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Abstract 
 
 

NEURAL CIRCUITS AND SYNAPSES FOR EARLY STAGE VISUAL PROCESSING 
 

by 
 

Michael B. Manookin 
 
 
 

Chair: Jonathan B. Demb 
 

Ganglion cells are the output neurons of the retina and send visual 
information through the optic nerve to various targets in the brain.  There are ~20 
types of ganglion cell, and most types encode contrast, the variance in light 
intensity around the mean level.  This thesis investigates how retinal circuits and 
synapses encode contrast.  At the first level of light processing, cone 
photoreceptors release glutamate onto ON and OFF bipolar cells, which respond 
to objects brighter or darker than the background and release glutamate onto the 
corresponding type of ganglion cell.  This thesis demonstrates how excitatory 
and inhibitory synapses work in concert to encode light information in three 
ganglion cell types: ON Alpha, OFF Alpha, and OFF Delta cells. 

First, I demonstrate that excitatory synapses adapt following prolonged 
stimulation.  Following a switch from high to low contrast, a ganglion cell rapidly 
decreases its responsiveness and recovers slowly over several seconds.  This 
slow adaptation arises from reduced glutamate release from presynaptic bipolar 
cells.  Glutamate released from bipolar cells binds to α-amino-3-hydroxyl-5-
methyl-4-isoxazole-propionate (AMPA) and N-methyl-D-aspartic acid (NMDA) 
receptors on ganglion cell dendrites.  NMDA-mediated responses were present 
in multiple ganglion cell types but absent in one type, the ON Alpha cell. OFF 
Alpha and Delta cells used NMDA receptors for encoding different contrast 
ranges: the full range (Alpha), including near-threshold responses, versus a high 
range (Delta).  The Delta cell expresses the NR2B subunit, consistent with an 
extra-synaptic NMDA receptor location that is activated by glutamate spillover 
during high contrast stimulation. The contrast-independent role for NMDA 
receptors in OFF Alpha cells correlated with two circuit properties: high contrast 
sensitivity and low presynaptic basal glutamate release. 

In addition to excitatory glutamate synapses, OFF ganglion cells are 
driven by the removal of synaptic inhibition (disinhibition).  Experiments implicate 
the AII amacrine cell, better known for its role in rod vision, as a critical circuit 
element through the following pathway: cone  ON cone bipolar cell  AII cell 

 OFF ganglion cell.  These results show a new role for disinhibition in the retina 
and suggest a new role for the AII amacrine cell in daylight vision. 
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Chapter 1 
 

Introduction 

 

Light processing in the retina 

The retina constitutes the first stage of visual information processing.  In 

vertebrates, such as humans and guinea pigs, photons of light pass through the 

retinal layers where it may be absorbed by a photoreceptor.  Photoreceptors are 

separated into two classes: rods and cones.  Generally, rods subserve dim light 

vision, conditions where few photons are present.  Cones operate under daylight 

conditions, and the cone circuitry is the focus of this thesis.   

Cones release glutamate onto bipolar cells and horizontal cells (Figure 

1.1).  In darkness, cones are depolarized and continuously release glutamate; a 

bright stimulus has the opposite effect: cones hyperpolarize, causing an 

attenuation of glutamate release.  Cones release glutamate onto two classes of 

cone bipolar cell: ON and OFF cells.  ON and OFF bipolars express different 

classes of glutamate receptor causing opposite responses to cone glutamate 

release.  ON bipolar cells express a metabotropic glutamate receptor (mGluR6) 

on their dendrites (Nomura et al., 1994), and when glutamate activates the 

receptor, it closes a cation channel, causing the ON cell to hyperpolarize.  Thus, 

a flash of light that would hyperpolarize cones suppresses glutamate release 

onto an ON bipolar cell and, subsequently, depolarize the cell.  OFF bipolars 
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express ionotropic glutamate receptors, specifically AMPA and kainate receptors.  

The same light flash removes glutamate release from OFF bipolar dendrites and 

causes a hyperpolarization. 

 

  

Figure 1.1. Schematic of the vertebrate retina. 

 At the next level of signaling, bipolar cells release glutamate onto ganglion 

cells.  Ganglion cells generally express AMPA and NMDA receptors (Fletcher, 

Hack, Brandstatter, & Wassle, 2000; Grunert, Haverkamp, Fletcher, & Wassle, 

2002; Kalloniatis, Sun, Foster, Haverkamp, & Wassle, 2004), which allow 

glutamate release from bipolar cells to preserve the stimulus sign established in 

the bipolar cells.  Thus, an ON ganglion cell receives glutamatergic input from 

ON bipolar cells, and vice versa.  Bipolar cells can also excite an amacrine cell, a 
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type of inhibitory interneuron.  An amacrine cell can, in turn, inhibit bipolar cell 

terminals (i.e., feedback inhibition) or ganglion cells (i.e., feedforward inhibition).  

Ganglion cells integrate excitatory and inhibitory inputs and transmit visual 

signals down their axons, which form the optic nerve. 

 

Contrast processing and adaptation 

Humans can see and behave across a wide range of lighting conditions.  

For example, one can navigate through the woods on a starry night, where each 

rod photoreceptor absorbs a photon only about once per minute; and yet one can 

also navigate across the beach on a cloudless day, where cone photoreceptors 

absorb thousands of photons per second.  The mean luminance between these 

extreme examples can differ by ~100-million-fold. This wide range of intensities 

poses a computational problem for the retina, because a ganglion cell can fire 

only about 20 action potentials (spikes) in the ~100 msec integration time of a 

postsynaptic neuron.  Thus, the ganglion cell must continually adjust its 

sensitivity so that the wide range of light levels (~8 log units) can be encoded 

with the narrow range of output signals (~1-2 log units).  

To deal with the mismatch between input and output, the retina adjusts its 

sensitivity depending on the mean intensity, through mechanisms of light 

adaptation.  These mechanisms are varied and include: the switch between rod 

photoreceptors (for night vision) and cone photoreceptors (for day vision); 

intrinsic properties of each receptor type that alter sensitivity depending on mean 

intensity; and post-receptoral mechanisms within the retinal circuitry.  The 
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apparent purpose of light adaptation is to adjust the ganglion cell’s response to 

report, not the absolute intensity, but rather the contrast, or the percentage 

deviations from the mean intensity (Troy & Enroth-Cugell, 1993). 

The contrast of a visual stimulus is a more robust property than the 

absolute intensity.  To illustrate this point, consider a simple example, where an 

observer gazes at a bird on a background of leaves.  Assume that the bird 

reflects 50% more light towards the observer’s eye compared to the leaves (and 

ignore color in this example).  Now imagine that the light reflected to the eye is 

reduced either by the observer’s action (i.e., putting on a pair of sun glasses) or 

by a change in the light source reflecting off the objects (i.e., a cloud passes 

overhead, obscuring the sunlight).  In either case, the light reflected into the eye 

is reduced 10-fold or more.  However the relative reflectance is unchanged: the 

bird still reflects 50% more light than the leaves.  Hence, it follows that the retina 

(and most of the visual system) is designed to encode contrast or the relative 

reflectance of objects within the same scene: the relative reflectance of objects 

represents a stable property of natural scenes, whereas absolute reflectance 

does not.  Physiological measurements of retinal ganglion cells confirm this idea, 

showing that responses to a given contrast level are relatively constant over 

several orders of mean light level. 

 

Contrast adaptation 

Ganglion cells are sensitive to an approximately 100-fold variance in 

contrast level, and processing such a wide range of contrasts is challenging.  
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Hanglion cells face a fundamental problem: at low contrast, they must increase 

sensitivity to utilize their response range (~0-20 spikes) while preserving the 

signal-to-noise ratio, whereas, at high contrast, they must decrease sensitivity to 

avoid saturating the response (Baccus & Meister, 2004; Demb, 2002).  To face 

this challenge, the circuit adapts to the relevant range of contrast using 

mechanisms of plasticity.  These mechanisms adjust their responses on different 

time scales: a fast adaptation that acts over tens to hundreds of milliseconds and 

a slow adaptation that acts over several seconds. 

Slow adaptation occurs when a cell is stimulated strongly with a few 

seconds of high contrast.  This period of high-contrast stimulation causes a cell 

to depolarize and spike.  When the stimulus returns to a low-contrast, the cell 

subsequently hyperpolarizes below the previous resting membrane potential.  

During this afterhyperpolarization (AHP), spiking is suppressed while the 

membrane potential depolarizes back to the baseline level.  Slow contrast 

adaptation occurs at several levels of visual processing, including the visual 

cortex and retina.  Previous research suggests that slow contrast adaptation in 

some cortical neurons and retinal ganglion cells arises from intrinsic mechanisms 

(Baccus & Meister, 2002; Sanchez-Vives, Nowak, & McCormick, 2000a, 2000b; 

Solomon, Peirce, Dhruv, & Lennie, 2004). 

Previous studies of slow contrast adaptation in mammalian retina used 

extracellular recording (Brown & Masland, 2001; Chander & Chichilnisky, 2001; 

Smirnakis, Berry, Warland, Bialek, & Meister, 1997; Solomon et al., 2004).  We 

studied slow adaptation in retinal ganglion cells using a more powerful technique, 
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intracellular recording.  We found that slow adaptation results from a slowly 

recovering AHP, as shown for cortical neurons and salamander ganglion cells.  

However, these experiments showed that slow adaptation in ganglion cells does 

not arise primarily from an intrinsic property of the cell.  Rather, ganglion cell 

adaptation arises from an emergent mechanism of the retinal network: reduced 

glutamate release from presynaptic (nonspiking) bipolar cells (Chapter 2; 

Manookin and Demb, 2006).  This presynaptic mechanism complements intrinsic 

mechanisms for slow adaptation found at later stages of the visual pathway. 

 

The spatial receptive field 

A ganglion cell calculates contrast over a specific retinal region known as 

its spatial receptive field.  There are approximately 20 different types of ganglion 

cell.  Each type encodes different aspects of visual information, and some are 

highly selective for features such as wavelength of light or the direction of moving 

objects.  Here, we focused on three types of ganglion cell (ON α, OFF α, and 

OFF δ) that have relatively conventional receptive fields, consisting of an 

excitatory center region and an inhibitory surround region.  

A ganglion cell’s excitatory center is coextensive with its dendritic tree.  

Thus, the photoreceptors overlaying the span of the ganglion cell’s dendritic tree 

contribute to driving the excitatory center.  These photoreceptors synapse onto 

both ON and OFF bipolar cells.  However, most ganglion cell types collect 

synapses from either ON-type bipolar cells or OFF-type bipolar cells and then 

inherit the ON- or OFF-center property from these presynaptic bipolar cells. 
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A ganglion cell’s inhibitory surround corresponds to the retinal region that 

extends beyond the dendritic tree. For example, an OFF-center cell that is 

excited by light decrements coincident with the dendrites is inhibited by light 

decrements in the surround region, beyond the dendrites.  The center and 

surround combine to report the relative contrast over space.  The center is 

commonly stronger than the surround, so that a large object covering both the 

center and surround will drive a center response (e.g., a large bright object will 

provide some excitation to an ON-center cell).  For some cell types (e.g., the β/X-

type ganglion cell of the cat or the midget/Parvocellular-projecting ganglion cell of 

the monkey), the center and surround combine in an approximately linear fashion 

(Enroth-Cugell & Robson, 1966).  Thus, the response to center plus surround 

stimulation can be predicted reasonably well by summing the separate 

responses to center and surround measured individually.  For other cell types 

(e.g., the α/Y-type of the cat) there is a nonlinear combination of center and 

surround regions.  For these nonlinear receptive fields, the presynaptic bipolar 

cells may be described by relatively linear receptive fields; the major nonlinearity 

of the ganglion cell receptive field may arise at the level of the synaptic output of 

the bipolar cells as they converge onto the ganglion cell (Demb, Zaghloul, 

Haarsma, & Sterling, 2001).  In general, a ganglion cell’s excitatory center is 

driven by the presynaptic bipolar cells, whereas the surround arises at two levels: 

the horizontal cells in the outer retina and the amacrine cells in the inner retina.   

My thesis research found two cell types that challenge this canonical view 

(Manookin, Beaudoin, Ernst, Flagel, & Demb, 2008).  Presenting an OFF 



  8 
 

ganglion cell with a dark spot in the receptive field center excited the cell.  Whole-

cell recordings revealed that the excitatory center of OFF α and δ ganglion cells 

is formed from a combination of bipolar cell excitation and removed inhibition 

(i.e., disinhibition).  Thus, tonic inhibition at steady mean luminance was 

increased or decreased depending on stimulus sign.  Experiments revealed the 

source of the disinhibition to be the AII amacrine cell, which plays a fundamental 

role in encoding dim-light (photopic) vision (Bloomfield & Dacheux, 2001; Singer, 

2007).  Our research demonstrates a new role for disinhibition in the retina and 

suggests a function for the AII amacrine cell in daylight vision (Chapter 3; 

Manookin et al., 2008). 

