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Abstract 
 

Leptin and insulin are key hormonal regulators of energy balance and glucose 

homeostasis.  SH2B1 is a PH- and SH2-domain containing adapter protein that promotes 

both leptin and insulin signaling in cells.  Disruption of Sh2b1 in mice causes obesity and 

diabetes, providing genetic evidence that SH2B1 is an essential regulator of energy 

balance and glucose homeostasis.  Here, the contribution of SH2B1 in brain, peripheral 

tissues, and islets to the regulation of insulin sensitivity and glucose homeostasis was 

examined in vivo.  Reconstitution of full length SH2B1, but not the SH2 domain alone, in 

neurons in Sh2b1-deficient mice was sufficient to prevent the development of obesity and 

insulin resistance.  By contrast, expression of a mutant form of SH2B1 that lacked a 

functional SH2 domain in neurons of wild type mice promoted weight gain and impaired 

whole body insulin sensitivity.  Thus, SH2B1 in the brain indirectly regulates glucose 

homeostasis by controlling energy balance and body weight.  To address the role of 

peripheral SH2B1 in the regulation of insulin sensitivity and glucose metabolism, mice 

expressing SH2B1 in the brain but not in peripheral tissues (TgKO mice), were fed a high 

fat diet (HFD).  Deletion of SH2B1 in peripheral tissues did not alter HFD-induced 

obesity, but significantly exacerbated HFD-induced hyperglycemia, hyperinsulinemia 

and glucose intolerance in TgKO mice.  Insulin signaling was attenuated in muscle, liver, 

and white adipose tissue from HFD-fed TgKO mice.  In cultured cells, SH2B1 binds to 

the insulin receptor, IRS-1 and IRS-2, and enhances insulin sensitivity by both promoting 

receptor activity and by inhibiting tyrosine dephosphorylation of IRS proteins, providina 

mechanism by which SH2B1 likely promotes insulin action in these tissues.  SH2B1 also 

promotes glucose homeostasis independent of central leptin action.  Leptin-deficient 

(ob/ob) mice with Sh2b1 haploinsufficiency (Sh2b1+/-ob/ob) developed severe 

hyperglycemia and glucose intolerance.  Plasma insulin levels and pancreatic insulin 

content were reduced in Sh2b1+/-ob/ob mice.  SH2B1 is highly expressed in pancreatic 

islets, and these data suggest that SH2B1 in islets may regulate glucose homeostasis by 

 vii



 viii

promoting insulin biosynthesis and secretion.  Together, these findings indicate that 

SH2B1 regulates insulin sensitivity and glucose homeostasis by multiple mechanisms in 

vivo. 



Chapter 1 

 

Introduction 

 

Overnutrition and increasingly sedentary lifestyles have led to an increased 

prevalence of obesity and obesity-associated metabolic diseases, including type 2 

diabetes (or non-insulin dependent diabetes mellitus (NIDDM)).  Obesity is primarily 

caused by long-term energy imbalance, which occurs when energy (food) intake exceeds 

metabolic expenditure.  Excess energy is stored as trglyceride in adipose tissue, causing 

an increased in adiposity and weight gain.  Increased adiposity that is associated with 

excessive weight gain is now considered a driving force for the development of type 2 

diabetes.  Increased adiposity is associated with an increase in pro-inflammatory cytokine 

production and a state of low grade, chronic inflammation.  Systemic increases in pro-

inflammatory cytokines causes impaired insulin action in peripheral tissues (insulin 

resistance).  Insulin resistance contributes to the development of impaired glucose 

tolerance and hyperglycemia, and may eventually cause -cell failure, the determinant 

type 2 diabetes. 

Both obesity and type 2 diabetes are complex polygenic disorders, and the 

interaction of multiple factors contributes to the onset and severity of both diseases.  

Interactions between environmental risk factors (e.g. increasing sedentary lifestyle, 

overnutrition, and aging) and genetic susceptibility contribute to the development of 

obesity and diabetes.  While the environmental component is difficult to quantify, it is 

clear that genetic susceptibility is a key determinant.  Factors associated with obesity and 

diabetes, including dyslipidemia, hypertension, and adiposity, are highly heritable in man 

(220).  However, single gene defects only explain a small proportion of all cases of 

obesity and diabetes (88, 89, 172, 189).  These findings suggest that dysfunction or 

aberrant regulation of multiple genes, which by themselves have relatively small effect, 

likely interact with obesogenic and/or diabetogenic factors to promote energy imbalance 
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and/or impaired glucose tolerance.  Therefore, identification and characterization of 

obesity- and diabetes-susceptibility genes promises to increase not only our basic 

understanding of the pathophysiology involved in these disease processes, but also 

increase the potential therapeutic options for treatment of these comorbidities.  Mounting 

evidence suggests that the adapter protein SH2B1 is a candidate susceptibility gene for 

obesity and diabetes in man, and a novel positive regulator of both leptin and insulin 

action in mammals. 

Central leptin action regulates energy balance and body weight 

Body weight is normally maintained within a narrow range by a sophisticated 

neuroendocrine system that constantly monitors energy storage, availability, and 

consumption.  When energy intake (food intake) exceeds metabolic demand 

(expenditure), excess energy is assimilated into triglyceride in adipose tissue.  This leads 

to increased adiposity and weight gain.  If this energy balance is not corrected, obesity 

and obesity-associated metabolic diseases ensue. 

Communication between adipose tissue, which is the primary energy storage 

depot in mammals, and the brain is important for the long-term regulation of energy 

balance and body weight.  While the primary function of adipose tissue is to store excess 

energy as neutral lipid, adipose tissue is also a key endocrine organ.  In obese individuals, 

adipose tissue becomes the largest endocrine tissue in the body.  Adipose tissue secretes 

many cytokines (also referred to adipokines), including leptin.  Leptin- or leptin-receptor 

(LEPR) deficiency causes morbid obesity and metabolic syndrome in both animals and 

humans (42, 156, 214, 219, 250), indicating that leptin plays an essential role in the 

regulation of energy balance and body weight.  Leptin is secreted in direct proportion to 

adipose mass and serum leptin levels rise as triglyceride accumulates in adipose depots 

(32, 86, 176, 213).  Thus, leptin levels signal the relative storage and availability of 

energy. 

The brain senses leptin and various other metabolic signals and integrates these 

signals into appropriate physiological responses to regulate energy homeostasis and body 

weight.  Central administration of recombinant leptin reduces food intake and body 

weight in rodents (32, 85, 213).  Neuron-specific deletion of LEPR in mice results in 

obesity (43), whereas neuron-specific restoration of functional LEPR rescues the obese 
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phenotype in LEPR-null (db/db) mice (51, 122).  These data indicate that leptin acts on 

neurons in the brain to suppress food intake and promote energy expenditure. 

Leptin acts on multiple neuronal populations in the brain 

LEPR mRNA is highly expressed in multiple regions of the brain, including the 

arcuate nucleus (ARC), the ventromedial (VMH), dorsomedial hypothalamic nuclei 

(DMH), ventral tegmental area (VTA), hippocampus, and the brainstem (38, 62, 63, 71, 

84, 97, 149, 151, 202, 203).  Leptin induces expression of c-Fos, a marker of neuronal 

activity, and activates signal transducer and activator of transcription 3 (STAT3) in 

hypothalamic neurons known to control energy intake and expenditure, such as the ARC, 

VMH, and DMH (60, 62, 101, 162).  However, restoration of LEPR expression 

specifically in the ARC corrects hyperphagia and obesity in LEPR-null rats, suggesting 

that the ARC is a key leptin target (202).  Two subpopulations of neurons in the ARC 

(POMC-neurons and AgRP-neurons) have emerged as critical mediators for leptin action. 

POMC-neurons coexpress two anorexigenic neuropeptides: proopriomelanocortin 

(POMC) and cocaine- and amphetamine-regulated transcript (CART) (61, 202).  POMC 

is proteolytically cleaved to generate -melanocyte stimulating hormone (-MSH) which 

activates melanocortin-3 and melanocortin-4 receptors (MC3R and MC4R) (35, 67, 72, 

102, 191).  MC3R and MC4R are G protein-coupled receptors that are highly expressed 

in the hypothalamus, especially in the paraventricular hypothalamus (PVN).  Deletion of 

either MC3R or MC4R results in leptin resistance and obesity in mice (35, 102).  

Additionally, genetic defects in either the POMC or the MC4R genes are linked to obesity 

in humans (42, 124). 

AgRP-neurons coexpress two orexigenic neuropeptides: agouti-related protein 

(AgRP) and neuropeptide Y (NPY) (83, 202).  NPY potently stimulates feeding behavior 

and food intake (212).  AgRP is a potent antagonist of both MC3R and MC4R (174).  

Hypothalamic AgRP-neurons are required for feeding in adult mice (82, 143).  

Interestingly, leptin has opposing effects on POMC- and AgRP-neurons in the 

hypothalamus.  Leptin stimulates excitability and expression of POMC and CART in 

POMC-neurons; conversely, leptin inhibits both excitability and NPY/AgRP expression 

in AgRP-neurons (49, 61, 123, 155, 202, 203, 209, 213, 215). 
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The differential regulation of excitability in NPY/AgRP and POMC neurons can 

be explained, at least in part, by differential modulation of KATP channels by leptin and 

other factors, including insulin and glucose (135, 175, 209, 210).  Leptin-induced 

hyperpolarization of NPY/AgRP-neurons inhibits neuronal activity, which is supported 

by the observation that leptin fails to induce c-Fos expression in NPY/AgRP-neurons 

(60).  Others have proposed that leptin directly increases the action potential frequency in 

POMC neurons by both regulating a nonspecific cation channel and by reducing the 

inhibitory tone of POMC neurons, which is imposed by GABA release from either 

NPY/AgRP neurons or inhibitory interneurons within the ARC (48, 49).  However, 

POMC neurons have also been shown to be glucose- and insulin-responsive (103, 135, 

175, 240), and it is likely that POMC neurons integrate multiple metabolic cues and 

synaptic inputs with leptin signaling to regulate energy balance. 

Surprisingly, selective deletion of functional LEPR in either AgRP- or POMC-

neurons results in mild obesity (9, 226).  Deletion of LEPR in both AgRP- and POMC-

neurons has an additive effect in terms of body weight and adiposity; however, the 

metabolic phenotypes in these double mutant mice are still milder than in systemic 

LEPR-deficient db/db mice (226).  Interestingly, whereas db/db mice remain severely 

hyperphagic throughout life, mice lacking LEPR in both AgRP- and POMC- neurons 

initially exhibit periweaning hyperphagia (4-6 wks of age), but food intake gradually 

returns to wild type levels in adulthood (226).  These observations suggest that leptin also 

acts on extraarcuate neurons to regulate energy balance and body weight.  In the VMH, 

leptin activates steroidogenic factor-1 (SF1)-positive neurons and selective deletion of 

LEPR in this population increases susceptibility to diet-induced obesity (21, 54).  

Additionally, leptin suppresses motivated food-seeking behaviors by activating STAT3 in 

dopaminergic and GABAnergic neurons in the VTA (71, 97).  These distinct leptin-

responsive neurons may act redundantly, in parallel, and/or synergistically with 

hypothalamic neurons to fully mediate leptin action.  Unraveling the complexities of 

these and other leptin-regulated neuronal networks will not only provide further insight 

into regulation of energy balance and feeding behavior by leptin, but will also likely 

increase our understanding of the role of leptin in other aspects of physiology, including 

reproduction and motivated behaviors as indicated by recent reports (133, 134, 164). 
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Leptin stimulates multiple signal transduction pathways 

The LEPR gene produces multiple leptin receptor isoforms (a, b, c, d, and e) via 

alternative mRNA splicing (27, 64, 69, 151).  All isoforms have an extracellular leptin-

binding domain, but only the longest form, LEPRb, contains a full-length intracellular 

domain required for cellular signaling (70).  LEPRa lacks the entire cytoplasmic domain 

and is thought to mediate leptin transport across the blood brain barrier (94, 95).  Genetic 

deficiency of LEPRb results in profound leptin resistance and morbid obesity in animals, 

indicating that LEPRb is required for leptin action (14, 36, 41, 77, 128).  LEPRb belongs 

to the gp130 family of cytokine receptors (14, 36, 77).  It constitutively binds to JAK2, a 

member of the Janus kinase (JAK) family of tyrosine kinases.  Leptin stimulates LEPRb 

dimerization, resulting in JAK2 activation and autophosphorylation (10, 52, 66, 232).  

JAK2 also phosphorylates LEPRb and various downstream signaling molecules on 

tyrosines (25, 76, 113).  JAK2 phosphorylates Tyr985, Tyr1077 and Tyr1138 in the 

cytoplasmic domain of LEPRb, which then act as docking sites for downstream signaling 

molecules (10, 90, 136).  Replacement of these three tyrosines with phenylalanines in 

LEPRb induces marked leptin resistance and obesity in mutant mice, indicating that 

phospho-Tyr985, -Tyr1077 and/or -Tyr1138 mediate the activation of key downstream 

pathways; however, the mutant mice are less obese and less hyperglycemic than LEPRb-

deficient db/db mice, indicating that LEPRb can mediate some of leptin’s action 

independent of phosphorylation on these tyrosines (107). 

STAT family members are SH2 domain-containing transcription factors located 

in the cytoplasm in quiescent cells.  Cytokine-stimulated tyrosine phosphorylation of 

STATs induces homo- or heterodimerization, nuclear translocation and transcriptional 

activation (98).  Leptin stimulates tyrosine phosphorylation of STAT1, 3, 5 and 6 in 

cultured cells (14, 77, 192, 217); however, only STAT3 and STAT5 phosphorylation has 

been documented in the hypothalamus of leptin-treated rodents (80, 148, 225).  Tyr1138 in 

LEPRb is within an YXXQ motif, a consensus binding motif for STAT3 (211).  In 

response to leptin, STAT3 binds to phospho-Tyr1138, allowing JAK2 to phosphorylate and 

activate STAT3.  Mutation of Tyr1138 abolishes the ability of leptin to activate the STAT3 

but not other pathways in both cultured cells and mice (10, 13, 232).  Disruption of the 

STAT3 binding site in LEPRb, or deletion of STAT3 in leptin-responsive neurons, causes 
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severe hyperphagia and morbid obesity in mice (12, 13, 50, 73, 79, 107, 178, 241).  These 

data indicate that the LEPRb/JAK2/STAT3 pathway in the brain is required for the anti-

obesity actions of leptin. 

Leptin also stimulates phosphorylation of LEPRb on Tyr1077 which recruits 

STAT5 and mediates STAT5 phosphorylation (80, 90, 163).  Deletion of both STAT5A 

and STAT5B in the brain causes leptin resistance, hyperphagia and obesity, but to a 

lesser extent than STAT3 deletion (130).  These findings suggest that activation of the 

LEPRb/JAK2/STAT3 pathway is also required for the anti-obesity actions of leptin. 

Leptin promotes the activation of phosphoinositide-3 kinase (PI3K) in cultured 

cells and in the hypothalamus (18, 116, 240, 253).  JAK2 phosphorylates insulin receptor 

substrate-2 (IRS-2) on tyrosines, which recruits the p85 regulatory subunit of PI3K.  

Inhibition of the PI3K pathway in the brain blocks the ability of leptin to reduce food 

intake and weight gain in rodents (170, 252).  Likewise, deletion of IRS-2, either 

systemically or in hypothalamic neurons, results in hyperphagia and obesity in mice (31, 

125, 140, 145).  PI3K activity is negatively regulated by PTEN (Phosphatase and Tensin 

homolog deleted on chromosome Ten), and deletion of PTEN specifically in LEPR-

expressing neurons increases leptin sensitivity and reduces adiposity (180).  Several 

proteins have been implicated as downstream targets of the JAK2/IRS-2/PI3K pathway.  

These include FOXO1, phosphodiesterase 3, and ATP-sensitive potassium channels (115, 

117, 154, 179, 252).  Collectively, these findings indicate that the JAK2/IRS-2/PI3K 

pathway is required for leptin’s anorexigenic actions. 

SH2-containing protein tyrosine phosphatase 2 (SHP2) is a ubiquitously 

expressed cytoplasmic protein-tyrosine phosphatase that contains two N-terminal SH2 

domains and one C-terminal phosphatase domain.  SHP2 binds via its SH2 domain to 

phosphorylated Tyr985 in LEPR and leptin stimulates ERK1/2 activation via 

phosphorylation of SHP2 in cultured cells and the hypothalamus (22, 34, 136, 184, 216, 

248).  Neuron-specific deletion of SHP2 results in obesity (248), and pharmacological 

inhibition of ERK1/2 in the hypothalamus also abrogates the ability of leptin to inhibit 

food intake and block weight gain (184).  Thus, the SHP2/MAPK pathway is involved in 

mediating leptin’s anorexigenic action in vivo. 
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Our laboratory has also reported that leptin stimulates the STAT3 and the MAPK 

pathways in cells that are genetically deficient of JAK2 (106).  The Src tyrosine kinase 

family members appear to be involved in mediating JAK2-independent leptin signaling 

(15, 106, 157).  Interestingly, overexpression of kinase-inactive JAK2 enhances leptin 

signaling in JAK2-deficient cells, suggesting that JAK2 functions both as a tyrosine 

kinase and as an adaptor to transduce leptin signals (106).  The JAK2-dependent and 

JAK2-independent pathways appear to act synergistically to mediate leptin responses 

(106).  However, the physiological importance of the JAK2-independent pathway has not 

been verified in animals. 

These diverse leptin signaling pathways form a network that regulates neuronal 

activity in the hypothalamus to fully mediate the physiological responses to leptin.  This 

signaling network may be differentially regulated in different hypothalamic neurons with 

varying degrees of cross talk and synergy between individual pathways.  Additionally, 

individual pathways in this network may contribute differently to the regulation of 

various populations of LERPb-expressing neurons. 

Central leptin resistance contributes to obesity 

Obese individuals produce excessive amounts of leptin (hyperleptinemia), yet 

leptin apparently fails to reach or activate its hypothalamic targets (45, 87, 144).  

Moreover, with the exception of rare monogenic forms of leptin deficiency, leptin 

treatment fails to induce weight loss in nearly all cases of obesity (93).  These 

observations have given rise to the concept that leptin resistance is a driving force in 

pathogenesis of obesity in man.  Many factors likely contribute to leptin resistance, 

including impaired leptin transport into the brain and impaired activation of leptin signal 

transduction pathways. 

Blood-borne proteins, including leptin, are separated from the brain by the blood-

brain barrier (BBB), which is formed by tight junctions in the cerebral endothelium 

(199).  Leptin is transported across the BBB by a saturable transport mechanism (11).  A 

role for LEPRa in leptin transport has been suggested based on the observation that 

LEPRa is highly expressed in brain microvessels and in the choroid plexus (24, 94, 95, 

110).  However, circumventricular organs lack tight junctions characteristic of the BBB 

(199).  Many of the leptin-responsive neurons in the hypothalamus lie near the highly 
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vascularized median eminence, which is outside the BBB.  This raises the possibility that 

leptin may also freely diffuse from the circulation to leptin-sensitive neurons in the 

hypothalamus.  Regardless, obese humans have a reduced cerebrospinal fluid-to-serum 

ratio for leptin, suggesting that reduced leptin transport into the brain contributes to 

obesity (33, 58, 201).  Moreover, intracerebroventricular leptin injections more potently 

inhibit food intake than peripheral leptin administration, particularly in obese rodents (32, 

85, 86, 176, 227).  Collectively, these findings suggest that impaired leptin transport into 

the brain contributes to leptin resistance and may be a driving force in the development of 

obesity; however, it remains unclear whether leptin transport defects predispose to 

obesity or are acquired with the onset of obesity. 

Leptin resistance may also be caused by diminished leptin signaling in 

hypothalamic neurons.  Leptin-stimulated activation of the JAK2/STAT3 and the 

JAK2/IRS-2/PI3K pathways in hypothalamic neurons is negatively regulated by 

suppressor of cytokine signaling 3 (SOCS3) and protein tyrosine phosphatase 1B 

(PTP1B) (16, 26, 28, 37, 112, 165, 245).  Leptin stimulates SOCS3 expression via the 

JAK2/STAT3 pathway in cultured cells as well as in the hypothalamus (26).  SOCS3 

provides a critical negative feedback mechanism to prevent over-activation of leptin 

signaling pathways in the brain.  SOCS3 binds to JAK2 and inhibits JAK2 activity (26).  

Additionally, SOCS3 binds to phospho-Tyr985 in LEPRb and inhibits leptin signaling (28, 

66).  As expected, neuron-specific deletion of SOCS3 enhances leptin sensitivity in mice 

(158), and SOCS3 haploinsufficiency protects mice from dietary fat-induced leptin 

resistance and obesity (100).  Furthermore, mutation of Tyr985 in LEPRb, the binding site 

for SOCS3, increases leptin sensitivity in mice (29).  SOCS3 expression is significantly 

increased in the hypothalamus in leptin resistant animals, suggesting that increased 

SOCS3 expression contributes to leptin resistance (23, 65, 161, 177).  

PTP1B binds to and dephosphorylates JAK2, thereby inhibiting leptin signaling 

(112, 165, 245).  PTP1B is expressed in the ARC, VMH and DMH (245).  Both systemic 

and neuron-specific deletion of PTP1B improves leptin sensitivity and reduces adiposity 

in mice (16, 37, 245).  The expression of hypothalamic PTP1B is increased in leptin 

resistant animals, suggesting that PTP1B also contributes to leptin resistance (160, 231).  

Interestingly, overexpression of the JAK2 binding protein, SH2B1, counteracts PTP1B-
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mediated inhibition of leptin signaling in cultured cells (185).  Therefore, cellular leptin 

sensitivity may be determined, at least in part, by a balance between positive (e.g. 

SH2B1) and negative (e.g. SOCS3 and PTP1B) regulators.  

The SH2-B family of adapter proteins mediate cell signaling 

The SH2-B family of adapter proteins consists of three members (SH2B1, SH2B2 

(APS) and SH2B3 (Lnk)) that are encoded by different genes (147).  SH2B proteins are 

structurally similar in that all have an N-terminal dimerization domain (DD), multiple 

proline-rich regions, a central pleckstrin homology (PH) domain, and a C-terminal Src 

homology 2 (SH2) domain.  Additionally, SH2B1 also has a nuclear localization signal 

(NLS) between the DD and PH domains (146). 

The expression of SH2B3 is restricted to hematopoietic tissues and SH2B3 

negatively regulates hematopoiesis (218, 228, 243).  By contrast, SH2B1 and SH2B2 are 

expressed in multiple tissues, including brain, skeletal muscle, liver, white and brown 

adipose tissue, pancreas, and spleen (56, 153, 185).  Four forms of SH2B1 (, , , and ) 

and two forms of SH2B2 ( and ) have been identified (137, 168).  All four variants of 

SH2B1 have the complete DD, NLS, PH and SH2 domains but their respective N-termini 

differ due to alternative mRNA splicing (168).  Because the key functional domains are 

conserved, SH2B1 variants are predicted to have similar and/or overlapping functions.  

SH2B2 also has conserved DD, PH and SH2 domains; however, a naturally occurring 

truncated form of SH2B2 (SH2B2) has also been identified (137).  SH2B2 has both 

DD and PH domains, but lacks the C-terminal SH2 domain (137). 

SH2B1 and SH2B2 proteins have been implicated as signaling molecules for a 

host of growth factors and cytokines.  This list includes leptin, insulin, growth hormone 

(GH), insulin-like growth factor 1 (IGF-1), fibroblast growth factor (FGF), platelet-

derived growth factor (PDGF), nerve growth factor (NGF), brain-derived neurotrophic 

factor (BDNF), and glial-cell-line-derived neurotrophic factor (GDNF) (55, 120, 121, 

139, 183, 190, 193-195, 229, 251).  In general, SH2B1 and SH2B2 enhance cell 

signaling, which promotes various cellular responses ranging from mitogenesis to 

glucose uptake to neurite outgrowth and neuronal differentiation. 

