeine, most commonly administered in a hot cup of coffee, 

found its way into home remedy books for asthma attacks and shortness of breath. “Like 

produces like.”  There is also a significant structural similarity between ephedrine, 

isoproterenol, metaproterenol, albuterol, and epinephrine (also the r-enantiomer), all of 
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which can be used to treat the acute onset of asthma. “Like produces like.” Hence SARs 

are a favored approach in medicinal chemistry. 

Unfortunately, SARs are limited for the very same reason that makes them useful: 

the scaffold or backbone of the chemical entity is constant. “Like produces like” can still 

be applied in a more abstract manner that involves scaffold-hopping based on the 

similarity between molecules in chemical property space. A chemical property space is 

defined by descriptors, typically measurable physicochemical properties: logP, molecular 

weight, polar surface area, number of hydrogen bond acceptors/donors, etc. Thereby, a 

computational chemist is able to map a library of known molecules into some n-

dimensional hyperspace and localize regions of activity based on the presence of known 

drug molecules. “Like produces like” says that nearby molecules should also exhibit 

similar biological activity, pharmacokinetics, and pharmacodynamics. The drawbacks for 

this method are: (1) selecting the optimal set of orthogonal physicochemical properties, 

which may not be the same for each class of drug molecules, (2) the experimental data 

required may not be available for compounds on hand in the laboratory, much less for 

theoretical (in silico) compounds, and (3) the process of inferring physicochemical 

property from structure is unidirectional, that is, it is not currently possible to predict 

novel structures based on known physicochemical properties. It is not possible to reverse 

engineer chemical structures based on a set of physicochemical property parameters. 

The goal of this work centers on developing a solution to the second issue.
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Abstract 

The calculation of physicochemical and biological properties is essential in order to 

facilitate modern drug discovery. Chemical spaces dimensionalized by these descriptors 

have been used to scaffold-hop in order to discover new lead and drug-like molecules. 

Broadening the boundaries of structure based drug design, these molecules are expected 

to share the same physiological target and have similar efficacy, as do known drug 

molecules sharing the same region in chemical property space. 

In the past few decades physicochemical and ADMET (absorption, distribution, 

metabolism, elimination, and toxicity) property predictors have been the subject of 

increased focus in academia and the pharmaceutical industry. Due to the ever increasing 

attention given to data mining and property predictions, we first discuss the sources of 

experimental pKa values and current methodologies used for pKa prediction in proteins 

and small molecules. Of particular concern is an analysis of the scope, statistical validity, 

overall accuracy, and predictive power of these methods. The expressed concerns are not 

limited to predicting pKa, but apply to all empirical predictive methodologies. 

In a bottom-up approach, we explored the influence of freely generated SMARTS 

string representations of molecular fragments on chelation and cytotoxicity. Later 

investigations, involving the derivation of predictive models, use stepwise regression to 

determine the optimal pool of SMARTS strings having the greatest influence over the 

property of interest. By applying a unique scoring system to sets of highly generalized 

SMARTS strings, we have constructed well balanced regression trees with predictive
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accuracy exceeding that of many published and commercially available models for 

cytotoxicity, pKa, and aqueous solubility. The methodology is robust, extremely 

adaptable, and can handle any molecular dataset with experimental data. This story 

details our struggles of data gathering, curation, and the development of a machine 

learning methodology able to derive and validate highly accurate regression trees capable 

of extremely fast property predictions. 

Regression trees created by our method are well suited to calculate descriptors for 

large in silico molecular libraries, facilitating data mining of chemical spaces in search of 

new lead molecules in drug discovery. 
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Chapter 1 

Introduction 

1.1 Time & Money 

Two factors familiar to every industry both big and small are time and money. 

“Time is money,” and “money cannot buy back time.” This is the huge impediment 

looming over Big Pharma like Pfizer. Lipitor, the $12.4 billion per year cash cow is going 

off patent in 2011 and there is nothing ready to take its place.
1
 According to statements 

on Yahoo Finance, Pfizer grossed approximately $48 billion during the last fiscal year.
2
 

Considering the 9 – 15 year gestational period to take a new chemical entity (NCE) to an 

FDA approved drug and that the price tag of research and development averages $800 

million for NCEs and $200 million for non-NCEs,
3
 it stands to reason that Pfizer stands 

to lose over 25% of its revenue for the indefinite future. 

The two main reasons new drugs do not make it to market is that they fail to be 

efficacious or pass safety standards late in testing due to poor pharmacokinetics and 

pharmacodynamics: absorption, distribution, metabolism, excretion, and toxicity 

(ADMET). Traditionally, the most expensive and time consuming stages of the drug 

development pipeline are phase I–III trials where the unfavorable ADMET properties are 

identified. By 2004 standards, approximately one-third of the new drug failures, 

representing $8 billion in losses, were due the inability to accurately predict toxicity.
4
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Therefore, it is essential to explore every means possible to curtail the losses and 

accelerate the drug development process. 

The fastest and substantially less expensive stages of drug development rely on 

computational research. Once configured, in silico screening, docking, and property 

prediction can be made into batchable processes, requiring minimal to no monitoring and 

running 24 hours a day, 7 days a week. As high-level object oriented programming and 

operating systems have become more and more resource dependent, one way to increase 

speed is to improve the quality and processing power of the hardware by purchasing more 

memory, faster processors, and relying on parallel processing techniques, such as 

distributed and grid computing, which supports massively parallel CPU capacity.
5
 An 

example of grid computing is the Search for Extra-Terrestrial Intelligence (SETI) 

project.
6
 The other way to increase computational speed is through programming 

efficiency, reducing redundancies, and relying on computer language(s) best suited to the 

task at hand.  Even though the computational phases of the drug development pipeline 

tend to be the fastest, great emphasis is still placed on optimizing information throughput, 

improving physical resources, and more efficient programming, following the “time is 

money” principle. 

1.2 The Abc’s of Chemical Data Mining: SMILES and SMARTS 

One of the early in silico optimizations was the derivation of a chemical notation 

capable of consolidating chemical nomenclatures, encoding two-dimensional molecular 

representations in simple line notation, along with the incorporation of a sister language 

that increased the efficiency of in silico high throughput screening (HTS). The notation 
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and language are SMILES (Simplified Molecular Input Line Entry System)
7
 and 

SMARTS (A Language for Describing Molecular Patterns).
8
 

A SMILES string is a string of ascii characters, representing a molecular 

connectivity table without spatial coordinates. For compactness, hydrogens are implied 

except when dealing with stereocenters. Furthermore, while many SMILES strings can be 

used to represent the same molecule, a unique canonical form exists. Uniqueness is 

important because it allows for faster queries. For example, if one had a large molecular 

database, such as PubChem with 37,321,069 unique compounds,
9
 and wanted to support 

exact structure searching without having to rely on an engine which parsed molecular 

connectivity tables for every molecule, indexing PubChem using canonical SMILES for 

each molecular entry would solve the problem. The solution is possible as the canonical 

SMILES representation of a molecule results in a unique ordering of atoms and notations. 

As SMILES strings are generic one-dimensional textual objects, the problem has been 

reduced to a simple text matching issue instead of a chemistry-specific multidimensional 

problem. The canonical SMILES for Lipitor is CC(C)C1=C(C(=C(N1CCC(CC(CC(=O) 

[O-])O)O)C2=CC=C(C=C2)F)C3=CC=CC=C3)C(=O)NC4=CC=CC=C4.CC(C)C1=C(C

(=C(N1CCC(CC(CC(=O)[O-])O)O)C2=CC=C(C=C2)F)C3=CC=CC=C3)C(=O)NC4=C

C=CC=C4.[Ca+2], where the periods represent breaks between non-covalently linked 

molecules. While the SMILES language does not halt the evolution of the International 

Union of Pure and Applied Chemistry (IUPAC) nomenclature, it does provide an 

important means for more efficient storage of chemical data, as SMILES strings are a 

robust notation for compressing two-dimensional molecular structural data, while 

maintaining structural chemistry. 
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In silico HTS data mining is supported through SMARTS strings, which are an 

extension of SMILES. If a string is a SMILES string, then it is also a SMARTS string. 

SMILES and SMARTS follow conditional logic, as the reverse of the previous statement 

is not true. Rather, if a string is a SMARTS string, it is not necessarily a SMILES string. 

SMARTS strings are typically used for substructure searching to identify molecules 

based on pattern matching, either as a singular string or as a group of SMARTS strings 

(molecular fingerprint). The set of SMARTS strings represented by the vector 

[„c1ccccc1‟, „F‟, „[Ca+2]‟, „[Sn]‟] would return [1,1,1,0] when used to query Lipitor, as 

Lipitor contains a benzene ring, a fluorine, a calcium ion with charge +2, but no tin. The 

capabilities of SMARTS for substructure searches are limited only by the individual and 

the particular SMARTS implementation used. While Daylight
8
 is the originator of 

SMILES and SMARTS, we have chosen to use the MOE representation, due to our lab‟s 

close relationship with its creators, the Chemical Computing Group.
10

 The use of 

SMARTS strings is the unifying theme for this work. Here we have extended the use of 

SMARTS beyond that of simple molecular screening, and have shown that the language 

can be used to reverse engineer measurable chemical properties from structural data. 

1.3 What is Data Mining and How is It Used to Answer Questions? (An Example) 

Data mining is the modern term which represents the process of searching for “a 

needle in a haystack.” Fortunately, it is not as physically laborious as digging through a 

haystack or nearly as painful as accidentally falling on one of the needle‟s pointed ends. 

Here, we provide an example of how freely generated SMARTS strings and successive 

screens of a molecular database can be used to answer questions relating to medicinal 

chemistry. First, the question: do chelating substances induce toxicity by trapping and 
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eliminating or transporting complexed metal ions to specific compartments within the 

body or all of the above? 

In an attempt to answer this question, we considered data from the National 

Cancer Institute‟s Developmental Therapeutics Program‟s human tumor cell line data, the 

NCI60.
11

 In every data mining effort the type, quantity, and quality of the available data 

must be taken into consideration. While high quantity and high quality data can lead to 

more robust, accurate data models, the type of data needs to be carefully considered. The 

NCI60 consists of cancer cell growth inhibition data (GI50: 50% after 48 hours) for over 

43000 substances assayed against 60 cancer cell lines. Structural and growth inhibition 

data was obtained from PubChem‟s Substance and BioAssay databases.
12

 The NCI60 is 

considered one of the highest quality, most well curated, publically available data sets. 

 First, we investigated congeneric series of chelating compounds, where the only 

variants are (1) the presence of metal ions and (2) the metal ion type. A chelant is an 

organic structure that can form an ionic bond with one or more metal ions, such as EDTA 

or ethylenediaminetetraacetic acid, whereas a chelate is the metal-bound form. EDTA has 

many uses, but as it relates to medicinal chemistry, it is used in chelation therapy to treat 

heavy metal poisoning.
13

 Structural screening efforts identified several chelant / chelate 

pairs and congeneric series of chelates in the NCI60, in which the organic chelant was 

complexed with a variety of metal ions: Cu, Zn, Pd, Mn, Sn, Au, Ag, etc. Unfortunately, 

based on the small amount of data, we were only able to draw limited conclusions 

regarding the toxicities of chelates and had no way of determining if the toxicity was due 

to the accumulation metal ions within some organ or subcellular compartment. We were 

able to show that chelants share similar toxicity profiles to their metal-complexed chelate 
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counterparts and tend to have minimal fluctuations in mean log GI50, regardless of the 

metal ion type. Notable exceptions were Pt and Sn which both exhibited greater toxicity 

in all cases. Fe, Mn, and Pd showed varied levels of toxicity based on the chelant. If we 

exclude the data for Pt and Sn, metal-complexed substances appear to be no more toxic 

than the organic substances from this data set.  

A second and more robust attempt was to data mine the PubChem Compound 

database for a set of molecular motifs that were commonly found in chelating 

compounds. First, all data from the PubChem Compound database were downloaded as 

SDF files
14

 and imported into a MOE database. Second, compounds having toxicity data 

(the NCI60) were excluded and set aside as a test set. The remainder of the compounds 

represented the training set. Third, SMARTS strings were generated starting from a 

single atom and grown to chains up to seven atoms in length. At each stage of growth the 

SMARTS strings were screened against the molecules in the training set and scored, as 

detailed in chapter 3. In this case, the score for each respective SMARTS string equaled 

the number of identified molecules containing metals divided by the number of identified 

organic molecules. SMARTS strings with scores at least an order of magnitude above the 

ratio of metal containing to non-metal containing compounds of the training set (score = 

0.01) were saved for testing. Over 2000 SMARTS strings, representing organic 

substructures commonly found in metal containing substances, were identified. 

The test set was divided into two groups: the first group (likely to contain 

chelates) was identified by at least one of the 2000 SMARTS strings and also included 

any unidentified substances containing metal ions, while the second group (likely to 

contain non-chelates) consisted of the organic substances that were not identified. 
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Comparing histograms for the two groups and ignoring substances containing Pt and Sn, 

no significant differences in the distribution, mean, median, or standard deviation of the 

mean log GI50 could be identified. Therefore, we obtained more evidence in support of 

our earlier observation that the organic portion of the chelate (the chelant) is more likely 

to be responsible for cytotoxicity than metal ions accumulating inside the cell. 

While chemical data mining may not always provide an answer to the question at 

hand, the process can unearth other potentially significant facts leading to new discovery.  

This material was presented at a poster session, Cheminformatics: Chelation vs. 

Toxicity, held at the 233rd American Chemical Society National Meeting in Chicago, IL 

on March 25-29, 2007. 

1.4 Overview  

 Chapter 2 is a perspective on pKa prediction for both small molecules and 

proteins. Experimental data, curation, methodologies, and benchmarking are discussed. 

 In chapter 3 we discuss a formal knowledge discovery approach to characterizing 

and data mining the NCI60. The results of some of the initial experiments from a 

cheminformatics perspective are reported, including methodology which has identified a 

large set of SMARTS strings likely to be found in cytotoxic molecules and a 

complementary set found in molecules that show no signs of cytotoxicity. These sets of 

SMARTS strings can be used as filters for future data mining experiments. 

 We continue exploring the NCI60 in chapter 4 by deriving predictive 

methodologies for cytotoxicity. First a completely in silico methodology using decision 

trees and the MACCS keys is discussed. Finally, using stepwise regression and least 

squares fit, we were able to identify 9 cancer cell lines which could be assayed to provide 
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extremely accurate predictions for generalized cytotoxicity. Having log GI50 values at the 

maximum threshold, a considerable portion of the substances considered for NCI60 

testing showed no sign of activity for all cancer cell lines. The proposed regression 

equation would save time and materials by using an initial screen, which would consider 

only 9 cancer cell line assays, instead of the entire NCI60.  

 Chapter 5 has received considerable attention from both the pharmaceutical 

industry and academia. Here, the methodology from the previous chapter is expanded 

using highly generalized and manually derived SMARTS strings to predict pKa for small 

molecules. The publication has received interest from Roche, Novartis, the Chemical 

Computing Group, the Unilever Centre for Molecular Sciences Informatics, the Institute 

for Parallel Processing of the Bulgarian Academy of Sciences, as well as other 

international academics. This work has resulted in several requests for a review article on 

the subject of pKa prediction, Chapter 2. 

 In Chapter 6 we discuss a series of machine learning techniques applicable to the 

derivation of regression trees for physicochemical property modeling. Here, a more 

objective way to create a set of SMARTS strings for these models is considered. Given a 

reliable and chemically diverse training set with well curated experimental data, the 

methodology is capable of deriving regression trees suitable for predicting any dependent 

variable. The prediction of aqueous solubility for small molecules is used as an example.  

 Chapter 7 summarizes what we have discovered, and we attempt to predict the 

future for regression trees as a machine learning technique in physicochemical and 

biological property predictions. 
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Chapter 2 

Predicting pKa 

“A man would do nothing if he waited until he could do it 

so well that no one would find fault with what he has 

done.”              John Henry Cardinal Newman 

 

2.1 Introduction 

One of the most important physicochemical properties of small molecules and 

macromolecules are the dissociation constants for any weakly acidic or basic groups, 

generally expressed as the pKa of each group. This is a major factor in the 

pharmacokinetics of drugs and in the interactions of proteins with other molecules. For 

both the protein and small molecule cases, we survey the sources of experimental pKa 

values and then focus on current methods for predicting them. Of particular concern is an 

analysis of the scope, statistical validity, and predictive power of methods, as well as 

their accuracy. 

When a weak acid dissociates according to the schematic equation HA ⇌ A
–
 + H

+
, 

the equilibrium constant is Ka=[A
–
][H

+
]/[HA], which is conveniently rearranged into the 

Henderson-Hasselbach equation 

 

  

pH  pK
a
 log

10

[A ]

[HA]
 (1) 
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where pKa = –log10Ka, analogous to the definition of pH. Of course, one can describe the 

protonation of a weak base in the same terms. When the weak acid/base is titrated against 

a strong base/acid, the titration curve is a plot of pH as a function of equivalents of added 

titrant, and the curve shows a characteristic inflection when pH = pKa. Experimental 

determination of pKa is straightforward as long as there is only one titratable group 

involved. When the molecule in question has n protonatable sites, there are   2
n  

microspecies (particular combinations of protonations at the n sites) to be considered and 

  2
n 1 independent micro-pKas (equilibrium constants between two microspecies), so that 

at any given pH there is an equilibrium mixture of some of these microspecies at non-

negligible concentrations. Particularly if some of the micro-pKas have similar values, the 

titration curve may show only a few inflections corresponding to macro-pKas between the 

macrospecies that are the predominant mixtures of microspecies. Ullman points out that a 

maximum of n
2 

– n + 1 parameters can be extracted from a titration curve of all ionizable 

sites, and since   2
n 1 > n

2 
– n + 1 for n > 3, it is not possible to obtain micro-pKas for 

polyprotic acids with more than 3 independent ionizable sites without additional 

information or special assumptions.
1
 Expressed in these terms, there is a concern in 

predicting the pKas for all microspecies. 

This review focuses on pKa predictions for molecules in an aqueous environment 

with the typical pKa range of interest lying between that of the hydronium ion (–1.74) and 

the hydroxide anion (15.74), as the pH of blood is generally regulated to the range of 

7.35–7.45 and the pH range encountered in the normal human gastrointestinal tract is 1–

8.
2,3

 Most of the available experimental data were obtained at 25 C in aqueous solutions 

having ionic strength less than 0.1 M. Obviously 37 C would better match human in vivo 
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conditions. Many of the predictive methods discussed herein could be re-parameterized 

for other environments, considering both temperature and solvent, as long as sufficient 

data were available for training and validating the model. 

2.2 Proteins 

Calculating the macro-pKas for globular proteins may seem easy because there are 

only a few different kinds of protonation sites involved, particularly Asp, Glu, and His 

sidechains. The problem is non-trivial because particularly the somewhat buried acidic 

and basic groups have long been known to have pKas that are sometimes substantially 

shifted from what is observed in oligopeptides. Worse yet, there are so many protonation 

sites on most soluble proteins that experimentally determining the macrospecies is 

challenging. Prediction methods are therefore developed on the basis of several sites each 

of rather few well-studied proteins, which is something of a concern for validating the 

methods. The standard prediction task takes as input not only the amino acid sequence, 

i.e. the covalent structure of the molecule, but also the experimentally determined three-

dimensional structure typically from X-ray crystallography, which can be a problem 

when conformational flexibility is important. 

2.2.1 Experimental Data 

The favored method for determining the pKas of individual ionization sites on 

proteins is by NMR.
4
 It can also be used for small molecules in both aqueous and mixed 

solvents. It is applicable to proteins both in their folded and in their denatured states,
5
 and 

thus is useful in determining the correct order of deionization. The chemical shift of an 

assigned proton near the ionization site (in terms of covalent bonds or even through 

space) varies with pH, so the chemical shift vs. pH curve is fitted to a simple model 
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involving three adjustable parameters: the chemical shifts in the protonated and 

deprotonated states and the pKa.
6
 The main concern is that the chemical shift of a proton 

can also be influenced by other environmental factors, such as nearby solvent or other 

parts of the protein, or by multiple conformations interconverting rapidly on the NMR 

time scale. It is also not possible to accurately determine the pKa of residues that are not 

fully titrated at low pH (for example Glu73, Asp93, and Asp101 of barnase), as no true 

baseline representing the protonated state can be established. Furthermore, 

experimentally determining the pKas for coupled ionizable residues is difficult, as fitting 

ideal titration curves to NMR chemical shift data of these residues leads to poorly 

resolved pKas (for example Asp54, Asp75 and Asp86 of barnase).
7
 Sometimes these 

questions can be resolved by difference titrations where the sequence of the protein is 

changed to eliminate sources of confusion.
8
 

Currently, the Protein pKa Database (PPD) exists as a free data source, providing 

over 1400 experimental data points taken from literature for the ionizable amino acid 

sidechains in proteins, as well as N and C termini. The vast majority of the available 

measurements are for Asp, Glu, His, and Lys. Very little data exists for Arg, as titrations 

at high pH tend to denature proteins.
9
 

2.2.2 Predictive Methods 

2.2.2.1 The Null Model 

The simplest method is the trivial null model, where the experimental pKa of the 

amino acid sidechain in some oligopeptide is taken as the predicted value for all amino 

acid residues of the same type. Several variations on this theme are shown in Table 2.1. 

Many earlier works unintentionally demonstrate, or at least mention, that the performance 
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of the null model can be difficult to beat. This is especially true when the proteins being 

considered have a preponderance of ionizable residues exhibiting small pKa shifts. In 

these instances, the null model can be expected to have a root mean square error (RMSE) 

less than or equal to 1.0.
10,11,12

 In protein pKa prediction, outperforming the null model is 

essential, as the residues showing the most significant pKa shifts are often the most 

interesting, for example buried residues, residues participating in salt bridges, or residues 

found in enzyme active sites.
13

 The overall success of the null model is mainly due to the 

available data, which are dominated by surface residues and other residues that do not 

participate in strong intramolecular interactions.
11

 Nonetheless, null model values are an 

important starting point for most prediction methods. 

Table 2.1. Proposed null models 

Group 1943
a
 1967

b
 1973-4

c
 1978

d
 1993

e
 2006

f
 2007

g
 2009

h 

α-Carboxyl 3.0–3.2 3.8 3.3 — 3.5–4.3 3.67 — — 

Asp 3.0–4.7 4.0 3.91 3.9 3.9–4.0 3.67 3.47 3.49 

Glu 4.4 4.4 4.145 4.2 4.3–4.5 4.25 4.16 4.39 

His 5.6–7.0 6.3 (6.8) 6.9 6.0–7.0 6.54 6.30 6.6 

α-Amino 7.6–8.4 7.5 8.1 — 6.8–8.0 8.00 — — 

Cys 9.1–10.8 9.5 — — 9.0–9.5 8.55 4.67 — 

Tyr 9.8–10.4 9.6 (10.0) 10.2 10.0–10.3 9.84 9.90 — 

Lys 9.4–10.6 10.4 10.47 11.0 10.4–11.1 10.40 10.04 9.78 

Arg 11.6–12.6 12.0 — — 12.0 — — — 

RMSE
i 

1.44 1.54 1.48 1.56 1.46 1.46 1.43 1.42 
a-f

Data taken from reference 18. 
a,b

Determined using various model compounds at 25° 

C.
14,15

 
c
Determined with Gly-Gly-X-Gly-Gly pentapeptides by 

13
C NMR with unblocked 

termini,
16,17

 while values in parenthesis were taken as reported in reference 18. 
d
Determined in Gly-Gly-X-Ala tetrapeptides with unblocked termini by 

13
C NMR at 

35°C.
19

 
e
Data taken from Creighton.

20
 

f
Determined in Ala-Ala-X-Ala-Ala pentapeptides 

with blocked termini using potentiometry.
18

 
g
Mean values taken from 475 different sites 

from 73 proteins.
21

 
h
Values for each residue type were obtained by minimizing the RMSE 

in a benchmark set of 80 residues. 
i
In all cases where a range is indicated, the midpoint 

was taken and used to compute the RMSE for a benchmark set of 80 residues. 
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In an attempt to determine which set of null values represents a good starting 

point, we considered a benchmark set of 80 interesting residues from 30 different proteins 

used to compare some known macromolecular pKa prediction utilities.
11

 For each of four 

residue types (Asp, Glu, His, and Lys), the data set consists of 20 pKa measurements, 10 

having pKa shift less than 1.0 and the other 10 having pKa shift greater than or equal to 

1.0. The dataset is diverse, as it consists of a more balanced collection of residues having 

varied solvent exposure with over half exhibiting large pKa shifts, and it includes residues 

found in active sites, as well as structurally important regions.
22

 There are arguments both 

for
12,21

 and against
23,24

 the correlation between solvent exposure and pKa shift. However, 

in this case focus is placed on the diversity of the local environment. RMSE was 

calculated for each of the null models applied to the benchmark data set, as shown in 

Table 2.1. Of course our 2009 null model performs the best, since it was trained by a least 

squares fit to the very benchmark dataset. It is interesting to note that the most commonly 

used or traditional set of intrinsic values comes from the 1967 set, compiled by Nozaki 

and Tanford.
15

 The traditional set is outperformed by almost every other proposed set of 

null values. The best and least controversial datasets which can be used as intrinsic values 

are those in the columns labeled 1943, 1993, and 2006.
14,18,20

 All proposed pKa values 

from these columns are based on experimental measurements and come close to matching 

the results from the optimized values as well as the values acquired by taking the mean 

value for each residue type over a large set of curated experimental values from 73 

proteins.
21

 

When developing any predictive model, care should be given to the separation of 

training and test data. That is, any protein residues used to parameterize a model should 
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not be used for validation purposes. In this regard, some have taken a cross-validation 

approach to model optimization, commonly used in cases where there is a lack of 

available data. In the cross-validation approach, the null values can be set to the mean 

pKa values, or some other statistical variant thereof, for each residue type in the training 

set. In one example, the pKa values for the ionizable residues in each individual protein of 

a set of 27 proteins were predicted using the data from the other 26 proteins. The 

resulting RMSE of 0.853 was a significant improvement over the traditional null model‘s 

RMSE of 1.069. The study also showed that the results of the optimized null model 

surpassed those of a Poisson–Boltzmann equation based approach for a dataset of 122 

ionizable residues of five different types that had been previously evaluated by the same 

group.
12

 Clearly, optimizing the intrinsic null values is simple and may prove beneficial 

in more elaborate models. 

2.2.2.2 Electrostatic Models 

In order to account for deviations from the null model due to the spatial 

arrangement of the rest of the protein and the general solvent, one must estimate the free 

energy difference between the protonated and deprotonated states of the ionizable group 

in question. Most protein pKa prediction methods are based on solving the linearized 

Poisson-Boltzmann equation using atomic partial charges from a molecular modeling 

force field. Typically, the three terms considered in calculations using finite difference 

Poisson-Boltzmann (FDPB) methods are the Born solvation energy, the energy due to 

Coulomb interactions of the ionizable group in question with fixed partial charges of the 

protein atoms, and pairwise Coulomb interactions of it with other titratable sites of the 

protein. For those interested in the underlying parameterization of an FDPB model, we 
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direct the reader to a work by Fitch and García-Moreno
25

 where the basic protocols are 

described for implementing the University of Houston Brownian Dynamics (UHBD) 

software for pKa calculations developed by McCammon and colleagues.
26

 This work 

serves as an excellent review of FDPB methodology, provides a list of downloadable 

FDPB software shown in Table 2.2, and discusses model parameterization including the 

selection of the most appropriate dielectric constant for electrostatic calculations.
25

 

Bashford provided a comprehensive review covering the major macroscopic electrostatic 

models and approximations that are used to calculate the relative energies of protonation 

states and the pH-titration properties of ionizable groups in proteins as well as their 

applications to small molecules.
27

 The methods discussed are rooted in solving the 

Poisson-Boltzmann equation, which has been thoroughly discussed in literature.
28,29,30

 

Table 2.2. Software for pKa calculations using FDPB methods
25

 

Software URL 

Delphi wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:DelPhi 

MEAD www.scripps.edu/mb/bashford/ 

PEP casegroup.rutgers.edu/ 

UHBD mccammon.ucsd.edu/uhbd.html 

ZAP TK www.eyesopen.com/products/toolkits/modeling-toolkits.html 

APBS apbs.sourceforge.net/ 

H++ biophysics.cs.vt.edu/H++/ 

HYBRID gilsonlab.umbi.umd.edu/software1a.html 

KARLSBERG 

KARLSBERG+ 
agknapp.chemie.fu-berlin.de/agknapp/ 

MCCE www.sci.ccny.cuny.edu/~mcce/ 

PCE webserver bioserv.rpbs.jussieu.fr/Help/PCE.html 

WHAT IF swift.cmbi.kun.nl/whatif/ 

Wade lab scripts projects.villa-bosch.de/mcm/software/pka 

 

When using FDPB models to calculate pKa, two other problems need to be 

considered: electrostatic and thermodynamic. The electrostatic problem involves 

understanding the dielectric properties of the different phases in a protein-water system, 

thereby making it difficult to accurately calculate pKa for all ionizable sites of a protein 

http://wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:DelPhi
http://mccammon.ucsd.edu/uhbd.html
http://www.eyesopen.com/products/toolkits/modeling-toolkits.html
http://gilsonlab.umbi.umd.edu/software1a.html
http://bioserv.rpbs.jussieu.fr/Help/PCE.html
http://projects.villa-bosch.de/mcm/software/pka
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without considering the environment of the individual ionizable sites. For instance, 

buried ionizable residues can experience substantial pKa shifts when compared to the null 

value for the respective residue type. It has been shown that regions with low dielectric 

medium provide an unfavorable environment for inducing a net charge.
31,32,33

 Therefore, 

it would be expected that the pKa of an aspartic acid residue located in a region of 

moderately low polarity would be shifted higher due to the absence of strong ionic and 

hydrogen bonding interactions found in an aqueous environment. On the other hand, 

buried environments exist such that a carboxylate group is favored over the unionized 

form, such as those in close proximity to another polar or positively charged group which 

lowers the pKa relative to the null value. This is common in protein functional regions 

such as active sites.
34,35,36

 Finally, the dielectric constant is inversely proportional to the 

electrostatic energy and can thereby significantly affect the calculated energies in 

continuum electrostatic calculations as well as the pKa shift of ionizable residues. Even 

though the definition and parameterization of the dielectric constant is model 

dependent,
63

 it is considered the most important adjustable parameter when performing 

continuum electrostatic calculations.
25

 The statistical thermodynamic problem involves 

making FDPB calculations to solve the state of ionization and electrostatic energy for 

each ionizable site. The issue is purely combinatorial and limits the application of FDPB 

models to smaller proteins. The number of calculations increases exponentially with the 

number of ionizable sites in a protein. As discussed earlier, a protein with N ionizable 

residues can have up to 2
N
 microstates. The practical computational limit is thought to be 

30 ionizable groups.
25

 Treating larger proteins undoubtedly would require 

approximations. 
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Still other problems exist, such as protein flexibility and partial charge 

parameterization. One of the most common and potentially problematic simplifications 

used when applying Poisson-Boltzmann calculations is the assumption that protein 

structures are rigid and identical to the crystal structure. It is known that ions can co-

crystallize with a protein affecting the fine details of the protein‘s surface structure.
13

 

Furthermore, this assumption places limitations on the calculations of changes in free 

energy when the state of an ionizable group changes.
37

 Ionizable sidechains of proteins in 

crystals grown at fixed pH have a fixed charge. In solution at fixed pH proteins are 

flexible to various degrees and constantly undergo conformational changes, as seen by 

NMR. During titration, the pH changes and alters the ionization state of the protein in 

solution, which may lead to different conformations. Static models based solely on the 

crystal structure coordinates are therefore not likely to be appropriate at all pHs.
38,39

 On 

the other hand, considering conformational flexibility requires computationally expensive 

methods such as Monte Carlo sampling. Now, instead of considering 2
N
 ionizable states 

in the case of rigid structures, one could consider up to (2M)
N
L

K
 possible states where 

each of N ionizable residues has M potential conformations and K nonionizable groups 

have L conformations.
40

 This is further complicated by the use of molecular modeling 

force fields, which may lack proper parameterization or provide less than adequate partial 

charge assignments. Alternatively, a Quantum Mechanical (QM) or mixed Quantum 

Mechanical Molecular Modeling (QM/MM) approach would rely on significantly fewer 

empirical parameters, but would be far more demanding of computational resources. In 

spite of the many challenges, Table 2.3 shows the continual improvement of FDPB and 

other methods for the prediction of protein pKa. 
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Table 2.3. Selection of protein pKa predictors outperforming the null model 

Ref Author Year Method
a
 

# of  

Para 
Training RMSE 

# of 

Proteins 
Valid

b
 Residues

c
 

10 Antosiewicz 1994 FDPB  60 0.89 7  DEHIKYcn 

41 Antosiewicz 1996 FDPB  52 0.7 4  CDEHKYcn 

42 Demchuk 1996 FDPB  48 0.5 3  
CDEHKRYc

n 

13 Nielsen 2001 FDPB  124 0.91 9  
CDEHKRYc

n 

43 Georgescu 2002 FDPB  166 0.83 12  DEHKYcn 

44 Czodrowski 2006 
FDPB/ 

PEOE 
 132 0.88 9  DEHKY 

45 Barth 2007 FDPB  31 0.38 10  DE 

46 Dimitrov 1997 DH  70 0.79 6  DEHKYcn 

47 Warwicker 1999 DH  53 0.72 6  DEHKRcn 

48 Warwicker 2004 
FDPB/ 

DH 
 117 0.86 15  

CDEHKRYc

n 

49 Sham 1997 
PDLD/ 

S-LRA 
 9 0.73 2

d
  DE 

63 Schutz 2001 
PDLD/ 

S-LRA 
 11 0.31 4  DEHK 

50 Sandberg 1999 PDS  40 0.83 3  DEHKRYcn 

51 Mehler 1999 SCP  
103 

(8) 

<0.5 

(0.504) 

7 

 

 

ext 

DEHKRYcn 

(DE) 

52 Mongan 2004 GB  18 0.82 4
d
  DEHKY 

53 Kuhn 2004 GB  69 1 9  DEHKYcn 

54  Pokala 2004 GB  226 0.92 15  DEH 

55 Spassov 2008 GB 1 
21 

(310) 

0.45 

(0.51) 

1 

(23) 

 

ext 
DEHKYcn 

56 Khandogin 2006 GB/DH  135 0.95 10  DEHc 

57 Wisz 2003 Emp 24 260 0.95 41  DEHKYcn 

12 Krieger 2006 Emp 4 227 0.879 (27) cv DEHKYcn 

21 He 2007 Emp 13 405 
0.593 

(0.775) 
73 

 

cv 
DEHKcn 

22 Li 2005 Emp 30 
314 

(77) 

0.89 

(0.56-0.97) 

44 

(4) 

 

ext 

CDEHKRYc

n 

Information in parentheses pertains to external data used for validation. 
a
 FDPB – finite difference 

Poisson-Boltzmann; DH – Debye-Hückel; PDLD/S-LRA – protein dipoles Langevin dipoles/solvation 

linear response approximation; PDS – position dependent screening; SCP – screened coulomb potential; 

GB – generalized Born; Emp – empirical. 
b
 Validation method used: cross-validation (cv) or external 

data set (ext). 
c
 Modeled amino acid residue types in single character notation plus c for C-terminus and 

n for N-terminus. 
e
 Lysozyme crystal structures having different conformations were considered. 