 

Physical limits to contrast sensitivity 

Under optimal conditions, humans can detect small spots with contrasts of 

1-3%(Dhingra, Kao, Sterling, & Smith, 2003).  Studies using similar methods to 

detect the threshold of ganglion cells have arrived at similar threshold values 

under optimal conditions (Dhingra et al., 2003).  Thus, there may be certain 

conditions where perceptual thresholds are driven by a small number of ganglion 

cells, and there may be relatively little information lost between the retina and the 

visual cortex.  However, there is a loss between the contrast threshold that could 

(theoretically) be computed at the level of photon absorptions by the 

photoreceptors and the threshold measured in the ganglion cell.  Recent 

computational analysis suggests that, under certain conditions, this loss may be 

a factor of ~10-20 (Borghuis, Sterling, & Smith, 2009).   
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The ability to detect contrast depends on the statistics of photon arrival 

and the statistical properties of various cellular processes.  Photon arrival follows 

Poisson statistics, where the mean and the variance are equal.  For example, 

consider a case where a ganglion cell integrates signals over 20 photoreceptors 

across the retina and over a 100 msec ‘integration time’ and where the mean rate 

of photoisomerizations (i.e., absorbed photons) is 50 isomerizations (R*) per 

photoreceptor per second (i.e., 5 R*/photoreceptor/integration time).  In this case, 

the mean R* rate over the spatial/temporal integration (20 x 100 x 5) is 10,000 

and the variance (across multiple ‘trials’) would be the same.  Thus, the SD (or 

noise level) would be the square root or 100 R*.  The signal-to-noise ratio 

(mean/SD per integration time) would then be 10,000/100 = 100.  Therefore, the 

cell in question would have difficulty detecting a difference of less than 1/100 

(i.e., SD/mean) or 1% deviation from the mean level (i.e., 1% contrast).  The 

contrast threshold would be worse (i.e., higher) when the mean luminance is 

lower, the number of integrated photoreceptors is fewer, or the temporal 

integration time decreases. 

Similar limitations on contrast sensitivity arise at the bipolar cell  

ganglion cell synapse.  Similar to photon arrival, glutamate release from bipolar 

cells obeys Poisson statistics.  Glutamate is released from a presynaptic bipolar 

cell axon terminal and can bind to ionotropic glutamate receptors (AMPA and 

NMDA) on the postsynaptic ganglion cell dendrite.  AMPA and NMDA receptors 

differ on a number of fundamental properties (for review, see (Dingledine, 

Borges, Bowie, & Traynelis, 1999; Erreger, Chen, Wyllie, & Traynelis, 2004)). For 
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example, AMPA receptors have fast kinetics (deactivation time of <3 ms), 

whereas NMDA receptors have slower kinetics (deactivation time of >30 ms).  

Thus, the ability of synapses to transfer information at low contrast depends on 

the release rates onto AMPA, NMDA, and inhibitory receptors and the number of 

synapses that are integrated by a given neuron.  The threshold of a cell would be 

best (i.e., lowest) in the presence of high release rates and a large number of 

integrated synapses (i.e., high degree of synaptic convergence within the 

circuitry).   

In Chapter 4, we show that different cell types utilize different release and 

receptor-expression strategies for visual encoding.  The ON Alpha cell receives a 

high rate of presynaptic glutamate release.  Under these high release rates, 

NMDA receptors and desensitizing AMPA receptors would be saturated at 

baseline and would thus be ineffective at contrast encoding (Figure 4.8).  The ON 

Alpha cell avoids this problem by expressing non-desensitizing AMPA receptors 

and not expressing NMDA receptors.  Unlike ON Alpha cells, OFF Alpha cells do 

not receive a high rate of presynaptic glutamate release at baseline.  OFF cells 

employ a different mechanism for maintaining a high sensitivity at low contrast.  

They express synaptic NMDA receptors, which are highly sensitive to small 

increases in presynaptic glutamate release, such as those observed at low 

contrast.  These and other findings presented in Chapter 4 demonstrate a new 

role for NMDA receptors in information encoding in the nervous system. 

 This thesis focuses on the circuits and synapses involved in contrast 

processing at the level of ganglion cells.  Specifically, the following chapters 
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explore the network mechanisms involved in the formation of a ganglion cells 

receptive field center, which involves presynaptic mechanisms (i.e., bipolar cell 

and amacrine cell input) and postsynaptic mechanisms, such as glutamate 

receptor expression and localization relative to synaptic release sites.  Together, 

these findings advance previous knowledge and understanding about information 

processing in the retina with potential applications to synapses in other brain 

areas. 
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Chapter 2 

Presynaptic Mechanism for Slow Contrast Adaptation  
in Mammalian Retinal Ganglion Cells 

 

Summary 

Visual neurons, from retina to cortex, adapt slowly to stimulus contrast. 

Following a switch from high to low contrast, a neuron rapidly decreases its 

responsiveness and recovers over 5–20 s. Cortical adaptation arises from an 

intrinsic cellular mechanism: a sodium-dependent potassium conductance that 

causes prolonged hyperpolarization. Spiking can drive this mechanism, raising 

the possibility that the same mechanism exists in retinal ganglion cells. We found 

that adaptation in ganglion cells corresponds to a slowly recovering 

afterhyperpolarization (AHP), but, unlike in cortical cells, this AHP is not primarily 

driven by an intrinsic cellular property: spiking was not sufficient to generate 

adaptation. Adaptation was strongest following spatial stimuli tuned to 

presynaptic bipolar cells rather than the ganglion cell; it was driven by a reduced 

excitatory conductance, and it persisted while blocking GABA and glycine 

receptors, K(Ca) channels, or mGluRs. Thus, slow adaptation arises from 

reduced glutamate release from presynaptic (nonspiking) bipolar cells.  
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Introduction 

The natural environment contains a wide range of possible lighting 

conditions. To operate across these conditions, the visual system must adapt its 

sensitivity to the statistics of the immediate environment. At the first stage of 

vision, the retina adapts to the mean intensity, a process also called ‘‘light 

adaptation,’’ through intrinsic photoreceptor properties as well as postreceptoral 

mechanisms (Pugh, Nikonov, & Lamb, 1999; Troy & Enroth-Cugell, 1993; 

Walraven, Enroth-Cugell, Hood, Macleod, & Schnapf, 1990). The retina further 

adapts to the range of intensities relative to the mean, also called ‘‘contrast 

adaptation.’’ A common hypothesis suggests that, at low contrast, the retina 

increases sensitivity to improve the signal-to-noise ratio, whereas, at high 

contrast, the retina decreases sensitivity to avoid saturating the response 

(Baccus & Meister, 2004; Demb, 2002). Contrast adaptation is largely absent in 

photoreceptors and therefore must arise through either network mechanisms or 

intrinsic properties of ganglion cells (Baccus & Meister, 2002; Rieke, 2001; Sakai, 

Wang, & Naka, 1995).  

At multiple levels of the visual system, including the retina, cells adapt to 

contrast over at least two time scales: a fast adaptation that acts in tens to 

hundreds of milliseconds, and a much slower adaptation that acts over several 

seconds (Baccus & Meister, 2002; Carandini & Ferster, 1997; Maffei, Fiorentini, 

& Bisti, 1973; Movshon & Lennie, 1979; Smirnakis et al., 1997; Solomon et al., 

2004). The slow form of contrast adaptation was recently demonstrated in the 

primate magnocellular pathway in vivo (Solomon et al., 2004). Magnocellular 
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retinal or thalamic cells were stimulated with high contrast followed by a switch to 

low contrast or mean luminance. Following the switch, these cells showed a 

suppressed response that required a recovery period of over 10 s. To put this 

time period into perspective, consider that under steady contrast conditions, 

ganglion cell responses can be predicted based on the previous ~300 ms of the 

stimulus (Baccus & Meister, 2002; Chichilnisky, 2001; Kim & Rieke, 2001; 

Zaghloul, Boahen, & Demb, 2003). Thus, a 10 s period of adaptation is relatively 

long.  

Slow contrast adaptation in magnocellular neurons required a high-

contrast stimulus effective at driving the cell (Solomon et al., 2004). This 

apparent activity dependence suggested that the mechanism for adaptation is 

intrinsic to the ganglion cell. Indeed, there is good precedent for this hypothesis: 

some cortical neurons express an intrinsic property for slow contrast adaptation 

(Sanchez-Vives et al., 2000a). When a cortical cell is stimulated strongly, either 

by a visual stimulus or direct current injection, the cell depolarizes and fires 

spikes. At the offset of stimulation, the cell hyperpolarizes and this 

afterhyperpolarization (AHP) recovers slowly over seconds.  

The AHP suppresses spiking responses to low-contrast stimuli (Carandini 

& Ferster, 1997; Sanchez-Vives et al., 2000a, 2000b). Ion substitution 

experiments demonstrated that the cortical AHP was caused largely by a 

potassium conductance sensitive to intracellular sodium (Sanchez-Vives et al., 

2000a). This potassium conductance can apparently be activated by sodium 

influx caused by either synaptic input in the absence of spiking, or by spiking in 
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the absence of synaptic input (Carandini & Ferster, 1997; Sanchez-Vives et al., 

2000a, 2000b; Vidyasagar, 1990). Thus, for a cortical cell, spiking is sufficient but 

not necessary to drive adaptation. A retinal ganglion cell might express a similar 

intrinsic mechanism for slow adaptation. However, ganglion cells also show 

adaptive effects to small stimulus patches, implicating a possible mechanism in 

presynaptic bipolar cells (Brown & Masland, 2001). Cortical cells in area MT also 

express adaptation that is primarily caused by a presynaptic mechanism (Kohn & 

Movshon, 2003, 2004).  

Previous studies of slow contrast adaptation in mammalian retina used 

extracellular recording (Brown & Masland, 2001; Chander & Chichilnisky, 2001; 

Smirnakis et al., 1997; Solomon et al., 2004). Here we studied slow adaptation in 

mammalian ganglion cells using intracellular recording. We show that slow 

adaptation results from a slowly recovering AHP, as shown in cortical cells and 

salamander ganglion cells (Baccus & Meister, 2002; Carandini & Ferster, 1997; 

Sanchez-Vives et al., 2000b). However, slow adaptation in ganglion cells does 

not arise primarily from an intrinsic property of the cell. Rather, ganglion cell 

adaptation arises from a network mechanism: reduced glutamate release from 

pre-synaptic (nonspiking) bipolar cells. This presynaptic mechanism 

complements intrinsic mechanisms for slow adaptation found at later stages of 

the visual pathway.  
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Results 

Demonstration of Slow Contrast Adaptation in Intracellular Recordings of 
Mammalian Ganglion Cells In Vitro 

 

We tested for slow adaptation in brisk-transient (Y-type) ganglion cells in an 

intact (retinal pigment epithelium-attached) in vitro preparation of the guinea pig 

retina (Demb, Haarsma, Freed, & Sterling, 1999; Demb, Zaghloul, & Sterling, 

2001). We targeted Y-type cells by recording from the largest cell bodies in the 

ganglion cell layer (see Experimental Procedures). We focused on Y-type cells 

because we could target them routinely and because they are probably 

homologous to magnocellular pathway cells (or a subset of these cells), which 

show strong adaptation in vivo (Kaplan & Shapley, 1982; Levitt, Schumer, 

Sherman, Spear, & Movshon, 2001; Solomon et al., 2004).  A cell was stimulated 

with a drifting grating that alternated between high contrast (100%, 10 s) and low 

contrast (5%–40%, 20 s; see Experimental Procedures). At the offset of high 

contrast, the spiking response in a cell, recorded extracellularly, was completely 

suppressed and recovered over a 7.0 s period (Figure 2.1A). A whole-cell, 

voltage recording of the same cell showed that the period of suppressed spiking 

corresponded to a period of membrane hyperpolarization that slowly recovered—

an afterhyperpolarization (AHP; Figure 2.1B), as reported in salamander cells 

(Baccus & Meister, 2002). Across cells, spiking was suppressed at the offset of 

high contrast and took 6.9 ± 0.9 s to recover (n = 10; see Experimental 
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Procedures). Each cell recorded intracellularly showed an AHP during the period 

of suppressed spiking (AHP amplitude, 28.8 ± 0.7 mV; n =4).  
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Figure 2.1. OFF Ganglion Cells Show Reduced Spiking following High 
Contrast Due to a Slow Afterhyperpolarization  
(A) An OFF cell was stimulated with a drifting sine wave grating with contrast 
alternating between high (100%, 10 s) and low (20%, 20 s). Following high 
contrast, spiking was suppressed and required 7.0 s to recover to the baseline 
level (dashed line). Trace at top shows one cycle of the loose-patch, extracellular 
recording; poststimulus time histogram (psth) at bottom shows the average firing 
rate across four repeats (bin size, 500 ms). Grating spatial frequency was 6.7 
cycles mm-1 and drifted at 6 Hz (stimulus trace does not show 6 Hz). (B) 
Intracellular recording of the same cell and stimulus shown in (A). Following high 
contrast, the membrane potential showed an afterhyperpolarization (AHP) of -
11.4 mV that required 5.5 s to recover to baseline.  
The period of suppressed spiking corresponded to the period of the AHP.  
(C) Enlarged area of (B) showing the AHP.  
(D) An OFF cell showed a maintained discharge (7.8 Hz) that was suppressed 
following a 4 s, high-contrast stimulus (drifting grating, 6.7 cycles mm-1, 6 Hz). 
Trace at top shows loose-patch record; psth at bottom shows the average firing 
rate across four repeats. The spike rate recovered over 6.5 s.  
(E) Intracellular recording of the cell in (D) shows an AHP following the stimulus 
that required 4.0 s to return to the resting potential. (F) Extracellular recording of 
an ON cell does not show a prolonged reduction in spike rate following high 
contrast (drifting grating, 6.7 cycles mm-1, 6 Hz). Following high contrast, spiking 
was suppressed for only ~100 ms, evident in the raw trace.  
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Many ganglion cells discharge continuously at mean luminance, and this 

discharge is suppressed following a period of high contrast. In one representative 

cell, maintained firing took 6.5 s to recover to the baseline rate (Figure 2.1D). An 

intracellular recording of the same cell showed that the period of suppressed 

spiking corresponded to the period of an AHP (Figure 2.1E). Under our 

conditions, suppressed spiking following high contrast was found in nearly all 

OFF-center Y-type cells but was weak or absent in most ON-center Y-type cells 

(Figure 2.1F; time to recovery, 0.5 ± 0.4 s; n = 6). However, we observed 

adaptation in several other types of ON-center or ON-OFF ganglion cells, 

suggesting that the ON pathway did express slow adaptation for certain cell 

types. For example, in three direction-selective ganglion cells (one ON-center 

type, two ON-OFF types) recorded intracellularly, the switch from a 4 s grating (6 

Hz; 6.7 cycles mm−1; 100% contrast) to mean luminance caused a large AHP 

(−9.5 ± 0.1 mV) that recovered over 6.2 ± 1.1 s (data not shown).  

