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1  
Chapter I 

 

INTRODUCTION 

 

1.1 Genetics of complex diseases 

 

In the past decades, geneticists have been remarkably successful in identifying genes 

for monogenic diseases that follow simple Mendelian inheritance (Botstein & Risch 

2003). Most diseases or phenotypic traits, however, are affected by a combination of 

environmental factors, mutations in multiple genes, and even genetic variants outside 

genes (Lander & Schork 1994). Some examples of multi-factorial diseases (also called 

complex diseases) include asthma, autoimmune diseases such as inflammatory bowel 

disease and type I diabetes, cancers, type II diabetes, heart disease, hypertension, and 

others. Among the broadly four categories of genetics disorders (Human Genome Project 

Information), namely (1) monogenic (2) multi-factorial (3) chromosomal and (4) 

mitochondrial, complex diseases have the most impact on human populations and pose 

the most difficult challenges for scientists that aim to identify the genes involved 

(Chakravarti 1999, Risch 2000).   

Although complex disorders usually cluster in families, the pattern of inheritance is 

unclear. Many factors affect the development of complex diseases, including effects from 

different genes, environmental effects, gene-gene and gene-environment interactions. 
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This makes it difficult to determine the risk of passing on the disease and identify the 

genes involving in disease pathways. The majority of genetic factors involved in complex 

disorders have not yet been identified and replicated (Hirschhorn et al. 2002). However, 

the rapid progress in identifying genetic variants and of genotyping technologies in the 

last few years has make it possible for geneticists to collect data on hundreds of 

microsatellite markers or 300,000 to 1,000,000 single nucleotide polymorphism (SNP) 

markers on thousands of individuals (Sachidanandam 2001, The International HapMap 

Consortium 2007, Eberle MA et al. 2007, McCarroll et al. 2008). Many genetic loci for 

different types of diseases have been identified by using two major strategies: linkage 

analysis and genome-wide association study (Jimenez-Sanchez et al. 2001, Carlson et al. 

2004, Hirschhorn & Daly 2005). Linkage analysis looks for the co-segregation of a 

chromosomal region with a trait of interest in the family. It locates a rough position of 

disease gene related to know genetic markers with resolution down to 10-20Megabase. In 

addition to dichotomous disease status, it can handle quantitative traits as well (Ott 1999). 

Linkage analyses have been widely used to identify many important genes for different 

diseases, especially for monogenic diseases (Jimenez-Sanchez et al. 2001).  

Genome-wide association studies test for the association of marker alleles with a trait 

of interest. Since the completion of the Human Genome Project in 2003 and the first 

phase of the International HapMap Project in 2005, association tests on a genomic scale 

have become possible. The revolution of commercial genotyping platforms and the 

success of the HapMap project have made genome-wide association studies a productive 

strategy for gene mapping of complex diseases in recent years (Carlson et al. 2004, 

Hirschhorn & Daly 2005, McCarthy et al. 2008, Hardy & Singleton 2009). 
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1.2 Challenges to complex disease mapping 

 

Despite the dramatic increase in genomic discoveries involving complex diseases, the 

majority of genetic factors involved in common diseases have not been identified. The 

chasing of genetic variants responsible for risk of diseases is a systematic work. It 

requires breakthroughs in every perspective of the study: range from biologically 

meaningful and clinically accurate phenotypes to complete and reliable genotypes, from 

statistical inference and estimation based on real data to performance evaluation and 

probability sampling based on simulations, from establishing statistical evidence to 

seeking biological interpretations. Some major specific challenges tackled here include 

getting accurate measures of phenotype of interest, population heterogeneity, genome 

coverage of commercial genotyping platform and functional interpretation of identified 

disease loci. These specific challenges were chosen because they are among the most 

pressing problem areas faced by geneticists. 

The first challenge we addressed here is inaccurate phenotyping that blurs the 

definition of disease status or results in large measurement error in a quantitative trait, 

which can greatly decrease the power to detect genetic variants for the trait of interest 

(Levy et al. 2000). Using medical records instead of questionnaires and identifying 

disease subtypes may help to obtain accurate disease status (Hallmayer et al. 2005). To 

improve quantitative measures, one could take multiple measurements or estimate the 

noise shared by multiple traits of interest, for example, all transcripts from a gene 

expression microarray (Leek & Storey 2007, Stegle et al. 2008).  
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Another challenge is population heterogeneity (also known as population 

stratification) that can inflate false positive or decrease power (Li 1972). As genotyping 

techniques become more and more affordable, larger and larger samples are collected in 

the hope of increasing power. It becomes more difficult to guarantee all individuals in the 

sample share the same ancestry (Freedman et al. 2004). Fortunately, genetic markers on 

genome scale are available from these studies and hence provide adequate genetic 

information to detect and correct for population stratification (Pritchard et al., 2000, Price 

et al., 2006, Luca et al., 2008). 

The third challenge arises even when current commercial genotyping platforms can 

type as many as 1,000,000 SNPs on the genome and have fairly good coverage of the 

HapMap SNPs, they still miss most identified SNPs and so have limited coverage of the 

genome (Pe’er et al. 2006, Barrett & Cardon 2006, Hao et al. 2008, Bhangale et al. 2008). 

Genetic loci that harbor disease causal variants but are not in strong linkage 

disequilibrium of the typed markers will have low power to be detected by genome-wide 

association studies. However, existing data with denser genetic markers, such as those 

generated from the HapMap project, can help to perform statistical inference on 

genotypes of untyped markers (Scheet & Stephens 2006, Servin & Stephens 2007, 

Marchini et al 2007, Li et al. 2008). The approaches are commonly used to increase the 

power and coverage of individual genome-wide association studies and to facilitate 

meta-analysis of data across studies that relied on different commercial genotyping 

platforms (for early examples, see Willer et al. 2008, Sanna et al. 2008, Scott et al. 2007, 

The Wellcome Trust Case Control Consortium 2007). Simulation experiments and 

detailed genotyping within selected regions show that this strategy should result in 
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imputed genotypes that are highly accurate and that the analysis of imputed genotypes 

increases power for association studies (Li et al. 2008, Marchini et al 2007). Still, a large 

scale assessment of the accuracy of genotype imputation and, particularly, of its impact 

on power remains lacking. 

Because most genetic loci identified from linkage analyses and genome-wide 

association analyses do not have immediate functional interpretations, the next challenge 

comes that biologically relevant genes are not easy to determine purely based on the 

proximity of the detected loci. Systematically generated unbiased functional data, such as 

the regulators of global gene expression, could aid in interpretation of results from the 

disease mapping (Dixon et al. 2007; Moffatt et al., 2007, Libioulle et al. 2007, Cookson 

et al. 2009). 

Finally, the performance of any methods trying to tackle the challenges of complex 

disease mapping should be evaluated by large scale simulation studies. Existing software 

packages based on coalescent theory, such as ms (Hudson 2002) and cosi (Schaffner et al. 

2005), are suitable for short genomic segments (<2-3Mb) but become very slow for larger 

regions (>100Mb). Efficient tools are needed to generate datasets on genome scale that 

follow desired parameters such as population histories and disease penetrance. 

 

1.3 The scope of the dissertation 

 

The continuous breakthroughs in biological and computational techniques have 

pushed the field of genetic research to move quickly. Now we have the material base to 

address each perspective of gene mapping studies and we need to address all these 
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upcoming open questions in order to move forward. In my dissertation, I propose 

efficient methods to tackle the above challenges from complex disease gene mapping 

studies and implement into software packages that are freely available to the community.  

In chapter II, I extended the variance components approach (Jacquard 1972, Lange et 

al. 1976, Amos 1994, Almasy & Blangero 1998) to model repeated measures in a 

quantitative trait linkage study. I show that for balanced designs where each subject has 

the same number of measurements, a standard linkage test that takes the average of 

measures as the trait of interest is identical to the linkage test based on our extension of 

the variance components model. I derive general formulas of optimal sample size and 

number of repeated measures for a given power or cost. Finally, I carry out analytical 

calculations and perform simulations to compare power for different sample sizes and 

number of repeated measures across several scenarios. My results show that modeling 

repeated measurements can provide substantial power improvements across genetic 

models. I give recommendations on whether to take repeated measures or recruit 

additional subjects for different levels of measurement errors and ratios of genotyping, 

subject recruitment and phenotyping costs. 

In chapter III, I developed a novel discrete-generation framework and an efficient 

software package, called GENOME, to simulate genomic scale sequences from a 

population based on the coalescent model (Kingman 1982, Hudson 1983 & 1990, 

Donnelly and Tavaré 1995). In contrast to existing packages that implement the 

coalescent approach which are designed to simulate short genomic segments (~1Mb), 

GENOME can simulate much larger regions (>100Mb). As genome-wide studies become 

a reality, the proposed program should help geneticists to investigate sampling properties 
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of statistics that is evaluated on a genome-wide study and to compare the performance of 

different methods that may be applied to genomic scale data. In addition to features of 

standard coalescent simulators, the program allows for recombination rates to vary along 

the genome and accommodate flexible population histories. I show that GENOME 

provides the same LD patterns and frequency spectra as other coalescent simulators and 

conforms to theoretical predictions. The discrete-generation framework can be extended 

to incorporate features generally not available in the standard coalescent approach, 

including constraints on mating patterns and detailed models of regional gene-flow. 

Importantly, the framework still retains the computational efficiency of coalescent based 

simulators. 

In chapter IV, working with my colleague Weihua Guan, I proposed a method for 

efficient matched analysis of cases and controls to account for unknown population 

stratification (Li, 1972) after genotyping a large number of markers in a genome-wide 

association study or large-scale candidate gene association study. Our method has three 

steps: 1) calculating similarity scores for pairs of individuals using genotype data; 2) 

matching sets of cases and controls based on the similarity scores; 3) using conditional 

logistic regression to perform association tests. Through computer simulations we show 

that our strategy correctly controls false positive rates, improves power to detect true 

disease predisposing variants and outperforms standard methods, such as the 

genomic-control method. We illustrate our method with genome-wide association data 

from the Pritzker Consortium bipolar study (Scott et al. 2009). 

In chapter V, by using genome-wide association analysis, I generated a large scale 

map of genetic variants that influence the level of specific mRNAs. This map integrates 
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information on expression levels for 54,675 transcripts evaluated using Affymetrix arrays 

and genotypes for 408,273 SNPs from 400 individuals. The database created provides a 

general tool to investigate whether SNPs associated with any disease/trait alter 

transcription of genes in cis or trans. It has already proven useful in the study of several 

diseases/traits, including asthma, Crohn’s disease, type II diabetes and fetal hemoglobin 

expression (Dixon et al. 2007, Cookson et al. 2009). Using the data, I also evaluated new 

strategies and methods for the analysis of gene-mapping data. For example, I show that 

integrating our data with publicly available resources (such as the HapMap genotypes) 

allowed us to estimate the effect of ~2 million untyped polymorphisms and identify 

variants that regulate the expression of 15% more genes than could be mapped with 

observed genotypes alone. In an ongoing analysis, I am expanding the eQTLs database to 

incorporating data on 47,293 transcripts measured with Illumina BeadChips and on 

306,207 SNPs for an independent sample of 550 individuals. 
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2  
Chapter II 

 

VARIANCE COMPONENTS LINKAGE ANALYSIS WITH REPEATED 

MEASUREMENTS 

 

2.1 Abstract 

Background: When subjects are measured multiple times, linkage analysis needs to 

appropriately model these repeated measures. A number of methods have been proposed 

to model repeated measures in linkage analysis. Here, we focus on assessing the impact 

of repeated measures on the power and cost of a linkage study. Methods: We describe 

three alternative extensions of the variance components approach to accommodate 

repeated measures in a quantitative trait linkage study. We explicitly relate power and 

cost through the number of measures for different designs. Based on these models, we 

derive general formulas for optimal number of repeated measures for a given power or 

cost and use analytical calculations and simulations to compare power for different 

numbers of repeated measures across several scenarios. We give rigorous proof for the 

results under the balanced design. Results: Repeated measures substantially improve 

power and the proportional increase in LOD score depends mostly on measurement error 

and total heritability (if not otherwise defined, we use the term “heritability” as underline 

heritability which means the proportion of genetic variance out of total trait variance 

excluding measurement error) but not much on marker map, the number of alleles per 
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marker or family structure. When measurement error takes up 20% of the trait variability 

and 4 measures/subject are taken, the proportional increase in LOD score ranges from 

38% for traits with heritability of 20% to 63% for traits with heritability of 80%. An R 

package is provided to determine optimal number of repeated measures for given 

measurement error and cost. Variance component and regression based implementations 

of our methods are included in the MERLIN package to facilitate their use in practical 

studies. 

 

2.2 Introduction 

 In quantitative trait studies, taking repeated phenotype measures for each subject 

may increase the power. The approach is especially useful when measurement error is 

large or the relative cost of recruiting and genotyping additional subjects is high. It is 

important for a linkage analysis to appropriately take into account these repeated 

measures. Boomsma and Dolan [1] use structural equation modeling approach to analyze 

multivariate traits. Levy et al. [2] and de Andrade et al. [3] analyze longitudinal data by 

extending the standard variance components approach [4,5]. Although in principle 

repeated measurements can be treated as multivariate traits or longitudinal data [6,7,8,22], 

here we restrict our attention to modeling of repeated measurements for traits whose 

variance components do not change appreciably across time (except due to random 

measurement error).  This allows us to focus the relationship between the power and 

cost of different study designs for quantitative trait linkage analysis and the number of 

repeated measures of the phenotype of interest taken for each subject. We also provide 

general implementations of these approaches, for both variance component [4] and 
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regression-based [18] linkage analysis, in our MERLIN software package. 

 To analyze repeated measures, summary statistics such as the average of observed 

measurements are usually used to take advantage of the models and implementations 

designed for single measure. In this case, standard packages such as SOLAR [5] and 

MERLIN [9] can then be used to analyze the averaged measurements. Unfortunately, 

when different numbers of measures are available for each subject, this approach is 

invalid and likely to result in a loss of efficiency.  

 Here repeated measures are modeled explicitly and we use asymptotic theorems to 

explore the power of QTL linkage tests. Combining these theorems with a cost function 

that summarizes phenotyping, genotyping and general fixed costs, the optimal number of 

repeated measures and sample size can be determined for a proposed study.  

 We consider three analytical strategies: (a) a full model that explicitly incorporates 

all measurements for all subjects; (b) a simplified model that uses only the average 

phenotypic measurement and the number of measurements taken for each subject; and (c) 

a further simplified model that only considers the average phenotypic measurement for 

each subject. We find that repeated measures provide substantial power improvements 

across genetic models. The proportional increase in expected LOD score depends mostly 

on measurement error and total heritability (if not otherwise defined, we use the term 

“heritability” as underline heritability which means the proportion of genetic variance out 

of total trait variance excluding measurement error) but not much on marker map or 

number of alleles per marker. Given a fixed sample size, analysis of repeated measures 

can have a dramatic impact on power. For example, when measurement error takes up 

20% of the trait variability and 4 measures per subject are taken, the proportional increase 
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in expected LOD score ranges from 38% for traits with low heritability (e.g. 20%) to 

63% for traits with high heritability (e.g. 80%). When 2 measures per subject are taken, 

the increase ranges from 23% to 36%. We identify the optimal number of repeated 

measures for different settings and show that when the number of measures is 

appropriately taken into account the average measure is a good balance between 

statistical power and computation efficiency. 

 

2.3 Methods 

 In this section, we briefly review the variance component method for quantitative 

trait linkage analysis and then extend the model to accommodate repeated measures for 

arbitrary pedigrees, without inbreeding. 

 

Variance Component Model 

 Let ),...,( 1 ′= nYYY  be the vector of quantitative trait values for a pedigree with n 

subjects and no inbreeding. Y  is assumed to follow a multivariate normal distribution 

with mean ),...,( 1 ′= nμμμ  and variance-covariance matrix Ω . The effect of covariates 

can be modeled by letting βμ X= , where X  is the design matrix for covariates and 

β  are the coefficients for each covariate. 

In general, Ω  will have the form: ∑=
i

ii ΩΩ 2σ , where 2
iσ  is a scalar variance 

component and iΩ  is the corresponding covariance structure matrix which depends on 

the effect that 2
iσ  is representing. When major gene effect and polygenic effect are of 

interest, the Ω  can be defined as: 
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222 2 enpgmg σσσ ΙΦΠΩ ++=  

where 2
mgσ  is the additive genetic variance due to the major gene; the element ijπ  of 

Π  is the proportion of alleles shared IBD at the test locus between subjects i and j; 2
pgσ  

denotes the polygenic variance which is the genetic variance due to all residual additive 

effects not explained by the QTL; Φ  is a matrix of genetic kinship coefficients; 2
eσ  is 

the subject-specific environmental variance and nΙ  is the nn×  identity matrix [4,5,10, 

11]. The model can be readily extended to include other effects of interest, such as 

genetic dominance. 

 The effects in variance component model can be assessed through likelihood ratio 

tests. For example, the test comparing 0:  .  0: 2
1

2
0 >= mgmg HvsH σσ  is used to assess 

evidence for a major gene impacting the quantitative trait. 

Full Model with Repeated Measures 

 Let ijY  be the jth measurement of the ith subject for the quantitative phenotype of 

interest. Assume im  repeated measures are taken for subject i. Then, let: 

2222)( mepgmgijYVar σσσσ +++=    ni ,...,1=  imj ,...,1=     

222),(
21 epgmgijij YYCov σσσ ++=     ijj ∀≠  ,21        (1) 

22
21212211

2),( pgiimgiijiji YYCov σφσπ +=    2121  , , jjii ∀≠  

Here, 2
mσ  represents the error specific to each measurement. This model is rather 

general. The covariance between repeated measurements of the same subject follows the 

compound symmetry structure [12]. This model is valid when measurement errors within 
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a subject are (a) independent or (b) equally correlated. In the latter setting the correlation 

between measurements is absorbed by the 2
eσ  component. 

Under the assumption of normality and because the variance-covariance structure of 

residuals does not involve the fixed effect parametersβ , the distribution of the likelihood 

ratio statistics about a variance component does not depend on the fixed effects β [13]. 

Although our model assumes no time effect in the variance-covariance matrix, if the time 

effect were included as a fixed effect, the results of this paper remain unchanged. 

Longitudinal data can therefore be accommodated in this limited manner by specifying 

time dependent covariates as the fixed effects. For simplicity and without loss of 

generality we assume the mean of quantitative trait is zero, with no covariate effects. 

Hence all the phenotypic variation can be explained through the similarity between 

relatives and the variance components 2
m

2
e

2
pg

2
mg σ and σ ,σ ,σ . 

Model for Average Measures 

 An alternative to using the model specified in (1) above is to use the average 

measurement for each subject (e.g. [2]) instead of individual measurements. This 

approach results in smaller variance-covariance matrices and thus requires less 

computation. 

Let ∑
=

=
im

j
ij

i
i Y

m
Y

1

1  be the average phenotype of subject i, for ni ,...,1= . Using these 

averages, the model for the variances and covariances becomes: 

imepgmgi mYVar /)( 2222 σσσσ +++=   ni ,...,1=       (2) 

22
212121

2),( pgiimgiiii YYCov σφσπ +=    21 ii ≠  

 For balanced designs, where each subject has the same number of repeated measures, 
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it can be shown that, although model (2) requires less computation, models (1) and (2) 

give identical estimates of genetic variance components (excluding the environmental 

and measurement error variance component, which are not identifiable) and lead to the 

same value for linkage test statistics. Details of the equivalence proof are given in the 

Appendix 2.1. 

Furthermore, when the number of repeated measures mmi =  for all i , the standard 

variance component model: 

 *222)( epgmgiYVar σσσ ++=     ni ,...,1=           (3) 

 22
212121

2),( pgiimgiiii YYCov σφσπ +=    21 ii ≠  

can be used to construct linkage test without loss of efficiency, where mmee /22*2 σσσ +=  

and mmi =  for ni ,...,1= . Therefore, standard software packages for QTL linkage 

analysis can be used. 

When im ’s are not all equal, as in unbalanced designs, the standard variance 

component model (3) is not valid because *2
eσ  will be different across subjects, 

potentially distorting estimates of the genetic variance components and test statistics. 

Model (2), which takes into account different numbers of measures for each subject, 

remains a valid model. Through simulation, we show that it is slightly less efficient than 

the full model (1). 

Analytical NCP for Balanced Design 

 For simplicity we based our analytical calculation on the balanced design. Under 

general regularity conditions, classical properties of likelihood ratio tests can be used to 

calculate the power of the test for a given sample size or the sample size required to 
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achieve a desired power [15].  