 

In the 1990‘s, pKa predictors tended to optimize their parameters in order to beat 

the null model.
41,42,58,59,60

 It was quite common to ignore external validation and focus 

only on selecting the optimal dielectric constant(s) to optimize the RMSE using 



21 

 

experimental pKa data for the ionizable sites of a few proteins, such as hen egg white 

lysozyme (HEWL), ribonuclease A (Rnase A), and bovine pancreatic trypsin inhibitor 

(BPTI). The Antosiewicz and the Demchuk models improved their calculations by 

adjusting a single parameter, the dielectric constant. Antosiewicz used a fixed dielectric 

constant of 20 for best results.
10

 The Demchuk model assumed different local dielectric 

constants (ranging from 15 for buried residues to 80 for highly solvated residues) in the 

neighborhood of each ionizable site in order to better fit the experimental data.
42

  

When developing any model, being able to fit the experimental training data is 

essential. Even though the FDPB models are based on solid physics, the dielectric 

constant needs to be tweaked in order to improve performance, much as the variables in 

empirical linear regression models are adjusted to fit the training data. A model‘s 

predictions are not likely to be as good as its fit to the training data. One must keep in 

mind that an unvalidated model tells us very little about that model‘s ability to predict 

new data. While the fixed dielectric constant model was not presented with external data 

for validation, the creators of the multiple dielectric constant models included a small 

external test set which was used to compare the ability of both models to predict the pKas 

of 12 buried histidine residues from triose phosphate isomerase (TIM).
42

 The RMSE for 

the fixed dielectric was 0.40, and for the multiple dielectric was 0.42, compared to 1.26 

for the null model. In Table 2.3 the multiple dielectric model shows better fits than the 

fixed dielectric model, but the multiple local dielectric constants were freely varied 

throughout for best results, so no fair comparison can be made. Second, as the external 

test set is not diverse, one cannot draw any general conclusions about either model‘s 

ability to predict new data. 
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When considering the protein dielectric constant, ɛp, for use in electrostatic 

calculations, it is worth noting that ɛp depends on the method and system used to define 

it.
26,61,62

 Furthermore, the best value for ɛp in modeling electrostatic effects has been 

found to have little to do with the protein dielectric constant, but rather is a measure of 

the electrostatic interactions which have not been included explicitly in the model,
63

 such 

as conformational variations due to flexibility, specific water binding,
64

 or 

proton/hydrogen-bond network relaxation.
65

 

FDPB methods have made strides by incorporating protein flexibility,
40,66

 

solvation models,
67

 and by improving efficiency through Monte Carlo sampling of the 

many microstates of a protein.
13

 329 data points were calculated using Kieseritzky‘s 

PACs method,
68

 built on the Karlsberg+ framework, which combines continuum 

electrostatics with multiple pH adapted conformations selected by Monte-Carlo sampling. 

While the overall RMSE failed to beat the null model, improvements in accuracy were 

found for the residues having a pKa shift greater than or equal to 1.0. Also, the multi-

conformational continuum electrostatics approach of Georgescu, Alexov, and Gunner has 

been included in recent surveys and found to perform well on residues experiencing 

strong pKa shifts.
11,43,68,69

 Some other FDPB methods make use of significantly larger 

training sets, by including data from other proteins, and have been implemented as web 

applications, such as WHAT IF.
13,70

  

Alternative methods used to approximate FDPB calculations include Partial 

Dipole Langevin Dipole, Debye-Hückel, Generalized Born, charge screening based 

methods, and their combinations. 
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Warshel and colleagues have developed the Protein Dipole Langevin Dipole 

(PDLD) method, in which protein dipoles are modeled.
63,49

 This method tends to relax 

the atom-centered partial charge assumption and treats protein relaxation in a 

microscopic framework using linear response approximation (LRA) allowing for 

structural reorganization during charge formation. The net effect of PDLD/S-LRA is 

reduced reliance on ɛp, such that less variance of the parameter is required in order to 

accurately explain pKa. Improved accuracy is seen when using both ɛp and ɛeff, the 

effective dielectric constant of the solvent, as adjustable parameters when fitting a set of 

11 protein sidechains experiencing significant pKa shift, ranging from –4.9 to 5.3 log 

units.
63

 According to Schutz and Warshel, ɛp and ɛeff are model dependent scaling factors. 

Having less variance between parameters is a big plus, as the optimal values for other 

models (Generalized Born, Tanford and Kirkwood and modified Tanford and 

Kirkwood)
71,72

 ɛp in their survey ranged from –80 to 80. Unfortunately, there is no way to 

forsee what values should be used for new data, and the predictive power of these models 

was not evaluated. 

The Debye-Hückel approximation for electrostatic pair interactions has been used 

individually and in combination with FDPB calculations to model pKa. Dimitrov
46

 

showed how it could be used as a standalone alternative to FDPB methods with superior 

results for the same six proteins considered by Antosiewicz. Warwicker found that the 

Debye-Hückel method matched the overall pH-dependent stability, while the FDPB 

method provided more accurate results for active-site groups. Combining both methods 

provided a computational framework for distinguishing solvent-accessible groups from 
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buried groups. In doing so, significant improvements were found for a larger set of 

residues than considered in previous works using only the Debye-Hückel method.
47,48

 

In search for a simple, less time consuming way for modeling electrostatic 

interactions in proteins, Sandberg described a distance and position dependent screening 

technique for the electrostatic potential. The goal was to calculate pKas by applying this 

technique in conjunction with a Monte Carlo algorithm to speed up protein molecular 

dynamic simulations. While the results were slightly less accurate than those using FDPB 

calculations with the dielectric constant of 20, execution time of the algorithm was two 

orders of magnitude faster than the traditional grid based Poisson-Boltzmann 

calculations, with one pKa calculation every 10 seconds compared to 30 minutes, 

respectively.
50

  

In order to deal with significant prediction errors for the pKa of specific residues 

by various FDPB methods, Mehler introduced sigmoidally screened coulomb potentials 

and considered microenvironment hydrophobicity, based on the hypothesis that the key 

factor responsible for pKa shift is the protein microenvironment around each ionizable 

residue.
51

 By considering the logP contributions of groups of atoms very near the 

ionizable sites, they improved their fit to the training data, which in this case consisted of 

103 ionizable residues from 7 proteins. A total of 8 Asp and Glu residues from turkey 

ovomucoid inhibitor domain 3 and the aspartyl dyad of HIV protease were used to 

validate the method, having an RMSE of ~0.50. While the fit to the training data was an 

improvement, the test set was not diverse, and it is not possible to tell how this model 

will perform on residues without carboxyl groups. Instead of using the Rekker fragmental 

hydrophobic constants,
73,74

 the authors suggested future results might be improved by 
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using more recent atomistic hydrophobicity values. Perhaps SlogP would help.
75

 One 

might also consider combinations of other atomistic descriptors, such as the ratio of 

hydrogen bond donors or acceptors to carbon atoms within an ellipsoid of some radius 

surrounding the ionizable site. 

The generalized Born model (GB) is an approximation of the Poisson-Boltzmann 

equation, and it can efficiently describe the electrostatics of molecules in an aqueous 

environment by implicitly representing the solvent as continuum with the dielectric 

properties of water and thus reducing the computational demand associated with 

molecular dynamics (MD) simulations. The basic idea behind the GB model is to assign 

each atom an effective radius, such that the solvation free energy can be calculated using 

the Born formula. Therefore, it is important to accurately calculate the Born radii, when 

using any GB model.
76

 Efficiency is achieved by describing the instantaneous solvent 

dielectric response, which eliminates the need for equilibration of water in explicit water 

simulations. Furthermore, as the GB model corresponds to solvation in an infinite volume 

of solvent, it avoids artifacts associated with replica interactions in periodic system.  

Mongan describes a method used to evaluate four different crystal structures of 

HEWL applying implicit solvent GB electrostatics and performing MD at constant pH 

with periodic Monte Carlo sampling of protonation states.
52

 In contrast to most 

electrostatically based methods, this model was shown to be independent of the starting 

crystal structure.  

Similar to the FDPB methods, the dielectric constant is used as an adjustable 

parameter. Kuhn used a molecular mechanical MM/GBSA approach, which is among the 

most commonly used implicit solvent model combinations and typically used for 
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calculating biomolecular binding free energies.
53

 In MM/GBSA, the GB model is 

augmented by a term representing the hydrophobic solvent accessible surface area (SA). 

Kuhn et. al. question the overall accuracy of the GB method noting that in theory, 

complex electrostatic interactions involving several charges and electric dipoles in close 

proximity should be better handled by Poisson-Boltzman continuum solvation 

calculations.
53

 

Prior to Pokala‘s publication of EGAD (Egad! A Genetic Algorithm for Protein 

Design) in 2004,
54

 the published GB methodologies considered relatively few 

macromolecular pKa data points for training and validation. EGAD is particularly 

attractive, as electrostatic calculations are reported to be performed six orders of 

magnitude faster than FDPB methods. This increase in speed can be attributed to an 

approximation the Born radii. By applying these approximations to the GB continuum 

dielectric model and extending the methodology to approximate solvent accessible 

surface area, EGAD method was used to provide calculations for 226 ionizable groups 

from 15 proteins with similar accuracy to other GB models of the same time. Here, it is 

noteworthy that a subset of five proteins was used to parameterize the model and 

identified the optimal ɛp = 8. On the other hand, the predictive power of the model on 

new data is questionable. First, the number of data points used to parameterize the model 

was not disclosed. More importantly, statistics were provided for all 226 together, instead 

of independently evaluating the training and test sets. Finally, due to overall lack of data 

only the Asp, Glu, and His sidechains were considered. Data for a small number of Lys 

measurements, compared to the other residues, were omitted as the inclusion can 
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significantly increase the correlation coefficient, while minimally affecting the RMSD, as 

discussed in section 5.  

Khandogin and Brooks presented a first principles model based on continuous 

constant pH molecular dynamics simulations, utilizing replica-exchange protocol for 

enhance conformational and protonation state sampling.
56

 The method is based on a GB 

implicit solvent model, which is modified by an approximate DH screening function. The 

DH screening function is used to account for salt effects. One of the more interesting 

features of this method is the scaling of the dielectric constant based on the DH length, 

instead of simply adjusting ɛp to empirically find the best fit for the data. RMSE for 

proteins with ionizable residues exhibiting low pKa shift was approximately 0.6, whereas 

it was approximately 1.0 for the proteins with more highly shifted residues.  

Spassov uses GB approximations with an iterative mobile clustering (IMC) 

approach to calculate the equilibria of protons binding to titration sites in proteins.
55

 IMC 

is used to halt the exponential growth of GB calculations when considering 

conformational flexibility. Here, binding and conformational states are fully enumerated 

for an ionizable site within a local cluster of ionizable sites. Ionizable sites outside the 

cluster are treated by mean field approximation. The procedure continues to iterate 

through the list of all ionizable sites, repeating the calculations and using the results from 

previous iterations outside of the present cluster for the mean field terms of the current 

iteration until some convergence criteria is met.
77

 This method has been incorporated into 

the Accelrys Discovery Studio. Not only does it appear to be highly accurate with a low 

RMSE, approximately equal to 0.50, but it considers the largest external set of test data of 

all the GB models in this review.  It is of note that this model trained its single adjustable 
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parameter, ɛp, only on HEWL (2lzt) and validated the model on over 300 external data 

points from 23 proteins with RMSE of approximately 0.5. A survey
55

 of 105 ionizable 

residues from 7 proteins showed improved accuracy for this model over the top methods 

in the other classes mentioned in this review.
22,43,48,51,56

 A close inspection of the dataset 

used in the survey revealed that approximately 20% of the residues were shifted more 

than one pKa unit. Evaluating the dataset with the null model proposed by Thurkill
8
 

resulted in an RMSE and mean absolute error of less than 0.80 and 0.70, respectively, 

and a maximum error of 2.43. While the IMC method posted the best results, four of the 

other five methods surveyed had lower RMSE than the null model. It is rather curious 

that the IMC model exhibited poorer performance on its own training set, residues from 

hen egg white lysozyme (2lzt), than five of six of the other proteins considered in the 

survey. Typically, it is expected that a model‘s performance decreases when used to 

evaluate external test data. However, this may be explained, as 2lzt has a larger 

proportion of highly shifted residues than most of the other proteins considered. 

Apparently, the IMC approach to handling conformational flexibility is responsible for 

the high accuracy reported by this model. 

2.2.2.3 Empirical Models 

Wisz used four model equations to determine 24 independent parameters, which 

could be used to simulate the electrostatic interactions in proteins. Monte Carlo 

methodology was used to achieve convergence for all 24 parameters based on titration 

curves derived at 1 pH unit intervals from 0 to 14 using the model equations.
57

 The 

training set consisted of 260 ionizable groups of which over 20% of the residues had pKa 

shift greater than or equal to 1 unit. In order to investigate the stability of the parameters, 
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additional rounds of Monte Carlo simulations were run, but no true validation was 

performed on external data. 

Krieger published a method in which the electrostatic potential is evaluated using 

Ewald summation. Ewald summation is fast and can be used to monitor pKa shifts during 

MD simulations and effectively handles periodic crystal environments.
12

 Naive 

electrostatic calculations in periodic systems may diverge. Here Ewald summation allows 

for simplification within the periodic environment by combining a rapidly converging 

short-range variable with a long-range term evaluated in reciprocal space. The particle-

mesh Ewald algorithm, standard in many MD programs, was used to identify models 

based on three and four parameters. 227 ionizable sites from 27 proteins were considered 

and a leave-one-protein out cross-validation was performed. Both three and four 

parameter models outperformed the null method, which also had RMSE less than 1.0. It 

is worth noting that the null model was optimized using a similar cross-validation 

technique where the mean was taken of the respective pKa values of the amino acids of 

26 proteins and used to predict the pKa of the remaining protein. The optimization 

technique improved null model predictions by over 0.2 RMSE units. 

From an empirical standpoint, it is highly unlikely that a model trained on data, 

having relatively low variance from their respective null values could accurately predict 

the pKa for ionizable sites having significantly shifted pKa values. This is especially true 

if the pKa shift is due to an environment which was not considered by the model. This is 

best explained by the statistical optimization performed by He et. al.
21

 Here a 

significantly larger data set was considered by mining the PPD, such that 1122 pKa values 

belonging to 667 ionizable sites could be utilized for training and validation purposes. 
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Structures were validated against the PDB.
78

 After curation 475 unique sites from 73 

proteins were accepted. According to He et. al. ―In the data set, the pKa values of 46 sites 

are unusual because of physical or chemical factors, such as salt bridges or disulfide 

bridges (Table II). To obtain reasonable parameters, these data were excluded from the 

fitting procedure and were predicted using parameters obtained from the remaining sites.‖ 

In total 13 parameters were considered using multiple linear regression, where each 

parameter represented one or more amino acid types. pKa shift was induced by residue-

residue interaction determined by the amino acids surrounding the C
α
 of the ionizable 

residue within a sphere of some radius (minimum RMSE at 11 Å). Based on the data set 

used to train the model, it is obvious why the model performed reasonably well on the 

405 residues with low pKa shift (RMSE = 0.775, using six-fold cross-validation) and 

quite poorly on the external data, composed of the 46 unusual ionizable sites, which also 

had highest pKa shifts (RMSE = 4.258). 

Seemingly, the most accepted empirical method for predicting protein pKa in 

literature today is PROPKA.
22

 The most thorough surveys, often entitled benchmarks, 

include PROPKA performance as the method to beat.
11,55,68,69

 In each survey, PROPKA‘s 

RMSE is less than 1.0, including those that consider highly shifted residues. PROPKA‘s 

origins began with quantum mechanical/molecular mechanical studies by Jensen, where 

analyses of pKa determinants led to a set of quantitative structure property relationships 

forming the basis of PROPKA.
79

 The model was trained on 314 experimental values 

using 30 parameters, 20 of which are distance related. Validation was performed on four 

proteins not appearing in the test set where the RMSE of the predictions for each 

individual protein ranged from 0.56 to 0.97 with a maximum predicted error of 2.0 units. 
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The original release of PROPKA version 1.0 was noted to ignore pKa shifts caused by 

ligands, ions and waters interacting with the protein. More recently, version 2.0 

incorporates protein-ligand interactions affecting ionizable groups as well as providing 

predictions for the ionizable groups of ligands in the protein environment.
80

 Calculations 

are usually complete for an entire protein in a matter of seconds. Desolvation, hydrogen-

bonding, and charge-charge interactions are considered in calculating the shifts, as well 

as groups with a fixed charged, such as Zn
+2

. Current limitations noted by the developers 

include the assumption that intra-ligand interactions are included in the pKa model value, 

while both pKa shifts due to inter-ligand interactions and the effects of sidechain motion 

as well as other conformations are not considered. 

Desirable qualities for empirical models are large diverse training sets fitted to as 

few parameters as possible and high predictive accuracy on a diverse data set that was not 

used for training purposes.  

2.3 Small Molecules 

Predicting the pKas for small molecules is a substantially different problem than 

for proteins, based on their respective isolated environments. There are far fewer 

microstates to consider, and most three-dimensional effects are commonly neglected, 

such as the local electrostatic field and degree of solvent exposure. However, the range of 

chemical structures is far greater, so care must be taken when assessing the diversity of 

training and test sets. It has been shown that understanding the site-specific charges and 

concentrations of the microspecies can allow for more realistic predictions regarding a 

molecule‘s pharmacokinetic behavior.
81

 Unfortunately, most models are simplifications 

and provide only macrospecies predictions due to the limitations of the data available for 
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training. However it is possible to make predictions regarding the microspecies by 

interpolating the approximated titration curves based on the macrospecies. At least three 

available applications, ChemAxon‘s MARVIN
82

 and ACD/PhysChem Suite
83

, and 

Simulations Plus ADMET Predictor
84

 provide microspecies predictions for small 

molecules. 

2.3.1 Experimental Data 

2.3.1.1 Data Curation 

While a great deal of experimental pKa data can be found in the literature and ‗in 

house‘, its reliability is sometimes questionable. A large portion of the literature 

containing data on small molecules is recorded in the Beilstein database and is accessible 

using the MDL Crossfire Commander.
85

 Lange‘s Handbook of Chemistry also provides a 

good source of pKa data.
86

 Software tools, such as ACD and SPARC, provide access to 

experimental data with references. SPARC will only provide the reference data based on 

queries for an exact structural match.
87

 ACD iLabs has the added benefit of providing 

literature references for molecules based on a structural similarity search, returning 

references for exact structural matches and a limited number of similar structures based 

on a user defined similarity score threshold.
88

 Another potential source which can 

identify articles that may contain pKa data based on a structure or text based query is 

SciFinder Scholar.
89

 Unfortunately, such data obtained from sources other than the 

original literature references are not necessarily clean, complete, or standardized. 

Sometimes even published data is unreliable, and often conflicts are found between 

sources. For example, when mining Beilstein for the experimental pKa measurements of 

phenol, approximately 30 records exist in a bimodal distribution. The distribution 
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consists of a cluster of six values around the pKa of –1.0 and over 20 values clustered 

around the pKa of 10. Evidently, –1.0 values arose from entering the negative logarithm 

of the pKa. Other common but less frequently identified errors include: typographical 

errors, predicted values (rather than experimental), incorrect transcription of temperature 

and/or solvent used, and the incorrect associations between the experimental pKa and the 

ionizable sites on polyprotic molecules. In a previous effort to identify and resolve some 

of these problems, a method for curating pKa data from multiple sources having 

redundancies was discussed.
90

 Finally, so much pKa data is associated with proprietary 

chemical structures that public training sets are not as chemically diverse as they could 

be. Hence predictive models may be less accurate for some molecules in proprietary 

datasets. Table 2.4 provides an updated list of free and commercial electronic sources of 

pKa data from the review article published in 2006 on ‗in silico’ prediction of ionization 

constants by Fraczkiewicz.
91

 Another significant source of pKa data is the six-volume 

―Critical Stability Constants‖ by Martell and Smith.
92

 This data is available for purchase 

as the NIST Standard Reference Database 46 from the National Institute of Standards and 

Technology.
93

 Buyer beware, as the database is a self-contained application which has 

very limited search capability and does not support data export to common machine 

readable formats such as comma space delimited (CSV) or standard data files (SDF).
94
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Table 2.4. pKa data sources 

Data source Vendor url 
ACD/pKa DB Advanced Chemistry Development www.acdlabs.com 

ADME INDEX Lighthouse Data Solutions www.bio-rad.com 

Beilstein Database Elsevier B.V. www.info.crossfiredatabases.com/ 

BioLoom Database BioByte Corporation www.biobyte.com 

The Merck Index, 

14
th

 edition 
Cambridgesoft Corp. www.cambridgesoft.com 

Lange‘s Handbook of 

Chemistry, 15
th

 Edition 
Knovel www.knovel.com 

CRC Handbook of 

Chemistry and Physics, 

 89
th

 Edition 

CRC www.hbcpnetbase.com/ 

HSDB National Institutes of Health toxnet.nlm.nih.gov/ 

LOGKOW Sangster Research Laboratories logkow.cisti.nrc.ca/logkow/ 

MolSuite DB ChemSW www.chemsw.com 

Pallas CompuDrug www.compudrug.com 

pK database University of Tartu, Estonia mega.chem.ut.ee/tktool/teadus/pkdb/ 

PHYSPROP Syracuse Research, Inc. www.syrres.com 

SPARC University of Georgia ibmlc2.chem.uga.edu/sparc/ 

 

In the absence of available data, ideally one should simply measure the pKa by 

titration. However, this is not an option for large libraries of in silico small molecules that 

have yet to be synthesized. When dealing with the vastness of chemical space, often a 

good computational approximation is superior to experiment in order to overcome cost 

and time limitations. 

2.3.1.2 Experimental Methods 

Analytical chemistry has provided a plethora of experimental tools for making 

pKa measurements, some of which are amenable to automation. For those interested in 

the history of titration and its development for the use of colorimetric and electrometric 

analysis used in the determination of pKa, The History of Analytic Chemistry describes 

the achievements during the early 20
th

 century.
95

 Today, there are two main titration 

methods: volumetric and coulometric. The volumetric method entails adding titrant 

directly to the sample, whereas the coulometric method generates titrant 

electrochemically. Some of the associated indicator methods include: colorometric, 

http://www.acdlabs.com/
http://www.bio-rad.com/
http://www.biobyte.com/
http://www.cambridgesoft.com/
http://www.knovel.com/
http://www.chemsw.com/
http://www.compudrug.com/
http://www.syrres.com/
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potentiometric, conductometric, spectrophotometric, amperometric, thermometric, 

solubility, cryometric, and NMR (discussed above for protein pKas). In order to show the 

most commonly used and preferred methods, queries of data obtained from the Beilstein 

database relating to the analytical methods were performed as shown in Table 2.5. The 

potentiometric, spectrophotometric and conductometric methods have been used 

predominantly to determine pKa. Interestingly enough, approximately half of the pKa 

measurements obtained from the Beilstein database are not associated with a method. 

Furthermore, over the past year the total number of measurements increased by 

approximately 20%. Only 10% of the new pKa data are associated with a method. 

Regardless, over 98% of the measurements with stated indicator methods used 

potentiometry, spectrophotometry and conductometry. Seemingly, there is a wealth of 

available information, however after curating the data for monoprotic molecules and 

accounting for redundancies, the authors have found reliable pKa data for fewer than 

2000 molecules.
90

 

Table 2.5. Beilstein database (DE.MET): dissociation exponent method category 

Indicator 

Method
 

Count based on 

Beilstein
a
 Version 

 2007.04 2008.03 

(Blank) 56832 79602 

Potentiometric 45639 46906 

Spectrophotometric 18339 18872 

Conductometric 2127 2163 

NMR 687 774 

Kinetics 359 367 

Calorimetric 76 143 

Solubility 31 32 

Polarographic 11 15 

Distribution 5 6 

Total 124106 148880 
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Numbers reflect pKa measurements in all conditions including same molecule 

measurements in various solvents and temperatures. 
a
 Beilstein was accessed using the 

Molecular Design Limited (MDL) CrossFire Commander. 

 

Potentiometric titrations are possible in turbid, deeply colored, highly absorptive, 

or dilute solutions. Simplicity, speed of measurement, robustness, and ease of automation 

have made it the historically preferred method to measure pKa. On the other hand, 

potentiometry does have pitfalls when it comes to pKa measurement. Measurements on 

compounds sparingly soluble in water require mixed solvent extrapolation.
96

 Non-high 

throughput applications require large amounts of reagent (not favorable for newly 

synthesized compounds or natural products) and time to prepare solvent from carbonate 

free solutions.
97

 Furthermore, impurities of both reagent and analyte can affect the 

observed pKa values.
96,98 

When dealing with nonaqueous media, repeated measurements 

are often recommended, as the signals from the glass electrodes are less reliable than 

those from aqueous media, due to high liquid junction potentials. 

Similar to the potentiometric method, conductometric pKa measurements are 

possible in turbid, deeply colored, highly absorptive, and dilute solutions. They are 

relatively simple, quick to perform, and have been automated. On the other hand, it does 

not suffer from the same degree of reagent solubility limitations experienced in 

potentiometry, although conductometric methods are rather problematic in the presence 

of foreign electrolytes, which decrease the accuracy of the measurement. Purity is not the 

only issue, as conductometric methods are also sensitive to temperature. Raising the 

temperature one degree results in a 2–2.5% increase in the conductivity of most salts. 

Furthermore, conductometry is generally considered inferior in accuracy compared to 

potentiometric and spectrophotometric methods.
99
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Ultraviolet spectroscopy hinges on the principle that the uncharged and ionic 

species of a compound exhibit different spectra. Spectroscopy is known for its excellent 

precision in pKa measurements. While it is comparable in accuracy to potentiometry, 

spectroscopy can be used to measure pKa for compounds having poor aqueous solubility. 

Amenable to high throughput automation, UV spectroscopy has the added advantage of 

requiring ten times lower concentrations of reagent than similar high throughput 

potentiometric titrations do.
97,100 

In the early 1990‘s, capillary electrophoresis (CE) began to show usefulness as a 

universal analytical technique for determining pKa over a wide pH range.
101,102

 It relies on 

the principle that the solute exhibits an electrophoretic mobility continuum versus pH 

(uncharged has no mobility; charged has maximum mobility). It exhibits both higher 

sensitivity and selectivity than potentiometry and spectrophotometry do, producing 

accurate pKa values for small molecules. The method is capable of handling compounds 

of diverse solubility and samples of low concentration since it relies on migration times 

and does not require measurement of the reagent or titrant concentrations, as 

potentiometry does. The solute is purified during migration, as impurities have inherently 

different migration times, so purity is not an issue with CE. Finally, CE is not limited by 

media, as measurements can be made in aqueous, aqueous-organic, or nonaqueous 

media.
96, 103

 

pKa can also be determined through reverse phase high performance liquid 

chromatography (HPLC) by measuring the capacity factor based on a compound‘s 

retention time in a column against a series of solvents having mobile phases at different 

pH values.
104,105

 The advantages of using HPLC for pKa screening include the 
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minimization of solubility restrictions, eliminating the effect of impurities on 

measurements (thus allowing for screening combinatorial complexes directly), and the 

potential for high throughput automation when coupled with a mass spectrometer. 

However, the main potential disadvantage is the loss of accuracy when using organic 

solvents in a nonpolar column, due to the potential interaction between analytes and the 

stationary phase. 

Several high throughput pKa assays have been recently reviewed, such as 

capillary electrophoresis in conjunction with ultraviolet detection, capillary 

electrophoresis coupled with mass spectroscopy, pH gradient HPLC with mass 

spectroscopy, and a mixed buffer linear pH gradient system with measurements based on 

ultraviolet absorbance.
106

 While it is not the goal of this paper to focus on the details of 

experimental methods, it is useful to note the development of newer technologies 

increasing the efficiencies of physicochemical property measurements for large chemical 

libraries of compounds lacking such data. 

Familiarity with potential experimental problems can help in data curation. When 

performing a titration to determine pKa, the following conditions are preferable to avoid 

unnecessary errors.
100

 First, the analyte needs to be water soluble. For those molecules 

with poor water solubility, Yasuda–Shedlovsky plots can be used to extrapolate the 

theoretical aqueous pKa from a gradient of semiaqueous (water:methanol) pKa 

measurements.
107

 In a similar approach, a series of measurements at various ionic 

strengths allows for extrapolation to zero ionic strength. An alternative approach, 

sacrificing accuracy for number of measurements, requires only one measurement and 

uses a linear equation with slope and intercept based on limited families of compounds, 
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such as phenols and protonated amines.
108,109

 Second, in order to acquire an accurate 

measurement, compounds need to be stable enough to establish an equilibrium between 

two states of ionization. Third, compounds need to be pure in simple titration 

experiments, although with high throughput techniques purity is much less of an issue. 

Fourth, in order to eliminate experimental errors and for the purpose of validation, it is 

usually preferred to use a series of homologous compounds. Fifth, each titration should 

be performed in a thermostatic environment, as dissociation is an endothermic process. It 

has been found that pKa values for some common organic acids change by less than 1 pKa 

unit between 5 C and 60 C, typically decreasing with the increase in temperature. 

Anomalies may result when approaching 0 C when the solvent is water.
110

 Sixth, the 

presence of carbonate has been shown to affect data measurements leading to anomalies 

in the titration curve, which may require correction.
111

 Carbonate acts as a base in 

aqueous solution and has pKb of 6.36. Carbonic acid is diprotic and has pKas of 3.60 and 

10.25. The amount of carbonate in solution is proportional to the partial pressure of 

carbon dioxide in the atmosphere. Therefore, when performing titrations using a low 

concentration of acid, anomalies in measurements and the titration curve can occur when 

the pH is around 3.6, 6.36, and 10.25. Seventh, in the cases of most manual titrations, 

high amounts of test materials are needed. Finally, care must be taken when performing 

acid-base titrations with perfluorinated compounds, which exhibit an artifact of sorption. 

The unionized form of a perfluorinated compound tends to preferentially adhere to 

interfaces, both water surface and glassware. This non-uniform distribution affects the 

overall measurable concentrations of the unionized species in solution. Unfortunately, the 

extent to which sorption occurs with ―ordinary‖ compounds is unknown, but it can be 
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conjectured that a similar but lesser effect may be experienced for molecules having 

highly halogenated lipophilic tails. In cases where the concentration of the nonionic 

species is reduced due to sorption, one can expect the titration curve to be right-shifted, 

indicating higher than actual pKa values for acids.
112,113

 Furthermore, there are cases 

where the addition of co-solvents did not decrease the sorption of an organic acid in the 

aqueous phase.
114

 Considering these points, even seemingly well curated data may be 

corrupted due to potential artifacts beyond simple human transcription errors, leading to 

unexpected biases in otherwise well constructed and validated predictive models. 

2.3.2 Predictive Methods 

2.3.2.1 Linear Free Energy Relationships 

Seminal publications
115,116

 and reviews
110,117

 on the prediction of pKa base their 

model on linear free energy relationships (LFER), applying the Hammett equation where 

pKa0 is the ionization constant for the parent molecule, pKaS is that of the substituted 

molecule, ρ is the constant for a particular class of molecules, and σi is the effect of the i
th

 

substituent on the ionization constant of the parent molecule.  

    pKaS = pKa0 – ρ∑σi (2) 

The flaw in this method is that the parent molecules inherently carry the majority 

of the chemical information, and without training on a particular parent, predictions for 

such compounds are impossible. A good example of this problem is the MCASE study. 

Until the mid 1990s, there had been few attempts to model diverse sets of chemicals. 

Like eq. 2, the MCASE approach used a linear regression equation with terms for 

quantitative properties such as logP, water solubility, molecular weight, absolute 

electronegativity, hardness, Hückel molecular orbital charge densities, and HOMO and 
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LUMO coefficients, plus possibly 58 indicator variables for the presence of certain 

molecular substructures. The set of compounds was broken into 22 subsets based on the 

presence of molecular fragments called biophores that were particularly associated with 

acidity, the most important one being the carboxyl group. Different regression equations 

were determined for each subset. The total training and test set consisted of 2464 organic 

acids. When using 1848 molecules in the training set, the r
2
 based on the predictions of 

the remaining 616 compounds was 0.91 with standard deviation 0.774. When training the 

model with the entire dataset and attempting to predict the pKa for 214 drug molecules, 

which were most likely not well represented by the parent molecules in the training set, 

the r
2
 was 0.70 with a standard of deviation of 1.44.

118
 

LFER models are still used and have been implemented in popular commercial 

and freely available software packages, such as EPIK and SPARC.
119,120,121,122

 To help 

overcome the aforementioned problem, the SPARC methodology combines LFER, 

perturbed molecular orbital theory and QSPR to deal with the effects of π-bonding and 

electron delocalization. SPARC scored an r
2
 of 0.80 with RMSE of 1.05 on a set of 537 

molecules from an internal Pfizer dataset
122

 and is able to predict both macro and micro 

pKas calculated from molecular structure alone. It is worth noting that while SPARC is 

not parameterized for all atom types, one can modify the molecule being tested by 

substituting the closest weight atom of the same group and achieve reasonable, often 

good, results. For example, we have found that most predictions where silicon atoms 

were replaced by carbons and seleniums by sulfur were within 1 pKa unit from the 

experimental value. However, since there are few heavy atom compounds to test, the 

accuracy of such replacements remains questionable. 
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2.3.2.2 Quantitative Structure-Property Relations 

One of the most common techniques used in pKa prediction is quantitative 

structure activity/property relationships (QSAR/QSPR) deriving their fit equations from 

partial least squares (PLS) or multiple linear regression (MLR).
118,123,124,125,126,127,128,129

 

Other methods include artificial neural networks,
84,91,130,131

 quantum mechanical 

continuum solvation models,
132,133,134

 anti-connectivity models,
135,136

 and tree based 

methods.
90,127,137,138

 It has often been the case that a model was based on a relatively 

small set of experimental data for a specific ionizable group, such as carboxylic 

acids.
124,129,130,132,134,135,136

 Others have tackled the problem of chemical diversity by 

devising and combining multiple models, each applied to a relatively small set of 

molecules when compared to the complete set of experimental data.
127,130

 Here the 

overall combination of models is more robust at handling novel chemical structures, but 

the individual training sets may suffer from a lack of chemical diversity due to their small 

size. This may allow for a good fit on the training sets, but has the potential disadvantage 

of leaving little freedom for cross-validation. The following sections address some of the 

most significant methods that have been used in property prediction. Table 2.6 shows the 

performance of several commercial pKa prediction models and other methods used in 

literature within the past two decades. 