For periods of high contrast of either 1 or 8 s, the AHP amplitude 

increased from −4.0 ± 0.6 mV to −7.8 ± 0.9 mV and the recovery time increased 

from 3.6 ± 0.8 s to 7.9 ± 1.6 s (n = 6 OFF Y-type cells); the AHP integral 

increased from −5.0 ± 0.6 mV s to −20.9 ± 2.1 mV s (Figure 2.2). Thus, longer 

periods of contrast evoked larger and longer-lasting AHPs. In the following 

studies, we focused on OFF-center Y-type cells to investigate the mechanism for 

slow adaptation, because we could target these cells routinely and they showed 

strong adaptation as reflected by the AHP. 
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Figure 2.2. Longer Periods of High Contrast Evoke Larger and Longer-
Lasting Afterhyperpolarizations 
(A) An OFF cell was stimulated with either a 1 s or 8 s grating (100% contrast, 
6.7 cycles mm−1; 6 Hz) followed by mean luminance. Compared to the 1 s 
grating, the 8 s grating evoked a larger AHP (−6.9 mV versus −10.8 mV) that 
took longer to recover (2.0 s versus 5.7 s), resulting in a larger AHP integral (−5.5 
mV s versus −25.2 mV s; see Experimental Procedures). Recovery was 
measured as the time required to return 90% back to the resting potential (see 
Experimental Procedures). 
(B) Longer periods of high contrast increased the amplitude of the AHP (n = 6 
cells). Error bars indicate SEM across cells. 
(C) Longer periods of high contrast increased the time needed to recover to the 
resting potential. 
(D) Longer periods of high contrast increased the AHP integral. 
 

 

Spiking Is Neither Sufficient nor Necessary to Generate the Visually Evoked 
Afterhyperpolarization 

 
We first tested whether the AHP results from an intrinsic mechanism (e.g., 

potassium channel) in the ganglion cell that is sensitive to sodium influx, as found 

in cortex; a cortical cell adapts following either a visual stimulus or direct current 
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injection (Sanchez-Vives et al., 2000a).  We stimulated the same ganglion cell 

with either the grating stimulus or a direct injection of current through the 

electrode (Figure 2.3A). Both the grating and the current step evoked a 

membrane depolarization and a train of spikes, and in fact the current step 

evoked a larger depolarization (8.3 ± 0.8 mV versus 7.0 ± 0.7 mV; a difference of 

1.3 ± 0.6 mV, p < 0.05) and a higher spike rate (27.9 ± 4.7 spikes s−1 versus 15.7 

± 1.8 spikes s−1; a difference of 12.2 ± 3.3 spikes s−1, p < 0.005). However, only 

the grating evoked a large and long-lasting AHP (Figure 2.3B). Across cells, the 

AHP amplitude ~300 ms after stimulus offset was −5.8 ± 0.6 mV following the 

grating versus −2.3 ± 0.2 mV following the current step (difference of 3.4 ± 0.5 

mV, p < 0.001; n = 9). Four seconds after stimulus offset, the AHP persisted 

following the grating (−1.9 ± 0.3 mV) but was nearly back to baseline following 

the current step (−0.30 ± 0.15 mV; difference of 1.6 ± 0.3 mV; p < 0.001; 

sampling window, 1.0 s). Furthermore, the AHP integral was about four times 

larger following the visual stimulus (−18.9 ± 2.3 mV s) relative to the current step 

(−4.4 ± 1.4 mV s; difference, 14.5 ± 0.9 mV s; p < 0.001). We also tried sine-

wave current injection at the stimulus frequency (6 Hz, +0.2 nA amplitude; Figure 

2.3C). In this case (n = 8 cells), current injection evoked a higher spike rate (10.3 

± 1.1 spikes s−1 versus 7.2 ± 1.2 spikes s−1), but the grating evoked a larger AHP 

amplitude (−5.1 ± 0.5 mV versus −1.0 ± 0.3 mV) and a larger AHP integral (−17.3 

± 2.0 mV s versus −2.8 ± 2.0 mV s). Thus, even though current injection evoked 

a larger spiking response, the grating evoked a larger AHP, indicating that 

spiking alone is not sufficient to generate the full visually evoked AHP. 
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Apparently the mechanism for slow contrast adaptation differs between retina 

and primary visual cortex (Sanchez-Vives et al., 2000b). 
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Figure 2.3. Spiking Is Neither Sufficient nor Necessary to Generate the 
Afterhyperpolarization 
(A) An OFF cell was stimulated with either a 4 s grating (top; 100% contrast, 6 
Hz, 6.7 cycles mm−1) or a 4 s step of positive current (bottom; +0.2 nA). Both 
stimuli generated membrane depolarization and spiking. At the offset of the 
grating, there was a relatively large AHP (−5.5 mV), whereas at the offset of the 
current pulse, there was a smaller AHP (−3.2 mV). 
(B) Average subthreshold membrane potential and spike rate for the grating 
stimulus and the current step (n = 9 cells; 100 Hz sampling). Membrane 
depolarization and spiking responses were larger following the current step, 
whereas the AHP was larger and longer lasting following the grating. Thus, 
spiking alone, as evoked by the current step, was not sufficient to generate the 
full visually evoked AHP. Stimulus responses were advanced 46 ms in time to 
align with the current responses. Spike rate was binned at 250 ms here and in 
(C). 
(C) Same format as (B), except the current stimulus was a 4 s period of 6 Hz 
sine-wave stimulation with a peak of +0.2 nA (current injection protocol shown 
above response traces). Current injection evoked a higher spike rate, whereas 
the grating evoked a larger and longer-lasting AHP (n = 8 cells). 
(D) An OFF cell was stimulated with a 4 s grating (100% contrast, 6 Hz, 6.7 
cycles mm−1) while applying QX-314 (5 mM) through the pipette to block spiking 
(top). On average (bottom, n = 10 cells), the AHP was similar to control 
conditions; thus, spiking was not necessary to generate the AHP. 
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 We next asked whether spiking was necessary to generate the AHP. We 

included QX-314 (5 mM) in the pipette solution to block voltage-gated sodium 

channels in the recorded cell (Connors & Prince, 1982).  Under these conditions, 

a grating stimulus evoked a membrane depolarization without spiking (n = 10; 

Figure 2.3D). Following stimulus offset, each cell showed an AHP that was, on 

average, −4.8 ± 0.4 mV in amplitude and required 6.2 ± 0.6 s to return to the 

resting potential (AHP integral, −14.4 ± 2.2 mV s). Thus, spiking was not 

necessary to generate the AHP. 

 

Spatial Sensitivity of the Afterhyperpolarization Suggests a Presynaptic, 
Bipolar Cell Mechanism 

 
We hypothesized that the retinal basis for the AHP might arise from a 

presynaptic mechanism, possibly in the bipolar cells that release glutamate and 

excite the ganglion cell. In the above experiments, we routinely used a high 

spatial frequency grating, with bar width of ~80–100 µm. This bar width is much 

narrower than the ~600 µm receptive field center of the ganglion cell, but similar 

to the ~100 µm receptive field center of bipolar cells (D. Dacey et al., 2000; 

Demb, Zaghloul, & Sterling, 2001). We directly examined the effect of spatial 

frequency on the AHP amplitude. A low spatial frequency (0.3 cycles mm−1) 

evoked a strong response at the 6 Hz drift rate of the grating (F1 amplitude; 

(Demb, Zaghloul, & Sterling, 2001; Hochstein & Shapley, 1976), as expected, but 

produced only a small AHP (Figure 2.4A). A high spatial frequency (6.7 cycles 

mm−1) evoked a steady depolarization with a small 6 Hz modulation riding on top, 

followed by a large AHP (Figure 2.4A). Both spatial frequencies evoked a similar 
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average spike rate over time (F0 component; Figure 2.4B), and so, as shown 

above, the magnitude of the AHP did not directly correspond to the preceding 

spike rate. 
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Figure 2.4. The Afterhyperpolarization Is Evoked Most Effectively by High 
Spatial Frequencies 
(A) In an OFF cell, a low spatial frequency grating (0.3 cycles mm−1) evoked a 
strong response at the 6 Hz drift rate followed by a small AHP. A high spatial 
frequency grating (6.7 cycles mm−1) evoked a tonic depolarization plus a small 6 
Hz modulation followed by a large AHP. Traces in the insets show 500 ms of 
response with a fitted 6 Hz sine wave (F1 response; y axis: −80 to −40 mV). In 
both insets, the cell fires 13 spikes (bursts of five, four, and four spikes to the 
low-frequency stimulus and 13 spikes dispersed over time to the high-frequency 
stimulus). Dashed line indicates the resting potential. 
(B) A psth for the two conditions in (A) (bin size, 500 ms); mean firing rate for the 
two conditions was similar. 
(C) The amplitude of the first Fourier harmonic (F1) of the membrane potential 
peaked for low spatial frequencies and declined at high frequencies, whereas the 
mean membrane potential (F0 component) peaked at high frequencies, reaching 
a peak near ~5–7 cycles mm−1 (n = 8 cells). Error bars indicate SEM across cells. 
(D) AHP amplitude increased with spatial frequency, reaching a peak near ~5 
cycles mm−1 (n = 8 cells). 
(E) Spike recordings to a drifting or contrast-reversing grating illustrate the 
relative size of the overall ganglion cell receptive field center and the nonlinear 
subunits; the subunits represent bipolar cell inputs to the ganglion cell (see 
Results). The F1 amplitude to a drifting grating is a measure of the overall 
receptive field center. This amplitude peaks at low frequencies and declines at 
higher frequencies. The F2 amplitude to a contrast-reversing grating reflects the 
nonlinear subunit response. The subunit amplitude peaks at high frequencies, 
similar to the pattern of sensitivity of the F0 membrane potential in (C) and the 
AHP amplitude in (D) (see also (Demb, Zaghloul, Haarsma et al., 2001)). 



 27 
 

For primate diffuse bipolar cells (which synapse onto magnocellular 

ganglion cells), the receptive field surround strength is 1 to 1.4 times the strength 

of the receptive field center (D. Dacey et al., 2000). Assuming a similar receptive 

field profile in guinea pig bipolar cells (presynaptic to the Y-type cell), the 

surround should reduce each bipolar cell's response to the low spatial frequency, 

relative to the optimal spatial frequency, to less than 30% of the maximal 

response (D. Dacey et al., 2000). Thus, the reduced ganglion cell AHP following 

the low-frequency grating would be explained by the reduced response of each 

presynaptic bipolar cell. This explanation implies that individual bipolar cells 

require strong stimulation in order to adapt their release rate and drive the 

ganglion cell AHP. 

We measured grating responses to a total of seven spatial frequencies. As 

expected, the F1 amplitude peaked at low frequencies and gradually declined at 

higher frequencies (Figure 2.4C) whereas the AHP amplitude peaked at high 

frequencies (Figure 2.4D). To put this spatial tuning into context, we made two 

measurements of the “nonlinear subunit” property of the Y-type cell receptive 

field, where the subunits apparently represent presynaptic bipolar cells (Demb, 

Zaghloul, Haarsma et al., 2001; Demb, Zaghloul, & Sterling, 2001; Enroth-Cugell 

& Freeman, 1987; Enroth-Cugell & Robson, 1966; Hochstein & Shapley, 1976). 

The first subunit measure is the mean level of depolarization (F0) during the 

grating, and this showed the same spatial tuning as the AHP (Figure 2.4C). The 

second measure was the F2 (second harmonic) amplitude to a contrast-reversing 

grating (spike recordings; Figure 2.4E), and this also showed similar tuning to the 
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AHP (Figure 2.4E) (Demb, Zaghloul, Haarsma et al., 2001). Thus, the spatial 

tuning of the AHP matches the tuning of the “nonlinear subunits,” suggesting that 

strong stimulation of bipolar cells is required to evoke the AHP. 