 Under the Null hypothesis when there is no major gene effect, the likelihood ratio 

test statistics is asymptotically distributed as )0(
2
1:

2
1 2

1χ , a mixture of a chi-squared 

distribution with one degree of freedom and a unit point mass at zero [25]. Under the 

alternative hypothesis, the likelihood ratio test statistics approximately follow a 

non-central chi-squared distribution with non-centrality parameter ∑
=

F

f
f

1
δ , where fδ  is 

the non-centrality contributed by the fth of F families and 

2 2 2* 2 2 2*log ( )2 log 2
f ff mg pg f e n mg f pg f e nEπδ σ σ σ σ σ σ= + + − + +Φ I Π Φ I .     (4) 

Here, fn  is the size of the fth family and πE  denotes an expectation over all possible 

allele-sharing states that can be calculated by averaging over all possible inheritance 

vectors [14,21]. The power of the test is then given by: 

)Pr( 2

,1
1

αδ
χ CPower F

f
f

>=
∑
=

 

where 2

,1
1

∑
=

F

f
fδ

χ  follows a one degree of freedom chi-squared distribution with 

non-centrality parameter ∑
=

F

f
f

1
δ  and αC  is the 100(1-α ) percentile of )0(

2
1:

2
1 2

1χ . To 

simplify the presentation, we consider F  families with the same pedigree structure and 

denote ff  allfor  δδ = , so that δδ F
F

f
f =∑

=1

. For any desired power the required number 

of families F  or of repeated measures m  can then be solved numerically.  

Cost-effectiveness 

 Formula (4) allows us to compare analytically power for different studies, each 
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characterized by a specific family structure, the number of families examined, F , and 

the number of repeated measures, m , for each subject. To study cost-effectiveness of 

different designs, we first introduce a cost function for each design. Let: 

0C = Fixed cost of the study 

sC = Cost per subject recruited and genotyped (total Fn  subjects) 

pC = Cost per phenotype measurement ( m  measures per subject) Total cost 

ps CmnFCnFCC ⋅⋅⋅+⋅⋅+= 0  

From the last section, we know that the power is determined by δF  the non-centrality 

parameter and that δ  depends on m  through *2
eσ . We denote δ  as )(mδ . 

 For any two combinations of m  and F : ),( 11 Fm  and ),( 22 Fm , maintaining the 

same power requires 2211 )()( FmFm δδ = . Without loss of generality, we assume 

21 mm >  so that )()( 21 mm δδ > . The total costs for the first design and the second 

design are ps CmnFCnFC ⋅⋅⋅+⋅⋅+ 1110  and ps CmnFCnFC ⋅⋅⋅+⋅⋅+ 2220 , 

respectively. By simple algebra, taking 1m (more) measures will provide the same power 

but a lower cost than taking 2m (less) measures per subject when the following inequality 

holds: 

1)(/)(
)(/)(ˆ

21

2121
, 21 −

⋅−
=>

mm
mmmmCR

C
C

mm
p

s

δδ
δδ               (5) 

21 ,mmCR  defined above is called the break-event for cost ratio ps CC / , where taking 1m  

measures is as cost-effective as taking 2m  measures per subject. When this cost ratio is 

higher (e.g. when phenotyping costs are relatively small compared to subject recruitment 

and genotyping costs), designs that take more measures per subject are favored. 
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 Note that, for a given total cost (or power), the combination of m  and F  that 

maximizes power (or minimizes the total cost) can be identified numerically. 

 For unbalanced designs, CR can be approximated through simulation by using the 

ratio of expected LOD (ELOD) scores to replace 1 2( ) / ( )m mδ δ  in formula (5). 

 

Simulation 

 We performed simulations to compare power for different number of repeated 

measures across several scenarios (varying distance between markers from ~0 to ~10 cM, 

considering SNP and microsatellite markers, and varying major gene heritability, total 

heritability and measurement error from 2% to 20%, 8% to 80% and 0% to 60% of trait 

variability, respectively).  

 For unbalanced designs, we attempted to mimic designs we have encountered in 

actual studies. For example, we simulated a situation where subjects with an extreme 

initial measurement were measured a second time. Thus, we first simulated one 

measurement for every subject. Next, we ordered subjects based on their simulated 

measurement and generated an additional measurement for 2/α  subjects (α  is the 

proportion of subjects to get a second measure) at the top and 2/α  subjects at the 

bottom of the list. This design reflects the “intuition” that it may be more fruitful to focus 

effort on measuring extreme subjects. In this design, the average number of 

measurements per subject is 1+α . We let α =20% and α =10%. In an alternative 

unbalanced design, referred to as the random design, the number of measures for each 

subject follows an exponential distribution. This mimics the situation where 

measurements are missing completely at random. For each subject, we draw independent 
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random number (rounding to the nearest greater integer) from an approximate 

exponential distribution with mean equal to 0.5, 1 and 2, respectively. The maximum 

number of measurements per subject was set to 4. 

In each simulation, we simulated 1000 families and the results are based on 2000 

simulations. The average of LOD scores at the QTL is used to estimate the ELOD. Power 

is measured by the proportion of likelihood ratio test p-values less than 0.001. The 

cost-effectiveness break-event for cost ratio,
21 ,mmCR , is also presented to facilitate 

comparison between different designs. 

 

2.4 Results 

Analytical Results 

Based on the average model (formulas 2 & 4), we can examine the ELOD (hence the 

power) for different settings under the balanced design and assuming markers are fully 

informative. Figure 2.1 shows how the ELOD changes as the heritability, defined 

as )/()( 22222
epgmgpgmg σσσσσ +++ , increases for different numbers of repeated measures. 

For example, when the heritability is 40%, increasing the number of measures from 1 to 3 

results a 2-fold increase in ELOD. We also note that taking more repeated measures 

results in more rapid increases in ELOD for simulated traits with greater heritability. 

According to (5) we can determine the optimal number of repeated measures for 

different ratios of genotyping and phenotyping cost and degrees of measurement error. 

Figure 2.2 shows the contour plot for the optimal number of repeated measures when the 

cost ratio ps CC /  ranges from 0.01 to 50 and measurement error variance ranges from 

0.11 to 1.5 (corresponding to 10% – 60% of the total trait variance). For example, when 



 

 24

measurement error variance is 0.4 (corresponding to 28.6% of the total trait variance), 

taking 2 measurements per subject is cost-effective if the cost ratio is between 1.11 and 

4.17. When the ratio of genotyping and recruitment costs to phenotyping costs is <1.11, it 

is preferable to take a single measurement and collect more subjects. When this ratio 

is >4.17, it is preferable to take additional measurements and collect fewer subjects. 

When the cost ratio is between 9.09 and 15.62, taking 4 measurements per subject is the 

best. The ranges of figure 2.2 should include a variety of realistic scenarios. For example, 

chip based genotyping for genome-wide linkage studies typically costs a few hundred 

dollars per subject whereas phenotyping costs are widely variable, ranging from a few 

dollars per subject (for mail-in questionnaires [24]) to several hundred dollars (for 

expensive imaging measures or biological assays). The measurement error as well as the 

intra-individual environmental variance could range from very low (5%), for 

anthropometric measures such as height, to quite high (40%), for traits such as 

micro-array summaries of gene expression and questionnaire based assessments of 

personality. 

Simulation Results 

 We simulated three scenarios: (1) One microsatellite marker with 20 alleles and 0 cM 

between the marker and the QTL to approximate a fully informative marker. (2) Ten 

microsatellite markers each with 4 alleles and with 10 cM separating consecutive markers; 

the QTL placed in the middle of the markers. (3) Fifty SNPs and 2 cM between 

consecutive markers; the QTL again placed in the middle of the SNPs. For each scenario, 

the trait variance excluding measurement error was fixed at 100, that is 

100222 =++ epgmg σσσ . The major gene effect 2
mgσ  was set at 20. Polygene effects 2

pgσ  
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ranged from 0 to 60. Measurement error variance 2
mσ  ranged from 11 to 150 

(corresponding to 10% – 60% of the total trait variance). In each independent sample, we 

simulated 1000 nuclear families with 4 offspring each. Relative power for designs with 

different numbers of measurements varied only slightly for different family structures 

(table 2.4, which includes sibships with 2-6 siblings and cousin pedigrees) and so our 

presentation focuses on nuclear families with 4 offspring. 

 Simulation results again show repeated measures can provide substantial power 

improvements (table 2.1, figure 2.3). Table 2.1 shows the ELOD and power of balanced 

designs for a simulated microsatellite panel (scenario 2). Taking 2 measures per subject 

increases ELOD by 52% to 75% and power at 001.0=α  by 63% to 78%. Figure 2.3 

shows the average LOD score profile for the microsatellite panel (scenario 2, major gene 

effect 20 (or 12% total variance), polygene effect 40 (or 24% total variance), and 

measurement error 67 (or 40% total variance). In this case, taking 1 measure per subject 

results in an average peak LOD score of only 2.22. Taking repeated measures increases 

the average peak LOD to 3.69 (2 measures) and 5.04 (4 measures).  

Since IBD estimation does not affect the accuracy of estimates of measurement error 

variance, the proportional increase in expected LOD score (ELOD Ratio) depends mostly 

on measurement error and total heritability but not much on marker map or number of 

alleles per marker (table 2.2), which mostly impact the precision of QTL effect size 

estimates. This suggests that the optimal design (in terms of optimal number of repeated 

measures) is relatively insensitive to the genotyping platform selected. Table 2.2 shows 

the average ELOD ratios for 4 repeated measures under three scenarios. Based on the 

ELOD ratio and the condition to maintain the same power, 2211 )()( FmFm δδ = , we can 
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calculate the savings in sample size when using 4 repeated measures. For example, for 

the first setting when measurement error variance is 11 (10% total variance) and total 

heritability is 20%, the sample size (number of subjects) required when taking 4 measures 

per subject is 85% (1/1.17) of the sample size required when taking 1 measure per 

subject. 

When the ELOD ratios are available, it is possible to calculate the break-event 

21 ,mmCR  for cost ratio ps CC /  using (5). For example, when measurement error variance 

is 25 (20% of the total variance) and heritability is 20%, if genotyping and recruitment 

costs per subject are more than 6.83 higher than phenotyping costs, taking 4 measures per 

subject is more cost-effective than taking 1 measure per subject. The cost ratio needs to 

exceed 14.44 so that taking 4 measures is better than taking 2 measures per subject (table 

2.2).  

For the unbalanced design where 20% (or 10%) of subjects with an extreme first 

measurement are measured one more time, the cost ratios can be calculated in a similar 

way because the total number of measures is fixed. We denote these two designs as 

“m=1.2” and “m=1.1” respectively. Now we can compare different designs using the cost 

ratio
21 ,mmCR . The results are summarized in table 2.3. The cost ratio 1,1.1CR  is relative 

large, ∞=1,1.1CR  in the first row means designs with m=1.1 are never more 

cost-effective than taking one measure per subject when the measurement error is small. 

Note that since 1,2.12.1,2 CRCR <  and 1,1.11.1,2 CRCR < , the unbalanced designs can always 

be outperformed by a balanced design that involves either 2 or 1 measures per subject 

depending on the cost ratio ps CC / . So in terms of cost-effectiveness, balanced designs 

are always better than these particular unbalanced designs no matter what the cost ratio 
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ps CC / . Using the data in table 2.3, we can draw a similar contour plot as figure 2.2. This 

plot is presented in figure 2.4. The parameter settings are equivalent to figure 2.2. The 

plot shows the theoretical result (figure 2.2) is consistent with the simulation result 

(figure 2.4).  

Comparing efficiency between the full model and the average model 

 Using simulation, we next compared the efficiency between the full model (1) and 

the average model (2) for unbalanced designs. Both models take into account the 

different number of measurements across individuals, give valid likelihood functions and 

control type I error rate adequately. 

 Figure 2.5 shows the ELOD ratio of the full model vs. the average model. For both 

unbalanced designs, the full model did not provide substantially more efficiency than the 

average model (only in the extreme design, the full model increases ELOD by 1% on 

average across all scenarios). The largest increase in ELOD was 9% in settings where the 

measurement error was large and individuals with an initial extreme measurement were 

reassessed.  

 

2.5 Discussions 

When subjects are measured multiple times, it is important for a linkage analysis to 

appropriately take into account these repeated measures. In this study, we extend the 

variance components approach to model repeated measures in a quantitative trait linkage 

study. Our model can explicitly relate the power and cost of different sampling designs. 

We give the general formulas of optimal sample size and number of repeated measures 

for a given power or cost. We show for the case of a balanced design where the same 
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number of measurements is taken for each subject, a standard linkage test that takes the 

average of measures as the trait of interest is identical to a linkage test based on an 

appropriate extension of the variance components model.  

In our model, the covariance between repeated measures of the same subject follows 

the compound symmetry structure. This model is valid when measurement errors within a 

subject are either independent or else equally correlated. It is one of the most commonly 

used covariance structures in the repeated measures literature. When necessary it should 

be possible to refine our model to include dominance effects, twin environment or other 

variance-covariance components or even to incorporate covariate effects into the 

variance-covariance matrix. In particular, time effects can be introduced into the 

variance-covariance structure to allow for longitudinal changes in variance 

components[3].  

Through both analytical calculation and simulation, we find that repeated measures 

provide substantial power improvements across genetic models. The proportional 

increase in expected LOD score (ELOD Ratio) depends mostly on measurement error and 

total heritability but not much on marker map or number of alleles per marker. This 

suggests that the optimal design (in terms of optimal number of repeated measures) will 

be similar for a range of genotyping strategies (provided they are similar in cost). We give 

contour plots to help investigators decide on the optimal number of repeated measures for 

different levels of measurement errors and ratios of genotyping, subject recruitment and 

phenotyping costs. The R code to help determine the optimal number of repeated 

measures is available from our website. 

Precise trade-offs can be obtained by examining Figure 2.2 and the R package. Still, 
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our results allow us to make some general recommendations. When measurement error is 

high, accounting for ~50% of the trait variance, it is typically cost effective to collect 2 or 

more measures per subject when the ratio of phenotyping to genotyping costs per subject 

is <16 fold. If genotyping is carried out using a commercially available SNP array that 

typically costs $100 - $200 per subject, it will almost always be worthwhile to phenotype 

each individual multiple times, given that most phenotyping assays cost <$1600 - $3200 

per measurement. When measurement error is small, accounting for ~10% of the trait 

variance, it is only cost effective to collect 2 or more measures per subject when 

phenotyping is relatively inexpensive, costing no more than 0.154 times the cost of 

genotyping. With the same genotyping costs as above, this would correspond to $15 - $30 

per measurement and would only be worthwhile for the most inexpensive phenotypes 

(such as those that rely on mail-in questionnaires or very simple trait measurements). In 

other situations, it will be more efficient to collect additional subjects. 

For unbalanced designs, a standard linkage test that takes the average measurement 

as the trait of interest and ignores the number of measures is not valid. A model that uses 

the average measurement as the trait but takes into account the different number of 

measures for each subject, i.e. model (2), is a valid alternative to the full model. The 

advantage of model (2) is that it is less computationally intensive and, typically, only 

slightly less powerful than the full model. We implemented both the average model and 

the full model in the MERLIN package [9,23]. We also assessed the effect of ignoring the 

imbalance and taking the average as a single trait. Table 2.5 shows simulations where a 

random half of subjects were measured 2, 4, or 10 times while the other half were 

measured only once. The results suggest that ignoring imbalance could lead to 
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approximately correct type I error but could lose power (at pvalue<0.001) by 2-5% or 

decrease in ELOD by 3-15%. 

While the average measure is widely used as a useful summary statistics of repeated 

measures, an alternative is the median of repeated measures from the same individual. 

Median has the advantage of being robust to outliers and has the asymptotic normal 

distribution when the number of repeated measures per individual is large, in this study 

we focus on the average measure because (1) it is often used by researchers in the 

community, (2) it has a known exact distribution and it is the sufficient statistics for the 

major gene effect, polygene effect and subject-specific environmental effect (appendix 

2.3), (3) the number of repeated measures per individual is often small thus asymptotic 

theorem of the median does not hold. As a result, the asymptotic distribution of the 

likelihood ratio test of variance components would be hard to derive.  

In our simulations, parental genotypes were used to help estimate IBD sharing 

between pairs of relatives. We also investigated the effect of parental phenotypes on 

power. Figure 2.6 shows the expected LOD scores with and without using parental 

phenotypes at a fully informative marker under the same scenario of figure 2.1. For a 

simulated trait with relatively low heritability, the additional measures from parents only 

slightly increase the expected LOD scores, suggesting that phenotyping parents is 

unlikely to be cost effective. For highly heritable traits, parental phenotypes do 

substantially increase the expected LOD scores especially for larger number of repeated 

measures. In this case, there will be a trade-off between phenotyping the parents and 

collecting more offspring genotypes and phenotypes.  

While rigorous proof or comprehensive simulation is required to draw a solid 
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conclusion, we could get some hints about the gain in power in association tests by using 

repeated measures. Assuming a standard linear model, the maximum likelihood estimate 

of the regression coefficient follows a normal distribution with variance proportional to 

the total variance of the trait of interest. We also know that the maximum likelihood 

estimate of the variance of the model is the sample variance and it follows a scaled 

Chi-square distribution with the scale equal to the variance of the trait. Hence the 

variance of the sample variance is proportional to the square of the trait variance. So the 

gain in power by using repeated measures will be larger for test about the variance 

component (test for linkage) compared to the test about the regression coefficient (test for 

association). For example, if using repeated measure reduces the total trait variance by 

20%, the variance of regression coefficient estimate will be reduced by 20% but the 

variance of the variance component estimate will be reduced by 36%. We should 

emphasize that the difference in gain of power will be depended on the underline model 

and need to be addressed in a rigorous way.  

In cases of non-normality of the trait distribution and selected sampling, robust 

statistics such as score statistics [16,17] or regression-based statistics [18] can help 

adequately control the type I error and increase power. Intensive simulations [17,18] have 

shown that the regression-based model implemented in MERLIN-REGRESS [18] is 

robust to violations of normality, selected sampling and population parameter 

misspecification while achieving high power. Nash et al. 2004 discussed the treatment of 

average repeated measures in the regression-based model [20]. We take another approach 

which leads to simpler formulation and hence easier implementation of the software. We 

show that the regression-based model can be extended to incorporate individual repeated 
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measures as well as average measures [Appendix 2.2] and this alternative is implemented 

in MERLIN-REGRESS [18]. 
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2.6 Appendices 
 

Appendix 2.1: Equivalence between full model and average measurement model for 
balanced number of measurements 

When each subject is measured the same number M of times, it can be shown that 

the full model (1) and average measurement model (3) are equivalent.  

Let vector jY  represent all measurements for subject j. In full model (1), the 

variance for vector jY  is I11 2222 ')()( mepgmgjYVar σσσσ +++=  and the covariance 

between jY  for subject j and kY  for subject k is ')2(),( 22 11pgjkmgjkkj YYCov σφσπ += , 

where vector 1 consists of all 1’s and I is the identity matrix.  

We first apply a linear transformation T on multiple measurements jY  

)',...,,( 21
*

jMjjj YYYY T=            (A1) 

where  
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Thus the covariance matrix for the transformed vector *
jY  is 
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Simple algebra gives ⎟⎟
⎠
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TT  where A is 

some (M-1) by (M-1) matrix. Let Zj and *
jmY  denote the first and the rest of the elements 

in the transformed vector *
jY  respectively. Then, ∑

=

=
M

m
jmj MYZ

1

/ , and 

2
)1(* −−
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YY
Y  for m=2,…,M. Covariances (A2) and (A3) imply 
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      (A4) 

and all other covariances are 0. Thus, the full model (1) implies model (A4). The reverse 

is also true since the transformation (A1) is not singular. Now we assume in the average 

model (3), Mmee /22*2 σσσ += . By comparing model (A4) and model (3), we can see 

model (A4) implies model (3).  

Let ZΩ denote the variance-covariance matrix of vector )',...,( 1 JZZz = , and 

*Ω denotes the variance-covariance matrix of )',...,( **
2

*
Myyy = , where )',...,( **

1
*

Jmmm YYy =  

for m=2,…,M.  Model (A4) shows vector z and *
my  are orthogonal, indicating the 

variance-covariance matrix of )',( *yz  with form ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

*0
0
Ω

ΩZ . Thus, the likelihood of a 

family is 
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The first part of the above likelihood is exactly the likelihood in model (3). Since the 

second part in the last expression of the likelihood only contains information about 2
mσ  

and does not carry any information about 2
mgσ , 2

pgσ  and *2
eσ , the maximum likelihood 

estimates for ( 22 , pgmg σσ , 2
eσ ) in the average measurement model are identical to those for 

( 22 , pgmg σσ , *2
eσ ) in the full model. Therefore, for balanced data, the average of the 

repeated measurements can be treated as the actual trait, and the standard variance 

components analysis is the equivalent to the full model. When the number of 

measurements is not balanced, the equivalence between the above two models (1) and (3) 

does not hold anymore and the full model uses more information than the average 

measurement model (3). 
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Appendix 2.2: Extension of the regression model for linkage analysis in Sham et al. 
2002 [18] to accommodate repeated measures 

To incorporate repeated measures into the regression model, we only need to 

re-specify the form for the expectation and covariance that involves the squared sum S 

and squared difference D, other terms in the model will be identical to Sham et al. 2002. 

In fact, the regression model can be extended to model individual measures as well as the 

average measures and the relative performance of models using all available 

measurements, the average measurement and the count of measurements for each subject, 

or just the average measurement is analogous to the performance of formulas (1)-(3) in 

the variance component model.   