One of the reasons QSPRs are so popular is that linear regression always leads to 

a unique, easily computed model. Typically, highly correlated descriptors are 

undesirable, but with partial least squares, highly correlated descriptors are handled 

appropriately. Like the MCASE approach, when dealing with complex properties such as 

pKa, it is common to break up the training set into groups based on ionizable site type and 
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chemical group, because it is impossible to establish a single robust model on a 

chemically diverse set of molecules. In doing so, multiple models are generated which 

may or may not use the same set of descriptors. Descriptors can be qualitative or binary, 

representing a <has> vs. <has not> property, or they can be quantitative experimental or 

calculated features. Reducing the size of the training sets by separating the molecules into 

classes often leads to a better fit, but does not necessarily reduce the number of 

descriptors considered. Caution needs to be exercised in order to avoid overfitting, 

especially when nonlinear descriptors are considered. If we have a descriptor named x, 

the regression equation can also have terms for lnx, log2x, log10x, x
n
 (where n is any real 

number), and so on. Overfitting the model leads to a high correlation between the 

calculated and experimental values in the training set, but a poor or non-existent 

correlation in cross-validation or validation on a separate test set. Forward or reverse 

stepwise linear regression are ways to select the smallest subset of descriptors which still 

fit the property being modeled. In 1972 Topliss and Costello pointed out the risk of 

chance correlations in quantitative structure activity relationships and gave 

recommendations for the number of descriptors to be used in linear regression models 

given the number of observations to be fit.
139

 Hence, the major step in deriving a robust 

QSPR model is finding the smallest set of molecular descriptors that best represent the 

structural variations in a set of chemically diverse molecules. In QSPR the most common 

methods to identify a good set of descriptors are stepwise multiple linear regression, 

partial least squares (PLS), and principal components analysis. 

Comparative molecular field analysis (CoMFA) has been used to model pKa 

values for small series of chemical homologs where partial least squares found a linear 
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correlation using four parameters.
140-143

 While the statistics appear very good, one must 

note two limiting factors: first the models were trained on very small, chemically similar 

training sets, and second the results depend on the chosen conformations and spatial 

alignments. More recently, a CoMSA (comparative molecular surface area analysis) 

study using similar 3D descriptors and PLS fitted the pKa values for a series of benzoic 

acids.
128

 The previous CoMFA methods appear to outperform the CoMSA method in 

predicting pKa.  
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Table 2.6. Survey of pKa prediction methods 

Method Ref. Class 

Training Set Test Set External Test Set 

 N
 

r
2 

RMSE n q
2 

RMSE  n r
2 

RMSE 
QSPR/PLS 137 all subclasses       25 0.95

a
 0.78

a 

  acids
 

625 0.98 0.405 10% 0.86 1.04    

  bases 412 0.99 0.298 10% 0.87 1.12    

QSPR/PLS – MoKa 127,141 33 subclasses 24617      39 0.80 0.90 

   acidic nitrogen 421 0.97 0.41 20% 0.87 0.41  
  

   6 member N-heterocyclic 

bases 

947 0.93 0.60 20% 0.85 0.86  
  

QSPR/PLS (CoMSA) 128  49   49 0.86  23 0.77  

QSPR/PLS (CoMFA)  140 

142 

 

143 

benzoic acids 

imidazoles 

imidazolines 

nucleic acid components 

49 

23 

16 

18 

0.916 

0.99 

0.99 

0.99 

0.102
 b
 

0.19
b
 

0.35
b
 

0.19
b
 

  

 

 

0.89 

 

0.27
b
 

0.69
b
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0.98
a 

 

0.15
ab

 

QSPR/MLR 125  15 0.97 0.12    3 0.99
a
 0.10

a
 

QSPR/MLR  126 carboxylic acids 

alcohols 

1122 

288 

0.81 

0.82 

0.42
b 

0.76
b
 

20% 

20% 

0.81 

0.81 

0.43
b 

0.78
b
 

 
  

QSPR/MLR  129 aromatic acids 74      33 0.99 0.27 

QSPR/LFER 124 monoprotic oxy acids 135 0.993 0.455    14  0.471 

QSPR/LFER – MCASE 118  2464   616 0.91 0.774
b 

214 0.70 1.52
b 

QSPR/LFER – EPIK 119,120  4057  1.27
b 

   123  1.37
b 

QSPR Anti-

Connectivity 

136  31   31 0.87 0.463  
  

ANN – ChemSilico 130  12 classes >16000      665 0.83  

  primary amine 1100 0.95  20% 0.92   
  

  tertiary amines 870 0.92  811 0.80   
  

  monoprotic acids 1640 0.95  1640 0.88   
  

  aromatic nitrogen 1480 0.92  1367 0.80   
  

  alcohols 1302 0.88  1302 0.85   
  

ANN/PCA/GA 131 nitrogen 170(282) 0.99 0.30     
  

ADMET Predictor 84,91  9075 0.971 0.593    2253 0.961 0.644 
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Method Ref. Class 

Training Set Test Set External Test Set 

 N
 

r
2 

RMSE n q
2 

RMSE  n r
2 

RMSE 
            

Semiempirical/PLS 123  all   0.48
 

   350  0.81 

(Novartis In-House)  alcohols 202 0.87 0.58  0.80    
 

  amines 1403 0.89 0.49  0.84    
 

  anilines 311 0.90 0.49  0.78    
 

  carboxylic acids 681 0.90 0.34  0.86    
 

  imines 84 0.98 0.55  0.88    
 

  pyridines 397 0.95 0.58  0.86    
 

  pyrimidines 91 0.95 0.43  0.87    
 

Semiempirical MO 
144 

 

145 

phenols 

benzoic acids 

amines & anilines 

N containing heterocycles 

   175 

99 

132 

150 

0.93 

0.85 

0.94 

0.69 

0.599
 b
 

0.357
 b
 

0.985
 b 

1.168
 b
 

   

Semiempirical 

RM1+solv. 
146 

carbon containing aliphatic 

amines 

26 0.948 0.68
b 

     
 

Quantum (MEP) 147 phenols & carboxylic acids 228 0.896        

Quantum (MEP-Vmin) 

                 (MEP-VS,min) 

                 (IS,min) 

                 (Hammet σ) 

148 anilines 36 

0.945 

0.932 

0.949 

0.940 

0.301
b 

0.336
b 

0.285
b 

0.310
b 

     
 

Quantum (MEP-VS,min) 

                 (MEP-VS,max) 

                 (IS,min) 

                 (IS,min & 

VS,max) 

149 phenols  19 

0.938 

0.932 

0.941 

0.953 

0.300
b
 

0.314
b
 

0.292
b
 

0.271
b
 

      

Quantum (MEP-VS,min) 

                 (MEP-VS,max) 

                 (IS,min) 

149 benzoic acids 17 

0.942 

0.970 

0.941 

0.120
b
 

0.085
b
 

0.120
b
 

      

Quantum (philiity) 150  63 0.98 0.57
b 

     
 

Quantum Solvation 132 carboxylic acids 16 0.69 0.72       

Quantum Solvation 151 phenols 20  0.38       

Quantum Solvation 152  11 0.88 2.2       

COSMO-RS 133 bases 43 0.98 0.56
b 

   58  0.66 

 134 acids 64  0.98 0.49
b
       

Jaguar 153        191 0.98 0.66 

MD continuum 154 diprotic acids  12 0.96 2.02       
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Method Ref. Class 

Training Set Test Set External Test Set 

 N
 

r
2 

RMSE n q
2 

RMSE  n r
2 

RMSE 
solvation 

            

            

QSPR/LFER/PMO –  

SPARC 
87,121,122 

 2500 0.99 0.36
b
    4338 0.99 0.37

b
 

Pfizer dataset
c
       123 0.92 0.78

b
 

Pfizer internal dataset
d
       537 0.80 1.05

b
 

       185
c
 0.84 1.15 

MARVIN 82,155     208
c 

0.98 0.38
b 

185
c
 0.88 1.03 

ACD/I-Lab v8.03 88  >31000      185
c
 0.90 0.93 

ADME Boxes 156        185
c
 0.93 0.69 

SMARTS pKa 90  1693 0.95 0.65 10% 0.91 0.80 185 0.94 0.68 

Consensus
e
 90        185 0.96 0.60 

In all training sets n refers to the number of pKa measurements; in the test sets n refers to the number of pKa measurements or percentage of the training 

set. 
a
 External set statistics were calculated from data presented in the referenced material. 

b
 Standard deviation. 

c
 It is unknown whether these molecules 

were used in the training set. See reference 90. 
d
 These molecules were unlikely to be found in the SPARC training set. 

e
 The consensus model used 

predictions from SPARC, MARVIN, ACD/I-Lab 8.03 and SMARTS pKa. 
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2.3.2.3 Quantum Mechanical and Continuum Electrostatic Methods 

Continuum electrostatics models and quantum mechanical descriptors have also 

been a focal point in small molecule pKa prediction. Similar to the work by Antosiewicz 

on protein pKa,
10

 a continuum electrostatics model for small molecule diamines using 

UHBD to make FDPB calculations resulted in an r
2
=0.86 and RMSE=1.1 for the 12 

ionizable sites in six aliphatic diamines with experimental pKas ranging from 1.09 to 

10.34. Significant errors occurred in the calculations for the primary pKa of 1,2-

diaminopropane and the secondary pKa of succinic acid, which were both calculated 

approximately 3 units below the experimental values.
154

 

A polarizable continuum model was used to evaluate 15 small simple monoprotic 

molecules with experimental pKa ranging from –6 to 33 with r
2
=0.96 and RMSE = 2.02. 

All in all, there were 11 compounds that deprotonated within the range 0 to 16 with 

r
2
=0.88, RMSE = 2.2, and a maximum error of 4.7.

152
 Electrostatic models have also 

been used to predict pKa for small multiprotic tetrahedral and triangular oxyacids, such as 

arsenic (H3AsO4) and arsenious (H3AsO3) acid, with close to the same accuracy as for the 

simpler organic acids.
157 

QM descriptors offer a promising means to accurately calculate pKa. The ab initio 

aspect allows for greater confidence when calculating pKa for molecules than when using 

strictly empirically derived descriptors. That is, QM methods are not restricted to the 

chemical diversity of a training set of molecules. However, the calculations are time 

consuming and not feasible when considering large databases of theoretical molecules or 

the analysis of macromolecules. Some QM descriptors that have a strong correlation to 

pKa include superdelocalizability,
123

 polarizability,
123

 group philicity,
150,158

 molecular 
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electrostatic potential (MEP),
147,148,149,161

 and molecular surface local ionization energy 

(IS,min).
 148,149,159,160,161

 

Group philicity refers to the electrophilic nature of the ionizable group, such as a 

carboxyl group, and is equivalent to the sum of the local electrophilicities of each group 

atom, which are determined by the electrophilicity of their respective bonded neighboring 

atoms and calculated using density functional theory. The philicity descriptor is a 

modification of a molecule‘s electrophilic index.
162

 The reciprocal of the group philicity 

showed a strong correlation to the pKa for 63 molecules including carboxylic acids, 

substituted phenols, anilines, phosphoric acids, and alcohols.
150

 

Three classes of MEP calculations have shown a strong correlation to pKa: spatial 

minima (Vmin), surface minima (VS,min), and surface maxima (VS,max).
148,149

 It was recently 

shown that the MEP minus a given reference value for each category of compounds (as in 

the FDPB calculations for protein pKa prediction with the electrostatic methods) has a 

single unique linear relationship to the experimental pKa data for thiols, sulfonic acids, 

alcohols, carbonyl acids, amines, and analines.
147

  

The investigations of Brinck et al. established the correlation between a 

molecule‘s pKa and an ionizable atom‘s minimum surface local ionization energy (IS,min), 

as defined by self-consistent-field molecular orbital theory.
159-161

 The locations of the 

IS,min is related to charge/transfer polarization and indicates the areas where the least 

amount of energy is needed to abstract an electron from the surface of the molecule. 

Early investigations found a single linear relationship between the IS,min and pKa for four 

sets of carbon and oxygen acids, as well as three nitrogen acids. It is easy to see from the 

scatter plots correlating IS,min to pKa that some calculations missed by approximately 10 
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pH units, and that the high correlation coefficient (r=0.97) was due largely to the broad 

range (–5 to 40) of experimental pKas considered.
160

 Later investigations confirmed that 

not all ionizable groups could be represented by a single linear equation due to key 

structural differences between the ionizable groups.
149

  

While MEP descriptors and IS,min both show good pKa correlations for different 

series of compounds taken separately, it is interesting to note that the derivation of IS,min 

and VS,min correspond to different atoms and generally do not correlate.
149,161

 When 

performing simple linear regression on one descriptor, the IS,min has been shown to be 

slightly superior to the Vmin, VS,min, and VS,max as well as the natural charge, and relative 

proton-transfer enthalpy.
148,149

 Furthermore, it was found that no significant improvement 

could be obtained by linear regression on combinations of IS,min, VS,min, and VS,max QM 

descriptors.
149

 Although these QM descriptors appear quite promising, no strong 

correlations have been found between them and pKa for aliphatic amines. More recently, 

good correlations between neutral amines (excluding ammonia and hydroxylamine) and 

their cations were found by using the SM5.4A solvent model and performing calculations 

at both the semiempirical RM1 and density functional theory (DFT) B3LYP/6-31G* 

levels.
146

 

Ab initio quantum mechanical methods are always the slowest but have often been 

found to be the most accurate, such as Jaguar, which performs geometry optimization at 

the DFT B3LYP/6-31G* level.
153

 Shields et al. used QM calculations to accurately 

predict pKa for 20 phenols
163

 and 6 carboxylic acids
164

 using a CPCM
165

 continuum 

solvation method in Gaussian 98.
166

 CPCM utilizes COSMO,
167

 a conductor-like 
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screening model to calculate the polarization charges of a molecule, in a polarizable 

continuum model (PCM) framework.  

Another popular QM package
 
that has been shown to perform as well as Jaguar in 

aqueous environments, capable of accurate pKa calculations is COSMO-RS,
168,169

 where 

the RS stands for real solvents. It is a statistical thermodynamics post-processing of 

COSMO calculations that extends the applicability of quantum chemistry to the entire 

range of fluid thermodynamics including mixtures and variable temperatures.  An 

assessment of several ab initio programs for the prediction of pKa, not including Jaguar, 

tested neutral, cationic, and carbon acids with experimental pKas ranging from 14 to 36. 

Ignoring three outliers, the overall r
2
 was 0.89, while considering all data points lowers 

the r
2
 to 0.72.

 170
 Still there are foreseeable complications. The COSMO-RS model was 

able to fit a set of 43 bases very well, but when aliphatic amines were considered, 

correction factors needed to be introduced for secondary and tertiary amines which 

uniformly deviated from the regression line. Furthermore, two compounds 

(hexamethylenetetramine and 1,2-diazabicyclo[2,2,2]octane), did not share this deviation. 

In these cases, ionizable nitrogens act as bridging atoms for a bicyclic ring system.
133

 

Strictly empirically based methods could not even hope to achieve this level of accuracy 

based on the relatively small sampling of chemical space considered for both acids and 

bases. 

For pKa predictions outside the physiological range, the ab initio QM methods 

tend to be more robust and often more accurate than the empirical and less complicated 

continuum electrostatic methods. This class of pKa predictors also allows for a broader 

range of analysis than is afforded by empirical models trained on pKa data obtained from 
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titrations in H2O alone. On the other hand, validation has been performed on rather small 

data sets, and it is not clear that even the QM methods will be able to maintain their 

statistics, based on a study of carbonaceous ionizable sites, involving COSMO-RS and 

other contemporary theoretical methods.
170 

2.3.2.4 Artificial Neural Networks 

The theory behind artificial neural networks (ANN) has been described in the 

literature.
171,172,173

 ANNs are a powerful tool for making non-linear approximations and 

are designed to emulate how the brain processes information through a network of 

neurons. As such, the neurons of an ANN act as interconnected units, processing 

information based on mathematical functions. Like the internet, each neuron acts like a 

minicomputer receiving requests and sending responses to other neurons. Multilayered 

ANNs with enough neurons have been said to have the capability to approximate almost 

any nonlinear mapping of input to output to any required accuracy.
174

 They are well 

suited to handle large datasets and identify complex non-linear patterns that could easily 

be missed by a simple equation or set of equations modeling a system, such as those 

derived through linear regression. 

A principal component, genetic algorithm, artificial neural network was used to 

calculate the pKa of 282 various nitrogen containing molecules in water.
131

 The training 

set consisted of 170 molecules, the cross-validation set 56 molecules, and the prediction 

set 56 molecules. The model uses 406 descriptors to identify 179 principal components 

that explained 99.9% of the total pKa variance. Of these, 15 principal components were 

included in the final model. While it appears that the model generation made use of the 

training and validation sets, we were not able to determine if only the molecules in the 
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training and validation sets were used to perform the principal components analysis. The 

RMSE of the 56 molecule prediction set for the artificial neural network was 0.0750, 

compared to 1.4863 when multiple linear regression was used to build the model. The 

extreme accuracy of the artificial neural network model, the excessive number of 

descriptors used to perform the principal components analysis, and the small number of 

molecules suggests that PCA was performed on the entire dataset to identify the relevant 

principal components, and that overfitting is an issue. As with many other empirical 

models, this one is unable to identify the site of ionization.  

A well validated ANN model has been implemented by Simulations Plus Inc.
84,91

 

This model has diverse training and test sets consisting of 9075 and 2253 pKa data points, 

respectively. It is also the only neural network model and one of the few prediction 

utilities that predicts micro-pKas. Based on the large training and test sets and the 

respectable score from the Chem Silico dataset, this utility appears to be not only the 

most accurate, but also one of the most robust methods for pKa prediction. On the other 

hand, this model, like most others, is only parameterized for C, N, O, S, P, F, Cl, Br, and 

I atoms. However, it will process molecules with other atom types, as well as salts (which 

are washed away), providing a warning to the user. Substances that are mixtures of 

compounds are not processed. 

2.3.2.5 Database Methods 

Tree methods and database lookup methods are becoming more popular tools for 

pKa prediction. The simplest form of database lookup method is to assign to the test 

molecule the pKa of the database molecule that is most similar, according to some 

similarity metric, such as the Tanimoto similarity coefficient, based on some fingerprint. 
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The fingerprint is typically made up of qualitative descriptors. The accuracy of the model 

depends on how comprehensive (large and chemically diverse) the molecular database of 

experimental pKa data is and the design of the fingerprint. To represent the database well, 

ideally every molecule in it would have a unique fingerprint. In one study it was found 

that pKa assignment based on a simple atom type method using SMARTS strings was 

able to assign pKa to simple molecules with an r
2
 of 0.80 and a standard deviation of 

0.95.
175

 

Other methods are far more rigorous, such as that of Kogej and Muresan.
138

 Here 

a pKa database was mined using fingerprints based on 64 atom types represented by 

SMARTS strings and bond distance from ionizable site. A fingerprint was taken at each 

level of removal from the ionizable atom (level 1). Atoms one covalent bond removed 

from the ionizable site were at level 2, atoms at two bonds removed were at level 3, etc. 

After the entire training database is fingerprinted, a fingerprint exists for every concentric 

level of removal from the ionizable site for each ionizable site in the molecule. This style 

of submolecular fingerprints has also been coined ‗circular fingerprints‘, as it dissects 

local structural information in expanding concentric levels of bond removal from the 

ionizable site.
176

 This method allows for identification and predictions for each ionizable 

site in a molecule based on the theory that the ionization of a particular group is 

dependent on these topological subenvironments. Furthermore, it allows for predictions 

of the microspecies, but it is likely that microspecies would be poorly represented, as the 

vast majority of published pKas are for the macrospecies. pKa assignment is made by 

identifying the highest level where exact matches to the fingerprints are found. In the 

event that there are multiple matches, the average pKa value for the highest level 
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fingerprint matches are taken. Typically accuracy was good for level 4 or greater 

matches, but level 6 or more is needed for substituted aromatic ring systems such as 

substituted phenol. Note that 48% of the compounds cannot be predicted with level 

greater than 4, which is a problem for the substituted aromatic compounds and amines, 

indicating the need to expand the database of 4700 compounds. One advantage of this 

approach is that when attempting to predict the pKa for a compound found in the 

database, the exact value is returned as in a lookup. While the authors mention a 20-fold 

cross-validation (training the model using 95% of the data and testing on the remaining 

5%) no statistics (r
2
 or RMSE) for overall performance were provided. At level greater or 

equal to 5, 16% (4%) of the tests had a mean absolute deviation greater than 0.5 (1.0), 

indicating high accuracy for the vast majority of compounds and a need to increase the 

chemical space covered by the database. 

Xing also used molecular tree structured fingerprints, but included the number of 

hits at each level of removal.
137

 Like the previous approach, this method allows the 

individual treatment of specific chemical classes, as it generates tree-structured molecular 

descriptors for each class. A problem was experienced with an external dataset where 

four ionizable sites could not be classified because of the specificity trained into the 

chemical classes. Applying more general rules in their previous work
177

 allows the 

missed ionizable sites to be combined with a similar class of molecules. While this 

appears to reduce the overall fit of the model on the training data, it shows that 

generalizations can lead to an improvement in the overall robustness, while refinements 

lead to improvements in accuracy. Here we would suggest enlarging the training set 

while retaining the more general classifications in a parallel scheme for background 
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operations. This way one could gain all the improvements of the more specific 

descriptors without suffering loss of information. A training set consisting of 625 acids 

and 214 bases had a standard error of 0.41 for acids and 0.30 for bases. Similar tree based 

methods were also investigated in industry. In 2007, Jelfs et. al. described a method 

extending the molecular tree structured fingerprints by including 2D substructural 

fingerprints, which were used to flag the presence of other important structural features 

that affect pKa.
123

 As before, they found that the molecular trees (circular fingerprints) 

needed to consider at least five bonds of removal from the central atom for adequate 

results. This makes sense, for example in the case of the acidic OH group of phenol, 

where a para-substituent would be five bonds removed or at level 6 in the database 

lookup method of Kojeg. The software package MoKa implements this concept, where 

the descriptors are based on molecular interaction fields precomputed on a set of 

molecular fragments.
141

 

2.3.2.6 Decision Trees 

Decision tree methods have also been considered recently in pharmaceutical 

research, both for the prediction of biological activity and for physicochemical property 

predictions.
90,178,179

 The benefits of decision tree methods include: (1) explaining 

nonlinear response, (2) ease of interpretation, as they provide a clear decision path for 

better understanding of the test compound, (3) the ability to ignore irrelevant descriptors, 

(4) the ability to handle large sets of both quantitative and qualitative descriptors, (5) the 

ability to handle large sets of structurally diverse compounds, and (6) speed. The main 

drawback with decision tree methods is how to deal with multiple data points for the 

same molecule, as in the case of polyprotic acids. Other drawbacks include instability and 
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lack of accuracy when compared to other algorithms. While decision trees have 

commonly been used for classifications, it is possible to derive a regression tree to 

provide a quantitative rather than qualitative result.
180

 Predictive decision trees can be 

derived through recursive partitioning, which often leads to an unbalanced tree, when 

smaller groups of compounds having similar property values are filtered out early on, 

rather than making clever choices that favor a more balanced tree. By defining a pool of 

both backbone and substituent molecular fragments in terms of highly generalized and 

specific SMARTS strings, Lee and Crippen were able to iteratively construct a more 

balanced decision tree where each decision gave weight to the evenness of each split and 

the reduction in pKa variance at each child node for a large set of monoprotic 

molecules.
90

 Performance of SMARTS pKa was competitive with and even exceeded that 

of several well known applications as described in Table 2.6. It appears that accuracy and 

stability can be maintained by not heavily relying on highly specific descriptors or by 

making decisions leading to terminal nodes (where predictions are assigned) close to the 

root node. As with any other empirical model, regression trees can only be as good as the 

data used in training, particularly the accuracy and spread of the experimental pKas, and 

the chemically diversity of the training set compounds.
90

 

2.4 Protein-Ligand Complexes 

In rational drug design, one of the ultimate goals is to understand protein-ligand 

interaction, therefore it is significant to note a recent change in direction for pKa 

prediction, which attempts to account for binding effects. Experimental studies have 

demonstrated that ligand binding induces protonation state changes.
181,182,183,184 

Dullweber et al. examined a series of congeneric ligands and identified significant 
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changes in protonation states when binding to thrombin and trypsin.
184

 Recently, 

Czodrowski et al. have developed a method for predicting protein pKa that also accounts 

for pKa shift due to a bound ligand.
44,185,186

 Here, the pKa shifts for the ionizable sites in 

proteins were calculated with MEAD
187

, parameterized with partial charges from a 

modified version of Gasteiger‘s PEOE
188

 method. As part of the method validation, pKas 

were calculated for 132 ionizable groups of 9 proteins (RMSE = 0.88) and showed 

significant improvements over the null model and FDPB calculations using partial 

charges from PARSE
189

 and CHARMM22
190

. 

PROPKA 2.0 also attempts to address the issue of pKa shifts in relation to protein-

ligand binding for the ionizable groups of both protein and ligand.
80

 The underlying 

empirical rules of PROPKA 1.0
22

 have been modified in PROPKA 2.0 to include the 

effects of the functional groups of the ligand. The model (or null) pKa values for the 

ligand are taken from literature or from MARVIN, when no experimental data is 

available. In all 26 protein-ligand complexes were studied. Of these, PROPKA 2.0 was 

shown to identify changes in protonation states that agree with the majority of the 

experimental data, however no statistics on the pKa predictions were provided. Clearly, 

more NMR pKa data for protein-ligand complexes is required for retraining and 

validating both models, but it is encouraging to see that the combination of 

methodologies can provide some promising results. 

2.5 Statistics and Benchmarking 

Often experimental data for a particular ionizable site is provided as a range. The 

range is due to estimated experimental error or data curation, where multiple 

measurements were obtained from different sources possibly using different techniques. 
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One can only hope that care was taken in the curation, as outliers can significantly extend 

the range. Using an experimental range leads to a lower RMSE than when single values 

are used. Typically any predicted value falling within the range has an error of 0, and 

otherwise the error is the absolute difference between the value and the nearer limit of the 

range. Ranges are more commonly used when computing statistics for protein pKa 

predictors, whereas the small molecule pKa predictors generally compare to single 

experimental values in terms of Pearson‘s correlation coefficient squared, r
2
. On the other 

hand, r
2
 is often not considered when comparing experimental to calculated data for 

proteins, as pKa data for proteins is dominated by carboxyl groups in aspartic and 

glutamic acid residues, and by the imidazole group of histidine residues, most of which 

tend to have pKas in the range 2 to 6. If only a few lysine or tyrosine residues (pKa 9 to 

11) are added to the comparison, the r
2
 increases substantially, while the RMSE will 

remain close to the same, providing that there is no significant difference in the range of 

errors for the different residue types. It was for this very reason that Pokala omitted the 

few available Lys data points from the evaluation, as it exaggerated the null model‘s 

apparent accuracy. Including the Lys data points increased the r
2
 for the null model from 

0.36 to 0.90.
54

 When considering r
2
, it is better to apply the statistic to the correlation 

between experimental and predicted pKa shifts for each residue type separately. Figure 

2.1 illustrates how using the correlation coefficient to evaluate data can be misleading. 

Similarly, it can be worthwhile to consider r
2
 for different classes of small molecules to 

best evaluate the strengths and weaknesses of different pKa predictors. When comparing 

methods, it is important that a discriminative benchmark is used.
63
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Figure 2.1. Simulation of the null model used to predict the pKa of 18 residues (9 Asp, 7 

Glu, and 2 Lys). One predicted value is assigned to each residue type, although the 

respective experimental values vary due to environmental effects. Adding in the two Lys 

data points raises the correlation coefficient (r
2
) from nearly zero to 0.87 while improving 

the RMSE only slightly due to the close fit for the two extra points. 

 

Empirical pKa predictors are capturing ever increasing attention, given the vast 

amount of available data. We once again refer to Table 2.4 for a comprehensive list of 

large data sources. While the data available to the public may be vast, it is by no means 

comprehensive, as is shown by a survey of several commercial and public small molecule 

pKa predictors made by Dearden et. al.
191

 Chem Silico provided a 653 molecule test set 

for the survey and verified that it was not used in training their model, but it could not be 

verified what portion of the data was external to the other models. Table 2.7 is a 

reproduction of this survey in hopes that it, along with the broader survey in Table 2.6, 

can help the reader select the most suitable software. No statistics for training and or 

validation data were found for Pallas, Pipeline Pilot, and QikProp. Furthermore, the 

Chem Silico pKa prediction utility is no longer described or offered on their website. It 

should also be noted that the only software packages which provided predictions for the 
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entire data set were ADMET Predictor and MARVIN. One other hidden anomaly in the 

results is that VCCLAB uses pKa prediction data from ADME Boxes. VCCLAB obtains 

logP, logS, and pKa predictions from ADME Boxes as part of their suite of properties 

returned by their web utility ALOGPS.
192

 For all of the molecules that were predicted in 

common between ADME Boxes and VCCLAB, the performance was equivalent. 

Apparently the performance differences are due to either differing SMILES 

interpretations or a transmission problem between the two web sites. 

Table 2.7. The predictive abilities of ten pKa prediction utilities
191

 

Software url 
# Molecules 

Predicted 
r

2
 MAE

a 

ADME Boxes ap-algorithms.com 627 0.959 0.32 

VCCLAB vcclab.org 610 0.931 0.40 

ADMET Predictor simulationsplus.com 653 0.899 0.67 

Pipeline Pilot accelrys.com 626 0.852 0.43 

SPARC ibmlc2.chem.uga.edu/sparc 644 0.846 0.78 

MARVIN chemaxon.com 653 0.778 0.90 

QikProp schrodinger.com 645 0.768 0.93 

ACD/Labs acdlabs.com 644 0.678 1.07 

PALLAS compudrug.com 646 0.656 1.17 

CSpKa chemsilico.com 642 0.565 1.48 

 

Not surveyed 

    

ASTER www.epa.gov    

COSMOtherm www.commologic.de    

Epik www.schrodinger.com    

Jaguar www.schrodinger.com    

MoKa www.moldiscovery.com    
a 
MAE – mean absolute error. 

Benchmarking models is a major issue in literature. To date, no true benchmarks 

for pKa exist. Ideally, one would have a universal training set to train all models, and a 

universal disjoint and similarly diverse test set would be used to test their predictions. 

Even ab initio methods may be based on some small subset of the universal training set. 

A more practical way to compare two methods would be (1) to examine the fit of both on 

http://www.epa.gov/
http://www.commologic.de/
http://www.schrodinger.com/
http://www.schrodinger.com/
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the intersection of their training sets and then (2) compare their predictions on a test set 

outside the union of their training sets. 

With no true benchmarks for pKa prediction utilities, the only way to identify a 

superior model is by trusting the statistics. All empirically based models should have r
2
 

close to 1.0 and RMSE as close to 0.0 as possible over a wide range of compounds. The 

statistics for both training and test data should be separate; unfortunately this is not the 

case with current surveys for both macromolecules
11,68,69

 and small molecules,
193

 

including the one in this review. Consensus models further confuse the issue, as the 

training sets of all models are considered and the test set of molecules under 

consideration is more likely to be represented by one or more of those data sets. Statistics 

on the training data indicate the upper threshold for accuracy, while statistics on the test 

set (data outside the training set) suggest how the model will perform on data having 

similar chemical diversity. Therefore, it would be useful to have a diversity statistic based 

on some chemical property space defined by calculable orthogonal descriptors based on a 

large chemical database such as PubChem. The other obvious but nonetheless relevant 

aspect of the training and test sets are their respective sizes. Empirical pKa models with 

small training sets and good statistics are either specific to an ionizable group, such as 

carboxylic acids, or their accuracy cannot be trusted without more rigorous validation. 

Robust evaluation of predictive models comes down to five factors: the statistics, the 

range and variance of the property values, and the size and chemical diversity of the test 

set. As shown in Figure 2.1, clustering of data in chemical property space can drastically 

affect the statistics, especially leave-some-out cross-validation. When choosing the 

method(s) keep the following questions in mind. How chemically diverse is the dataset? 
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Testing on substituted phenols alone only indicates how well the pKa of phenols will be 

predicted. What is the range and distribution of experimental values of the external test 

set? It is impossible to trust predictions unless validation across the entire pKa spectrum 

of the user‘s desired application is performed. For example, it is useless to only validate 

pKa predictions in the range of 10 to 16, if the intended application is pharmaceutical 

research relating to the oral bioavailability of potential lead candidates. What is the size of 

the test set? Large and diverse test sets not only validate the accuracy of a predictive 

model, but also its robustness. What can be learned from the outliers (poor predictions)? 

If model A has superior performance on acids and model B has superior performance on 

bases, it is common sense to use both in their respective areas of strength. If it is not 

possible to discern a superior group of models, it has been shown that consensus models 

tend to improve accuracy,
69,90

 apparently due to the increased diversity of the combined 

training sets of the models used in the consensus. 

2.6 Conclusions 

The main advantage of in silico pKa prediction is that physical samples are not 

needed. Still, some new compounds surely need to be synthesized for experimental 

evaluation of physicochemical properties to better understand chemical space and expand 

the diversity of the molecules available to update existing models and develop new 

prediction methods. Even when one considers newer methods of high throughput pKa, 

there are two limiting factors: the costs and time associated with obtaining or 

synthesizing the molecules of interest. Hence, there is a need for a quick, accurate, and 

robust model for pKa prediction for large as well as small molecular libraries. There is 

also a need for better benchmarking and comparison of methods. For example, the 



 

64 

 

common belief is that consensus models tend to improve the accuracy of predictions. 

Here, common sense should throw up red flags. At least with the methods and software 

discussed above, there is no comprehensive database indicating what molecules were 

used for training and testing. Therefore, the consensus could be based on a selection of 

methods where some or all of the training sets included the molecule being evaluated. 

Statistics obtained from a consensus model may not reflect its performance on new data. 