 

The Afterhyperpolarization Corresponds to a Decreased Inward Current, 
Consistent with a Bipolar Cell Mechanism 

 
We considered two hypotheses for how bipolar cells could drive a slow 

AHP in a ganglion cell. First, following the offset of high contrast, bipolar cell 

glutamate release might be suppressed and recover slowly. Second, bipolar cells 

might drive inhibitory amacrine cells to release GABA and/or glycine, and this 

inhibition might require several seconds to subside. To test between these 

alternatives, we measured membrane currents under voltage clamp during and 

after high-contrast stimulation. The large cells under study have a low input 

resistance (37.9 ± 2.1 MΩ, n = 14) (E. D. Cohen, 2001; O'Brien, Isayama, 

Richardson, & Berson, 2002), and so we initially used holding potentials (Vh) 

close to the resting potential (Vrest) to minimize errors in the current 

measurements (n = 8; see Experimental Procedures). 

During the high-contrast grating, we measured an inward current with an 

estimated reversal potential (−23.9 ± 6.7 mV; n = 8) that suggests a mix of 

excitatory and inhibitory input (Figure 2.5B). Following grating offset, there was 

an outward “aftercurrent” that recovered slowly back to baseline. This 

aftercurrent amplitude was larger at Vh of ~−80 mV relative to the amplitude at 

Vrest (~−65 mV); this pattern (negative slope on an I-V plot) suggests that the 

aftercurrent is driven by a reduced excitatory conductance, rather than an 
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increased inhibitory conductance (Figure 2.5B). Near Vrest, we measured similar 

aftercurrents using pipette solutions that were either K+-based (n = 3) with a 

weak Ca2+ buffer (0.1 mM EGTA; 92.9 ± 11.3 pA) or Cs+-based (n = 5) with a 

strong Ca2+ buffer (10 mM BAPTA; 129.0 ± 14.0 pA; see Experimental 

Procedures). Thus, the aftercurrent did not depend on Cs+-sensitive K+ channels 

or a Ca2+-dependent mechanism, which is further evidence that the mechanism 

was not intrinsic to the ganglion cell. 
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Figure 2.5. The Afterhyperpolarization Corresponds to a Reduced 
Excitatory Postsynaptic Current 
(A) An OFF cell was recorded under voltage clamp and stimulated with a 4 s 
grating (100% contrast; 6.7 cycles mm−1; 6 Hz; K+-based solution) at a holding 
potential (Vh) = −45 (gray) or −79 (black). Both the inward current evoked by 
grating presentation and the outward aftercurrent at grating offset declined at the 
positive holding potential. Traces are illustrated at 100 Hz sampling. Traces here 
and below are leak subtracted. 
(B) Current-voltage (I-V) plot of transient response (black circles) and sustained 
response (gray circles) to the grating and the aftercurrent (white circles) from the 
cell in (A). Grating responses are consistent with a mixed chloride + cation 
current with estimated reversal potential (transient: −23.8 ± 10.8 mV; sustained: 
−23.9 ± 6.7 mV; n = 8) between Ecation ( 0 mV) and ECl (−73 mV). The 
aftercurrent response showed a slight decline at positive holding potentials, 
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consistent with a reduced cation current but inconsistent with a chloride current. 
Fitted lines here and below show linear regressions. 
(C) Outward currents following the grating (aftercurrent) at Vh near Vrest (± 5 mV) 
or near −80 mV (±5 mV). Relative to Vh = Vrest, Vh = −80 mV increased the 
aftercurrent. Error bars indicate SEM (n = 8 cells). 
(D) The same cell in (A) was stimulated with a spot that reversed contrast 
(square-wave reversal; 0.6 mm outer diameter, contrast = 100%) at Vh = −45 or 
−79 mV. 
(E) I-V plot of traces in (D) Across cells, outward current during the positive 
contrast shows an estimated reversal of −86.4 ± 1.4 mV (n = 8 cells), negative to 
ECl (−73 mV). 
(F) Outward currents during the “ON” response at Vh near Vrest (±5 mV) or near 
−80 mV (±5 mV). The response decreased at Vh of −80 mV relative to the 
response at Vh of Vrest. Error bars indicate SEM (n = 8 cells). 
(G) Same format as (A) for a second cell probed at positive holding potentials 
(Cs+-based pipette solution with TEA). The aftercurrent became inward at Vh = 
+47 mV. Inset shows filtered traces (Gaussian filter, SD = 100 ms); axes 
represent from 4 to 16 s and from −200 to +200 pA. The time course of the 
aftercurrent differed at the two holding potentials, probably because of an NMDA 
receptor component at +47 mV. 
(H) Same format as (B), showing a reversal of the aftercurrent near 0 mV. 
(I) Same format as (C), showing the average aftercurrent amplitude with Vh = 
Vrest (−65.5 ± 5.6 mV) or ~+20 mV (+19.8 ± 8.3 mV, mean ± SD) across six cells. 
(J) An ON cell was recorded under the same conditions as in (A). The 
aftercurrent was briefer than that in OFF cells but still showed a reduction at the 
depolarized holding potential. 
(K) I-V plot of response to the grating from the cell in (G); same format as in (B). 
 

We performed additional experiments with TEA in the pipette to improve 

the ability to clamp the dendrites at a positive holding potential (see Experimental 

Procedures). In the most stable recordings (n = 6), we measured a reversal for 

the aftercurrent that was +10.3 ± 10.2 mV (Figures 1.5G–5I). This reversal is 

slightly positive to 0 mV, which is likely explained by an incomplete space clamp 

of the dendrites (i.e., in which case, an ~+10 mV potential at the soma might 

correspond to an ~0 mV potential at the dendrite). The aftercurrent showed a 

more sustained time course at the positive holding potential, relative to the time 
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course measured near Vrest (Figure 2.5G, inset), probably caused by an 

increased contribution from NMDA-receptor conductances at positive potentials 

(E. D. Cohen, 2000). Because of a probable NMDA-receptor contribution to the 

aftercurrent, the linear fits used to estimate reversal potential are approximate. 

As a control, we measured an outward current that we did expect to be 

driven largely by direct inhibition (Demb, Zaghloul, Haarsma et al., 2001; 

Zaghloul et al., 2003): the OFF cell's “ON” response to a bright spot stimulus 

(Figures 1.5D–5F). Indeed, this outward current showed an estimated reversal 

negative to Vrest, suggesting that it was driven largely by a direct inhibitory 

conductance and demonstrating that our protocol was adequate to see existing 

direct inhibitory influences. 

Following a grating stimulus, ON-center Y-type cells also showed an 

aftercurrent, although it was relatively brief (n = 3; Figure 2.5J). This brief period 

of the aftercurrent explains why spikes were suppressed only transiently in 

extracellular recordings (see above; Figure 2.1F). An ON cell's aftercurrent 

corresponded to a reduced inward current, with estimated reversal near 0 mV 

(Figures 1.5J and 1.5K). Thus, ON-center Y-type cells showed an outward 

current similar to OFF-center cells, except that the recovery was much faster. 

 

The Afterhyperpolarization Does Not Require Conductances Driven by 
GABA or Glycine Receptors, Calcium-Activated Potassium Channels, or 

Metabotropic Glutamate Receptors 
 

The AHP does not appear to be driven by GABA or glycine release onto 

the ganglion cell (Figure 2.5); however, GABA or glycine release feeding back 
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onto the bipolar terminal could play a role in suppressing glutamate release. This 

seemed unlikely based on a previous experiment with extracellular recording, in 

which either strychnine (a glycine receptor antagonist) or picrotoxin (a GABAA/C 

receptor antagonist), when applied individually, did not block slow adaptation in 

spiking (Brown & Masland, 2001). However, this experiment left open the 

possibility that both GABA and glycine are involved in adaptation, in which case 

blocking only one class of receptors at a time would not block the total amacrine 

cell contribution. To follow up this result, we measured the aftercurrent, under 

voltage clamp, while simultaneously blocking glycine and GABAA/B/C receptors 

(strychnine, 2 µM; bicuculline, 100 µM; CGP35348, 100 µM; TPMPA, 100 µM, 

respectively). 

The receptor antagonists caused, in most cases, spontaneous “bursting” 

and strongly increased the response to the grating (Figure 2.6A). However, the 

aftercurrent persisted and in fact the amplitude increased (control: 74.1 ± 13.1 

pA; drugs: 219.5 ± 20.9 pA). Furthermore, the antagonists altered the time 

course of both the grating response and the aftercurrent. The altered time 

courses probably arise from the extreme change in bipolar release under these 

conditions, caused by removing all inhibition of the bipolar terminal. Therefore, 

we do not draw conclusions from these conditions about the normal time course 

of glutamate release. However, we can conclude that the aftercurrent (and the 

associated AHP) does not require inhibitory synaptic transmission. This provides 

further evidence that the AHP arises from reduced bipolar cell glutamate release. 
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Figure 2.6. The Afterhyperpolarization Does Not Require Conductances 
Driven by GABA or Glycine Receptors, K(Ca) Channels, or Metabotropic 
Glutamate Receptors (mGluRs). 

(A) An OFF cell was stimulated with a 4 s grating (100% contrast; 6.7 cycles 
mm−1; 6 Hz) under voltage clamp (Vhold = −75 mV). The grating response was 
recorded under control conditions (A1) and after adding antagonists to glycine 
and GABAA/B/C receptors (strychnine, 2 µM; bicuculline, 100 µM; CGP35348, 100 
µM; TPMPA, 100 µM) (A2). The receptor antagonists caused a large increase in 
responsiveness (note the different scales in [A1] and [A2]). However, the 
aftercurrent, following the stimulus, persisted in the presence of the receptor 
antagonists ([A3], average traces are leak subtracted). The arrows in (A2) indicate 
bursts of inward current present during drug application, which probably 
represents bursts of glutamate caused by blocking all major inhibitory synapses 
throughout the retina. The initial inward current in the average trace in the 
presence of the drugs (−1.9 ± 0.53 nA) has been clipped in the figure (A3). 
Without leak subtraction, the leak current was −50 ± 16 pA in the control 
condition and −372 ± 41 pA in the drug condition.  (B) Same format as (A), 
except that the cell was recorded in current clamp and we applied antagonists to 
two types of calcium-activated potassium channels: apamin (1 µM) to block 
SK(Ca) channels, and charybdotoxin (20 nM) to block BK(Ca) channels. Relative to 
control (B1), the channel blockers caused bursting of the membrane potential and 
increased the maintained discharge (B2), but did not block the AHP (B3). 
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(C) Same format as (B), except that we applied antagonists to all major mGluRs: 
MCPG (1 mM) to block group I and group II mGluRs, and CPPG (1 mM) to block 
group III mGluRs. The drugs did not block the AHP following the grating stimulus 
(C2 and C3). However, during a contrast reversal of a 0.6 mm diameter spot (2 
Hz, 10%–20% contrast), the drugs blocked the hyperpolarizing response to light 
onset in OFF cells ([C3], inset; averaged across five cells; line above indicates 
time course of the contrast reversal). This was expected, because the 
hyperpolarizing response to light onset depends on an inhibitory synapse from an 
ON amacrine cell, and the ON pathway is blocked by CPPG (Awatramani & 
Slaughter, 2000; Zaghloul et al., 2003). 
 

We checked two putative mechanisms for adaptation in bipolar cell 

release. Bipolar cells express Ca2+-dependent K+ channels [K(Ca)] (Sakaba, 

Ishikane, & Tachibana, 1997), which could contribute to slow adaptation (Llinas & 

Lopez-Barneo, 1988). We blocked K(Ca) channels throughout the retina (bath 

applied charybdotoxin, 20 nM; apamin, 1 µM), and this condition caused bursting 

in the ganglion cell membrane potential and an increased maintained discharge 

(n = 5; Figure 2.6B). However, the AHP following the grating persisted (control 

amplitude: −4.7 ± 1.0 mV; drugs: −6.0 ± 0.6 mV). This result also rules out a role 

for K(Ca) channels in the ganglion cell, consistent with results above showing that 

the aftercurrent persists under voltage clamp in the presence of high BAPTA 

(Figure 2.5). 

Another possible mechanism for adaptation in bipolar cells is metabotropic 

glutamate receptors (mGluRs) on the synaptic terminal, which could create a 

feedback signal and reduce release (Awatramani & Slaughter, 2001). To test this 

possibility, we blocked group I, II, and III mGluRs simultaneously (MCPG, 1 mM; 

CPPG, 1 mM) (n = 5; Figure 2.6C). This condition blocked the hyperpolarization 

at light onset of a spot response, as expected (Zaghloul et al., 2003) (see Figure 
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2.6C3 inset). However, the AHP following the grating persisted (control 

amplitude: −6.1 ± 0.9 mV; drugs: −6.8 ± 0.8 mV). This result also rules out a role 

for mGluRs as a postsynaptic mechanism to generate the AHP in ganglion cells. 