Let c  be the within-subject correlation 
2 2 2

2 2 2 2
mg pg e

mg pg e m

σ σ σ
σ σ σ σ

+ +

+ + +
 and 2H  be the total 

heritability 
2 2

2 2 2 2
mg pg

mg pg e m

σ σ
σ σ σ σ

+

+ + +
. Assuming the full model (1), all pairs of individual 

measures standardized by their population mean μ  and variance 

2 2 2 2 2
mg pg e mσ σ σ σ σ= + + +  are considered. The vector of squared sums is 

1 1 2 2

1 1 2 2

2
,[ ( ) ]i j i j

i j i j

Y Y
S

μ μ
σ σ
− −

= +  and similarly the vector of squared differences is 

1 1 2 2

1 1 2 2

2
,[ ( ) ]i j i j

i j i j

Y Y
D

μ μ
σ σ
− −

= − . In the expectation and covariance of the squared sums S 

and squared differences D, only the form of correlation needs to be changed and it is 

equal to: 

1 1 2 2

1 1 2 2

1 2

1 2
, 2

          if 
cov( , )

2 H   otherwise
i j i j

i j i j
i i

c i iY Y
r

μ μ
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The parameter c as well as the population mean, μ , variance, 2σ , and total heritability 

2H  will need to be specified by the user.  

 The remaining terms need to be considered are the covariance between S, D and π̂ : 

1 1 2 2 1 1 2 21 , ,ˆ{Cov ( , )}i j i j k l k lS π  and 
1 1 2 2 1 1 2 21 , ,ˆ{Cov ( , )}i j i j k l k lD π . For 1 2 1 2 and i i k k≠ ≠ , these terms 

remain unchanged. For 1 2 k k= , 
1 1 2 2,ˆ 1k l k lπ =  so the covariance is 0. For 

1 2 1 2 and i i k k= ≠ , since the joint distribution of 
1 1 2 2

( , )i j i jY Y  does not involve π  the 

covariance is again 0. This suggests that we only need to include the pair of measures that 

involve different subjects; greatly reducing the dimension of mean vectors and covariance 

matrixes. More importantly, all formulas in Sham et al. 2002 can be directly applied if we 

only include pairs of measures that are from different subjects. 

Assuming model (2) for average measures under unbalanced designs, the variance 

for each average measure will be different. Unlike the treatment in [20], we propose to 

standardize the average measures { iY } by the population mean μ  and their own 

variances { 2 2 2 2 2 2 2/ (1 ) /i mg pg e m i im c c mσ σ σ σ σ σ σ= + + + = + − } so that they are 

multivariate normal with mean 0 and variance 1 and results in Appendix A of Sham et al. 

2002 can apply. Hence the formulae for covariances of the squared sums S and squared 

differences D remain unchanged. Only the correlation between a pair of standardized 

average measures needs to be changed to: 

2
2cov( , ) 2 Hji

ij ij
i j i j

YYr
μμ σφ

σ σ σ σ
−−

= =  

For covariance between S, D and π̂ , following a similar derivation to Drigalenko 1998 

[19], we have: 
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1
1

ˆ ˆ2 Cov ( , )
ˆCov ( , ) ij kl

ij kl
i j

Q
S

π π
π

σ σ
=  and 1

1

ˆ ˆ2 Cov ( , )
ˆCov ( , ) ij kl

ij kl
i j

Q
D

π π
π

σ σ
−

=  

Other equations will be identical to Sham et al. 2002. 

Analogous to model (3) for average measures with balanced designs, the average 

measures { , 1... }iY i n=  can be treated as an actual trait and standardized by the 

population mean μ  and the variance 2 2 2 2 2 2/ (1 ) /mg pg e m m c c mσ σ σ σ σ σ+ + + = + − . So 

the model in Sham et al. 2002 can apply. 
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Appendix 2.3: Sufficient statistics for unbalanced design 

When subjects have different number of repeated measures, it can be shown that 

),..,( 1 nYY  is the sufficient statistics for 2
mgσ , 2

pgσ and 2
eσ . 

Use the same non-singular linear transformation in appendix 2.1 and slightly 

different notation to reflect the difference in the number of repeated measures, we define: 
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By simple algebra: 
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 Because ),...( 11 ni ZZ and 1,,..,1 ))(( >= jniijZ  both follow multivariate normal distribution 

and they have zero correlation between each other, they are independent. The likelihood 

of the full model can be written as: Likelihood[ ),...( 11 ni ZZ ]*Likelihood[ 1,,..,1 ))(( >= jniijZ ]. 

Since the distribution of 1,,..,1 ))(( >= jniijZ  does not involve 2
mgσ , 2

pgσ and 2
eσ , ),...( 11 ni ZZ is 

the sufficient statistics for parameters 2
mgσ , 2

pgσ and 2
eσ .



 

 

2.7 Tables and figures 

 

Table 2.1 Power increment by taking repeated measures (scenario 2) 

Polygene 
Effect  

(% total var.) 

No Measurement Error 
or M=∞  

 
M=4 

 
M=2 

 
M=1 

ELOD Power Ratio ELOD Power Ratio ELOD Power Ratio ELOD Power 
0.0 (0%) 4.88 0.94 2.71 3.58 0.80 1.99 2.74 0.64 1.52 1.80 0.36 

0.2 (12%) 5.91 0.97 2.93 4.16 0.87 2.06 3.11 0.70 1.54 2.02 0.41 
0.4 (24%) 7.48 1.00 3.35 5.01 0.94 2.25 3.63 0.80 1.63 2.23 0.48 
0.6 (36%) 10.30 1.00 4.17 6.32 0.98 2.56 4.32 0.88 1.75 2.47 0.54 

Measurement Error Variance = 67 (40% of the total trait variance). M = the number of repeated measures. The ratio is the ELOD ratio between M measures and 1 
measures per subject. Scenario (2): Ten microsatellite markers each with 4 alleles and spaced 10 cM apart; the QTL placed in the middle of the markers. 40



 

41 

Table 2.2 Cost-effectiveness analysis for 4 Repeated Measures vs. 1 Measure 

Measurement 
Error Var. 

(% total var.) 

Heritability 
 

(% total var.)

Ave 
ELOD 
Ratio 

Sample 
Size 

Savings 1,4CR  2,4CR  

11 (10%) 0.20 (18%) 1.17 0.15 16.31 31.20 
 0.60 (54%) 1.23 0.19 12.04 26.75 
      

25 (20%) 0.20 (16%) 1.38 0.28 6.83 14.44 
 0.60 (48%) 1.51 0.34 4.84 10.41 
      

67 (40%) 0.20 (12%) 2.01 0.50 1.97 4.55 
 0.60 (36%) 2.28 0.56 1.34 3.33 
      

150 (60%) 0.20 (8%) 3.07 0.67 0.45 1.33 
 0.60 (24%) 3.39 0.71 0.25 0.78 

21 ,mmCR  is defined in (5). 2,4CR  is also listed here for comparison purpose. 

When
21,/ mmps CRCC > , taking 1m  measures is better than taking 2m  measures per subject. 

Heritability is defined as )/()( 22222
epgmgpgmg σσσσσ +++  where 100222 =++ epgmg σσσ and the 

major gene effect 2
mgσ  is fixed to 20. Average of ELOD ratio is the average across three scenarios 

that give similar results: (1) a highly informative microsatellite marker with 20 alleles and 0 cM 
between the marker and the QTL. (2) Ten microsatellite markers each with 4 alleles and spaced 10 cM 
apart; the QTL placed in the middle of the markers. (3) Fifty SNPs and spaced 2 cM apart; the QTL 
again placed in the middle of the SNPs.  



 

 

Table 2.3 Cost Ratios for the Comparison between Different Designs 

Measurement 
Error Var. 

Heritability 
(% total var.) 2,4CR  1,2CR  2.1,2CR  1.1,2CR  1,2.1CR  1,1.1CR  

11 (10%) 0.20 (18%) 31.20 8.38 7.16 7.34 19.00 ∞ 

 0.60 (54%) 26.75 5.67 5.26 5.22 7.57 14.00 
        

25 (20%) 0.20 (16%) 14.44 3.29 2.77 2.97 6.50 9.00 
 0.60 (48%) 10.41 2.30 1.91 2.00 4.45 9.00 
        

67 (40%) 0.20 (12%) 4.55 0.85 0.53 0.65 2.75 5.00 
 0.60 (36%) 3.33 0.52 0.36 0.38 1.07 2.00 
        

150 (60%) 0.20 (8%) 1.33 0.09 0 0 0.76 1.31 
 0.60 (24%) 0.78 0.03 0 0 0.40 0.43 

21 ,mmCR  is defined in (5). When
21,/ mmps CRCC > , taking 1m  measures is better than taking 2m  measures per subject. Heritability is defined as 

)/()( 22222
epgmgpgmg σσσσσ +++  

42
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Figure 2.1 Expected LOD score for 1000 nuclear families with 4 offspring. 
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Where 2.02 =mgσ , 8.0,...,02 =pgσ , 22  -0.8 pge σσ =  and 12222 =++= epgmgm σσσσ . m = the number of 
repeated measures. 
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Figure 2.2 Contour plot for optimal number of repeated measures 

 

 

Cost ratio ranges from 0 to 50 and 2
mσ  ranges from 0.11 to 1.5 (10-60% of total trait 

variance). Trait variance excluding measurement error is fixed to 1 ( 2.02 =mgσ , 

4.02 =pgσ , 4.02 =eσ ). The numbers on the plot indicate the optimal number of repeated 
measures. 
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Figure 2.3 Average LOD score profile for balanced design simulation (scenario 2). 

 

 

2 67mσ = (40% total variance), 402 =pgσ (24%). Results based on 500 simulation 
replications and plotted at every 1.0 Mb grid point. 
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Figure 2.4 Contour plot for optimal number of repeated measures 

 

 

Cost ratio ranges from 0 to 30 and 2
mσ  ranges from 11 to 150 (10-60% total variance). 

Trait variance excluding measurement error is fixed to 100 ( 202 =mgσ , 402 =pgσ , 

402 =eσ ). This setting is equivalent to the setting in figure 2. Each line separates two 
regions in which one design is better than the other. For example, to the left of the (blue) 
dot line, balanced design m=1 is better than the unbalanced design m=1.2; on the right 
side of the line, the unbalanced design m=1.2 is better than balanced design m=1. Note 
that the (blue) dot line is to the right of the (red) dash line, thus balanced designs are 
superior to unbalanced designs in any situation. For region to the right of the grey (green) 
solid line, the optimal design is balanced design m=4; for region between the black solid 
line and the grey (green) solid lines, the optimal design is balanced design m=2; for region 
to the left of the black solid line, the optimal design is balanced design m=1.  
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Figure 2.5 ELOD ratio of full model vs. average model for unbalanced design. 

 

 

Setting is scenario 2. Left 4 pairs of bars are for 2
mσ = 11 (10% of total variance). Right 

4 pairs of bars are for 2
mσ = 150 (60% of total variance). Random design: the number of 

repeated measures follows an exponential distribution. Extreme design: 20% Subjects 
with extreme first measure have an additional measurement. 
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Figure 2.6 Expected LOD score for 1000 nuclear families with 4 offspring with and 
without using parental phenotypes 

 

Where 2.02 =mgσ (10% total variance), 8.0,...,02 =pgσ (0-40% total variance), 22  -0.8 pge σσ =  and 

12222 =++= epgmgm σσσσ (50% total variance). m = the number of repeated measures. 
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Table 2.4 ELOD ratios across different pedigree structures 

 
m 

2sibs 4sibs 6sibs cousin 
ELOD ratio ELOD ratio ELOD ratio ELOD ratio 

1 0.841  2.841  5.065  3.738  
2 1.367 1.626 4.824 1.698 8.530 1.684 6.029 1.613 
4 1.841 2.190 6.566 2.311 11.847 2.339 8.119 2.172 
8 2.206 2.624 7.977 2.808 14.274 2.818 9.731 2.603 

The ratio is comparing the ELOD for m=2, 4, 8 with m=1. We simulated nuclear families with 2, 4, 6 
offspring, and a family structure with 2 2nd-generation offspring and each has three 3rd generation 
offspring (the “cousin” scenario). The total number of individuals in all scenarios was set to the same 
so as to facilitate power comparison between different family structures. We 
fixed 100222 =++ epgmg σσσ , 2

pgσ  = 40 (24% total variance), 2
mσ = 67 (40% total variance) and 

simulated a fully informative marker with 2
mgσ =20 (12% total variance).  
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Table 2.5 Power lost and Type I error when ignoring imbalance 

 Power Type I error 
ELOD % pvalue < 0.001 % pvalue < 0.05 

m Correct 
average 
model 

Ignoring 
imbalance 

Ratio 
of 

ELOD

Correct 
average 
model 

Ignoring 
imbalance

Correct 
average 
model 

Ignoring 
imbalance

2 3.76 3.64 1.03 82.5% 80.6% 4.8%  4.8%  
4 4.54 4.16 1.09 90.8% 87.5% 4.4%  4.7%  

10 5.17 4.49 1.15 95.0% 90.5% 3.7%  4.6%  
Half of the samples are randomly selected to take a specific number of repeated measures (m=2, 4 or 
10), other samples will be measured only one time. Results are based on 2000 simulations. We 
fixed 100222 =++ epgmg σσσ , 2

pgσ  = 40 (24% total variance) and 2
mσ = 67 (40% total variance). In 

the simulation for power, at a fully informative marker, 2
mgσ =20 (12% total variance); in the 

simulation for type I error, 2
mgσ =0.  
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3  
Chapter III 

 

DISCRETE GENERATION FRAMEWORK FOR COALESCENT SIMULATION OF 

GENOME-WIDE SCALE DATA 

 

3.1 Abstract 

Summary: We developed a rapid coalescent-based framework to simulate whole 

genome data. The proposed simulator, called GENOME, can simulate sequences that 

follow the Wright-Fisher model and from a region of more than 100Mb long, which is 

not practical for standard coalescent approach. In addition to features of standard 

coalescent simulators, the program allows for recombination rates to vary along the 

genome and for flexible population histories. Within small regions, we have evaluated 

samples simulated by GENOME to verify that GENOME provides the expected LD 

patterns and frequency spectra. The program can be used to study the sampling properties 

of any statistic for a whole genome study. 

Availability: The program and C++ source code are available online at: 

http://www.sph.umich.edu/csg/liang/genome/ 

 

3.2 Introduction 

The coalescent approach (Kingman 1982, Hudson 1983 & 1990, Donnelly and Tavaré 

1995) is an efficient way to sample of sequences from a theoretical population that 
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follows the Wright-Fisher neutral model (Ewens 1979). Simulations based on coalescent 

models have also been used to study the sampling properties of interesting statistics or 

evaluate new methods. Applications include the inference of population history (Weiss & 

von Haeseler 1998), the study of positive selection (Przeworski 2002, Voight et al. 2006) 

and whole genome linkage disequilibrium mapping of common disease genes (Kruglyak 

1999, Zöllner & von Haeseler 2000). Existing software packages, such as ms (Hudson 

2002) and cosi (Schaffner et al. 2005), implement the standard coalescent approach 

which simulates genealogical events backward in time. Simulated events typically 

include the coalescence of two sequences into a single ancestral lineage, recombination 

within a sequence, or migration between populations. Since all these events are typically 

rare, coalescent simulators assume that they never occur simultaneously and assume 

many generations pass between consecutive events. Time between events is explicitly 

modeled and used to skip over generations with no genealogical events of interest. The 

algorithm proceeds until all sequences coalesce to their most recent common ancestor and 

the resulting genealogy is used to place mutation events along the various sequences. 

The standard approach is extremely efficient when simulating short sequences. As 

sequences get longer, many more coalescent, recombination and migration events occur 

and the time intervals between them diminish. For longer sequences and large sample 

sizes, little computational efficiency is gained by skipping over uninteresting generations 

and substantial computational effort is expended tracking recombination events and their 

positions, and allocating memory to track the many ancestral fragments of each sequence 

as they repeatedly recombine and coalesce with each other. Overall, the standard 
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coalescent approach which is suitable for short genomic segments (<2-3Mb) becomes 

very slow for larger regions (>100Mb).  

As genome-wide studies become a reality, efficient tools for simulating large 

sequences are essential to study the sampling properties of arbitrary statistics that might 

be evaluated on a genome-wide association study and to compare the performance of 

different methods that may be applied to genome-wide scale data. For example, in an 

ongoing study we are evaluating the distribution of stretches of haplotype shared among a 

majority of individuals with disease and need an efficient coalescent framework to 

evaluate the null distribution of the statistic. There is great interest in developing fast 

coalescent simulators to address this and similar problems. One potential speedup 

involves making further simplifying assumptions about the genealogy (Marjoram and 

Wall 2006). Here, we propose an alternative framework for the coalescent that allows 

efficient simulation of genealogies for long sequences and still fully captures the 

complexity of the genealogy. In our approach, the genealogy of sampled sequences is 

simulated backwards in time, one generation at a time, in a procedure that is 

computationally efficient and removes the bifurcate tree approximation (in the standard 

approach, each coalescence event involves exactly two sequences that coalesce to a 

common ancestor but, using our approach, multiple sequences can coalesce to a common 

ancestor simultaneously). When multiple sub-populations are simulated, the program 

allows for migration among subpopulations, and for user specified demographic events 

such as population bottlenecks and expansions or population merges and splits. We allow 

recombination rates to vary so as to mimic the pattern of hotspots along the genome. As 

in the standard coalescent approach, mutations are simulated assuming an infinite-sites 
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model. 

 

3.3 Methods 

As in the standard coalescent approach, we simulate the genealogy of a sample of 

sequences, conditional on parameters such as the population size, the recombination rate, 

and rates of migration between subpopulations. Instead of simulating the time to next 

event, we simulate the coalescent and recombination events at every generation 

proceeding backwards in time (Figure 3.1). For each generation, the sequences are stored 

in a sparse matrix where rows correspond to individuals and columns correspond to short 

stretches of sequence. The matrix is sparse because only portions of sequence with a 

descendant in the final generation are tracked. We allocate two sparse matrices in 

memory (the current and the previous generation, which are reused) together with a 

separate structure summarizing coalescent events for each portion of the sequence. To 

allow for population stratification or other constraints on mating, we define a set of rules 

that can be used to relate each individual sequence (a row in one of the sparse matrices) 

to its ancestors in the previous generation (one or more rows in the second sparse matrix). 

Since we simulate all intervening generations, these rules can be quite sophisticated – to 

enforce multiple populations, geographic proximity between subpopulations, diploid 

individuals (so that each sequence has exactly two ancestors), etc. These features are 

commonly only found in forward simulators, which are computationally much less 

efficient. 

Because our approach can simulate multiple coalescent and recombination events in 

the same generation, it naturally accommodates situations where the number of sequences 
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sampled approximates the effective population size or where the sequences are very long. 

Conditional on the genealogical tree, mutations are placed on the branches. The number 

of mutations on each branch follows a Poisson distribution with mean equal to the 

product of the mutation rate and the branch length. The infinite-site mutation model is 

assumed. As with many other coalescent simulators, we also allow the number of 

mutations to be fixed so that the probability that a mutation occurs on a particular branch 

is proportional to its length. Varying recombination rate and population histories can also 

be specified by parameter files. The output distinguishes ancestral state and derived 

alleles and is similar to the output format of the ms program. The genealogy trees for 

each fragment in Newick tree format (see web link in reference) can be output, ready for 

plotting with PHYLIP (Felsenstein 2005) or for use with seq-gen, a sequence evolution 

program by Rambaut and Grassly (1997). Detailed instructions and examples are 

available on our website (http://www.sph.umich.edu/csg/liang/genome/). 

 

3.4 Results when standard coalescent approach can apply 

To evaluate our simulator, we first compared the generated allele frequency spectra 

with theoretical expectations. Using a goodness of fit test, we observed no significant 

differences between the expected spectra and those generated by GENOME (Figure 3.2). 

We have compared our simulated samples with those generated by Hudson’s ms 

(simulating a 2Mb region). The two simulators provide similar LD patterns and frequency 

spectra (Figure 3.3-3.9). When simulating long regions, GENOME is substantially faster 

than ms (Table 3.1). For example, when simulating a sample of 1200 chromosomes, each 

150 Mb long, from two populations of size 10,000, GENOME requires ~66 minutes, 



 

58 

compared to >12 hours for Hudson's ms (using a standard 2.8 GHz Pentium CPU). The 

scaled rates of mutation, recombination and migration were set to 4Nµ=60000, 

4Nr=60000 and 4Nm=10 in the simulation described. As expected, GENOME also 

outperforms cosi in runtime, a coalescent simulator similar to ms but allows for flexible 

recombination rates and is somewhat slower than ms (Table 3.2).  

GENOME is written in C++ and is portable to a variety of operating systems, 

including Windows, Linux and MacOS. The Mersenne Twister Code (Matsumoto & 

Nishimura 1998) is used as the source of random deviates. In addition to a stand-alone 

version, our simulator is also provided as a C++ function “genome()”, that can be 

incorporated as a module in other programs. 