So, which method is best? While ab initio quantum mechanical methods are 

broadly applicable, they are computationally expensive. With regard to small molecules, 

QM descriptors are easier to calculate, but they suffer some of the same limitations as 

Hammett based methods, as one needs to first group compounds and establish linear 

correlations between the descriptors and pKa. Unlike the Hammett and Taft equation, a σ-

like variable needs to be established for each descriptor type for each class of 

compounds. In order to accurately predict pKa using QM methods, it is clear that 

solvation needs to be considered for some if not all compound classes. Any improved 

accuracy invariably is associated with large computational cost; hence these methods 

may be impractical when calculating pKa for large in silico molecular databases. On the 

other hand, QM analysis can identify the sites and order of ionization, which many 

empirical methods cannot. Furthermore, QM may be used to provide added insight in the 

analysis of microspecies. It has been shown that QM continuum-solvation methods are 

still a viable tool for providing predictive regression equations for various chemical 

classes. While it may not represent the fastest solution to high throughput in silico pKa 

analysis, it would behoove us to identify a single comprehensive level of DFT and 

solvation theory such that a single equation could deal with all compound classes. 
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Again, which method is best? It is impossible to know until true assessments have 

been made. Being able to fairly assess these models is paramount, but how? Data is 

limited, fallible, hidden, unorganized, and often found to be conflicting, yet it is the basis 

of each and every model discussed in this review. These factors are compounded when 

considering pKa models for macromolecules. NMR titrations are by far the most difficult, 

and it is not obvious which shift (
1
H, 

13
C, 

15
N) will provide the most interpretable 

titration curve. In some cases the titration curves were obtained by measuring the shifts of 

atoms in the vicinity of the ionizable site, but far removed considering covalent bond 

connectivity. The main limiting factor in order to improve pKa prediction is the need for a 

large quantity of new well curated data for both small and macromolecules. Especially, 

more data are needed for buried ionizable residues and ionizable residues in active sites 

of proteins. Steps toward a comprehensive pKa database have already begun with the 

PPD, but the data cannot be efficiently downloaded into a text delimited or other 

common computer readable format such as SD files. There is need for a similar database 

for experimental pKa data for small molecules. The initial challenge is to collect and 

curate all of the freely available information, then offer data to the public in an organized 

and computer accessible format. 

Proprietary data is still an issue, but it has already been seen that Big Pharma has 

been willing to participate in the assessment of predictive utilities on their own 

proprietary data sets.
194

 These tests, while relevant to the pharmaceutical industry, may 

not be a fair assessment of the overall predictive quality of the models being tested. The 

proprietary data sets are likely to contain highly skewed sets of molecules based on the 

investigation of structure activity relationships. Therefore, it is likely that the proprietary 
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datasets do not represent a well distributed sampling of chemical space, resulting in a less 

than adequate predictive performance of empirical and semi-empirical methodologies. A 

robust predictive model is expected to exhibit uniform performance across a defined 

segment of chemical space. It is possible and in fact desirable that performance will be 

maintained outside such definitions, but, it cannot be expected. 

Accepting a new definition of chemical space, capable of differentiating all 

known classes of chemical compounds, could serve as a basis for identifying the 

strengths and weakness of existing physicochemical property prediction utilities. This is 

important, as different methodologies are likely to demonstrate higher accuracy when 

accessing molecules in various localized regions of chemical space. Such an analysis 

would allow researchers to select the optimal combination of predictive models for their 

specific purposes. 

A final note: regardless of the model used, validation on an external test set is 

necessary. In this regard, we would draw the reader‘s attention to an article entitled 

Beware q
2
!,

195
 where leave one out (LOO) cross-validation was explored utilizing k 

nearest neighbors QSARs for three datasets. All-in-all 160 LOO models for each of the 

datasets were explored, very few of which were found to have desirable statistics for 

predicting new data, and it was impossible to identify the best LOO model without 

assessing it on new data. In order to validate that their models did not suffer from 

overfitting, chance correlations were explored by performing 160 randomizations on each 

dataset and respectively retraining the dependent variables for each randomization. It was 

verified that the q
2
 for chance correlations were significantly lower than those of the 

trained models derived from the non-randomized dependent variables. Furthermore, there 
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was little to no correlation between the q
2
 of the cross-validated training sets and the 

respective r
2
 on the external test data. The authors concluded that LOO cross-validation 

could not be used to identify a robust model, nor could it be used to identify the best 

model for making predictions without validation on an external test set consisting of new 

data. We again emphasize, the statistics for a model based on fitting training data 

represents the maximum predictive power for that model and in no way determines how 

the model will predict new data. 
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Chapter 3 

 

Chemical Data Mining of the NCI Human Tumor Cell Line Database 

 

3.1 Introduction 

 

The NCI Developmental Therapeutics Program Human Tumor cell line data set is 

a publicly available database that contains cellular assay screening data for over 40000 

compounds tested in 60 human tumor cell lines. The database also contains microarray 

assay gene expression data for the cell lines, and so it provides an excellent information 

resource particularly for testing data mining methods that bridge chemical, biological, 

and genomic information. Here we describe a formal knowledge discovery approach to 

characterizing and data mining this set and report the results of some of our initial 

experiments in mining the set from a cheminformatics perspective. 

Since 1990, National Cancer Institute Developmental Therapeutics Program 

(DTP) has been screening compounds against a panel of 60 human tumor cell line assays. 

The results are available on the DTP Web site.
1
 Approximately 10000 compounds are 

screened each year, and at the time of writing, results were available for 44653 

compounds including growth inhibition (GI50), lethal dose (LD50), and total growth 

inhibition (TGI). The untreated cell lines have also been run through microarray assays, 

yielding gene expression information. 

The tumor cell line data set is interesting in several ways relating to current 

research in finding biomarkers that cross different kinds of data and in using chemical,
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 biological, and genomic information together. First, it provides a well curated set of 

tumor-related cellular assay screening results for a large number of compounds (the 60 

cell lines include melanomas, leukemias, and cancers of the breast, prostate, lung, colon, 

ovary, kidney, and central nervous system
2
), which can be considered as a surrogate for 

high-throughput screening data. Second, the gene expression profiles of untreated cell 

lines allow some level of integration of genomic information with chemical and 

biological information. Third, the program is ongoing and so the tumor cell line data set 

is continually growing, but the cell lines themselves are stable (both in terms of number 

and comparability of results). Fourth, and most importantly, the data are made freely 

available through the DTP Web site and are thus available for research and publication. 

A substantial amount of research on the tumor cell line data set has been carried 

out locally at the NCI laboratories including development of the COMPARE algorithm
3,4

 

which measures similarity between vectors of screening results of compounds using a 

Pearson correlation coefficient. A searching program based on COMPARE is available 

online.
5 

Zaharevitz et al.
4
 cite several examples of the successful application of these 

approaches in drug discovery projects. The original authors of COMPARE also 

introduced the use of the mean graph
3
 that gives a visual bar graph representation of the 

difference between the screening result for a particular compound and the mean for all 

compounds, across the 60 cell lines. This representation has been widely used alongside 

COMPARE. 

Other research has used neural networks
6
 to classify compounds in the set. In their 

2000 paper, Scherf et al.
7 

examine correlations between compounds‟ high-throughput 

screening results (the activity pattern set) and mRNA expression levels. Recently, Rabow 
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et al.
8
 performed a clustering of the tumor cell line data set based on the activity profiles, 

using a self-organizing map (SOM). Other work at the NCI focused on ellipticine analogs 

and the potential relationship between the mechanism of action and the 60 cell line 

activity profiles. The compounds were grouped using hierarchical clustering, and a 

significant difference in activity profiles was found for groups with different mechanisms 

of action
9
 which led to a follow-up QSAR study.

10
 

Researchers at Leadscope Inc. have applied their Leadscope software
11

 to relate 

the information in the tumor cell line data set to structural feature analysis of the DTP 

compounds, including analysis similar to that done by Scherf
12

 and correlations of 

chemical structural features of cytotoxic agents with gene expression data.
13

 Blower et 

al.
14 

also applied a three-stage pipeline to the data set, including filtering for drug-

likeness, structure alerts, promiscuity and diversity; structural feature based classification 

using a variant of Recursive Partitioning (requiring separation of actives and inactives) 

and organization based on hierarchical clustering; and SAR analysis through R-group 

assembly, macrostructure assembly, and predictive models. The researchers found a close 

match between classifications and clusters found by Leadscope and manual 

classifications previously identified at NIH. 

Recently, Richter et al.
15

 have evaluated an activity prediction model based on 

both structural information and genomic information, and at Bristol-Myers Squibb, a 

version of recursive partitioning derivative was applied.
16

 Fang et al.
17

 developed a set of 

Internet-based tools that permit correlations to be found between the activity profiles, 

gene expression profiles, and compounds using COMPARE as well as Spearman & 

Kendall correlation coefficients and a p-test to indicate significance of correlation results. 
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In this work, we have focused on characterizing the compounds present in the 

data set and applying a variety of methods to discover relationships between the 

compounds and the biological activity values. We have tried to take a more formal 

approach to data mining, such as has been applied in other domains where large volumes 

of information need to be searched for important associations. Data Mining, and more 

generally Knowledge Discovery in Databases (KDD), is an area of computer science that 

has attracted a significant amount of research, industry, and media attention in the past 

decade, as the amount and complexity of information in databases has increased. Many 

KDD techniques, such as cluster analysis and decision trees, are already well established 

in chemical and bioinformatics, while others, such as data cleaning and pattern 

verification and discovery, are less widely applied. 

3.2 Principles and Practices of Knowledge Discovery in Databases 

KDD is usually defined as the process of identifying valid, novel, potentially 

useful, and ultimately understandable patterns from large collections of data. At an 

abstract level, it is concerned with the development of methods and techniques for 

making sense of data. Since its debut in 1989, KDD has become the most rapidly 

growing field in the database community and was soon adopted in other business and 

scientific areas, such as marketing, fraud detection, and bioinformatics. In practice, this 

field covers techniques often applied in cheminformatics including cluster analysis, 

machine learning, and visualization techniques. Several KDD models have been proposed 

in the past decade. For the discussion in this paper, we adopt the 7-step KDD process 

presented in the most popular data mining textbook by Han and Kamber:
18

 data cleaning, 
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data integration, data selection, data transformation, data mining, pattern evaluation, and 

knowledge presentation. 

Knowledge Discovery goals are defined by the intended use of the system. Goals 

may be verification goals, in which the system is limited to verifying users‟ hypotheses, 

or discovery goals, in which the system is required to autonomously find entirely new 

patterns. Discovery goals may be descriptive (requiring characterization of general 

properties of the data in the database) and predictive (requiring predictions to be made 

using the data in the database).  

Discovery goals are generally achieved through data mining. Data mining 

involves fitting models to, or determining patterns from, observed data. Model fitting 

may be stochastic or deterministic, although stochastic approaches are the most 

frequently used. 

The first task of data mining is concept description. A concept is a labeling of a 

collection of data, such as labeling a set of “graduate students,” “best-seller books,” etc. 

The goal of concept description is to summarize the data of the class under study in 

general terms (data characterization) and to provide a description comparing two or 

more collections of data (data discrimination). Several methods have been proposed for 

efficient data summarization and discrimination. For example, a data cube
19

 can be used 

for user controlled data summarization among concept hierarchies; analytical 

characterization can be used for unsupervised data generalization and characterization. 

After concept description, classification may be applied. The purpose of data 

classification is to find a set of models that describes and distinguishes data classes or 

concepts. Usually, finding such models is not the ultimate goal but rather the first step of 
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using such models to predict the class of objects whose class is unknown or to predict 

future data trends. Decision trees are one of the most popular methods for data 

classification and predication. 

In addition to classification, unsupervised clustering may be applied. The goal of 

cluster analysis is to examine data objects without consulting known class labels and is 

generally used as a way of organizing the database. In cluster analysis, objects are 

grouped based on maximizing the intraclass similarity and minimizing the interclass 

similarity. An excellent overview of clustering in cheminformatics is given by Downs 

and Barnard.
20

 Popular clustering algorithms used in data mining include partitioning 

methods such as k-means,
21

 k-mediods,
22

 and CLARANS
23

 algorithm; hierarchical 

methods such as agglomerative and divisive algorithms, BIRCH
24

 algorithm, CURE
25

 

algorithm, and Chameleon
26 

algorithm; density-based methods such as DBSCAN,
27 

OPTICS,
28

 and DENCLUE;
29

 grid-based methods such as STING,
30

 WaveCluster,
31

 and 

CLIQUE;
32

 and model-based methods such as classification trees and neural networks. It 

is interesting to note that there is only limited overlap between the methods popularly 

applied in cheminformatics and those applied in the data mining community as a whole. 

Finally, association analysis may be applied. The goal of association analysis is 

the discovery of association rules showing attribute value conditions that occur together 

frequently in a given set of data. The Apriori
33

 algorithm family has variants that are 

suitable for various data types and database models. Combining the association analysis 

and concept hierarchies, one may generalize the association rules with ISA relationship 

or various aggregations on different granularities. 
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Raw data are often not suitable for data mining, due to noise, missing or 

inconsistent data points, or lack of normalization across data sources. Preprocessing must 

therefore be applied. The purpose of data cleaning is to fill in incomplete data, smooth 

out noise, and correct inconsistencies. Data may be incomplete when attributes of interest 

are missing. Approaches for filling missing values include ignoring entries with missing 

values, filling missing values manually, using a global constant, using the attribute mean 

to fill in missing values, using the attribute mean for all samples belonging to the same 

class as the given entry, using the most probable value, and so on. Noisy data usually 

refers to data that contain errors or outlier values that deviate from the expected values. 

Approaches for noise elimination include the following: binning (smoothing a sorted data 

value by consulting its neighborhood), clustering (clustering data to detect and eliminate 

outliers), hybrid methods combining computer and human inspection, and regression 

(fitting the data to a function). Inconsistent data may be the result of errors that happen 

during data entry or due to the heterogeneous nature of data. The first usually needs to be 

handled manually. The inconsistency and data redundancy caused by heterogeneous data 

resources are usually handled in the data integration process. 

Data integration and transformation are needed when data from heterogeneous 

resources are merged and transformed into forms appropriate for mining. In the data 

integration process, ontology is usually used for schema integration. Additional attention 

is needed to detect and resolve data value conflicts, such as attributes representing the 

same concept but using different units. Data transformation techniques include smoothing 

– removing the noise from data, aggregation, generalization – low level data are replaced 
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by high level concepts, normalization – attribute data are scaled to fall within a small 

specific range and attribute construction – construct a new attribute to help mining. 

Besides precision, performance is another important issue in data mining. The 

purpose of data selection is to obtain a data representation that is much smaller, yet 

closely maintains the integrity of the original data. Data reduction is the most common 

practice used in data selection. Many strategies have been proposed for data reduction: 

(1) Data cube aggregation,
19

 where aggregation operations are applied to the data in the 

construction of a data cube. (2) Dimension reduction, where irrelevant, weakly relevant, 

and redundant attributes or dimensions are removed. The most popular dimension 

reduction algorithms are stepwise forward selection, stepwise backward elimination, 

hybrid (combination of forward selection and backward selection), and decision tree 

induction. (3) Data compression, where encoding is used to reduce the data size. 

Techniques include wavelet transformation, principal components analysis, etc. (4) 

Numerosity reduction, where the data are replaced or estimated by alternative, smaller 

data representations such as parametric models, by regression and log-linear models, 

histograms, clustering, or sampling. (5) Discretization and concept hierarchy generation 

where raw data values for attributes are replaced by ranges or higher conceptual levels. 

A data mining system can generate thousands or even millions of clusters, classes, 

patterns, and rules. Not all of them are interesting to all users. The measurement of the 

“interestingness” of a pattern is subjective. Typically, a pattern is considered interesting if 

it is novel, valid with some degree of certainty, potentially useful, and easy to understand. 

It is unrealistic to expect a data mining system to generate all interesting patterns or only 

interesting patterns. This makes the measuring of pattern interestingness an essential 
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component in KDD. A desirable feature of any data mining system is the development of 

a proper measurement model for a given field or user group and the use of it not only 

after all patterns are detected but also in the process of data mining as a guide for pruning 

uninteresting patterns and to speed up the mining process. 

The data mining results, whether they are clusters or association rules, need to be 

presented to users (who usually are in the area of applications and are not database or 

data mining experts) before they can be deployed. Visualization and knowledge 

representation techniques are required to present the mining result to users, to improve 

the understandability. This is especially important for supervised mining tasks, where the 

user‟s involvement is required in the mining process. 

3.3 Data Cleaning, Integration, Selection, and Transformation 

At the time of writing the tumor cell line data set contained 257547 compounds in 

total. Among those compounds, 44653 compounds have cell line screening data (GI50, 

LC50, TGI data), and the total number of cell lines is 159, although only 60 of those cell 

lines have gene expression data. The gene expression data consist of 961 gene expression 

values for each cell line.
23

 For the experiments reported here, we implemented a local 

version of the database containing the 44653 compounds, screening results and gene 

expression values using PostgreSQL along with the gNova CHORD extension to allow 

chemical searching and generation of fingerprint bits.
34

 166-Bit structural key 

fingerprints were produced with gNova, based on a SMARTS-based interpretation of the 

public MACCS key set available from MDL.
35

 

3.3.1 Characterization of the Chemical Compounds 
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There are several well-established methods of characterizing compounds by 

chemical properties or structural features. We applied two methods to characterize the 

compounds: first, calculation and profiling of predicted property values compared to two 

other well-established data sets, and second, a 2D fingerprint based structural feature 

comparison with compounds in one of the data sets. 

In our first experiment, we chose three compound data sets for comparison to the 

tumor cell line set. The first is the FDA‟s Maximum Recommended Therapeutic Dose 

(MRTD) set containing 1220 current prescription drugs available in SMILES format 

from the FDA Web site.
36

 We chose this set as a representative of current marketed 

drugs. The second two sets were randomly selected 40000 compound subsets of 

PubChem, a freely available chemical database,
37

 used as representatives of a diverse set 

of chemical structures. We calculated properties (Molecular Weight, XLogP, Polar 

Surface Area, and Numbers of Hydrogen Bond Donors and Acceptors) for all of the 

structures in the data sets using OpenEye FILTER
38

 and then generated property 

distribution plots for each of the properties for each of the data sets. These profiles can be 

seen in Figure 3.1. The most striking result is that the profiles for the tumor cell line set 

are very similar to those for the MRTD set, indicating that the compounds in the tumor 

cell line set are very “drug-like”. The noticeably different (but consistent) profiles for the 

two PubChem subsets indicate that the compounds in PubChem are more diverse. 
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Figure 3.1. Comparative distribution of various properties for the compounds in the 

MRTD set (first column), tumor cell line set (second column), and two PubChem subsets 

(third and fourth columns). 
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In our second experiment we compared the similarity of the drug compounds in 

the MRTD with the most similar compounds in the tumor cell line set: the distribution of 

the Tanimoto similarity values of the 166-bit fingerprints is shown in Figure 3.2. Overall 

29% of the compounds in the MRTD set have a counterpart in the tumor cell line set with 

similarity greater than 0.8. 

 

 
Figure 3.2 Distribution of Tanimoto similarity values (x-axis) between compounds in the 

MRTD set and the most similar compound for each in the tumor cell line set. 

 

3.3.2 Characterization of the Cell Line Screening Growth Inhibition Values 

We then went on to examine the distribution of the –log GI50 data points 

(henceforth referred to as growth inhibition values) across cell lines and compounds. 

First, it is important to note that there is missing data: overall 12.1% of the cell line 

screen data points are missing. Figure 3.3 shows the percentage of compounds with 

missing data for each cell line. Only 2696 compounds (6%) have the growth inhibition 

values for all the 60 cell lines. 
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Figure 3.3 Fraction of the compounds with missing data for each of the 60 cell lines. 

Growth inhibition values at or near 4.0 indicate inactivity of compounds (i.e., 

doses of less than 10
-4

 molar did not inhibit growth). Overall 44.9% of growth inhibition 

values are equal to 4.0 (see Figure 3.4 for the distribution across cell lines). When these 

compounds are removed from the set, a normal distribution can be seen with a peak of 

values less than 5.0, indicating inactive or extremely weakly active compounds. Based on 

this data distribution, we decided for our experiments to set the cutoff for determining 

whether a compound was active or inactive at 5.0: we consider the data which are less 

than 5 as inactive (set as 0) and the data which are greater or equal to 5 as active (set as 

1). Overall, 19.6% compounds are considered active using this cutoff. The percentage of 

compounds considered “active” using this cutoff for each of the 60 cell lines is shown in 

Figure 3.5. 
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Figure 3.4 Fraction of compounds with growth inhibition values of 4.0 for each of the 60 

cell lines. 

 

 
Figure 3.5 Fraction of compounds showing activity in each of the 60 cell lines. 

 

3.3.3 Characterization of the Gene Expression Results 

Although this paper does not directly address data mining of the gene expression 

results, we carried out some initial experiments to characterize the data, for completeness 

and as a basis for future data mining experiments. The distributions of the microarray 

gene expression data are shown in Figure 3.6. The values less than zero represent 

underexpression from the norm and the values above zero represent overexpression. As 
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shown, the overall distribution and the distribution for individual cell lines are very 

similar. Based on these distributions, for our work we decided to consider values less 

than or equal to -1.0 and greater than or equal to 1.0 to indicate under or overexpression, 

respectively. 

 

 
Figure 3.6. Distribution of the microarray gene expression data across all the 60 cell lines 

(left) and for five randomly selected cell lines (right). 

 

3.3.4 Predicting Missing Activity Values 

In order to test whether it might be possible to estimate the missing data points 

using computational prediction, we applied a machine learning tool, WEKA,
39

 on the 

2696 compounds which have values for all 60 cell lines. We did two prediction 

experiments using various methods: first using only 166 known attributes to predict one 

attribute (the 166 fingerprint is known and the cell line information is unknown); second 

a leave-one-out approach, using 255 known attributes to predict one attribute (the 166 

fingerprint and 59 cell line growth inhibition values as known attributes, one cell line 
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growth inhibition value as unknown). Tables 3.1 and 3.2 show the accuracy of the 

prediction using various methods (ADTree and REPTree, two decision tree methods; 

RIDOR, a rule-based method; AODE and BayesNet, two Bayesian methods; and VFI, a 

voting feature interval classifier). The columns show the true and false positive rates, 

precision, and activity class for each of the methods. Clearly the accuracy is poor when 

only fingerprint bits are used, but is much improved when other cell line data are 

included. We may therefore assume that activity in one cell line is related to activity in 

others. While we would have liked to use this method to predict missing values, we are 

not confident that the set is complete enough to warrant it: 90% of the compounds miss 

some cell line data and only 10% of compounds are missing only one cell line data. 

Table 3.1 Accuracy of the prediction using only fingerprint information 

methods TP_Rate FP_Rate Precision Class 

ADTree 0.087 0.047 0.434 0 

  0.953 0.913 0.713 1 

REPTree 0.192 0.098 0.451 0 

  0.902 0.808 0.727 1 

Ridor 0.029 0.008 0.59 0 

  0.992 0.971 0.709 1 

AODE 0.389 0.227 0.418 0 

  0.773 0.611 0.751 1 

BayesNet 0.436 0.303 0.376 0 

  0.697 0.564 0.747 1 

VFI 0.545 0.413 0.356 0 

  0.587 0.455 0.755 1 

 

Table 3.2 Accuracy of prediction using fingerprint and cell line information 

methods TP_Rate FP_Rate Precision Class 

ADTree 0.813 0.092 0.787 0 

  0.908 0.187 0.92 1 

REPTree 0.781 0.087 0.789 0 

  0.913 0.219 0.909 1 

Ridor 0.785 0.091 0.784 0 

  0.909 0.215 0.91 1 

AODE 0.815 0.102 0.771 0 

  0.898 0.185 0.921 1 

BayesNet 0.82 0.109 0.759 0 

  0.891 0.18 0.922 1 

VFI 0.83 0.118 0.746 0 

  0.882 0.17 0.925 1 
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3.4 Data Mining 

Having obtained some broad characterizations of the compounds and cell line 

screening results in the set, we performed several experiments to find relationships 

between 2D chemical structure and activities across the 60 cell lines. Our intention in 

these experiments was to use both statistical and predictive modeling methods to look for 

associations and relationships between chemical structure features (as encoded by the 

166-bit fingerprints) and the actual activities of the compounds in the 60 cell lines. 

Specifically, we applied a standard statistical ratio technique across all the cell lines, a 

random forest predictive modeling technique (as might be used in QSAR studies) to each 

cell line individually, and a novel rule-based SMARTS matching procedure that 

effectively generates “on-the-fly” structural descriptors related to activities. 

3.4.1 Relating Dictionary-Based Structural Keys to Cellular Screening Activities 

The activity classifications (active, inactive) and the structural key fingerprint bits 

described previously were used to determine which structural features were either more 

prevalent or scarce in active compounds compared with inactives. Two ratios, the active-

structural ratio and overall-structural ratio, were created. The active structural ratio Ra,j 

for a structural feature j is defined as 

 𝑅𝑎,𝑗 =  
𝑇𝑎 ,𝑗

𝐶𝑎
 (1) 

where Ta,j is the total number of compounds with the feature j, and Ca is the set of active 

compounds. The overall-structure ratio Rj is defined as 

 𝑅𝑗 =  
𝑇𝑗

 𝐶 
 (2) 

where Tj is the total number of compounds with a structural feature j, and C is the 

complete set of compounds. We may then calculate the difference between these values, 
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which provides a statistical value for how much more prevalent or absent a feature j is in 

the active compounds compared with the feature in all compounds: 

 

 diff𝑗 =  𝑅𝑗 − 𝑅𝑎,𝑗  (3) 

 

Figure 3.7 plots the difference between the active ratio and the overall ratio for each of 

the 166 keys. A positive value indicates the greater percentage of this feature appearing 

in the active cells. Alternatively, a negative value indicates the lack of the feature in the 

active compounds compared with all compounds. Each feature was evaluated across all 

60 cell lines, and thus each bar on the x-axis of the chart (each structural attribute) is 

based on 60 y-values. The effects of the substructure on the compounds‟ activities are 

very consistent as shown in the figure. Nearly all 60 cell lines follow the same track. 

Thus, we can use the average difference of the active ratio and the overall ratio to find the 

most important substructures in determining the “global” activity and inactivity. We may 

consider the features associated with global activity to be indicative of promiscuity (i.e., 

the tendency to bind to anything) and those associated with inactivity to be ones that tend 

to stop binding to tumor growth related proteins in a variety of situations. We found that 

the bits 105, 127, 145, 152, and 99 are the most important bits for activity and the bits 

117, 110, 92, 77, and 95 are the most significant bits for inactivity. The Daylight 

SMARTS strings
40

 and reasonable interpretations of those significant bits are shown in 

Table 3.3. In interpreting these results, it should be noted that approximately 5% of the 

structural keys differ only in the number of features present in the molecule, and some 

that almost never occur in biological molecules. 
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Figure 3.7 Difference in active structural ratio and overall structural ratio. Each of the 

166 structural attributes is represented across the x-axis with the 60 cell lines displayed in 

various points. The central line shows the mean difference in active structural ratio and 

overall structural ratio. 

 

Table 3.3 SMARTS and interpretation for the bits associated with global activity and 

inactivity 

SMARTS bit Interpretation 

Significant Features for Activity 

*@*(@*)@* 105 multiple ring system 

*@*!@[#8].*@*!@[#8] 127 >1 aliphatic oxygen joined to a ring 

* 1 * * * * *1.* 1 * * * * *1 145 >1 6-membered rings 

[#8] [#6]( [#6]) [#6] 152 tertiary carbon with 2 carbons and 1 oxygen attached 

C=C 99 double-bonded carbons 

[CH3].[CH3] 149 >1 methyl group 

[CH3].[CH3].[CH3] 141 >2 methyl groups 

[CH3] * * [CH2] * 116 methyl 3 bonds away from a chain carbon 

[CH3] * [CH2] * 115 methyl 2 bonds away from a chain carbon 

[#7] [#8] 71 NO 

Significant Features for Inactivity 

[#7] * [#8] 117 nitrogen one bond away from an oxygen 

[#7] [#6] [#8] 110 N−C−O 

[#8] [#6]( [#7]) [#6] 92 OC(N)C 

[#7] * [#7] 77 two nitrogens separated by one bond 

[#7] * * [#8] 95 nitrogen two bonds away from an oxygen 

[!#6] *( [!#6]) [!#6] 106 heteroatom bonded to atom with 2 branched heteroatoms 

[#16] 88 sulfur 

[#16] *( *) * 81 sulfur off a branched system 

[!#6] [#7] 94 heteroatom bonded to a nitrogen 

[#7] [#6]( [#6]) [#7] 38 NC(C)N 
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We may deduce from this that compounds with multiple ring systems, particularly 

involving oxygens and methyl groups, tend to be associated with activity, and close non-

amide formations of nitrogens and oxygens as well as sulfur-containing compounds tend 

to not be active. This is borne out by looking at compounds which are active or inactive 

in all cell lines: a few examples are given in Figure 3.8. 

 

 
Figure 3.8 Example compounds which are active in all cell lines (top row) or inactive in 

all cell lines (bottom row). Depictions were generated by the Molinspiration package, 

www.molinspiration.com. Features identified in Figure 3.3 are highlighted. 

 

3.4.2 Predictive Models of Activity 

As shown in the last section, some structure features are highly correlated with 

activity or inactivity across the cell lines. We next performed experiments to see if it 

would be possible to build a predictive machine-learning model that can predict 

individual activity in each of the 60 cell lines. Our previous study with WEKA shows the 

AD-Tree and Ridor methods work best of the models available in that package. As an 

example, we initially applied those two methods on various feature subsets using cell line 

60 (UO-31). The features are selected based on the rank of active and inactive features 
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across all 60 cell lines and the rank of activity and inactivity features on cell line 60. For 

example, 20 features contain the top 10 active features and top 10 inactive features. 

The results of these experiments are shown in tabular form (Table 3.4) and 

graphically (Figure 3.9). Clearly, not all 166 structural features are useful in determining 

the cell line activity. Our experiments show that the best prediction accuracy for AD-tree 

only uses 60 structural features and that the best prediction accuracy for Ridor only uses 

80 structural features if the features are chosen based on the rank cross all cell lines. By 

limiting the number of features, we can increase the prediction accuracy for the inactive 

group from 43% to 62% for AD-tree and from 51% to 71% for Ridor. The best prediction 

accuracy for AD-tree only uses 40 structural features, and the best prediction accuracy for 

Ridor only uses 80 structural features if the features are chosen based on the rank over 

cell line 60. It also shows that the feature selection helps increase the prediction accuracy. 

Interestingly, the feature selection based on cell line 60 is slightly worse than the feature 

selection based on all 60 cell lines. 

In addition to these methods, we also considered the random forest.
41

 This 

technique has become popular in the data mining community, and there are a number of 

examples of its use in the chemical informatics literature.
42-44

 The random forest is 

essentially an ensemble of decision trees and is thus an example of a bagging method.
45

 

The ensemble character of this method leads to some useful characteristics. Most 

important for our purposes is the fact that to develop a random forest model, one is not 

required to perform feature selection a priori. In addition, it can be shown that a random 

forest model does not overfit. That is, increasing the number of trees in the ensemble 
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does not lead to overfitting, and the only real disadvantage is the increase in memory 

consumption. 

Table 3.4 Accuracy of the prediction based on various structure features 

  based on the rank cross all cell lines based on the rank over cell line 60 

  AD-Tree Ridor AD-Tree Ridor 

features inactive active inactive active inactive active inactive active 

10 0.35 0.71 0.24 0.70 0.22 0.71 0.33 0.71 

20 0.48 0.71 0.46 0.71 0.47 0.71 0.52 0.71 

40 0.60 0.72 0.54 0.71 0.61 0.72 0.48 0.71 

60 0.62 0.72 0.56 0.71 0.58 0.72 0.61 0.71 

80 0.51 0.71 0.71 0.71 0.33 0.71 0.62 0.72 

100 0.44 0.72 0.64 0.71 0.46 0.75 0.62 0.72 

120 0.41 0.71 0.63 0.71 0.46 0.75 0.62 0.72 

140 0.46 0.72 0.61 0.71 0.49 0.74 0.61 0.72 

166 0.43 0.71 0.59 0.71 0.43 0.71 0.59 0.71 

 

 
Figure 3.9 Accuracy of the prediction based on various structural features: (a) structural 

features are ranked across all cell lines and (b) structure features are ranked over cell line 

60. 
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We developed 60 random forest models, one for each cell line, using the random 

forest package available in R.
46

 We considered the 166-bit fingerprints previously 

described for the input features. For general usage the default settings for the method lead 

to good results. The main parameter of interest is the number of trees in the ensemble. As 

noted above, a higher number of trees do not lead to overfitting. However the default 

value of 500 trees led to excessive memory consumption when we built all 60 models. 

We investigated a number of values for this parameter and settled on 250 trees. The 

models were developed on a machine equipped with a 3.2 GHz dual core Xenon CPU 

and 2 GB RAM running Fedora Core 5. On average, the development of a single model 

took 16.5 min. Since we had a dual core CPU, we processed two cell lines at a time, thus 

leading to a total run time of 8 h to develop all 60 models. Note that the speed of this 

process could easily be increased by utilizing one of the many parallel execution 

packages available for R (such as snow) and a cluster of machines. Alternatives to the 

random forest could also be considered. Since we are mainly interested in pure predictive 

ability (as opposed to developing a model of the underlying distribution) one possible 

approach would be to consider a k-nearest neighbor classification. Though simplistic in 

nature, this method would be relatively fast, though for larger data sets this may not be 

such an advantage unless appropriate nearest neighbor detection algorithms were 

employed. The downside to this and other methods is that some sort of feature selection 

would need to be performed prior to the prediction step. 

As has been noted above, the data sets for each cell line represent an unbalanced 

classification problem, with the actives being the minor class. As can be seen from Table 

3.4, this leads to very poor predictive performance, since new observations will tend to be 
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classified as inactive, by default. To alleviate this problem in our random forest models, 

we specified that for each tree in the ensemble the algorithm should consider all the 

actives as well as a set of randomly selected inactives in the ratio of 1.0:0.6. Thus each 

tree in the ensemble would not see the highly unbalanced data set but would in fact see a 

subset that was enriched by the actives. By including a smaller number of inactives, one 

can effectively force each individual tree to exhibit a high predictive accuracy for the 

minor (active) class. It is clear that this is simply the reverse of the current situation, 

where we have very good predictive accuracy for the major (inactives) class. As a result, 

we experimented with a variety of ratios until we obtained a ratio, where the predictive 

accuracy for the minor and major classes were approximately equal. We realize that this 

approach does lead to a model biased in favor of the actives. We believe that this is 

justified since our aim is to try and avoid false negatives. Thus by biasing toward the 

active class, we not only improve the true positive rate but also increase the false positive 

rate at the expense of the false negative rate. Finally, for each cell line we considered 

only those observations that had measured values of growth inhibition and split the data 

sets, such that 70% was placed in a training set and 30% in a test set. 