 

Evidence that Basal Glutamate Release from Bipolar Cells Affects the 
Afterhyperpolarization 

 
During the course of the experiments, we varied the mean luminance (see 

Experimental Procedures). At lower mean luminance, we observed in OFF Y-

type ganglion cells two effects: a depolarized resting potential (low, −63.4 ± 1.3 

mV; high, −68.0 ± 1.1 mV; p < 0.05; n = 6) and increased voltage noise (low, 1.9 

± 0.4 mV; high, 0.7 ± 0.1 mV; p < 0.05) (Figure 2.7). This pattern implies that 

glutamate release from OFF bipolar cells increased at the lower mean, 

presumably driven by increased glutamate release from cones (Demb, Sterling, 

& Freed, 2004). We hypothesized that the AHP in the ganglion cell would be 

related to the level of basal glutamate release from bipolar cells: higher basal 

release (at low mean luminance), when suppressed, would produce a relatively 

larger AHP in the ganglion cell. 
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Figure 2.7. At Low Mean Luminance, an OFF Cell Shows a Depolarized 
Membrane Potential, Increased Membrane Noise, and an Enhanced 
Afterhyperpolarization. 
(A) An OFF cell was stimulated with a 4 s grating stimulus (100% contrast; 6.7 
cycles mm−1; 6 Hz). The response was recorded at two different levels of mean 
luminance differing by a factor of ten (see Experimental Procedures). The low 
mean luminance caused a depolarized Vrest and increased membrane noise, 
suggesting increased presynaptic glutamate release. Low mean luminance also 
increased the amplitude of the AHP from −7.1 to −12.8 mV. 
(B) Across cells, reducing mean luminance by a factor of ten had multiple effects: 
depolarization of Vrest, increased synaptic noise (SD of Vm measured over 2 s, 
before stimulus onset), and increased AHP amplitude. However, the response to 
the grating was similar under the two conditions. Error bars indicate SEM across 
cells (n = 6). 
 

We tested the effect of mean luminance on AHP size, presenting the 

same cell with the 4 s drifting grating (100% contrast; 6.7 cycles mm−1; 6 Hz) at 

two levels of mean luminance, differing by a factor of ten (Figure 2.7). At the two 

levels of mean luminance, the response to the grating was similar (low, 7.4 ± 0.6 

mV; high, 9.9 ± 1.3 mV; p > 0.10; n = 6). However, the AHP was about twice as 

large at low mean luminance (low, −9.0 ± 1.1 mV; high, −4.3 ± 0.9 mV; p < 0.05). 
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Thus, increasing the apparent basal glutamate release onto the ganglion cell, by 

reducing the mean luminance, increased the AHP. 

 

Discussion 

We have demonstrated a slow form of contrast adaptation in the 

subthreshold membrane potential of mammalian ganglion cells in vitro. Following 

a period of high contrast, spike rate was suppressed and required several 

seconds to recover; we observed suppressed spiking with both extracellular and 

whole-cell recordings (Figure 2.1). The recovery of the spike rate corresponded 

to a period of membrane hyperpolarization (Figure 2.1), and this 

afterhyperpolarization (AHP) depended on the period of prior visual stimulation 

(Figure 2.2). Spiking was neither necessary nor sufficient to generate the full 

visually evoked AHP (1. 3 and Figure 2.4). However, spiking was sufficient to 

generate at least a minor component of the visually evoked AHP (Figure 2.3). 

The AHP was strongest following high spatial frequency stimuli, tuned to 

presynaptic bipolar cells (Figure 2.4). Voltage-clamp analysis showed that the 

AHP corresponded to a reduced inward current, consistent with suppressed 

bipolar cell glutamate release (Figure 2.5). Pharmacology experiments ruled out 

a role for amacrine cell GABAergic or glycinergic synapses or for calcium-

activated K+ channels or metabotropic glutamate receptors in the bipolar cell (or 

elsewhere; Figure 2.6). Lowering mean luminance apparently increased basal 

glutamate release from OFF bipolar cells (Figure 2.7). At the lower mean 



 39 
 

luminance, the AHP increased, suggesting a link between basal release and the 

size of the AHP (Figure 2.7). 

 

Retinal Model for Slow Adaptation following a Period of High Contrast 

Our results support a model where, at the offset of high contrast, bipolar 

cell glutamate release drops below the basal rate, and this drop in release 

hyperpolarizes the ganglion cell, causing the observed AHP and suppressed 

spiking. Glutamate release apparently requires several seconds to return to the 

basal level, resulting in gradual membrane depolarization of the ganglion cell 

back to its resting potential (Figure 2.8). In this model, bipolar cells require strong 

stimulation in order to suppress their release. So, for example, when a low spatial 

frequency grating is presented and stimulates a bipolar cell weakly (due to the 

influence of the receptive field surround; (D. Dacey et al., 2000), there would be 

no suppression at stimulus offset, and the ganglion cell AHP would be weak or 

absent (Figure 2.4). 
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Figure 2.8. Working Model for the Mechanism of Slow Contrast Adaptation 
(A) Glutamate release increases during periods of high contrast to a high level 
initially and then to a medium level for the duration of the stimulus. Following the 
offset of high contrast, glutamate release declines sharply. The release rate 
takes several seconds to recover to the initial baseline level. 
(B) Time course of adaptation during and following high-contrast stimulation. 
Trace shows the average response, under voltage clamp, of eight cells, where 
Vhold was near ECl (trace is leak subtracted; 100 Hz sampling). The inward current 
is suppressed soon after grating onset causing a decrease in the inward current; 
gray line shows a double exponential fit with time constants of 19 and 927 ms. 
This decline in the inward current could reflect multiple mechanisms, including a 
drop in glutamate release during high contrast (see [A], stages 2 and 3) as well 
as possible postsynaptic receptor desensitization caused by the high glutamate 
release (see Discussion). At stimulus offset, there is an outward aftercurrent that 
slowly recovers back to baseline (dashed line); the gray line shows a single 
exponential fit with time constant of 6.2 s. This aftercurrent presumably reflects 
suppressed glutamate release that requires several seconds to recover (see [A], 
stages 4 and 1). 
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Our synaptic model for slow adaptation in ganglion cells is consistent with 

the conclusion reached in a previous study, based on extracellular recording 

(Brown & Masland, 2001). However, we also found a minor contribution to slow 

adaptation from an intrinsic property of the ganglion cell: current injection evoked 

a depolarization and spiking, followed by an AHP with an integral that was, at 

most, about 25% of the visually evoked AHP integral (Figure 2.3). However, 

relative to the visual stimulus, the current injection typically evoked greater 

depolarization and more spikes. Thus, taking into account the relatively smaller 

response to the visual stimulus, the intrinsic mechanism for adaptation in the 

ganglion cell probably contributes less than 25% of the visually evoked AHP. 

 

Retinal Model for Slow Adaptation during a Period of High Contrast 

Here, we have focused on the slowly recovering AHP following a grating 

stimulus, but we could also measure adaptation during the presentation of the 

grating itself. This side of adaptation was reflected by an initially high spike rate 

that declined during prolonged contrast stimulation (Figure 2.1 and Figure 2.3). 

This adaptation during the stimulus seemed to depend on two components. First, 

there was an excitatory synaptic component driving the response, which is 

apparent in voltage-clamp recordings near ECl (Figure 2.5 and Figure 2.8): inward 

currents were initially large and then declined during continued grating 

presentation. This decline could occur due to a decreasing glutamate release 

rate during the grating or postsynaptic mechanisms of receptor desensitization 
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caused by the high release (von Gersdorff & Borst, 2002). Possible presynaptic 

mechanisms for a decline in release during high contrast include vesicle 

depletion or auto-feedback at the bipolar terminal (DeVries, 2001; Palmer, Hull, 

Vigh, & von Gersdorff, 2003; Palmer, Taschenberger, Hull, Tremere, & von 

Gersdorff, 2003; Singer & Diamond, 2006). A second component driving 

adaptation during the grating was a spike-frequency adaptation. This adaptation 

was apparent during direct current injection, which caused a high rate of spiking 

that then declined (Figure 2.3). Spike frequency adaptation seems to be a 

general property of many types of ganglion cells and at least partially reflects the 

effect of sodium channel inactivation (Kim & Rieke, 2001, 2003; O'Brien et al., 

2002). Furthermore, this spike frequency adaptation mechanism may explain 

why some cortical cells show a decline in spike rate during a stimulus with no 

subsequent recovery period following the stimulus (Sanchez-Vives et al., 2000b). 

We examined, for excitatory synaptic currents, the relationship between 

the time course of adaptation during a high-contrast stimulus and the subsequent 

recovery period following the stimulus (Figure 2.8B). The onset of adaptation, 

during the grating, was well fit by two exponentials, with time constants of 19 ms 

(87%) and 927 ms (13%). The aftercurrent, following the grating, was well fit by a 

single exponential with a time constant of 6.2 s. Thus, the decline of the inward 

current during the stimulus is apparently ~10–100 times faster than the recovery 

time. There are two explanations for this asymmetry in time course between 

these two sides of adaptation. First, as described above, the period during the 

grating alone could involve mechanisms of synaptic depression that relate 
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specifically to periods of high transmitter release (e.g., postsynaptic receptor 

desensitization; (von Gersdorff & Borst, 2002), and these mechanisms could 

shorten the time constant for this period of adaptation relative to the time 

constant for the aftercurrent. Second, even without the involvement of 

postsynaptic mechanisms, such as receptor desensitization, there appears to be 

an asymmetry between the onset and recovery from depression of presynaptic 

release. For example, suppressed release from the rod bipolar cell shows fast 

onset (<1 s) with a slow recovery time (~10 s; (Singer & Diamond, 2006). A 

similar asymmetry exists at the calyx of Held, where depression can be induced 

in <1 s but requires several seconds to recover (von Gersdorff, 

Schneggenburger, Weis, & Neher, 1997; Wang & Kaczmarek, 1998). 

Furthermore, a similar rapid onset with slow recovery exists, on a different time 

scale, for sodium channel inactivation (Colbert, Magee, Hoffman, & Johnston, 

1997). 

 

Comparison between Guinea Pig and Primate Retina 

A recent study based on extracellular recordings in vivo suggested that 

the suppressed spiking following high contrast arises from a postsynaptic 

mechanism in the ganglion cell (Solomon et al., 2004). That conclusion was 

based on an experiment in which a stationary, contrast-reversing grating was 

positioned so as to evoke no response in the ganglion cell (because the border 

between grating bars was centered over the cell's receptive field, in a “null” 

phase). Following this stimulus, the ganglion cell responses were not 
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suppressed, which suggests that the ganglion cell must necessarily be stimulated 

in order to evoke an adaptive effect. This result would be consistent with an 

intrinsic mechanism in the ganglion cell for adaptation, rather than a network 

mechanism involving bipolar cells. There are several explanations for the 

discrepancy between these findings in primate and ours. Two explanations relate 

to the different recording conditions (in vivo versus in vitro) and the different 

species (primate versus guinea pig). For example, the intrinsic mechanism for 

adaptation in the in vitro guinea pig cells was a minor component of adaptation 

under our conditions (Figure 2.3), but this component might be more prominent in 

the in vivo primate cells. Even within primate experiments, there are differences 

in slow adaptation between in vitro and in vivo conditions (Chander & 

Chichilnisky, 2001; Solomon et al., 2004). Another example of a difference 

between the guinea pig and primate studies relates to adaptation in ON and OFF 

cells. The primate study found adaptation in both ON and OFF magnocellular 

cells, whereas we found strong adaptation in OFF cells but only weak effects in 

ON cells; presently we cannot explain this discrepancy (Solomon et al., 2004). 

We offer one further explanation for the lack of adaptation following the 

“null” stimulus in the primate study (Solomon et al., 2004). Magnocellular 

ganglion cells in the previous study were recorded at 5°–25° eccentricity, which 

should have dendritic tree diameters of ~40–140 µm (Croner & Kaplan, 1995; 

Perry, Oehler, & Cowey, 1984). These ganglion cells probably collect from up to 

~30 bipolar cells (Calkins, 1999; Jacoby, Wiechmann, Amara, Leighton, & 

Marshak, 2000), which would correspond to ~6 cells across the width of the 
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dendritic tree. We also assume that each bipolar cell receptive field width is ~90–

100 µm (D. Dacey et al., 2000). Furthermore, the central-most bipolar cells 

contribute the largest number of synapses onto the ganglion cell (Kier, 

Buchsbaum, & Sterling, 1995). Thus, based on this pattern of convergence, it is 

likely that the “null” stimulus for the ganglion cell was also largely ineffective at 

strongly driving the central-most bipolar cells. Given this weak stimulation, these 

central-most bipolar cells would not show an adaptive effect after the stimulus 

was removed, and this might explain the lack of adaptation in the ganglion cell. 

However, intracellular studies of magnocellular ganglion cells are clearly required 

to fully resolve this issue. 