 

3.5 Difference between the proposed method and standard coalescent approach 

In summary, our method differs from the standard coalescent model in the following 

aspects: (1) our method simulates every generation instead of skipping generations that 

do not have coalescent, recombination or migration events. The time to an event is 

integer instead of continuous in standard coalescent approach. (2) Our method does not 

assume population size to be much larger than sample size. In fact, sample size can be as 

large as the population size. (3) Our method allows multiple events (coalescent, 

recombination and migration) to occur in the same generation and on the same sequence 

so that the bifurcate tree approximation is not needed. The above features ensure that our 

proposed framework can be used to simulate the exact Wright-Fisher model and possibly 

incorporate useful features that otherwise are only available in forward simulators. 

 When sample size is close to the population size, many coalescent events will occur 
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at the first few generations. Allowing for general genealogy and discrete generation 

increases the possibility of singleton mutations. To assess this effect, we carried out 

simulations for two settings: (1) simulate 1,000 sequences from a population of 20,000. 

Each sequence consists of 2,000 independent loci each of 1kb long. Mutation rate is 10-8 

per base pair per generation, (2) simulate 1,000 sequences from a population of 1,000. 

Each sequence consists of 40,000 independent loci each of 1kb long with the same 

mutation rate in (1). To assess the effect on mutations, we did not simulate recombination 

in both settings. The standard coalescent approach could not distinguish the two settings 

because they have the same total scaled mutation rate. We simulated settings 1 and 2 

using GENOME and Hudson’s ms program. Under the coalescent theory, we expected to 

see that 13.4% (sd=0.44% for 6006 SNPs) of polymorphisms are singleton (Hudson 

1990). At setting 1, GENOME produced 13.3% singletons out of 5949 SNPs and the ms 

program produced 12.3% singletons out of 5988 SNPs. At setting 2, the ms program 

produced 13.1% singletons out of 5898 SNPs but GENOME produced 15.2% singletons 

out of 6006 SNPs, which is significantly higher than expected (p=2.1*10-5 for one side 

test of excess singletons). The 13% increase in the number of singleton from GENOME 

is similar to the observation of exact coalescent developed in Fu 2006. For more common 

SNPs, the difference is smaller. For example, under the standard coalescent theory, we 

expected to see 37.8% (sd=0.63% for 6006 SNPs) SNPs with MAF<1%. GENOME at 

setting 2 produced 39.1% SNPs in this category but the difference is marginal significant 

(p=0.02 for one side test of excess rare SNPs). As expected, the fraction of SNPs with 

MAF<1% are 37.4% for GENOME at setting 1, 36.7% for ms at setting 1 and 36.5% for 

ms at setting 2. 
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GENOME separates the whole sequence into small segments and does not simulate 

recombination event within a segment. It would be interesting to see if this feature has an 

effect on the linkage disequilibrium (LD) pattern in small regions. We simulated 500 

sequences of a 2Mb region from a population of 20,000 sequences. Each sequence 

consists of 20,000 segments of 100 bps. Under the coalescent theory, this setting will 

generate 5,432 SNPs on average. About 7% of the segments are expected to have more 

than two SNPs in the same segment. We simulated 100 datasets using GENOME and ms, 

respectively, and calculated the average R-square ( 2Δ ) by distance which is defined as the 

number of intervening SNPs. The absolute difference of R-square by distance from 

GENOME and ms were plotted in figure 3.10. When it is ~50 SNPs away, GENOME and 

ms produce similar R-square. Within the ~50 SNPs window, however, GENOME seems 

to produces smaller R-square in absolute difference but not in relative difference (figure 

3.11). Note that the absolute difference is well within the 95% confidence limit (figure 

3.10). A much larger scale of simulation is required to distinguish the subtle difference in 

LD pattern but overall GENOME agrees with standard coalescent approach very well 

when conditions for Kingman coalescent applied. When sample size is close to 

population size, GENOME also provides the opportunities to assess the effect on LD 

pattern and migrations between different populations.   
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3.6  Tables and figures 

 

Table 3.1 Run time comparison of GENOME and Hudson’s ms 

 
Length of 

Region 
Number of 
Populations 

GENOME 
(seconds) 

ms (seconds) 

150Mb 1 1556 (25.9 mins) 13416 (3.7 hrs) 
150Mb 2 3964 (66.1 mins) 45138 (12.5 hrs) 

 
Settings: 
Effective population size, N=10000 diploid individuals (for 2 pops, N=the size of each 
subpopulation) 
1200 chromosomes (600/600 for 2 populations) 
15000 fragments for 150Mb region. 
Migration rate = 2.5*10-4 per generation, (4Nm=10) 
Mutation rate = 10-8 per base pair (4Nu=60000 for 150 Mb) 
Recombination rate =10-8 per base pair (4Nr=60000 for 150Mb) 
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Table 3.2 Run time comparison of GENOME and COSI 

 
      COSI   v1.1 (seconds) GENOME (seconds) 
40M   3089    294 
30M   1658    240 
20M   677     150 

 
We simulate 300 sequences of 20Mb, 30Mb or 40Mb using COSI v1.1 and GENOME. 
COSI crashes when simulating 50Mb and 300 sequences or for longer region and more 
sequences.  Observed that COSI took about 2.8G memory when simulating 30Mb 
region. 
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Figure 3.1 Discrete generation implementation 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
In the example, each sequence is divided into three fragments. There is a recombination 
event between the 2nd and the 3rd fragments in sequence 1. Sequences 2 and 3 coalesce. 
 

Sequence 1 Sequence 2 Sequence 3 

Parental 
generation 

Offspring 
generation 



 

 

Figure 3.2 Allele frequency spectra generated by GENOME compared with theoretical expectations 
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Figure 3.3 Haploview Plot for a 2Mb region simulated by GENOME. 

 
Marker1-200 

 
Marker 1-500 

 
Marker 1-1000 

 
N=10000 diploid individuals, n=200, nPOP=1, fragment=20000, length=100, numChr=1, #SNP=Poisson (result=4943), rec=1e-6, mut=1e-8 
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Figure 3.4 Haploview Plot of a 2Mb region simulated by Hudson’s ms 

 
Marker1-200 

 
Marker 1-500 

 
Marker 1-1000 

 
Command line: ms 200 1 -t 800 -r 800 20000, 4Nr=800, 4Nu=800, fragment=20000, result=4658 SNPs (setting equivalent to figure 
3.3) 

66



 

 

Figure 3.5 Haploview Plot of a 2Mb region (SNPs with MAF > 0.05, 2597 common SNPs) generated by GENOME 
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mut=1e-8 
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Figure 3.6 Haploview Plot of a 2Mb region (SNPs with MAF > 0.05, 2426 common SNPs) simulated by Hudson’s ms 
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Command line: ms 200 1 -t 800 -r 800 20000, 4Nr=800, 4Nu=800, fragment=20000, result=4658 SNPs 
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Figure 3.7 Allele frequency spectra generated by GENOME and Hudson’s ms with equivalent settings for a 2Mb region 
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Figure 3.8 Distribution of LD by physical distance generated by GENOME and Hudson’s ms 

  
 
Equivalent settings for a 2Mb region. Physical distance is defined as the number of intervening SNPs. 
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Figure 3.9 Distribution of LD by genetic distance generated by GENOME and Hudson’s ms 

 
 
Equivalent settings for a 2 Mb region. 
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Figure 3.10 Difference in LD by distance simulated by GENOME and ms  
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Figure 3.11 Relative differences in LD by distance simulated by GENOME and ms 
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4  
Chapter IV 

 

GENOTYPE-BASED CASE CONTROL MATCHING TO CORRECT FOR 

POPULATION STRATIFICATION 

 

4.1 Abstract 

 

Genome-wide association studies are helping to dissect the etiology of complex 

diseases. Although case-control association tests are generally more powerful than 

family-based association tests, population stratification can lead to spurious 

disease-marker association or mask a true association. Several methods have been 

proposed to match cases and controls prior to genotyping, using family information or 

epidemiological data, or using genotype data for a modest number of genetic markers. 

Here, we describe a genetic similarity score matching (GSM) method for efficient 

matched analysis of cases and controls in a genome-wide or large-scale candidate gene 

association study. GSM is comprised of three steps: 1) calculating similarity scores for 

pairs of individuals using the genotype data; 2) matching sets of cases and controls based 

on the similarity scores so that matched cases and controls have similar genetic 

background; and 3) using conditional logistic regression to perform association tests. 

Through computer simulation we show that GSM correctly controls false positive rates 

and improves power to detect true disease predisposing variants. We compare GSM to 
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genomic control using computer simulations, and find improved power using GSM. We 

suggest that initial matching of cases and controls prior to genotyping combined with 

careful re-matching after genotyping is a method of choice for genome-wide association 

studies. 

 

4.2 Joint work with Weihua Guan 

 

This chapter was a joint work with Weihua Guan, PhD candidate in the Department of 

Biostatistics at the University of Michigan. While all work were done interactively with 

discussion, exchanging ideas, motivations from findings of each other and sharing codes 

with each other, I have been focusing on the design, evaluation and implementation of 

matching scores, simulations of genome-scale case-control data with desired population 

structure and admixture parameters and the likelihood ratio test of conditional logistic 

regression. 

 

4.3 Introduction 

 

With the success of the International HapMap Project [The International HapMap 

Consortium, 2007], a dense set of single nucleotide polymorphisms (SNPs) throughout 

the human genome is now available for genetic studies of complex diseases, and many 

genome-wide association studies are being undertaken and published [Klein et al., 2005; 

Maraganore et al., 2005; Cheung et al., 2005; Sladek et al., 2007; Scott et al., 2007; 

Saxena et al., 2007; Zeggini et al., 2007]. 
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Although case-control association tests are in principle more powerful for detecting 

disease variants than family-based association tests, population stratification can lead to 

spurious disease-marker association or mask true association [Li, 1972]. In genome-wide 

association studies, thousands of samples are typically used to ensure adequate power to 

identify disease predisposing variants, making it difficult to guarantee genetic 

homogeneity of the sample [Freedman et al., 2004]. Ancestry information on the sampled 

individuals may be unavailable to the researchers, and even when available, may not fully 

specify the underlying population genetic structure, due to vague definitions of ancestry 

groups and imperfect accuracy of self-report information.  

Several methods have been proposed to adjust for the possible confounding effects of 

population substructure. Family-based association tests, such as the 

transmission/disequilibrium test (TDT) [Spielman et al., 1993], assess the transmission of 

alleles from parents to affected offspring. Comparisons are made within parent-offspring 

trios, and the resulting association test is immune to potential genetic heterogeneity 

between families. However, collecting trios can be difficult and expensive, and may 

simply be impractical for late-onset diseases. For unrelated case-control samples, 

approaches have been proposed to adjust the standard chi-square contingency test 

statistics according to a non-central χ2 distribution [Devlin et al., 1999; Gorroochurn et al., 

2006], to infer population structure [Pritchard et al., 2000], or to cluster the similarity 

estimates into several components [Zhang et al., 2002]. A few more recent approaches 

[Price et al., 2006; Epstein et al., 2007; Kimmel et al., 2007; Luca et al., 2008] focus 

specifically on genome-wide association studies. 

In this paper, we propose a different approach, genetic similarity score matching 
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(GSM), to correct population stratification using individual-based matching rather than 

clustering. The huge amounts of data in genome-wide association studies have the 

potential to provide extremely accurate matching of individuals who share similar 

ancestries. We match cases with controls based on genetic (dis)similarity scores 

calculated from the genotype data available in a genome-wide association study or a 

large-scale candidate gene study and test the resulting matched sets for disease-marker 

association by conditional logistic regression. This matching-association framework 

builds on our previous work [Guan et al. 2005] and is similar to that of Luca et al. [2008]. 

Luca et al. [2008] derive the dissimilarity (distance) scores based on principal 

components of the variance matrix of genotypes, while our approach obtains the 

dissimilarity scores based on identity-by-state (IBS) measures. Simulations show that 

GSM results in false positive rates at the desired nominal level while retaining high 

power to detect disease associated markers. We find that with large-scale association data, 

the calculated genetic similarity scores differentiate subpopulations well, and that 

matching can be done with high accuracy even for samples that are mixtures of 

genetically similar populations. We further demonstrate that when population 

stratification is present, association tests based on GSM-matched case-control data can 

have a higher power than those that rely on either the standard trend test or the 

genomic-control method. 
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4.4 Methods 

 

Outline 

GSM includes three basic components:  

1) Genetic similarity score: We calculate genetic similarity scores between pairs of 

cases and controls across all loci. Large scores should reflect pairs with similar genetic 

backgrounds. 

2) Matching: Based on the matrix of similarity scores calculated in 1), we conduct 

optimal full matching [Rosenbaum, 2002] which groups one case with one or more 

controls, or one control with one or more cases to maximize the overall similarity of 

matched cases and controls. 

3) Association tests: We use conditional logistic regression to assess the association 

between candidate markers and disease status. For ease of exposition, we consider here 

only single marker association tests, but other genetic or environmental factors can be 

easily incorporated into the regression. 

Genetic Similarity Score 

We define a genetic similarity score for a pair of individuals which measures the 

degree of similarity of their genotype data. Individuals with similar genetic backgrounds 

will generally have higher scores. For simplicity, we consider M biallelic genetic markers 

each with alleles “A” and “a”; the scores can easily be generalized to multiallelic markers. 

We consider three similarity scores. 

The first score calculates the proportion of marker alleles shared identical by state 

(IBS). If IBSk is the number of alleles shared at marker k (Table 4.1), then  



 

81 

*

*
1

1
2

M

IBS k
k

S IBS
M =

= ∑         (1) 

where *1 M M≤ ≤  is the number of markers that are successfully genotyped in both 

individuals. 

 While SIBS has the virtue of simplicity, we may want to allow different markers to 

make different contributions to measure similarity. For example, we may wish to weight 

sharing a rare allele more strongly than sharing a common allele. We define our second 

score as: 
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where qk,i is the frequency of allele i at marker k, and IBSk,i is the number of copies of 

allele i at marker k shared by the pair of individuals (Table 4.1). We can estimate qk,i 

using our sample or from the results of previous studies. 

In a random mating population, markers are expected to follow Hardy-Weinberg 

Equilibrium (HWE). When population subdivision is present, tests of HWE tend to be 

significant owing to excess homozygosity. Our third score takes advantage of this by 

weighting markers based on their one-sided (excess homozygosity) HWE test p-value pk 

[Wigginton et al., 2005]: 
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To avoid the impact of genotyping error that may lead to strong deviation from HWE, we 

exclude the markers that fail quality control; practically speaking, this might mean using 

markers with HWE p-value satisfying p>10-6. 

As an example, suppose 3 cases and 3 controls are genotyped at 3 loci, as listed in 
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Table 4.2. Then the similarity scores SIBS are as listed in Table 4.3. 

For matching, we may use all genotyped markers, or a selected subset. For example, 

we might pick the markers with the smallest p-values in a HWE test for excess 

homozygosity, excluding those that fail quality control, in the hope that the selected 

markers provide maximal information about population stratification in the sample. 

Further, to avoid selecting markers which are highly correlated, we might choose at most 

one marker in every n-marker window or per linkage disequilibrium group. 

In our analyses, matching relies on a transformed dissimilarity score, defined as: 

2max
( )

max min
ij

ij ij

S
D f S

−⎛ ⎞
= = ⎜ ⎟−⎝ ⎠

      (4) 

where max = maxi,j Sij and min = mini,j Sij, the maximum and minimum similarity scores 

among all case-control pairs. 

Matching 

 We use the chosen (dis)similarity score to identify optimal matches between cases 

and controls. The simplest matching scheme is a 1:1 match in which each case is matched 

to a unique control. This approach is widely used but has obvious drawbacks. For 

example, when the numbers of cases and controls are not equal, some subjects must be 

discarded, resulting in a loss of information. Further, samples from various 

subpopulations often are not equally represented among the cases and controls, leading to 

forced mismatches if only 1:1 matching is allowed. 

Instead, we consider an optimal matching approach that minimizes the total 

dissimilarity score: 

1 ,s s

S
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Here, As and Bs are the sets of cases and controls in a matched set s, and S is the total 

number of matched sets. It has been shown that an optimal solution to this minimization 

problem is a full matching, in which each matched set contains one case and one or more 

controls, or one control and one or more cases, that is, a 1:m or m:1 matching 

[Rosenbaum, 1991]. Given n cases and n controls, the summation can in principle contain 

as few as n terms for 1:1 matching to as many as 2(n-1) terms for 1:n-1 and n-1:1 

matching. Since large sets result in larger numbers of terms, optimization tends to favor 

small matched sets. This helps mitigate any potential power loss due to unbalanced 

matching, i.e., 1:m or m:1 matching with m>>1 (see Discussion). 

The problem of minimizing the total dissimilarity score T is analogous to the classic 

minimum cost flow (MCF) problem in computer science [Rosenbaum, 1991; Hansen, 

2004; Hansen et al., 2006] (Appendix 4.1), and can be solved using the RELAX-IV 

algorithm [Bertsekas et al., 1994; Frangioni et al., 2006]. Given pre-calculated 

dissimilarity scores and an upper bound on m, determining the optimal matched set takes 

on the order of n3 log n operations, where n is the total number of subjects. The choice of 

parameter m constrains the size of matched sets and is somewhat arbitrary; we typically 

require m≤5 when numbers of cases and controls are comparable (see Discussion). Prior 

to matching, we may exclude a few individuals with maximum similarity scores that are 

extremely small (this is the caliper parameter recommended by Hansen et al., 2006). In 

datasets including ~2,000 individuals, the matching typically takes <1 minute on a 

modern PC workstation. 

 To continue with the previous example, we calculate the dissimilarity scores in Table 

4.3, and perform both 1:1 matching and optimal matching. In 1:1 matching, the best 
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match yields three pairs: (1, 4), (2, 5), and (3, 6). The total dissimilarity score is 1/36 + 

16/36 + 0 = 17/36. In contrast, the optimal full match has two matched sets: (1, 2, 4) and 

(3, 5, 6). The matched sets include 4 case-control pairs: (1, 4), (2, 4), (3, 5), and (3, 6). 

The total dissimilarity score is 1/36 + 0 + 1/36 + 0 = 2/36. In this example, the 

individuals within group (1, 2, 4) and (3, 5, 6) are similar to each other, and less similar to 

the individuals in the other group. Full matching offers an obvious matching advantage 

over 1:1 matching here. In the general case, full matching is guaranteed to produce a total 

dissimilarity score that is no greater than that obtained using 1:1 matching. 

Conditional Logistic Regression 

 Once matching is done, a natural choice for matched-set analysis is to use 

conditional logistic regression to test for disease-marker association. We employ an 

additive model for association by assigning values of 0, 1, and 2 to genotypes AA, Aa, 

and aa, respectively. Other genotyping coding schemes could be considered, 

corresponding for example to dominant, recessive, or general models. The regression can 

easily incorporate genotype, covariate, and interaction effects. 

 In a genome-wide association scan, we apply conditional logistic regression analysis 

to each marker separately. The multiple testing problem can be addressed using 

Bonferroni correction, permutation, or false-discovery rates. 

Simulation 

We simulated case-control data influenced by genotypes at a disease locus with 

alleles D and d, under six additive disease models (Table 4.4). We assumed sampling 

from a population that consisted of two subpopulations. We randomly sampled 500 cases 

and 500 controls from this mixed population. For each model, the relative risk (RR) of 
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the predisposing variant allele is set to be the same in different populations. For models 1 

and 2, the disease prevalences K1=K2 and predisposing variant allele frequencies q1=q2; 

these models represent the scenario of no population stratification. For models 3 and 4, 

K1<K2, creating population stratification in the simulated data. For models 5 and 6, 

K1<K2 and q1≠q2. For model 5, the first population has lower prevalence but higher 

predisposing variant allele frequency (K1=.07, q1=.55), than the second population 

(K2=.13, q2=.45). For model 6, the population with higher prevalence also has higher 

predisposing variant allele frequency (K2=.13, q2=.55) than the other population (K1=.07, 

q1=.45). For each model, we simulated 500 datasets. 

We simulated autosomal SNPs using GENOME, a coalescent-based simulator 

[Hudson, 1983; Hudson, 1990; Donnelly et al., 1995; Liang et al., 2007]. Assuming 

discrete generations, GENOME simulates the genealogy of a sample of sequences. As the 

algorithm proceeds backwards in time, coalescence, recombination, and migration events 

are simulated. Multiple events can occur in the same generation. We set the effective 

population size as 10,000, the recombination rate as 10-8 per base pair, and the mutation 

rate as 10-9 per base pair, assuming the infinite-site mutation model [Kimura, 1969]. We 

set the rate of migration between subpopulations to .0025 per individual per generation, 

which resulted in a distribution of allele frequency differences similar to that observed 

when comparing HapMap Han Chinese (HCB) and Japanese (JPT) samples 

(www.hapmap.org). In particular, the mean allele frequency difference between the two 

simulated populations is .0470, compared to .0477 between the HCB and JPT samples. 

The simulated genome scans surveyed autosomal genomes of ~2866 Mb comprised of 22 

chromosomes, whose lengths approximate the actual lengths of the human autosomes 
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(NCBI build 33, www.ncbi.nlm.nih.gov/genome/seq/). We randomly selected 300,000 

SNPs with minor allele frequencies > .05, and choose a disease liability locus with the 

desired allele frequencies. 