The plots in Figure 3.10 summarize the predictive accuracy for the 60 models that 

were developed using the above approach. We consider the predictive accuracy in three 

ways: Box A represents the range of percentage correct prediction for the test set overall, 

across the 60 cell lines. For this case we utilized the g-mean measure of accuracy 

described by Kubat et al.
47

 which takes into account the unbalanced nature of the test set. 

The worst model exhibited a 67% correct accuracy, while the best model exhibited close 

to 77% correct. Box B represents the percent correct prediction for the actives, across all 
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60 cell lines. It is clear that the variation in the accuracies for the 60 models is much 

smaller when the actives are considered in isolation. This is not surprising, since by 

construction the models are expected to fare better on the actives. Thus we see that the 

accuracies range from 74% to 79% correct. In contrast, Box C represents the percent 

correct prediction for the inactive class over the 60 cell lines. It is clear that the spread of 

accuracy is much more than for the actives, and once again this is a result of our model 

construction. As we noted above, our focus is on identifying actives, thus we accept a 

slightly poorer performance on the inactive class. 

 

 
Figure 3.10 A box and whisker summary of the prediction accuracy for the 60 random 

forest models developed for the NCI DTP cell lines. Box A is the percent correct 

accuracy for the overall test set, box B is that for the actives, and Box C is that for the 

inactives. In each case, the whiskers extend to the extremes of the observed accuracy over 

the 60 cell lines. 

 

The models have been deployed in our Web service infrastructure,
48

 allowing 

access to predictions from any client that supports SOAP. As an example we have 
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provided a Web page client that allows one to supply a set of SMILES and obtain the 

predicted activity class for all 60 cell lines. In addition, the probability associated with 

each classification is also provided. Thus, values greater than 0.5 indicate an increasingly 

higher probability of being predicted active and correspondingly for values lower than 

0.5. The Web page can be accessed at http://www.chembiogrid.org/cheminfo/ncidtp/dtp. 

3.4.3 Relating Freely Generated SMARTS Structures to Cellular Screening 

Activities 

Our previous experiments used a constrained dictionary of 166 SMARTS 

fragments. We were also interested in applying a free-form approach that has been 

developed at the University of Michigan in which a larger number of SMARTS-based 

fragment keys are generated. A brute force method of lengthening and scoring SMARTS 

strings was applied in order to establish SMARTS strings up to seven atoms long that 

have a strong tendency to identify active and inactive compounds across the cell lines. 

For this experiment we used an updated version of the NCI/DTP 60 cancer cell line data 

set obtained through PubChem. A MOE database was created for the 42888 compounds 

that had both structural and growth inhibition data in order to perform iterative scoring 

based SMARTS structural similarity searches. This method tracks active and inactive hits 

for a set of SMARTS strings across the entire data set. SMARTS strings are then scored, 

evaluated, ranked, pruned, and extended for subsequent searches. 

Scoring is determined by the ratio of active compounds identified by a SMARTS 

string divided by the number of inactive compounds identified by the same SMARTS 

string. With this method, scores will range from 0 to ∞. The ratio of active to inactive 

compounds in the NCI/DTP data set is 7274 to 35664. If we took a random sampling of 
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the data set we would expect to find one active compound to every five inactive 

compounds selected. Therefore, the ratio of significance is 1:5 or 0.2. Here we will 

consider SMARTS strings that demonstrate a tenfold improvement in active or inactive 

hits as significant. That is, the score of significance for SMARTS strings identifying 

active compounds is greater than or equal to 2.0 and less than or equal to 0.02 for inactive 

compounds. Weight can further be given to SMARTS stings, which have a high number 

of total hits. For example, if SMARTS string A has a score of 5.0 with a total of six hits, 

five active and one inactive, it is not as significant as SMARTS string B with a score of 

5.0 with 240 total hits, 200 active and 40 inactive. In this case SMARTS string A may 

likely be an artifact of the data set. 

Adjusting the scores of significance with the ratio of significance allows one to 

deal with an unbalanced data set with an even greater skew than the NCI/DTP data set. If 

the active:inactive ratio of significance were much smaller, for example 1:100 or 0.01, 

the score of significance for an inactive substance would be taken to be greater than or 

equal to 0.1. Furthermore, with this strong bias in the data set toward inactives, we would 

expect that there would be fewer SMARTS strings associated with active substances and 

more associated with the inactives. 

The specific algorithm applied for identifying and lengthening SMARTS strings 

incorporates three pruning rules at various stages to eliminate redundancies, to improve 

computational efficiency, and to eliminate artifacts. The workflow of our algorithm is 

depicted in Figure 3.11. This procedure was performed on a Dell Precision 380 

workstation with 3 gHz CPU with 1 GB RAM. Runtimes for each iteration of the 

algorithm were based on the size of the SMARTS string set and ranged from to 2 min to 
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11 h, for sets on the order of 100 and 20000, respectively. The details of the steps 

performed are as follows: 

 

 
Figure 3.11 Algorithm workflow. 

 

1. Select Initial SMARTS Strings. 

For the sake of generality, elements 2–105 of the periodic table were 

selected as single atom SMARTS strings. Hydrogen was not included in 

this SMARTS string set, as SMILES strings and the molecular 

connectivity tables provided typically suppress hydrogen atoms. 

2. Search & Score 

A substructure search was performed against the NCI/DTP data set using 

the SMARTS string set. Scores were tabulated, and a bit string hit profile 

was maintained for each individual SMARTS string across all 42888 
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compounds. A bit string hit profile consists of a string of 42888 1‟s and 

0‟s, where 1 means that the SMARTS string is found within the 

compound, and 0 means that the SMARTS string could not be found 

within the compound. 

3. Record incremental SMARTS String Results. 

If SMARTS Strings contain seven atoms and no general bond types, then 

terminate the algorithm. 

4. Apply Pruning Rule 1 to eliminate redundancies. 

Maintain only one SMARTS string child per unique bit string hit profile. 

The lengthening of SMARTS strings is a tree process leading to the 

exponential generation of child SMARTS strings. Bit string profiles are 

used in order to limit branching as they serve to identify all duplicate 

SMARTS strings as well as SMARTS strings that do not hit any 

compounds. Pruning will improve the efficiency of subsequent 

substructural searches. 

5. Apply Pruning Rule 2 to improve computational efficiency. 

If the number of SMARTS string children exceeds 24000, then drop all 

parent SMARTS strings having scores in the range [0.2/X and 0.2*X]. 

Starting with X = 1.5, increase X in increments of 0.1 until the number of 

SMARTS string children is less than or equal to 24000. 

6. Check Bonds to select rules for generating child SMARTS strings. 

a. Vary Bond: If the parent SMARTS strings contain general bonds, then 

generate all possible SMARTS string children by varying the bond 



114 

 

type. For SMARTS strings with fewer than five atoms all six specific 

bond types were used. For SMARTS strings with five atoms or more, 

the triple bond was disregarded. See Table 3.5 for a description of the 

bond types. 

b. Lengthen: If the parent SMARTS strings do not contain any general 

bonds (~), then generate all possible SMARTS string children by 

joining a single atom to all the potential locations on the SMARTS 

strings with a general bond. For SMARTS strings with fewer than five 

atoms, the following atoms were appended to the parent SMARTS 

string: B, C, N, O, Si, P, S, F, Cl, Br, and I. These elements were 

selected, as they are among the most common in the PubChem 

compound data set. Table 3.6 shows the 14 most common single atom 

SMARTS strings found in the NCI/DTP data set based on the number 

of compounds identified. Na, Sn, and Pt were not included because our 

SMARTS strings only consider covalently bound atoms. For SMARTS 

strings with five or more atoms, C, O, N, P, and S were appended to the 

parent SMARTS strings. We limit the number of atoms based on the 

most common nonmetals in order to keep the number of children 

SMART strings in check. Using common elements allows generation of 

SMARTS string children that will hit compounds in the data set. 

7. Apply Pruning Rule 3 to eliminate artifacts and improve computational 

efficiency. 
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For SMARTS strings with fewer than five atoms, drop all children 

SMARTS strings with less than 20 total hits. For SMARTS strings having 

scores with five atoms or more, drop all children SMARTS strings with 

fewer than 100 total hits. 

8. Go to Step 2. 

Table 3.5 Smarts bond types 
 general bond, any possible bond 

-!@ single bond, not part of a ring 

=!@ double bond, not part of a ring 

# triple bond 

-@!: single ring bond, not aromatic 

=@!: double ring bond, not aromatic 

: aromatic bond 

 

Table 3.6 Most common single atom SMARTS strings in the NCI/DTP data set 

SMARTS strings element 42888 compounds score 

[#6] C 42 845 0.2044 

[#8] O 38 674 0.1965 

[#7] N 34 992 0.1967 

[#16] S 11 969 0.1555 

[#17] Cl 8483 0.2772 

[#9] F 2557 0.2246 

[#35] Br 1832 0.2820 

[#15] P 1305 0.1929 

[#53] I 617 0.2390 

[#14] Si 349 0.2246 

[#11] Na 302 0.0942 

[#50] Sn 198 2.1936 

[#78] Pt 189 0.4427 

[#5] B 136 0.1525 

 

Table 3.7 describes the overall results generated by our algorithm. It includes the 

data for SMARTS strings with modifications to all possible positions at which atoms may 

be added, subject to pruning as noted within the algorithm. Table 3.8 gives examples of 

the most selective SMARTS. 
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Table 3.7 Description of results
a
 

no. of 

SMARTS 

atoms 

SMARTS 

(possible) 

SMARTS 

(used) 

SMARTS 

(hits) 

Active 

(only) 

Active 

(mostly) 

Inactive 

(only) 

Inactive 

(mostly) 
Score Range 

Data Set 

Covered 

1 105 104 67 1(0) 4(3) 13(3) 0(0) 0.0313−6.25 42888 

2 6930 690 133 4(0) 11(7) 16(1) 1(1) 0.0127−23.0 42876 

3 914760 2094 540 13(1) 26(21) 88(12) 3(3) 0.0132−23.0 42871 

4 1.81E+08 10 248 2470 45(1) 73(49) 481(89) 12(12) 0.0127−31.0 42862 

5 4.78E+10 22 584 18815 52(1) 48(19) 1232(318) 36(36) 0.00873−20.0 42752 

6 5.98E+12 8150 8146 31(1) 66(55) 877(264) 83(83) 0.00532−12.5 31762 

7 8.97E+14 17 155 6470 161(1) 304(204) 1814(359) 121(121) 0.00532−18.0 21253 
a
 SMARTS (possible) is the total number of possible SMARTS strings. SMARTS (used) represents the set 

of SMARTS strings used in each iterative search after pruning. SMARTS (hits) is the number of SMARTS 

strings with unique bit string profiles. Active/Inactive (only) represent SMARTS strings identifying 

compounds that are only active and inactive, respectively. Active/Inactive (cutoff) represent SMARTS 

scoring >2.0 and <0.02, respectively. Integers within parentheses () indicate the number of significant 

SMARTS that have a minimum of 10 active or inactive hits. Score Range is minimum − maximum score. 

Data Set Covered is the number of compounds hit out of 42888. The significant drop in Data Set Covered 

for the last two rows resulted from Pruning Rule 2. 

 

Table 3.8 Some of the most significant SMARTS strings 

Order SMARTS TotalHits Score  

Active (only) 

[#90] 1 

 

[#8]-!@[#25] 3 

[#6]-@!:[#6]-!@[#50] 16 

[#6]-@!:[#6]-!@[#50]-!@[#6] 13 

[#8]:[#6]-!@[#7]-!@[#7]=!@[#6] 10 

[#6]:[#6]-@!:[#6](=@!:[#7])-@!:[#6]:[#6] 13 

[#7]-!@[#6]:[#6]-@!:[#6](=!@[#7])-@!:[#6]:[#6] 12 

Active (mostly) 

[#79] 29 6.25 

[#15]-!@[#79] 24 23.0 

[#6]-!@[#15]-!@[#79] 24 23.0 

[#7]-@!:[#6]-@!:[#16]-@!:[#29] 32 31.0 

[#6]-@!:[#6]:[#6]-!@[#6]=!@[#7] 21 20.0 

[#6]:[#6]-@!:[#6]-!@[#8]-!@[#6]-@!:[#8] 81 12.5 

[#6]-!@[#8]-!@[#6]-@!:[#6]:[#6]:[#6]-@!:[#6] 80 15.0 

Active (mostly) 

[#16]-@!:[#8] 80 0.0127 

[#7]:[#16]:[#6] 77 0.0132 

[#6]-@!:[#7]-!@[#7]-@!:[#6] 80 0.0127 

[#8]=!@[#6]-!@[#6]-!@[#6]=!@[#7] 231 0.00873 

[#8]=!@[#6]-!@[#6]-!@[#6]=!@[#7]-!@[#7] 190 0.00529 

[#8]=!@[#6]-!@[#6]-!@[#6](=!@[#7]-!@[#7])-!@[#6] 189 0.00532 

Inactive (only) 

[#12] 14 

0 

[#7]-!@[#27] 46 

[#7]=!@[#6]-!@[#5] 29 

[#7]=!@[#6]-!@[#7]=!@[#7] 75 

[#6]=!@[#6]-@!:[#7]-@!:[#6]-@!:[#7] 147 

[#7]:[#6](:[#6]-!@[#6]-!@[#6])-!@[#8] 200 

[#6]:[#7]:[#6](-!@[#6]-!@[#6]):[#6]-!@[#8] 178 
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We then tested the SMARTS strings from the 166-bit fingerprints with the scoring 

system from this method. Based on the ratio of significance, the individual SMARTS 

strings for identifying the active and inactive compounds showed minimal increase and 

decrease in relative score. We identified all compounds that contained all active motifs 

and inactive motifs, respectively. When considering collections of low and high scoring 

motifs in a Boolean AND operation, a 2–4-fold respective increase in selectivity was 

identified. Furthermore, it was found that when combining more than five MACCS 

SMARTS strings the score minimally increased or decreased; however, the total number 

of hits significantly decreased. See Table 3.9 for details. We then tabulated the Boolean 

OR incorporating all active and inactive SMARTS strings from the MACCS example. 

Almost all compounds were selected, and the score of significance for both active and 

inactive sets was ~0.2. 
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Table 3.9 Scoring selective MACCS SMARTS strings 

Type MACCS SMARTS String no of. Active Hits no. of Inactive Hits Score 

Active *@*(@*)@* 5102 19 855 0.2570 

Active *@*!@[#8].*@*!@[#8] 3192 10 256 0.3112 

Active * 1 * * * * *1.* 1 * * * * *1 5589 24 358 0.2295 

Active [#8] [#6]( [#6]) [#6] 4836 19 565 0.2472 

Active C=C 3275 12 144 0.2697 

Active [CH3].[CH3] 3853 15 978 0.2411 

Active [CH3].[CH3].[CH3] 2470 9006 0.2743 

Active [CH3] * * [CH2] * 2099 7013 0.2993 

Active [CH3] * [CH2] * 1921 5691 0.3376 

Active [#7] [#8] 804 4296 0.1872 

Active Boolean AND (5 highest scoring Active) 440 1034 0.7407 

Active Boolean AND (All Active) 9 21 0.7500 

Active Boolean OR (All Active) 7246 35 104 0.2064 

Inactive [#7] * [#8] 2595 17 823 0.1456 

Inactive [#7] [#6] [#8] 2383 16 376 0.1455 

Inactive [#8] [#6]( [#7]) [#6] 2123 14 314 0.1483 

Inactive [#7] * [#7] 2039 13 063 0.1561 

Inactive [#7] * * [#8] 2407 14 617 0.1647 

Inactive [!#6] *( [!#6]) [!#6] 2121 13 468 0.1573 

Inactive [#16] 1611 10 358 0.1555 

Inactive [#16] *( *) * 1458 9636 0.1513 

Inactive [!#6] [#7] 2261 12 817 0.1764 

Inactive [#7] [#6]( [#6]) [#7] 944 6456 0.1462 

Inactive Boolean AND (5 lowest scoring Active) 81 927 0.08738 

Inactive Boolean AND (All Active) 32 272 0.1176 

Inactive Boolean OR (All Active) 5275 28 573 0.1846 

 

We took the Boolean OR for the four sets of SMARTS from this example. As our 

sets of SMARTS strings were tailored to the NCI60, we expected and confirmed that they 

outperform the MACCS fingerprints. As one would expect the Active(only) and 

Inactive(only) sets had scores of ∞ and 0, respectively. The Inactive(mostly) set hit a total 

of 165 active compounds and 9372 inactive compounds, yielding a score of 0.01761. The 

Active(mostly) set hit a total of 2999 active compounds and 9949 inactive compounds, 

respectively, yielding a score of 0.3014. It appears that the Inactive(mostly) set has been 

better tailored to identifying inactive compounds due to the low threshold score of 0.02 

for each SMARTS string. From this, it can be inferred that there was very little overlap of 

inactive and active compounds identified. However in the case of the Active(mostly) set, 

there was obviously considerable overlap. Suppose SMARTS string A identifies two 
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active compounds and one inactive compound, while SMARTS string B identifies the 

same two active compounds, it identifies a different inactive compound. If we were to use 

Boolean OR, tabulating a new score when both SMARTS A and B were used together, 

the new score would be equal to 1.0 as two active compounds are identified by both 

SMARTS and two inactive compounds are identified, one by SMARTS string A and the 

other by SMARTS string B. Therefore, due to the low threshold score required for the 

Active(mostly) SMARTS strings, we cannot group their properties with the Boolean OR 

and expect significant active hit enrichment, but rather they must be used discretely in 

order to maintain scores greater than or equal to 2.0. At this juncture, it would be wise to 

identify the Active(mostly) SMARTS strings with overlapping active and inactive 

compounds. Further pruning needs to be performed on the SMARTS strings sharing the 

same set of active compounds in order to obtain the most orthogonal set. This can be 

accomplished by maintaining only one SMARTS string identifying a specific set of 

active compounds and dropping all SMARTS strings identifying equal sized or larger sets 

of different inactive compounds. 

Finally, the most significant SMARTS strings can be used to create molecular 

fingerprints to give a general prediction regarding the activity of compounds yet to be 

assayed. This method may be further complemented by addressing the activity profiles of 

compounds identified by multiple selective SMARTS strings. Also one might consider 

creating profiles for each of the individual 60 cancer cell line assays and weighting the 

SMARTS strings based on the growth inhibition value, rather than the binary 

interpretation used in this method with „1‟ representing an active hit and „0‟ an inactive 

hit in order to give a more quantitative growth inhibition predictions. 
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3.5 Conclusions and Future Directions 

In this work, we have conducted broad characterizations of the compounds, 

biological activities, and gene expression values in the NIH DTP Tumor cell line data set. 

We have shown that compounds active or inactive across the 60 cell lines tend to have 

structural features in common. We have also demonstrated that a Random Forest model 

can be used to predict the activity profiles of unknown compounds across the cell lines 

reasonably well. Finally, we show that a novel SMARTS-based algorithm can be used to 

give finer resolution structure-activity correlations than a constrained dictionary-based 

fingerprint. 

We are currently in the process of extending our data mining to include the gene 

expression information, in particular finding features that tend to be associated with 

activity or inactivity in subgroups of the cell lines which share particular gene expression 

profiles. We also wish to extend our random forest models to include information from 

other cell lines in our prediction of individual cell line activities. 

This work was published in the Journal of Chemical and Information Modeling, 

reference Wang, H.; Klinginsmith, J.; Dong, X.; Lee, A. C.; Guha, R.; Wu, Y.; Crippen, 

G. M.; Wild, D. J. Chemical Data Mining of the NCI Human Tumor Cell Line Database 

J. Chem. Inf. Model. 2007, 47, 2063-2076. This work was a collaborative effort between 

the Indiana University School of Informatics and Chemical Informatics and 

Cyberinfrastructure Collaboratory and the University of Michigan‟s School of Pharmacy. 
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Chapter 4 

Data Mining the NCI60 to Predict Generalized Cytotoxicity 

4.1 Introduction 

Elimination of cytotoxic compounds in the early and later stages of drug 

discovery can help reduce the costs of research and development. Through the 

application of principal components analysis (PCA), we were able to data mine and prove 

that ~89% of the total log GI50 variance is due to the non-specific cytotoxic nature of 

substances. Furthermore, PCA led to the identification of groups of structurally unrelated 

substances showing very specific toxicity profiles, such as a set of 45 substances toxic 

only to the Leukemia_SR cancer cell line. In an effort to predict non-specific cytotoxicity 

based on the mean log GI50, we created a decision tree using MACCS keys that can 

correctly classify over 83% of the substances as cytotoxic/non-cytotoxic in silico, based 

on the cutoff of mean log GI50 = −5.0. Finally, we have established a linear model using 

least squares in which 9 of the 59 available NCI60 cancer cell lines can be used to predict 

the mean log GI50. The model has R
2
=0.99 and root mean square deviation between the 

observed and calculated mean log GI50 (RMSE) = 0.09. Our predictive models can be 

applied to flag generally cytotoxic molecules in virtual and real chemical libraries, thus 

saving time and effort. 

With the advent of high throughput screening (HTS), mountains of biological 

screening data have been produced and continue to accumulate. In fact, as of 2002, ~14%
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of research and development in the pharmaceutical industry is spent on biological 

screening.
1
 In 2003 approximately one-third of the capital lost on all drug failures, $8 

billion, was due to the inability to accurately predict toxicity during the early stages of 

drug development.
2
 As it relates to the investigation of cytotoxicity and growth inhibition 

studies, numerous quantitative endpoints have been used including: protein analysis, 

enzyme release, exclusion or inclusion of dyes or radioactive markers, and metabolic 

alterations such as oxygen consumption, and ATP levels. As pharmacokinetics and 

toxicity (ADMET) are now a consideration in the early stages of drug development, 

many recent efforts have been made by both academia and industry to address the 

prediction of specific and general cytotoxicity. Methods commonly utilized to assign a 

cytotoxicity score or to classify substances as being cytotoxic/non-cytotoxic include 

neural networks, proteomic profiling, QSPR and QSAR.
3,4,5,6,7

 With a plethora of data 

sources available, it is possible to merge information from multiple HTS libraries in order 

to obtain a highly diverse set of drug-like molecules which can be used to model both 

physiochemical and biological properties. Applying in silico screens to filter out 

molecules likely to fail ADMET, especially toxicity, is fiscally necessary considering that 

it can take over a decade and close to one billion dollars to release a new and federally 

approved drug.
8
 

PubChem, the database component of the National Institutes of Health (NIH) 

Molecular Libraries Initiative (MLI), serves as a public repository of chemical and 

biological activity data generated by the Molecular Libraries Screening Center Network 

and other screening centers.
9,10,11

 PubChem is a user/depositor system, which accepts 

annotated chemical structures and related biological activity data. PubChem is broken 
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down into three main database components: Compound, Substance and BioAssay. 

PubChem Compound contains over 18 million unique chemical structures with their 

respective calculated physiochemical properties. PubChem Substance contains over 28 

million records with structural data, descriptions of chemical samples from multiple 

sources, and links to 3D protein structures as well as PubMed citations. Finally, 

biological screening results for over 800 assays are stored in PubChem BioAssay, 

including the NCI60 human tumor cancer cell line HTS.
12

 

When procuring data from multiple sources, quality and reliability are often 

issues. Although PubChem has taken some measures to ensure quality control (QC) in 

terms of referencing between compounds and substances, the quality of the structural 

data related to the bioassay data of PubChem was termed „user beware‟ because the 

structural content submitted by the depositor is accepted without review.
13

 It should be 

mentioned that PubChem has neither the resources nor the assigned responsibility to 

curate the data. Notably, if errors are identified, they may be reported to and corrected by 

the depositor. Accepting screening data from multiple sources, one might expect 

inconsistent endpoints and instrument variations leading to standardization issues and 

precision errors. 

In order to address the issues of QC and reliability, we have chosen to work with 

the NCI60 human tumor cell line anti-cancer drug screen, as it is one of the most 

recognized datasets assembled by a single organization with all assays run at the same 

location. It provides a well curated publicly available dataset of toxicity profiles for 

43899 substances assayed in vitro against nine distinct organ based classes of cancer: 

breast, colon, CNS, leukemia, lung, melanoma, ovarian, prostate and renal. Furthermore, 
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cytotoxic concentrations of substances determined in vitro have been shown to correlate 

well to lethal doses in laboratory animals and humans for a range of selected drugs and 

chemicals.
14,15

 With a rich history spanning over 20 years, 59 of the 60 cancer cell lines 

are still currently available. The NCI60 contains in vitro screening data for up to three 

IC50 endpoints: GI50, TGI and LD50, referring to the concentration of a substance in units 

of molarity or g/mL, required for 50% growth inhibition, total growth inhibition, and 

50% lethal dose, respectively. The GI50 is our measurement of choice, as the lowest 

concentrations of substances are used for the observed effect. In this paper we use only 

the log GI50 values where the concentration unit is molarity. 

In a previous work we contributed our novel method for automatically generating 

selective SMARTS strings which are able to classify cytotoxic molecules based on mean 

log GI50 cutoff of –5.0.
16

 Each substance is associated with its respective mean log GI50, 

which is the calculated mean of the available log GI50 data from the NCI60 for each 

respective substance. While the SMARTS produced work quite well as a filter, they fail 

to classify a significant portion of the NCI60. Here, we are more concerned with a robust 

model that accurately predicts mean log GI50. 

In this study, we take a closer look at the NCI60, as it refers to the existing 59 

cancer cell lines. First, we address the issues of dataset acquisition, analysis and 

completeness. Next we examine how principal component analysis (PCA) can be applied 

to large chemical datasets to extract hidden relations and attribute meaning to orthogonal 

toxicity profiles. We then apply binary decision trees for the in silico prediction of 

general cytotoxicity. Finally, we demonstrate how stepwise regression was used to 
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develop a least squares fit (LSF) model allowing data from 9 of the NCI60 cell lines to be 

used as an accurate predictor of generalized cytotoxicity across the 59 cell lines. 

4.2 Methods 

All calculations were performed using the Molecular Operating Environment 

(MOE)
17

 on a Dell Precision 380 workstation utilizing Red Hat Linux Enterprise version 

4.0. 

4.2.1 Data Gathering 

The PubChem FTP site
9 

was our preferred data source, as structural data for each 

molecule could easily be obtained through the association of the PubChem Substance and 

BioAssay databases. The entire PubChem database is available in the following file 

formats: abstract syntax notation (ASN) and extensible markup language (XML). 

PubChem Substance and Compound downloads are also available in standard data file 

(SDF) format,
18

 while Bioassay downloads are also available in comma separated value 

(CSV) format. MOE‟s built in functions were used to import and merge the required 

structural data and log GI50 profiles into a flat table for computational analysis. 

4.2.2 Data Analysis 

Understanding the landscape of a dataset is necessary in order to avoid „garbage 

in garbage out‟, especially in cases where the dataset is an incomplete matrix, as is the 

NCI60 dataset. Preliminary analysis of the toxicity profiles showed that only 88.2% of 

the assay data was complete, i.e. data were available for 88.2% of the 5943889 possible 

experimental endpoints. Approximately half of the experimental data consists of upper or 

lower threshold concentrations signifying minimal, log GI50 = –4.0 or –5.0, or maximal 

activity, log GI50 = –8.0. The remaining portion of the experimental data shows some 
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quantitative level of activity which is not threshold. Furthermore, only 4824 substances 

have been screened against the entire NCI60. The NCI60 dataset provides log GI50 data 

based on the measurements taken in one of three concentrations units: molarity (M) 

(43474 substances), g/mL (369 substances), and volumetric (48 substances). There is no 

log GI50 data for 108 substances. In order to determine the units used for the volumetric 

formats, one must contact the contributor, according to the NCBI help desk. See Figure 

4.1 for the distribution of available experimental log GI50 values in molarity across the 

different cell lines. 

 

Figure 4.1. The number of available log GI50 values for the 43474 substances with 

measurements in units of molarity was color coded according to the class of cancer cell 

lines. The cell lines within each class have been alphabetized and numbered. 

  

Figure 4.2 describes the mean log GI50 for 43474 compounds for the NCI60 using 

1000 bins with the following statistics: mean = –4.518, standard deviation = 0.7447, 

mode = –4.0, minimum = –11.74 and maximum = 4.0. Interesting features to note are the 

significant skew of the data toward –4.0, a shoulder at –5.0, and the maximum mean log 

GI50 = 4. The maximum mean log GI50 = 4.0 is an anomaly, which we assume to be a 

data entry problem where the submitter intended to instead enter –4.0. In order to 

conform to most common standard upper threshold, the mean log GI50 of all substances 
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greater than −4.0 was adjusted −4.0. Approximately 80% of all substances have mean log 

GI50 greater than −5.0 explaining the skew towards inactivity. Finally, 5782 and 413 

substances, respectively, have mean log GI50 = –4 and –5 (indicating no activity) for all 

assays against which those substances were screened. These values correspond to the 

maximal allowable concentration of a substance used for assays over a specific 

timeframe. The National Cancer Institutes Developmental Therapeutics Program 

(NCI/DTP) home page designates a link to important changes to the NCI60 cell screen, 

specifying the addition of a one-dose 59 cell assay at concentration 10
–5

 M 

(corresponding to log GI50 = –5) in an attempt “to increase substance throughput and 

reduce data turnaround time to suppliers while maintaining efficient identification of 

active compounds.” This is followed by the regular 5-dose assay used to determine the 

GI50, TGI and LD50.
 12

 For some period in the past, only the 5-dose assay was used with 

maximum recorded concentration of 10
–4

 M, corresponding to log GI50 = –4 (inactive). 

 

Figure 4.2. The mean log GI50 of the NCI60 substances is shown with a granularity of 

1000 bins. 

 

Correlation analysis between the activity data from different NCI60 screens of the 

same substances, i.e. on different cell lines, can also be applied to detect anomalies. In 

this case two of the threshold values are visualized. In Figures 4.3a and b the upper log 

GI50 threshold is apparent at –4, and a lower threshold is seen at –8. The lower threshold 
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was used for only 178 substances. In this case the threshold values are the maximum and 

minimum cutoffs in the NCI60 dose response experiments. Note, another apparent 

threshold of log GI50 = –10 can also be detected for some experiments. 

MOE‟s correlation matrix tool allowed us to select n database fields (in this case 

cancer cell lines containing log GI50 data) for which it calculates an n×n matrix of 

pairwise log GI50 correlations (R), where n  25. By selecting a specific pairwise 

correlation from the matrix, we can visualize the scatter plot between any two of the 

selected cancer cell lines. When examining the scatterplots of pairs of NCI60 log GI50 

data, very strong correlations were observed. The R
2
 ranged from 0.66 to 0.88. It is 

interesting to note that some cell lines of similar tissue type were less correlated than 

those of differing organ types as shown in Figures 4.3a and b. 

 

Figure 4.3a. Substance log GI50 correlation for 40131 data points between a non-small 

cell lung and a CNS cancer cell lines having R
2
 = 0.86. 
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Figure 4.3b. Substance log GI50 correlation for 35680 data points between two non-small 

cell lung cancer cell lines having R
2
 = 0.73. 

 

The initial analysis is performed to ensure the quality and mining potential for the 

dataset. In this case, the vast majority of the log GI50 data points occur over the range [–8, 

–4], corresponding to four orders of magnitude in concentrations. Just over 10% of the 

substances have complete toxicity profiles, 43% of the data points are at threshold values, 

and 12% of the possible data points are missing. It is encouraging to note that there are 

four orders of magnitude difference between the high and low threshold values, 

representing the difference between 0.1 mM and low 10 nM concentrations. This range is 

good for the differentiation of profiles based on activity, as required concentrations for 

drug leads are typically in the low M range. It is expected that the vast majority of 

molecules in an HTS dataset will be inactive against multiple or all targets of interest, 

however it is desirable that the distribution of activity data span several orders of 

magnitude for a large set of substances. 
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4.2.3 Imputing Missing Data 

Missing values are a problem for all data analysts. If only a few substances had 

missing values, we could simply omit them from the dataset, but in this case many 

substances have missing log GI50 observations for multiple assays. Removing these 

substances drastically reduces the dataset from 43474 to 4824 substances, which would 

diminish the predictive power of the resulting model. We implemented a common 

strategy used in linear models in order to preserve the size of the predictor subset by 

imputing the missing data, null values, with the mean log GI50 of all the screening data 

for each respective substance.
19

 

4.2.4 Data Mining with PCA 

Principal component analysis was used for two purposes. First, PCA was used for 

validation purposes to ensure that we did not inadvertently skew our matrix of toxicity 

profiles by imputing 12% of the missing assay data with the mean log GI50 for each 

respective substance. PCA was performed on a matrix of random values from [–9.0, –4.0] 

to show that the first principal components of the datasets containing experimental and 

imputed data was not due to mean centering. Also, PCA of the non-imputed dataset was 

performed using the covariance matrix derived from eq 1, such that all existing pairs of 

log GI50 values between assays were considered. The covariance matrix is a square 59×59 

matrix, where each row i and column j correspond to their respective NCI60 cancer cell 

line. Let the matrix X be defined by jkx , . Where jkx ,  is the log GI50 for substance k and 

cell line j. Then, jx  is the mean log GI50 of the substances for cell line j. Now, let k refer 

to the substances having experimental log GI50 data for assays i and j, such that ix  and 
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jx  refer to the mean log GI50 values for the substances having experimental log GI50 data 

for both assays i and j. Note, i = j is allowed in eq 1. Validation for using an imputed 

dataset can be established by showing a high correlation between the components of the 

eigenvectors responsible for the majority of log GI50 variance from the imputed and non-

imputed datasets. 

 jijk
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,
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PCA was then used to extract interesting features of the NCI60 for further 

investigations. MOE‟s PCA tool can output the importance of substance contribution to 

the principal components based on the respective log GI50 toxicity profile of X. This is 

done by first calculating the sample average vector  591 ,, xx x  and covariance matrix 

C based on the matrix of toxicity profiles for all n substances. C is diagonalized such that 

C = Q
T
DDQ, where Q, the PCA transform, is orthogonal and D is diagonal-sorted from 

top left to bottom right. There are p non-zero diagonal values in D, the square roots of the 

eigenvalues of S, corresponding to the principal components. If we take the p×n  matrix Z 

= Q(X – x), such that Z has identity covariance and zero mean, there exists a p-vector of 

the form zi = Q(xi – x), where the p components of each zi can be taken as the relative 

weights for the respective principal components corresponding to each substance. Hence, 

the zip values are weights for each substance (i) and principal component (p). The 

substances most responsible for a particular principal component‟s variance have the 

largest magnitudes of zip values. 
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4.2.5 Predictive Binary Decision Tree 

We applied two concepts in the construction of a binary decision tree. First, 

consider the „ideal‟ fingerprint where the different descriptors‟ occurrence are statistically 

independent and each descriptor evenly divides a dataset of n molecules with some 

property value, such as mean log GI50. The „ideal‟ fingerprint has length nd, where nd is 

the minimum number of descriptors to uniquely identify all n molecules in the training 

set. 