 

Conclusion 

Nonspiking cells exist in many sensory systems, and these cells may also 

express mechanisms of slow adaptation. At present, the most likely mechanism 

in bipolar cells is an activity-dependent suppression of glutamate release. This 

mechanism apparently does not involve inhibitory synaptic feedback, K(Ca) 

channels in the bipolar cell, or mGluRs at the bipolar terminal (Figure 2.6; 

(Awatramani & Slaughter, 2001; Sakaba et al., 1997). Furthermore, voltage 

recordings from salamander retina suggest that the AHP in ganglion cells exists 

in the absence of an AHP in presynaptic bipolar cells (Baccus & Meister, 2002; 

Rieke, 2001). Thus, the most likely mechanism for the ganglion cell AHP is a 

depressed bipolar cell glutamate release that is not reflected by a 

hyperpolarization of the bipolar cell membrane potential. Further studies will be 
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required to elucidate the mechanism for depressed bipolar cell glutamate 

release, as it relates to contrast adaptation. This would apparently require a 

novel preparation in mammalian retina: the ability to record from pairs of cone 

bipolar cells and postsynaptic neurons (amacrine or ganglion cell) where the 

bipolar voltage can be controlled while its release is read out directly by the 

postsynaptic neuron. Presently, such paired recordings, which require routine 

identification of synaptically connected cells, have only been accomplished in the 

rod pathway (Singer & Diamond, 2006; Singer, Lassova, Vardi, & Diamond, 

2004). 

 

Experimental Procedures 

Recordings 

 In each experimental session, a guinea pig was anesthetized with 

ketamine (100 mg kg−1) and xylazine (10 mg kg−1) and decapitated, and both 

eyes were removed. All procedures conformed to NIH and University of Michigan 

guidelines. The back of the eye (retina, pigment epithelium, choroids, and sclera) 

was mounted flat in a chamber on a microscope stage. The retina was 

superfused ( 6 ml min−1) with oxygenated (95% O2 and 5% CO2) Ames medium 

(Sigma, St. Louis, MO) at 33°C–35°C. The retina and electrode were visualized 

using a cooled CCD camera (Retiga 1300C, Qcapture software; Qimaging 

corporation, Burnaby, British Columbia). The largest cell bodies in the ganglion 

cell layer (20–25 µm diameter) were targeted for recording. A glass electrode (tip 

resistance, 2–6 MΩ) was filled with Ames' solution for extracellular recording, or 
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intracellular recording solution. Intracellular solutions included K+-based solution 

(solution 1; in mM: K-methylsulfate, 140; NaCl, 8; HEPES, 10; EGTA, 0.1; ATP-

Mg2+, 2; GTP-Na+, 0.3; titrated to pH = 7.3); K+-based solution with QX-314 

(solution 2), where NaCl was reduced to 3 mM and QX-314-Br was added (5 

mM); or Cs+-based solution (solution 3) where Cs-methane sulfonate (120 mM) 

replaced K-methylsulfate and BAPTA (10 mM) replaced EGTA; Cs+-based 

solution with TEA (solution 4), where TEA-Cl (5 mM) and Lucifer Yellow (0.1%) 

were added and QX-314-Br was reduced to 2 mM. The chloride reversal 

potential (ECl) indicates the reversal of the synaptic response to GABA or glycine 

and includes a contribution from bromide; the calculated reversal was ~−73 mV 

for solutions 1 through 3 and ~−67 mV for solution 4. All chemicals were 

purchased from Sigma-Aldrich (St. Louis, MO) except for BAPTA (Invitrogen; 

Eugene, OR), Strychnine (Fisher Scientific; Pittsburgh, PA), and (RS)-MCPG and 

CPPG (Tocris, Bristol, UK). 

Membrane potential was amplified, continuously sampled at 10 kHz, and 

stored on computer using a MultiClamp 700A amplifier and pClamp 9 software 

(Axon Instruments, Foster City, CA; Zaghloul et al., 2005). Junction potential was 

corrected in all cases. We wrote programs in Matlab (The Mathworks, Natick, 

MA) to analyze responses in the spike rate, subthreshold membrane potential, or 

membrane currents. For current-clamp recordings, we balanced the bridge every 

few minutes in cases where we injected current. For voltage-clamp recordings, 

we corrected for an error in the holding potential introduced by the series 

resistance. The corrected holding potential (Vh_corr) was determined by the 
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formula Vh_corr = Vh − (Ileak × Rs × (1 − Rs_correct)), where Vh is the apparent holding 

potential before the stimulus (in mV), Ileak is the leak current (in nA), Rs is the 

series resistance (18.2 ± 0.3 MΩ; n = 14) and Rs_correct is the series resistance 

compensation (typically 0.4–0.5). For positive holding potentials (Figure 2.5B), 

we allowed an outward current, unblocked by Cs+ or 5 mM TEA, to inactivate 

(~30–60 s) before recording the visual response. Results are from 80 cells: 16 

ON cells and 64 OFF cells. The resting potential (Vrest) of OFF cells was similar 

between experimental conditions (K+-based solution, −66.0 ± 1.5 mV, n = 20; K+-

based solution with QX-314 solution, −65.6 ± 1.5 mV, n = 10; Cs+-based solution, 

−64.8 ± 0.7 mV, n = 5; Cs+-based solution with TEA, −64.2 ± 2.2 mV, n = 6). 

 

Visual Stimuli 

The stimulus was displayed on a miniature monochrome computer 

monitor (Lucivid MR1-103; Microbrightfield, Colchester, VT) projected through 

the top port of the microscope through a 4× objective and focused on the 

photoreceptors (mean luminance, ~103–104 isomerizations cone−1 s−1; resolution, 

640 × 480 pixels; 60 Hz vertical refresh). The relationship between gun voltage 

and monitor intensity was linearized in software with a lookup table. Stimuli were 

programmed in Matlab as described previously (Brainard, 1997; Demb et al., 

1999; Pelli, 1997). Cell type was determined using methods described previously 

(Zaghloul, Boahen, & Demb, 2005), and cell health was ascertained by repeated 

measurements of the responses to spots, annuli, and gratings. 
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The grating was either windowed in a circular patch (0.75 mm diameter; in 

most experiments) or presented over a 3 × 3 mm field (Figure 2.4). The gratings 

drifted at 6 Hz and in most cases had a spatial frequency of 5–7 cycles mm−1 and 

contrast of 100%. All stimuli were centered on the cell body. In some cases, a 

neutral density filter was inserted in the light path to change the mean luminance 

by a factor of ten. 

 

Analysis 

Except where noted, we measured AHP or aftercurrent amplitude by 

averaging over 100 ms centered at times noted in the text. Recovery time of the 

AHP was determined by fitting a polynomial function to the AHP and determining 

the time required for the fit to return 90% back to the baseline response level. We 

used standard fitting routines in Matlab. To determine the AHP integral, we 

normalized the trace by subtracting Vrest and measured the integral of the trace, 

over an 8 s period, starting at grating offset. Spike poststimulus time histograms 

are binned at 500 ms, except where noted. Average membrane potential traces 

are shown with the resting potential subtracted. Data are reported as mean ± 

SEM. 
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Chapter 3 

Disinhibition Combines with Excitation to Extend the Operating Range of 
the OFF Visual Pathway in Daylight 

 
Summary 

Cone signals divide into parallel ON and OFF bipolar cell pathways, which 

respond to objects brighter or darker than the background and release glutamate 

onto the corresponding type of ganglion cell. It is assumed that ganglion cell 

excitatory responses are driven by these bipolar cell synapses. Here, we report 

an additional mechanism: OFF ganglion cells were driven in part by the removal 

of synaptic inhibition (disinhibition). The disinhibition played a relatively large role 

in driving responses at low contrasts. The disinhibition persisted in the presence 

of CNQX and D-AP-5. Furthermore, the CNQX/D-AP-5-resistant response was 

blocked by L-AP-4, meclofenamic acid, quinine, or strychnine but not by 

bicuculline. Thus, the disinhibition circuit was driven by the ON pathway and 

required gap junctions and glycine receptors but not ionotropic glutamate or 

GABAA receptors. These properties implicate the AII amacrine cell, better known 

for its role in rod vision, as a critical circuit element through the following pathway: 

cone  ON cone bipolar cell  AII cell  OFF ganglion cell. Rods could also 

drive this circuit through their gap junctions with cones. Thus, to light decrement, 

AII cells, driven by electrical synapses with ON cone bipolar cells, would 

hyperpolarize and reduce glycine release to excite OFF ganglion cells. To light 
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increment, the AII circuit would directly inhibit OFF ganglion cells. These results 

show a new role for disinhibition in the retina and suggest a new role for the AII 

amacrine cell in daylight vision.  

 

Introduction 

The retina encodes increments and decrements in light intensity using 

parallel ON and OFF pathways (Schiller, 1992; Werblin & Dowling, 1969). ON 

and OFF ganglion cells dedicate their output range for encoding only half the 

input range, and thus the split into two pathways apparently doubles the 

operating range of the visual system (Sterling, 2004). Under cone-driven 

conditions, the excitatory circuitry for these pathways is well understood. Cones 

release glutamate onto ON and OFF bipolar cells, which express distinct 

glutamate receptors at their dendrites [metabotropic glutamate receptor subtype 

6 (mGluR6) vs AMPA/kainate] and consequently show opposite responses to 

both cone glutamate release and light (DeVries, 2000; Nakajima et al., 1993; 

Nomura et al., 1994; Slaughter & Miller, 1981) (see Figure 3.1B). ON and OFF 

cone bipolar cells release glutamate onto ionotropic receptors to excite the 

corresponding ON or OFF ganglion cell type (Chen & Diamond, 2002; E. D. 

Cohen, Zhou, & Fain, 1994; Diamond & Copenhagen, 1993) (see Figure 3.1B).  
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Figure 3.1. Rod and cone pathways of mammalian retina. A, The rod (r) 
synapses with an ON-type rod bipolar cell (rb), which in turn excites the AII 
amacrine cell (AII). The AII excites the ON cone bipolar (cb) terminal and inhibits 
the OFF cone bipolar terminal and OFF ganglion cell (gc) dendrite. PRL, 
photoreceptor layer; OPL, outer plexiform layer. OFF cells (i.e., those that 
depolarize to light decrement) are shaded dark gray, whereas ON cells (i.e., 
those that depolarize to light increment) are shaded light gray. B, The cone 
synapses with OFF and ON cone bipolar cells using different glutamate 
receptors; rods influence the cone response via gap junctions. Each cone bipolar 
synapses onto the same type of ganglion cell. The ON cone bipolar cell also 
excites the AII through the gap junction; the AII releases glycine onto the OFF 
cone bipolar terminal and OFF ganglion cell dendrite. A light decrement would 
hyperpolarize the ON cone bipolar cell, which would hyperpolarize the AII and 
reduce its glycine release onto the OFF cone bipolar and ganglion cells, causing 
disinhibition. This AII pathway does not require an iGluR to relay cone signals to 
the OFF ganglion cell.  
 

In addition to these "vertical glutamate pathways," ganglion cell responses 

are modulated by synaptic inhibition. For example, under cone-driven conditions, 

OFF ganglion cells receive inhibitory synaptic input at light onset; the inhibition is 

driven by an amacrine cell, which is in turn driven by ON bipolar cells (Roska, 

Molnar, & Werblin, 2006; Zaghloul et al., 2003). Thus, OFF-pathway excitation 

and ON-pathway inhibition drive the OFF ganglion cell membrane potential in 

opposite directions to dark and light, respectively. Here, we reveal an additional, 
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unexpected function of this ON-pathway inhibition and probe the underlying 

amacrine cell circuit.  

In experiments below, we show that OFF ganglion cell responses to 

negative contrast (i.e., light decrement) were driven in part by excitatory 

synapses, as expected. However, these responses were also driven in part by 

the removal of inhibition (i.e., disinhibition); the disinhibition played a relatively 

large role at low contrast. Thus, tonic inhibition at steady mean luminance could 

be increased or decreased depending on contrast sign. A strong candidate for 

the source of inhibition is the well studied AII amacrine cell: a bistratified 

interneuron that interacts with both ON and OFF pathways (Famiglietti & Kolb, 

1975). The AII cell is widely studied for its prominent role in rod vision (Bloomfield 

& Dacheux, 2001; Singer, 2007) (see Figure 3.1A). It has been proposed that 

these cells might be functionally removed from the circuit in bright light (Mills & 

Massey, 1995; Smith, Freed, & Sterling, 1986), but AII cells, in fact, respond in 

bright light (D. M. Dacey, 1999; Pang et al., 2007; Xin & Bloomfield, 1999). 