To calculate the similarity scores, we used 10,000 markers with the smallest 

one-sided HWE p-values, choosing no more than one marker from each 10-marker 

window. We set the maximum size of matched groups (m) to 6. We compared the type I 

error and power of GSM, the trend test, genomic control, and EIGENSTRAT for each 

simulated setting. Given that the simulated samples were drawn from two subpopulations, 

we used the first principal component to adjust for stratification in EIGENSTRAT; using 

additional principal components gave similar results. The estimated type I error rates are 

the proportion of simulated SNPs in which the association test p-value is less than the 

nominal value 10-6, a significance threshold similar to that typically used in genome-wide 

scans. In this evaluation of type I error rates, we only considered SNPs that were 

effectively unlinked to the disease locus. We calculated power as the proportion of 

simulated replicates where the empirical p-value is < 10-6 at the disease locus using a 

threshold obtained by inspection of test statistics at the null loci. 

Bipolar data 

 We applied GSM to genome-wide association data from the Pritzker Consortium 

bipolar study (unpublished data). We selected 717 independent bipolar I European 

American cases and 779 independent European American controls from NIMH Human 

Genetics Initiative (www.nimhgenetics.org); controls were carefully matched to cases by 

self-reported ethnicity prior to genotyping. In addition, we downloaded genotype data on 

3,182 independent European American controls from Illumina iControlIDB database 
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(www.illumina.com/pages.ilmn?ID=231). All individuals were genotyped using the 

Illumina HumanHap550 BeadChip. 505,796 autosomal SNPs passed quality-control 

criteria in the Prtizker bipolar study: 1) HWE p-values > 10-5; 2) genotype call rate > 95%; 

and 3) no more than 1 non-mendelian inheritance or inconsistency among 15 

father-mother-offspring trios and 30 duplicate samples. Of these, we excluded 1,632 

SNPs due to allele frequency differences > .05 between the Illumina and Pritzker control 

samples. We applied GSM and trend tests for association on the Pritzker samples alone 

and then on the combined Pritzker and Illumina samples. In GSM, we used the 100,000 

markers that passed quality control and have the smallest p-values from the one-sided 

HWE test to calculate the similarity scores. Given the relatively large control:case ratio of 

3,961/717≈5.5, we set the upper limit of the group sizes (m) to 30. 

 

4.5 Results 

 

Similarity score performance in HapMap 

We first examined the performance of our similarity scores in the HapMap dataset. 

We calculated our three similarity scores for all pairs of the 89 independent Han Chinese 

(CHB) and Japanese (JPT) individuals in the HapMap sample, using 100,000 HapMap 

phase I autosomal SNPs with MAF>.05, selected based on one-sided Hardy-Weinberg 

equilibrium test p-values of 4.3×10-6 to .11. In Figure 4.1, we showed plots from using 

multidimensional scaling (MDS) on the similarity score matrices. All three scores showed 

good separation between the two populations, except for one JPT individual residing in 

between the two clusters in the plots. The same individual is at a similar position in 
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principal component analysis when plotting the first two principal components. While 

SIBS and Sfreq provided similar separation, SHWE provided less separation with that JPT 

individual much closer to the CHB cluster instead of the JPT cluster. The relatively 

poorer performance of SHWE arises because of the heavy weighting of the small subset of 

markers with very small p-values from the one-sided HWE test, even after we have 

excluded markers with HWE p-value<10-6. 

Our experiences in simulations and real data (unpublished results) suggest that Sfreq 

may perform slightly better than SIBS in matching the samples. In the following 

simulations and analyses, we report results using Sfreq as our measure of genetic similarity. 

Although the p-values from one-sided HWE test may not be the best weights for the 

similarity score as in SHWE, they can still be employed to select a subset of markers for the 

score computation. In so doing we assume that markers with small HWE p-values but 

still passing quality control provide more information about population heterogeneity 

than randomly selected markers. In the following analyses, the matching is usually based 

on a subset of markers (10,000-100,000 markers) which had the smallest p-values from 

one-sided HWE test among those passing quality control filters. 

False positive rate and power  

 For the six simulation models, mismatch rates are calculated as the proportion of 

individuals from population 1 matched to individuals from population 2. The minimal 

degree of mismatch in the simulations (Table 4.5) suggests accurate matching given the 

similarity measures and numbers of markers used.  

In the absence of population stratification (models 1 and 2), all three methods give 

false positive rates close to the nominal value of 10-6. The power of our GSM method is 
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typically ~2% lower than the trend test and genomic control, assumedly due to the 

unnecessary grouping of samples. When population stratification is present (models 3-6), 

the type I error rate of the trend test is ~30 times greater than the nominal value, while 

GSM and genomic control maintain the type I errors at or lower than the nominal value. 

Using empirical type I error rates, the power of the trend test is equal to that of genomic 

control, but significantly lower than that of GSM for models 3-4. For models 5 and 6, 

where population stratification is present, the variation of disease variant frequency may 

mask the association (model 5) or increase the power to detect association (model 6). For 

model 5, power of the trend test and genomic control drop ~30% compared to model 3, 

while GSM maintains the same level of power. For model 6, although the type I error is 

inflated, the trend test has adjusted power comparable to that of GSM. EIGENSTRAT has 

power similar to GSM in all simulation settings examined. 

We also compared the frequency with which the disease variant is the most strongly 

associated marker, or among the most strongly associated 10, 100, and 1000 markers, in 

the trend test or GSM (Figure 4.2). The results are consistent with the observations above. 

In the absence of population stratification (models 1 and 2), the trend test identifies the 

disease variant slightly more frequently than GSM. When population stratification is 

present, GSM picks the correct disease variant more frequently for models 3-5. For 

model 6, GSM picks the correct disease variant almost as frequently as the trend test. 

Bipolar data 

 We first applied standard trend tests to the Pritzker bipolar case and control samples. 

The estimated genomic control variance inflation factor λ of the test statistics was 1.03, 

close to the expected value of 1 when there is no population stratification [Devlin et al., 
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1999], arguing that the matching based on self-reported ethnicity resulted in a sample 

with only limited population stratification. Applying GSM reduced the estimated λ 

slightly to 1.02. However, when we added the Illumina control samples to the analysis, 

the estimated λ from standard trend tests became 1.51, indicative of strong population 

stratification between the cases and controls. We then applied our GSM method on the 

combined samples, excluding one Illumina control sample that had a noticeably high 

similarity score with one Pritzker case sample (SIBS=0.85), consistent with a first degree 

relationship. Using GSM, the estimated λ dropped to 1.072 when we used Sfreq as our 

similarity measure and 1.088 using SIBS, suggesting that GSM using either score provided 

good correction for the stratification problem. Using Sfreq, each of the 712 cases was 

matched to one or more controls (i.e., 1:m matching only): 316 cases were matched to 1 

control, 207 cases to 2-5 controls, 79 cases to 6-10 controls, and 115 cases to 10-30 

controls. To check the appropriateness of setting the maximum number of controls (m) at 

30, we repeated our analysis by changing m to 10 or 50, resulting in estimated λ values of 

1.23 and 1.067, respectively. This suggests that some controls may be matched to 

dissimilar cases when we only allow up to 10 controls per case, while increasing m from 

30 to 50 resulted in little improvement on the matching. Since the combined sample 

contains many more controls than cases, we considered removing some controls with 

relatively high dissimilarity by restricting the total number of controls to be matched 

from 3,960 to 3,500, and the estimated λ dropped slightly to 1.065. We also repeated the 

matching using 50,000 markers instead of 100,000, and in this setting the estimated λ 

increased slightly to 1.086, as expected. 

As a comparison, we also applied EIGENSTRAT and another principal 
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component-based method (Luca et al. [2008], GEM) to the bipolar data, using 10 

principal components. Without removing any potential outliers, EIGENSTRAT gave an 

estimated λ of 1.074, comparable to our results. GEM removed 132 samples as outliers 

and gave a slightly better estimated λ of 1.063. When we applied our method to the same 

set of samples used in GEM, we obtained an estimate λ of 1.065. Although the removal of 

these samples decreased the inflation of type I error rates, its impact on power requires 

further investigation. 

 

4.6 Discussions 

 

Population stratification, which can result in high false-positive rates and mask true 

associations, poses a potential problem for case-control association studies. In this paper, 

we propose GSM, a practical approach to correct for population stratification for 

large-scale association studies that uses information at thousands of genotyped genetic 

markers to group case and control subjects according to their similarity. Simulation 

studies show that GSM can control the false positive rates in the presence of population 

substructure, while maintaining power to detect disease loci.  

GSM is computationally efficient. The computational time for similarity score 

calculation is linear in the number of markers used and in the number of all case-control 

pairs, and the time for matching is approximately cubic in the number of individuals. 

We have compared the performance of GSM to the commonly used genomic control 

method [Devlin et al., 1999]. Genomic control assumes that a scaled test statistic 

(dividing the standard test statistic by a global correction factor λ) has an approximate 
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central χ2 distribution. When stratification is modest, the genomic control procedure is 

able to control the false-positive rate at the nominal level through λ, but does not change 

the relative order of the test statistics along the genome. As shown in our simulations 

(model 3-5), when stratification masks the association, genomic control can be quite 

conservative. Another popular approach to correct for population stratification is 

structured association [Pritchard et al., 2000] which infers population structure using a set 

of independent makers. We did not evaluate this method in our simulations due to its 

computational intensity. Structured association also requires an assumption about the 

number of underlying subpopulations in the sample. EIGENSTRAT [Price et al., 2006] is 

an approach for genome-wide association studies based on principal components analysis 

(PCA). It has been shown that the K-1 principal components can be related to the solution 

to the K-way clustering solution [Ding et al., 2004]. EIGENSTRAT is less sensitive to the 

number of components than structured association (if the number is sufficiently large) 

because of orthogonality of the axes of variation, but the interpretation of the axes is less 

intuitive. 

Our new GSM method tackles the stratification problem by matching at the 

individual level, without assuming an explicit population structure. Effectively, it treats 

every sample as a single population and compares it to the most similar counterparts. For 

samples from clearly distinguished subpopulations, such as the HapMap HCB and JPT 

populations or the two subpopulations in our simulations, GSM performs almost as well 

as cluster-based matching or EIGENSTRAT, with little loss of power. In real GWA 

studies, where sampled individuals may often derive from continuous mixtures of 

ancestral populations, the individual-based matching in GSM should be more flexible 
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than cluster-based matching. Luca et al. [2008] (GEM) also applied full matching to 

correct for population stratification, but used a different score calculated from the top 

eigenvectors from PCA. They showed that outliers may greatly inflate type I errors of 

association tests using EIGENSTRAT and need to be carefully removed beforehand. The 

similarity scores in GSM can be used like the GEM scores to identify outliers, but are 

more intuitive in measuring genetic similarity, compared to the abstract measures from 

eigenvectors used in GEM. In addition, PCA analysis is very sensitive to the 

independence of samples, while GSM can actually help to identify related samples 

through IBS scores. In our Pritzker study example, we found one pair of individuals with 

large similarity score of 0.85 (SIBS), which strongly suggested a potential first-degree 

relative. Although the two samples showed strong correlation in their PC scores, they 

were not identified as outliers by EIGENSTRAT or GEM because their scores did not 

show strong deviation from the center of the score distributions in the top 10 PCs.  

The success of our GSM procedure depends on the accuracy of matching. Incorrectly 

grouping individuals from different populations could inflate the type I error rate, 

decrease the power to detect the susceptibility genes, or both. To ensure correct matching, 

a well-defined similarity measure and a substantial number of markers in which to 

compute this measure are both important. Our simulations analysis and practical 

experience, show that similarity measures derived from the distribution of IBS between 

pairs of individuals, which are simple to calculate and do not require much computing 

power, provide an effective means of matching individuals. Furthermore, we found that 

weighting IBS estimates by a function of the marker allele frequencies (Sfreq) improved 

the accuracy of matching. Other score metrics also exist and can be easily incorporated 
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into our approach to substitute the IBS-based scores presented. As an experiment, we 

considered similarity scores based on pairwise IBD estimates calculated using an E-M 

algorithm, the average mismatch rates using IBD-based scores were slightly higher than 

those for IBS-based scores. A weakness of IBD based scores is that they are truncated at 

zero: when many pairs of individuals are assigned IBD ~0, it becomes difficult to select 

optimal pairings. Figure 4.3 demonstrates the relationship between the IBD scores and 

IBS scores (Sfreq) computed on the HapMap HCB and JPT samples. 

The number of markers used in score calculation is another factor that affects the 

matching. We prefer to calculate the scores based on a large set of markers (typically 

including 10,000 – 100,000 SNPs). However, using too many markers increases the 

computational load while not necessarily improving the accuracy of matching. In our 

simulations, 10,000 markers with the smallest p-values from one-sided HWE test can 

correctly match the individuals from closely related populations such as Han Chinese and 

Japanese, with zero or almost zero mismatch (Table 4.5). In this example, using 30,000 

markers worked as well as using 10,000 markers, while using only 1,000 markers led to 

incorrect grouping of individuals from different populations with up to ~10% mispaired 

individuals. For samples with subtle differences in genetic ancestry, such as the European 

American samples in the bipolar data, more markers (50,000 to 100,000, passing quality 

control) may help to obtain better matching. Inspecting the genomic control parameter λ 

on its closeness to the expected value of 1 from different analysis strategies can help to 

determine the appropriate number of markers for controlling stratification. To select the 

subset of markers, we usually prefer those with smaller p-values from one-sided HWE 

tests, because they tend to be more informative about population structure. However, we 
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need to be cautious regarding data quality, since markers with high error rates may show 

strong deviation from HWE and then give incorrect information about the genetic 

background of sampled individuals. A reasonable compromise is to exclude SNPs with 

extreme deviations from HWE (say, p<10-6) but focus on those with mild deviations (say, 

10-2<p<10-6) to evaluate stratification. GSM does not require that all markers should be 

independent of disease status, since in a typical genome-wide setting the vast majority of 

markers will meet this criterion and the impact of disease-associated markers on the 

similarity scores is negligible and can be ignored. Furthermore, since our similarity 

scores are a function of the mean (weighted) IBS values across a large number of markers, 

it is also not critical that the assessed SNPs should be independent of each other. 

We chose not to include X-linked markers in our matching scheme to avoid any 

possible biases due to differences by gender. Given genome-wide association data, the 

autosomal markers provide ample information for accurate matching. 

When there is no population stratification, our simulations showed a small loss of 

power in GSM due to unnecessary matching. Studies have shown that when the 

population is indeed homogeneous, random matching by pairs (1:1) can do almost as well 

as the unmatched test [Chase, 1968]. Additional power may be lost when the matching is 

not balanced, so that multiple controls are compared to a single case subject or multiple 

cases are compared to a single control (i.e., 1:m or m:1 when m > 1). However, when 

stratification is present, larger values of m are preferred to decrease the chance of 

matching errors. It is then a trade-off of efficiency and bias that we need to consider in 

practice. In our GSM method, the objective function (T) we choose for optimal matching 

favors smaller groups, minimizing loss of efficiency. Although the original optimal 
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matching [Rosenbaum, 1991] is unconstrained (m = ∞) so that all controls are allowed to 

be matched to a single case or all cases to a single control, Hansen [2004] showed that the 

matching with restriction on m can reduce the variance of estimated parameters with little 

increase in bias, and suggested a linear search for good values of m that are as close to 1 

as possible. In our simulations, a large proportion of the matched sets are 1:1 matches 

even when the proportions of the two populations in cases and controls are not equal, and 

the average size of matched sets does not vary much for different values of the upper 

bound of m. For example, for simulated setting 3, the average matched set size is 2.44 

and 2.47 when the upper limits of m are set as 2 and 5, respectively. 

Although the full matching scheme is flexible, cases (or controls) from a population 

without a corresponding partner among the controls (or cases) will decrease power and 

may lead to spurious association if matching is forced. Further, 1:1 matching is more 

efficient than m:1 for m>1. Therefore, we still strongly encourage careful sample 

selection during the study design. Skol et al. [2005] showed that the self-reported 

ethnicity can be a good predictor for population structure, consistent with our results 

based on the NIMH case and control samples alone. 

In summary, we propose a new framework to match case and control samples by 

their genetic similarity and adjust for the underlying population substructure. Our GSM 

method is specifically designed to use the full information provided by the large number 

of genotypes in genome-wide association studies or large-scale candidate gene studies. 

Our method can correctly control the false positives, while maintaining considerable 

power to detect the disease-marker association. Our individual-based matching scheme 

can reflect the continuous mixing of ancestral populations. By comparing each case to 
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one or more controls sharing the most genetic backgrounds, we hope our method may 

increase the chance to identify the genetic variants that influence disease risk. Our GSM 

software is available freely with C++ source code at 

http://www.sph.umich.edu/csg/liang/gsm/. The package allows the users to automatically 

calculate matching score matrices, conduct full matching with a range of parameter 

choices, and carry out association analyses. We expect our method will aid analyses of 

large-scale genome-wide association studies. 
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4.8  Appendix 

Appendix 4.1 Minimum cost flow (MCF) problem 

In a minimum cost flow (MCF) problem, we define a directed graph consisting of 

nodes, i∈N , and arcs connecting the nodes, ( , )i j ∈A . For each arc (i, j), an integer aij 

denotes the cost and a positive integer cij the capacity. For each node i, an integer si 

denotes the exogenous supply. A solution of the MCF problem is a set of arc flows xij that 

minimizes: 
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It is easy to see the equivalence between the MCF and the optimal matching (Figure 

4.4). The nodes in a directed graph correspond to the cases and controls, aij is the 

dissimilarity measure between i and j, and the capacity of the flow, cij, is 1 between case 

and control nodes, and 0 between two cases or two controls. The optimal solution of the 

MCF problem is equivalent to an optimal matching. The nodes connected by arcs with 

non-zero flow are assigned to the same matched set.  

In full matching, the numbers of case-control pairs vary across matched sets, so the 

supply of nodes (si) cannot be predetermined. To deal with this complication, we include 

an “overflow” node to the graph to balance the flows from or to the case or control nodes. 

Parameters U and Uc control the maximum flows going to “overflow” from each node, 

which correspond to the maximum number of cases or controls allowed in each matched 

set, i.e., the upper limit of m in 1:m or m:1 match. For each case node, there are m 
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connected control nodes and U-m arcs connecting it to “overflow”; for each control node, 

there are m connected case nodes and m arcs connecting to “overflow”. The cost for arcs 

entering “overflow” is set as 0, so these extra arcs do not affect the total cost. Similarly, 

another node, “sink”, may also be added to control the total number of controls to be 

matched, and the cost for arcs entering “sink” is also 0 (Hansen et al., 2006). 