 )(log2 nceilnd   (2) 

Using this concept we have applied the MACCS keys as our base fingerprint. The 

MACCS key which most evenly divides the substances at any given node in our tree is 

given weight when making our branching decision. As our goal was to not only reduce 

the number of substances at each child node, but also to reduce the range of mean log 

GI50, a weighted accuracy factor was also included in our branching decision. Branching 

is allowed to continue as long as a MACCS key exists that can divide a node into 

children nodes, each containing no fewer than two substances. If branching cannot occur, 

the node is taken to be a leaf. Thus the trained binary tree has a MACCS key at each 

nonterminal node, and a prediction value at each leaf equal to the average of the mean log 

GI50‟s of the training set substances at each respective leaf node. Eqs 3-8 describe how 

decisions are made at each node. 

hk and ĥk are binary vectors with length equal to the number of substances m at a 

node with hk representing the hit profile and ĥk the inverse hit profile with respect to 

MACCS key k. kh  and kh


 are the sum totals of the hits and misses for the respective 

profiles. See eqs 3-5. 
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Eq 6 defines the idealness score, S1,k, for MACCS key k where 0.5 ≤ S1,k ≤ 1.0. A 

value of 0.5 indicates that the substances at a particular node are evenly divided into 

children nodes, whereas a score of 1.0 indicates that one child node contains all of the 

substances and the other contains none.  
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Eq 7 defines the accuracy score S2,k, for MACCS key k where 0 < S2,k ≤ 1. kr  and 

kr̂  are the log GI50 ranges at the two child nodes for MACCS key k. Values less than 1.0 

represent child nodes with smaller log GI50 ranges than the parent node. Values closer to 

zero reflect child nodes with more narrow log GI50 ranges. 
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Eqs 6 and 7 have been normalized such that the lower values of the scores are 

desirable. Eq 8 describes how the final decision is made at each node and considers the 

ability of a particular MACCS key to evenly split the substances and at the same time 

minimize the log GI50 range of the children nodes. Weighting factors for S1,k and S2,k were 

systematically determined by spawning several decision trees and varying the weights. 

The final weighting scheme was the one resulting in the highest fit R
2
 based on 
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correlating the mean of all log GI50 values of the leaf and experimental log GI50 values 

from our training set. 

 ]0.5[min ,2,1 kk
k

SSS   (8) 

Substances were randomly divided into ten subsets of nearly equal size. The 

predictive binary decision tree was trained on 90% of the substances and validated on the 

remaining 10% in an attempt to maximize two relevant metrics: R
2
 and the binning of 

cytotoxic (mean log GI50 < −5.0) and non-cytotoxic (mean log GI50 > −5.0) substances. 

Cross validation was performed on different training and test sets based on the random 

classification of the substances. A final validation was performed to ensure that the 

predictive nature of this procedure was not an artifact by randomly assigning the mean 

log GI50 values to different substances within the training set and then rebuilding the 

decision tree. There was essentially no log GI50 correlation (R
2 

< 0.02) between the 

predicted values for training set and these randomly assigned values. 

4.2.6 Prediction using Least Squares Fit 

A more accurate prediction model was devised by randomly dividing the 4284 

substances having complete toxicity profiles into equal sized training and test sets. The 

experimental log GI50 values for each cell line were then correlated to the mean log GI50. 

Starting with the cell line whose log GI50 values have the highest R
2

 with the mean log 

GI50 values, we applied forward stepwise linear regression with the constraint that no 

more than one cell line from each class can be used. The final model was validated on the 

test set. A second validation was performed using the remaining 38650 substances with 

incomplete toxicity profiles. 
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4.3 Results and Discussion 

We chose to adopt this strategy of imputing missing data with mean values to 

maintain the largest possible set of substances for mining. In order to validate that 

imputing the mean log GI50 did not inadvertently skew the overall dataset, PCA was 

performed on four different datasets: the complete set of 4824 substances having 

complete toxicity profiles, the imputed set consisting of all 43474 substances with the 

imputed mean log GI50 for the missing values respective to each substance, the 

nonimputed dataset consisting of all 43474 substances with missing values, and a random 

dataset modeled after the complete set having 4824 entries each with 59 random data 

points ranging from [–9, –4]. Figure 4.4 compares the first four principal components, 

accounting for over 92% of the log GI50 variance for all datasets. There is extremely good 

correlation between the components of the eigenvectors for these principal components 

relating to all datasets except for the one with randomly assigned data. As expected, the 

correlation of principal components between the datasets continues to degrade when 

examining the lower order components. Since the components of the eigenvectors are 

strongly correlated, we can assume that the imputed mean values did not severely impair 

the quality of the dataset. A similar analysis, comparing the principal components of the 

set of substances having complete toxicity profiles and those having greater than or equal 

to 90% complete toxicity profiles, showed an even closer fit to the non-imputed dataset 

depicted in Figure 4.4 than any of the other datasets. 
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Figure 4.4. The x-axis represents the 59 cancer cell line assays and has been color coded 

and organized as described in Figure 4.1. The y-axis represents the components of the 

eigenvectors for each respective principal component. ( ) represents random toxicity 

profiles for 4824 entries, each cell within the range [–4, –9], plotted only for PC1; ( ) 

are from the 4824 substances having complete profiles; ( ) are from the 43474 

substances using imputed data for missing values; ( ) are from the 43474 substance 

ignoring missing values. 

 

It was interesting to note that PC1 accounts for over 89% of the log GI50 variance 

for all the datasets with real experimental values, while PC1 for the dataset having 

randomly generated log GI50 values only accounted for 2% of the variance. Aside from 

the random dataset, all the components of the eigenvector for PC1 were found to be 

approximately equal in magnitude (even more so in the case of the non-imputed dataset). 

Given the high explanatory power of this component, we see that many substances tend 

to be uniformly toxic across all the NCI60 assays. Even when the 176 and 6203 
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substances having only threshold log GI50 values are eliminated from the respective 

datasets of complete toxicity profiles and the one including imputed values for all 

substances, PC1 still accounts for over 88% of the total log GI50 variance. Since this 

pattern dominates in both the imputed and complete datasets, while the random dataset 

deviates and explains very little, we can conclude that this is not an artifact of our 

procedure. Since PC1 corresponds to uniform log GI50 across all cell lines, we can 

artificially remove this component by mean centering each substance‟s toxicity profile 

and performing PCA once again. Indeed, PC2 in Figure 4.4 from the first analysis 

becomes the first principal component in the new analysis. In the original PCA, PC2 

explained approximately 1.2% of the log GI50 variance. As the first principal component 

in the new analysis, it explained 12% of the log GI50 variance and maintained the 

eigenvector components from the first analysis. In any case, the result that most 

compounds show uniform toxicity (high or low) across all cell lines is hardly surprising, 

but it leads to our least squares model that greatly reduces the effort required for 

screening compounds. 

The PC2 corresponds to a rather uniform level of toxicity across most cancer cell 

lines with the majority of its components between –0.17 and 0.17. It is very interesting to 

note that all six leukemia cell lines (RPMI_8226, SR, CCRF_CEM, K_562, MOLT_4, 

HL_60(TB)) have eigenvector components less than –0.2. For the complete subset, 

CNS_SNB_75 and Breast_HS578T have component values greater than 0.2. The 

increased absolute value of the eigenvector components corresponds to certain cancer cell 

lines, indicating that there are groups of substances for which these cell lines are either 

more sensitive or more resistant. PC2 is responsible for just over 1% of the total variance 
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over all cancer cell lines. We attempted to relate the values of the eigenvector 

components to the doubling times of these outstanding cancer cell lines and noted that the 

leukemia cell lines doubling times (19.6–33.5 hours) are approximately half that of 

CNS_SNB_75 (62.8 hours) and Breast-HS578T (53.8 hours).
12

 Unfortunately, this trend 

does not follow for the remainder of the cell lines with eigenvector values close to –0.2 

and 0.2. The outstanding feature of PC2 is that it identified all the leukemia cell lines. 

We speculate that PC2 may have identified the leukemia cell lines due to the fact 

that a greater portion of their surface areas is available to exogenous substances. The 

leukemia cell lines are grown in vials suspended in solution, whereas the other cancer cell 

lines are grown on plates and require attachment to the plate wall, reducing the exposed 

surface area. Therefore, it is plausible that the leukemia cancer cells are more susceptible 

to toxic substances due to increased surface area exposure. 

In order to substantiate this claim, we first identified the substances most 

responsible for PC2 using MOE‟s PCA tool. We found that over 4000 substances with 

|zi2| ≥ 1.0 and removed them from the complete dataset in order to examine the 

eigenvectors produced by PCA in their absence. By removing the substances with |zi2| ≥ 

1.0, we were able to reduce the predominance of this feature tenfold. Instead of being the 

second principal component and accounting for over 1% of the total log GI50 variance, 

the leukemia cancer cell lines were identified in the ninth principal component along with 

several other cancer cell lines with absolute values of eigenvector components greater 

than 0.2 and accounting for less than 0.1% of the total log GI50 variance. Furthermore, 

there are 782 substances with |zi2| ≥ 2.0. Notably, less than 5% of the data was imputed 

with 313 substances having no imputed data whatsoever. 543 of these substances, 228 
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with no imputed values, have fairly uniform increased cytotoxicity against the leukemia 

cell lines compared to the other 53 cancer cell lines. The remaining 239 substances, 75 

with no imputed values, were shown to be slightly less cytotoxic to the leukemia cell 

lines on average. The more sensitive nature of the leukemia cell lines is illustrated by the 

scatter plot in Figure 4.5 between the mean log GI50 for the leukemia cell lines and the 

mean log GI50 for the non-leukemia cell lines for the 543 substances of interest. The plot 

shows that there is approximately 1.8 orders of magnitude difference between the 

respective mean log GI50 of the leukemia and other cell lines. Also, the mean log GI50 

distributions of the leukemia cell lines are shifted to significantly higher levels of toxicity 

than the distributions of the non-leukemia cell lines as seen in Figures 4.6a and b. As a 

side note, only 33 of the 782 substances most responsible for PC2, |zi2| ≥ 2.0, were 

uniformly more toxic to the leukemia cell lines than all others of the NCI60. Even 

through the substances responsible for PC2 do not exhibit the highest levels of 

cytotoxicity for all leukemia cell lines, they do show a tendency to be uniformly more 

toxic for the majority of the leukemia cell lines.  
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Figure 4.5. (1) The fit line through 543 substances determined by PC2 ( ), which are 

most responsible for increased leukemia cell line toxicity relative to the remaining 53 

NCI60 cell lines. (2) The fit line for 239 substances determined by PC2 ( ), which are 

responsible for decreased cytotoxicity of the leukemia cell lines compared to the non-

leukemia cancer cell lines. 

 

 
Figure 4.6a. This histogram depicts the 543 substances determined by PC2 which are 

most responsible for increased leukemia cell line toxicity relative to the remaining 53 

NCI60 cell lines. ( ), ( ), and ( ) represent the mean log GI50 of the 

leukemia cell lines, all cell lines, and the non-leukemia cancer cell lines, respectively. 



146 

 

 
Figure 4.6b. This histogram depicts the 239 substances determined by PC2 which are 

most responsible for decreased leukemia cell line toxicity relative to the remaining 53 

NCI60 cell lines. ( ) and ( ) represent the mean log GI50 of the leukemia cell 

lines and all cell lines, respectively. 

 

 We examined the layout of the eigenvector components for the latter principal 

components looking for outstanding features similar to that of PC2. While no other 

classes were uniformly identified having all cancer cell lines with the absolute value of 

the eigenvector components greater than 0.2, we did find several principal components 

that identified a few cancer cell lines with the absolute value of the eigenvector 

components significantly greater than 0.2. The two principal components with few 

outstanding eigenvector components accounting for the largest log GI50 variance are 

depicted in Figure 4.7. 
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Figure 4.7. PC9 specifically identifies the Leukemia_SR cancer cell line related 

eigenvector component. PC13 identifies NSC_Lung_Hop_92 and CSN_SNB_75. The 

axis and color coding scheme are described in Figure 4.1. 

 

Of 600 substances found to be responsible for PC9 with |zi9| ≥ 1.0, only 45 

showed specific cytotoxicity against the Leukemia_SR cell line, i.e. the concentrations of 

substances required to inhibit cell growth for the Leukemia_SR cell line were two to four 

orders of magnitude lower than the concentration necessary for the remainder of the 

NCI60 cell lines. We found that most of these substances are structurally dissimilar. Only 

one pair, the phosphonium molecules, show significant structural similarity with a 

Tanimoto similarity coefficient Stan = 0.92 based on the MACCS keys, as depicted in 

Figure 4.8a. Figures 4.8b and c illustrate two other molecules and their respective highest 

scoring (most similar) match within this set of molecules. In the game of fingerprint 

based similarity searching, one typically does not consider molecules with a Stan < 0.70 as 

structurally similar. Most of the 45 substances exhibit multi-cyclic ring systems with 

aromatic components, and we have identified a few purine and pyrimidine derivatives. 

Figure 4.9 depicts a histogram of the highest Stan for each of the 45 substances when 

compared to the other respective substances in the dataset. The mean Stan for each 

molecule and its most structurally similar pair of the set of 45 substances was 0.55. 
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Having established that these substances are structurally dissimilar yet share similar 

toxicity profiles, we conjecture that these substances do not share a common mechanism 

of action against the Leukemia_SR cell line, which is contrary to the belief that 

substances sharing the same toxicity profiles also follow the same mechanism of 

activity.
20

 We are not implying that toxicity profiles cannot be used for predicting 

mechanism of activity, but rather we believe that there may be several viable 

Leukemia_SR cell specific targets which when activated lead to cell death based on 

different mechanisms of action. 

 

Figure 4.8. Comparison of molecules from the 45 substances having specific toxicity for 

the Leukemia_SR cancer cell line. The left molecule of each pair has the greatest 

similarity to the right one. (a) Stan = 0.92, (b) Stan = 0.57, (c) Stan = 0.24. 
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Figure 4.9. Histogram of the highest Stan derived by comparing pairs of substances using 

the MACCS fingerprint on the set of 45 substances specifically targeting the 

Leukemia_SR cancer cell line. Mean = 0.55,  = 0.13, min = 0.24, max = 0.92. 

 

PC13 identifies the Lung Hop_92 and CNS_SNB_75 cell lines. Even fewer 

substances are responsible for this principal component, as it is responsible for less than 

0.3% of the total system variance. The analysis of the substances responsible for toxicity 

profiles matching the landscape of PC13, while similar to that of PC9, can neither 

confirm nor reject our hypothesis that multiple mechanisms of actions may be in play 

when examining cytotoxic substances with similar toxicity profiles. 

Several groups have recently published their ability to predict cytotoxicity.
3,4,5,6,7

 

Table 4.1 contains a summary of the methods used and results obtained, including the 

results in our study. Our method used the MACCS keys, paying attention to narrowing 

the range of log GI50 in all children nodes of our decision tree. While we were unable to 

achieve reliable results in a leave some out cross-validation study using only the 

substances in the dataset with complete toxicity profiles, we did derive a predictive model 

that achieved R
2
 = 0.53 and RMSE = 0.71, using the dataset having imputed values for 

less than 10% of the cancer cell lines. See Figure 4.10. While this number is not 

outstanding, it allows for improved discrimination between toxic vs. non-toxic 
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substances. Furthermore, we achieve similar results when using different 90:10 

training:test splits of the dataset. When taking log GI50 = −5 as the cutoff, we were able to 

correctly classify 83% of all substances and 82% of the cytotoxic substances in our test 

set. With a log GI50 cutoff = −6 we correctly classified 93% of all substances in our test 

set, but only 72% of those taken to be cytotoxic. See Table 4.2 for the results presented as 

a confusion matrix. 

Table 4.1. Comparative summary of recent cytotoxicity study results 

Method Data Set
a Training 

Set Size 

Test Set 

Size 
R

2
 

log GI50 

Cutoff
 

Classified 

Correct(%)
b Improve

c 

Neural Network
3
 19 libraries 8298 2000 N/A N/A 73

d 
N/A 

QSPR
4
 NCI60 27000 N/A 0.67 -6 N/A  10 

Proteomic 

Profiling
5
 

NCI60
e 

2/3 1/3 N/A N/A 60 N/A 

QSAR
6
 37 cpds.

f 
4/5 1/5 0.73 N/A N/A N/A 

Random Forest
7
 NCI60 ≤ 42723 ≤ 42723 N/A -5 76

g 
N/A 

Decision Tree NCI60 21763 2015 0.54 -5 83  4 

-6 93  10 

Least Squares Fit NCI60 2412 2412 0.99 -5 96.7  2 

-6 99.1  5 

38650 0.99 -5 97.9  6 

-6 99.8  31 

a
 The NCI60 is evolving, i.e. newer versions are larger and have more complete log GI50 toxicity profiles. 

b
 Substances with log GI50 greater than or equal to the cutoff value are considered non-toxic, while those 

with log GI50 values less than the cutoff value are considered toxic. All percentages were rounded down. 
c
 

Improvement over random selection is based on the respective cutoff value. 
d
 20% of all substances were 

unclassified and assumed to be incorrect. 
e
 The dataset consisted of 118 drugs from the NCI60. 

f
 The 

dataset consisted of 37 naphthoquinone ester derivatives. 
g
 76% is the average of correctly classified 

substances for the individual cancer cell lines, not the mean log GI50. 
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Figure 4.10. Prediction results using a decision tree. (a) The training set had a fit R

2
 = 

0.9284 with RMSE = 0.2285. (b) The test set exhibited predictive R
2
 = 0.5432 with 

RMSE = 0.7119. 

 

Table 4.2. Decision tree results for cutoff log GI50 = –5.0 

Confusion 

Matrix 

Cutoff log GI50 = –5.0 Cutoff log GI50 = –6.0 

Pred. 

non-toxic 

Pred. 

Toxic % Correct 

Pred. 

non-toxic 

Pred. 

Toxic % Correct 

Exp. non-toxic 1248 252 83.2 1744 97 94.7 

Exp. Toxic 90 425 82.5 49 125 71.8 

 

Finally, with least squares fitting we achieved excellent prediction using equal 

sized randomly selected training and test sets using the 4824 substances with complete 

toxicity profiles, i.e. no data was imputed. While still skewed towards log GI50 = –4.0, 

this dataset was more uniformly distributed than the dataset used when training and 

testing our decision tree. If one considers log GI50 = –5.0 as the cutoff value between 

toxic and non-toxic substances, then the dataset is evenly distributed. Random selection 

was performed by first sorting the substances by ascending mean log GI50 and then 

dealing them one-by-one into the training and test set. This ensured that there was an 

even distribution between the two sets. We identified the Ovarian_OVCAR-8 cancer cell 

line as having the best fit to the mean log GI50. Applying forward stepwise linear 
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regression and allowing only one cancer cell line from each class to be included in the 

model yielded eq 9. 
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When applied to the test set, 96.7% and 99.1% assignment accuracy was obtained. 

The predictive R
2
 was found to be greater than 0.99 and RMSE less than or equal to 0.09. 

See Figures 4.11a and b. While this method is superbly predictive for mean log GI50, it 

requires that assay data be available for 9 of the 59 available NCI60 cancer cell lines. 

One surprising observation shown in Table 4.1 based on the test set of 2412 substances 

with complete toxicity profiles was the relative lack of improvement over random 

selection when compared to our decision tree model. This may be attributed to the 

distributions of the test sets. In the test set described for the decision tree there was 

approximately 25% and 9% chance that a randomly selected substance would be toxic 

based on the respective log GI50 cutoffs of –5.0 and –6.0. With the least squares fit 

derived through stepwise linear regression, the respective chances are 50% and 18%. 

Based on the dataset distribution, the second method can only improve half as much as 

the first. Thus, the quality of prediction should never be based on improvement over 

random selection alone. To verify the robustness of this method, we also used the least 
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squares fit model to predict the mean log GI50 for the remaining 38650 substances with 

toxicity profiles containing imputed data. We found that the correlation coefficient was 

little changed and RMSE improved to 0.06. This was expected due to the incidences of 

imputed mean log GI50 values for all missing data. See Figure 4.11c. Here significant 

improvement over random selection was seen. This was due to the change in ratio of 

toxic:non-toxic substances. The ratio for the test set having 2412 substances with the 

more complete toxicity profiles was 1200:1212 and 428:1984 for the respective log GI50 

cutoff values of –5 and –6. Whereas the ratios for the test set containing having 38650 

substances with imputed data were 5268:33382 and 1215:37435 for same respective log 

GI50 cutoff values. The ratio of toxic:non-toxic is inversely proportional to the 

improvement over random. When considering the improvement over random selection, 

one must also consider the classification ratio, as the maximum improvement over an 

evenly divided set 1:1 (50% chance to correctly classify any substance) is twofold, as was 

the case with our unimputed test set. In our case with 1215:37435 toxic:non-toxic 

substances it is possible to improve the identification of toxic substances by ~32 fold 

(38650/1215).  
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Figure 4.11. Prediction results using the least squares fit and forward stepwise 

regression. (a) The training set consisted of 2412 complete toxicity profiles and had a fit 

R
2
 = 0.9949 and RMSE = 0.07855. (b) Test set 1 consisted of 2412 complete toxicity 

profiles and had R
2
 = 0.9932 and RMSE = 0.09000. (c) Test set 2 consisted of 38650 

incomplete toxicity profiles and had R
2
 = 0.9918 and RMSE = 0.06195. The toxicity 

profiles used in (a) and (b) contained no imputed data, whereas the toxicity profiles used 

to determine (c) had imputed data. 

 

4.4 Conclusions 

Refining chemical datasets can facilitate the process of drug development by 

helping to minimize the high attrition due to poor ADMET during the clinical phases.
21

 

The largest problem with current public domain chemical and biological activity data is 

lack of curation procedure and QC. We have shown that even in the cases where curated 

datasets are available, one must carefully evaluate the data in order to ensure the greatest 

accuracy for data mining purposes. 

In this work we have preprocessed and validated the quality of a large reliable 

subset of the NCI60 for data mining toxicity profiles. Here we have used PCA to validate 

the use of larger training sets by demonstrating that PC1 was not an artifact due to 

imputing the mean log GI50 and further establishing a correlation between the 

components of the eigenvectors for the principal components responsible for 92% of the 

total log GI50 variance. The same steps can be used to refine screening data from multiple 

assays, whether they include a subset of the NCI60 assays, a combination of the NCI60 
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and other biological screens, or any selection of HTS drawing their activity data from a 

common set of substances. Further examination of the PCA results led to interesting 

deductions regarding the general landscape of a dataset. In this case over 89% of the total 

system variance relates to the generally cytotoxic nature of substances, and the leukemia 

cell lines behaved differently. PC2, responsible for ~1.2% of the log GI50 variance, 

identifies the leukemia cell lines. Finally, it is possible to extract the substances 

responsible for the principal components in order to mine for similarities or differences. 

Here PC9 and PC13 indicate that multiple mechanisms may share similar toxicity profiles 

based on the NCI60. 

Based on our analysis of the substances responsible for PC9 and the latter 

principal components, we have found the chemical structures to be of such diversity that 

it would be impossible to derive the underlying QSARs based on the limited size of the 

dataset and the likelihood that the substances’ cytotoxic natures are due to different 

mechanisms of action. QSPR investigations may provide valuable insights regarding the 

compounds responsible for these principal components. Identifying QSARs within the 

larger groups of substances responsible for PC1 and PC2 based on structurally similar 

subsets of these substances may also be possible. However, as it stands both QSAR and 

QSPR investigations are beyond the scope of this work. 

We derived two predictive methods: one using a binary decision tree, the other 

using forward stepwise linear regression and least squares fit. In our study, greater than 

tenfold enrichment over random selection can be expected for substances with mean log 

GI50 < −6, using both of our methods based on our subset of the NCI60. The least squares 

model further offers a very accurate method for determining the level of general 
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cytoxicity for substances that need not be limited to the NCI dataset. While it has shown 

improved results over past cytotoxicity prediction methods, there is one caveat, that 

future predictions on substances outside of the NCI60 cannot be performed completely in 

silico. This pitfall is also our major discovery, i.e. only 9 of the 59 available NCI60 

cancer cell lines are required to implement our model. While selectivity is one of the 

main goals with antitumor agents, our method can flag nonselective substances with 

significantly low mean log GI50 values for early elimination. Selective substances will not 

be flagged as they have higher mean log GI50 values for the majority of cancer cell line 

assays, deemphasizing the increased toxicity of selective substance for only a few cancer 

cell lines. The goal is to flag compounds as early as possible for elimination in the drug 

discovery pipeline in order to save time and money through streamlining the toxicity 

detection system while decreasing the overall demand on chemical and biological 

resources. 

Being able to more accurately identify non-specific cytotoxins brings to light two 

new questions relevant to the Food and Drug Administration‟s approval of current and 

new drug substances. (1) Are non-cytotoxic molecules more “drug-like” for drugs that 

are not meant to be anticancer agents? (2) Are drug molecules less cytotoxic than non-

drugs? Answering these questions might help to further access the overall generalizabilty 

of our methods and minimize the attrition rates of new potential drugs in the later stages 

of drug development pipeline. 

This work has been published and has the following reference: Lee, A. C.; 

Shedden, K.; Rosania, G. R.; Crippen, G. M. Data Mining the NCI60 to Predict 

Generalized Cytotoxicity. J. Chem. Inf. Model. 2008, 48, 1379–1388. 
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Chapter 5 

pKa Prediction of Monoprotic Small Molecules the SMARTS Way 

5.1 Introduction 

Realizing favorable absorption, distribution, metabolism, elimination and toxicity 

profiles is a necessity due to the high attrition rate of lead compounds in drug 

development today. The ability to accurately predict bioavailability can help save time 

and money during the screening and optimization processes. As several robust programs 

already exist for predicting logP, we have turned our attention to the fast and robust 

prediction of pKa for small molecules. Using curated data from the Beilstein Database 

and Lange‟s Handbook of Chemistry, we have created a decision tree based on a novel 

set of SMARTS strings that can accurately predict the pKa for monoprotic compounds 

with R
2
 of 0.94 and root mean squared error of 0.68.  Leave-some-out (10%) cross-

validation achieved Q
2
 of 0.91 and root mean squared error of 0.80. 

Intense focus is being placed on the quick and accurate prediction of 

physicochemical properties, driven in particular by the pharmaceutical industry and the 

need to identify lead compounds with favorable absorption, distribution, metabolism, 

elimination and toxicity (ADMET). It is well known that pKa, and in particular the ionic 

state of a molecule at physiological pH, affects pharmacokinetics and 

pharmacodynamics. Bioavailability measures, often characterized by the octanol/water
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 partition coefficient logP and Lipinski‟s rule-of-five,
1
 now include pKa so as to 

determine the pH-dependent distribution coefficient, logD. 

Aqueous solubility, lipophilicity and amphiphilicity all contribute to intestinal 

absorption and membrane permeability, and are at least partially determined by pKa.
2
 In 

order to be absorbed, orally administered drugs must first dissolve in the gastro-intestinal 

(GI) fluids. The ionic state of a molecule can be affected during passage through the GI 

tract, due to environmental pH in the stomach (pH 1-3), duodenum (pH 5-7), and jejunum 

and ileum (pH ~8).
3
 Furthermore, the majority of drugs administered orally are ionizable 

at physiological pH levels.
4,5

 Significant dissolution enhancement has been observed 

when the buffer maintains the pH near or above the pKa of the dissolving drug.
6
 

Therefore, adjusting the pKa of a drug is of particular interest when dissolution has been 

found to be the rate-limiting step in the process of absorption, especially when dealing 

with drugs having poor water solublity. 

Ionizable groups also affect the ability of a drug to interact with a target. It has 

been shown that pKa influences the rate and site of metabolism of drugs by CYP1A2, a 

metabolic enzyme.
7
 As strong electrostatic and hydrogen bonding interactions are key 

contributors to the overall free energies of binding,
8
 pKa can be critical for binding 

potency at the target. Moreover, based on a study of compounds targeting the human 

Ether-a-go-go Related Gene (hERG) potassium channel, selectivity can be influenced by 

controlling pKa.
9
 

Issues of toxicity are also related directly to a drug‟s pKa at physiological pH, 

such as cardiovascular toxicity due to the lengthening of time between the start of the Q 

wave and the end of the T wave in the heart‟s electrical cycle or QT prolongation, 
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resulting from the blockade of the hERG potassium channel.
10

 Another common toxicity 

issue that can be affected by the ionic state of a drug molecule is the potential liability for 

phospholipidosis, an adverse drug reaction that occurs with many cationic amphiphilic 

drugs.
11

 All in all, approximately 50% of all drug failures have been attributed to poor 

ADME, and in 2003 approximately $8 billion was lost due to the inability to predict the 

toxic nature of a substance during the early stages of drug development.
12,13,14

 

The main advantage of in silico pKa prediction is that physical samples are not 

needed. Even when one considers newer methods of high throughput pKa screening, there 

are two limiting factors: the costs and time associated with obtaining or synthesizing the 

compounds of interest. Hence, there is a need for a quick, accurate and robust model for 

pKa prediction for large as well as small compound libraries. 

Much research has been done in the area of pKa prediction. Seminal 

publications
15,16

 on the prediction of pKa base their model on linear free energy 

relationships (LFER), applying the Hammett equation. LFER models are still commonly 

used and are also implemented in popular commercially available software packages, 

such as SPARC.
17,18,19

 One of the most common techniques used in pKa prediction is 

quantitative structure activity/property relationships (QSAR/QSPR) deriving their fit 

equations from partial least squares (PLS) or multiple linear regression 

(MLR).
5,18,20,21,22,23,24,25

 Other methods include neural networks,
26

 quantum mechanical 

continuum solvation models,
27,28,29

 and anti-connectivity models.
30,31

 It has often been the 

case that a model was based on a relatively small set of experimental data for a specific 

ionizable group, such as carboxylic acids.
18,22,25,26,27,29,30,31

 Others have tackled the 

problem of chemical diversity by devising and combining multiple models, each applied 
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to a relatively small set of compounds when compared to the complete set of 

experimental data.
 23,26

 Here the overall combination of models is more robust at handling 

novel chemical structures, but the individual training sets may suffer from a lack of 

chemical diversity due to their small size. This may allow for a good fit on the training 

sets, but has the potential disadvantage of leaving little freedom for cross validation. 

Furthermore, there is a danger of cherry picking or manually selecting compounds that 

are well represented in the training set for the test set. In the methods section we describe 

how our single model is derived and applied to a large and diverse training set of 

monoprotic molecules. We also describe how the training and test sets were randomly 

selected from diverse clusters of compounds in order to ensure that no cherry picking 

occurred and that chemical space was fairly represented by all training and test sets for 

both the final model and in cross validation. 

5.2 Methods 

All calculations were performed using the Molecular Operating Environment 

(MOE)
32

 on a Dell Precision 380 workstation utilizing Red Hat Linux Enterprise version 

4.0. 

5.2.1 Preliminary Studies. 1.1 Data Acquisition. Data was obtained from 

Lange‟s Handbook of Chemistry 15
th

 Edition
33

 and the Beilstein (2007/04) database via 

the Molecular Design Limited (MDL) CrossFire Commander.
34

 In all cases possible we 

applied the following filters in our curation of monoprotic compounds where the 

ionizable site was an oxygen, nitrogen or sulfur atom: titration performed in H2O at 23–

27 C, ionic strength (the molar concentration of all ions present in a solution) less than 

or equal to 0.1 M, and pKa range from –1.74 (H3O
+
) to 15.7 (H2O). We also accepted 
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multiprotic compounds, such as o-nitrophenol, where only one ionizable site had pKa 

within our accepted pKa range. 

1.1.1 The Lange dataset provided International Union of Pure and Applied 

Chemistry (IUPAC) nomenclature and pKa values for 2162 compounds with up to six 

ionizable sites. We accepted 700 of the monoprotic compounds: 417 carboxylic acids and 

alcohols, 14 thioacids and thiols, and 269 compounds having ionizable nitrogens. IUPAC 

nomenclature for each of these compounds was translated into simplified molecular input 

line entry specification (SMILES) strings both manually and using ChemDraw Ultra 10.
35

 

1.1.2 The Beilstein database provided us with 10334 unique substances. These 

substances were washed to remove any salts; thus only the major component with the 

largest number of bonded atoms was retained. After applying our filters, we accepted 

1577 monoprotic compounds: 898 carboxylic acids and alcohols, 33 thioacids and thiols, 

and 642 molecules having ionizable nitrogens. The following relevant fields were 

downloaded in structure data format (SDF):
36

 Beilstein registry number (BRN), 

molecular structure, dissociation exponent (DE) or pKa, dissociation group (DE.GRP), 

dissociation temperature (DE.T), dissociation solvent (DE.S), dissociation method 

(DE.MET), dissociation type (DE.TYP) and dissociation comments (DE.COM). 

1.1.3 Many published pKa values for the same compound were often found to 

exist. This was partly due to the large overlap between Lange and Beilstein. Beilstein also 

contained multiple instances with literature references where more than one pKa value 

was published for a single compound. The two datasets including their duplicate entries 

were merged into a single MOE database. In the cases where the pKa values for a specific 

compound varied less than 0.5 units, the mean was accepted as the experimental pKa. In 
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all instances where the variation was greater than 0.5 units, the literature reference was 

checked to explain the discrepancy, which was often due to the use of a solvent other 

than H2O. Only three compounds were accepted that had variations greater than 0.5. All 

had variation less than 0.7 units. 

The resulting dataset contained 1881 unique monoprotic compounds, involving 

1088, 33 and 760 ionizable oxygen, sulfur and nitrogen atoms, respectively. 2086 

experimental pKa values were found for the 558 compounds having multiple literature 

references. The RMSE for the duplicate experimental pKa values from literature and our 

accepted experimental values after curation was 0.08. Figure 5.1 portrays the pKa 

distributions of the ionizable atom types of interest. 

 

Figure 5.1. Each pKa distribution is based on 25 bins for the monoprotic compounds 

having one of the three ionizable atom types considered here: oxygen ( ), nitrogen 

( ) and sulfur ( ). 

1.2 Clustering molecules to obtain equally diverse training and test sets. For cross 

validation we separated our compounds into ten groups of equal size and having similar 

chemical diversity. To do this, we built a decision tree using the 166 Molecular ACCess 

System (MACCS) keys from MDL and requiring the leaf nodes to contain a minimum of 
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ten compounds. The root of the tree consists of all the monoprotic compounds. Branching 

decisions are made by the MACCS key which most evenly (or ideally) divided the 

compounds at any given node and terminates when the node cannot be split into two 

children each containing at least ten compounds. See section 1.4 for a description of the 

ideal fingerprint. 