Furthermore, OFF ganglion cells respond, in bright light, after blocking ionotropic 

glutamate receptors (iGluRs) (E. D. Cohen, 1998; E. D. Cohen & Miller, 1999); 

the only known circuit to explain these responses is the following: cone ON 

cone bipolar cell AII cell OFF ganglion cell (Murphy & Rieke, 2006; Pang et 

al., 2007; Trexler, Li, & Massey, 2005) (see Figure 3.1B). Below, we provide 

evidence that this AII circuit explains OFF ganglion cell disinhibition. These 

results show a new role for disinhibition in the retina and suggest a function for 

the AII amacrine cell in daylight vision.  
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Results 

Targeting and identification of Y-type/α  ganglion cells 

We recorded from ganglion cells in an in vitro preparation of the guinea pig 

retina (Demb et al., 1999; Demb, Zaghloul, & Sterling, 2001) (see Experimental 

Procedures). We targeted ON and OFF Y-type/α ganglion cells by recording from 

the largest cell bodies (20–25 µm diameter) in the GCL. In several cases, we 

filled the cells to reveal the morphology and confirm the cell type. We report on 

the morphological features of cells both from the present study (n = 9 cells) and 

those from a wider series of studies from our laboratory (n = 42 cells in total). The 

cells that had the characteristic physiological features of Y-type/  cells as defined 

by previous studies (i.e., brisk-transient responses; center-surround receptive 

fields; nonlinear spatial summation) (Demb, Zaghloul, Haarsma et al., 2001; 

Enroth-Cugell & Robson, 1966; Hochstein & Shapley, 1976) had wide dendritic 

trees and a characteristic position of their dendrites in the IPL. The OFF Y-type/α 

cells (n = 24) had dendritic tree diameters of 535 ± 72 µm (mean ± SEM) and 

stratified at 70 ± 3% depth in the IPL; this position is on the vitreal side of the 

nearby OFF ChAT band (76 ± 3%; n = 42) (see Experimental Procedures) (Figure 

3.2C). The ON Y-type/α cells (n = 11) had dendritic tree diameters of 652 ± 109 

µm and stratified at 28 ± 3%; this position is on the vitreal side of the nearby ON 

ChAT band (42 ± 3%; n = 42) (Figure 3.2C). Thus, ON or OFF Y-type/α cells in 

the guinea pig stratified on the vitreal side of the nearby ON or OFF ChAT band, 



 56 
 

similar to the dendrite positions of α cells in the rabbit retina (J. Zhang, Li, Hoshi, 

Mills, & Massey, 2005). 
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Figure 3.2. Morphological properties of ganglion cells with large somas in guinea 
pig retina. A, Vertical projection of a stack of confocal images, showing the level 
of ganglion cell (GC) dendrites, nuclear layer boundaries (INL and GCL), and 
starburst amacrine cell dendrites (ON and OFF ChAT bands). The plot at right 
shows the normalized intensity for the GC dendrite (blue), the nuclear dye (red), 
and the ChAT labeling (green). The ganglion cell layer and inner nuclear layer 
peaks were normalized separately, resulting in two discontinuous red lines. The 
two ChAT band peaks were normalized separately, resulting in two discontinuous 
green lines. The dashed black line plots ToPro-3 intensity within the boxed 
regions shown in B. Solid black lines are polynomial fits used to define the 
fluorescent intensity peaks. Plotted at these peak positions are the horizontal 
dashed gray lines, which indicate the position of the ganglion cell layer (slice 29), 
the ON (inner) ChAT band (slice 62), the OFF (outer) ChAT band (slice 87), and 
an OFF α cell dendrite (slice 83). B, Confocal image of slice 108 showing ToPro-
3-labeled nuclei. The small boxes overlie selected central regions of nuclei in the 
inner most layer of the INL. C, The dendritic stratification depths within the IPL of 
ON α cells, OFF α cells, OFF δ cells, ON δ (direction-selective) cells, and the 
corresponding position of ChAT bands in the same tissues (black or gray dots). 
Ganglion cell dendrite and ChAT band depths are plotted as a function of 
ganglion cell dendritic field diameter. Solid lines show the mean of each ChAT 
band; gray boxes show ± 1 SD of these bands. D, Normalized dendrite position 
of cells in C. The stratification in C was normalized relative to the ChAT bands 



 58 
 

measured in the same tissue (ON ChAT band, 0; OFF ChAT band, 1). 
 

When targeting large cell bodies, two other cell types were occasionally 

recorded but could be distinguished from the Y-type/α cells. One type was an 

OFF cell (n = 5), with a wide dendritic tree diameter (552 ± 69 µm) that stratified 

between the OFF ChAT band and the INL at 89 ± 2% (Figure 3.2C). A second 

type was the ON direction-selective (DS) cell (n = 2) (Amthor, Takahashi, & 

Oyster, 1989), which had a diameter of ~530 µm and costratified with the ON 

ChAT band (Figure 3.2C). For all cells, we also plotted the anatomical data in a 

second normalized coordinate system, in which dendrite positions are shown 

relative to the two ChAT band positions measured in the same tissues (Figure 

3.2D). Here, it is evident that there are four clusters distinguished by their 

dendritic stratification level relative to the ChAT bands. These four cell types in 

guinea pig resemble those four cell types with large cell bodies in the rat retina: 

ON and OFF Y-type/α and ON and OFF δ ganglion cells (in which the ON δ cell is 

presumably the ON DS cell) (Peichl, 1989). The OFF α cell was also reported in 

the mouse retina and had similar properties to the guinea pig OFF δ cell: a large 

soma and dendritic tree diameter, with dendrite stratification near the INL 

(Margolis & Detwiler, 2007; Tagawa, Sawai, Ueda, Tauchi, & Nakanishi, 1999).  

Other features of the Y-type/α cells were consistent with previous measurements 

with sharp electrodes (Zaghloul et al., 2003) and allowed us to distinguish OFF α 

and δ cells based on the physiology alone. We measured I–V plots to full-contrast 

step responses of a spot (0.6 mm diameter). At a holding potential near –50 mV, 

the ON Y-type/α cell showed a transient inward current at light onset and an 
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outward current at light offset (Figure 3.3). The responses to light onset and 

offset both reversed between Ecation (0 mV) and ECl (–67 mV) (see Experimental 

Procedures). Thus, the ON cell response arose from the modulation of a pair of 

excitatory and inhibitory conductances that were increased or decreased in 

parallel (Zaghloul et al., 2003). The OFF Y-type/α cell showed a different pattern: 

a transient inward current (Vhold of approximately –50 mV) at light offset that 

reversed near 0 mV with a transient outward current at light onset that reversed 

near –80 mV (Figure 3.3). Thus, the OFF cell response arose primarily from 

excitation at light offset and inhibition at light onset (Zaghloul et al., 2003). These 

conductances are analyzed in more detail at multiple contrast levels in the 

remainder of the paper.  

 



 60 
 

 

 

Figure 3.3. Physiological properties of ganglion cells with large somas in guinea 
pig retina. A, Filled cell body and dendritic tree for one ON α cell, two OFF α 
cells, and one OFF δ cell. Dendritic field diameters (left to right) were 570, 512, 
541, and 626 µm. Dendrite stratifications for the same cells were 30, 71, 71, and 
90%. B, Spot responses at different holding potentials (Vhold) for cells in A. C, I–V 
relationship for the cells in B. The ON-α/Y-cell response to the dark spot 
reversed at –30 mV (left; reversal to light spot, –40 mV). Both OFF-α/Y-cell 
responses to the dark spot reversed near the excitatory reversal (Eexcitation, ~0 
mV), but one cell (OFF α1) showed a relatively linear conductance, whereas the 
other (OFF α2) showed a pronounced J-shaped conductance. In the OFF δ cell, 
responses to both light and dark spots reversed near ECl (–70 and –74 mV, 
respectively), suggesting that contrast processing arises primarily from 
modulation of an inhibitory synapse. 
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In the I–V plot for the light offset response, some OFF Y-type/α cells 

showed a relatively linear relationship (Figure 3.3, OFF α1), whereas others 

showed a more nonlinear relationship (Figure 3.3, OFF α2): a J-shaped pattern 

that indicated a contribution from NMDA receptors (Chen & Diamond, 2002; E. D. 

Cohen, 1998; Sagdullaev, McCall, & Lukasiewicz, 2006). However, cells with or 

without the J-shaped I–V plot showed a similar time course of their step response 

(Figure 3.3), and their dendrites stratified in similar positions in the IPL (Figure 

3.2C,D). Thus, we consider these two patterns in the I–V plot to represent 

diversity within the OFF Y-type/α cell population. At present, it is unclear why the 

apparent NMDA contribution varied across cells.  

The OFF δ cell showed a distinct pattern from the OFF Y-type/α cells: a 

more sustained response to light offset with a negative slope conductance in the 

I–V plot (Figure 3.3), and thus the OFF δ cell could be distinguished from the 

OFF Y-type/α cell based on its physiology alone. The focus in the remainder of 

the study is on the ON and OFF Y-type/α  cells, which we refer to simply as ON 

and OFF cells. 

 

Ganglion cell membrane current responses at low and high contrast 

The above step response measurements were acquired using a contrast-

reversing spot stimulus that changed its contrast polarity above and below the 

mean luminance. In most of the following experiments, we instead measured 

responses to a 200 ms spot stimulus, in which spot contrast was 2.5, 5, 10, or 

80% and defined as an increment or decrement in intensity relative to a steady 
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mean luminance. The contrast was matched to the sign of the center: decrement 

stimuli for OFF cells and increment stimuli for ON cells.  

Contrast responses were measured while holding voltage near the resting 

potential. In all cells, the spot evoked an excitatory inward current followed by a 

"rebound" outward current (Figure 3.4A). Below we focus on the excitatory inward 

current. The size of the inward current increased with contrast (Figure 3.4). OFF 

cells showed a wider response range than ON cells, as indicated by a larger 

response amplitude at 80% contrast (OFF cells, 790 ± 74 pA, n = 38 cells; ON 

cells, 219 ± 50 pA, n = 11 cells; p < 0.01, unpaired t test) (Figure 3.4B). Notably, 

there were measurable responses, in both OFF and ON cells, at low contrast 

levels (2.5–10%). Below, we analyze responses at several contrast levels to 

reveal the underlying synaptic conductances and to understand how these 

conductances change with contrast level. 
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Figure 3.4. Membrane current responses at low and high contrast. A, An OFF or 
ON cell was stimulated with a 200 ms spot (0.6 mm diameter) over the receptive 
field center at 2.5, 5, 10, or 80% contrast. Contrast is defined as an increment 
(ON cells) or decrement (OFF cells) in the mean luminance. Voltage was held 
near the resting potential (Vrest) (see Experimental Procedures). Shaded area 
shows the sampling window for measuring current amplitude in B. Traces show 
an average across 6–12 cycles. B, Top row, Contrast–response functions for the 
cells in A. Points show average inward current at each contrast (Vhold near Vrest). 
Error bars show SEM of response across cycles. Line is a fit to the data (see 
Experimental Procedures). ON cell parameters: Rmax, 170; c50, 9.3; n, 1.0. OFF 
cell parameters: Rmax, 750; c50, 11; n, 1.9. Bottom row, Average inward current as 
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a function of contrast across cells. Error bars show SEM across cells. Population 
ON cell parameters: Rmax, 330; c50, 29; n, 1.0. Population OFF cell parameters: 
Rmax, 830; c50, 18; n, 2.1. 
 
 

Disinhibition contributes to OFF cell responses 

In ON cells (n = 11), both low- and high-contrast responses showed an increased 

conductance (2.5%, 1.1 ± 0.2 nS; 5%, 2.1 ± 0.3 nS; 10%, 4.4 ± 0.7 nS; 80%, 12.2 

± 1.9 nS) with a reversal potential that implied a mix of excitation and feedforward 

inhibition (Figure 3.5B) (see Experimental Procedures). Furthermore, the reversal 

potential was similar at low contrast (2.5%, –35 ± 5 mV; 5%, –38 ± 3 mV; 10%, –

36 ± 2 mV) and high contrast (80%, –39 ± 2 mV), suggesting that the relative 

weight of excitation and inhibition was fixed and independent of contrast level.  
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Figure 3.5. OFF cell contrast responses are driven in part by disinhibition. A, 
Flash responses at different holding potentials (Vhold). In the ON cell, low- and 
high-contrast flashes both elicited an inward current near rest and an outward 
current near the excitatory reversal (red; Eexcitation, ~0 mV; arrows). In the OFF 
cell, low- and high-contrast flashes both elicited an inward current near the 
resting potential. Holding the cell near Eexcitation elicited an inward current at low 
contrast but an outward current at high contrast (arrows). B, I–V relationship for 
the cells in A. The ON cell responses to low (5%) and high contrast (80%) had 
similar reversals (low contrast, –44 mV; high contrast, –43 mV) and proportional 
increases in excitatory and inhibitory conductance (green and blue lines, 
respectively). Dashed lines are linear fits to the data. The low-contrast response 
in the OFF cell reversed at –90 mV and predominantly comprised removal of an 
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inhibitory conductance and a minor excitatory conductance. The opposite was 
true at high contrast, at which the response reversed at +4 mV and was primarily 
caused by an excitatory conductance. C, Comparison of excitatory and inhibitory 
conductances. For ON cells, excitation and inhibition increased in parallel with 
increasing contrast (n = 11). For OFF cell low-contrast responses (2.5–10%), 
disinhibition contributed substantially (n = 38), whereas for high-contrast 
responses, excitation dominated (n = 21); inset shows conductances for the 2.5 
and 5% contrast responses on an expanded scale. 
 

OFF cells showed a different pattern of results. At low contrast, OFF cell 

responses showed a negative slope on the I–V plot (Figure 3.5B), and thus these 

responses were driven primarily by a decreased conductance (2.5%, –0.32 ± 

0.05 nS; 5%, –0.66 ± 0.14 nS; 10%, –0.4 ± 0.4 nS; n = 38 cells). In raw traces, 

this result was reflected by an increased inward current at positive holding 

potentials, which is opposite to the pattern of the response in ON cells (Figure 

3.5A, arrows). At high contrast (80%; n = 21), there was an increased 

conductance (15.3 ± 2.7 nS) with a reversal potential that was, on average, 

positive to 0 mV (+16 ± 9 mV). The positive value of the reversal potential 

indicates a response driven primarily by glutamate release from bipolar cells in 

parallel with a net decrease in inhibition relative to a baseline level (see 

Experimental Procedures). However, there was variability in the degree to which 

the reversal was positive to 0 mV; in some cases, the reversal was close to 0 mV 

(Figure 3.5B).  