The translation is demonstrated in Figure 4.4. The MCF problem is then solved by 

iteratively updating a dual cost vector and the flow vector x (Bertsekas et al., 1994; 

Frangioni et al., 2006). 
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4.9 Tables and figures 
 
 

Table 4.1 Values of IBSk and IBSk,i for calculation of similarity scores 

Genotype Pair kIBS  AkIBS ,  akIBS ,  

aa  aa 2 0 2 
aa  Aa 1 0 1 
aa  AA 0 0 0 
Aa  Aa 2 1 1 
Aa  AA 1 1 0 
AA  AA 2 2 0 
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Table 4.2 Example genotypes 

Cases Controls 
Individual Genotype Individual Genotype 

1 aa, aa, AA 4 aa, aa, Aa 
2 aa, aa, Aa 5 Aa, AA, aa 
3 AA, AA, aa 6 AA, AA, aa 
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Table 4.3 Similarity (dissimilarity) scores for individuals in table 4.2 

 Controls 
Cases 4 5 6 

1 5/6  
(1/36) 

1/6 
(25/36) 

0 
(1) 

2 1 
(0) 

2/6 
(16/36) 

1/6 
(25/36) 

3 1/6 
(25/36) 

5/6 
(1/36) 

1 
(0) 

 



 

103 

Table 4.4 Characteristics of simulated disease models 

Model Population 1 Population 2 
K1 p1 RR1 K2 p2 RR2 

1 .10 .5 1.6 .10 .5 1.6 
2 .10 .2 1.6 .10 .2 1.6 
3 .07 .5 1.6 .13 .5 1.6 
4 .07 .2 1.6 .13 .2 1.6 
5 .07 .55 1.6 .13 .45 1.6 
6 .07 .45 1.6 .13 .55 1.6 

 
Samples drawn from two subpopulations in 1:1 ratio 
Ki: disease prevalence in population i. 
pi: predisposing variant allele frequency in population i. 
RRi: relative risk of the predisposing variant allele in population i. 
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Table 4.5 Average false positive rate and power of GSM, trend test and genomic control 

 

 
Setting 

Mismatch 
(%) λ§ 

Average false positive rate  
(×10-6) 

 
Power* 

GSM Chisq GC EIGEN GSM GC EIGEN 
1 0 1.01 1.08 1.29 1.19 0.93 .80 .82 .82 
2 0 1.01 1.10 1.16 1.10 0.97 .55 .56 .56 
3 0.016 1.39 1.17 31.8 0.73 1.03 .75 .53 .76 
4 0.015 1.38 1.15 30.7 0.47 1.07 .54 .28 .55 
5 0.010 1.37 1.14 31.2 0.64 0.90 .72 .22 .72 
6 0.010 1.38 1.09 33.0 0.66 0.87 .79 .78 .81 

 
500 cases and 500 controls, 300,000 SNPs with MAF > .05, significance level = 10-6 
Chisq represents Trend test and GC represents genomic control 
§. The global correction parameter in genomic control (GC), averaged over simulation replicates. 
*. Power adjusted for the nominal false positive rates. 
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Figure 4.1 Multidimensional Scaling plots using dissimilarity scores as distance measure 
(calculated from 100,000 SNPs) for Han Chinese (HCB) and Japanese (JPT) HapMap 
samples  

 
 

 
 

  
 

HCB JPT HCB JPT 

HCB JPT 
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Figure 4.2 The frequencies of disease predisposing variant being identified among the 
best markers by similarity score matching method (GSM), EIGENSTRAT and trend test 
(Chisq) 
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Figure 4.3 Similarity scores (calculated from 888,071 SNPs) between each pair of Han 
Chinese (HCB) and HCB-Japanese (JPT) in HapMap 

 
Red: HCB-HCB pair; Blue: HCB-JPT pair. 
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Figure 4.4 Solve optimal full matching problem as a minimum cost flow (MCF) problem 

 

 
U denotes the maximal number of controls each case can match, Uc the maximal number of cases each 
control can match, nc the number of controls to match, and n the total number of cases and controls. 
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5  

Chapter V 

 

GLOBAL GENE EXPRESSION MAPPING AND GENOTYPE IMPUTATION TO 

ENHANCE GENOME-WIDE ASSOCIATION STUDIES 

 

5.1 Abstract 

 

Gene expression levels can be an important step between DNA variation and 

phenotypic manifestations. We constructed a genome-wide genetic map of genetic 

variants that influence global gene expression integrating data from two independent 

samples, gene expression data measured on 405 children using Affymetrix technique and 

data from 550 children using Illumina BeadChip. We identified genome-wide significant 

cis eQTLs for more than 1,000 genes from each dataset. The resulting comprehensive 

eQTL maps provide much information about biological regulation of gene expression and 

may serve as a general tool to aid in interpreting the results of disease association. Using 

this dataset, we perform systematic evaluation of accuracy and power of genotype 

imputation with respect to different aspects of the phenotypic traits of interest and genetic 

markers being tested. We carried out genome-wide association studies of global 

gene-expression using data for ~300,000 SNPs genotyped with Illumina arrays, before 

and after imputation. Analyses of imputed data increased the number of signals mapped 

in cis by 11.1% to 1,391 and maintained similar false discovery rates. The QTLs mapped 

after imputation (but missed before imputation) have a broad allele frequency spectrum 
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and, sometimes, represent quite large effects that were not well tagged by individual SNP 

in the original chip. To evaluate the accuracy of genotype imputation, we genotyped 

58,819 SNPs in the same set of individuals using a different Illumina array. We observed 

high imputation accuracy and high correlation between the imputed and actual allele 

counts especially for common SNPs (average error rate is 0.033 with 80.85% SNPs 

having error rates < 0.05). We compared association results for imputed and genotyped 

SNPs at the 58,096 SNPs (MAF>2%) and found the correlation between LOD scores 

obtained from analysis of genotyped SNPs and their imputed counterparts was 0.952; we 

also found the estimated correlation between true and imputed genotypes (which can be 

calculated even when the true genotypes are unknown) to be a good predictor of the 

correlation between LOD scores for imputed and genotyped versions of the same SNP. In 

summary, we found that imputation based analysis can increase power of genome-wide 

association studies carried out using modern genotyping arrays. The results of our 

genome-wide association studies of global gene expression are available online to help 

investigators examine the functional consequences of interesting SNPs. 

 

5.2 Introduction 

 

Genome-wide association studies have detected many new loci for complex traits at 

stringent significance levels. However, it is not always clear how to connect association 

results to biological functions. Variation in transcription can mediate disease and might 

help to explain mechanism for many disease associated SNPs. Transcription abundance is 

directly regulated by genetic elements, and SNPs that modify these elements and are 
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associated with transcript levels can be mapped with high power (Schadt et al. 2003, 

Morley et al. 2004, Spielman et al. 2007, Stranger et al. 2007, Dixon et al. 2007). When 

the same genetic variant is associated with disease and transcript level, the gene could 

serve as a candidate for disease studies (Libioulle et al. 2005, Moffatt et al. 2007, 

Cookson et al. 2009). By measuring gene expression and genetic variants at genome-wide 

scale on a large number of individuals, statistical methods can be used to map genetic 

factors (cis or trans) for thousands of transcripts on the genome. The resulting 

comprehensive eQTL maps may serve as a general tool to aid in interpreting the results of 

disease association. The availability of the eQTL map database to the community might 

give immediate insight into the biological basis of disease associations from different 

genome-wide association studies of complex diseases. The systematic eQTL mapping on 

genome scale also may improve our understanding of the biological control of gene 

expression.  

Our map provides a catalog of more than a thousand cis eQTLs. Since most eQTL 

loci are cis-regulators of gene expression, analysis of our dataset with different 

approaches provides a natural approach to evaluate the relative power of different gene 

mapping strategies (more powerful strategies tend to detect a larger number of cis-eQTL, 

at the same type I error rate). Here, our goal is to use our dataset to evaluate the power of 

genotype imputation. Genotype imputation approaches utilize a reference panel typed on 

millions of markers to estimate missing data in samples genotyped at a subset of these 

markers (Li et al. 2008, Marchini et al 2007, Servin & Stephens 2007, Scheet & Stephens 

2006). The approaches are commonly used to increase the power and coverage of 

individual genome-wide association studies and to facilitate meta-analysis of data across 
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studies that are relied on different commercial genotyping platforms (for early examples, 

see Willer et al. 2008, Sanna et al. 2008, Scott et al. 2007, The Wellcome Trust Case 

Control Consortium 2007).  

To date, most studies using genotype imputation have used one of the commercial 

genotyping arrays (from Illumina, Affymetrix, Perlegen Biosciences, among others) to 

genotype study samples and then used the HapMap samples as template reference panel 

(The International HapMap Consortium, 2007). Simulation experiments and detailed 

genotyping within select regions show that this strategy should result in imputed 

genotypes that are highly accurate and that the analysis of imputed genotypes increases 

power for association studies (Li et al. 2008). Still, a large scale assessment of the 

accuracy of genotype imputation and, particularly, of its impact on power remains 

unknown. 

In this chapter, I assess the accuracy of genotype imputation by comparing imputed 

and experimentally derived genotypes on a genomic scale. Furthermore, I empirically 

evaluate the gain in power that results from genotype imputation by systematically 

contrasting the results of 15,084 genome-wide association scans for a series of mRNA 

transcript levels before and after imputation based analyses. This global assessment of 

mRNA transcript levels includes a variety of traits, each with its own (unknown) genetic 

architecture. Each trait is potentially influenced by a mix of common and rare variants, 

single nucleotide polymorphisms and copy number variants, genetic heterogeneity, etc. – 

a complex scenario that would be challenging to replicate in a simulation study. Despite 

the unknown genetic architecture underlying mRNA expression levels, we can contrast 

the power of different analytical strategies by tallying the number of cis signals that reach 
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genome-wide significance levels with these strategies. 

 

5.3 Materials and Methods 

 

Global gene expression data were measured by two techniques and in two 

independent samples. The first sample contains 405 children of British descent (Dixon et 

al. 2007). The 405 children are organized into 206 sibships, including 297 sib pairs and 

11 half-sib pairs. The families were identified through a proband with childhood asthma 

and siblings were included regardless of disease status. Global gene expression in 

lymphoblastoid cell lines (LCLs) was measured using Affymetrix HG-U133 Plus 2.0 

chips. LCL cultures were harvested at log phase in the first growth after Epstein-Barr 

virus (EBV) transformation. Robust multi-array averaging (RMA, Irizarry et al. 2003; 

Bolstad et al. 2003) was used for background correction, normalization and to compute 

expression values. All 405 children and their parents were genotyped using the Illumina 

Sentrix Human-1 Genotyping BeadChip (ILMN100K, including 105,713 autosomal 

SNPs) and 378 children were also genotyped using Illumina Sentrix HumanHap300 

BeadChip (ILMN300K, including 307,981 autosomal SNPs) according to manufacturers’ 

instructions (Dixon et al. 2007; Moffatt et al., 2007). Before analysis we excluded 4050 

SNPs with call rate <95%, 96 SNPs with Hardy-Weinberg equilibrium p-value <10-6 and 

4310 SNPs with minor allele frequency (MAF) <2% from ILMN100K (a total of 8313 

SNPs excluded), and 3921 SNPs with call rate <95%, 34 SNPs with Hardy-Weinberg 

equilibrium p-value <10-6 and 483 SNPs with MAF <2% from ILMN300K (a total of 

4420 SNPs excluded).  
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The second sample of 951 individuals from 320 families of British descent was 

genotyped using the Illumina Sentrix HumanHap300 Genotyping Beadchip (Gunderson 

et al. 2005, Steemers et al. 2006). The genotyped sample consisted of 347 subjects with 

asthma and 487 subjects with atopic dermatitis (259 subjects with both diseases). Of the 

314,552 SNPs with annotation available in the UCSC genome browser (hg18, Mar 2006), 

8,345 with less than 95% genotyping success rate or deviating from Hardy-Weinberg 

(P<10-6) were excluded. We retained 306,207 SNPs and 296,533,535 genotypes (99.1% 

call rate) for further analyses. There were only 0.204 mendelian errors per SNP: these 

genotypes were excluded from subsequent analyses. Expression arrays using Illumina 

Human 6 BeadChips were available on 550 children (atopic dermatitis probands and their 

siblings). Expression values were estimated using BeadStudio (Illumina, San Diego) and 

bead summary data were used for downstream analysis. From the total of 47,293 probes, 

we excluded 30,806 probes called as “absent” (detection score less than 0.95) in more 

than 80% arrays to eliminate noise. We retained 16,487 probes representing 15,576 genes 

for analysis. The data were then normalized using quantile normalization (Bolstad et al. 

2003). We performed parallel analysis on both samples and observed similar results. 

Results from the first sample (Dixon et al. 2007) will be presented in the remaining 

sections. 

An inverse normal transformation was applied on each transcript to avoid the effect 

of outliers. Briefly, the procedure involves first transforming all observations to ranks and 

then converting these ranks to deviates from a standard normal distribution. 

Narrow-sense heritability for each transcript was estimated by using a variance 

component model and a variance component based score test was used to evaluate the 
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evidence for association at each SNP (Chen and Abecasis, 2007). This variance 

component based association analysis results in an estimate of the additive genetic effect 

at each SNP and accounts for the correlation in phenotypes between siblings. Both 

procedures are implemented in MERLIN (Abecasis et al, 2002; Abecasis and Wigginton, 

2005). 

The analyses identify hundreds of loci that are strongly associated with mRNA 

expression levels. As in other studies of global gene expression, most of the strongly 

associated loci map in cis (typically within a megabase or less) of the transcripts they 

regulate. We reasoned that more powerful analyses should increase the number of cis 

association signals identified while maintaining overall false positive rates. 

We used the ILMN300K genotypes to mimic the data that might be used in a typical 

genome-wide association study and to impute the polymorphic SNPs in the Phase II 

HapMap. The ILMN100K SNPs were not used for imputation or for our initial analysis, 

instead we used genotypes for markers in the ILMN100K panel that were also not present 

in the ILMN300K panel to assess the accuracy of imputed genotypes and of association 

analysis results. In this way, we were able to assess not only the accuracy of imputed 

genotypes but also to directly assess the impact on power of using genotyped or imputed 

SNPs. 

We imputed genotypes for all polymorphic HapMap SNPs by using a hidden Markov 

model programmed in MACH (Li et al. 2008). The method combines genotypes from the 

378 study samples with the HapMap CEU sample (July 2006 phased haplotype release) 

and identifies the stretches of haplotype shared between the study samples and the 

HapMap sample. For each individual, the genotype at the untyped SNP can be 
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summarized by taking (1) the most likely genotype according to the posterior probability 

of the three possible genotypes and (2) allele dosage, the expected number of copies of 

the reference allele (a fractional value between 0 and 2).  

 

5.4 Results 

 

Global gene expression 

We took expression level at each probeset as an individual trait. Since many genes 

are represented by multiple probesets, we also performed parallel analysis where we took 

the average expression level across all probesets in the same gene. We found similar 

conclusions by using probeset and gene level data and report summaries based on 

probeset level data except when interpretation is helped by using gene level results.  

The narrow sense heritability H2 for all the expression levels after RMA and quantile 

normalization ranged between 0.0 – 1.0, with a mean of 0.203 and a 3rd quartile (Q3) of 

0.317. We applied an arbitrary H2 threshold of 0.3 to filter transcripts for downstream 

analyses (figure 5.1a). We did not apply a threshold filter for transcript abundance 

because we felt that genetic regulation of transcripts with low abundance might still occur 

and could be biologically relevant. Nevertheless, we note that the correlation between 

mean expression levels and heritability was substantial (r = 0.45, p = 2.2*10-16). 

Human EBVL provide general information about gene expression, even for genes 

whose primary function is not in these cells (Schadt et al. 2003, Yan et al. 2002, Cheung 

et al. 2003, Gretarsdottir et al. 2003). Although the EBVL used in our analysis were 

derived from children with and without asthma, only 10 of 54,675 transcripts (~0.018%) 
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differed significantly between asthmatics and non-asthmatics with P < .0001, and no 

differences were significant after adjustment for the number of comparisons. This result 

is not unexpected as we measured expression in cultured, unchallenged cell lines; many 

of the changes in transcript abundances previously observed in asthma cells and tissues 

are the result of challenge with environmental and pro-inflammatory stimuli. We 

consequently expect our experiment to inform the genetics of gene-expression not only 

for studies of asthma, but more generally. 

 

Genome-wide eQTL maps 

Our 408,273 genotyped SNPs included 372,821 common SNPs (MAF>0.05) from 

the HapMap database. These covered 1,794,828 HapMap SNPs (including the 372,821) 

at R2 > 0.8, so that the total coverage of the 2,236,212 HapMap common SNPs was 

80.3%. We tested for association between the SNPs and expression levels including sex 

in the model. Based on 100 randomly selected transcripts, the genomic control parameter 

for the 378 samples is 1.012 for experimental genotype and 1.002 for imputed genotypes 

(Dixon et al, 2007). We found that the 14819 traits with annotation entries in the UCSC 

browser and H2 > 0.3 had a minimum peak LOD score for association of 3.683, and a 

maximum of 59.128 (median 4.853,  Q3 5.339) (Figure 5.1b). We estimated the 

threshold for genome wide significance to be a LOD score > 6.076 (equivalent to P = 

0.05 for Bonferroni correction of 408,273 SNPs). Accounting for all possible 

transcript-SNP pairs, we found the false discovery rate (FDR) for a LOD score of 5.5 to 

be 0.152, for a LOD of 6 to be 0.056, for a LOD of 7.0 to be 0.0067, and for a LOD of 8 

to be 0.0008. 
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The mean H2 explicable by association to the SNP showing strongest association to 

each trait was 0.077 (SD 0.049, max 0.707) compared to 0.429 for the overall H2 (SD 

0.103, max 1.0), indicating that on average the peak SNP accounts for 18.2% of the H2 in 

these traits. For the 1,989 transcripts where the peak LOD was >6, the mean H2 

explicable by association to the SNP showing strongest association was 0.157 and the 

average overall H2 was 0.479, indicating 32.9% of the H2 in these traits can be explained 

by the peak SNP. The proportion of peak SNPs exceeding the LOD > 6 significance 

threshold rose with the H2 of the underlying trait, so that 81% of traits with H2 > 0.8 were 

associated with at least one SNPs with LOD > 6 (Figure 5.2).  

 

Sample size and power 

Previous studies have shown the power of eQTL mapping, but have examined 

limited numbers of transcripts or markers in a small number of CEPH pedigrees (Schadt 

et al. 2003, Morley et al. 2004, and Cheung et al. 2003). In order to investigate the impact 

of sample size, we repeated our analyses using only the first 50 sibships in our sample. 

We identified only 503 associations (for 106 transcripts) in this subset that exceed our 

threshold of 6 for genome-wide significance. Using 100 sibships we found 4,923 such 

associations (for 736 transcripts) and in our full data set of 206 sibships we found a total 

of 16,098 such associations (for 1,989 transcripts). These results clearly suggest that 

further increases in sample size will enable even more regulators of gene expression to be 

mapped with statistical confidence. 
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Dominance and interaction 

We explored the heritability that was not explained by association by testing for 

dominance and interaction effects on association amongst the 13,095 transcripts with H2 

> 0.3 that could not be mapped (maxLOD < 6) under the additive model. We identified 

699 transcripts under a dominant model with P < 6.12x10-8 (Bonferroni correction for 

2*408273 tests). This was however less than the 1,097 transcripts that we observed in 

simulated null genotype data, suggesting that in these subjects dominance had a minimal 

effect on gene transcription.  

We further tested for interactions amongst the top 100 SNPs for each of the 13,095 

transcripts with high heritability but no genome-wide significant SNP associations. We 

found 600 had a P < 6x10-8 for the interaction term (Bonferroni correction for 

2*408273+10000 tests), compared to 219 in a permuted genome-wide association scan 

dataset. Although many of the interactions were between SNPs in the same chromosome 

(and could simply point to a haplotype effect), we observed an excess of interacting SNPs 

even after removing these. Thus, our data suggest that genetic interactions may have an 

important influence on regulation of expression for individual genes. 

 

Cis and trans effects 

Trans effects were weaker than those in cis (defined as a SNP within 100Kb 

up-stream and down-stream of a gene) and most LOD scores > 9 were in cis. (Figure 5.3) 

This is consistent with previous studies in humans (Schadt et al. 2003, Morley et al. 

2004) and mice (Hubner et al. 2005). Despite the relative weakness of trans effects, 

numerous distant associations were observed (for example, the peak of association for 



 

124 

698 transcripts was on the same chromosome but >100Kb from the transcribed gene and 

for 10,382 transcripts the peak of association was on a different chromosome), and it may 

be anticipated that larger samples will define more precisely the extent of trans regulation 

of human transcripts. 

 

Gene Ontology 

We used Gene Ontology analyses to identify genes that were significantly enriched 

amongst highly heritable traits (Table 5.1). The most highly heritable GO biological 

process was “response to unfolded proteins”. This group contained numerous 

chaperonins and heat shock proteins (CRNN, 7 DNAJ family members, HERPUD1, 16 

HSPA, B, C or D family members, SERPINH1, TOR1A and 1B, TRA1 and TXNDC4).  

The individual variation in response to unfolded proteins may represent an evolutionary 

response to cellular stress, and these genes could be candidates in the study of 

neurodegenerative diseases and aging processes. 

Genes regulating progression through cell cycle, RNA processing, and DNA repair 

were also exceptionally heritable (Figure 5.4a). We speculate that expression of these 

genes is under very tight genetic control, with little stochastic noise, so that nearby 

polymorphisms can more easily influence expression in a detectable manner. The 

evolutionary advantage of individual variation in these genes is unclear. These genes may 

be relevant candidates for the investigation of inherited susceptibility to cancer. 

It has been shown previously that genes expressed in EBVL are enriched in GO 

categories of immune response (Monks et al. 2004), and the significant heritability that 

we observed to these traits (Figure 5.4b) emphasizes the value of our data for the study of 
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infectious and inflammatory diseases. Genetic variation of the level of HLA-DQ 

expression has been observed previously (Beaty et al. 1995), but effects that we found on 

HLA-DR and HLA-DP are novel, as are smaller effects on HLA-A and HLA-C (Figure 

5.4b). The strength of these effects suggests that associations of MHC class I and class II 

polymorphism with diseases may depend on the level of gene transcription as much as 

restriction of response to antigen. 

 

eQTL database can help interpretation of GWAS 

Our dataset has wide application to the study of genetic markers associated with 

disease or other biological phenotypes. We used the genome-wide SNP data to map a 

novel susceptibility locus for childhood asthma to non-coding SNPs residing within a 206 

kb segment on chromosome 17q23 (Moffatt et al. 2007). Our expression database showed 

that transcripts from ORMDL3, one of the nineteen genes within and around this 

segment, were strongly (P < 10-22) and consistently positively associated to exactly the 

same SNPs showing association with childhood asthma. The correlation between the P 

values from the test statistics for association with asthma and ORMDL3 expression for 

markers across the 206 kb segment was 0.67 (P = 0.004). These results focus attention on 

ORMDL3 as a strong candidate gene in asthma, and illustrate how the combination of 

gene expression with genetic data can be much more powerful than differential gene 

expression alone in identifying candidate disease genes.   