Equations 1-4 describe how decisions are made at each node. hk and ĥk are binary 

vectors with length equal to the number of compounds m at a node with hk representing 

the hit profile and ĥk the inverse hit profile with respect to MACCS key k. kh  and kh


 

are the number of compounds hit and missed, respectively. See eqs 1-3. 
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Eq 4 defines the idealness score, Ik, for MACCS key k where 0.5 ≤ Ik ≤ 1.0. A 

value of 0.5 indicates that the compounds at a particular node are evenly divided into 

children nodes, whereas a score of 1.0 indicates that one child node contains all of the 

compounds and the other contains none. The compounds at each leaf were randomly 

divided into ten bins, each consisting of approximately 10% of the monoprotic 

compounds.  Nine of the bins were used for training purposes while the tenth was set 

aside as a test set for our final model. 

 
m
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k
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 , for k = 1,…,166 (4) 
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1.3 Analyzing the molecular diversity of the training set using principal 

components analysis (PCA) and the MACCS keys. PCA was applied to access the 

molecular diversity of the 1693 compounds.  We formed a binary matrix consisting of 

1693 rows (the training set compounds) and 166 columns (the MACCS keys) with every 

entry being either a „1‟ or a „0‟, corresponding to the respective presence or absence of 

each MACCS key. Of the 166 MACCS keys, 152 are found in our training set. PCA 

showed that 62 principal components accounted for 90% of the total system variance. 

Furthermore, 144 principal components were required to account for 100% rounded to 

the nearest thousandth of the total system variance. A non-trivial number of principal 

components are required to explain the vast majority of the system variance; hence, the 

training set has been shown to be widely diverse and applicable for the methodology 

implemented in developing our model. 

1.4 Tailoring an ideal fingerprint with predictive power using SMARTS 

descriptors. 1.4.1 An ideal fingerprint is one in which the descriptors are mutually 

independent and each evenly divides a dataset of n compounds into those having vs. not 

having the descriptor. Here we use MOE SMiles ARbitrary Target Specification 

(SMARTS) strings as descriptors, as described in Table 5.1. Note, while MOE SMARTS 

strings are based on the concepts of Daylight SMARTS strings
37

 and are for the most part 

the same, there are some differences. For example MOE uses the SMARTS string [i] to 

denote any π bonding atom, but this is not used in Daylight SMARTS. 
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Table 5.1. Example MOE SMARTS strings 

SMARTS String Definition 

[OH]aaa[#X] Non-carbon aliphatic atom, [#X], meta to a hydroxyl, [OH] 

a[#G7] Any aromatic atom with a Halogen substituent, [#G7] 

a[C;!i] Any aromatic atom connected to a non π-bonded carbon 

atom 

[OH][A;r]=[A;r][A;!r]=O Hydroxyl covalently bonded to a non-aromatic ring atom, 

which shares a double bond with an adjacent aliphatic ring 

atom that is single bonded to a non-ring atom sharing a 

double bond with oxygen. 

[OH]A[Ov2] Hydroxyl bonded to any aliphatic atom sharing a single bond 

to an oxygen that is explicitly bonded to two non-hydrogen 

atoms. 

A[N+]=O Aliphatic atom covalently bonded to the positively charged 

nitrogen of a nitroso group. 

The strings described above were specifically selected to help readers unfamiliar with 

SMARTS notation better understand the SMARTS strings presented in Table 5.2. 

 

The ideal fingerprint has length nd, where nd is the minimum number of 

descriptors to uniquely identify all n compounds in the training set. 

  nnd 2log
 

(5) 

Such a fingerprint uses the minimum number of descriptors possible to uniquely 

identify each compound in a specific dataset, that is, the fingerprint tends to be ideal only 

for the dataset on which it was based. 

1.4.2 Each dn -digit binary number representing the occurrence/absence of 

descriptors can not only be used to identify the respective unique compound, but also 

may correlate with physicochemical properties. 

Similarity measures, such as the Tanimoto score described in eq 6,
38

 can then be 

applied to associate such physicochemical properties with structurally similar molecules. 
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Let fi and fj be binary vectors of equal length where each vector component represents the 

presence or absence of some qualitative descriptor as 1 or 0, respectively. Then the 

Tanimoto similarity score jis ,  is the ratio of intersection and the union of the two sets of 

qualitative descriptors. If no descriptors from vectors fi and fj match, then jis , = 0. If 

exactly the same descriptors are present in fi and fj, then jis , = 1. Finally, if some, but not 

all, of the descriptors in fi match those in fj, then jis , will be some rational value between 

0 and 1. The closer jis , is to 1, the more similar are the vectors fi and fj. In our case, pairs 

of molecules with sufficiently high jis , , based on an ideal or close to ideal fingerprint, are 

expected to have similar pKa values. 

 
jiji

ji

ffff

ff




jis ,  (6) 

1.5 Concept validation using molecular similarity measures. In order to validate 

our concept that pKa can be predicted based on the structural similarity between two 

molecules using SMARTS strings as descriptors, we applied it to our data set of 403 

monoprotic alcohols. 

1.5.1 202 monoprotic alcohols from five of the ten bins were selected as the 

training set, leaving the remaining 201 alcohols as the test set. 

1.5.2 The 50 SMARTS string descriptors described by Table 5.2 were manually 

created and uniquely identified the molecules in the alcohol training set. An ideal 

fingerprint with 50 descriptors should be able to uniquely identify 2
50

 molecules. This is 

gross overfitting in our case, as 2
50

 – 202 = ~10
15

 binary profiles correspond to no 
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molecule. In our case, the ideal set of descriptors would contain only 8 SMARTS strings, 

the minimum number of descriptors to uniquely identify all 202 alcohols. 

Table 5.2. Hand selected SMARTS string fingerprint that uniquely identifies the alcohol 

training set 

Type 

SMARTS string subsets 

A B C 

Aromatic 

Centers 

[OH]a, [OH]aa[#X], 

[OH]aaa[#X], 

[OH]aaaa[#X] 

[OH]a(a[#X])a[#X], 

[OH]a(a[#X])aa[#X] 

[OH]a(aa[#X])aa[#X], 

[OH]a[#7+] 

Aromatic 

Modifiers 

a[#G7], a[Ov2], aC=C aC=O, a[Sv2] , a[#8+] a[N+]=O, a[#7+](C)C, 

a[S+], a[S+2], 

aC=Cc[n+], 

aC=C[N+](=O), 

aC(C)(C)C, a[C;!i], 

a[P+] 

Aliphatic 

Centers 

[OH]A=A, [OH]A[O-], 

[OH]AAA=O, 

[OH][A;r](=[A;r])[A;r]=O, 

[OH][A;r]=[A;r][A]=O 

[OH]C, [OH]A=S, 

[OH][A;r]=[A;r][A;!r]=O 

[OH]A[#X], 

[OH]AA[#X], 

[OH]AA([#X])[#X], 

[OH]AAA[#X], 

[OH]AAAA[#X], 

[OH]A(A[#X])A[#X], 

[OH]A[Ov2], 

[OH]A[Sv2] 

Aliphatic 

Modifiers 

A[#G7], A[N+]=O, 

[#7+](~*)~* 

[Sv2] , [n+] [S+], [S+2], C=C, 

C=Cc[n+], 

C=C[N+]=O, [P+] 

The SMARTS string subsets A+B+C make up a fingerprint that uniquely identifies the 

202 monoprotic alcohols in the training set, R
2 

= 1.0. Subsets A and A+B make 

predictive fingerprints which respectively yielded R
2 

= 0.75 and 0.86 on the test set of 

monoprotic alcohols. 

 

1.5.3 Apply reverse stepwise regression. Using the 50 SMARTS string descriptors 

(fingerprint components) as indicator variables, reverse stepwise regression on pKa was 

applied in an attempt to minimize the number of SMARTS strings, as it was extremely 

unlikely that a set of ideal SMARTS string descriptors existed. First the fingerprint of all 

molecules in the training set was taken. 
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1.5.3.1 Drop the descriptor that least affects the fit R
2
 of the training set. The 

predicted pKa for each compound is assigned based on the average pKa of the compounds 

sharing the highest si,j. Then the Pearson correlation coefficient (R
2
) is calculated using 

the experimental vs. predicted pKa values. Deleting any one of the SMARTS strings can 

decrease the R
2
, so we drop the string that causes the smallest decrease.  In the case of a 

tie, drop the least ideal SMARTS string. Retain the dropped SMARTS string in a pool for 

later re-evaluation steps. 

1.5.3.2 Check pool containing dropped SMARTS strings for possible 

improvements to R
2
 for the training set. If the discard pool contains more than one 

SMARTS string descriptor, then check whether re-adding any one descriptor from the 

discard pool except for the last dropped SMARTS string can increase the R
2
 of the 

current model. If any such descriptors exist and their inclusion yields an R
2
 greater than 

or equal to 0.90, re-add the SMARTS string that increases the R
2
 of the model the most. 

1.5.3.3 Check threshold values. Repeat the stepwise regression as described in 

steps 1.5.3.1 – 1.5.3.2 until the R
2
 falls below 0.90. 

1.5.3.4 Re-add the most recently dropped SMARTS string. In this manner, we 

obtained a best estimate for the most ideal predictive fingerprint that yields a correlation 

greater than or equal to 0.90 based on the training set. 

1.5.4 Validation. Step 1.5.3 was repeated twice using threshold R
2
 = 0.95 and 

0.90 for the alcohols training set only.  For all other investigations the threshold R
2
 = 0.90 

was used. The descriptors of the two predictive fingerprints that were identified are 

shown in Table 5.2. The first, having the lowest R
2
 greater than 0.95, consisted of the 25 

SMARTS string descriptors in subsets A and B. The second, having lowest R
2
 greater 
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than 0.90, used only the 15 SMARTS string descriptors in subset A. Applying the 

predictive fingerprints described by the combination of subsets A and B and of subset A 

alone to our test set provided concept validation and yielded R
2
 = 0.86 and 0.75, 

respectively. 

1.6 Expanding and refining predictive SMARTS descriptors. Our goal is to 

identify very general SMARTS string descriptors, which are both as ideal as possible and 

differentiate groups of compounds by pKa.  Selecting a discriminating SMARTS string 

can often be a non-trivial task, so as not to make it too specific. 

1.6.1 After applying the fingerprint consisting of only 15 SMARTS strings 

described in Table 5.2 (subset A), we examined the set of compounds where all members 

had the same fingerprint value but large experimental pKa variance.  In this case, the 

largest experimental pKa variance is at the predicted pKa of 6.48.  Figure 5.2 demonstrates 

how outlier molecules were identified and the predictive fingerprint was modified. 
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Figure 5.2. The scatter plot on the left depicts experimental vs. predicted pKa values for 

202 monoprotic alcohols from the training set using the fingerprint defined by SMARTS 

string subset A, having an R
2
 = 0.90. The molecules sharing the same fingerprint profile 

with largest experimental pKa variance are identified by the points circled in blue ( ). 

The molecular structure and pKa of the highlighted points on the scatter plot are shown on 

the right. Highlighted and encircled in red, the fragment represented by the SMARTS 

string, [#8][i]=[#16], differentiates the molecules with low pKa from those with high pKa. 

1.6.2 We then generalized existing SMARTS descriptors by substituting more 

general atom and bond types in our existing descriptors. If no such modification could be 

identified, we added new descriptors until the R
2

 became greater than 0.96 and allowed 

no predicted value to deviate by more than 1.0 pKa units from the experimental value.  

Figure 5.2 depicts the thioacid moiety as the clear differentiating factor, separating the 

molecules into two smaller sets while minimizing the pKa variance. When added to the 

fingerprint, the SMARTS string [#8][i]~[#16], representing an oxygen atom single 

bonded to a π bonding atom that shares some bond with a sulfur atom (inclusive of the 

thioacid), the R
2
 rose from 0.90 to 0.92. 

1.6.3 After the R
2
 was improved to greater than 0.96 and deviation for all 

predicted values was less than 1.0, stepwise regression was performed again to identify 
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the descriptors with least influence on the training set. These descriptors tend to be the 

most specific and are present in only a few molecules or almost all the molecules in the 

training set. Each set of molecules identified by such a descriptor was then analyzed with 

the intent of replacing the overly general or overly specific SMARTS string with a more 

ideal SMARTS descriptor that split the dataset more evenly as well as successfully 

differentiated the set of molecules. 

1.6.4 At this point the training set was broadened with 346 (~50%) of the 

monoprotic carboxylic acids, which were taken from the same bins as the monoprotic 

alcohols. The fingerprint was then modified to include the general structural differences 

between the alcohols and the carboxylic acids, namely the carbonyl group between the 

ionizable oxygen and the remainder of the molecules. This was done by adding SMARTS 

descriptors similar to those used in the fingerprint for the alcohol training set, but 

inserting a carbonyl moiety in parentheses next to the ionizable oxygen, represented by 

[OH]. For example, the motif representing a non-carbon meta substitution of a phenol-

like substance, [OH]aaa[#X], becomes [OH]C(=O)aaa[#X]. For our convenience, each 

SMARTS descriptor containing an ionizable atom places the ionizable moiety first in the 

string. Our process has led us to pay less attention to the general aromatic SMARTS „a‟, 

representing any aromatic atom, and incorporate „[i]‟, representing a π bonded atom 

which matches both aromatic atoms as well as those with conjugated bonds. This 

generalized SMARTS string, [OH][i](=O)~[i]~[i]~[i][#X], will identify both meta 

substituted phenyl rings and some conjugated carboxylic acids. Following the logic from 

steps 1.4 – 1.6.4 the set of SMARTS strings was modified and refined. Next, 16 

monoprotic molecules containing ionizable sulfur atoms were added to the ionizable 
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oxygen training set and the SMARTS fingerprint was refined accordingly.  The ionizable 

site of this entire class of monoprotic molecules can be described by the SMARTS string 

[#G6!H0], which identifies a group 6 atom from the periodic table bonded to at least one 

hydrogen. 

1.6.5 Far more diversity is evidenced among the monoprotic molecules containing 

ionizable nitrogens which are identified by the SMARTS string [#7!H0].  To simplify 

matters, this set of compounds was divided into three groups: primary, secondary and 

tertiary amines, and treated in the same manner as the molecules identified by [#G6!H0]. 

1.6.5.1 Starting from scratch using molecules with ionizable nitrogens drawn 

from the same bins from which the alcohols, carboxylic acids, thiols and thioacids were 

obtained, a new SMARTS string fingerprint was trained on a random selection from the 

primary ionizable nitrogen dataset, containing both amines and amides. The secondary 

and tertiary ionizable nitrogen datasets were sequentially added and trained. It is of note 

that we were unable to derive sufficiently good predictive fingerprints for these groups of 

compounds using only 50% of the bins. 

1.6.5.2 In order to achieve predictive fingerprints that surpassed R
2
 = 0.75 for the 

test set of all ionizable nitrogens from the unused bins, we needed to expand our training 

set to include 80% of the ionizable nitrogens.  Here the training set was expanded by 

including the ionizable nitrogen containing compounds from three of the unused bins of 

equally diverse compounds based on the MACCS keys.  

1.7 Combining fingerprints trained for [#G6!H0] and [#7!H0] monoprotic 

molecules. It was obvious that there was some overlap between the descriptors (aliphatic 

and aromatic modifiers) from our predictive fingerprint trained on the compounds 
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containing ionizable oxygen and sulfur atoms and the predictive fingerprint trained on the 

compounds containing ionizable nitrogen atoms. Based on the size of the combined 

fingerprints, it was likely that we were overfitting the data. However, this was expected 

as we were unable to identify any descriptor that was truly ideal. 

1.8 Obtain basis SMARTS string fingerprint. Our final training set was formed 

using 90% (9 bins) of our monoprotic data, including the compounds from the 

aforementioned 8 bins. None of the curated SMARTS strings were derived from 

compounds in the tenth bin, our test set. We once again performed stepwise regression, 

identifying the most ideal basis set of descriptors, thus allowing for the manual discovery 

of other novel and very general descriptors based on the outliers. As before, the 

fingerprint was refined until R
2
 exceeded 0.96 with all calculated values deviating less 

than 1.0 from the experimental values. Details of the analysis and refinement of the 

SMARTS strings are shown in Table 5.3. 

Table 5.3. SMARTS string refinement process 

Group 

Training 

set 

size 

# bins 

used 

# of  

SMARTS 

pre-

regression 

# of SMARTS 

post-

regression
a 

# of 

refined 

SMARTS
b 

Fit  

R
2 

[OH] and 

!C(=O)[OH] 
202 5 50 15 21 0.96 

[OH] 548 5 132 32 122 0.99 

[#G6!H0] 564 5 139 35 123 0.99 

[#7!H0] 606 8 145 59 130 0.96 

All 1693 9 284 140 256
 

0.96 

All (final) 1693 9   262
 c
 0.95

c 

a
 Stepwise regression, reducing the number of SMARTS strings was performed until the 

fit R
2
 was reduced to 0.90. 

b 
Refinement, as discussed in section 1.6, was performed to 

improve the fit R
2
 to exceed 0.96. 

c
 The final refinements to the pool of SMARTS 

strings were made using the decision tree as discussed in section 2.2. 
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Figure 5.3. Workflow used to achieve the SMARTS pKa decision tree. Clouds represent 

database contents and the brown scrolls are literature references. 

 

5.2.2 Training and Validating the Final Model. Figure 5.3 illustrates the 

generalized workflow used to develop the final model as described in steps 1.1-2.2. 

2.1 Growing the predictive decision tree. Our predictive decision tree is based on 

two factors: diversity and accuracy. Diversity is represented by the ideal nature of our 

SMARTS fingerprint. Using eq 4, we calculated a new diversity score, this time allowing 

a minimum of two molecules at each leaf node in the decision tree using our ideal 

SMARTS strings instead of the MACCS keys used when selecting our training and test 

sets. An element of accuracy is also included in making each branching decision. Eq 7 

describes the accuracy score, Ak, which is intended to help minimize the pKa range at 

each node in the tree. For both eqs 4 and 7, the index k now refers to the descriptors in 

our SMARTS fingerprint. Binary hit vectors hk and ĥk, are now based on the SMARTS 

fingerprint rather than the MACCS keys. m refers to the number of compounds at the 

parent node. kr  and kr̂  are the pKa ranges at the children nodes for SMARTS string k. The 
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values of the resulting score range from (0,1.0]. In this case, values less than 1.0 represent 

child nodes with smaller pKa ranges than the parent node. Values closer to zero reflect 

child nodes with narrower pKa ranges. 

 
mrr

rr
A

kk
k

kkkk

k





]ˆ,[max

ˆ hh


 (7) 

Eqs 4 and 7 have been normalized such that the lower values of the respective 

scores are desirable. Eq 8 describes how the final decision is made at each node and 

considers the ability of a particular SMARTS string to evenly split the substances and at 

the same time minimize the pKa range of the children nodes. Weighting factors for Ik and 

Ak were systematically determined by spawning several decision trees and varying the 

weights. The final weighting scheme was the one resulting in the highest fit R
2
 based on 

correlating the mean of all pKa values of the leaf and the experimental pKa values from 

our training set. 

 ]5.2[min kk
k

AIS   (8) 

2.2 Refining the predictive decision tree to establish the final model. New 

SMARTS strings were added based on outliers found when fitting the training set. The 

final SMARTS string fingerprint based on our training set consisted of 262 SMARTS 

strings, 139 of which were used in creating the decision tree, which gave calculated pKas 

for the training set that fit the experimental values with R
2
 greater than 0.95 and root 

mean squared error (RMSE) less than 0.65. 

This method is a refinement of the one used in our previous prediction of 

generalized cytotoxicity where the MACCS keys were used to make decisions on a 

randomly partitioned training and test set.
39

 Here manually derived SMARTS strings are 
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used to make decisions and the MACCS keys were used to uniformly partition the data 

into the training and test sets for cross validation purposes. 

5.2.3 Cross Validation and pKa Shuffling Studies. In order to perform proper 

cross validation and shuffling studies, one should redo all steps in the method. 

Unfortunately, the method for obtaining the pool of SMARTS strings used in the decision 

tree is complex and immensely time consuming. We have chosen to perform leave-some-

out (10%) cross validation and pKa shuffling studies using the final pool of SMARTS 

strings.  In the cross validation procedure, the entire dataset of 1881 molecules was used 

to form all possible combinations of nine of the diverse bins as training sets and the 

remaining bin in each situation as the test set. 

pKa shuffling studies were performed to evaluate the likelihood of overfitting the 

model. An attempt was made to repeat the entire procedure using only the alcohols. After 

shuffling the pKa of training set compounds, reverse stepwise regression was performed 

as in step 1.5.  Using the same 50 SMARTS strings, the R
2
 for the training set was less 

than 0.46, so we were unable to continue the SMARTS string reduction procedure.  This 

alone demonstrates that the 50 SMARTS strings being used could recognize bogus data, 

rather than fit it. Consequently, the shuffling test was only applied to the final step of 

model development, leaving the laboriously selected SMARTS strings fixed. 
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5.3 Results and Discussion 

The decision tree is 13 levels deep using 139 SMARTS strings with 1527 nodes 

including 741 terminal nodes containing two or more of the 1693 molecule training set.  

The decision pathway depends on the presence or absence of the SMARTS string 

descriptors from the pool and the equations provided in the methods section.  It is clear 

that any SMARTS string can be used at any level in the decision tree and is often the case 

with general motifs, such as long carbon chains or linear strings of atoms. Examining the 

first five levels of the decision tree, it is readily evident at least to some degree that the 

main ionizable sites are separated into groups first. Starting at the root (node 1) the first 

decision is always whether the molecule contains a carboxylic or thioic acid (node 2), or 

not (node 3). This is immediately followed at node 2 by differentiating carboxylic (node 

4) from thioic acids (node 5). At node 3, aliphatic charged conjugate acids (node 6) are 

differentiated from other amines and alcohols (node 7). Ortho, meta, and para 

substitutions and any combination thereof are decided in the middle levels of the tree 

along with other motifs relating the positions of substituents relative to the ionizable site 

in aliphatic molecules. The decision tree also tends to identify the more specific 

substituents closer to or at leaf nodes, such as the halogens, the methyl group, as well as 

specialized branches and bonding configurations. As 1527 nodes exist in the decision tree 

and only 139 SMARTS strings are used, it is clear that the same SMARTS strings are 

being reused along different decision pathways.  Therefore, it is the case that SMARTS 

strings determining the leaf nodes also occur in the middle of the decision tree, but never 

in the same decision pathway. 
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Originally the test set contained 188 molecules, but two were dropped as their 

tautomeric forms lead to loss of the proton from a carbon atom, rather than the expected 

ionizable site. It is worth mentioning that the SMARTS pKa prediction for these 

molecules had errors of only 0.2 and 0.91. A third molecule was dropped because of 

ambiguity in converting its name to a structure. The decision tree, including predictions 

and ranges for each node, is provided in the supplementary materials. 

The decision tree, utilizing 139 SMARTS strings, was created from a pool of 262 

SMARTS string descriptors. In order to deal with the primary concern of overfitting the 

model, we retrained the decision tree 100 times allowing the SMARTS descriptors to be 

selected from the original pool while randomly shuffling the pKa values within the 

training set. The R
2
 of the original predictive model was shown to lie over 28 standard 

deviations above the mean R
2
 of the 100 models with randomized data, while the RMSE 

of the original model was over 422 standard deviations below the mean of the respective 

RMSEs obtained from the randomized data models. The statistics comparing the R
2
 and 

RMSE of the final predictive model and the models with randomized pKa data is shown 

in Table 5.4. Based on these results, it is clear that we have not overfit the model. 

Table 5.4. Overfitting test: accepted model vs. 100 models with randomized pKa data 

Model Statistic R
2 

RMSE 

100 

Randomized 

 

Mean 0.4830 2.1382 

Std. dev. 0.0162 0.0334 

Mode 0.4909 2.1220 

Min 0.4388 2.0721 

Max 0.5145 2.2382 

Accepted  0.9548 0.6512 

  

In order to validate that the decision tree model (SMARTS pKa) was producing 

satisfactory predictions, a comprehensive literature survey was made. Furthermore, 

benchmarking on our test set was performed with SPARC, MARVIN, ACD/I-Labs v 
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8.03 and ADME Boxes. Details of the survey and benchmark are provided in Table 5.5, 

which includes descriptions and statistics for training sets as well as cross validation and 

or external test sets when provided. In summary for the various methods and the 

respective training sets, the R
2
 ranged from 0.81 to 0.99 and the RMSE was less than 1.0. 

R
2
 for leave-one-out or leave-some-out (10% or 20%) cross validation studies ranged 

from 0.78 to 0.92 with RMSE typically less than 1.0. Finally, R
2
 for the external datasets 

ranged from 0.69 to 0.99. High values for the Pearson correlation coefficient and the 

lowest RMSE are expected on all the training set predictions (fits) with some falloff on 

predictions for cross validation and external test sets. 

While SMARTS pKa does not produce the highest fit scores, R
2
 of 0.95 is very 

respectable. Two of the reasons our method does not outperform other methods are (a) 

the limited size of our complete dataset and (b) the fact that the SMARTS strings were 

not inclusive of any increased molecular diversity found in the 185 compound test set. 

Furthermore, this method is not designed to produce a fit having R
2
 = 0.99 due to the pKa 

average taken at each terminal node. By decreasing the node size from two molecules to 

one, both the SMARTS fingerprint and the MACCS keys were able to produce a fit with 

R
2
 = 0.99. Finally, the only reason the MACCS keys were unable to produce a fit of 1.0 

with the node size reduced to one was because we did not eliminate stereochemistry or 

E/Z conformers from the dataset. Neither our SMARTS strings nor the MACCS keys 

were able to distinguish between molecules having these conformational differences. 

Altogether 152 of the 166 MACCS keys and 156 of the 262 SMARTS strings were used 

in this exercise. This is valuable information regarding the chemical diversity of the 

training set and the potential of our SMARTS strings to divide the compounds. In an 
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ideal situation, only 11 MACCS keys or SMARTS descriptors would be required to build 

a tree having 2
11

 nodes which would uniquely identify each of the 1693 training 

compounds. 

SMARTS pKa also performed well in cross validation with Q
2
 = 0.91 and RMSE 

= 0.80. As the SMARTS strings were manually created (labor intensive) specific to the 

training set, we consistently retrained the cross validation models with the same pool of 

SMARTS from step 2.2.  
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Table 5.5. Literature survey of pKa calculators with benchmarking using SPARC, MARVIN, ACD/I-Labs v8.03 and ADME Boxes 

Method Ref. Class 

Training Set Test Set External Test Set 

 n
 

R
2 

RMSE n Q
2 

RMSE  n R
2 

RMSE 

QSPR/PLS 20 all subclasses       25 0.95
a
 0.78

a 

  acids
 

625 0.98 0.405 10% 0.86 1.04    

  bases 412 0.99 0.298 10% 0.87 1.12    

QSPR/PLS 23 33 subclasses 24617      39 0.80 0.90 

   acidic nitrogen 421 0.97 0.41 20% 0.87 0.41  
  

   6 member N-heterocyclic 

bases 

947 0.93 0.60 20% 0.85 0.86  
  

QSPR/PLS 24  49   49 0.86  23 0.77 
 

QSPR/MLR 21  15 0.97 0.12    3 0.99
a
 0.10

a
 

QSPR/MLR 22 all subclasses        
  

   carboxylic acids 1122 0.81 0.42
b
 20% 0.81 0.43

b
  

  

   alcohols 288 0.82 0.76
b
 20% 0.81 0.78

b
  

  

QSPR/MLR  25 aromatic acids 74      33 0.99 0.27 

QSPR/LFER 17 monoprotic oxy acids 135 0.99 0.455    14  0.471 

Continuum 

Solvation 

27 carboxylic acids       16 0.69 0.72 

Anti-Connectivity 31  31   31 0.87 0.463  
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Method Ref. Class 

Training Set Test Set External Test Set 

 n
 

R
2 

RMSE n Q
2 

RMSE  n R
2 

RMSE 

Neural Network 26  12 classes >16000      665 0.83  

(ChemSilico)  primary amine 1100 0.95  20% 0.92   
  

  tertiary amines 870 0.92  811 0.80   
  

  monoprotic acids 1640 0.95  1640 0.88   
  

  aromatic nitrogen 1480 0.92  1367 0.80   
  

  alcohols 1302 0.88  1302 0.85   
  

Semiempirical/PLS 5  all   0.48
 

   350  0.81 

(Novartis In-House)  alcohols 202 0.87 0.58  0.80    
 

  amines 1403 0.89 0.49  0.84    
 

  anilines 311 0.90 0.49  0.78    
 

  carboxylic acids 681 0.90 0.34  0.86    
 

  imines 84 0.98 0.55  0.88    
 

  pyridines 397 0.95 0.58  0.86    
 

  pyrimidines 91 0.95 0.43  0.87    
 

Statistical Thermo.
            

Quantum Solvation 28 Bases 43 0.98 0.56
b 

   58  0.66 

(COSMO-RS) 29 Acids 64  0.98 0.49
b
       

QSAR, LEFR  

(SPARC) 

18 

19 

40 

 2500 0.99 0.36
b
    4338 0.99 0.37

b
 

Pfizer dataset
c
       123 0.92 0.78

b
 

Pfizer internal dataset
d
       537 0.80 1.05

b
 

       185
c
 0.84 1.15 

MARVIN 41,42     208
c 

0.98 0.38
b 

185
c
 0.88 1.03 

ACD/I-Lab v8.03 43  >31000      185
c
 0.90 0.93 

ADME Boxes 44        185
c
 0.93 0.69 

SMARTS pKa   1693 0.95 0.65 10% 0.91 0.80 185 0.94 0.68 

 45,46        112 0.77 1.59 
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Method Ref. Class 

Training Set Test Set External Test Set 

 n
 

R
2 

RMSE n Q
2 

RMSE  n R
2 

RMSE 

107
e
 0.89

e
 1.04

e
 

Consensus
f
         185 0.96 0.60 

In all training sets n refers to the number of pKa measurements; in the test sets n refers to the number of pKa measurements or 

percentage of the training set. 
a
 External set statistics were calculated from data presented in the referenced material. 

b
 Standard 

deviation. 
c
 It is unknown whether these molecules were used in the training set. 

d
 These molecules were unlikely to be found in the 

SPARC training set. 
e
 Results recorded after removing significant outliers from the referenced materials. 

f
 The consensus model used 

predictions from SPARC, MARVIN, ACD/I-Lab 8.03 and SMARTS pKa. 
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Finally, SMARTS pKa performed exceptionally well on the external test set, 

which was randomly selected from the uniformly diverse MACCS descriptor space 

described in the Methods section. The predictive R
2
 was 0.94 and RMSE = 0.68. In fact, 

we outperformed some respected online pKa calculators based on three standards: 

robustness, overall accuracy and fewest outliers. 

Both SMARTS pKa and ChemAxon‟s MARVIN pKa calculator plug-in were able 

to provide predictions for all compounds, while the other methods missed some. Note 

that SPARC was not designed to handle molecules containing selenium or silicon, which 

resulted in the missing prediction values. If one were to substitute oxygen for selenium 

and carbon for silicon, SPARC predicted the pKa with error less than 1.0 in most of the 

instances. SMILES for all compounds and their predicted pKa values from SMARTS pKa, 

SPARC, MARVIN, Advanced Chemistry Development (ACD)/I-Labs Web service 

ACD/ pKa 8.03 and ADME Boxes are available in the supplementary materials. A 

consensus model, having R
2
 = 0.96 and RMSE = 0.60, was derived using the mean of the 

three predictions with the smallest pKa discrepancies from each of the aforementioned 

five methods. Statistics for all methods are provided in Table 5.5 and depicted in Figure 

5.4. Table 5.6 summarizes the overall accuracy of the prediction methods as well as the 

consensus based on the number of compounds predicted within five ranges of error and 

missed predictions. 

Table 5.6. Evaluation of test set prediction errors: SMARTS pKa vs. on-line calculators 

pKa 

error 
SPARC MARVIN ACD 

ADME 

Boxes 

SMARTS 

pKa 

Consensus 

[0,1] 145 154 165 156 168 174 

(1,2] 26 23 10 14 12 7 

(2,3] 7 4 5 5 4 3 

(3,4] 1 1 1 1 1 1 

(4,) 1 3 3 0 0 0 

Miss 5 0 1 9 0 0 
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Figure 5.4. Scatterplots of the experimental vs. predicted pKa values for the 185 

compounds test set with SMARTS pKa, SPARC, MARVIN and the ACD/I-Labs Web 

service ACD/ pKa 8.03 and ADME Boxes. 
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A second external test set consisting of 112 compounds satisfying our filters from 

more recent literature was identified.
45,46

 Note, the primary pKa for the majority of these 

molecules has been previously calculated in a comparison study which included all of our 

benchmarking toolkits.
45

 Applying SMARTS pKa to this dataset resulted in an R
2
 of 0.77 

with RMSE of 1.59. The results are shown in figure 5.5. Removing the largest five 

outliers improves the statistics to 0.89 and 1.04, respectively. It follows that the chemical 

space occupied by the outlier molecules was poorly represented in the training set. 

 
Figure 5.5. Scatterplot of the experimental vs. predicted pKa values for 112 compounds 

outside the training and first test sets. Outliers with predicted values differing more than 3 

pKa units are depicted as open triangles. Three of the outliers are secondary amines 

covalently bonded to either carbonyl or sulfonyl moieties.  The others include 

triethenylamine and an aliphatic halogenated alcohol. 

 

The following is an example of a prediction made using our model. First, we 

selected a compound from the external test set, 4-(benzyloxy)benzoic acid. At the root of 

the decision tree the range of pKa values of all compounds in the training set is 17.32. The 

predicted value is the mean pKa of these compounds, 5.91 rounded to the nearest 

hundredth. The SMARTS string from our pool of SMARTS strings which optimally 



 

189 

 

splits these compounds into two sets according to the scoring function defined in eq 8 is 

[#G6H]C(=O), identifying a Group 6 atom attached to both a lone hydrogen and a 

carbonyl. The SMARTS string positively identifies 4-(benzyloxy)benzoic acid, and 

another SMARTS string is selected from the pool which best splits this subset of 

compounds. The decisions leading to a final pKa prediction for 4-(benzyloxy)benzoic 

acid are described in Table 5.7. Notice how the pKa range at each child node remains the 

same or decreases, providing an overall estimate of accuracy based on the compounds 

sharing the terminal node. 