Identification of SH2B1 as an endogenous leptin sensitizer 
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To examine the physiological functions of SH2B1, two groups have 

independently disrupted the Sh2b1 gene in mice by homologous recombination (56, 173).  

SH2B1-knockout (KO) mice are obese and develop insulin resistance (56, 138, 185).  

SH2B1-KO are hyperleptinemic and leptin treatment fails to induce weight loss (185), 

indicating that SH2B1 is required for leptin action in vivo.  Interestingly, neuron-specific 

reconstitution of SH2B1 in KO mice rescues obesity by improving leptin responses 

(186).  Moreover, overexpression of SH2B1 in neurons prevents diet-induced leptin 

resistance and obesity (186).  Collectively, these data indicate that SH2B1 in the brain 

plays an essential role in the regulation of energy balance and suggest that SH2B1 is a 

physiologically relevant leptin signaling molecule. 

SH2B1 promotes leptin signaling 

SH2B1 has been shown to promote leptin signaling in cells by multiple 

mechanisms.  Leptin stimulates JAK2 autophosphorylation on Tyr813, and SH2B1 binds 

via its SH2 domain to phospho-Tyr813 to markedly enhance JAK2 activity (139).  

Importantly, the SH2 domain is both necessary and sufficient to promote JAK2 activity in 

response to leptin and to promote the activation of the leptin signaling pathways 

downstream of JAK2 (139).  Additionally, SH2B1 also directly binds to IRS-1 and IRS-2 

(55).  Leptin stimulates the formation of JAK2/SH2B1/IRS protein complexes, thereby 

promoting JAK2-mediated phosphorylation of IRS proteins and subsequent activation of 

the PI3K (55, 139, 185).  SH2B1 forms homodimers through its N-terminal dimerization 

domain (DD) (53, 169), which may also provide a platform to initiate the formation of 

JAK2/SH2B1/IRS protein complexes and/or to stabilize these complexes, in response to 

leptin.  Whether these mechanisms account for SH2B1-regulation of leptin action and 

control of energy balance in vivo is unknown.  In this Dissertation, I generated two 

transgenic mice models to further understand the mechanisms by which SH2B1 promotes 

energy balance in mice.  Specifically, I tested whether the SH2 domain of SH2B1 is 

necessary and sufficient for regulation of energy balance and body weight. 

SH2B1 is a candidate gene for human obesity 

Jamshidi and coworkers screened obese human populations for mutations in the 

SH2B1 gene (105).  They identified a single nucleotide polymorphism (SNP) within the 

human Sh2b1 loci that was strongly associated with serum leptin levels, total fat content, 
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and body weight in a European population of female twins (105).  Recently, two unbiased 

genome wide scans independently identified SNPs within the human Sh2b1 loci that were 

associated with indices of obesity (188, 221).  These findings implicate Sh2b1 as a 

candidate gene for obesity in man, particularly when coupled to the findings that SH2B1-

deficiency causes obesity in mice and overexpression of SH2B1 promotes leptin 

signaling. 

Additional physiological roles of SH2B1 

The obesity phenotype of SH2B1-KO mice, identification of SH2B1 as a leptin 

signaling molecule, and recent reports that the Sh2b1 locus is associated with leptin 

resistance and obesity in humans all provide strong evidence that one of the primary 

physiological functions of SH2B1 is to control energy balance, adiposity, and body 

weight.  Restoring SH2B1 expression specifically in neurons prevents energy imbalance, 

weight gain, and obesity in SH2B1-KO mice, indicating that central SH2B1 plays a 

critical role in the regulation of energy homeostasis in mice.  Moreover, by controlling 

energy balance and adiposity, SH2B1 in the brain indirectly promotes systemic insulin 

sensitivity to influence lipid and glucose metabolism.  However, SH2B1 is expressed in 

multiple tissues (skeletal muscle, white and brown adipose tissue, liver, pancreas, spleen, 

heart, and gonads) and may have multiple roles in mammalian physiology. 

Insulin controls blood glucose homeostasis.  SH2B1-KO mice develop severe 

insulin resistance and type 2 diabetes (56, 185).  Additionally, SH2B1 is expressed in 

insulin-target tissues and in the pancreas (56, 185).  In cells, SH2B1 promotes insulin, 

IGF-1 and GH signaling (56, 159).  This raises the intriguing hypothesis that SH2B1 in 

peripheral tissues and in the pancreas contributes to the regulation of glucose metabolism 

by promoting both insulin action and/or insulin production. 

Hormonal regulation of glucose metabolism 

Glucose is the major energy source for mammalian cells, and the precise 

regulation of blood glucose levels is required to sustain life.  Hypoglycemia (low blood 

glucose) impairs cellular metabolism and function, whereas hyperglycemia (elevated 

blood glucose) leads to glucose toxicity and irreversible tissue damage. 

The primary glucose sensor is the endocrine pancreas, which secretes two 

hormones that regulate glucose homeostasis: glucagon and insulin.  Glucagon is produced 
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and secreted by -cells in the islets of Langerhans.  Glucagon prevents prolonged 

hypoglycemia during fasting by promoting endogenous glucose production.  The liver, 

which is the primary target of glucagon, generates glucose from glycogen 

(glycogenolysis) and from de novo synthesis (gluconeogenesis) using gluconeogenic 

metabolites. 

Insulin is secreted by the -cells in the islets of Langerhans in response to 

elevations in blood glucose, which occurs acutely after feeding.  Insulin decreases blood 

glucose both by promoting glucose disposal and by counteracting the effects of glucagon 

in the liver.  Insulin promotes glucose disposal in skeletal muscle and adipose tissue by 

stimulating glucose uptake (via glucose transporter 4 (GLUT4)).  In skeletal muscle and 

liver, insulin promotes glycogen synthesis to facilitate glucose storage.  Insulin also 

suppresses the transcription of key gluconeogenic enzymes in the liver, thereby 

counteracting the effects of glucagon.  Thus, the physiological responses to insulin 

culminate in the rapid normalization of blood glucose levels following a meal; however, 

when these physiological responses are impaired or inadequate, blood glucose levels 

remain elevated (hyperglycemia) in the absorptive state.  This impaired or inadequate 

response to insulin is referred to as insulin resistance.  Insulin resistance in skeletal 

muscle and adipose tissue reduces the rate of glucose disposal, and hepatic insulin 

resistance results in increased hepatic glucose production. 

Peripheral insulin resistance contributes to the development of type II diabetes 

Insulin resistance precedes the development of a cluster of metabolic diseases, 

and is the primary defect underlying the development of type II diabetes (206, 207).  

More than 18 million Americans have Type II diabetes mellitus (or non-insulin 

dependent diabetes mellitus (NIDDM)), currently the sixth leading cause of death in the 

United States (75).  Insulin resistance has also been implicated in the development of 

cardiovascular disease, obesity, and polycystic ovarian syndrome.  Alarmingly, an 

estimated 70 to 80 million Americans may have some degree of insulin resistance (121), 

which increases the likelihood of developing these morbidities. 

In the prediabetic state, the insulin-producing cells of the pancreas (-cells) 

compensate for peripheral insulin resistance by secreting more insulin.  Thus, 

compensatory hyperinsulinemia is also a key feature and marker of peripheral insulin 
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resistance.  In most individuals, both hyperglycemia and hyperinsulinemia contribute to 

-cell dysfunction and failure (insulin insufficiency), which is the final step in the 

development of type II diabetes.  At that point, the intrinsic ability to regulate glucose 

homeostasis is lost, and administration of pharmacological levels of insulin (insulin 

therapy) is required to regulate blood glucose homeostasis. 

Mechanistically, systemic insulin resistance primarily arises secondary to 

impaired cellular insulin signaling in insulin-target tissues (206, 207).  Thus, 

understanding the cellular and molecular mechanisms by which insulin effectively 

regulates glucose homeostasis, how other hormones and cytokines influence cellular 

insulin sensitivity, and how these mechanisms are disrupted or impaired in insulin 

resistant individuals is not only an interesting pursuit to basic scientists, but also 

clinically relevant, as future treatments for multiple metabolic-related diseases may 

depend on these findings.  The key proteins that mediate insulin signal transduction have 

been identified and studied in both cell culture and animal models. 

Insulin activates the IRS/PI3K/Akt pathway to control glucose homeostasis 

The insulin receptor (IR) is a member of the tyrosine-kinase receptor family and 

is comprised of two extracellular -subunits and two membrane spanning -subunits 

linked by disulfide bonds.  Insulin binding to the -subunits induces a conformational 

change in the heterotetrameric receptor, activating the intrinsic tyrosine kinase within the 

 subunit.  The -subunit is then autophosphorylated on multiple tyrosine residues, which 

serve to both enhance tyrosine kinase activity and to create docking sites for intracellular 

signaling proteins. 

Signaling molecules that have either phosphotyrosine binding (PTB) or Src 2 

homology (SH2) domains bind to phosphotyrosines within the -subunit of the IR.  Upon 

binding, many of these proteins become substrates for the IR and are subsequently 

phosphorylated on multiple tyrosine residues by the activated kinase domain.  Shc, 

SH2B2(APS), and insulin receptor substrate (IRS) proteins are well characterized 

substrates for the insulin receptor.  Insulin stimulated tyrosine phosphorylation of these 

proteins initiates the activation of multiple intracellular signaling cascades. 

Shc phosphorylation triggers the activation of the Ras/Raf/MAPK pathway; this 

pathway is critical for insulin- and insulin-like growth factor 1 (IFG-1)-induced 
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mitogenesis (198).  In cultured adipocytes, insulin-stimulated SH2B2(APS) 

phosphorylation initiates the activation of the Cbl-B/TC10 pathway, which is sufficient 

for the translocation of GLUT4 vesicles to the plasma membrane (39, 141); however, the 

physiological significance of this pathway has not been firmly established as SH2B2 

knockout mice are surprisingly insulin sensitive (153).  Although the Shc/Ras/Raf/MAPK 

and SH2B2(APS)/Cbl-B/TC10 pathways are activated by insulin, the contribution of 

these pathways to the regulation of blood glucose by insulin in vivo are thought to be 

relatively insignificant.  Instead, the metabolic actions of insulin are primarily mediated 

through tyrosine phosphorylation of IRS proteins and subsequent activation of the 

PI3K/Akt pathway (44).  Activation of the IRS/PI3K/Akt pathway increases glucose 

transport into skeletal muscle and adipose tissue.  Additionally, activation of the 

IRS/PI3K/Akt pathway stimulates glycogen synthesis in muscle and liver, suppresses 

gluconeogenic enzyme transcription in the liver, and inhibits lipolysis in adipose tissue. 

The IRS/PI3K/Akt pathway is activated when the regulatory subunit of PI3K 

(p85) binds via its SH2 domains to phosphotyrosines within IRS proteins.  Binding of 

p85 to phosphorylated IRS proteins induces a conformational change in the holoenzyme 

to activate the catalytic subunit (p110).  PI3K phosphorylates membrane 

phosphatidylinositides to produce phosphatidylinositol 3,4,5-trisphosphate (PIP3).  PIP3 

accumulation recruits the serine/threonine-protein kinase Akt to the membrane (152), 

where it is phosphorylated on Thr308 and Ser473 by 3-phosphoinositide-dependent 

protein kinases (PDK1 and PDK2) (6, 236, 242).  Once activated by serine/threonine 

phosphorylation, Akt serves as the principal effector kinase in the PI3K-pathway, 

activating multiple cellular processes to promote glucose uptake and utilization and to 

suppress endogenous glucose production. 

Akt stimulates glucose uptake in skeletal muscle and adipose by activating the 

translocation and fusion of GLUT4 containing vesicles to the plasma membrane; this 

increases the rate of facilitated glucose diffusion into these tissues.  Additionally, Akt 

stimulates fatty acid, protein, and glycogen synthesis by regulating the activity and 

transcription of key enzymes involved in these processes; this further promotes cellular 

utilization of blood glucose.  Finally, Akt suppresses endogenous glucose production by 

inhibiting the transcriptional activity of the forkhead transcription factor FOXO1 in the 
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liver (167, 182, 187).  Because FOXO1 activates the transcription of rate-limiting 

gluconeogenic enzymes (phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-

phosphatase (G6P)) in liver, Akt-mediated inhibition of FOXO1 suppresses the rate of 

endogenous glucose production. 

Insulin-stimulated activation of the IRS/PI3K/Akt signaling pathway is vital to the 

regulation of glucose homeostasis in vivo.  In mice models of genetic- and diet-induced 

obesity, insulin-stimulated activation of PI3K-mediated signaling is diminished in the 

liver, skeletal muscle, and adipose tissue; these defects correlate with systemic insulin 

resistance and hyperglycemia (92, 150, 171, 254).  Genetic inactivation IRS-1 (108) or 

IRS-2 (126, 239), but not IRS-3 (142) or IRS-4 (68), results in peripheral insulin 

resistance in mice.  Homozygous deletion of either isoform of the catalytic subunit of 

PI3K (p110 or p110) is embryonic lethal (19, 20); however, mice heterozygous for 

both p110 isoforms (p110+/- and p110+/-) are insulin resistant (30).  Finally, deletion of 

Akt2 also disrupts glucose homeostasis (74), whereas Akt1- and Akt3-deficient mice 

have impaired growth but remain insulin sensitive (40, 57).  Although mice models have 

confirmed the essential role of PI3K-dependent signaling in the regulation of insulin 

sensitivity, the development of insulin resistance is a complex process and the underlying 

cellular mechanisms are not completely understood. 

Impaired IR kinase activity and/or reduced tyrosyl phosphorylation of IRS 

proteins are common cellular defects associated with the development of insulin 

resistance.  IR and IRS proteins are negatively regulated by various intracellular 

molecules, including PTP1B, Grb10, Grb14, SOCS1, SOCS3, JNK, PKC, S6K and 

IKK (1, 4, 6, 9-11, 13, 14, 25, 27-29, 33-35, 37, 44, 47).  The relative contribution of 

these negative regulators to the progression of insulin resistance has been extensively 

studied (2, 17, 46, 59, 78, 96, 114, 119, 196, 200, 205, 208, 222-224, 230, 235, 244, 255).  

For example, PTP1B, negatively regulate insulin action by dephosphorylating critical 

phosphotyrosines within the IR and IRS proteins (78, 197, 204); this serves to inactivate 

the receptor and to disrupt IRS-p85 association.  Elevated phosphatase activity may 

contribute to the pathogenesis of type II diabetes by inappropriately inhibiting insulin 

action.  In vivo, transgenic expression of PTP1B in skeletal muscle impairs insulin action 
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and disrupts glucose homeostasis (246), whereas Ptp1b-deficient mice are hypersensitive 

to insulin and have improved glycemic control (245). 

The proinflammatory environment that is associated with chronic obesity also 

drives insulin resistance.  Increased adiposity leads to elevated circulating levels of free 

fatty acids, adipose-derived cytokines, proinflammatory cytokines, and various other 

metabolites.  For example, levels of circulating tumor necrosis factor (TNF)- are 

significantly increased in obesity.  TNF- activates c-Jun NH2-terminal kinase (JNK) in 

skeletal muscle, liver, and white adipose tissue (1, 99).  JNK phosphorylates IRS-1 and 

IRS-2 on serine/threonine residues.  Unlike tyrosine phosphorylation, which promotes the 

activation of the PI3K/Akt-dependent signaling, serine/threonine phosphorylation of IRS-

1 or IRS-2 uncouples insulin signaling (1, 131).  Specifically, phosphorylation of IRS-1 

on serine 307 disrupts PTB domain function, inhibiting IRS-1 from binding to the IR.  

Serine phosphorylation also promotes ubiquitination and proteosome-mediated 

degradation of IRS proteins, limiting the pool of available substrate and hindering the 

ability of insulin to activate the PI3K/Akt pathway (233).  Recent data indicate that 

SH2B1 may be a positive regulator of insulin signaling in vivo (4, 5, 55, 56). 

Putative role of SH2B1 in the regulation of insulin signaling 

As discussed above, genetic deletion of SH2B1 results in severe insulin resistance 

and type 2 diabetes in mice (8).  However, SH2B1-KO mice are also severely obese due 

to leptin resistance (138, 185, 186), raising the possibility that insulin resistance may be 

secondary to obesity in SH2B1 null mice.  Preliminary data generated by our laboratory 

indicate that peripheral SH2B1 may be involved in the regulation of glucose homeostasis 

in vivo. 

First, the ability of exogenous insulin activate the IRS/PI3K/Akt pathway in 

skeletal muscle and liver is impaired in SH2B1-KO mice (56).  Second, preliminary 

hyperglycemic-euglycemic clamp studies indicate that insulin-stimulated glucose 

disposal and suppression of hepatic glucose production is impaired in SH2B1-KO mice 

(K. Cho and L. Rui, unpublished).  Finally, insulin fails to promote glucose uptake in 

adipocytes isolated from obese SH2B1-KO and lean TgSH2B1-KO male mice (M. Li, K. 

Cho., and L. Rui, unpublished).  Reconstitution of SH2B1 expression ex vivo improves 

insulin stimulated glucose uptake in SH2B1-deficient adipocytes (K. Cho and L. Rui, 
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unpublished), suggesting that SH2B1 cell autonomously promotes insulin action in 

adipocytes.  However, it is unclear whether peripheral SH2B1 directly regulates insulin 

sensitivity in insulin target tissues in vivo independent of body weight and increases in 

adiposity.  

Data generated from cell culture models also suggest a role for SH2B1 in insulin 

signaling.  Our laboratory previously reported that insulin signaling is enhanced by 

SH2B1 (8).  SH2B1 overexpression increases IR autophosphorylation and tyrosine 

phosphorylation of IRS-1 and IRS-2 in cultured cells (56, 137).  Similar observations 

were independently reported by two other groups (4, 249).  SH2B1 binds via its SH2 

domain to phospho-Tyr1158 in the activation loop of IR (121, 168).  Tyr1158 

phosphorylation occurs early in the activation of the insulin receptor kinase (234, 237, 

247), suggesting that binding of the SH2 domain of SH2B1 to phospho-Tyr1158 likely 

occurs early in the activation of the insulin signaling cascades.  This interaction may 

promote activation of IR by stabilizing the kinase domain of IR in an active 

conformation.  Consistent with these observations, SH2B1 complexes, which are 

immunoprecipitated from cell extracts, reportedly promote IR autophosphorylation by 

reducing the Km for ATP (249).  The same report also concluded that SH2B1 

dimerization was required for its stimulation of IR autophosphorylation, because 

treatment of cells with dimerization domain peptide mimetics inhibited IR 

autophosphorylation and downstream pathways (249).  Alternatively, SH2B1-IR 

interaction may facilitate IR binding to its substrates or prevent the binding of negative 

regulators, such as PTP1B and Grb7/10.  Additionally, SH2B1 directly binds to IRS-1 

and IRS-2 in vitro (55), further suggesting that SH2B1 may be involved in the activation 

of the IRS/PI3K/Akt pathway.   

In this dissertation, we examine the role of peripheral SH2B1 in the regulation of 

insulin action and glucose homeostasis.  We generated a mouse model in which 

recombinant SH2B1 is specifically expressed in the brain of SH2B1 null mice (TgKO) 

using transgenic approaches (186).  Since these mice have normal leptin sensitivity but 

lack SH2B1 in peripheral tissue, we were able to isolate the effects of SH2B1 deficiency 

on insulin signaling in skeletal muscle, liver, and adipose (Chapter 3).  Because the 

mechanism(s) by which SH2B1 promotes activation of the IRS/PI3K/Akt pathway are 
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not entirely cleat, we further examined the regulation of insulin signaling by SH2B1 

using cell culture and in vitro assays (Chapter 3). 

Putative role of SH2B1 in pancreatic  cell function 

Insulin resistance in peripheral tissues and insufficient insulin secretion (-cell 

dysfunction) contribute to the development of impaired glucose tolerance and 

hyperglycemia, hallmarks of type 2 diabetes.  Insulin is secreted by the -cells in the 

islets of Langerhans in response to elevations in blood glucose.  In the prediabetic state, 

-cells initially compensate for insulin resistance by increasing both insulin production 

and secretion (91, 109, 111, 181).  This compensatory mechanism, due to -cell 

proliferation (or islet hyperplasia), is the reason why insulin resistant individuals have 

both prolonged hyperglycemia and hyperinsulinemia (elevated insulin levels) following a 

glucose challenge.  However, the compensatory capacity of the -cell is limited and -

cells eventually fail to secrete adequate amounts of insulin to regulate blood glucose 

levels, and insulin therapy (administration of exogenous insulin) is needed to normalize 

blood glucose levels and prevent the development of diabetic complications 

(cardiovascular disease, neuropathies, renal failure, and blindness). 

Multiple growth factors, including insulin, insulin-like growth factor-1 (IGF-1), 

growth hormone (GH), and prolactin promote and support -cell function (47, 81, 104, 

118, 127, 129, 132, 166, 238, 239).  Many of the intracellular signaling pathways through 

which these growth factors modulate -cell function have been studied.  IGF-1 and 

insulin activate the IRS/PI3K/Akt pathway, which inhibits FOXO1 activity to promote 

Pdx1 expression (118, 127, 132, 166, 238, 239).  Pdx1 is a master transcriptional 

regulator in -cells that regulates the expression of genes necessary for -cell function, as 

well as those needed for proliferation and survival (3, 7, 8, 127).  Additionally, activation 

of the JAK2/STAT pathways by GH and prolactin promote -cell function and 

proliferation (47, 81, 104, 129).   

SH2B1 is expressed in the pancreas (56, 185).  SH2B1 is expressed at high levels 

- and -cells within the islet (S. Oka and L. Rui, unpublished data).  Additionally, 

SH2B1-KO mice are sensitive to the -cell toxin streptozotocin (STZ) (D. Ren, S. Oka, 

and L. Rui, unpublished data).  As discussed above, SH2B1 promotes the activation of 
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both the IRS/PI3K/Akt and JAK2/STAT pathways in insulin-, IGF-1-, and GH-treated 

cells and these growth factors support -cell survival and function (5, 25, 37, 40, 43).  

Therefore, SH2B1 may play a role in -cell function, survival, and/or proliferation.  

However, little is known about the physiological role of SH2B1 in the - or -cells.  In 

Chapter 4, we began to explore the role of SH2B1 in the pancreas in vivo, and provide 

evidence that SH2B1 promotes -cell function in genetically obese mice. 

Dissertation overview 

Leptin and insulin are key hormonal regulators of energy balance and glucose 

homeostasis.  SH2B1 is a PH- and SH2-domain containing adapter protein that promotes 

both leptin and insulin signaling in cells.  Disruption of Sh2b1 in mice causes obesity and 

diabetes, providing genetic evidence that SH2B1 is an essential regulator of energy 

balance and glucose homeostasis.  In this dissertation, the contribution of SH2B1 in 

brain, peripheral tissues, and islets to the regulation of body weight, energy balance, 

insulin sensitivity and glucose homeostasis were examined in vivo. 

The aims of this Dissertation were: 

1. To determine whether the SH2 domain of SH2B1 in neurons is required and/or 

sufficient for the ability of SH2B1 to regulate energy balance in mice (Chapter 2). 

2. To determine whether SH2B1 in peripheral tissues (skeletal muscle, liver, and 

white adipose tissue) directly promotes insulin action and regulates glucose homeostasis 

independent of central regulation of energy balance, body weight, and adiposity during 

diet-induced obesity (Chapter 3 and Chapter 4). 

3. To define the molecular mechanisms by which SH2B1 promotes insulin signaling 

(Chapter 3).  