Our database has also been of use in the identification of a novel susceptibility locus 

from Crohn’s disease on chromosome 5 (Libioulle et al. 2007). A GWA study had 

identified markers with a strong disease association within a 1.25 Mb gene desert. 
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Examination of our database showed that these markers are also associated with 

expression of PTGER4, a gene that resides on chromosome 5 outside of the 1.25 Mb 

segment. This led to the identification of PTGER4 as the primary candidate gene for this 

disease susceptibility locus (Libioulle et al. 2007). Searching public GWAS results 

accumulated by NHGRI (http://www.genome.gov/gwastudies/), we identified many other 

disease associated SNPs that alter gene expression (Table 5.2). 

 

Empirical analysis of genotype imputation 

After QC filtering the ILMN300K SNPs (HWE p<10-6, Mendelian error >5, <95% 

genotype completeness, MAF<2%, annotation availability in the University of California 

Santa Cruz genome browser), there remain 303,561 autosomal SNPs on the ILMN300K 

panel. We used 298,285 autosomal SNPs that presented on both the ILMN300K chip and 

HapMap, together with 2,557,252 polymorphic SNPs in the phased HapMap CEU 

chromosomes as input of the program MACH 1.0 (Li et al. 2008). We estimated the most 

likely genotype and the expected number of copies of the reference allele (allele dosage) 

at each of the 2.5M HapMap SNPs. To assess the quality of imputed genotypes, we 

compared the most likely genotypes with the genotypes obtained from the ILMN100K 

panel. To evaluate association analysis power, we found similar conclusions for using 

most likely genotypes or using allele dosage. The results in the later sections are based on 

the most likely genotypes.  

 

Overall imputation accuracy.  

After QC filtering the ILMN100K SNPs (HWE p<1e-6, Mendelian error >5, <95% 
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genotype completeness, Singleton in HapMap, Different comment allele in r21 and r23 of 

HapMap and tri-allele in HapMap and the ILMN100K genotype) and removing SNPs 

used for imputation or not presented in the HapMap panel, we used 58,819 autosomal 

SNPs from the ILMN100K panel for quality assessment. Genotypes from the ILMN100K 

panel were compared to the imputed genotypes at the same SNP. We observed an average 

genotype mismatch error rate of 0.033 (range from 0 to 0.818) with 80.85% SNPs having 

error rates < 0.05 and 35.27% SNPs having error rates < 0.01 (Figure 5.19). 

 

Estimated Quality and R-square.  

The MACH 1.0 program provides two useful measures to estimate the imputation 

accuracy at each marker. The first one is called “quality” which is the estimated 

probability of a correct genotype call. The second one is called “R-square” which is the 

estimated correlation between the imputed allele dosage and the actual allele counts. The 

R-square measure was suggested as a better measure for quality prediction and a 

threshold of 0.3 was suggested to filter SNPs for downstream analysis (Scott et al. 2007, 

Willer et al. 2008, Sanna et al. 2008, Li et al. 2008). On a per SNP basis, the estimated 

quality and R-square are strongly correlated with their actual values with correlations 

equal to 0.822 and 0.864 for quality and R-square respectively (figures 5.5 & 5.6). The 

estimated R-square was also strongly correlated with the actual error rate (correlation 

-0.683, figure 5.20).  

 

Performance by Allele Frequency.  

Allele frequencies from the imputed genotypes were very close to the actual values 
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(correlation 0.997, figure 5.7). SNPs with large difference between actual allele 

frequency and imputed allele frequency were associated with large error rates but 

substantial estimated R-square (104 SNPs have estimated R-square>0.3, figure 5.21). But 

these only account 0.18% of the total 58,819 SNPs. Table 5.3 and 5.4 categorize  SNPs 

by minor allele frequency (MAF) and compared the estimated and actual values for error 

rate and R-square. We found that for common SNPs the estimated and actual values were 

closed to each other whereas for rare SNPs (MAF<1%) there is trend towards 

overestimating the R-square and underestimating the error rate (table 5.3 & 5.4). The error 

rates and R-square increase with minor allele frequency (figure 5.8, table 5.3 & 5.4). For 

SNPs that would be included in downstream analysis (estimated R-square>0.3), the error 

rates increase slightly with MAF but remain at low level while the R-square increases 

substantially (table 5.3).  

Accuracy by LD.  

The performance of imputation relied on the LD between the untyped SNPs and the 

SNPs used for imputation. For each of the 58,819 ILMN100K SNPs, we found the best 

tag-SNP from the 298,285 SNPs used for imputation and categorized the actual error 

rates and R-squares in Figure 5.9. The average best tag R-square is 0.83 (77.23% 

R-square>0.8 and 88.47% R-square>0.5). Even for mild to modest best tag R-square, the 

correlation between imputed and true allele counts were substantial (0.77 and 0.87 for 

best tag R-square in 0.1-0.5 and 0.5-0.8 respectively). This indicated the potential 

increase of power in imputation analysis compared to single marker tests using  typed 

genotypes only.  
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Error Rate and Local Hotspot.  

Finally we looked at the association between error rate and local recombination rate. 

We calculated the local recombination rate around each ILMN100K SNPs by summing 

the recombination rates between the SNP and its two flanking partners in HapMap. The 

error rates and local recombination rates were plotted along the genome (figure 5.10) and 

chromosome 10 (figure 5.11) as an example. The ILMN100K SNPs were evenly 

distributed along the genome and without apparent bias in error rates for different 

chromosomes. The error rates were associated with local recombination rates with 

modest correlation 0.463. Note the increase in error rates at the beginning and the end of 

each chromosome, where recombination rates are higher. 

Overall, we observed high imputation accuracy and high correlation between the 

imputed and actual allele counts especially for common SNPs. The estimated R-square is 

shown to be a useful measure to predict imputation quality.  

 

Reproducibility of Association Analysis.  

We first evaluated the reproducibility of association analysis results using imputed 

genotypes. We removed the rare SNPs (MAF<2%) from the 58,819 ILMN100K SNPs to 

ensure the association analysis would not be affected by sparse categories. The 58,096 

remaining SNPs were tested for association with the 15,084 transcripts that have more 

than 30% total heritability (Dixon et al. 2007). We then repeated the same analysis using 

the imputed genotypes on these SNPs and compare the LOD score for each 

transcript-SNP pair.  

The estimated R-squares for these SNPs ranged from 0.0329 to 1 with mean 0.917 
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and 99.5% SNPs with estimated R-squares>0.3. This showed a high imputation quality. 

The LOD scores using imputed vs. observed genotypes were very close (correlation 

0.952, figure 5.12).  The higher the LOD scores the closer the imputation results to the 

results based on observed genotypes (table 5.5). As we would expect, the higher the 

estimated R-square, the more reliable the imputation results (table 5.6). Table 5.7 

compared the results in terms of findings. We use a relative arbitrary threshold of LOD>6 

to define significance. This is a threshold that could be used in a genome-wide 

association mapping for same among of traits (Dixon et al. 2007). We categorized the 

SNPs by different estimated R-square and counted the number of findings (significant 

transcripts/signals) in each category. The results also showed that SNPs with higher 

estimated R-square gave more reliable association results. When the estimated 

R-square > 0.3, imputed genotypes give similar findings as observed genotypes (table 

5.7). Table 5.6 and 5.7 suggested that the threshold of estimated R-square > 0.3 is a 

reasonable choice to produce reliable association results. 

 

Gain of Power.  

Supported by the high imputation accuracy and reliability of association analysis 

based on imputed genotypes, we were able to evaluate the potential gain of power by 

using all imputed SNPs with good estimated accuracy, i.e. estimated R-square > 0.3. A 

total of 2,492,059 autosomal SNPs passed this threshold and were tested for association 

with the 15,084 transcripts. We used the 5% false discovery rate (FDR) for these 

15,084*2,492,059 tests to a determine genome-wide significance threshold of LOD ≥  

6.222. Then we used the 303,561 ILMN300K SNPs to mimic the genotype data that 
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would be used in a genome-wide association study and tested for association with the 

same transcripts. The 5% FDR for these 15,084*303,561 tests required LOD ≥ 6.250.  

Cis findings are usually to be stronger than trans and are more likely to be true 

signals (Dixon et al. 2007, Schadt et al. 2003, Morley et al. 2004). We used cis signals 

within the 1Mb window of the transcript to compare the performance of analysis using 

only the ILMN300K SNPs and analysis using also the imputed SNPs. Figure 5.13 shows 

the number of transcripts that can be mapped (the signal was within cis 1Mb and passed 

the 5% FDR threshold) by the ILMN300K panel and the imputed HapMap SNPs. In total 

1,397 transcripts can be mapped. The majority of findings (88.48%) can be mapped by 

both observed and imputed genotypes due to the overlap between the ILMN300K and the 

HapMap panels and the optimized tagging of the ILMN300K SNPs to the HapMap 

phased I SNPs. For 5 of the 6 transcripts that can only be mapped by ILMN300K SNPs, 

the LOD scores of the same SNP using imputed genotypes were range from 5.795 to 6.04, 

just below the genome-wide significance level for that analysis. The remaining transcript 

(202086_at) was mapped by a SNP in the ILMN300K set (rs459498, LOD=11.4) but not 

in the HapMap panel. While mostly agreeing with the findings based on observed 

genotypes, imputation resulted in 11.1% (155 transcripts) more findings. There are 636 

unique markers were significantly associated with these 155 transcripts. Among these 

SNPs, 23 SNPs were also typed in the ILMN100K panel only. For these, the correlation 

between LOD score by imputation and LOD score by the ILMN100K genotypes is 0.912.  

 

Total Heritability, MAF and MaxLOD.  

To further investigate the new findings by imputation, we plotted the distribution of 
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total heritability of these 155 transcripts. It shows that even highly heritable traits can be 

missed by a genome-wide scale chip (figure 5.14). With the same sample size and zero 

extra genotyping cost, imputation was able to map some of these missing signals. But 

note that only 1,397 out of the 15,084 transcripts were mapped. Sample size is still the 

more effective way to increase power than marker density (Dixon et al. 2007). The minor 

allele frequency of the new findings had a broad range (0 to 0.5). The largest category is 

the rare SNPs but common SNPs also take a substantial fraction (75.6% SNPs have 

MAF>5%, figure 5.15 and 92.9% top SNPs have MAF>5%, figure not shown). The 

strength of signals was modest for most new findings (figure 5.18). The majority max 

LOD is between 6.222 and 8. For some of the newly mapped transcripts, the max LOD 

scores obtained from the ILMN300K observed genotypes were just below the 5% FDR 

threshold. It suggests more samples are needed to obtain genome-wide significance. Still, 

some transcripts were mapped with strong signals only after imputation. For example, the 

transcript 219865_at (annotated to gene HSPC157) at 22.09Mb on chromosome 1 was 

associated to the top SNP rs2268177 with LOD 16.223 (figure 5.17 & 5.18). Interestingly, 

this SNP was also typed in the ILMN100K panel and the LOD score using the observed 

genotypes was 14.863. The small difference in the two LOD scores is probably due to the 

different way of imputations of missing genotypes used in MACH 1.0 and MERLIN. 

MACH 1.0 relies on a population reference panel while MERLIN relies only on the 

siblings of the individual being imputed. 

 

False Discovery Rate.  

One might concern about the false positive rate due to the increasing number of tests 
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on the imputed data. We addressed this question by comparing the trans signals while 

adjusting for the same number of cis signals. Cis findings are usually stronger and more 

likely to be true than trans findings. For a given number of cis findings (number of 

transcripts that can be mapped), the number of trans findings should be similar for testing 

procedures with similar false discovery rate. Table 5.8 shows that imputation gave similar 

number of trans findings compared to the observed genotypes when fixing the number of 

cis findings. It suggests that genotype imputation does not increase the false discovery 

rate even though more than 2M tests are performed for each gene expression trait. 

In summary, we observed that genotype imputation could increase the power by 

more than 11% and maintain similar false discovery rates. The newly mapped transcripts 

have substantial heritability. The newly mapped eQTLs have broad allele frequency 

spectrum and most are modest signals. 

 

Association Analysis with Additional Phenotyped Samples.  

A total of 405 siblings were measured gene expression in our sample. Although only 

378 of these individuals were typed using the ILMN300K panel and thus have the 

imputed genotypes, the additional siblings with expression values can be included in the 

analysis and their missing genotypes can be inferred probabilistically using the pedigree 

information (Chen & Abecasis 2007). Including these additional phenotypes lead to 33 

more transcripts mapped in cis (<1Mb) at genome-wide significant level (5% FDR). In 

total, we observed 785 additional cis genome-wide significant signals compared to the 

database of Dixon et al. 2007. All association analysis results using imputed genotypes 

with the additional phenotypes can be browsed at our website 
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(http://www.sph.umich.edu/csg/liang/imputation/). 

 

 

5.5 Discussion 

We have systematically mapped eQTLs on the genome for global gene expression 

measured on two independent samples. The resulting eQTL maps provide much 

information about biological control of gene expression and may be used as general tools 

to investigate if disease associated SNPs alter gene expression in cis or trans. We have 

developed a database browser (the MRBS browser) that can be downloaded from 

http://www.sph.umich.edu/csg/liang/asthma/ for the interrogation of our data.  

We find that the two commercial platforms used: Affymetrix array and Illumina 

BeadChip, provide complementary information. Among the 9487 significant cis 

associations (p<10-7, SNP within 1Mb of gene) identified using Illumina expression 

dataset, 1460 (15.4%) were also identified in the Affymetrix expression dataset with 

similar significance cut-off. For a lower threshold p<0.001 for replication, this overlap 

increases to 2543 (26.8%). The difference could be due to a variety of potential reasons, 

including different designs of the two commercial chips, different length of the probes, 

different locations of probes in the gene, the complexity of microarray hybridization, 

heterogeneity in the samples, or power to replication.  

Recent human studies of eQTL have been primarily focused on LCL because LCL 

were usually obtained as a source of nucleic acids for genetic studies. It has been shown 

that LCL may also carry information about gene expression for genes even if their 

primary function is not in these cells (Schadt et al. 2003, Yan et al. 2002, Cheung et al. 
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2003 and Gretarsdottir et al. 2003). The convenience and utility of LCL will be continued, 

however, eQTL studies should include RNA obtained from a variety of tissues. Overlap 

eQTL identified from multiple tissues may represent regulation of housekeeping genes 

while tissue specific regulation might only be found in the corresponding tissues. 

Combining disease association mapping with eQTL maps from related tissues may 

increase the power to identify disease relevant pathways.  

As genotype imputation becomes increasing popular (Willer et al. 2008, Sanna et al. 

2008, Scott et al. 2007, The Wellcome Trust Case Control Consortium 2007), it is 

important to know what would be expected to gain from imputation. We systematically 

evaluated the genotype imputation accuracy and potential gain of power using 

genome-wide scale dataset. Our findings suggested that imputation achieve high quality 

and can well predict the accuracy of each marker being imputed. The estimated R-square 

measure is important to filter poorly imputed SNPs for downstream analysis and will 

facilitate meta-analysis across studies. Imputation increases the marker density and 

coverage to the genome (Li et al. 2008) thus increased power of detection by more than 

11% for gene expression traits. We expected that similar gain of power could be observed 

in traits have similar heritability with similar sample size.   

Although in this paper the most likely genotypes were used to evaluate power in 

association analysis, we recommend using imputed allele dosage for association analysis 

whenever appropriate and the analysis tools support this format of data. The imputed 

allele dosage takes into account the uncertainty of each possible genotype and avoids the 

cumbersome handling of multiple imputations for each genotype. However, in the current 

practice there are situations that most likely genotypes might be preferred (because of the 
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limitations of existing tools; a more appropriate alternative is to perform full likelihood 

inference). For example, if some completely untyped relatives of a family have their 

phenotypic traits available as in our sample 405 siblings were measured gene expressions 

but only 378 were available on the imputed HapMap panel, these additional individuals 

could also be included in analysis and their missing genotypes could be inferred 

probabilistically according to the pedigree structure (Chen & Abecasis 2007) and hence 

potentially increase the power. In this paper we restricted all analysis for imputation 

accuracy and gain of power to the 378 typed individuals to ensure fair comparisons. 

Our study also provides valuable additional results to the database developed by 

Dixon et al. These results not only include newly mapped transcripts but also more and 

stronger eQTLs for the transcripts that were mapped by the ILMN300K and ILMN100K 

SNPs. In total, 10,384,399 additional association signals with pvalue<0.001 were added 

to the database. The results have been incorporated in a web-based browser and can be 

freely accessed at http://www.sph.umich.edu/csg/liang/imputation/. 
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5.6  Tables and figures 

 

Table 5.1 Gene Ontology of exceptionally heritable and non-heritable traits 

 GO-Biological Process  GO ID H2 Z for H2 

response to unfolded protein  6986 0.38  9.03  

regulation of progression through cell cycle  74 0.26  8.20  

RNA processing  6396 0.30  7.85  

DNA repair  6281 0.29  7.81  

protein folding  6457 0.30  7.80  

immune response  6955 0.26  7.62  

regulation of I-kappaB kinase/NF-kappaB 
cascade  

43123 0.28  6.84  

mitosis  7067 0.30  5.82  

intracellular signaling cascade  7242 0.26  5.72  

adenylate cyclase activation  7190 0.11  -3.55  

sodium ion transport  6814 0.13  -3.63  

phospholipase C activation  7202 0.12  -3.74  

potassium ion transport  6813 0.14  -4.43  

glutamate signaling pathway  7215 0.08  -4.52  

synaptic transmission  7268 0.16  -5.64  

The analysis compared the mean total H2 of transcripts in an individual GO category with 
the mean total H2 of all 54675 transcripts. Positive z-score indicates exceptionally 
heritable traits and negative z-score indicate non-heritable traits 
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Table 5.2 Disease-linked associations with significant expression quantitative loci from 
the literature and public databases  

Study Trait Region Candidate Gene 
Transcript 
affected by 
SNP 

Transcript 
Region LOD 

Gudbjartsson 
et al 84 
              
              
              
              
              

Height 7p22 GNA12 GNA12 7p22 13
  11q13.2 Intergenic CCND1 11q13 7.4
  7q21.3 LMTK2 C17orf37 17q21 6.0
      HSD17B8 6 6.4
      NDUFS8 11 6.1

  3p14.3 PXK RPP14 3 9.2

Libioulle et al 
37 

Crohn’s 
Disease 5p13 Intergenic PTGER4 5p13 3.0

Hom et al 85 SLE 8p23.1 C8orf13, BLK BLK 8p23.1 20
                    C8orf13  28
Harkonason et 
al 86 
              

T1D 12q13 RAB5B, SUOX, 
IKZF4 RPS26  12q13 33

  1p31.3 ANGPTL3 DOCK7 1p31.3 16
WTCCC  87   T1D 12q13.2 ERBB3 RPS26 12q13.2 43.2
Todd et al 88 T1D 12q13.2 ERBB3 RPS26  12q13.2 30.3
Plenge et al 89 Rheumatoid 

arthritis 
9q34 TRAF1-C5 LOC253039 9q34 6.3

Moffatt et al 30 Childhood 
asthma 17q21 Intergenic ORMDL3 17 14

WTCCC  87   
              Bipolar 

disorder 16p12 
PALB2, 
NDUFAB1, 
DCTN5 

DCTN5 16p12 9.2

  6p21 NR HLA-DQB1 
HLA-DRB4 6p21 8.9 

11
Di Bernardo et 
al 91 

Chronic 
lymphatic 
leukaemia 

2q37 SP140 SP140 2q37 8.8
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Table 5.3 SNPs selected for downstream analysis (estimated Rsq>0.3) 

 
 Error Rate 

mean, range, sd 
R-square 

mean, range, sd 
MAF N Estimate Actual Estimate Actual 

<1% 179 0.007 0.012 0.659 0.44 
  0-0.045 0-0.065 0.304-0.995 0-1 
  0.007 0.011 0.186 0.326 
1-3% 960 0.011 0.018 0.752 0.629 
  0-0.069 0-0.093 0.303-1 0-1 
  0.01 0.014 0.183 0.269 
3-5% 1233 0.015 0.024 0.816 0.741 
  0-0.088 0-0.101 0.304-1 0.003-1 
  0.014 0.021 0.17 0.232 
5-10% 3725 0.017 0.024 0.888 0.855 
  0-0.167 0-0.26 0.301-1 0.004-1 
  0.021 0.03 0.137 0.18 
10-20% 10469 0.025 0.027 0.919 0.912 
  0-0.309 0-0.369 0.3-1 0.004-1 
  0.033 0.039 0.107 0.123 
>20% 41808 0.039 0.035 0.928 0.933 
  0-0.414 0-0.818 0.302-1 0.002-1 
  0.053 0.054 0.097 0.099 
Total 58374 0.034 0.032 0.918 0.913 
  0-0.414 0-0.818 0.3-1 0-1 
  0.048 0.05 0.111 0.132 

* In each MAF category, the mean, range and standard deviation of each measure are listed at the 1st, 
2nd and 3rd row respectively. 
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Table 5.4 SNPs not selected for downstream analysis (estimated R-square<=0.3) 

 
 Error Rate 

mean, range, sd 
R-square 

mean, range, sd 
MAF N Estimate Actual Estimate Actual 

<1% 77 0.015 0.013 0.144 0.102 
  0-0.099 0-0.042 0-0.291 0-0.815 
  0.018 0.008 0.08 0.19 
1-3% 99 0.023 0.041 0.172 0.108 
  0-0.433 0.013-0.574 0.003-0.298 0-0.798 
  0.044 0.055 0.075 0.165 
3-5% 62 0.03 0.072 0.195 0.113 
  0.003-0.11 0.045-0.103 0.049-0.293 0-0.419 
  0.024 0.013 0.065 0.094 
5-10% 52 0.082 0.14 0.225 0.147 
  0.01-0.24 0.077-0.239 0.075-0.3 0.002-0.521 
  0.057 0.037 0.053 0.126 
10-20% 45 0.181 0.257 0.223 0.146 
  0.003-0.3 0.109-0.422 0.033-0.298 0.002-0.795 
  0.101 0.055 0.066 0.132 
>20% 110 0.349 0.46 0.238 0.14 
  0.012-0.467 0.26-0.747 0.094-0.3 0.003-0.509 
  0.123 0.086 0.046 0.105 
Total 445 0.126 0.177 0.198 0.124 
  0-0.467 0-0.747 0-0.3 0-0.815 
  0.156 0.184 0.073 0.142 

* In each MAF category, the mean, range and standard deviation of each measure are listed at the 1st, 
2nd and 3rd row respectively. 
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Table 5.5 Difference between LOD_Imp and LOD_100K by LOD_100K 

LOD_100K N Correlation Mean |LODImp – LOD100K|/LOD100K 
LOD<3 401082 0.434 0.061
LOD 3-6 142004 0.710 0.083
LOD 6-10 2146 0.810 0.067
LOD 10-20 1290 0.904 0.057
LOD>20 388 0.963 0.038

 
* LOD_Imp and LOD_100K represent the LOD scores using imputed and observed genotypes 

respectively. 
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Table 5.6 Difference between LOD_Imp and LOD_100K by Rsq 

Estimated R-square N Mean |LODimp – LOD100K|/LOD100K 
Rsq<0.3 27 0.156
Rsq 0.3-0.5 534 0.142
Rsq 0.5-0.8 23297 0.126
Rsq 0.8-0.9 58069 0.103
Rsq>0.9 464983 0.059

* LOD_Imp and LOD_100K represent the LOD scores using imputed and observed genotypes 

respectively. 
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Table 5.7 Number of significant traits and signals by imputation and observed genotypes 

 Significant Transcripts Significant Signals 
 Imputation Observed Imputation Observed 
Rsq<0.3 1 8 1 8
Rsq 0.3-0.5 10 13 12 14
Rsq 0.5-0.8 100 113 119 137
Rsq>0.8 927 936 3694 3696
     
All 953 980 3826 3855
Rsq>0.3 953 975 3825 3847
Rsq>0.5 951 971 3813 3833
Rsq>0.8 927 936 3694 3696

 
* Significant is defined by an arbitrary threshold LOD>6. 