Table 5.7. pKa prediction for 4-(benzyloxy)benzoic acid using the final model 

Node 

# 

SMARTS String is 

Identified
a 

has 

Child
b 

pKa of 

Node 

pKa 

Range 

1 [#G6H]C(=O) Yes Yes 5.91 17.32 

2 [OH][i](=O)*(~*)~* Yes Yes 3.19 5.96 

4 a[#X] Yes Yes 3.53 5.88 

8 *~*~*~*~*~*~*~*~*~* Yes Yes 3.22 3.99 

16 [i][#G6v2] Yes Yes 3.17 3.99 

32 [O][i]~[i]~[i]~[i]~[i]~[i]~[i]~A No Yes 3.64 2.92 

65 [OH][i]~[i](~*)~* Yes Yes 4.06 1.51 

130 [OH][i](=O)[i]~[i]~[i]~[i]~[i]-

A 

No Yes 4.34 0.69 

261 [CH3] No Yes 4.51 0.26 

507   No 4.47 0.08 
a
 Yes/No refers to the presence/absence of the SMARTS string in 4-(benzyloxy)benzoic 

acid. 
b
 Yes refers to non-terminal nodes having children, while no refers to the terminal 

or leaf node. 
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Figure 5.6. Close aromatic and aliphatic analogs with pKa values 

(experimental:predicted) using the SMARTS pKa method. a. but-2-enoic acid (4.68:4.56), 

b. 3-methylbut-2-enoic acid (5.12:5.14), c. 3-chlorobut-2-enoic acid (4.02:3.93), d. 

benzoic acid (4.21:3.83), e. 2-methylbenzoic acid (3.91:3.74), f. 2-chlorobenzoic acid 

(2.94:2.84) 

 

SMARTS pKa is capable of addressing issues of resolution for both aromatic and 

aliphatic analogs, as well as being able to discriminate between small differences in 

chemical structure.  See examples shown in figure 6. With over 700 terminal nodes in the 

decision tree, there is sufficient differentiating power for fine grain predictions over the 

pKa range of interest. Most terminal nodes contain only two compounds, but in the cases 

where a decision pathway terminates at a node with more than two compounds, there 

appears to be lessened sensitivity to small structural differences. This must be taken with 

the proverbial “grain of salt,” as the pKa range of all terminal nodes is minimized by the 

method, such that structural modifications with less influence on the pKa tend to group 

together.  SMARTS pKa is capable of high resolution caused my minor structural changes 
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that can have a significant influence on the pKa and tends to ignore structural changes that 

have minimal impact on the experimental pKa. 

The SMARTS pKa method has two other advantages: it is fast and it provides a 

pKa range for each prediction based on the maximum and minimum pKa of the molecules 

at each terminal node. Speed benchmarks show that it would take less than one hour to 

predict the pKa for one million compounds. Also, when providing predictions for the 

external test set, 81% of all experimental values fell within the intervals of prediction 

(IoPs) determined by the terminal nodes. The width of an IoP is the maximum minus the 

minimum pKa of the molecules at a terminal node, while the predicted value is the mean 

of the pKas and falls somewhere between the maximum and minimum values. By 

extending the maximum and minimum values of each terminal node by only 0.3 pKa units 

(i.e. increasing the pKa range by 0.6), this confidence interval for an accurate prediction is 

increased from 81% to 100%. See Table 5.8 for a description of the test set compounds 

that fell inside the IoP widths. 

Table 5.8. Analysis of molecules falling within IoPs 

IoP width
a Test Set 

Compounds 

Experimental 

values within 

IoP 

(0,1] 130 99 

(1,2] 34 39 

(2,3] 14 14 

(3,4] 3 3 

(4,9) 4 4 
a
 Interval of prediction width is in pKa units. 

Extending the IoPs by 0.6 increases 

confidence from 81% to 100%. 

 

5.4 Conclusions 

As a measure of strength of acidity or basicity, pKa is a major factor in chemical 

reactions and biological interaction of all compounds. It is relevant to physicochemical 
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properties, such as aqueous solubility and logD, as well as ADME.
47

 These facts, along 

with the immense and ever growing number of known and theorized chemical entities, 

make pKa a major focal point in the drug discovery pipeline. Hence we need to continue 

creating new predictive models and improving the efficiency and accuracy of existing 

prediction methods. 

Here we have presented a new predictive model for the pKa of monoprotic 

compounds. Having obtained 1881 unique monoprotic compounds with their pKa from 

Lange‟s 15
th

 Handbook of Chemistry and the Beilstein Database, we used a novel set of 

SMARTS strings derived from a training set of 1693 monoprotic compounds to create a 

decision tree where the leaf nodes provide pKa predictions and IoP, based on two or more 

training compounds identified by the respective leaf nodes. Leave-some-out (10%) cross 

validation study shows a respectable Q
2
 of 0.91 and RMSE of 0.80, while an external test 

set has R
2
 = 0.94 and RMSE = 0.68. Based on an overall comparison to methods 

described in literature and our own benchmark comparison, SMARTS pKa outperforms 

previous models which have been trained on larger datasets as measured by the Pearson 

correlation coefficient, RMSE, and for having the fewest and least outstanding outliers. 

One major difference between many prediction methods and SMARTS pKa is that 

only one training set was used to derive our model, whereas other methods have 

combined many models specific to ionizable site types to produce their final prediction 

utility. It is far easier to overfit a model based on a small training set, especially when 

using qualitative descriptors. This leads to the major flaws inherent in any prediction 

method: the quality and amount of data available from which to train the model. By not 

breaking up the training set into subsets based on different ionizable site type, we were 
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able to maintain the largest possible training set. Stepwise regression and the final 

decision tree led to the identification of 139 optimized SMARTS string descriptors. To 

prove that we had not overfit our model, we retrained the model 100 times, randomizing 

the pKa prior to each retraining, and showed that the R
2
 and RMSE of the randomized 

models were significantly worse than the non-randomized model. 

Combining information from multiple datasets can increase the size and diversity 

of the training set reducing the prediction error.
48

 Furthermore, with so much data being 

held proprietary, consensus models can lead to improved prediction accuracy and reduced 

overall errors. When considering the in silico evaluation of physicochemical properties of 

molecules in the pre and post screening stages of drug development, it is advisable to 

simultaneously examine multiple predictive models, as they are typically based on 

different training sets. 

Issues of breadth and expanding the chemical space of our model are currently 

being addressed. We are now curating the data for over 10000 unique mono- and 

polyprotic molecules from Beilstein and Lange. The intent is to first expand the model to 

predict primary pKa followed by a more comprehensive model capable of handling 

polyprotic molecules.  Finally, we intend to combine SMARTS pKa with MOE‟s SlogP 

to produce a utility for the prediction of logD. 

This work was presented at the 40
th

 Central Regional American Chemical Society 

meeting in Columbus Ohio in June of 2008 and has been published under the following 

reference: Lee, A. C.; Yu, J.-y.; Crippen, G. M. pKa Prediction of Monoprotic Small 

Molecules the SMARTS Way. J. Chem. Inf. Model. 2008, 48, 2043–2053. 
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Chapter 6 

Future Directions: 

Removing the Human Element from Physicochemical Property Prediction 

6.1 Introduction 

Decision trees have been widely used for data mining, organization, and 

classification. They are particularly useful for identifying simple relationships between 

variables, which can easily go unnoticed using other analytical techniques capable of 

modeling nonlinear data. Furthermore, decision trees are well suited to data mining tasks 

where little a priori knowledge is available and can be used to make predictions, even 

without a theoretical basis.  

There are two types of decision trees: classification and regression. While 

classification trees are useful for grouping types of outcomes and providing qualitative 

responses, regression trees can give a quantitative response. 

Recently, we investigated the predictive properties of regression trees for 

cytotoxicity and pKa. Decisions were made based on presence or absence of molecular 

structures encoded as SMARTS strings. The selection and modification of generalized 

SMARTS strings used in training the pKa model was largely manual, but the resulting 

regression tree was well-balanced and did not require the traditional post-pruning 

crossvalidation involved with optimization. Here we describe how the subjective
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selection of SMARTS strings could be replaced by the automatic generation of 

generalized SMARTS strings from the training compounds. As an example, aqueous 

solubility is suggested. 

The seminal work by Breiman on classification and regression trees (CART) laid 

the foundation for CART modeling,
1
 but optimizing tree structure using stepwise least 

squares regression was pioneered by Morgan and Sonquist in 1963 with their program 

Automatic Interaction Detection (AID).
2
 The main differences between the AID and 

CART models are the pruning and estimation processes. While the AID model allows for 

limited lookahead, the CART model does not place restrictions on the number of values a 

variable can take, allows for variable combinations, the handling of missing data, 

assessment of variable importance, and subsampling. In this work we will describe a 

method for predicting aqueous solubility that shares some of the advantages of both 

models by adapting regression trees to the domain of chemical structural fragments 

represented by SMARTS strings.
3
 

There are several advantages to using decision trees in predictive modeling. (1) 

Decision trees are simple, consisting of nodes and branches. At each node, a yes/no 

question is posed and the response effectively organizes the respective data. In any 

classification or regression scheme, the root node of the decision tree represents all data 

that needs to be organized, the decision path is the set of nodes and branches pertaining to 

a particular piece of data, and the leaf or terminal nodes contain the decisions/responses, 

as dictated by the model. (2) Decision trees are easy to interpret. Since the data is 

organized based on a series of <yes>/<no>, <is>/<is not>, or <has>/<has not> responses 

to some qualitative property, any decision path can be visualized, explaining how the 
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final result is achieved. This is not possible with neural networks, which act as black 

boxes, or with linear regression, which provides a simple linear equation consisting of 

weighted descriptors. In general, it is easy to comprehend decision tree models with only 

a simple explanation, as they are all based on Boolean logic. (3) Decision trees are 

capable of handling both quantitative and qualitative data. (4) They are robust, well 

suited for nonlinear data modeling, capable of ignoring insignificant or unnecessary 

descriptors, and always provide a result. Other models may fail to provide a result based 

on limited parameterization. (5) Like any other model, decision trees can be validated 

using statistical tests. Noting that crossvalidation has been criticized,
4
 it is always best to 

test new models on data that is external to the training set. (6) Most QSPR models, such 

as linear regression, are unable to return the exact property value when evaluating 

dependent variables from the training set. On the other hand, decision trees easily return 

lookup values, as long as the descriptor pool used to build the regression trees can 

completely grow the tree to uniquely identifying every dependent value in the training 

set. (8) Finally, decision trees are capable of providing predictions for vast amounts of 

data in a very short period of time. 

  Like all empirical prediction methods, decision trees have limitations. (1) 

Training an optimal decision tree is known to be an NP-complete problem, where NP 

stands for non-deterministic polynomial time. That is, a globally optimal solution to the 

problem exists, but the permutations of decision trees for a particular problem can be 

exponentially large and it may not be feasible to investigate every possible solution. 

Greedy algorithms are commonly used in order to more efficiently identify an acceptable 

solution by optimizing decisions locally for each node instead of the entire collection of 
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nodes. As greedy algorithms are used to improve computational efficiency, there is no 

guarantee that the globally optimal decision tree will be produced.
5
 Our implementation 

of this approach has several stages that lead to a relatively good and balanced decision 

tree. (2) Another concern is overfitting.
6
 As with any empirical method, there is the 

danger of creating a model which does not generalize the data well. When using a large 

set of independent variables (descriptors) to model a dependent variable, it is quite 

possible that the quality of the predictions using a decision tree model or any other 

empirical model will reflect chance correlations. While it is possible to validate whether 

or not a predictive model yields chance correlations,
7
 there are steps one can take to help 

avoid overfitting, such as pruning. Pruning is a way to mitigate the possibility of chance 

correlations due to overfitting. This is accomplished by reducing the number of nodes 

(decisions considered) in the decision tree. Two types of pruning exist: pre-pruning and 

post-pruning. Pre-pruning (forward pruning) avoids the generation of non-significant 

branches by halting the decision making process when no significant performance 

enhancement is gained by making further decisions. Common criteria for halting the 

model development along a specific decision pathway include reaching a predefined 

maximum path length, requiring some number of compounds greater than one at each 

node, and reaching a node where the property variance of the dependent variable is 

acceptably low. Post-pruning (backward pruning) is accomplished by using 

crossvalidation to identify non-significant branches for removal. Implementing 

crossvalidation can significantly reduce the explanatory power of a model. This is 

especially true when 10 or fewer folds are considered, as withholding molecules from the 

training set limits the scope of the potential descriptor space. Our regression trees only 
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consider pre-pruning based on node size and property variations. (3) Another issue is the 

Boolean exclusive-or (XOR) problem. Considering properties A and B, A XOR B is false 

whenever both properties are true or both are false. A XOR B is true when only one of A 

or B is true, but not both. The XOR can easily be modeled by a decision tree, requiring 

extra decisions and potentially unnecessary complication of the model, but the property is 

hard to express using only a single node. See figure 6.1. The problem arises due to 

combinatorial issues when considering multiple properties at a single node. 

 

Figure 6.1. a. The XOR decision made at a single node. b. XOR processed by two 

separate decisions complicates the decision tree by increasing the number decisions made 

and doubling the number of decision sub-pathways from the parent node. 

 

It is easy to see how a decision tree can become large. Approaches to solve this 

problem can involve changing the representation of the problem domain or using 

machine learning algorithms based on more expensive representations that involve 

statistical relational learning or inductive logic programming.
8
 To help resolve this issue, 

our model relies on pre-pruning techniques and the use of generalized SMARTS strings. 

(4) Perhaps the greatest problem for all empirically based prediction methodologies, 

including regression trees, is parameter selection. The object is to find the minimal set of 

parameters that provides the maximal correlation between observed and predicted values 

for new data. These parameters are not always intuitive. Pearlman designed the Diverse 

Solutions (DVS) software package to handle this sort of cheminformatics diversity 
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assessment. DVS is capable of defining a diverse and well distributed chemical space by 

identifying the best subset of BCUT descriptors, based on the least correlated eigenvalues 

of the Burden matrices.
9
 Using this subset of descriptors it is possible to select 

representative subsets of compounds from a large library, to compare the diversity of two 

or more compound libraries, and as a means to fill the “diversity voids” in one compound 

collection with compounds from other molecular libraries.
10

 In the methods section, we 

describe how automated machine learning techniques can be used to deal with these 

issues by extracting and modifying fragment based descriptors directly from the training 

set instead of relying on a predefined set of calculable chemical descriptors. 

6.2 Methods 

6.2.1 SMARTS and SMILES 

We have chosen to use molecular fragments as the descriptors for each decision in 

our regression trees, as it is possible to explore every possible fragment which can be 

extracted from a molecular training. The Molecular fragments are represented by 

SMARTS strings. SMARTS, an extension of Daylight Inc.‟s SMILES (Simplified 

Molecular Input Line Entry System),
11

 is a language used for describing molecular 

patterns.
12

 SMARTS strings extend the capabilities of simple fragmental based decisions 

as the atom types are generalizable. We used the SMARTS representations packaged 

within MOE, the Molecular Operating Environment.
13

 MOE SMARTS include unique 

atom type variations not included in other versions, such as the pi-bonding atom type [i] 

and an atom type representing the sum of explicit bond orders: [v<n>]. 

The flexibility of the SMARTS language is very attractive from a chemical data 

modeling point of view. The SMARTS language can express some XOR relations as seen 
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in figure 6.2. The descriptive power and general applicability to any molecular data set 

has led us to use SMARTS strings in our regression trees. Gepp and Hutter used decision 

trees to predict the likelihood that a molecule would induce Torsde de Pointes, or QT 

prolongation.
14

 They identified a SMARTS string that proved “to be the most significant 

descriptor in the decision tree approach from which guidelines for the design of safe 

compounds are suggested.” 

 

Figure 6.2. a. Ethanol and halogenated derivatives and their SMILES string 

representations. b. An example of a decision tree that can express an XOR relation with a 

single SMARTS string. Let A be 2-bromoethanol and B be 2-chloroethanol. Then 

OC[CH2][#G7] requires the 2-position carbon to have one halogen substituent and two 

hydrogens. 

 

6.2.2 Data Selection 

Even when dealing with small molecular datasets, a huge number of permutations 

can be expected. Here we suggest training and test sets for model building and 

assessment of regression trees. First, a competition recently advertised in the Journal of 

Chemical Information and Modeling offered a 101 small molecule data set for training, 

and another 32 molecules external to the training set for testing purposes.
15

 Experimental 
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data was provided for the training set only, while the assessment of predictions for the 

test set was done by the authors. Second, we have chosen to use solubility data from the 

PhysProp database
16

 for those compounds that have experimental data for aqueous 

solubility at 25 C, Henry‟s Law constant, and vapor pressure. Henry‟s law constant (KH) 

is related to aqueous solubility and vapor pressure by the following equation, where p is 

the vapor pressure (gas outside of the solution) and c is aqueous solubility (gas in the 

solution): 

 KH = p / c (1) 

The reason we chose this subset of the solubility data stems from the fact that Henry‟s 

Law constant and vapor pressure have previously been found to accurately model 

aqueous solubility.
17

 We have randomly selected 334 molecules to be used as the training 

set and 58 molecules as the test set. Finally, a third training set was selected from a 

combination of the Huuskonen
18

  and the Delaney
19

 data sets where 1495 molecules were 

accepted as a training set and 167 were set aside for external testing. Prior to selecting the 

training and test sets, we performed a gross curation of the data, only accepting molecules 

with experimental data that could be verified by consensus among the data sources or by 

literature evaluation in Beilstein. The mean of the consensus logS values were taken as 

the accepted experimental value among these four datasets. Values were accepted as long 

as two or more experimental measurements were in agreement within 0.5 log units. 

6.2.3 Training 

6.2.3.1 Comprehensive Fragmentation to Obtain Chemical Descriptors 

In order to sample the complete descriptor space, we fragmented each molecule in 

the training set. Every possible fragment of each molecule was considered and recorded 
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as a SMARTS string along with the respective total number of hits against the training set 

molecules. In order to express molecular fragments as SMARTS strings, we needed to 

create an SVL script to preserve the aromatic atom types. Scientific vector language 

(SVL) is a high level language integrated in MOE which expands the usability of its 

toolkits and facilitates model development. Using SVL, one is able to extract the 

SMILES string for any molecule actively displayed in the molecule builder. Problems 

arise when breaking aromatic rings, as the SMILES representation for the bonded 

aromatic atoms will be converted into alternating single and double bonds with aliphatic 

atom types. If one were to use this SMILES representation as a SMARTS string and 

screen the molecular database, it would not hit the molecule from which it was derived. 

To correct this problem, common atom types were replaced with rare earth atom types. 

The atom type change serves two purposes. First, it forces all bond types to SP3 

hybridization in MOE. Second, when extracting the SMILES representation, it allows for 

simple text parsing, so that the rare earth atom types can easily be changed back to their 

representative lower case aromatic (SMARTS) atom types after atom deletions have 

occurred. For example, if a molecule contained an aromatic ring represented by the 

SMILES o1cncc(OC)c1, those atoms would be forced to change into 

[Yb]1[Er][Tm][Er][Er](OC)[Er]1. At this point one or more of the ring atoms could be 

deleted. After the deletion, the SMILES string is then extracted in its canonical form, so 

that redundant fragments could be immediately eliminated from future consideration. For 

example, the following four SMILES strings are all correct representations of ethanol: 

OCC, C(O)C, C(C)O, and CCO. By forcing the canonical SMILES form of ethanol 

(OCC), duplicates can be efficiently identified and removed from consideration. Once 
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uniqueness has been verified for the extracted SMILES string, it can be parsed to yield 

the correct SMARTS representation by converting any rare earth atom types to their 

respective organic aromatic atom types.  

 

Figure 6.3. How to extract aromatic SMARTS strings in MOE. Step a: convert aromatic 

atoms to the lanthanide series. Step b: delete random atom(s) yielding a molecular 

fragment. Step c.: reconvert [Yb] → o, [Er] → c, and [Tm] → n. 

 

6.2.3.2 Screen Training Set Molecules to Eliminate Redundancies 

 Once the set of molecular fragments was obtained, it can be used to screen the 

molecular training set. This serves two purposes. First to eliminate any SMARTS strings 

with redundant hit profiles. Second, to identify the strings with close to „ideal‟ hit 

profiles. A SMARTS string with an „ideal‟ hit profile would evenly split the training set 

into two groups: one with molecules containing the SMARTS string and the other having 

molecules that do not contain the molecular fragment represented by the SMARTS string. 

6.2.3.3 Identify Predictive SMARTS String Descriptors 

 The number of SMARTS strings is derived from the fragmentation of a database 

of small molecules exponentially large. Fragmenting benzene (c1ccccc1) gives the five 

SMARTS strings: c, cc, ccc, cccc, ccccc. Fragmenting phenol gives the SMARTS strings 

from benzene plus: c1ccccc1, O, Oc, Occ, Occc, Occcc, Occccc, O(c)c, O(c)cc, O(c)cc, 
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O(c)ccc, O(c)cccc, O(cc)cc, O(cc)ccc. The number of fragments obtained from a 

molecule depends on atom count, branching, configurational constraints, and atom types. 

Increasing any one of these factors can lead to an exponential increase in the number of 

potential fragments. See table 6.1. One observation that is readily evident from the 

comparison of set size to number of fragments for each respective set is that the Contest 

training set has significantly higher diversity in fragment space than does the PhysProp 

training. This is due to the higher atom count of the molecules in the Contest training set. 

It seems that considering fragment count and overlap would be a novel way to assess the 

similarity between chemical libraries. 

Table 6.1. Relationship between potential fragment count and database size. 

Source Set Size # of Fragments Mean MW MW sd. 

Contest
a
 101 ~ 0.3 million 285.8 90.1 

PhysProp
b 

334 ~ 0.1 million 159.8 99.8 

H & D
c 

1495 ~ 1.8 million 206.4 100.8 
a 

Training set published in the JCIM contest. 
b
 Subset of the PhysProp database 

containing approximately 70% of the molecules having data for aqueous solubility, vapor 

pressure, and Henry‟s Law constant. 
c
 Combination of the Huuskonen and Delaney 

datasets. 

 

 For any molecular database containing an independent set of molecules, a set of 

SMARTS strings can be derived that uniquely identifies every molecule in the database. 

Considering the overwhelming number of descriptors produced by fragmentation, it is 

easy to envision many combinations of descriptors that perfectly fit any training set. As 

previously discussed in Chapter 2, a model that can perfectly fit a set of training data, 

tells nothing of that model‟s ability to predict new data. Therefore, it is important to 

identify a small subset of descriptors that can most accurately explain the model. Using 

regression trees, the minimum number of descriptors required to perfectly fit a set of data 

is log2 N rounded up, where N is the number of molecules in the training set. 
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Furthermore, several non-overlapping groups of descriptors fitting this description may 

be identified for any particular training set. 

 With regression trees, identifying the optimal set of descriptors can be 

accomplished by applying logical reduction techniques: 

a. Groups of descriptors uniquely identifying the molecules of the training set 

need to be mined from the training set fragments. Note, over 10 gigabytes 

(GB) of memory is required to maintain the hit profiles for each fragment 

obtained from training set 2. This exceeds the 4 GB of available RAM in our 

workstation, furthermore, it is also beyond the 8 GB capacity of MOE 

databases. Therefore, a significant amount of redundant molecular screening 

would be required for data sets of more than a few hundred molecules having 

molecular weight less than 500. 

b. Apply backward stepwise regression, as seen in section 5.2 sub-steps 1.5 – 

1.5.4, to the optimal descriptor set. 

i. If more than one optimal descriptor set exists, the resultant descriptors 

from the stepwise regression can be combined and backward stepwise 

regression can once again be performed to identify the SMARTS 

strings that have the most explanatory power for the particular training 

set being modeled. 

6.2.3.4 Refine and Expand Predictive SMARTS String Descriptors 

a. Predict the dependent variable based on molecular similarity, using the 

method described in section 5.2 sub-steps 1.4 – 1.5, where the optimal 

descriptor set is used for fingerprint based predictions. 
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b. Identify new predictive SMARTS strings. This step is very similar to that 

described in section 5.2 sub-steps 1.6 – 1.6.4 and will lead to the development 

of a refined set of SMARTS strings which fit the model well. While the new 

SMARTS string additions will be less „ideal‟ than the current pool of 

SMARTS strings, they will be more ideal for the molecules identified by a 

specific fingerprint. The newly identified SMARTS strings will serve to 

reduce the experimental property variance and improve the overall fit of the 

model, while minimizing the number of new additions to the pool of 

SMARTS strings considered in the regression tree. 

i. Identify groups of training set molecules predicted to have the same 

value for the dependent variable, but exhibit a large variance for the 

experimental value. 

ii. Generate all potential molecular fragments for this subset of 

molecules. 

iii. Identify the molecular fragment which would improve the r
2
 statistic if 

included in the fingerprint. 

iv. Repeat steps i.–iii. until the r
2
 is above some specified value (0.96) 

with no significant outliers (greater than one log unit). These are only 

suggested values based on our previous model for predicting pKa. 

6.2.3.5 Grow the Regression Tree 

a. Follow the process discussed in section 5.2.2 sub-section 2.1 to grow the 

initial decision tree and identify the best weight for the „accuracy‟ factor, 

which is responsible for optimizing the fit of the training set. 
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6.2.3.6 Fine Tune the Regression Tree by Generalizing SMARTS String Descriptors 

a. Identify the leaf node with the highest experimental property variance. 

b. Perform reverse stepwise regression from leaf to root. 

i. Fragment the SMARTS string responsible for the decision at the 

parent node. 

ii. Randomly substitute one or more generalized MOE atom types for the 

specific atom types in each SMARTS string fragment and rescore each 

decision according to the methodology used to grow the regression 

tree. 

iii. Add the SMARTS string that results in the best score to the pool of 

SMARTS strings considered when growing the regression tree. If the 

score does not improve, repeat step ii. allowing a maximum of three 

iterations. If no improvements in the score can be identified, randomly 

select one generalized SMARTS strings having the same score as the 

original to the pool of SMARTS. 

iv. Retrain the regression tree.  

v. Predict the dependent variable for all training molecules. As a 

SMARTS string may be used more than once to process a decision in 

the regression tree, the addition of new more general descriptors can 

affect more than one decision pathway. Therefore, if the r
2
 and RMSE 

improve or remain the same, maintain only the SMARTS strings used 

in the training process for further consideration, otherwise disregard 

the new additions. 
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vi. Repeat this procedure for the next higher parent node until the root is 

reached. 

vii. Repeat this procedure until each decision pathway has been 

completely examined and generalized or some threshold variance 

(within 0.4 log units) for the experimental dependent variable at each 

leaf is reached or cannot be improved upon.  

6.2.3.7 Test for Overfitting Using Dependent Variable Randomizations 

a. Randomize the dependent variables for the molecules in the training set. 

b. Retrain the regression tree. 

c. Predict the dependent variable for the training set molecules. 

d. Record the r
2
 and RMSE statistics. 

e. Repeat randomization test 100 times, and assess the randomization results. 

The r
2
 and RMSE statistics for the non-randomized model need to be 

respectively higher and lower than the randomized model in order to show 

that the predicted values are not due to chance correlations and overfitting. 

6.2.3.8 Validation: Test on External Data 

6.3 Conclusions 

One way to improve our methodology might be to consider decision graphs. 

Using decision trees, all decision pathways start at the root node and terminate at some 

leaf by way of the Boolean AND operator. Decision graphs that can solve the XOR 

problem would use the Boolean OR operator to join two or more pathways using 

Minimum Message Length (MML).
20

 Furthermore, decision graphs have been 

dynamically trained, where new attributes are allowed to occur in different places within 
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the graph,
21

 much the same as in our regression trees. By generalizing the coding scheme, 

models with fewer leaves and improved accuracy may be possible. It appears that 

generalizing the SMARTS strings has afforded us some of the advantages inherent in 

decision graph models, namely the ability to minimize the number of decisions and 

descriptors used. 

Another well documented methodology that may prove useful with our fragment 

based analysis is that of bagging predictors.
22

 Here simplicity and interpretability are 

sacrificed for accuracy. Bagging predictors would lead to the derivation of multiple 

aqueous solubility predictors, which in the end would be used together as an aggregate 

predictor. The combined model would average over the multiple versions created by 

making bootstrap replicates of the training set and using these as the new training sets. 

According to Breiman, “bagging goes a long way toward making a silk purse out of a 

sow‟s ear.” However, thus far it is our experience that SMARTS trained regression trees 

are capable of outperforming similar regression forest methodologies, albeit different sets 

of descriptors were considered.
23

 

In this chapter we have described how the human element can be removed from 

the derivation of regression trees capable of physicochemical property prediction, 

provided that a well curated and diverse molecular data set with experimental property 

values exists. We suggest that the methodology be applied to aqueous solubility data, as 

this has been the focus of recent attention in literature. Several data sources (PhysProp, 

literature, and Beilstein) have been mined to facilitate data curation. Furthermore, a 

recent competition was held by the Journal of Chemical Information and Modeling.
24

 

Here 100 molecules with experimental measurements for aqueous solubility were 
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presented as training data, and the participants were expected to send in predictions for 

32 other small molecules for which the experimental data was not divulged. While we 

feel that it is unlikely that any empirical model can achieve good predictions based on 

such a small training set, this provides a means for comparison of the accuracy of our 

regression tree model to that of other robust methodologies. 
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Chapter 7 

Conclusions 

There is a great need for fast, accurate, and robust models for physicochemical 

property predictions. To answer this need, we have introduced a methodology capable of 

a uniform structure based analysis, which can model and self validate for any property. 

We have been able to demonstrate high accuracy in the case of monoprotic pKa 

prediction. To date, we have not seen any other automated application capable of self 

training that considers the entire set of molecular substructures in a molecular training 

set. Our automated regression tree stores all potential unique molecular fragments as 

SMARTS strings, and selects the optimal subset for model building purposes. 

Furthermore, our tool has taken machine learning to another level by enabling the 

automated generalization of molecular fragments to fine tune the final regression tree. 

One major difference between many prediction methods and our regression tree 

based methodology is that only one training set was used to derive each model, whereas 

other methods have combined many models specific to congeneric series of molecules in 

order to produce their final prediction utility. It is far easier to overfit a model based on a 

small training set, especially when using qualitative descriptors. Our methodology allows 

us to maintain the largest possible training set by not breaking it into subsets based on 

chemical classes. While it may appear that regression trees use an abnormally large 

number of descriptors, one needs to take into consideration that a decision path uses far
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fewer descriptors (on the order of log2 N, where N is the number of molecules in the 

training set) than are used to derive the entire tree. Furthermore, we have applied steps 

similar to Topliss evaluation of identifying chance correlations in QSARs to our 

regression trees for cytotoxicity, pKa, and aqueous solubility to verify that overfitting has 

not occurred. 

The limiting factors for every experimental methodology are and will always be 

time and money. Whether it be the costs and time associated with obtaining or 

synthesizing the molecules of interest or a simple titration, it is not physically possible to 

explore and experimentally quantify even a small portion of chemical space. Domains are 

increased and bottlenecks are widened by computational resources, but limitations 

remain. Even if a single physicochemical property, such as aqueous solubility, could be 

calculated for the theoretical pool of 10
60

 small molecules with a supercomputer 

consisting of 10,000 1THz (~10
12 

Hz) CPUs, it would still take on the order of 10
44

 

seconds to perform calculations for all the molecules. Finally, this completely disregards 

the much slower speed of storage, required for the characterization of chemical space and 

the multitude of conceivable descriptors which could be calculated. As in drug discovery, 

we must focus our attention on a target, framing the problem at hand. 

The main advantage of in silico prediction is that physical samples are not needed. 

Still, new compounds need to be synthesized for experimental evaluation of 

physicochemical properties to better understand chemical space and expand the diversity 

of the molecules available to update existing models and develop new prediction 

methods. 
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As emphasized in chapter 2, the root of all good empirically based methodologies 

for physical property predictions is the data. Refining chemical datasets can facilitate the 

process of drug development by helping to minimize the high attrition rate due to poor 

ADMET during the clinical phases. The largest problems with current public domain 

physicochemical chemical property and biological activity data are the lack of curation 

procedure and quality control. We have shown that even in the cases where curated 

datasets are available, one must carefully evaluate the data in order to ensure the greatest 

accuracy for data mining purposes. 

 Quantity, chemical diversity and quality are the key components for all molecular 

training sets. Combining information from multiple datasets can increase the size and 

diversity of the training set and potentially reduce the prediction error. To this effect, 

there needs to be a public collaboration beyond the scope of Beilstein and the Chemical 

Abstracts Service to create and curate a universal database of all existing experimental 

data. Curation is a tremendous issue when considering the scope of literature dealing with 

data redundancy, procedural variations, and human error. Moreover, guidelines need to 

be established, such that the data for each property and future experimental 

measurements are made and recorded in uniform format, such as the extrapolation of 

pKas to zero ionic strength for H2O. Big Pharma can aid the cause by agreeing to provide 

benchmark scores on external data, but there needs to be some information sharing 

regarding the chemical diversity of their internal test set. A test based on 1000 molecules 

which are part of a congeneric series may tell nothing about the robustness and accuracy 

of a particular model, as poor predictions for a congeneric series of molecules are likely 

to be caused by a lack of chemical representation in the training set. Finally, test data 
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needs to be diverse and external to the training set, otherwise no true evaluation can be 

made. 

In chapters 3–5 simple preprocessing and curation procedures were discussed. 

Curation involved identifying conflicting experimental results, eliminating gross outliers, 

and significant literature searching. Principal component analysis was used as a means to 

validate the dimensionality of a large subset of the NCI60 both with and without imputed 

values. The same steps can be used to refine and validate screening data from multiple 

assays, whether they be a subset of the NCI60, a combination of the NCI60 and other 

biological screens, or any selection of HTS drawing their activity data from a common 

set of substances.  

Finally, there is also a need for a real benchmark so that a true comparison of 

methodologies can be made. We have also explored the use of consensus models in 

relation to pKa prediction and shown how they can lead to improved prediction accuracy 

and reduced overall errors. However, we understand that this improvement may be due to 

the inclusion of test set data in the training sets in some models with undisclosed training 

data. For the time being, we must set aside the notion that consensus models for 

physicochemical property predictions are more accurate, as this has yet to be 

experimentally determined. Until a group of predictive models for a particular property 

are retrained on exactly the same data, there is no way to ascertain which model will 

perform the best for the respective property. If we can reach the stage where several 

models can be trained and tested on the same respective data sets, then and only then can 

consensus models truly be evaluated. 
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One final thought: automated regression trees may be well suited to the task at 

hand. Our prediction utility for monoprotic small molecules is currently available on the 

Chemical Computing Group’s SVL Exchange website, and we predict that the 

methodology will be appearing in industrial applications in the near future. 

 

. 
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