4. To determine whether SH2B1 in the pancreas contributes to the regulation of 

glucose homeostasis by regulating -cell function (Chapter 4). 
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Chapter 2 

 

The SH2 Domain of SH2B1 in Neurons is Necessary but not Sufficient for 

Regulation of Body Weight and Glucose Homeostasis in Mice 

 

Abstract 

SH2B1 enhances leptin signaling in the hypothalamus to control energy balance 

and body weight in mice.  In cultured cells, the SH2 domain of SH2B1 alone is sufficient 

to promote JAK2 activation and leptin signaling.  Conversely, SH2 domain defective 

mutants of SH2B1 and SH2B2 function as dominant negatives and impair the ability of 

SH2B1 to enhance leptin signaling.  Here, we examined the function of the SH2 domain 

of SH2B1 in vivo.  Two transgenic mice models expressing either N-terminal truncated 

SH2B1 (amino acids 504-670) or a dominant negative form of SH2B1 (R555E) in 

neurons were generated to test whether the SH2 domain of neuronal SH2B1 is necessary 

and sufficient for the regulation of body weight.  N-terminal truncated SH2B1 (504) 

contained an intact SH2 domain and C-terminus of SH2B1, but lacked the dimerization 

domain, PH domain, and nuclear localization sequence (NLS).  Expression of 504 in 

neurons was not sufficient to prevent the development of obesity and obesity-associated 

metabolic disease in SH2B1-knockout (KO) mice, suggesting that multiple functional 

domains within SH2B1 are required for neuronal SH2B1 to control energy balance and 

body weight in mice.  Reconstitution of R555E in neurons also failed to prevent the 

development of obesity in SH2B1-KO mice.  By contrast, overexpression of R555E in 

the brain of wild type mice induced obesity and caused insulin resistance.  Collectively, 

these data indicate that a functional SH2 domain is necessary but not sufficient for 

regulation of energy balance and insulin sensitivity by neuronal SH2B1.  Moreover, these 

data suggest that dominant negative mutations within Sh2b1 could contribute to the 

pathogenesis of obesity. 
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Introduction 

Body weight is normally maintained within a narrow range by a sophisticated 

neuroendocrine system that controls energy (food) intake and energy expenditure.  The 

brain senses multiple signals of nutrient storage and availability and integrates those 

signals into appropriate physiological and behavioral responses to maintain energy 

homeostasis.  Obesity is caused by energy imbalance which occurs when long term 

energy (food) intake exceeds metabolic demand.  Excess energy is assimilated into 

triglyceride and stored in white adipose tissue, leading to increased adiposity and weight 

gain.  Leptin is secreted by adipocytes in direct proportion to white adipose mass, and 

conveys information about peripheral energy storage and availability to the 

hypothalamus.  Leptin suppresses food intake and promotes energy expenditure (8, 25, 

47, 56).  Paradoxically, serum leptin levels are elevated in obese individuals (14, 26, 35), 

suggesting that leptin resistance may underlie the pathogenesis of obesity.  Moreover, 

with the exception of rare monogenic forms of leptin deficiency, leptin treatment fails to 

induce weight loss in most cases of obesity (27).  Leptin resistance may be due to either 

defective leptin transport across the blood brain barrier (9, 18, 55) or impaired leptin 

signaling in hypothalamic neurons (3-5, 18, 40). 

Leptin signaling is mediated by the long form of the leptin receptor (LepRb), 

which is expressed in multiple neuronal subpopulations within the hypothalamus and 

other regions of the brain (19-21).  Leptin binding to LepRb activates the receptor-

associated tyrosine kinase, JAK2, which phosphorylates LepRb and downstream 

signaling molecules.  Signal transducer and activator of transcription 3 (STAT3) is 

activated by JAK2 in leptin-stimulated neurons (1, 2).  Disruption of the JAK2STAT3 

pathway, either by neuron-specific disruption of the STAT3 gene or genetic disruption of 

the STAT3 binding site in LepRb (Tyr1138Ser1138 knock-in mutation), results in 

obesity (15, 24).  JAK2 also activates PI3-kinase in leptin-stimulated neurons by 

recruiting and phosphorylating insulin receptor substrate-2 (IRS-2) (11, 16, 42, 45, 50).  

Systemic deletion of the IRS-2 gene or pharmacological inhibition of PI3-kinase activity 

results in obesity in mice models (34, 46, 57).  Activation of these two pathways may be 

negatively or positively regulated by cellular proteins that either inhibit (e.g. SOCS3 and 

PTP1B) or promote (e.g. SH2B1) JAK2 activity. 
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Leptin-stimulated activation of the JAK2STAT3 and the JAK2IRS-2/PI3-

kinase pathways in hypothalamic neurons is negatively regulated by SOCS3 and PTP1B 

(3, 5, 7, 13, 29, 38, 43, 61).  Expression of both SOCS3 and PTP1B is significantly 

increased in the hypothalamus in leptin resistant animals (22, 40, 41, 59), whereas 

neuron-specific deletion of SOCS3 or PTP1B improves leptin sensitivity (3, 38).  The 

JAK2-binding protein SH2B1 promotes leptin action in the hypothalamus (50, 51), and 

SH2B1 can restore leptin signaling in cells that overexpress PTP1B (50).  Thus, leptin 

sensitivity may be controlled by a balance between positive (e.g. SH2B1) and negative 

regulators (e.g. SOCS3 and PTP1B). 

SH2B1 is a PH and SH2 domain containing protein belonging to the SH2B family 

(10, 37).  SH2B1 promotes leptin-stimulated activation of both the JAK2STAT3 and 

the JAK2IRS-2/PI3-kinase pathways in cells and in the hypothalamus of mice (16, 31, 

33, 50).  Disruption of the Sh2b1 gene in mice results in hyperphagia, obesity, and 

obesity-associated metabolic disorders (32, 50, 51).  Recently, our laboratory reported 

that neuron-specific expression of recombinant SH2B1 in SH2B1-KO mice rescues 

obesity and prevents the development of obesity-related dyslipidemia and insulin 

resistance (51).  Additionally, overexpression of recombinant SH2B1 prevented diet-

induced obesity in transgenic mice (51).  Thus, SH2B1 in the brain controls energy 

balance and body weight.  

SH2B1 has been shown to enhance leptin signaling by multiple mechanisms.  

Leptin stimulates JAK2 autophosphorylation on Tyr813, and SH2B1 binds via its SH2 

domain to phospho-Tyr813 to markedly enhance JAK2 activity and promote the 

activation of the signaling pathways downstream of JAK2 (33, 44, 53).  Importantly, the 

SH2 domain alone is sufficient to promote JAK2 activity in leptin-treated cells (33).  

Additionally, SH2B1 also directly binds to IRS-1 and IRS-2 (16), and leptin stimulates 

the formation of JAK2/SH2B1/IRS-1 and JAK2/SH2B1/IRS-2 protein complexes, 

thereby specifically promoting JAK2-mediated phosphorylation of IRS proteins and 

activation of PI 3-kinase (16, 33, 50).  Interestingly, SH2 domain defective mutants of 

SH2B1 and SH2B2 impair the ability of SH2B1 to promote activation of the 

JAK2IRS-2/PI3-kinase pathway in cells (31, 33).  Because SH2B1 is a potent 

 47



endogenous leptin sensitizer, it is important to test these and other mechanisms in vivo in 

order to determine if SH2B1 has therapeutic potential for treatment of obesity. 

Here, we generated two transgenic mouse models to test whether the SH2 domain 

of SH2B1 in neurons is necessary and/or sufficient for SH2B1 to regulate body weight in 

vivo.  Neuron-specific expression of an N-terminal truncated form of SH2B1 that 

contained the entire SH2 domain and C-terminus (amino acids 504-670), but lacked other 

functional domains, did not correct energy imbalance in SH2B1-KO mice.  These data 

suggest that multiple domains within neuronal SH2B1 participate in the regulation of 

energy balance in vivo.  Neuron-specific expression of a dominant negative form of 

SH2B1 lacking a functional SH2 domain (SH2B1 R555E) also failed to prevent obesity 

or restore insulin sensitivity in SH2B1-KO mice.  However, neuron-specific expression 

of dominant negative SH2B1 R555E in wild type mice (TgR555E mice) induced obesity 

and caused insulin resistance.  These findings suggest that mutations in SH2B1 which 

alter SH2 domain function may contribute to leptin resistance and contribute to the 

development of obesity.  
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Materials and Methods 

Generation of transgenic and compound mutant mice.  SH2B1 knockout 

(KO), TgSH2B1, and KO/TgSH2B1 mice (C57BL/6 x SJL background) have been 

described (17, 51).  Transgenic mice that express either dominant negative (TgR555E) or 

truncated (Tg504) mutant forms of SH2B1 in neurons were generated for these 

studies.  A 4.9 kb transgene was generated by fusing cDNA encoding a Myc epitope 

tagged form of rat SH2B1 (R555E) downstream of the rat NSE (neuron-specific 

enolase) promoter/ GH (growth hormone) enhancer sequence described previously (30, 

51).  In parallel, a 3.7 kb transgene was generated by fusing cDNA encoding a Myc 

epitope tagged, N-terminal truncation of rat SH2B1 (amino acids 504-670) downstream 

of the NSE promoter/ GH enhancer.  Linear transgenic constructs were independently 

microinjected into F2 mouse oocytes (C57BL/6 x SJL) and surgically transferred to 

recipients by trained personnel at the University of Michigan Transgenic Animal Model 

Core facilities.  Founder mice were genotyped by PCR.  Ten TgR555E and eleven 

Tg504 founders were obtained.  Two independent lines of TgR555E mice (TgR555E205 

and TgR555E244) and two lines of Tg504 mice (Tg504301 and Tg504315), which 

expressed similar levels of recombinant SH2B1 R555E and SH2B1 504, 

respectively, were selected for analysis. 

Compound mutant mice were generated by crossing TgR555E or Tg504 mice 

with SH2B1-KO mice to generate KO/TgR555E or KO/Tg504 mice.  Male mice were 

used for all experiments.  Mice were housed on a 14-hour light/10-hour dark cycle in the 

Unit for Laboratory Animal Medicine (ULAM) at the University of Michigan.  Animal 

protocols were approved by the University Committee on the Use and Care of Animals 

(UCUCA). 

Growth and body composition.  Body weight was recorded weekly beginning at 

4 weeks of age.  Mice were briefly anesthetized (2-3% isoflurane), and body composition 

was determined by dual-energy X-ray absorptiometry (DEXA; PIXImus2 Dexa Scanner, 

GE Lunar Corporation).  Body fat (g) was normalized to body weight (g). 

Immunoprecipitation and immunoblotting.  Mice were fasted overnight (16-h) 

and anesthetized with Avertin (0.5 g tribromoethanol and 0.25 g tert-amyl alcohol in 39.5 

ml of water; 0.02 ml/g body weight).  Tissues were isolated, frozen in liquid nitrogen, 
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and stored at -80C until analysis.  Tissues were homogenized in lysis buffer (50 mM 

Tris [pH 7.5], 1% Nonidet P-40, 150 mM NaCl, 2 mM EGTA, 1 mM Na3VO4, 100 mM 

NaF, 10 mM Na4P2O7, 1 mM phenylmethylsulfonyl fluoride, 10 g/ml aprotinin, and 10 

g/ml leupeptin).  Immunoprecipitation and immunoblotting were conducted as described 

previously (17).  Proteins were visualized using the Odyssey Infrared Imaging System 

(Li-Cor Biosciences) or ECL (Amersham).  SH2B1 antibodies have been described (17, 

51).  

Measurements of food intake and energy expenditure.  Mice were individually 

housed and food intake was recorded daily for 5-7 days.  Caloric value for the diet used 

was 4.6 kCal/g.  Metabolic rates were measured by indirect calorimetry (Oxymax Equal 

Flow system; Columbus Instruments).  Mice were individually housed and acclimated for 

24-h in metabolic cages.  After acclimation, exhaust air was sampled for a 24-h period.  

Samples were recorded for 1 minute at 27-minute intervals and O2 and CO2 content was 

determined.  Oxygen consumption (VO2) and carbon dioxide production (CO2) were 

normalized to lean body mass. 

Serum analysis.  Blood samples were collected from the tail vein.  Blood glucose 

concentrations were determined using a glucometer (Glucometer Elite XL; Bayer Corp., 

Tarrytown, NY).  Plasma insulin was determined using a rat insulin ELISA kit (Crystal 

Chem, Inc., Chicago, IL). 

Glucose and insulin tolerance tests.  For glucose tolerance tests (GTT), mice 

were fasted overnight (16-h) and D-glucose (2g/kg body weight) was injected 

intraperitoneally.  Blood glucose was measured 0, 15, 30, 60 and 120 min after glucose 

injection.  For insulin tolerance tests (ITT), mice were fasted for 6-h and human insulin 

(1 U/kg) was injected intraperitoneally.  Blood glucose was measured 0, 15, 30 and 60 

min after injection. 

Statistical Analysis.  Data are presented as means  SEM.  Differences between 

groups were determined by two-tailed Student’s t tests or ANOVA.  P< 0.05 was 

considered significant. 
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Results 

Generation of SH2B1-null mice expressing recombinant SH2B1 R555E and 

SH2B1 504 in the brain.  We previously reported that neuron-specific restoration of 

SH2B1 was sufficient to restore leptin sensitivity, prevent obesity, and reverse obesity-

associated metabolic diseases (hyperlipidemia and insulin resistance) in SH2B1-deficient 

(KO) mice (51).  To further define the role of the SH2 domain of SH2B1 in vivo, two 

mutant forms of rat SH2B1 were cloned into the same transgenic vector used to 

generate TgSH2B1 mice (51).  To generate TgR555E mice, cDNA encoding a Myc 

tagged SH2B1 mutant in which the SH2 domain is disrupted due to replacement of 

Arg555 with Glu (R555E) was used (Fig. 2.1A).  We have previously reported that this 

point mutation impairs the ability of SH2B1 to promote IRS-1 phosphorylation in 

leptin-treated cells (16, 17).  To generate Tg504 mice, cDNA encoding an N-terminal 

truncated mutant of rat SH2B1 (amino acids 504-670) was used (Fig. 2.1A).  This 

mutant contains an intact SH2 domain and C-terminus, but lacks the PH and dimerization 

(DD) domains.  In cells, 504 is sufficient to promote leptin signaling (16, 33).  Two 

independent lines were characterized for each SH2B1 mutant based on the criteria that 

the expression levels of recombinant R555E in TgR555E mice and recombinant 504 in 

Tg504 mice were similar to the expression of recombinant SH2B1 in TgSH2B1 mice 

(data not shown). 

To examine the effects of the mutant forms of recombinant SH2B1 in SH2B1 

deficient (KO) mice, TgR555E and Tg504 mice were crossed to KO mice to generate 

KO/TgR555E and KO/Tg504 compound mutant mice.  We first characterized the 

expression of recombinant R555E and 504 in the brains of compound mutant mice.  

Two forms of endogenous SH2B1 were detected in wild type (WT) mice, but only one 

form of SH2B1, corresponding to recombinant SH2B1, was detected in brain extract 

from KO/TgSH2B1 and KO/TgR555E mice.  Recombinant R555E was detected in both 

lines of KO/TgR555E mice (designated KO/TgR555E205 and KO/TgR555E244), and 

expression of R555E in both lines was similar to recombinant wild type SH2B1 in 

KO/TgSH2B1 mice (Fig. 2.1B).  The SH2B1 antiserum used to immunoprecipitate 

endogenous and recombinant forms of SH2B1 in brain samples from WT, KO/TgSH2B1, 
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and KO/R555E mice did not immunoprecipitate 504 in extracts from KO/Tg504 mice, 

presumably because the epitope is not present in recombinant 504 (data not shown).  

However, 504 was immunoprecipitated successfully using a second antibody raised 

against 504.  Expression of 504 in brain from two lines of KO/Tg504 mice 

(designated KO/Tg504301 and KO/Tg504315) was similar to recombinant SH2B1 in 

KO/TgSH2B1 mice (Fig. 2.1C).  For unknown reasons, the SH2B1 antibody against 

504 only recognized one form of endogenous SH2B1 in WT mice; nonetheless, this 

endogenous form co-migrated with recombinant SH2B1 from KO/TgSH2B1 mice (Fig. 

2.1C), and expression of 504 in KO/Tg504 mice brain was similar to the levels of 

recombinant and endogenous SH2B1 in KO/TgSH2B1 and WT mice, respectfully (Fig. 

2.1C). 

Neuron-specific restoration of SH2B1, but not R555E or 504 mutants, 

rescues obesity and corrects energy imbalance in SH2B1-KO mice.  To determine 

whether the SH2 domain of SH2B1 is required and sufficient to normalize body weight in 

SH2B1-deficient mice, body weight was monitored weekly in KO/TgR555E and 

KO/Tg504 male mice fed a standard diet, and compared to WT, KO, and KO/TgSH2B1 

male mice.  KO mice were significantly heavier than WT mice at 9 weeks of age and 

continued to gain weight rapidly thereafter (Fig. 2.2A).  KO mice were nearly 1.3 times 

heavier than WT mice at 16-weeks of age.  As expected, neuron-specific restoration of 

wild type SH2B1 prevented weight gain in KO/TgSH2B1 mice (Fig. 2.2A).  However, 

neuron-specific expression of SH2B1 R555E or SH2B1 504 failed to prevent weight 

gain in KO/TgR555E or KO/Tg504 mice, respectfully (Fig. 2.2A).  Body weight was 

similar in KO/TgR555E205, KO/TgR555E244, KO/Tg504301, and KO/Tg504315 male 

mice and comparable to KO mice (TgR555E205: 39.5 ± 2.2 g, n = 6; KO/TgR555E244: 

41.4 ± 3.0 g, n = 8; KO/Tg504301: 42.5 ± 2.6 g, n = 6; KO/Tg504315: 40.9 ± 2.5, n = 

10; KO: 41.9 ± 1.8 g, n = 10; 16-weeks).  Moreover, both the onset and rate of weight 

gain in KO/TgR555E and KO/Tg504 mice were similar to KO mice, indicating that 

neuron-specific expression of R555E and 504 does not alter the development of obesity 

in KO mice.  Whole body fat content in KO mice was more than 270% higher than WT 

mice (Fig. 2.2B).  Fat content was dramatically reduced in KO/TgSH2B1 mice (Fig. 
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2.2B), consistent with our previous findings (51).  By contrast, fat content was similar 

between KO, KO/TgR555E, and KO/Tg504 mice (Fig. 2.2B).  Lean mass and bone 

mineral content were also similar in WT, KO, KO/TgSH2B1, KO/TgR555E and 

KO/Tg504 mice (data not shown), indicating that differences in body weight are 

attributed to differences in fat mass. 

Increased adiposity may result from increased energy consumption, reduced 

energy expenditure, or a combination of both.  Therefore, food intake and energy 

expenditure were determined in KO/TgR555E and KO/Tg504 mice.  Average daily 

energy intake was more than 30% higher in KO, KO/TgR555E, and KO/Tg504 mice 

compared to WT and KO/TgSH2B1 mice at the same age (Fig. 2.2C).  By contrast, 

energy intake was similar between WT and KO/TgSH2B1 mice (Fig. 2.2C).  Previously, 

we reported that basal energy expenditure is increased in KO mice (50); however, energy 

intake still exceeds expenditure in KO mice, resulting in positive energy imbalance (50).  

In this study, twenty-four hour oxygen consumption and carbon dioxide production were 

increased to similar levels in KO, KO/TgR555E and KO/Tg504 mice (Fig. 2.2D-E).  By 

contrast, both oxygen consumption and carbon dioxide production in KO/TgSH2B1 mice 

were reduced to WT levels (Fig. 2.2D-E).  Collectively, these data indicate that neuron-

specific restoration of wild type SH2B1, but not mutant forms of SH2B1, can correct 

energy imbalance in SH2B1-deficient mice.  Thus, the SH2 domain is required but not 

sufficient for the regulation of energy balance and body weight in mice. 

Neuron-specific restoration of wild type SH2B1, but not R555E or 504, 

improves glucose metabolism and insulin sensitivity in SH2B1-knockout mice.  We 

previously proposed that SH2B1 in the brain improves insulin sensitivity by controlling 

adiposity and body weight (51).  Therefore, we examined glucose homeostasis in 

KO/TgR555E and KO/Tg504 mice to test whether expression of these mutant forms of 

SH2B1 in neurons altered insulin sensitivity and glucose metabolism. 

Fasting glucose levels in KO, KO/TgR555E, and KO/Tg504 mice were 1.8-, 

2.2-, and 1.7-times higher, respectfully, than WT mice at 17-19 weeks of age (Fig. 2.4A).  

Compared to KO mice, blood glucose levels were reduced in KO/TgSH2B1 mice, but 

hyperglycemia was not completely restored to WT levels (WT: 60.9 ± 4.5 mg/dl, n = 7; 

KO/TgSH2B1: 80.1 ± 4.4 mg/dl, n = 7; P<0.01; Fig. 4.3A).  Hyperglycemia was detected 
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as early as 10 weeks of age in fasted KO, KO/TgR555E, and KO/Tg504 mice and blood 

glucose levels were comparable between these three groups at this age (data not shown), 

suggesting that neuron-specific expression of R555E and 504 do not alter the onset or 

severity of hyperglycemia in KO mice.  Fasting insulin levels were 9 times higher in KO 

mice (Fig. 2.3B).  Neuron-specific restoration of SH2B1 corrected hyperinsulinemia in 

KO/TgSH2B1 mice whereas KO/TgR555E and KO/Tg504 mice remained 

hyperinsulinemic (Fig. 2.3B). 

To further examine peripheral insulin sensitivity, glucose and insulin tolerance 

tests were performed.  At 17-18 weeks of age, KO mice were severely glucose intolerant 

(Fig. 2.3C).  Like KO mice, glucose tolerance was also impaired in KO/TgR555E and 

KO/Tg504 mice, but improved in KO/TgSH2B1 mice (Fig. 2.3C).  The area under the 

glucose tolerance curve was similar for KO, KO/TgR555E, and KO/Tg504 mice (Fig. 

2.3C).  During insulin tolerance tests, exogenous insulin (1U/kg body weight) reduced 

blood glucose levels in WT and KO/TgSH2B1 mice, but not in KO, KO/TgR555E, or 

KO/Tg504 mice (Fig. 2.3D).  Blood glucose remained elevated in KO, KO/TgR555E, 

and KO/Tg504 mice, indicating that whole body insulin resistance was similar in these 

mice.  Together, these data indicate that neuron-specific restoration of wild type 

SH2B1, but not R555E or 504 mutants, improves glucose metabolism and insulin 

sensitivity in SH2B1-knockout mice.  Moreover, these data support our initial 

conclusions that SH2B1 in the brain promotes insulin sensitivity by regulating energy 

balance and adiposity.  

Dominant negative SH2B1 (R555E) in the brain alters energy balance and 

glucose homeostasis in wild type mice.  In cells, mutation of Arg 555 to Glu (R555E) in 

SH2B1 largely abolishes the ability of SH2B1 to promote leptin signaling (16, 33).  

Additionally, a naturally occurring mutant form of SH2B2, which lacks the SH2 

domain, but has intact dimerization and PH domains, can bind to SH2B1 and antagonize 

the ability of SH2B1 to promote leptin signaling (31).  This raises the possibility that 

dominant negative forms of SH2B family members may impair SH2B1 function in vivo. 