 



 

144 

Table 5.8 Number of trans signals from observed genotypes and imputed data while 
adjusting for the same number of cis signals 

 Counts of Associations (peak association for each probeset) 
ILMN300K LOD Limit 40.557 24.626 19.413 12.347 6.485

cis 10 100 200 500 1200
Chr 1 4 7 11 26

trans 0 1 1 4 87
NA 0 2 6 11 25

  
Imputation LOD Limit 43.011 26.563 20.726 13.118 7.157

cis 10 100 200 500 1200
Chr 1 4 5 11 24

trans 0 1 1 3 47
NA 0 2 7 11 25

 
Suppose cis findings are more likely to be true than trans findings, this table suggests imputed data 
give a similar false positive rate as the observed genotypes. 
 
LOD Limit: the LOD score cut-off to give the corresponding number of cis signals. This cut-off is 
then used to determine the number signals in the remaining categories. 
 
cis: SNP within 1Mb of the probeset. 
Chr: SNP on the same chromosome as the probeset but outside the 1Mb window. 
trans: SNP on different chromosome as the probeset. 
NA: position not available for SNP or probeset. 
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Figure 5.1 Total heritability and peak association of transcripts 

 

a Total heritability of expression quantitative traits 

 

 

b Distribution of lod scores for association between 14819 traits with annotation entries 
in the UCSC browser and H2 > 0.3, and 408,273 SNP markers 
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Figure 5.2 Proportion of significantly associated SNPs and expression trait heritability 
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Figure 5.3 Associations in cis and trans 

 

The density scale on the y axis is truncated at 0.5. Loci in cis <100Kb from the start of 

transcription are shown in red, loci in cis >100Kb from the start of transcription are 

shown in green, and loci in trans are shown in blue. (The overlap of the cis > 100Kb with 

the other distributions appears orange and grey). 

 



 

148 

Figure 5.4 Mapping of genes in highly heritable GO categories 

a. Mapping of genes with GO-BP descriptors for cell cycle, DNA repair and RNA 

processing 
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b. Mapping of genes with GO-DP descriptors for immune responses 
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Figure 5.5 Estimated quality and the actual genotype mismatch error rate 

 

Red: MAF<10%, Orange: MAF between 10% and 30%, Blue: MAF>30% 
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Figure 5.6 Estimated R-square and its actual value 
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Figure 5.7 Allele frequency of imputed and actual genotypes 
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Figure 5.8 Minor allele frequency and mismatch error rate 
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Figure 5.9 Actual error rate and R-square by best tagging R-square 

 

* The green(right) histogram is for R-square and the blue(left) histogram is for error rate. 

 

 

 

 



 

 

Figure 5.10 Error rate and local recombination rate along the genome 
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Figure 5.11 Error rate and local recombination rate on chromosome 10 
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Figure 5.12 Association analysis using imputed vs. observed genotypes 
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Figure 5.13 Venn diagram for the overlaps of findings between association analysis 
based on observed genotypes (300K), imputed HapMap SNPs 

 

The number of transcripts that can be mapped in each category is shown in the Venn diagram. 
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Figure 5.14 Missing heritability mapped by imputation 
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Figure 5.15 Allele frequency of eQTL mapped only from imputation 

Allele Frequency of eQTL Mapped "in Cis" only from Imputation (FDR<.05)
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Figure 5.16 Max LOD of transcripts mapped only from imputation 

Max LOD of probesets mapped "in Cis" only from Imputation (FDR<.05)
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Figure 5.17 Association to the transcript 219865_at along the genome by different genotype panels  
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Figure 5.18 Association to transcript 219865_at on chromosome 1 region by different 
genotype panel  
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Figure 5.19 Distribution of genotype mismatch error rate 
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Figure 5.20 Correlation between estimate R-square and actual mismatch error rate 
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Figure 5.21 Error rate and estimated R-square for SNPs with large difference between 
actual minor allele frequency and imputed minor allele frequency 

 
 
 
 
 
 



 

166 

5.7 References 
 
Abecasis G.R., Cherny S.S., Cookson W.O. & Cardon L.R. Merlin–rapid analysis of 
dense genetic maps using sparse gene flow trees. Nat Genet 30, 97–101 (2002). 
Chen W.M. and Abecasis G.R. Family-based association tests for genomewide association 
scans. Am J Hum Genet 81:913-26 (2007). 
 
Beaty, J. S., West, K. A. & Nepom, G. T. Functional effects of a natural polymorphism in 
the transcriptional regulatory sequence of HLA-DQB1. Mol Cell Biol 15, 4771-82 
(1995). 
 
Bolstad, B.M., Irizarry, R.A., Astrand, M. & Speed, T.P. A comparison of normalization 
methods for high density oligonucleotide array data based on variance and bias. 
Bioinformatics 19, 185–193 (2003). 
 
Cookson WOC, Liang L, Abecasis GR, Moffatt MF, Lathrop M. 2009. Mapping complex 
disease traits with global gene expression. Nat Rev Genet 10, 184-194.  
 
Cheung, V. G. et al. Natural variation in human gene expression assessed in 
lymphoblastoid cells. Nat Genet 33, 422-5 (2003). 
 
Dixon AL, Liang L, Moffatt MF et al. A genome-wide association study of global gene 
expression. Nat Genet 39:1202-7 (2007). 
 
Gretarsdottir, S. et al. The gene encoding phosphodiesterase 4D confers risk of ischemic 
stroke. Nat Genet 35, 131-8 (2003). 
 
Hubner, N. et al. Integrated transcriptional profiling and linkage analysis for 
identification of genes underlying disease. Nat Genet 37, 243-53 (2005). 
 
Irizarry, R.A. et al. Exploration, normalization, and summaries of high density 
oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003). 
 
Li Y., Willer C.j., Ding J., Scheet P. & Abecasis G.R. 2008. Markov model for rapid 
haplotyping and genotype imputation in genome wide studies. Submitted for publication; 
manuscript available from G.R.A. (email: goncalo@umich.edu). 
 
Libioulle, C. et al. Novel Crohn Disease Locus Identified by Genome-Wide Association 
Maps to a Gene Desert on 5p13.1 and Modulates Expression of PTGER4. PLoS Genet 3, 
e58 (2007). 
 
Marchini J., Howie B., Myers S., McVean G. & Donnelly P. A new multipoint method for 
genome-wide association studies by imputation of genotypes. Nat Genet 39, 906-13 
(2007). 
 
Moffatt MF, Kabesch M, Liang L et al. Genetic variants regulating ORMDL3 expression 



 

167 

contribute to the risk of childhood asthma. Nature 448 :470-3 (2007). 
 
Monks, S. A. et al. Genetic inheritance of gene expression in human cell lines. Am J Hum 
Genet 75, 1094-105 (2004). 
 
Morley, M. et al. Genetic analysis of genome-wide variation in human gene expression. 
Nature 430, 743-7 (2004). 
 
Sanna S. et al. Common variants in the GDF5-UQCC region are associated with variation 
in human height. Nat Genet 40:198-203 (2008). 
 
Schadt, E. E. et al. Genetics of gene expression surveyed in maize, mouse and man. 
Nature 422, 297-302 (2003). 
 
Scheet P., Stephens M. A fast and flexible statistical model for large-scale population 
genotype data: Applications to inferring missing genotypes and haplotypic phase. Am J 
Hum Genet 78:629-44 (2006). 
 
Scott L.J. et al. A genome-wide association study of type 2 diabetes in Finns detects 
multiple susceptibility variants. Science 316, 1341-5 (2007). 
 
Servin B., Stephens M. Imputation-based analysis of association studies: candidate 
regions and quantitative traits. Plos Genet 3(7): e114 (2007). 
 
Spielman, R.S. et al. Common genetic variants account for differences in gene 
expression among ethnic groups. Nat Genet 39, 226–231 (2007). 
 
Stephens M., Scheet P. Accounting for decay of linkage disequilibrium in haplotype 
inference and missing-data imputation. Am J Hum Genet 76:449-62 (2005). 
 
Stephens M., Smith N., Donnelly P. A new statistical method for haplotype reconstruction 
from population data. Am J Hum Genet 68:978-89 (2001). 
 
Stranger, B.E. et al. Relative impact of nucleotide and copy number variation on gene 
expression phenotypes. Science 315, 848–853 (2007). 
 
The International HapMap Consortium. The International HapMap Project. Nature 437, 
1299-320 (2005). 
 
The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 
cases of seven common diseases and 3,000 shared controls. Nature 447:661-78 (2007). 
 
Willer C.J. et al. Newly identified loci that influence lipid concentrations and risk of 
coronary artery disease. Nat Genet 40:161-9 (2008). 
 
Yan, H., Yuan, W., Velculescu, V. E., Vogelstein, B. & Kinzler, K. W. Allelic variation in 



 

168 

human gene expression. Science 297, 1143 (2002). 
 



 

169 

6  
Chapter VI 

 

CONCLUSION 

 

This dissertation tackles a variety of challenges that arise in gene mapping studies of 

complex diseases, include the handling of repeated measures in quantitative trait linkage 

analysis, simulation of genome scale data, unknown population structure in case-control 

studies, and the genetics of gene expression and genotype imputation. We proposed 

appropriate statistical models and evaluated the methods using simulations and real data. 

The methods have also been implemented into efficient software packages that are 

available to the research community. While we show that our proposed methods achieve 

good performance; there are still opportunities for further extension. 

 

6.1 Variance component linkage analysis for repeated measures 

 

In the studies of repeated measures in quantitative linkage analysis, it is possible to 

refine our model to include dominance effects, twin environment or other 

variance-covariance components or even to incorporate covariate effects into the 

variance-covariance matrix (Lange et al. 1976, Lange and Boehnke 1983, Amos 1994, 

Almasy & Blangero 1998). In particular, time effects can be introduced into the 

variance-covariance structure to allow for longitudinal changes in variance components. 
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Besides simulation approaches, it is possible to compare balanced and unbalanced 

designs under theoretical framework and derive analytical results. One scenario when 

unbalanced designs might be preferred include those where there exists heterogeneity in 

measurement error variance among individuals, i.e. some individuals have higher 

measurement error variation and require additional measurements, while others with 

lower measurement error may require less measurements. A model incorporating 

heterogeneity in measurement error can be extended from our model and it is similar to 

weighted least square regression. 

 

6.2 Discrete generation framework to simulate genome scale data 

 

Our proposed discrete generation framework can be utilized to incorporate features 

that are not available in standard coalescent approaches. For example, it is easy to 

implement the simulation when multiple recombination events on the same sequence are 

a recombination of exactly two parental sequences. With this feature plus our discrete 

generation framework, our simulator can simulate sequences following exactly the three 

assumptions of the Wright-Fisher neutral model (Ewens 1979), namely, discrete 

generations, finite population size and random mating. Fu 2006 developed an exact 

probability model for coalescent events that follows the Wright-Fisher model and 

compared it to the Kingman approximation of coalescent (Kingman 1982) for the 

scenario where sample size is close to the population size. While the Kingman coalescent 

approximates the exact coalescent remarkably well, the author found that there is enough 

differences to justify the use of exact coalescent such as statistics that depends on the 
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topology of genealogy. Fu 2006 only considered the probability for coalescent event. 

Under more complex models, such as migration between subpopulations and 

recombination, the exact probabilities for different types of events remain to be 

developed. Our model accommodates the events of coalescent, recombination and 

migration naturally and simultaneously. It can be used to examine the accuracy of 

approximations of standard coalescent model to Wright-Fisher model, similar to Fu 2006 

but can assess the effect of large sample size on recombination, migration as well as 

simple coalescence. We can then identify the situations when standard coalescent model 

is good enough and when exact simulation of the Wright-Fisher model is desired. 

 

6.3 Matching-based analysis for genome-wide association studies 

 

As commercial whole genome genotyping platforms gets more and more affordable, 

larger and larger samples are collected in genome-wide association studies. When 

samples are collected from a diverse population with a complex ancestry history, such as 

the United States, population substructure is likely to be present in the sample (Freedman 

et al., 2004). When samples are from an isolated population, there could be hidden 

relatedness among individuals in the sample (Lowe 2009). Unadjusted population 

structure and relatedness may increase the false positive rate or mask true associations in 

association studies. Genome-wide association studies collect genotypes on 100,000 to 

100,000,000 of markers. This number of genotypes carries enough information to infer 

ancestry of individuals in the sample (Pritchard et al., 2000, Price et al., 2006, Luca et al., 

2008). Matching cases and controls based on genotype simultaneously adjust the effect of 
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population structure and hidden relatedness in the sample because individuals from the 

same subpopulation or closed relatives tend to group together. Therefore, our method can 

be easily extended to family data by calculating the dissimilarity between families and 

then performing family-based matching instead of individual based matching.  

Besides structured populations, matching can also be applied to admixed populations. 

Our simulations show that our method corrects the inflated false positive rate and still 

maintains power similar to EIGENSTRAT (Price et al., 2006). Another advantage of 

matching is the invariance to outliers in the data. Unlike principal component analysis, 

whose calculation depends on all individuals in the sample, pair-wise similarity scores 

only depend on a pair of individuals and will not be affected by outliers or unknown 

relatives in the sample. If any outliers need to be removed due to poor matching to the 

rest of the sample, no calculations need to be redone. 

We applied our method on case-control data by using conditional logistic regression. 

Matching based analysis can also be extended to quantitative trait analysis. One idea is to 

group individuals with high similarity and model the group effect as a random intercept 

effect in a linear mixed model. By using only one degree of freedom in the model, one 

can adjust for heterogeneity in the mean of the quantitative trait among groups and reduce 

false positives that are due to heterogeneity in trait means and allele frequency difference 

among groups (or subpopulations). The approach should also reduce the variance in the 

residual errors and hence increase power to detect true genetic variants. Similarly, when 

there is heterogeneity in the effect size of the causal genetic variant, a random slope for 

the genetic variant can be used to further reduce residual errors and increase power. The 

idea of using linear mixed model for matched sets can then be extended to use 
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generalized linear mixed model for case-control data and adjust for population 

heterogeneity in disease prevalence (random intercept) and similarly for heterogeneity in 

genetic effect size (random slope). This gives an alternative method to the conditional 

logistical regression. It would be interesting to compare the performance of the two 

alternatives in the context of genome wide association studies. 

 

6.4 Expression quantitative trait loci (eQTL) mapping and genotype imputation 

It has been shown that the genetic map of gene expression can be used to help 

interpret findings from genome-wide association studies of complex diseases (Libioulle 

et al. 2007, Dixon et al. 2007, Cookson et al. 2009). The mapping of gene expression 

itself is an interesting genome-wide association study. Experiences gained from eQTL 

mapping may be borrowed to improve genetic mapping of other quantitative traits. We 

have examined the impact of genotype imputation on power. Genotype imputation 

(Scheet & Stephens 2006, Servin & Stephens 2007, Marchini et al 2007, Li et al. 2008) 

can reliably reproduce missing genotypes as well as association results. The quality of 

imputed genotype and the association statistics can be well predicted by the estimated 

correlation between imputed genotype and the true counterpart. We estimated that 

imputation using the HapMap SNP panel (The International HapMap Consortium 2007) 

increases the number of transcripts mapped in cis by ~10%. Encouraged by this finding, 

we have started to explore an even denser panel of SNPs. The 1000 Genomes project 

(www.1000genomes.org) has recently derived a panel of more than 8 million SNPs based 

on the shot-gun sequence data of ~120 individuals (HapMap CEU). Genotype imputation 

based on these 8 million SNPs leads to ~4-6% more cis eQTLs than imputation results 
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using the HapMap panel alone as a template. More than 1000 individuals will eventually 

be sequenced by the 1000 Genomes project. We expect to be able to impute more SNPs 

with higher quality and mapping even more eQTLs.  

We show that sample size has a dramatic effect on study power (Dixon et al. 2007). 

However, even with hundreds of individuals in the sample plus imputation of a dense 

panel of SNPs, only ~13% transcripts with high total heritability (>30%) can be mapped 

in cis with genome-wide significance. Further increase in sample size will certainly 

increase the power but also increase in cost. The process of determining gene expression 

values is complex. For example, the stage of cell cycle, conditions when RNA is 

extracted and cDNA is synthesized, the variation among technicians, the design and 

production of chips, and the hybridization of the microarray could all affect the final gene 

expression value. 

Repeated measures of expression for the same gene can help to reduce measurement 

error but still increase cost. Note that an individual array evaluates expression for tens of 

thousands of transcripts which undergo similar conditions such as similar cell cycle, 

conditions of RNA extraction and cDNA synthesis, the same technician, and the same 

microarray chip. Expression levels for these transcripts can be regarded as “repeated 

measures” of this experimental variability and can be used to summarize the effects of 

this experimental variability. One way to summarize information shared among all 

transcripts on the same chip is to use principal components given that genetic effect on 

the expression is much smaller than the above systematic effects (Leek & Storey 2007, 

Stegle et al. 2008).  

Using the MRCA dataset, we found that the RNA extraction date, cDNA synthesis 
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date, IVT (in vitro transcription) date and the date that the sample was fragmented were 

significantly associated with the top 2nd to 4th principal components of gene expression. A 

few other principal components, such as the 11th, 18th and 22nd, were also associated with 

date of experiment. Adjusting the top 69 principal components as covariates in the model 

to account for unobserved systematic noises (such as batch effects), we observed a 3-fold 

increase in the cis eQTL. The number of transcripts mapped within 1Mb increased from 

2219 to 6237, accounting for 37.3% highly heritable transcripts (H2 >30%). We estimated 

that imputation of HapMap SNPs and SNPs from the 1000 Genomes project leads to a 

further increase of cis eQTL by 5.9% and 10.3%, respectively.  

Sequence based techniques, such as RNA-seq (Wang et al. 2009), have been 

introduced to gene expression analysis. New methods are needed to utilize the power of 

this newly available data. For example, a new method could be used to give a much 

cleaner measures of gene expression abundance and to determine transcriptional events 

such as alternative splicing. In the meantime, array based techniques will still be used 

because of its relatively low cost and newly developed method that can better use the 

existing techniques. 

In the chasing after causal genetic variants that are responsible for complex diseases, 

any breakthrough will make one step forward, from phenotypes with higher accuracy to 

genotypes with higher coverage, from establishing valid and powerful statistical evidence 

to obtaining sensible biological interpretation, from faster and larger scale simulations to 

better statistical inference based on real data. Besides these challenges addressed here, 

there are many others that need to be tackled. 
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