To test this, we examined the phenotype of TgR555E mice.  Expression of R555E 

in the brain of WT mice induced obesity (Fig. 2.4A).  Body weight in TgR555E and WT 
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mice was comparable from 3-12 weeks of age; however, after 13 weeks of age, body 

weight was significantly increased in TgR555E mice and TgR555E mice continued to 

gain weight thereafter (Fig. 2.4A).  Relative to KO mice, the onset of obesity in TgR555E 

mice was delayed (KO mice: 9 weeks; TgR555E: 13 weeks).  Moreover, TgR555E mice 

were not as heavy as KO mice (TgR555E205: 35.9 ± 2.9 g, n = 5; KO: 40.2 ± 2.0 g, n = 9; 

18 weeks of age), indicating that the severity of obesity differed between mice expressing 

dominant negative SH2B1 and mice lacking endogenous SH2B1.  Relative to wild type 

mice, whole body fat content was higher in TgR555E mice (TgR555E205: 13.2 ± 3.2 %, n 

= 6; WT: 7.2 ± 3.2 g, n = 5), but the difference did not reach significance (p=0.22).  

Taken together, these data indicate that over expression of dominant negative SH2B1 in 

neurons of wild type induces weight gain and increases adiposity. 

Food intake and energy expenditure was also determined in TgR555E mice.  Food 

intake was similar between TgR555E and WT mice (data not shown).  However, 

compared to WT mice, both oxygen consumption and carbon dioxide production 

increased in TgR555E mice (Figs. 2.4B-C).  This was also observed in KO mice, 

suggesting that loss of neuronal, rather than peripheral, SH2B1 some how alters energy 

consumption such that KO and TgR555E mice actually expend more energy than WT 

mice.   

 Glucose metabolism was also examined in TgR555E mice.  Compared to WT 

mice, fasting blood glucose levels were increased in TgR555E mice (Fig. 2.5A).  Glucose 

tolerance and insulin tolerance tests were performed to determine if neuron-specific 

overexpression of R555E altered insulin sensitivity.  The area under the glucose tolerance 

curve tended (P=0.12) to be larger for TgR555E mice than WT mice (Fig. 2.5B).  

However, insulin tolerance was impaired in TgR555E mice (Fig. 2.5C).  Taken together, 

these data indicate that overexpression of dominant negative SH2B1 in neurons of wild 

type mice impairs systemic insulin sensitivity and alters glucose metabolism. 
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Discussion 

Leptin resistance is a driving force in the development of obesity and obesity-

associated metabolic diseases, including hyperlipidemia and insulin resistance.  Two 

mechanisms for leptin resistance have been proposed.  First, impaired transport across the 

blood brain barrier appears to limit the ability of circulatory leptin to access target 

neurons in the hypothalamus and throughout the brain (9, 18, 55).  Second, leptin 

signaling in target neurons is attenuated by negative regulators such as SOCS3 and 

PTP1B (5-7, 23, 29, 43, 61).  Consistent with this, the expression of hypothalamic 

SOCS3 and PTP1B is increased in leptin resistant animals (4, 22, 40, 41, 48, 59).  We 

have reported that the JAK2-binding protein SH2B1 functions as an endogenous leptin 

sensitizer to control body weight by enhancing JAK2 activity and promoting leptin 

signaling (16, 32, 33, 50, 51).  In this study, we investigated the contribution of the SH2 

domain of SH2B1 to the regulation of energy balance and body weight in vivo. 

We report that restoration of an N-terminal truncated mutant of rat SH2B1 

(amino acids 504-670) in neurons of SH2B1-knockout mice (KO/Tg504) was not 

sufficient to prevent the development of obesity and obesity associated metabolic disease.  

Presumably, the inability of 504 to prevent obesity in KO/Tg504 mice was related to 

the inability of 504 to promote leptin action in vivo given that body weight, fat content, 

and energy imbalance in KO/Tg504 mice is nearly identical to leptin-resistant KO mice.  

Additional biochemical experiments are planned to confirm that leptin signaling is indeed 

impaired in KO/Tg504 mice.  

If leptin signaling is comprised in KO/Tg504 mice, as we predict, then the 

inability of the 504 transgene to restore energy balance would suggest that multiple 

functional domains within SH2B1 are required for leptin signaling in mice.  SH2B1 504 

contains an intact SH2 domain and C-terminus, but lacks the dimerization and PH 

domains (Fig. 2.1A).  These domains have been implicated in the regulation of cell 

signaling by SH2B1 and may participate in activation of the JAK2IRS-2/PI3-kinase 

pathway.  SH2B1 binds directly to IRS-1 and IRS-2, and a tertiary signaling complex 

comprised of JAK2/SH2B1/IRS-1 or JAK2/SH2B1/IRS-2 can be immunopurified from 

leptin-treated cells (16).  SH2B1 can bind via its PH domain to both kinase-inactive 
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JAK2 and a mutant form of IRS-1 lacking tyrosine residues (Y18F) (16, 54).  These 

phosphorylation-independent interactions may allow SH2B1 to scaffold latent signaling 

molecules in close proximity to LepRb in order to facilitate signaling upon leptin binding.  

Additionally, SH2B family members SH2B1 and SH2B2 form homo- and heterodimers 

via their respective dimerization domains (31, 49).  While dimerization of SH2B1 does 

not seem to be required for enhancing JAK2 activity in cells (53), homo- or 

heterodimerization of SH2B1 may facilitate the aggregation of signaling molecules into 

functional complexes around activated JAK2 (16).  Either of these two mechanisms 

might explain why neuron-specific restoration of 504 can not restore energy balance in 

KO/Tg504 mice. 

Alternatively, the inability of 504 to restore energy balance may be due to 

altered cellular distribution of 504 within neurons.  Altered cellular distribution of 

504, due to deletion of a functional domain, may sequester 504 away from the 

LepRb/JAK2 signaling complex.  Specifically, deletion of the PH domain may impair the 

ability of 504 to localize to the plasma membrane.  Recently, SH2B1 was shown to 

translocate between the cytoplasmic and nuclear compartments in NGF-treated PC12 

cells, a neuronal cell line (12, 36).  A nuclear localization sequence (NLS) in SH2B1 

between the dimerization and PH domains was identified (36).  The NLS is deleted in 

504 (Fig. 2.1A).  Thus, we can not exclude the possibility that disrupting cytoplasmic-

to-nuclear shuttling somehow contributes to the inability of 504 to restore energy 

balance in KO/Tg504 mice.  Regardless, our data suggest that 504 lacks at least one 

key functional domain which is necessary for the regulation of energy balance in mice. 

In cells, mutation of Arg 555 to Glu (R555E) in SH2B1 disrupts the SH2 domain 

and largely abolishes the ability of SH2B1 to promote leptin signaling (16, 33).  As 

predicted, reconstitution of SH2B1 R555E in neurons of KO/TgR555E mice failed to 

prevent the development of obesity, indicating that a functional SH2 domain is required 

for regulation of energy balance and body weight by SH2B1. 

Interestingly, overexpression of R555E in the brains of wild type mice induced 

obesity.  We also found that overexpression of R555E altered energy balance such that 

both oxygen consumption and carbon dioxide production were increased.  Oxygen 

consumption and carbon dioxide production are also elevated in KO mice, as 
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demonstrated in previous studies (50, 51).  This abnormal energy expenditure phenotype 

is reversed after neuron-specific restoration of SH2B1 in KO mice.  Collectively, these 

findings suggest that the mechanism that underlies abnormally elevated energy 

expenditure in both KO and TgR555E mice has a neuronal, rather than peripheral, origin. 

Mild obesity in TgR555E mice causes mild hyperglycemia and insulin resistance.  

However, insulin resistance does not appear to be as severe in TgR555E mice as in KO 

mice at the same age (17-18 wks).  The apparent difference in insulin sensitivity in 

TgR555E mice is likely due to the fact that endogenous SH2B1 is expressed in peripheral 

insulin-target tissues of these mice whereas the same tissues lack SH2B1 in KO mice.  

This is consistent with our recent report that peripheral SH2B1 enhances insulin signaling 

and contributes to the regulation of glucose homeostasis in mice (39). 

Interestingly, single nucleotide polymorphisms (SNPs) within the human Sh2b1 

loci are associated with leptin resistance and obesity (28, 52, 58, 60), supporting the 

concept that SH2B1 plays an essential role in the regulation of energy balance and body 

weight in man.  Although these SNPs have not been shown to be associated with altered 

SH2B1 function or expression, our findings suggest that mutations in the coding region 

of SH2B1 which alter SH2 domain function may be dominant and result in impaired 

leptin signaling and obesity.  In support of this concept, a naturally occurring mutant 

form of SH2B2, which lacks the SH2 domain, but has intact dimerization and PH 

domains, can bind to SH2B1 and antagonize the ability of SH2B1 to promote leptin 

signaling in cultured cells (31). 

In summary, restoration of SH2B1, but not the SH2 domain alone, in neurons 

corrects obesity in SH2B1-deficient mice.  Our findings suggest that multiple domains 

within SH2B1, possibly the DD, PH domain, or NLS, may be required for regulation of 

energy balance and body weight by SH2B1 in vivo.  Additionally, we report that 

overexpression of dominant negative SH2B1 (R555E) can induce obesity and mild 

insulin resistance in mice.  Collectively, these data indicate that neuron-specific 

expression of a functional SH2 domain of SH2B1 is not sufficient but is necessary for 

normal regulation of energy homeostasis and insulin sensitivity in mice. 
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Fig. 2.1.  Generation of SH2B1-null mice expressing recombinant SH2B1 R555E 
and SH2B1 504 in the brain.  (A)  Schematic representation of TgSH2B1, TgR555E, and 
Tg504.  The Myc epitope, dimerization (DD), PH, and SH2 domains are indicated.  (B)  Expression of 
SH2B1 in brain from KO, WT, KO/TgSH2B1 and two independent lines of KO/TgR555E mice.  SH2B1 
was immunoprecipitated (IP) with anti-SH2B1 (SH2B1) antibody and immunoblotted (IB) with SH2B1.  
(C)  Expression of SH2B1 in brain from KO, WT, KO/TgSH2B1 and two independent lines of KO/Tg504 
mice.  SH2B1 was immunoprecipitated and immunoblotted with SH2B1. 
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Fig. 2.2  Restoration of wild type SH2B1, but R555E or 504, in neurons prevents 
obesity and dyslipidemia in SH2B1-deficient mice.  (A)  Growth curve.  (B)  Whole body fat 
content was normalized to body weight (15-17 wks).  (C)  Food intake (13-14 wks).  (D-E)  Energy 
expenditure was determined by indirect calorimetry (15-17 wks).  (D)  Oxygen consumption and (E) 
carbon dioxide production was normalized to lean body mass.  The number of mice in each group is 
indicated in parenthesis.  *P<0.05, ***P<0.001. 
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Fig. 2.3A-B.  Improved insulin sensitivity in KO/TgSH2B1, but not in KO/TgR555E 
or KO/Tg504 male mice.  (A)  Fasting (16-h) blood glucose levels and (B) plasma insulin levels 
(17-18 wks).  The number of mice in each group is indicated in parenthesis.  *P < 0.05, **P<0.01, 
***P<0.001. 
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Fig. 2.3C-D.  Improved insulin sensitivity in KO/TgSH2B1, but not in KO/TgR555E 
or KO/Tg504 male mice.  (C)  Glucose tolerance tests (GTT) performed on male mice (18-19 wks).  
Mice were fasted overnight (16-h) and D-glucose (2g/kg body weight) was administered by i.p. injection.  
Blood glucose levels were monitored 0, 15, 30, 60 and 120 min after injection.  (D)  Insulin tolerance tests 
(ITT) in male mice (18-19 wks).  Mice were fasted for 6-h and human insulin (1U/ kg body weight) was 
administered by i.p. injection.  Blood glucose was monitored 0, 15, 30 and 60 min after injection.  Values 
are expressed as a percentage of initial (time 0).  Area under the curve (AUC) was calculated for GTT and 
ITT using the trapezoidal rule.  The number of mice in each group is indicated in parenthesis.  *P < 0.05, 
**P<0.01. 
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Fig. 2.4  Expression of dominant negative SH2B1 in neurons disrupts energy 
homeostasis in WT mice.  (A)  Growth curves.  (B)  Oxygen consumption in male mice (15-17 wks).  
VO2 was normalized to lean body mass.  (C)  Carbon dioxide production in male mice (15-17 weeks).  
VCO2 was normalized to lean body mass.  ***P<0.001. 
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Fig. 2.5  Expression of dominant negative SH2B1 in neurons alters glucose 
metabolism and insulin sensitivity.  (A)  Fasting (16-h) blood glucose levels (17-18 wks).  (B)  
Glucose tolerance tests (GTT) performed on male mice (18-19 wks).  Mice were fasted overnight (16-h) 
and D-glucose (2g/kg body weight) was administered by i.p. injection.  Blood glucose levels were 
monitored 0, 15, 30, 60 and 120 min after injection.  (C)  Insulin tolerance tests (ITT) in male mice (18-19 
wks).  Mice were fasted for 6-h and human insulin (1U/kg body weight) was administered by i.p. injection.  
Blood glucose was monitored 0, 15, 30 and 60 min after injection.  Values are expressed as a percentage of 
initial (time 0).  Area under the curve (AUC) was calculated for GTT and ITT using the trapezoidal rule.  
The number of mice in each group is indicated in parenthesis.  *P < 0.05. 
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Chapter 3 

 

SH2B1 Enhances Insulin Sensitivity By Both Stimulating The Insulin Receptor And 

Inhibiting Tyrosine Dephosphorylation Of IRS Proteins 

 

Abstract 

SH2B1 is a SH2 domain-containing adaptor protein expressed in both the central 

nervous system and peripheral tissues.  Neuronal SH2B1 controls body weight; however, 

the function of peripheral SH2B1 remains unknown.  To address the role of peripheral 

SH2B1 in the regulation of insulin sensitivity and glucose metabolism, TgKO mice, 

which express SH2B1 in the brain but not in peripheral tissues, were fed a high fat diet 

(HFD).  Deletion of peripheral SH2B1 did not alter body weight or adiposity in HFD-fed 

TgKO mice.  However, deletion of SH2B1 in peripheral tissues exacerbated HFD-

induced hyperglycemia, hyperinsulinemia and glucose intolerance in TgKO mice.  

Insulin signaling was dramatically impaired in muscle, liver and adipose tissue in TgKO 

mice.  Deletion of SH2B1 impaired insulin signaling in primary hepatocytes, whereas 

SH2B1 overexpression stimulated tyrosine phosphorylation of insulin receptor substrates 

(IRS-1, IRS-2 and Shc).  The SH2 domain of SH2B1 was both required and sufficient to 

promote insulin signaling.  In vitro, recombinant SH2B1 promoted the catalytic activity 

of the insulin receptor, which required SH2B1 binding to Tyr1158 within the activated 

receptor.  Additionally, insulin stimulated the binding of SH2B1 to IRS-1 or IRS-2, and 

this physical interaction inhibited tyrosine dephosphorylation of IRS-1 or IRS-2 and 

increased the ability of IRS proteins to activate the PI 3-kinase pathway.  In conclusion, 

SH2B1 in peripheral tissues functions as an endogenous insulin sensitizer.  

Mechanistically, SH2B1 directly binds to the insulin receptor, IRS-1 and IRS-2, and 

enhances insulin sensitivity by both promoting receptor activity and by inhibiting 

tyrosine dephosphorylation of IRS proteins. 
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Introduction 

Insulin decreases blood glucose both by promoting glucose uptake into skeletal 

muscle and adipose tissue and by suppressing hepatic glucose production.  In type 2 

diabetes, the ability of insulin to reduce blood glucose is impaired (insulin resistance) due 

to a combination of genetic and environmental factors, resulting in hyperglycemia.  

Insulin resistance is not only the hallmark but also a determinant of type 2 diabetes.  

Insulin binds to and activates the insulin receptor (IR).  IR tyrosyl phosphorylates 

insulin receptor substrates (IRS-1, -2, -3 and -4).  IRS proteins, particularly IRS-1 and 

IRS-2, initiate and coordinate multiple downstream pathways, including the PI 3-

kinase/Akt pathway (38).  Genetic deletion of IRS-1, IRS-2 or Akt2 causes insulin 

resistance in mice, indicating that the IRS protein/PI 3-kinase/Akt2 pathway is required 

for regulation of glucose homeostasis by insulin (3, 5, 30, 43).  IR and IRS proteins are 

negatively regulated by various intracellular molecules, including PTP1B, Grb10, Grb14, 

SOCS1, SOCS3, JNK, PKC, S6K and IKK (1, 4, 6, 9-11, 13, 14, 25, 27-29, 33-35, 37, 

44, 47).  The relative contribution of these negative regulators to the progression of 

insulin resistance has been extensively studied (1, 4, 6, 9-11, 13, 14, 25, 27-29, 33-35, 37, 

40, 44, 47).  However, insulin signaling is likely to also be modulated by positive 

regulators.  In this study, we demonstrate that SH2B1 is a novel endogenous insulin 

sensitizer. 

SH2B1 is a member of the SH2B family of adapter proteins that also includes 

SH2B2 (APS) and SH2B3 (Lnk).  SH2B1 and SH2B2 are expressed in multiple tissues, 

including insulin target tissues (e.g. skeletal muscle, adipose tissue, liver and the brain); 

by contrast, SH2B3 expression is restricted to hematopoietic tissue (32, 36).  Structurally, 

SH2B family members have an N-terminal dimerization domain (DD), a central 

pleckstrin homology (PH) domain and a C-terminal Src homology 2 (SH2) domain.  The 

DD domain mediates homodimerization or heterodimerization between different SH2B 

proteins (21).  SH2B1 and SH2B2 bind via their SH2 domains to a variety of tyrosine 

phosphorylated proteins, including JAK2 and IR, in cultured cells (18).  Genetic deletion 

of SH2B1 results in marked leptin resistance, obesity, insulin resistance and type 2 

diabetes in mice, demonstrating that SH2B1 is required for the maintenance of normal 

body weight, insulin sensitivity and glucose metabolism (8, 17, 22, 23).  Surprisingly, 
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SH2B2 null mice have normal body weight and slightly improved insulin sensitivity (17, 

19), suggesting that SH2B1 and SH2B2 have distinct functions in vivo.  However, it 

remains unclear whether SH2B1 cell-autonomously regulates insulin sensitivity in 

peripheral insulin target tissues because systemic deletion of SH2B1 causes obesity, 

which may cause insulin resistance in SH2B1 null mice. 

We generated a mouse model in which recombinant SH2B1 is specifically 

expressed in the brain of SH2B1 null mice (TgKO) using transgenic approaches (23).  

Neuron-specific restoration of SH2B1 corrects both leptin resistance and obesity, 

suggesting that neuronal SH2B1 regulates energy balance and body weight by enhancing 

leptin sensitivity (23).  Consistent with these conclusions, polymorphisms in the SH2B1 

loci are linked to leptin resistance and obesity in humans (24, 31, 42).  In this work, we 

demonstrate that deletion of SH2B1 in peripheral tissues impairs insulin sensitivity 

independent of obesity in TgKO mice.  Moreover, we demonstrate that SH2B1 directly 

promotes insulin responses by stimulating IR catalytic activity and by protecting IRS 

proteins from tyrosine dephosphorylation. 
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Materials and Methods 

Animal Studies.  SH2B1 KO and TgKO mice have been described previously (8, 

23), and were backcrossed for 6 generations onto a C57BL/6 genetic background.  Mice 

were housed on a 12-h light/dark cycle in the Unit for Laboratory Animal Medicine at the 

University of Michigan, and fed either normal rodent chow (9% fat; Lab Diet) or HFD 

(45% fat; Research Diets) ad libitum with free access to water.  Fat content was measured 

by dual energy x-ray absorptiometry (Norland Medical System).  Blood glucose levels 

were determined using glucometers (Bayer Corp).  Plasma insulin was measured using a 

rat insulin ELISA kit (Crystal Chem).  Glucose tolerance tests (GTT) (2 g D-glucose/kg 

of body weight) and insulin tolerance tests (ITT) (1 IU/kg of body weight; Eli Lilly) were 

conducted as previously described (8, 22, 23).  To analyze insulin signaling, mice (fasted 

16-h) were anesthetized with Averin (0.5 g of tribromoethanol and 0.25 g or tert-amyl 

alcohol in 39.5 ml of water; 0.02 ml/g of body weight), and treated with phosphate 

buffered saline (PBS) or human insulin (3 U per mouse; Eli Lilly) via inferior vena cava 

injection.  Five minutes after injection, gastrocnemius muscles, liver and epididymal fat 

pads were dissected, frozen in liquid nitrogen and stored at -80ºC.  Tissues were 

homogenized in ice cold lysis buffer (50 mM Tris HCl, pH 7.5, 1.0% NP-40, 150 mM 

NaCl, 2 mM EGTA, 1 mM Na3VO4, 100 mM NaF, 10 mM Na4P2O7, 1 mM PMSF, 10 

g/ml aprotinin, 10 g/ml leupeptin) and extracts were immunoblotted or 

immunoprecipitated with indicated antibodies.  Animal protocols were approved by the 

University Committee on Use and Care of Animals. 

Cell lines and Transfection.  COS-7 and HEK293 cells were grown in DMEM 

supplemented with 5% bovine serum and transfected with indicated plasmids using 

Lipofectamine 2000 (Invitrogen).  Chinese hamster ovary (CHOIR and CHOIR/IRS-1) cells 

were cultured in Ham’s F-12 media supplemented with 8% FBS.  Cells were deprived of 

serum for 16-h in DMEM (COS-7 and HEK293) or F-12 (CHO) containing 0.6% BSA 

before being treated.  Primary liver cells were isolated from male mice (8 weeks) by 

perfusion of the liver with type II collagenase (Worthington Biochem), and plated on 

collagen coated plates in M199 containing 10% FBS, 100 units/ml penicillin and 100 

µg/ml streptomycin.  After 2-h, primary cells were rinsed in PBS and cultured for an 
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additional 16-h in Williams’ Medium E (Sigma) supplemented with 0.6% BSA, 100 

units/ml penicillin and 100 µg/ml streptomycin. 

Immunoprecipitation and Immunoblotting.  Immunoprecipitation and 

immunoblotting were conducted as described previously (7, 8).  Proteins were visualized 

using the Odyssey Infrared Imaging System (Li-Cor Biosciences) or ECL (Amersham), 

and quantified using Odyssey 1.2 software (Li-Cor). Actin, phospho-Akt (Thr308), Akt, 

insulin receptor , Myc, Shc and tubulin antibodies were from Santa Cruz.  The 

phosphotyrosine-specific antibody was from Upstate.  The AS160 antibody was from 

Millipore and phospho Akt substrate (PAS) antibody was from Cell Signaling.  Phospho- 

Akt (Ser473) was from BioSource.  SH2B1 and IRS-1 antibodies have been described (7, 

25). 

Insulin Receptor Kinase Assay.  Cells were serum-deprived for 16-h, treated 

with insulin and solubilized in kinase lysis buffer (50 mM Tris HCl [pH 7.5], 0.1% Triton 

X-100, 150 mM NaCl, 1 mM EDTA, 1 mM Na3VO4, 1 mM PMSF, 10 g/ml aprotinin, 

10 g/ml leupeptin).  The insulin receptor (IR) was precipitated with wheat germ 

agglutinin (WGA)-conjugated agarose beads, washed three times in wash buffer (50 mM 

Tris HCl [pH 7.5], 0.5 M NaCl, 0.1% Triton X-100) and twice in kinase reaction buffer 

(20 mM Hepes [pH 7.6], 0.1% Triton X-100, 5 mM MgCl2, 100 M Na3VO4).  WGA-

immobilized proteins were preincubated in kinase reaction buffer supplemented with 

soluble glutathione-S-tranferase (GST) protein alone, GST-SH2B1 or GST-SH2 fusion 

proteins at 37C.  GST-IRS-1 (5-10 g) and ATP (50 M) were added to initiate kinase 

reactions at 37C.  Reactions were stopped by adding SDS-PAGE loading buffer and 

reaction mixtures were boiled immediately.  Proteins were separated by SDS-PAGE and 

immunoblotted with indicated antibodies. 

Dephosphorylation Assays.  Immunopurified proteins were washed in lysis 

buffer and preincubated with GST-SH2B1 or GST (2 g) in phosphatase reaction buffer 

(50 mM Tris-HCl [pH 8.2], 100 nM NaCl, 10 mM MgCl2, 1 mM DTT) for 15 min at 

room temperature with constant mixing.  Alkaline phosphatase (New England Biolabs) 

was added at the indicated concentration, and the mixtures were incubated an additional 

30 min at room temperature.  Reactions were stopped by adding SDS-PAGE loading 
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buffer and mixtures were boiled immediately.  Proteins were separated by SDS-PAGE 

and immunoblotted with indicated antibodies. 

Statistical Analysis.  Data are presented as means  SEM.  Differences between 

groups were determined by two-tailed Student’s t tests or ANOVA. P< 0.05 was 

considered significant. 
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Results 

Loss of peripheral SH2B1 predisposes mice to high fat diet (HFD)-induced 

insulin resistance.  We previously generated SH2B1 transgenic (Tg) mice in which the 

expression of recombinant SH2B1 is controlled by the neuron-specific enolase promoter 

(23).  Tg mice were crossed with SH2B1 knockout (KO) mice to generate SH2B1 

transgenic/knockout compound mutant (TgKO) mice.  In TgKO mice, recombinant 

SH2B1 is expressed in brain but not in other tissues, including liver, muscle and adipose 

tissue (23).  Neuron-specific restoration of SH2B1 in TgKO mice fully corrected leptin 

resistance and obesity, and largely rescued the hyperglycemia and insulin resistance 

observed in SH2B1 null mice, indicating that neuronal SH2B1 indirectly regulates insulin 

sensitivity and glucose metabolism by controlling adiposity (23). 

To determine whether loss of peripheral SH2B1 exacerbates dietary fat-induced 

insulin resistance, TgKO and wild type littermates (7 weeks) were fed HFD.  Body 

weight and adiposity were similar between wild type and TgKO mice fed HFD (Figs. 

3.1A-B).  However, fasting (16-h) blood glucose levels were 1.3-fold higher in TgKO 

mice than in wild type mice fed HFD for 16 weeks (Fig. 3.1C).  Fasting plasma insulin 

levels were 2-fold higher in TgKO mice than in wild type mice (Fig. 3.1D).  To examine 

insulin sensitivity, glucose and insulin tolerance tests (GTT and ITT) were performed.  

Blood glucose levels were 23-26% higher in TgKO mice than wild type mice 15 and 30 

minutes after injection of D-glucose (Fig. 3.1E).  Exogenous insulin markedly reduced 

blood glucose in wild type but not in TgKO mice during ITT (Fig. 3.1F).  These results 

indicate that loss of peripheral SH2B1 exacerbates HFD-induced insulin resistance, 

hyperglycemia, and glucose intolerance independent of obesity. 

Loss of peripheral SH2B1 impairs insulin signaling in muscle, liver and 

adipose tissue in HFD-fed mice.  To examine insulin signaling in skeletal muscle, liver 

and epididymal fat, mice (7 weeks) were fed HFD for 16 weeks and treated with insulin 

or PBS vehicle.  Insulin markedly stimulated tyrosine phosphorylation of IRS-1 as well 

as IRS-1 association with p85, the regulatory subunit of the PI 3-kinase, in skeletal 

muscle of wild type mice (Fig. 3.2A).  Both IRS-1 phosphorylation and IRS-1-p85 

association were markedly reduced in TgKO muscle (Fig. 3.2A).  Loss of peripheral 

SH2B1 also decreased insulin receptor autophosphorylation and impaired the ability of 
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insulin to stimulate Akt phosphorylation on Thr308 and Ser473 in TgKO muscle (Fig. 

3.2A).  Insulin-stimulated IRS-1 and Akt Thr308 phosphorylation were reduced by 44% 

and 52%, respectfully, in TgKO muscle (Fig. 3.2B). 

Insulin signaling was also examined in liver and white adipose tissue (WAT) from 

HFD-fed mice.  Relative to wild type mice, basal IRS-1 phosphorylation was increased in 

both liver and white adipose tissue (WAT) in TgKO mice; insulin stimulated IRS-1 

phosphorylation in these tissues from wild type but not TgKO mice (Figs. 3.2C and 

3.2E).  Akt phosphorylation (Ser473) was also reduced in liver (Fig. 3.2D) and WAT (not 

shown) in TgKO mice.  AS160, a Rab-GAP, is an Akt-substrate involved in GLUT4 

vesicle trafficking in adipocytes (12, 26).  To measure AS160 phosphorylation, WAT 

extracts were immunoprecipitated with anti-phospho-Ser/Thr Akt substrate antibody and 

immunoblotted with anti-AS160 antibody.  Similar to IRS-1, basal AS160 

phosphorylation was increased in adipose tissue from TgKO mice (Fig. 3.2F); however, 

insulin failed to further stimulate AS160 phosphorylation (Fig. 3.2F).  Together, these 

data indicate that peripheral SH2B1 increases insulin sensitivity in mice by promoting 

insulin signaling, including the activation of the IRS protein/PI 3-kinase/Akt pathway, in 

muscle, liver and white adipose tissue. 

SH2B1 cell-autonomously promotes insulin signaling via its SH2 domain.  To 

determine whether endogenous SH2B1 directly enhances insulin signaling, primary 

hepatocyte cultures were prepared from wild type and SH2B1 KO littermates, and treated 

with insulin.  SH2B1 was detected in wild type but not in KO hepatocytes as expected 

(Fig. 3.3A).  Insulin stimulated tyrosine phosphorylation of IR and IRS-1, IRS-1 

association with p85, and phosphorylation of Akt in wild type hepatocytes; however, IR 

autophosphorylation, IRS-1 phosphorylation, IRS-1 association with p85, and Akt 

phosphorylation were all reduced in KO hepatocytes (Fig. 3.3A).  Interestingly, SH2B1 

deficiency impaired IRS-1 phosphorylation to a greater extent than IR 

autophosphorylation.  In HEK293 cells, overexpression of SH2B1 markedly increased 

insulin-stimulated tyrosine phosphorylation of IRS-1; in contrast, a SH2B1 mutant in 

which the SH2 domain is disrupted due to replacement of Arg555 with Glu (R555E) 

functioned as a dominant negative to inhibit IRS-1 phosphorylation (Fig. 3.3B).  To 

further assess the role of the SH2 domain of SH2B1, IRS-1 and IR were coexpressed with 
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N504, an N-terminal truncated form of rat SH2B1β (amino acids 504-670) that 

contained the entire SH2 domain and a minimal number of adjacent amino acids.  N504 

also promoted IRS-1 phosphorylation in insulin-treated cells (Fig. 3.3C).  These data 

suggest that the SH2 domain of SH2B1 is not only required but also sufficient to promote 

IR-mediated phosphorylation of IRS-1. 

To determine whether SH2B1 also promotes phosphorylation of other IR 

substrates, Shc was coexpressed with SH2B1 or N504.  SH2B1 and N504 enhanced 

insulin stimulation of Shc phosphorylation to similar levels (Fig. 3.3D).  By contrast, 

SH2B1 stimulated IRS-1 phosphorylation to a higher level than did N504 (Fig. 3.3C), 

suggesting that SH2B1 promotes phosphorylation of IRS-1 and Shc by different 

mechanisms. 

SH2B1 stimulates IR catalytic activity through the binding of its SH2 domain 

to Tyr1158 in IR.  SH2B1 directly binds via its SH2 domain to Tyr1158 within the 

activation loop of IR (15, 20).  To test whether this interaction modulates IR activation, 

CHOIR cells, which stably express IR, were treated with insulin, and active IR was 

purified using wheat germ agglutinin (WGA)-conjugated agarose beads (39).  IR was 

then pre-incubated with purified GST-SH2B1 fusion protein, and subsequently subjected 

to in vitro kinase assays using GST-IRS-1 fusion protein as substrate.  Tyrosine 

phosphorylation of GST-IRS-1 was measured by immunoblotting with anti-phospho-

tyrosine antibodies.  GST-SH2B1, but not GST alone, dose-dependently stimulated IR 

kinase activity as indicated by increased phosphorylation of GST-IRS-1 (Fig. 3.4A).  In 

similar experiments, a GST-SH2 fusion protein prepared by fusing the SH2 domain 

(amino acids 524-670 of SH2B1) to GST was preincubated with WGA-purified IR in 

vitro kinase assays.  The SH2 domain of SH2B1 was sufficient to enhance IR catalytic 

activity, stimulating IRS-1 phosphorylation by ~66 % (Fig. 3.4B).  Additionally, the SH2 

domain of SH2B1 also promoted the catalytic activity of IR immunopurified with an anti-

phospho-tyrosine antibody, increasing IRS-1 substrate phosphorylation by ~79 % (Fig. 

3.4C). 

To determine whether Tyr1158 in IR is involved in SH2B1 stimulation of IR 

activity, Tyr1158 was replaced with Phe (Y1158F). COS-7 cells were transiently 

transfected with IR or Y1158F and treated with insulin.  Insulin stimulated 
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autophosphorylation of both IR and Y1158F, but Y1158F autophosphorylation was 

reduced (Fig. 3.4D).  Y1158F phosphorylated IRS-1 in response to insulin (data not 

shown), indicating that Y1158F retains the ability to be activated and to phosphorylate its 

substrates.  IR and Y1158F were purified using WGA-beads, preincubated with GST-

SH2B1, and subjected to in vitro kinase assays.  SH2B1 stimulated IR kinase activity by 

~5 fold; however, SH2B1 was unable to stimulate Y1158F catalytic activity (Fig. 3.4E).  

Taken together, these data suggest that the physical interaction between the SH2 domain 

of SH2B1 and Tyr1158 in IR is required and sufficient for stimulation of IR catalytic 

activity. 

SH2B1 protects IRS proteins against tyrosine dephosphorylation.  SH2B1 

directly binds to IRS-1 and IRS-2 in vitro (7), and insulin stimulated 

coimmunoprecipitation of SH2B1 with IRS-1 in cells (Fig. 3.5A).  To determine whether 

this physical interaction inhibits IRS-1 dephosphorylation by phosphatases, CHOIR/IRS-1 

cells, which stably express IR and IRS-1, were stimulated with insulin to promote 

tyrosine phosphorylation of IRS-1.  Phosphorylated IRS-1 was immunopurified, 

preincubated with GST or GST-SH2B1, and subjected to in vitro dephosphorylation 

assays.  IRS-1 bound to GST-SH2B1 but not to GST (data not shown).  Alkaline 

phosphatase dose-dependently dephosphorylated IRS-1 on tyrosines in the GST-

pretreated samples; in contrast, alkaline phosphatase was unable to dephosphorylate 

SH2B1-bound IRS-1 (Fig. 3.5B).  Insulin also promoted the association of SH2B1 with 

IRS-2, and SH2B1 similarly inhibited tyrosine dephosphorylation of IRS-2 (data not 

shown). 

To determine whether SH2B1 inhibits IRS-1 dephosphorylation in cells, IRS-1 

was coexpressed with PTP1B (a protein tyrosine phosphatase) in the absence or presence 

of SH2B1.  PTP1B dephosphorylated IRS-1, and SH2B1 dose-dependently attenuated the 

ability of PTP1B to dephosphorylate IRS-1 (Fig. 3.5C).  To determine whether SH2B1 is 

able to promote IRS-1 phosphorylation without stimulating IR kinase activity, Y1158F 

was coexpressed with SH2B1.  Although SH2B1 was unable to stimulate Y1158F kinase 

activity (Fig. 3.4E), SH2B1 still markedly enhanced tyrosine phosphorylation of IRS-1 in 

Y1158F-expressing cells (Fig. 3.5D).  Thus, SH2B1 is likely to augment Y1158F-
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mediated phosphorylation of IRS-1 by inhibiting IRS-1 dephosphorylation by 

endogenous protein phosphatase(s). 

To determine whether the SH2B1-IRS interaction sterically inhibits the binding of 

IRS proteins to PI 3-kinase, IRS-1 and Y1158F were coexpressed with or without SH2B1 

in HEK293 cells, and IRS-1-p85 association was examined by co-immunoprecipitation 

assays.  Insulin stimulated coimmunoprecipitation of IRS-1 with p85; importantly, 

SH2B1 markedly enhanced insulin-stimulated p85 binding to IRS-1 (Fig. 3.5E).  These 

data indicate that the SH2B1-IRS interaction does not interfere with IRS-PI 3-kinase 

interaction, but rather increases the IRS-PI 3-kinase association by inhibiting IRS 

dephosphorylation.  Consistent with these observations, SH2B1 also enhanced insulin-

stimulated, Y1158F-mediated Akt phosphorylation (Fig. 3.5F).  Collectively, these data 

suggest that, in addition to enhancing IR catalytic activity via binding to Tyr1158, 

SH2B1 also promotes activation of the IRS protein/PI 3-kinase/Akt pathway by 

inhibiting IRS dephosphorylation. 
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Discussion 

Insulin resistance is the primary risk factor for various metabolic diseases, 

including type 2 diabetes, non-alcoholic fatty liver disease, dyslipidemia and 

cardiovascular disease.  The molecular mechanisms underlying insulin resistance are 

extremely complex and not completely understood.  It is commonly accepted that 

impairments in insulin signal transduction play a key role in the development of insulin 

resistance.  We previously observed that insulin signaling is enhanced by SH2B1 (8).  

SH2B1 overexpression increases IR autophosphorylation and tyrosine phosphorylation of 

IRS-1 and IRS-2 in cultured cells (8, 16).  Similar observations were independently 

reported by two other groups (2, 46).  Additionally, we showed that genetic deletion of 

SH2B1 results in severe insulin resistance and type 2 diabetes in mice (8).  However, 

SH2B1 null mice are also severely obese due to leptin resistance (17, 22, 23), raising the 

possibility that insulin resistance may be secondary to obesity in SH2B1 null mice.  

Therefore, it was unclear whether peripheral SH2B1 directly regulates insulin sensitivity 

in insulin target tissues in vivo. 

We generated TgKO mice that express SH2B1 only in the brain but not in 

peripheral tissues (e.g. liver, muscle and adipose tissue).  Body weight was similar 

between TgKO and wild type littermates fed either normal chow or HFD, consistent with 

our previous conclusion that neuronal SH2B1 controls energy balance and body weight 

by promoting leptin sensitivity (23).  In the current study, we demonstrated that loss of 

peripheral SH2B1 markedly impaired insulin sensitivity independent of body weight.  

TgKO mice developed hyperglycemia, hyperinsulinemia and glucose intolerance to a 

greater extent than wild type littermates fed HFD.  The ability of exogenous insulin to 

reduce blood glucose and to stimulate IR autophosphorylation and phosphorylation of 

IRS proteins and Akt in muscle, liver, and adipose tissue was significantly reduced in 

TgKO mice.  These results suggest that peripheral SH2B1 serves as an endogenous 

insulin sensitizer.  Insulin signaling has been shown to be attenuated by multiple 

intracellular signaling molecules (e.g. PTP1B, Grb10, Grb14, SOCS1, SOCS3, JNK, 

PKC, S6K and IKK) which contribute to the development of insulin resistance (1, 4, 6, 

9-11, 13, 14, 25, 27-29, 33-35, 37, 40, 44, 47).  Our data suggest that insulin sensitivity is 
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controlled by a balance between these negative regulators and SH2B1 in insulin target 

cells. 

SH2B1 promotes insulin signaling by stimulating IR catalytic activity.  SH2B1 

binds via its SH2 domain to phospho-Tyr1158 in the activation loop of IR (15, 20).  We 

showed that bacteria-derived SH2B1 markedly increased the ability of purified IR to 

tyrosyl phosphorylate IRS-1 in vitro.  In contrast, SH2B1 was unable to stimulate the 

catalytic activity of Y1158F, an IR mutant lacking the binding site for SH2B1.  In cells, 

SH2B1 overexpression promotes IR autophosphorylation as well as IR phosphorylation 

of its substrates (e.g. IRS-1, IRS-2 and Shc).  Conversely, deletion of endogenous SH2B1 

impaired insulin stimulation of IR autophosphorylation and IRS-1 phosphorylation in 

primary hepatocyte cultures.  Consistent with these observations, SH2B1 complexes, 

which are immunoprecipitated from cell extracts, reportedly promote IR 

autophosphorylation by reducing the Km for ATP (46).  The same report also concluded 

that SH2B1 dimerization was required for its stimulation of IR autophosphorylation, 

because treatment of cells with dimerization domain peptide mimetics inhibited IR 

autophosphorylation and downstream pathways (46).  However, the report did not 

provide evidence showing that the mimetics disrupted SH2B1 dimerization.  In contrast, 

we observed that the SH2 domain alone was sufficient to stimulate IR catalytic activity in 

vitro.  Moreover, N504, a N-terminal truncated SH2B1 containing the intact SH2 

domain but completely lacking both dimerization and PH domains, still markedly 

enhanced insulin-stimulated tyrosine phosphorylation of both IRS-1 and Shc.  

Conversely, R555E, a SH2B1 mutant with a defective SH2 domain, inhibited insulin 

signaling as a dominant negative mutant.  These data indicate that the SH2 domain of 

SH2B1 is both required and sufficient to stimulate IR kinase activity.  Because Tyr1158 

phosphorylation occurs early in the activation of the insulin receptor kinase (39, 41, 45), 

binding of the SH2 domain of SH2B1 to phospho-Tyr1158 may stabilize IR in an active 

conformation.  Alternatively, SH2B1-IR interaction may facilitate IR binding to its 

substrates. 

Insulin stimulated the binding of SH2B1 to IRS-1 or IRS-2.  Importantly, SH2B1 

directly inhibited tyrosine dephosphorylation of IRS-1 and IRS-2 by recombinant 

phosphatase in vitro and by PTP1B in cultured cells.  Although unable to stimulate 
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Y1158F catalytic activity, SH2B1 still enhanced Y1158F-mediated phosphorylation of 

IRS-1 in cultured cells, presumably by inhibiting IRS-1 dephosphorylation by 

endogenous tyrosine phosphatase(s).  Consistent with these observations, deletion of 

endogenous SH2B1 impaired tyrosine phosphorylation of IRS-1 to a greater extent than 

IR autophosphorylation in primary hepatocyte cultures.  Together, these data suggest that 

the SH2B1-IRS physical interaction inhibits IRS dephosphorylation by tyrosine 

phosphatases.  Interestingly, the SH2B1-IRS interaction did not inhibit the ability of 

phosphorylated IRS proteins to bind to p85, the regulatory subunit of PI 3-kinase; in 

contrast, it enhanced insulin-stimulated IRS-p85 association and subsequent Akt 

phosphorylation and activation, presumably by protecting IRS proteins against 

dephosphorylation.  These data suggest that SH2B1 does not compete with p85 for the 

same binding sites in IRS proteins, and that the SH2B1-IRS interaction does not sterically 

interfere with the IRS-p85 interaction.  Therefore, the SH2B1-IRS interaction may 

selectively block IRS interaction with tyrosine phosphatases, thereby inhibiting IRS 

dephosphorylation.  Alternatively, the SH2B1-IRS interaction may alter IRS 

conformation so that multiple tyrosine phosphorylation sites, in addition to SH2B1-bound 

site(s), are resistant to dephosphorylation, but still retain their ability to bind to 

downstream signaling molecules and activate downstream pathways including the PI 3-

kinase/Akt pathway. 

In conclusion, SH2B1 appears to promote insulin sensitivity in animals by 

multiple mechanisms (Fig. 3.6).  Neuronal SH2B1 increases insulin sensitivity indirectly 

by reducing adiposity (23).  In muscle, liver and adipose tissue, SH2B1 binds to IR and 

stimulates IR catalytic activity to globally activate pathways downstream of IR.  SH2B1 

binds to both IRS-1 and IRS-2 and protects IRS proteins from tyrosine 

dephosphorylation, augmenting and/or prolonging IRS protein-mediated pathways.  In 

addition, SH2B1 forms dimers, and each SH2B1 molecule in a SH2B1 dimer may 

simultaneously bind to IR and IRS-1 (or IRS-2), thereby stabilizing IR/IRS-1 (or IR/IRS-

2) complexes.  Therefore, SH2B1 and molecules that mimic these functions of SH2B1 

are potential therapeutic targets for the treatment of obesity and/or type 2 diabetes. 
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Fig. 3.1.  Peripheral SH2B1 enhances insulin sensitivity in mice.  (A-F) WT and TgKO 
male mice (7 wks) were fed a HFD. (A) Growth curve. (B) Body fat content after 16-wks on HFD. (C) 
Fasting (16-h) blood glucose levels and (D) plasma insulin levels after 16-wks on HFD. (E) Glucose 
tolerance tests (GTT) performed on mice fed HFD for 16-wks. (F) Insulin tolerance tests (ITT) performed 
on mice fed HFD for 16-wks. The number of mice is indicated in parenthesis. * P<0.05, ** P<0.01, *** 
P<0.001. 
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Fig. 3.2. Deletion of peripheral SH2B1 attenuates insulin signaling in mice. WT and 
TgKO males (7 wks) were fed a HFD for 16-wks. Mice were fasted for 16-h and treated with PBS or 
insulin (3 U per mouse). Tissue extracts were prepared 5 min after stimulation. (A) IRS-1 in muscle 
extracts was immunoprecipitated (IP) with anti-IRS-1 antibody (IRS-1) and immunoblotted (IB) with 
anti-phosphotyrosine (pTyr) and p85 antibodies. IR in muscle extracts was immunoprecipitated with 
IR and immunoblotted with pTyr. Muscle extracts were immunoblotted with phospho-specific Akt 
antibodies against phospho-Thr308 (pThr308) or phospho-Ser473 (pSer473) and Akt, respectively. (B) 
IRS-1 and Akt phosphorylation in (A) was quantified by densitometry and normalized to total IRS-1 and 
Akt protein levels, respectively. (C) Liver extracts were immunoprecipitated with IRS-1 and 
immunoblotted with pTyr.  The same blots were reprobed with IRS-1. IRS-1 phosphorylation was 
quantified and normalized to total IRS-1 protein levels. (D) Liver extracts were immunoblotted with 
pSer473 and Akt. Ser473 phosphorylation was quantified and normalized to total Akt protein levels. (E) 
Epididymal fat (WAT) extracts were immunoprecipitated with IRS-1 and immunoblotted with pTyr and 
reprobed with IRS-1.  IRS-1 phosphorylation was normalized to total IRS-1 protein levels.  (F) WAT 
extracts were immunoprecipitated with PAS (anti-phospho-Ser/Thr Akt substrate) and immunoblotted 
with AS160.  Extracts were also immunoblotted with tubulin. Three animals were examined for each 
condition. * P<0.05, ** P<0.01, *** P<0.001. 
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Fig. 3.3.  SH2B1 directly promotes insulin signaling in cells via its SH2 domain. (A) 
Primary hepatocyte cultures were prepared from WT or KO mice (8 wks) and treated with 100 nM insulin 
for 10 min.  Panel 1: cell extracts were immunoprecipitated with SH2B1 and immunoblotted with 
SH2B1.  Panels 2-3: cell extracts were immunoprecipitated with IR and immunoblotted with pTyr and 
IR.  Panels 4-5: cell extracts were immunoprecipitated with IRS-1 and immunoblotted with pTyr 
orp85.  Panels 6-7: cells extracts were immunoblotted with pSer473 and Akt. (B) IRS-1 and IR were 
transiently coexpressed with empty vector (CON), Myc-tagged SH2B1 or R555E plasmids in HEK293 
cells.  Cells were treated with 100 nM insulin for 10 min and extracts were immunoblotted with indicated 
antibodies. (C) IRS-1 and IR were transiently coexpressed with empty vector (CON), Myc-tagged SH2B1 
or N504 plasmids in HEK293 cells.  Cells were treated with 100 nM insulin for 10 min and extracts were 
immunoblotted with indicated antibodies.  IRS-1 phosphorylation was normalized to total IRS-1 protein 
levels. (D) Shc and IR were transiently coexpressed with empty vector (CON), Myc-tagged SH2B1 or 
N504 plasmids in HEK293 cells.  Cells were treated with 100 nM insulin for 10 min and extracts were 
immunoblotted with indicated antibodies.  Shc phosphorylation was normalized to total Shc protein levels.  
* P<0.05, ** P<0.01, *** P<0.001. 
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Fig. 3.4A-C.  SH2B1 directly enhances insulin receptor activity in vitro. (A) CHOIR 
cells were treated without or with 100 nM insulin for 10 min.  IR was purified with WGA-agarose beads, 
preincubated with indicated amounts of GST or GST-SH2B1 fusion protein, and subjected to in vitro 
kinase assays with GST-IRS-1 as substrate for 10 min.  Reaction mixtures were immunoblotted with 
pTyr, IRS-1 or IR. (B) WGA-purified IR was preincubated with GST or GST-SH2 fusion protein (5 
g) and subjected to in vitro kinase assays with GST-IRS-1 protein (amino acids 526-859 of rat IRS-1) as 
substrate for 10 min.  IRS-1 phosphorylation was quantified by densitometry and normalized to total GST-
IRS-1 levels. (C) CHOIR cells were treated without or with 100 nM insulin for 10 min.  Cell extracts were 
immunoprecipitated with pTyr.  pTyr-immunopurified IR was preincubated with GST or GST-SH2 
fusion protein (amino acids 524-670) (5 g), and subjected to in vitro kinase assays with GST-IRS-1 as 
substrate for 10 min.  Reaction mixtures were immunoblotted with indicated antibodies and IRS-1 
phosphorylation was quantified and normalized to total GST-IRS-1 levels.  * P<0.05, ** P<0.01.  
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Fig. 3.4D-E.  SH2B1 directly enhances insulin receptor activity in vitro. (D) WT or 
Y1158F was expressed in COS-7 cells.  Cells were treated with 100 nM insulin for 10 min.  Cell extracts 
were immunoblotted with pTyr or IR. (E) WT or Y1158F was expressed in COS-7 cells and treated with 
insulin.  WT or Y1158F was purified with WGA-agarose beads, preincubated with GST or GST-SH2B1 
fusion protein (5 g), and subjected to in vitro kinase assays with GST-IRS-1 as substrate for 10 min.  
GST-IRS-1 phosphorylation was normalized to total GST-IRS-1 protein levels.  * P<0.05, ** P<0.01. 
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Fig. 3.5.  SH2B1 protects IRS-1 from dephosphorylation. (A) IRS-1 and SH2B1 were 
transiently expressed in HEK293 cells.  Cell extracts were immunoprecipitated with SH2B1 and 
immunoblotted with IRS-1 and SH2B1. (B) CHOIR/IRS-1 cells were stimulated with 100 nM insulin for 
10 min.  IRS-1 was immunoprecipitated with IRS-1, preincubated with GST or GST-SH2B1 (2 g), and 
subjected to in vitro dephosphorylation assays with indicated amounts of alkaline phosphatase for 30 min.  
Reaction mixtures were immunoblotted with pTyr and IRS-1. (C) IR and IRS-1 were transiently 
expressed with PTP1B (0.1 g) and increasing amounts of Myc-tagged SH2B1 (0-0.8 g).  Cells were 
treated with 100 nM insulin for 10 min and extracts were immunoblotted with indicated antibodies. (D) 
IRS-1 was expressed with IR or Y1158F in the absence or presence of SH2B1 in HEK293 cells.  Cells 
were treated with 100 nM insulin for 10 min and extracts were immunoblotted with indicated antibodies. 
(E) IRS-1 (1 g) and Y1158F (1 g) plasmids were transiently cotransfected with or without SH2B1 
plasmids (0.8 g) in HEK293 cells.  Cells were deprived of serum overnight 48 h after transfection, and 
treated with 100 nM insulin for 10 min.  Cell extracts were immunoprecipitated with IRS-1 and 
immunoblotted with p85 and IRS-1.  Extracts were also immunoblotted with indicated antibodies. (F) 
IRS-1 and Y1158F were coexpressed with or without SH2B1.  Cells were treated with 100 nM insulin for 
10 min and extracts were immunoblotted with indicated antibodies. 
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Fig. 3.6.  A model for SH2B1 regulation of insulin signaling.  In response to insulin, SH2B1 
binds directly to phospho-Tyr1158 in IR via its SH2 domain and stimulates IR kinase activity, thereby 
enhancing the activation of multiple signaling pathways downstream of IR (e.g. the Shc/MAPK and the 
IRS/PI 3-kinase pathways).  SH2B1 also binds to IRS-1 or IRS-2 and inhibits their dephosphorylation on 
tyrosines to specifically promote the activation of IRS protein-mediated pathways.  Since SH2B1 dimerizes 
via its DD domain, dimerized SH2B1 may further enhance insulin signaling by simultaneously binding to 
both IR and IRS-1 to stabilize active IR with IRS-1 or recruit IRS-1 to IR.  PTP: protein tyrosine 
phosphatase; P: phosphate group. 
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Chapter 4 

 

SH2B1 Supports -cell Function Independent Of Central Leptin Action 

 

Abstract 

Insulin resistance and -cell dysfunction are determinants for diabetes.  Systemic 

disruption of the Sh2b1 gene in mice results in obesity and diabetes.  Neuronal SH2B1 

promotes peripheral insulin sensitivity by regulating leptin sensitivity, energy balance, 

and adiposity.  However, SH2B1 is expressed in insulin-target tissues and in the 

pancreas, raising the possibility that SH2B1 in these tissues may contribute to insulin 

sensitivity and/or -cell function to regulate glucose metabolism.  To test these 

possibilities, we examined glucose metabolism, glucose tolerance and insulin sensitivity 

in two mouse models.  Sh2b1 haploinsufficiency exacerbated the diabetic phenotype in 

leptin-deficient, ob/ob mice.  Insulin resistance was similar in Sh2b1+/-ob/ob and ob/ob 

mice.  However, Sh2b1+/-ob/ob were severely hyperglycemic due to -cell dysfunction.  

Pancreatic insulin content, but not pancreas mass or -cell area, was dramatically reduced 

in Sh2b1+/-ob/ob mice, which likely contributes glucose intolerance and decreased 

postprandial insulin levels in Sh2b1+/-ob/ob mice.  We generated pancreas-specific 

SH2B1-knockout (P-KO) mice to further examine the role of SH2B1 in the pancreas.  P-

KO mice were fed a high-fat diet (HFD) to induce peripheral insulin resistance.  

However, disruption of SH2B1 in the pancreas did not alter glucose tolerance after 10 

weeks of diet-induced obesity.  Collectively, these data suggest that SH2B1 has an 

important leptin-independent role in the regulation of glucose homeostasis.  In the 

pancreas of severely obese mice, SH2B1 supports -cell function, possibly by protecting 

-cells from oxidative stress. 
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Introduction 

Impaired insulin action in peripheral tissues (insulin resistance) and insufficient 

insulin secretion (-cell dysfunction) contribute to the development of impaired glucose 

tolerance and hyperglycemia, hallmarks of type 2 diabetes.  Insulin resistance is a driving 

force for the development of -cell dysfunction.  In the prediabetic state, -cells initially 

compensate for insulin resistance by increasing both insulin production and secretion (13, 

16, 17, 33).  However, the compensatory capacity of the -cell is limited and -cells 

eventually fail to secrete adequate amounts of insulin, resulting in the development of 

type 2 diabetes. 

Multiple growth factors, including insulin, insulin-like growth factor-1 (IGF-1), 

growth hormone (GH), and prolactin promote -cell function (6, 11, 15, 18, 21-23, 29, 

44, 45).  Many of the intracellular signaling pathways through which these growth factors 

modulate -cell function have been studied.  IGF-1 and insulin activate the IRS-2/PI 3-

kinase/Akt2 pathway, which inhibits FoxO1 activity to promote Pdx1 expression (18, 21, 

23, 29, 44, 45).  Pdx1 is a master transcriptional regulator in -cells that regulates the 

expression of genes necessary for -cell function, as well as those needed for 

proliferation and survival (1-3, 21).  Additionally, activation of the JAK2/STAT 

pathways by GH and prolactin promote -cell function and proliferation (6, 11, 15, 22).  

The adapter protein SH2B1 is expressed in the pancreas (9, 35) and promotes the 

activation of both the IRS-2/PI 3-kinase/Akt2 and JAK2/STAT pathways in cells (5, 25, 

37, 40, 43), raising the possibility that SH2B1 may play a role in -cell function and/or -

cell proliferation.   

SH2B1 is a PH and SH2 domain containing adapter protein that mediates cellular 

responses to a wide range of growth factors and cytokines, including insulin and leptin (8, 

19, 20, 25, 34, 37-40, 43, 47).  Disruption of the Sh2b1 gene in mice causes both obesity 

and diabetes (24, 35, 36).  Genetic evidence indicates that SH2B1 in the brain 

predominantly regulates leptin action to control energy balance (9, 24, 35, 36).  SH2B1-

knockout (KO) mice are severely leptin resistant (24, 35, 36).  However, leptin sensitivity 

is restored, energy balance is corrected, and systemic insulin sensitivity is improved after 

reconstitution of SH2B1 expression in neurons of SH2B1-KO mice (36).  Moreover, 

overexpression of SH2B1 in neurons prevents diet-induced obesity (36), whereas 
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overexpression of a dominant negative mutant of SH2B1 in neurons induces obesity 

(Chapter 2).  Collectively, these findings indicate that SH2B1 in the brain is a leptin 

sensitizer that is critical for regulation of energy balance and body weight.  Moreover, 

SH2B1 in the brain indirectly promotes systemic insulin sensitivity and glucose 

homeostasis by controlling body weight and adiposity. 

In cells, SH2B1 promotes insulin signaling by promoting insulin receptor kinase 

activity and by attenuating dephosphorylation of insulin receptor substrate (IRS) proteins 

(28).  SH2B1 is expressed in insulin-target tissues, including skeletal muscle, liver, and 

white adipose tissue (9, 35), and we recently reported that disruption of SH2B1 in these 

tissues exacerbates diet-induced hyperglycemia, hyperinsulinemia and glucose 

intolerance (28).  These data indicate that peripheral SH2B1 directly regulates insulin 

signaling to promote glucose homeostasis. 

SH2B1 is expressed in the pancreas (9, 35), but whether pancreatic SH2B1 has a 

role -cell function is not known.  The observations that SH2B1 promotes insulin, IGF-1 

and GH signaling in cultured cells (9, 28) raises the possibility that SH2B1 in the 

pancreas may contribute to the regulation of glucose metabolism by supporting -cell 

function.  To test this, we examined glucose metabolism, glucose tolerance and insulin 

sensitivity in two mice models.  First, we generated leptin-deficient (ob/ob) mice with 

Sh2b1 haploinsufficiency (Sh2b1+/- ob/ob mice) to test whether SH2B1 promotes glucose 

metabolism independent of leptin action.  We report that Sh2b1 haploinsufficiency did 

not alter energy metabolism in leptin-deficient mice; however, Sh2b1 haploinsufficiency 

exacerbated the diabetic phenotype in ob/ob mice.  Glucose tolerance was severely 

impaired in Sh2b1+/- ob/ob mice due to -cell dysfunction.  These data support the 

hypothesis that SH2B1 in the pancreas contributes to the regulation of glucose 

homeostasis independent of the ability of SH2B1 in the brain to regulate energy balance.  

To further examine the contribution of SH2B1 in the pancreas to the regulation of 

glucose homeostasis and to test whether SH2B1 in -cells prevents -cell dysfunction 

during diet-induced obesity, we generated pancreas-specific SH2B1-knockout mice (P-

KO).  P-KO mice were fed a high fat diet (HFD) for 10 weeks to induce peripheral 

insulin resistance.  Fed glucose levels were higher in HFD-fed P-KO mice than in HFD-
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fed control mice.  However, fasting glucose levels and glucose tolerance were similar in 

P-KO and control mice.  Together, these data indicate that SH2B1 has an important 

leptin-independent role in the regulation of glucose homeostasis.  In the pancreas, SH2B1 

supports -cell function in genetically obese mice, possibly by protecting -cells from 

oxidative stress induced by glucotoxicity. 
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Materials and Methods 

Generation of leptin-deficient (ob/ob) mice with reduced SH2B1 expression.  

Sh2b1+/- mice have been described previously (9).  Sh2b1+/- mice were backcrossed for 

six generations onto a C57BL/6 genetic background.  Sh2b1+/- mice were crossed to ob/+ 

mice (Jackson Laboratories) to generate double heterozygotes (Sh2b1 +/- ob/+).  Sh2b1 +/- 

ob/+ mice were crossed to generate wild-type (WT), ob/ob, Sh2b1 +/- ob/ob, and 

SH2B1KO ob/ob mice.  Male mice were used for experiments.  Mice were housed on 14-

hour light/10-hour dark cycle in the Unit for Laboratory Animal Medicine at the 

University of Michigan, and were fed standard rodent chow (9% fat; Lab Diet) ad libitum 

with free access to water.  Animal protocols were approved by the University Committee 

on Use and Care of Animals (UCUCA) at the University of Michigan. 

Body composition, energy expenditure, food intake and locomotor activity.  

Fat content was measured by dual energy x-ray absorptiometry (Norland Medical 

System).  Food intake, oxygen consumption (VO2), carbon dioxide production (VCO2), 

and spontaneous locomotor activity were measured using the Comprehensive Laboratory 

Monitoring System (CLAMS, Columbus Instruments).  Mice were individually housed in 

metabolic chambers with free access to food and water.  After 24 hours of acclimation, 

measurements were made continuously for 48 hours.  O2 and CO2 in each chamber were 

sampled for 5 seconds at 10 minute intervals.  Food intake was measured using a 

precision balance attached to the chamber.  Locomotor activity was recorded every 

second in X and Z dimensions. 

Blood glucose, plasma insulin, glucose tolerance tests (GTT) and insulin 

tolerance tests (ITT).  Blood glucose levels were determined using glucometers (Bayer 

Corp).  Plasma insulin was measured using a rat insulin ELISA kit (Crystal Chem).  

Glucose tolerance tests (GTT) and insulin tolerance tests (ITT) were conducted as 

previously described (9, 35, 36). 

Immunoprecipitation and immunoblotting.  Mice were anesthesized with 

Averin (0.5 g of tribromoethanol and 0.25 g or tert-amyl alcohol in 39.5 ml of water; 0.02 

ml/g of body weight).  Tissues were isolated, rapidly frozen in liquid nitrogen, and stored 

at -80 ºC until analysis.  Frozen tissue samples were homogenized in ice cold lysis buffer 

(50 mM Tris HCl, pH 7.5, 0.5% Nonidet P-40, 150 mM NaCl, 2 mM EGTA, 1 mM 
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Na3VO4, 100 mM NaF, 10 mM Na4P2O7, 1 mM phenylmethylsulfonyl fluoride, 10 g/ml 

aprotinin, 10 g/ml leupeptin) and extracts were immunoblotted or immunoprecipitated 

with indicated antibodies. 

Islet morphology and immunoflourescence.  Tissues were fixed in 4% 

paraformaldehyde overnight and protected in 30% sucrose.  Frozen pancreas sections (5-

8 m) were prepared and stained with indicated antibodies.  Immunoflourescence was 

visualized using a BX51 microscope (Olympus) and images were captured using a DP70 

Digital Camera (Olympus). 

-cell area.  To determine -cell area, 4-5 pancreas sections >250 m apart were 

obtained per mouse.  Sections were stained with anti-insulin antibody to label -cells.  

Sections were visualized and images were captured as described above.   cell area (in 

m2) and the area of each section was determined using ImageJ software.   cell area was 

calculated by dividing the area of all insulin-positive cells in the 4-5 sections by total area 

of the 4-5 sections examined for each mouse.  

Insulin content in pancreas.  Pancreata were isolated from fasted (16-h) mice, 

weighed, rapidly frozen in liquid nitrogen and stored at -80 ºC until analysis.  The entire 

pancreas was homogenized in acid-ethanol (1.5% HCl in 70% EtOH), and extracted 

insulin was measured using a rat insulin RIA kit (Millipore).  Insulin content was 

normalized to pancreas wet weight. 

Generation of Sh2b1 flox/flox mice.  Unidirectional loxP sites were introduced into 

a 22 kb fragment of mouse genomic DNA that spanned the coding exons of the Sh2b1 

gene.  One loxP site was inserted into the intron between the second and third exons and 

a second loxP site was inserted into the intron between the fifth and sixth exons in the 

Sh2b1 gene.  A Neo cassette flanked by unidirectional Flp-recombinase recognition (Frt) 

sites was inserted 3’ of the first loxP (between exon 2 and exon 3).  A thymidine kinase 

(TK) expression cassette were included in the targeting vector.  A Hind III restriction site 

was introduced after the 3’ loxP site to facilitate detection of homologous recombination 

by Southern blot analysis. 

The linearized targeting construct was electroporated into R1 ES cells 

(129/Svx129/Sv-CP F1) by staff at the University of Michigan Transgenic Animal Model 
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Core (TAMC) facility.  ES clones were first screened by PCR to detect integration of the 

3’ loxP site.  To confirm that homologous recombination occurred between the targeting 

construct and the Sh2b1 locus, genomic DNA was digested with Hind III and subjected to 

Southern blot analysis.  Two ES cell clones were microinjected into C57BL/6 blastocyts 

to generate chimeric Sh2b1 flox-NEO/+ mice.  Six chimeric (>90% agouti) males from each 

clone were breed to C57BL/6 females to identify germline founders. 

The Neo cassette acts as a transcriptional block in Sh2b1 flox-NEO/+ mice, resulting 

in reduced SH2B1 expression (data not shown).  Therefore, the Neo cassette was deleted 

from the germline by crossing Sh2b1 flox-NEO/+ mice with a Flp deleter strain 

(TgACTFLPe) that ubiquitously expresses Flp recombinase under the control of the 

human actin promoter (Jackson Laboratories) to produce Sh2b1 flox/+ mice.  Sh2b1 flox/+ 

mice were intercrossed to generate mice homozygous for the conditional allele (Sh2b1 
flox/flox). 

Generation of pancreas specific SH2B1-knockout (P-KO) mice.  Pdx1-Cre 

mice in which Cre recombinase is expressed under the control of the mouse Pdx1 

promoter have been described (12).  Pdx1-Cre mice were provided by Dr. Richard 

Mortensen, University of Michigan.  Mice homozygous for the floxed Sh2b1 allele 

(Sh2b1 flox/flox ) were crossed to Pdx1-Cre transgenic mice.  The resultant double 

heterozygous mice were crossed to Sh2b1flox/+ mice to produce pancreas-specific SH2B1-

knockout mice (P-KO mice: Sh2b1 flox/flox/Pdx1-Cre).  The control group (Ctrl) consisted 

of both Sh2b1 flox/flox and Sh2b1 +/+/Pdx1-Cre mice.  P-KO and Ctrl male mice were fed 

either normal rodent chow (9% fat; Lab Diet) or a high fat diet (45% fat; Research Diets) 

ad libitum with free access to water. 

Statistical Analysis.  Data are presented as means  SEM.  Differences between 

groups were determined by two-tailed Student’s t tests or ANOVA.  P< 0.05 was 

considered significant. 
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Results 

Disruption of Sh2b1 in leptin-deficient (ob/ob) mice results in lethality and 

reduced viability.  To explore the leptin-independent regulation of glucose metabolism 

by SH2B1 in vivo, SH2B1-knockout (KO) mice were crossed onto the leptin-deficient 

background in an attempt to generate double mutant mice lacking both SH2B1 and leptin.  

Surprisingly, the number of double mutant Sh2b1-/- ob/ob mice produced from 

heterozygous matings (Sh2b1+/- Ob/ob x Sh2b1+/- Ob/ob) did not reach the expected 

Mendelian ratio indicating that the combined deletion of both SH2B1 and leptin in 

C57BL/6 mice causes either embryonic or perinatal lethality (data not shown).   

Therefore, we chose to examine the effects of Sh2b1 haploinsufficiency on 

glucose metabolism in leptin-deficient mice (Sh2b1+/- ob/ob) mice.  To confirm that 

inactivation of one Sh2b1 allele produced the expected 50% reduction in SH2B1 protein, 

we examined SH2B1 protein levels in brain and liver.  Two isoforms of SH2B1 in brain 

and one isoform of SH2B1 in liver were detected in wild type (WT), ob/ob and Sh2b1+/- 

ob/ob mice (Fig. 4.1A).  Compared to ob/ob mice, SH2B1 levels in both brain and liver 

were reduced in Sh2b1+/- ob/ob mice.  Notably, SH2B1 protein levels were similar in 

brain and liver from wild type (WT) and ob/ob mice (Fig. 4.1A), indicating that leptin-

deficiency does not alter SH2B1 expression in mice.  

Sh2b1 haploinsufficiency does not alter obesity or energy balance in leptin-

deficient mice.  Obesity and dyslipidemia likely contribute to insulin resistance and 

glucose intolerance in SH2B1-KO mice (9, 24, 35, 36), making it difficult to address the 

contribution of SH2B1 in peripheral tissues and pancreas to the regulation of glucose 

metabolism.  Body weight and fat content were similar in ob/ob and Sh2b1+/- ob/ob male 

mice (Fig. 4.1B-C).  The size of individual adipocytes from epididymal fat pads was also 

similar in Sh2b1+/- ob/ob and ob/ob mice (data not shown).  As expected, ob/ob mice 

were hyperphagic and consumed more food than age-matched WT mice; however, Sh2b1 

haploinsufficiency had no additive effect on food intake in Sh2b1+/- ob/ob mice (Fig. 

4.1D).  Moreover, Sh2b1 haploinsufficiency did not alter energy expenditure or activity 

in leptin-deficient mice (Fig. 4.1E-F).  Collectively, these data indicate that a reduction in 

SH2B1 levels is not sufficient to further alter energy imbalance in leptin-deficient mice. 
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Sh2b1 haploinsufficiency exacerbates the diabetic phenotype in leptin-

deficient mice.  SH2B1 is expressed in insulin-target tissues and in the pancreas (9, 35).  

To determine whether SH2B1 in these tissues contributes to the regulation of insulin 

sensitivity and glucose homeostasis in the absence of leptin signaling, glucose and insulin 

levels in ob/ob and Sh2b1+/- ob/ob male mice were compared.  Fasting glucose levels 

were significantly elevated in ob/ob mice as early as seven weeks of age (WT: 64.8 ± 4.8 

mg/dl, n = 9; ob/ob: 138.3 ± 6.5 mg/dl, n = 9); hyperglycemia was further exacerbated in 

Sh2b1+/- ob/ob mice (185.6 ± 16.9 mg/dl, n = 9).  By 12 weeks of age, fasting and 

random fed glucose levels were increased by 150% and 30%, respectfully, in Sh2b1+/- 

ob/ob mice compared to ob/ob mice (Fig. 4.2A).  Fasting insulin levels were similar in 

Sh2b1+/- ob/ob and ob/ob mice (Fig. 4.2B); however, insulin levels in randomly fed 

Sh2b1+/- ob/ob and ob/ob mice were significantly different (Fig. 4.2B).  In the fed state, 

plasma insulin levels were 4.6-times higher in ob/ob mice compared to Sh2b1+/- ob/ob 

mice (ob/ob: 23.2 ± 6.8 ng/ml, n = 5; Sh2b1+/- ob/ob: 5.0 ± 1.3 ng/ml, n = 5; p<0.01).  

Comparing insulin levels in fasted versus fed mice, plasma insulin increased ~5-fold in 

ob/ob mice in response to feeding (fed: 23.2 ± 6.8 ng/ml, n = 5; fasted: 4.7 ± 6.8 ng/ml, n 

= 9); by contrast, insulin levels were nearly identical in fed and fasted Sh2b1+/- ob/ob 

mice (fed: 5.0 ± 1.3 ng/ml, n = 5; fasted: 4.9 ± 1.3 ng/ml, n = 9). 

To examine glucose and insulin sensitivity in Sh2b1+/- ob/ob and ob/ob mice, 

glucose tolerance (GTT) and insulin tolerance tests (ITT) were performed.  Exogenous 

glucose (0.6g D-glucose/kg body weight) caused a sharp rise in glucose levels in both 

ob/ob and Sh2b1+/- ob/ob mice; however, glucose tolerance was more significantly 

impaired in Sh2b1+/- ob/ob mice, as glucose levels remained significantly higher for a 

longer period after the glucose injection (Fig. 4.2C).  Compared to ob/ob mice, the area 

under the GTT curve increased nearly 1.5-times in Sh2b1+/- ob/ob mice (ob/ob: 587.5 ± 

51.6 mg/dl x hr, n = 7; Sh2b1+/- ob/ob: 875.9 ± 88.7 mg/dl x hr, n = 9; p<0.05).  Notably, 

the extent to which glucose tolerance is impaired in Sh2b1+/- ob/ob mice is 

underestimated.  Blood glucose levels in nearly half (3 of 7) of the Sh2b1+/- ob/ob mice 

assayed were higher than the upper detection limit (600 mg/dl) of the glucometers used 

both 30 and 60 minutes after injection; in those three mice, glucose levels were assigned 

a conservative estimate of 600 mg/dl. 
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To examine the extent to which insulin resistance contributed to glucose 

intolerance in Sh2b1+/- ob/ob mice, we conducted insulin tolerance tests (ITT).  Both 

ob/ob and Sh2b1+/- ob/ob mice were severely insulin resistant compared to WT mice and 

required higher doses of insulin to reduce blood glucose.  Insulin (4U/kg body weight) 

reduced glucose levels to a similar extent in ob/ob mice and Sh2b1+/- ob/ob mice, and the 

area under the insulin tolerance curve was similar (Fig. 4.2D).  In younger mice (7-weeks 

of age), insulin (2U/kg body weight) reduced blood glucose levels by ~34% in ob/ob and 

by ~30% in Sh2b1+/- ob/ob within one hour of injection, and the area under the insulin 

tolerance curve was not different (ob/ob: 105.3 ± 3.3 mg/dl x h, n = 5; Sh2b1+/- ob/ob: 

103.5 ± 11.6 mg/dl x h, n = 5).  Taken together, these data indicate that differences in 

insulin resistance do not explain the severe hyperglycemia and glucose intolerance 

observed in Sh2b1+/- ob/ob mice. 

Sh2b1 haploinsufficiency reduces pancreatic insulin content in leptin-

deficient mice.  Severely impaired glucose tolerance and reduced plasma insulin levels in 

fed, hyperglycemic Sh2b1+/- ob/ob mice suggest that -cell function may be regulated by 

SH2B1.  Therefore, we next examined the pancreas and islets from Sh2b1+/- ob/ob and 

ob/ob mice.  -cell area was determined by measuring the area of insulin-positive cells.  

Compared to WT mice, -cell area was increased in ob/ob mice; however, -cell area 

was similar between Sh2b1+/- ob/ob and ob/ob mice (Fig. 4.3A-B), indicating that 

compensatory -cell hyperplasia is not significantly impaired in Sh2b1+/- ob/ob mice.  

Pancreas wet weight was also similar in ob/ob and Sh2b1+/- ob/ob mice (Fig. 4.3C).  

However, pancreatic insulin content was significantly decreased in Sh2b1+/- ob/ob (Fig. 

4.3D).  At 15 weeks of age, pancreatic insulin content was reduced by 69% in Sh2b1+/- 

ob/ob mice (ob/ob: 487.8± 55.5 ng insulin/mg pancreas, n = 8; Sh2b1+/- ob/ob: 151.1 ± 

22.9 ng insulin/mg pancreas, n = 9; P<0.001).  Collectively, these findings suggest that -

cell dysfunction contributes to both impaired glucose tolerance and decreased 

postprandial insulin levels in Sh2b1+/- ob/ob mice.  

SH2B1 is expressed in endocrine pancreas.  SH2B1 is expressed in the 

pancreas (9, 35), but whether SH2B1 is expressed in exocrine or endocrine pancreas has 

not been determined.  Therefore, we examined SH2B1 expression in islets and -cells.  

SH2B1 protein was detected in isolated islets from WT male mice (Fig. 4.4A), and in 
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MIN6 and INS-1 832/13 insulinoma cell lines (data not shown).  To further examine the 

distribution of SH2B1 in the pancreas, pancreas sections from WT and KO mice were co-

immunostained with anti-SH2B1 and anti-insulin antibodies.  SH2B1 was detected in 

pancreas sections from WT, but not KO, mice (Fig.4.4B).  SH2B1 immunoreactivity was 

strongest within the islet (Fig. 4.4B); however, SH2B1 immunoreactivity was largely 

undetected in surrounding acinar and ductal cells (Fig. 4.4B).  These data indicate that 

SH2B1 is highly expressed in islets.  Furthermore, these observations suggest that SH2B1 

may cell autonomously promote insulin production and/or other aspects of -cell biology. 

Generation of pancreas-specific SH2B1-knockout mice.  Multiple growth 

factors, including insulin, insulin-like growth factor-I (IGF-I), growth hormone (GH), and 

prolactin, support -cell function (insulin production and secretion), proliferation and/or 

survival (4, 6, 10, 14, 42, 46).  In cells, SH2B1 is a signaling molecule for all of these 

factors (5, 37, 40, 43).  To examine the role of SH2B1 in the endocrine pancreas, we 

generated pancreas-specific SH2B1-knockout mice (P-KO) (Materials and Methods).  In 

P-KO mice, SH2B1 protein was significantly reduced in pancreas, but present in other 

tissues, confirming that Cre-mediated recombination of the conditional Sh2b1 alleles 

occurred specifically in pancreas (Fig. 4.5A-B).  -cell area and islet morphology was 

similar in P-KO and Sh2b1 flox/flox mice (not shown), suggesting that SH2B1 is not 

required for development of the endocrine pancreas. 

To determine whether SH2B1 in the pancreas is required for glucose metabolism, 

glucose levels in chow-fed P-KO mice (7-8 weeks) were compared to the control (Ctrl) 

group, which consisted of both Sh2b1 flox/flox and Sh2b1 +/+/Pdx1-Cre male mice.  Under 

these experimental conditions, fasting and random fed glucose levels were similar in P-

KO and Ctrl mice (Fig. 4.5C).  Additionally, neither glucose tolerance nor insulin 

sensitivity was altered by pancreas-specific deletion of SH2B1 in P-KO mice (Fig. 4.5D-

E).  Taken together, these data indicate that disruption of Sh2b1 in the pancreas alone is 

not sufficient to alter pancreas development or glucose metabolism in young, chow-fed 

mice. 

Pancreas-specific deletion of SH2B1 causes hyperglycemia, but not glucose 

intolerance in mice fed a high fat diet.  To determine whether deletion of SH2B1 in the 

pancreas alters glucose homeostasis during diet-induced obesity, P-KO and Ctrl mice 
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were fed a high-fat diet (HFD) for 10 weeks.  Body weight (Fig. 4.6A) and fat content 

(not shown) were similar between HFD-fed P-KO and Ctrl mice.  After 10 weeks of diet-

induced obesity, random fed, but not fasting, glucose levels were increased in P-KO mice 

(Fig. 4.6B-C).  Compared to Ctrl mice, blood glucose levels were 40% higher in P-KO 

mice after 10 weeks on HFD (Ctrl: 202.1 ± 18.9 mg/dl, n = 24; P-KO: 289.2 ± 33.59 

mg/dl, n = 13; P<0.02).  As expected insulin resistance was similar between P-KO and 

Ctrl mice (Fig. 4.6D); however, glucose tolerance was not significantly impaired in HFD-

fed P-KO mice relative to Ctrl mice (Fig. 4.6E).  Collectively, these data indicate that 

disruption of SH2B1 in the pancreas only mildly affects glucose homeostasis during diet-

induced obesity. 
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Discussion 

Insulin resistance and -cell dysfunction are determinants of diabetes.  Systemic 

disruption of the Sh2b1 gene in mice results in obesity and diabetes, demonstrating that 

SH2B1 is required for the maintenance of both energy balance and glucose homeostasis 

(9, 24, 35, 36).  We have demonstrated that SH2B1 in neurons promotes leptin signaling 

and contributes to the intrinsic regulation of energy balance and body weight (36).  By 

regulating energy balance and adiposity, neuronal SH2B1 indirectly promotes whole 

body insulin sensitivity.  Thus, regulation of leptin signaling in the brain may be the 

primary function of SH2B1 in vivo.  However, SH2B1 is expressed in insulin-target 

tissues and in the pancreas (9, 35).  SH2B1 promotes insulin signaling in cultured cells 

and deletion of peripheral SH2B1 exacerbates diet-induced insulin resistance and 

hyperglycemia (28).  These latter observations indicate that SH2B1 directly promotes 

insulin action in peripheral tissues.  However, the role of SH2B1 in the pancreas, and the 

relative contribution of pancreatic SH2B1 in the regulation of glucose metabolism has 

remained largely undefined. 

To test the role of SH2B1 in the pancreas, we examined glucose metabolism, 

glucose tolerance and insulin sensitivity in two mice models.  First, we generated leptin-

deficient (ob/ob) mice with Sh2b1 haploinsufficiency to test whether SH2B1 promotes 

insulin sensitivity and -cell function independent of its role as a leptin signaling 

molecule.  Sh2b1 haploinsufficiency did not alter the onset or severity of obesity in ob/ob 

mice.  However, the diabetic phenotype characteristic of ob/ob mice was dramatically 

exacerbated when SH2B1 was reduced.  Compared to ob/ob mice, Sh2b1+/-ob/ob mice 

were more severely hyperglycemic and glucose intolerant.  However, insulin resistance 

as measured by insulin tolerance tests (ITT), was similar between Sh2b1+/-ob/ob mice and 

ob/ob mice, suggesting that  cell dysfunction, rather than insulin resistance, may 

underlie the dramatic impairment in glucose metabolism. 

Consistent with -cell dysfunction, postprandial plasma insulin levels were 

significantly reduced in Sh2b1+/-ob/ob mice relative to ob/ob mice.  Pancreas mass and -

cell area were similar in Sh2b1+/-ob/ob and ob/ob mice, but pancreatic insulin content 

was dramatically reduced in Sh2b1+/-ob/ob mice.  Therefore, we propose that defects in 
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insulin production largely explain glucose intolerance and the apparent inability of these 

mice to increase postprandial insulin levels.  The extent to which insulin biosynthesis and 

glucose-stimulated insulin secretion is impaired by Sh2b1 haploinsufficiency in -cells of 

Sh2b1+/-ob/ob mice will require further investigation.  Nonetheless, these findings 

provide the first evidence that suggest SH2B1 can promote -cell function in mice. 

 SH2B1 is expressed in the pancreas and SH2B1 expression is highest in islets, so 

we generated pancreas-specific SH2B1-knockout (P-KO) mice to further characterize the 

role of SH2B1 in -cell function.  To accomplish this, mice with conditional (floxed) 

Sh2b1 alleles were crossed with mice expressing Pdx1-Cre mice.  In Pdx1-Cre, the 

expression of Cre recombinase is controlled by the mouse Pdx1 promoter (12).  Pdx1 is 

expressed early in pancreatic development, and Pdx1-Cre has been shown to recombine 

conditional alleles in progenitors that give rise to endocrine, exocrine and ductal cells in 

the pancreas (12).  Therefore, we assume that SH2B1 is deleted in all pancreatic cells in 

P-KO mice.  We chose the Pdx1-Cre line over RIP-Cre mice, in which Cre expression is 

controlled by the rat insulin II promoter.  While the RIP-Cre transgene is predicted to 

drive recombination of the conditional Sh2b1 alleles within -cells, Cre-mediated 

recombination has also been shown to occur in regions of the hypothalamus associated 

with regulation of energy balance (7, 26, 30).  Because recombination of the conditional 

Sh2b1 alleles within the hypothalamus may induce obesity, we chose to avoid this line. 

  P-KO mice were fed a high-fat diet (HFD) to induce peripheral insulin resistance.  

After 10 weeks of diet-induced obesity, peripheral insulin resistance caused 

hyperglycemia in fed, but not fasted, P-KO mice.  However, glucose tolerance was not 

affected by pancreas-specific deletion of SH2B1.  This was somewhat surprising given 

the robust and severe diabetic phenotype in Sh2b1+/-ob/ob mice.  Whether islet area, 

pancreatic insulin content, or glucose-stimulated insulin secretion is altered in HFD-fed 

P-KO mice will require further investigation. 

Nonetheless, it is noteworthy that Sh2b1 haploinsufficiency caused such a severe 

-cell phenotype in ob/ob mice.  Although the underlying mechanism is not clear, one 

possibility is that SH2B1 may increase the antioxidant capacity of -cells.  -cell 

dysfunction is thought to be accelerated by oxidative stressors, such as chronic 
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glucotoxicity and/or lipotoxicity (31, 32).  Thus, -cell dysfunction may be hastened in 

Sh2b1+/-ob/ob mice due to reduced antioxidant capacity.  Interestingly, SH2B1-KO mice 

are more sensitive to low dose streptozotocin (STZ)-induced diabetes than WT mice (S. 

Oka, D. Ren, and L. Rui, unpublished).  Since STZ is thought to generate reactive oxygen 

species (ROS) in -cells (27, 41), these data support this hypothesis.  Future studies are 

required to elucidate the mechanisms by which SH2B1 promotes -cell function and/or 

survival during metabolic stress.  

In summary, SH2B1 promotes glucose metabolism independent of its role as a 

leptin signaling molecule in the brain.  SH2B1 in the pancreas promotes -cell function 

in genetically obese mice.  The extent to which insulin biosynthesis and glucose-

stimulated insulin secretion is impaired by disruption of SH2B1 in -cells will require 

further investigation.  Nonetheless, islets that lack SH2B1 may be susceptible to 

oxidative damage, leading to -cell dysfunction and premature -cell failure 
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Fig. 4.1A-C.  Sh2b1 haploinsufficiency does not further alter energy balance in 
leptin-deficient (ob/ob) male mice.  (A)  SH2B1 expression in brain and liver from WT, ob/ob and 
Sh2b1+/-ob/ob male mice (15 wks).  Each lane represents an individual mouse.  (B)  Growth curve.  (C)  
Body fat content (10 wks).  The number of mice per group is indicated in parenthesis.  
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Fig. 4.1D-F.  Sh2b1 haploinsufficiency does not further alter energy balance in 
leptin-deficient (ob/ob) male mice.  (D)  Food intake.  (E)  Oxygen consumption (VO2).  (F)  
Spontaneous locomotor activity.  The number of mice per group is indicated in parenthesis.  * P<0.05, ** 
P<0.01. 
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Fig. 4.2A-B.  Sh2b1 haploinsufficiency exacerbates hyperglycemia and glucose 
intolerance in leptin-deficient (ob/ob) male mice.  (A)  Fasting (16-h) and random fed glucose 
levels in male mice (12 wks).  (B)  Fasting (16-h) and random fed plasma insulin levels (12 wks).  The 
number of mice per group is indicated in parenthesis.  ** P<0.01, *** P<0.001. 
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Fig. 4.2C-D.  Sh2b1 haploinsufficiency exacerbates hyperglycemia and glucose 
intolerance in leptin-deficient (ob/ob) male mice.  (D)  Insulin tolerance tests were preformed 
on male mice at 12 wks (4U insulin/kg body weight).  The number of mice per group is indicated in 
parenthesis.  * P<0.05, ** P<0.01. 
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Fig. 4.3.  Insulin content, but not -cell mass, is reduced in Sh2b1+/-ob/ob male 
mice.  (A)  Representative images of pancreas sections stained with insulin antibody.  Scale bar = 
200m.  (B)  Relative -cell area in male mice (15 wks).  The area of insulin-positive cells was normalized 
to total pancreas section area.  4-5 sections were measured per mouse.  (C)  Pancreas wet weight.  (D)  
Insulin content in whole pancreas.  The number of mice per group is indicated in parenthesis.  *** P<0.001. 
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Fig. 4.4.  SH2B1 is expressed in islets.  (A)  SH2B1 expression in pancreas and islet extracts from 
WT and SH2B1-knockout (KO) male mice.  (B)  SH2B1 and insulin immunoreactivity in WT and KO 
pancreas sections.  Scale bar = 200m. 
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Fig. 4.5.  Generation of pancreas-specific SH2B1-knockout (P-KO) mice.  (A)  SH2B1 
expression in pancreas extracts from Sh2b1 flox/flox , Sh2b1 +/+/Pdx1-Cre mice, and  P-KO male mice (12 
wks).  SH2B1 in pancreas extracts (1 mg) was immunoprecipitated with anti-SH2B1 antibody (SH2B1) 
and immunoblotted with SH2B1.  In parallel, extracts were immunoblotted with tubulin.  (B)  SH2B1 
expression in pancreas, brain and liver from Sh2b1 flox/flox and P-KO male mice.  SH2B1 in pancreas (1 mg), 
brain (1 mg) and liver (1 mg) was immunoprecipitated with SH2B1 and immunoblotted with SH2B1.  
(C)  Fasting (16-h) blood glucose levels in control (Ctrl) and P-KO male mice.  (D)  GTT performed on 
male mice (7-8 wks).  Mice were fasted overnight (16-h) and D-glucose (2g/ kg body weight) was 
administered by i.p. injection.  (E)  Insulin tolerance tests (ITT) performed on male mice (7-8 wks).  Mice 
were fasted for 6-h and human insulin (1U/kg body weight) was administered by i.p. injection.  The 
number of mice per group is indicated in parenthesis. 
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Fig. 4.6.  Disruption of Sh2b1 in the pancreas is not sufficient to alter glucose 
homeostasis during diet-induced obesity.  (A-E)  P-KO and Ctrl male mice (7-8 wks) were fed a 
high fat diet (HFD) for 10 wks.  (A)  Growth curve.  (B)  Fasting (16-h) blood glucose levels after 10 wks 
on HFD.  (C)  Random fed blood glucose levels after 10 wks on HFD.  (D)  ITT (1U insulin/kg body 
weight) performed on male mice fed HFD for 10 wks.  (E) GTT (1g D-glucose/kg body weight) performed 
on male mice fed HFD for 10 wks. The number of mice per group is indicated in parenthesis.  * P<0.05. 
 

 124 



References 

1. Ahlgren U, Jonsson J, Jonsson L, Simu K, and Edlund H. beta-cell-specific 
inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and 
maturity onset diabetes. Genes Dev 12: 1763-1768, 1998. 

2. Babu DA, Chakrabarti SK, Garmey JC, and Mirmira RG. Pdx1 and 
BETA2/NeuroD1 participate in a transcriptional complex that mediates short-range DNA 
looping at the insulin gene. J Biol Chem 283: 8164-8172, 2008. 

3. Babu DA, Deering TG, and Mirmira RG. A feat of metabolic proportions: 
Pdx1 orchestrates islet development and function in the maintenance of glucose 
homeostasis. Mol Genet Metab 92: 43-55, 2007. 

4. Bruning JC, Winnay J, Bonner-Weir S, Taylor SI, Accili D, and Kahn CR. 
Development of a novel polygenic model of NIDDM in mice heterozygous for IR and 
IRS-1 null alleles. Cell 88: 561-572, 1997. 

5. Carter-Su C and Smit LS. Signaling via JAK tyrosine kinases: growth hormone 
receptor as a model system. Recent Prog Horm Res 53: 61-82; discussion 82-63, 1998. 

6. Cousin SP, Hugl SR, Myers MG, Jr., White MF, Reifel-Miller A, and Rhodes 
CJ. Stimulation of pancreatic beta-cell proliferation by growth hormone is glucose-
dependent: signal transduction via janus kinase 2 (JAK2)/signal transducer and activator 
of transcription 5 (STAT5) with no crosstalk to insulin receptor substrate-mediated 
mitogenic signalling. Biochem J 344 Pt 3: 649-658, 1999. 

7. Covey SD, Wideman RD, McDonald C, Unniappan S, Huynh F, Asadi A, 
Speck M, Webber T, Chua SC, and Kieffer TJ. The pancreatic beta cell is a key site 
for mediating the effects of leptin on glucose homeostasis. Cell Metab 4: 291-302, 2006. 

8. Duan C, Li M, and Rui L. SH2-B promotes insulin receptor substrate 1 (IRS1)- 
and IRS2-mediated activation of the phosphatidylinositol 3-kinase pathway in response to 
leptin. J Biol Chem 279: 43684-43691, 2004. 

9. Duan C, Yang H, White MF, and Rui L. Disruption of the SH2-B gene causes 
age-dependent insulin resistance and glucose intolerance. Mol Cell Biol 24: 7435-7443, 
2004. 

10. Friedrichsen BN, Richter HE, Hansen JA, Rhodes CJ, Nielsen JH, Billestrup 
N, and Moldrup A. Signal transducer and activator of transcription 5 activation is 
sufficient to drive transcriptional induction of cyclin D2 gene and proliferation of rat 
pancreatic beta-cells. Mol Endocrinol 17: 945-958, 2003. 

 125 



11. Gorogawa S, Fujitani Y, Kaneto H, Hazama Y, Watada H, Miyamoto Y, 
Takeda K, Akira S, Magnuson MA, Yamasaki Y, Kajimoto Y, and Hori M. Insulin 
secretory defects and impaired islet architecture in pancreatic beta-cell-specific STAT3 
knockout mice. Biochem Biophys Res Commun 319: 1159-1170, 2004. 

12. Gu G, Dubauskaite J, and Melton DA. Direct evidence for the pancreatic 
lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. 
Development 129: 2447-2457, 2002. 

13. Herman MA and Kahn BB. Glucose transport and sensing in the maintenance of 
glucose homeostasis and metabolic harmony. J Clin Invest 116: 1767-1775, 2006. 

14. Hugl SR, White MF, and Rhodes CJ. Insulin-like growth factor I (IGF-I)-
stimulated pancreatic beta-cell growth is glucose-dependent. Synergistic activation of 
insulin receptor substrate-mediated signal transduction pathways by glucose and IGF-I in 
INS-1 cells. J Biol Chem 273: 17771-17779, 1998. 

15. Jackerott M, Moldrup A, Thams P, Galsgaard ED, Knudsen J, Lee YC, and 
Nielsen JH. STAT5 activity in pancreatic beta-cells influences the severity of diabetes in 
animal models of type 1 and 2 diabetes. Diabetes 55: 2705-2712, 2006. 

16. Kahn SE, Hull RL, and Utzschneider KM. Mechanisms linking obesity to 
insulin resistance and type 2 diabetes. Nature 444: 840-846, 2006. 

17. Kasuga M. Insulin resistance and pancreatic beta cell failure. J Clin Invest 116: 
1756-1760, 2006. 

18. Kitamura T, Nakae J, Kitamura Y, Kido Y, Biggs WH, 3rd, Wright CV, 
White MF, Arden KC, and Accili D. The forkhead transcription factor Foxo1 links 
insulin signaling to Pdx1 regulation of pancreatic beta cell growth. J Clin Invest 110: 
1839-1847, 2002. 

19. Kong M, Wang CS, and Donoghue DJ. Interaction of fibroblast growth factor 
receptor 3 and the adapter protein SH2-B. A role in STAT5 activation. J Biol Chem 277: 
15962-15970, 2002. 

20. Kotani K, Wilden P, and Pillay TS. SH2-Balpha is an insulin-receptor adapter 
protein and substrate that interacts with the activation loop of the insulin-receptor kinase. 
Biochem J 335 ( Pt 1): 103-109, 1998. 

21. Kushner JA, Ye J, Schubert M, Burks DJ, Dow MA, Flint CL, Dutta S, 
Wright CV, Montminy MR, and White MF. Pdx1 restores beta cell function in Irs2 
knockout mice. J Clin Invest 109: 1193-1201, 2002. 

 126 



22. Lee JY, Gavrilova O, Davani B, Na R, Robinson GW, and Hennighausen L. 
The transcription factors Stat5a/b are not required for islet development but modulate 
pancreatic beta-cell physiology upon aging. Biochim Biophys Acta 1773: 1455-1461, 
2007. 

23. Leibiger IB, Leibiger B, Moede T, and Berggren PO. Exocytosis of insulin 
promotes insulin gene transcription via the insulin receptor/PI-3 kinase/p70 s6 kinase and 
CaM kinase pathways. Mol Cell 1: 933-938, 1998. 

24. Li M, Ren D, Iseki M, Takaki S, and Rui L. Differential role of SH2-B and 
APS in regulating energy and glucose homeostasis. Endocrinology 147: 2163-2170, 
2006. 

25. Li Z, Zhou Y, Carter-Su C, Myers MG, Jr., and Rui L. SH2B1 Enhances 
Leptin Signaling by Both Janus Kinase 2 Tyr813 Phosphorylation-Dependent and -
Independent Mechanisms. Mol Endocrinol 21: 2270-2281, 2007. 

26. Lin X, Taguchi A, Park S, Kushner JA, Li F, Li Y, and White MF. 
Dysregulation of insulin receptor substrate 2 in beta cells and brain causes obesity and 
diabetes. J Clin Invest 114: 908-916, 2004. 

27. Lukic ML, Stosic-Grujicic S, and Shahin A. Effector mechanisms in low-dose 
streptozotocin-induced diabetes. Dev Immunol 6: 119-128, 1998. 

28. Morris DL, Cho KW, Zhou Y, and Rui L. SH2B1 Enhances Insulin Sensitivity 
by Both Stimulating the Insulin Receptor and Inhibiting Tyrosine Dephosphorylation of 
IRS Proteins. Diabetes 58: 2039-2047, 2009. 

29. Nakae J, Biggs WH, Kitamura T, Cavenee WK, Wright CV, Arden KC, and 
Accili D. Regulation of insulin action and pancreatic beta-cell function by mutated alleles 
of the gene encoding forkhead transcription factor Foxo1. Nat Genet 32: 245-253, 2002. 

30. Niswender KD and Magnuson MA. Obesity and the beta cell: lessons from 
leptin. J Clin Invest 117: 2753-2756, 2007. 

31. Poitout V. Glucolipotoxicity of the pancreatic beta-cell: myth or reality? Biochem 
Soc Trans 36: 901-904, 2008. 

32. Poitout V and Robertson RP. Glucolipotoxicity: fuel excess and beta-cell 
dysfunction. Endocr Rev 29: 351-366, 2008. 

33. Prentki M and Nolan CJ. Islet beta cell failure in type 2 diabetes. J Clin Invest 
116: 1802-1812, 2006. 

 127 



34. Qian X, Riccio A, Zhang Y, and Ginty DD. Identification and characterization 
of novel substrates of Trk receptors in developing neurons. Neuron 21: 1017-1029, 1998. 

35. Ren D, Li M, Duan C, and Rui L. Identification of SH2-B as a key regulator of 
leptin sensitivity, energy balance, and body weight in mice. Cell Metabolism 2: 95-104, 
2005. 

36. Ren D, Zhou Y, Morris D, Li M, Li Z, and Rui L. Neuronal SH2B1 is essential 
for controlling energy and glucose homeostasis. J Clin Invest 117: 397-406, 2007. 

37. Riedel H, Yousaf N, Zhao Y, Dai H, Deng Y, and Wang J. PSM, a mediator of 
PDGF-BB-, IGF-I-, and insulin-stimulated mitogenesis. Oncogene 19: 39-50, 2000. 

38. Rui L and Carter-Su C. Platelet-derived growth factor (PDGF) stimulates the 
association of SH2-Bbeta with PDGF receptor and phosphorylation of SH2-Bbeta. J Biol 
Chem 273: 21239-21245, 1998. 

39. Rui L, Herrington J, and Carter-Su C. SH2-B is required for nerve growth 
factor-induced neuronal differentiation. J Biol Chem 274: 10590-10594, 1999. 

40. Rui L, Mathews LS, Hotta K, Gustafson TA, and Carter-Su C. Identification 
of SH2-Bbeta as a substrate of the tyrosine kinase JAK2 involved in growth hormone 
signaling. Mol Cell Biol 17: 6633-6644, 1997. 

41. Tsuji A and Sakurai H. Generation of nitric oxide from streptozotocin (STZ) in 
the presence of copper(II) plus ascorbate: implication for the development of STZ-
induced diabetes. Biochem Biophys Res Commun 245: 11-16, 1998. 

42. Vasavada RC, Garcia-Ocana A, Zawalich WS, Sorenson RL, Dann P, Syed 
M, Ogren L, Talamantes F, and Stewart AF. Targeted expression of placental lactogen 
in the beta cells of transgenic mice results in beta cell proliferation, islet mass 
augmentation, and hypoglycemia. J Biol Chem 275: 15399-15406, 2000. 

43. Wang J and Riedel H. Insulin-like growth factor-I receptor and insulin receptor 
association with a Src homology-2 domain-containing putative adapter. J Biol Chem 273: 
3136-3139, 1998. 

44. Withers DJ, Burks DJ, Towery HH, Altamuro SL, Flint CL, and White MF. 
Irs-2 coordinates Igf-1 receptor-mediated beta-cell development and peripheral insulin 
signalling. Nat Genet 23: 32-40, 1999. 

 128 



 129 

45. Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren JM, Previs S, Zhang Y, 
Bernal D, Pons S, Shulman GI, Bonner-Weir S, and White MF. Disruption of IRS-2 
causes type 2 diabetes in mice. Nature 391: 900-904, 1998. 

46. Xu GG and Rothenberg PL. Insulin receptor signaling in the beta-cell 
influences insulin gene expression and insulin content: evidence for autocrine beta-cell 
regulation. Diabetes 47: 1243-1252, 1998. 

47. Zhang Y, Zhu W, Wang YG, Liu XJ, Jiao L, Liu X, Zhang ZH, Lu CL, and 
He C. Interaction of SH2-Bbeta with RET is involved in signaling of GDNF-induced 
neurite outgrowth. J Cell Sci 119: 1666-1676, 2006. 
 



Chapter 5 

 

Conclusions and Future Directions 

 

Conclusions 

SH2B1 is a multifunctional adapter protein expressed in multiple tissues.  Until 

recently, the physiological functions of SH2B1 were largely unknown.  Using genetically 

modified mice, our laboratory has made significant strides in elucidating the essential 

physiological roles of SH2B1.  In this Dissertation, I presented animal and biochemical 

data that indicates SH2B1 regulates insulin sensitivity and glucose homeostasis in mice 

by multiple mechanisms. 

Central SH2B1 indirectly controls insulin sensitivity by regulating energy balance 

Our laboratory previously demonstrated that neuron-specific restoration of 

SH2B1 corrects energy imbalance and prevents obesity in SH2B1-knockout (KO) mice 

(35).  Restoring central SH2B1 in SH2B1-KO mice also improved systemic insulin 

sensitivity, presumably by controlling adiposity (35).  In cultured cells, the SH2 domain 

of SH2B1 alone is sufficient to promote JAK2 activation and leptin signaling.  

Conversely, a dominant negative mutant form of SH2B1 (R555E) that contains a point 

mutation within the SH2 domain blocks both leptin and insulin signaling in cells.  In 

chapter 2, I generated and characterized transgenic mice expressing either truncated 

SH2B1 (504) or mutant SH2B1 (R555E) in neurons to test whether the SH2 domain of 

neuronal SH2B1 is sufficient and necessary for the regulation of body weight in mice.  

Surprisingly, expression of SH2B1 (504) in neurons was not sufficient to prevent the 

development of obesity and obesity associated metabolic disease in SH2B1-KO mice.  

These findings suggest that multiple functional domains within SH2B1 are required for 

neuronal SH2B1 to control energy balance and body weight in mice.
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As expected, SH2B1 (R555E) failed to prevent the development of obesity in 

SH2B1-KO mice, indicating that the SH2 domain of neuronal SH2B1 is required.  

However, overexpression of SH2B1 (R555E) in neurons of wild type mice induced 

obesity and caused insulin resistance.  Interestingly, the onset of obesity in TgR555E 

mice was delayed relative to SH2B1-KO mice, and TgR555E mice were also not as 

heavy as age-matched SH2B1-KO mice.  This finding suggests that mutations in the 

coding region of SH2B1 which alter SH2 domain function may be dominant and result in 

obesity.  In support of this concept, a naturally occurring mutant form of SH2B2, which 

lacks the SH2 domain, but has intact dimerization and PH domains, can bind to SH2B1 

and antagonize the ability of SH2B1 to promote leptin signaling in cultured cells (21). 

Peripheral SH2B1 directly controls insulin sensitivity by regulating insulin signaling 

In chapter 3, I demonstrated that SH2B1 in peripheral tissues contributes directly 

to the regulation of glucose metabolism by promoting insulin signaling in skeletal 

muscle, liver, and white adipose tissue.  We generated TgKO mice that express SH2B1 

only in the brain but not in peripheral tissues (e.g. skeletal muscle, liver, and adipose 

tissue).  Body weight was similar between TgKO and wild type littermates fed either 

normal chow or high fat diet (HFD), consistent with our previous conclusion that 

neuronal SH2B1 controls energy balance and body weight by promoting leptin sensitivity 

(35).  However, loss of peripheral SH2B1 markedly impaired insulin sensitivity 

independent of body weight.  TgKO mice developed hyperglycemia, hyperinsulinemia 

and glucose intolerance to a greater extent than wild type mice fed HFD.  The ability of 

exogenous insulin to reduce blood glucose and to stimulate insulin receptor 

autophosphorylation and activate the IRS/PI3K/Akt pathway in muscle, liver, and white 

adipose tissue was significantly impaired in TgKO mice.  It is interesting to note that this 

insulin resistance phenotype was observed only after TgKO mice are fed HFD.  This 

suggests that peripheral SH2B1 is particularly important for insulin action during bouts of 

overnutrition. 

SH2B1 promotes insulin signaling by multiple mechanisms 

In chapter 3, I examined the molecular mechanisms by which SH2B1 regulates 

insulin signaling and demonstrated that SH2B1 cell autonomously promotes insulin 

signaling by multiple mechanisms.  First, SH2B1 enhances insulin receptor (IR) activity 
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by binding via its SH2 domain to phospho-Tyr1158 in the activation loop of IR.  The SH2 

domain was sufficient to enhance IR activity in vitro, as well as promote the activation of 

signaling pathways downstream of IR.  Interestingly, SH2B1 still enhanced insulin 

signaling in cells with a mutant IR lacking the SH2B1 binding site (Y1158F).  These 

findings led to the subsequent observation that SH2B1 binds to phosphorylated IRS 

proteins, and somehow protects them from dephosphorylation by both recombinant and 

cellular phosphatases.   

Based on these findings, we proposed a new model for how SH2B1 promotes 

insulin action.  First, SH2B1 binds to IR and stimulates IR catalytic activity to globally 

activate downstream signaling pathways.  Second, SH2B1 binds to both IRS-1 and IRS-2 

and protects IRS proteins from tyrosine dephosphorylation, augmenting and/or 

prolonging IRS protein-mediated pathways.  Third, by forming dimers via their 

respective DD domains, each SH2B1 molecule in a SH2B1 dimer could simultaneously 

bind to IR and IRS-1 (or IRS-2), thereby stabilizing IR/IRS-1 (or IR/IRS-2) complexes.   

Pancreatic SH2B1 contributes to  cell function in leptin-deficient mice 

Multiple growth factors promote -cell function and some of these growth factors 

(insulin, IGF-1, prolactin, and GH) utilize SH2B1 as a signaling mediator.  SH2B1 is 

expressed at high levels -cells within the islet, as well as in immortalized -cell lines.  In 

chapter 4, we began to explore the role of SH2B1 in the pancreas in vivo.   

I demonstrated that Sh2b1 haploinsufficiency dramatically exacerbates the 

severity of diabetes, but not obesity, in leptin-deficient (ob/ob) mice.  Although insulin 

resistance was similar in Sh2b1+/-ob/ob and ob/ob mice, Sh2b1+/-ob/ob were severely 

hyperglycemic due to due to -cell dysfunction.  Pancreatic insulin content, but not 

pancreas mass or -cell area, was dramatically reduced in Sh2b1+/-ob/ob mice.  The 

defects in insulin production appear to explain glucose intolerance and the inability of 

these mice to increase postprandial insulin levels.  These data support the overall idea 

that SH2B1 promotes glucose metabolism independent of its role as a leptin signaling 

molecule in the brain.  More importantly, these findings suggest that SH2B1 in the -cell 

is particularly necessary for glucose homeostasis during cases of extreme obesity. 

Although the underlying mechanism for -cell failure in genetically obese mice 

with reduced levels of SH2B1 is not clear, one intriguing possibility is that SH2B1 may 
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protect -cells from gluco- or lipotoxicity, which is thought to contribute to -cell 

dysfunction during obesity (2, 3, 18).  However, pancreas-specific deletion of SH2B1 

alone did not alter glucose homeostasis in mice during diet-induced obesity.  Therefore, 

future studies are required to elucidate the mechanisms by which SH2B1 promotes -cell 

function and/or survival, particularly during metabolic stress.   

Future Directions 

 The studies presented in this dissertation have proved new insight into the role of 

SH2B1 in vivo, particularly with regards to the regulation of systemic insulin sensitivity 

and glucose homeostasis.  Additionally, cell culture studies and biochemical assays 

provided a new model for the regulation of insulin signaling by SH2B1.  However, there 

is still a lot about the role SH2B1 in mammalian physiology that is unknown. 

Regulation of SH2B1 function in health and disease 

 Our findings indicate that SH2B1 functions as both a leptin sensitizer and insulin 

sensitizer in mice.  SH2B1 promotes leptin and insulin action in cells by multiple 

mechanisms, including promoting JAK2 and IR kinase activity and preventing 

dephosphorylation of IRS proteins (10, 22, 30).  Interestingly, overexpression of SH2B1 

can counteract the negative effects of PTP1B on both leptin and insulin signaling in 

cultured cells (30, 34).  Thus, both leptin- and insulin sensitivity may be determined by a 

cellular balance between negative regulators (e.g. PTP1B) and positive regulators 

(SH2B1).  In support of this, PTP1B expression is increased in both leptin- and insulin 

resistant mice (31, 45, 48).  Although SH2B1 is expressed in multiple tissues, relatively 

little is known about whether SH2B1 expression is regulated.  Therefore, it is important 

to determine whether and how SH2B1 expression and/or function are regulated in vivo. 

 SH2B1 protein levels increase in 3T3-L1 preadipocytes during differentiation into 

adipocytes (35, 47), indicating that SH2B1 protein levels can be regulated, at least in 

adipocytes.  Others have reported that SH2B1 mRNA abundance increased in white 

adipose tissue from leptin receptor-deficient (db/db) and from mice fed a high fat diet 

(47); by contrast, preliminary data from our laboratory indicate that SH2B1 protein is 

decreased in white adipose tissue from leptin-deficient (ob/ob) mice (K. Cho and L. Rui, 

unpublished data).  Interpretation of these data is complicated by the observations that 

SH2B1 is expressed in both macrophages and T-cells (8, 20), two populations of cells 

 133 



which infiltrate adipose tissue and accumulate during obesity (23-25, 32).  Thus, it is 

unclear whether data from either study truly reflects changes in SH2B1 expression in 

adipocytes in vivo.  Moreover, it is unclear whether SH2B1 expression is altered in 

hypothalamic neurons, skeletal muscle, liver, or -cells in pathophysiological conditions 

associated with weight gain, insulin resistance, or diabetes. 

 SH2B1 migrates as a broad band on SDS-PAGE gels whereas in vitro 

dephosphorylation of immunopurified SH2B1 with alkaline phosphatase causes SH2B1 

to migrate as a tight band, suggesting that SH2B1 is a phospho-protein which may be 

regulated by post-translational modifications.  SH2B1 is phosphorylated on tyrosine 

residues by JAK2, TrkB, and RET (9, 33, 40, 43).  By contrast, SH2B1 does not appear 

to be a good substrate for IR (D. Morris and L. Rui, unpublished data).  The importance 

of tyrosine phosphorylation of SH2B1 is largely unknown, but one hypothesis is specific 

phosphotyrosines within SH2B1 may provide additional binding sites for other signaling 

molecules. 

SH2B1 also contains multiple serine and threonine residues, which appear to be 

phosphorylated both in the absence and presence of stimulation (37, 39, 40).  One serine, 

Ser 96, has been identified as being phosphorylated by downstream of mitogen-activated 

protein kinase kinase (MEK) (39); however, other specific serine phosphorylation sites in 

SH2B1, and their function, have not been identified.  Serine/threonine phosphorylation of 

SH2B1 may inhibit SH2B1 function and/or alter the affinity of SH2B1 for its binding 

partners, analogous to inhibitory serine/threonine phosphorylation of IRS-1 (1, 19).  

Specifically, phosphorylation of IRS-1 on serine 307 disrupts PTB domain function, 

inhibiting IRS-1 from binding to the IR.  Serine phosphorylation also promotes 

ubiquitination and proteosome-mediated degradation of IRS proteins, limiting the pool of 

available substrate and hindering the ability of insulin to activate the PI3K/Akt pathway 

(46).  Therefore, additional studies are required to identify tyrosine, serine, and threonine 

residues which are phosphorylated and regulate SH2B1 function.  Determining if 

phosphorylation on these sites correlates with either leptin/insulin sensitivity or resistance 

is also critical to understanding the regulation of SH2B1 in health and disease. 

SH2B1 in the central nervous system 
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Our data indicate that SH2B1 in neurons plays a critical role in the regulation of 

energy homeostasis and leptin sensitivity.  The leptin receptor is expressed in multiple 

regions of the brain, including the arcuate nucleus (ARC), the ventromedial (VMH), 

dorsomedial hypothalamic nuclei (DMH), ventral tegmental area (VTA), hippocampus, 

and the brainstem (7, 12-16, 28, 29, 41, 42).  SH2B1 is expressed in the hypothalamus of 

mice, and preliminary immunostaining experiments have demonstrated that SH2-B 

protein is expressed in multiple neurons, including clusters of neurons in the ARC and 

VMH (D. Morris and L. Rui, unpublished data).  However, the identity of SH2B1-

positive neurons has not been determined.  Future studies are needed to determine 

whether SH2B1 is expressed in neuronal populations that are relevant to leptin action. 

Typically, obesity in leptin-signaling impaired mice is a result of both increased 

food intake and decreased energy expenditure.  Surprisingly, SH2B1-KO mice are both 

hyperphagic and have increased energy expenditure; however, subtracting energy 

expenditure from total energy intake indicated that SH2B1-KO mice remain in a net 

positive energy balance, resulting in obesity (34).  Additionally, overexpression of 

dominant negative SH2B1 (R555E) causes increased energy expenditure in mice, 

indicating that this abnormal elevation in energy expenditure is neuronal, rather than 

peripheral, in origin.  One explanation for this aberrant increase in energy expenditure is 

that SH2B1 may differentially regulate leptin sensitivity in hypothalamic neurons 

controlling energy intake versus those controlling energy expenditure.  SH2B1 may be 

required for leptin sensitivity in AgRP/NPY neurons which control energy intake; thus, 

SH2B1 deficiency induces severe leptin resistance in these neurons, resulting in 

hyperphagia and hyperleptinemia.  In contrast, SH2B1 may play a minor role in the 

regulation of neurons that control energy expenditure; therefore, hyperleptinemia in 

SH2B1-KO mice may chronically activate neurons that have normal or only slightly 

impaired leptin sensitivity, resulting in increased energy expenditure.  Consistent with 

this idea, systemic deletion of SH2B1 increases AgRP and NPY expression, whereas 

POMC expression remained normal (34).   

Alternatively, increased energy expenditure in SH2B1-KO and TgR555E mice 

may be leptin-independent.  SH2B1 is a signaling molecule for a number of 

neurotrophins, including brain-derived neurotrophic factor (BDNF) (6, 27, 33, 43).  
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Interestingly, BDNF haploinsufficiency or conditional deletion of BDNF in neurons 

results in leptin resistance, hyperphagia, and weight gain, as well as inter-male 

aggressiveness and increased locomoter activity (17, 26, 36).  All of these phenotypes, 

including increased aggressiveness (L. Jiang and L. Rui, unpublished data), have been 

observed in SH2B1-KO mice, suggesting that the BDNF-regulated processes are also 

impaired in the absence of SH2B1.  Interestingly, preliminary data indicate that 

conditional deletion of SH2B1 in neurons expressing the leptin receptor causes leptin 

resistance, hyperphagia, and obesity, but not aggressiveness in male mice (L. Jiang and L. 

Rui, unpublished data).  This suggests that SH2B1 may independently promote both 

leptin and BDNF regulated processes in neurons.   

Nerve growth factor (NGF) is critical for neuronal differentiation and survival and 

for synaptic plasticity (4).  SH2B1 has been shown to promote both neurite outgrowth 

and neuronal differentiation in response to NGF (5, 11, 33, 38, 44).  Whether NGF 

signaling is impaired in neurons lacking SH2B1 has not been explored.  Thus, it is 

possible that impaired NGF signaling in SH2B1-KO mice may contribute to the obesity 

phenotype by altering the development of the neural circuitry that regulates energy 

homeostasis.   

In summary, these possibilities suggest that neuronal SH2B1 not only regulates 

leptin action but possibly other processes in the central nervous system to control body 

weight.  Regulation of BDNF and NGF signaling by central SH2B1 needs to be explored 

to fully appreciate the role of SH2B1 in neurons. 

SH2B1 in individual tissues 

 To address the role of SH2B1 in individual tissues, we have generated conditional 

SH2B1-KO mice using the Cre/loxP system (chapter 4).  Unidirectional loxP sites were 

introduced into the Sh2b1 locus in mice by homologous recombination.  These mice will 

be used to delete SH2B1 in specific neurons, as well as the liver, skeletal muscle, white 

adipose tissue, and -cells.  To date, we have generated mice lacking SH2B1 in leptin-

receptor expressing neurons, liver, and pancreas.  Selective deletion of SH2B1 in leptin-

receptor expressing neurons in mice (SH2B1-LRb-KO mice) results in obesity, further 

supporting our previous conclusions that SH2B1 is required for leptin sensitivity and 

regulation of body weight (L. Jiang and L. Rui, unpublished data).  By contrast, deletion 
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of SH2B1 specifically in the liver (Y. Zhou and L. Rui, unpublished data) or in the 

pancreas (Chapter 4) resulted in very mild phenotypes, indicating that the collective 

actions of SH2B1 in multiple tissues may contribute to systemic insulin sensitivity and 

regulation of glucose homeostasis.  Additional studies are required to examine the 

contribution of SH2B1 in other tissues to the regulation of energy balance and glucose 

homeostasis. 
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