To quantify further the above results, we fit each I–V plot with the sum of two 

underlying conductances reversing at 0 and –67 mV (see Experimental 

Procedures). This conductance analysis calculates the relative contribution from 

excitatory and inhibitory synapses. The conductance analysis showed that ON 
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cells received increased excitation and inhibition, in parallel, at all contrasts 

(Figure 3.5C). OFF cells received increased excitation in parallel with decreased 

inhibition (i.e., disinhibition) at all contrasts. However, disinhibition played a 

relatively prominent role at low contrasts (Figure 3.5C). For example, at 2.5% 

contrast, the decreased inhibitory conductance was –0.55 ± 0.06 nS, which was 

greater in magnitude than the increased excitatory conductance of 0.23 ± 0.03 nS 

(difference of 0.32 ± 0.05 nS; n = 38; p < 0.001). Similarly, at 5% contrast, the 

decreased inhibitory conductance was –1.50 ± 0.16 nS, which was greater in 

magnitude than the increased excitatory conductance of 0.84 ± 0.12 nS 

(difference of 0.66 ± 0.14 nS; n = 38; p < 0.001). At 10% contrast, the decreased 

inhibitory conductance (–3.3 ± 0.3 nS) and the increased excitatory conductance 

(2.9 ± 0.4 nS) were of similar magnitude (difference of 0.4 ± 0.4 nS; n = 38; p > 

0.2). In Discussion, we consider how these two conductances would contribute to 

low-contrast voltage responses, given the expected resting potential and reversal 

potentials for excitation and inhibition in situ.  

OFF cell responses to high contrast (80%) were dominated by an 

increased excitatory conductance. Some cells showed a linear conductance 

(Figures 5B, 6D), whereas others showed a nonlinear, J-shaped conductance, 

indicating an NMDA receptor contribution (Figure 3.7A,C) (see also Figure 3.3C). 

To estimate the full AMPA plus NMDA conductance, we performed the 

conductance analysis on data collected for Vhold values positive to –40 mV, at 

which the nonlinearity associated with NMDA receptors has minimal effect (see 

Experimental Procedures). At 80% contrast, the magnitude of the decreased 
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inhibitory conductance was relatively small (–2.7 ± 0.6 nS) compared with the 

excitatory conductance (17.9 ± 2.4 nS; n = 21).  
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Figure 3.6. The ON pathway mediates disinhibition in OFF cells. A, An ON cell 
was stimulated with a contrast-reversing spot (100% contrast, 1 Hz). Under 
control conditions (black; Vhold of –45 mV), the cell responded to dark with an 
outward current and to light with a transient inward current. Bath-applied 50 µM 
L-AP-4 blocked the response (gray; Vhold of –60 mV). B, An OFF cell was 
stimulated with the spot described in A. The cell responded to dark with an 
inward current and to light with an outward current; 50 µM L-AP-4 blocked the 
outward current (top; control, Vhold of –69 mV; L-AP-4, Vhold of –59 mV). The I–V 
plot (bottom) shows a positive conductance after the dark spot (filled circles) 
during control (black; reversal potential, +4 mV) and L-AP-4 conditions (gray; 
reversal potential, –8 mV). The light spot (white circles) elicited a large inhibitory 
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conductance under control conditions (reversal potential, –82 mV) and a small 
withdrawal of an excitatory conductance in the presence of L-AP-4 (gray; 
reversal potential, +3 mV). C, Flash responses in an OFF cell at different holding 
potentials under control conditions and in the presence of l-AP-4. D, I–V plots for 
the cell in C. At 5% contrast, there was a negative conductance under control 
conditions that reversed to a positive conductance in the presence of L-AP-4. 
Adding L-AP-4 had minimal effect on the 80% contrast conductance. E, 
Summary of the results in D across OFF cells. Excitation slightly increased in the 
presence of L-AP-4 (gray circles) versus control conditions (black circles), but the 
inhibitory components of the response decreased in the presence of L-AP-4 
(white circles; n = 10 cells for 2.5–10% contrast). At 80% contrast, there was an 
increased inhibitory conductance in the presence of L-AP-4, suggesting an 
unmasked feedforward inhibition (n = 8 cells). 
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Figure 3.7. Disinhibition of OFF ganglion cells does not require ionotropic 
glutamate receptors. A, I–V plot for low- and high-contrast responses in an OFF 
cell (same conventions as for Figure 3.5B). Under control conditions, there was a 
negative conductance at 5% contrast and a positive conductance at 80% 
contrast with an apparent NMDA component, resulting in a J-shaped function. In 
the presence of CNQX and D-AP-5 (100 µM each), the 5% response persisted, 
whereas the 80% response was primarily blocked. Inset, The persisting response 
at 80% contrast had a negative slope, similar to the 5% response. B, 
Conductance analysis under control conditions and in the presence of CNQX 
plus D-AP-5 (same conventions as for Figure 3.5C). The drugs primarily blocked 
the excitatory component, leaving disinhibition intact. C, Same format as in A for 
an OFF cell, in which D-AP-5 was applied alone. 
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The OFF cell disinhibition circuit is driven by the ON pathway 

The above results suggest that contrast responses in an OFF ganglion cell are 

driven partly by removing synaptic inhibition (i.e., disinhibition). It follows that the 

disinhibition would be driven by the ON pathway: light decrement would 

hyperpolarize ON bipolar cells and consequently hyperpolarize downstream 

inhibitory amacrine cells that synapse on the OFF ganglion cell. To test this idea, 

we suppressed the ON pathway using the mGluR6 agonist L-AP-4, which 

continually activates the ON bipolar cell mGluR6 cascade resulting in cation 

channel closure and hyperpolarization (Nakajima et al., 1993; Slaughter & Miller, 

1981). At 50 µM, L-AP-4 completely suppressed the response of an ON ganglion 

cell to a high-contrast reversing spot (n = 2 cells) (same stimulus used in Figure 

3.3), suggesting that the presynaptic ON bipolar cells were completely inhibited at 

this concentration (Figure 3.6A). In OFF ganglion cells, L-AP-4 did not suppress 

the inward current to the dark phase of the reversing spot (100% contrast), which 

is presumably driven primarily by OFF bipolar cells, but did suppress the outward 

current to the light phase (control, 357 ± 75 pA; L-AP-4, 0.6 ± 22.2 pA; n = 10 

cells; p < 0.001; average ± SD Vhold, –54 ± 5 mV) (Figure 3.6B). This confirms 

previous work showing that, for OFF ganglion cells, the ON pathway drives an 

inhibitory conductance at light onset (E. D. Cohen, 1998; Murphy & Rieke, 2006; 

Pang, Gao, & Wu, 2003; Roska et al., 2006; Wassle, Schafer-Trenkler, & Voigt, 

1986; Zaghloul et al., 2003).  
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We next tested whether the ON pathway drives OFF cell low-contrast 

responses to light offset, using the 200 ms decrement stimulus (Figure 3.6C). At 

low contrast, there was a decreased conductance, as indicated by negative 

slopes on the I–V plots (Figure 3.6D). In the presence of L-AP-4, these negative 

slopes became positive, suggesting that the disinhibition pathway was blocked. 

At high contrast (80%), there were positive slopes in both control and L-AP-4 

conditions (Figure 3.6D). We performed a conductance analysis, as described 

above. L-AP-4 significantly reduced the magnitude of the decreased inhibitory 

conductance (p < 0.05 at each contrast) but did not block the increased excitatory 

conductance (Figure 3.6E). These data suggest that disinhibition of OFF cells is 

driven by ON-pathway amacrine cell synapses.  

In addition to blocking the decreased inhibitory conductance, L-AP-4 

revealed an increased inhibitory conductance at 80% contrast (Figure 3.6E). 

Across cells, this conductance was 3.4 ± 1.8 nS (n = 8). This inhibitory 

conductance may be present at high contrast under control conditions but 

masked by the decreased inhibitory conductance. This suggests that a 

feedforward inhibitory synapse, driven by the OFF pathway, acts in parallel with 

OFF bipolar cell excitation. However, this putative feedforward inhibition requires 

additional characterization. For example, our conclusion depends on a slight shift 

in the reversal potential (Figure 3.6D). Furthermore, in the presence of L-AP-4, 

inhibition of the OFF bipolar terminal is presumably reduced, and thus the output 

of OFF bipolar cells would increase, potentially altering the degree of feedforward 

inhibition present under natural conditions.  
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The disinhibition circuit does not require ionotropic glutamate receptors 

Virtually every circuit, from photoreceptors to amacrine or ganglion cells in 

the inner retina, requires at least one synapse mediated by an iGluR 

(Dumitrescu, Protti, Majumdar, Zeilhofer, & Wassle, 2006; Kalloniatis et al., 2004; 

Marc, 1999a, 1999b). The one known exception is the following circuit: cone  

ON cone bipolar cell  AII amacrine cell  OFF ganglion cell (see Introduction); 

rods could also drive this circuit through their gap junctions with cones. The cone 

 ON cone bipolar synapse uses an mGluR6 receptor (Nakajima et al., 1993; 

Nomura et al., 1994); the ON cone bipolar  AII amacrine cell synapse uses a 

connexin (cx) 36 gap junction or a cx36/cx45 gap junction (Deans, Volgyi, 

Goodenough, Bloomfield, & Paul, 2002; Feigenspan, Teubner, Willecke, & 

Weiler, 2001; Han & Massey, 2005; Lin, Jakobs, & Masland, 2005; Mills, O'Brien, 

Li, O'Brien, & Massey, 2001); the AII amacrine cell  OFF ganglion cell synapse 

uses a glycine receptor (Muller, Wassle, & Voigt, 1988; Murphy & Rieke, 2006; 

Sassoe-Pognetto, Wassle, & Grunert, 1994). Thus, if this circuit explains ON 

pathway disinhibition of OFF ganglion cells, then it should persist in the presence 

of iGluR antagonists. 

To test the above possibility, we measured responses while blocking both 

AMPA/kainate and NMDA receptors with CNQX (100 µM) and D-AP-5 (100 µM) 

(E. D. Cohen, 1998; E. D. Cohen & Miller, 1999; E. D. Cohen et al., 1994). In the 

presence of these antagonists, low-contrast responses persisted, and these 

responses were driven primarily by disinhibition (Figure 3.7B). However, high-
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contrast responses were suppressed; the inward current decreased from –399 ± 

37 pA under control conditions to –59 ± 16 pA in the presence of the antagonists 

(decrease of 86 ± 3%, p < 0.001; n = 6 cells; Vhold near the Vrest). Furthermore, in 

the presence of the antagonists, the conductance at high contrast showed a 

negative slope, similar to the low-contrast conductance (Figure 3.7A). Blocking 

NMDA receptors alone with D-AP-5 (50 µM) made the J-shaped I–V plot more 

linear but did not completely block excitatory currents at high contrast (Figure 

3.7C). Thus, we conclude that disinhibition of OFF cells, at low and high contrast, 

could originate in the above described AII amacrine cell pathway.  

The above response cannot, however, be driven by two of the rod 

pathways. Rods release glutamate onto OFF cone bipolar cell dendrites, but 

these dendrites express iGluRs (Hack, Peichl, & Brandstatter, 1999; Li, Keung, & 

Massey, 2004; Soucy, Wang, Nirenberg, Nathans, & Meister, 1998; Tsukamoto, 

Morigiwa, Ueda, & Sterling, 2001). Furthermore, the rod pathway illustrated in 

Figure 3.1A uses an iGluR at the rod bipolar  AII cell synapse (Boos, 

Schneider, & Wassle, 1993; Singer & Diamond, 2003). Rods can signal cones 

directly, through gap junctions (Bloomfield & Dacheux, 2001; DeVries & Baylor, 

1995). These rod signals could reach ganglion cells through cone synapses with 

ON cone bipolar cells and then through the AII circuit (i.e., rod  cone  ON 

cone bipolar  AII cell  ganglion cell). However, rod signals could not reach 

ganglion cells through cone synapses with OFF cone bipolar cells, because the 

cones release onto iGluRs on the bipolar cell (Figure 3.1B). 
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Evidence that the disinhibition circuit includes the AII amacrine cell 

To test the role of the above AII circuit in OFF ganglion cell disinhibition, 

we performed several experiments designed to disrupt each synapse in the 

circuit. We first isolated the putative circuit by blocking iGluRs with D-AP-5 (200 

µM) and CNQX (200 µM) (Figure 3.8A) and then measured the 10% contrast 

response before and after adding additional drugs (Vhold of –35 to –25 mV) 

(Figure 3.8A). In one experiment, we added L-AP-4, to confirm that the response 

was driven by the ON pathway (cone ON cone bipolar synapse), as suggested 

by the results in Figure 3.6 (Figure 3.8A1). The inward current in the presence of 

CNQX and D-AP-5 (–37.0 ± 17.3 pA) was significantly reduced by adding L-AP-4 

(+1.6 ± 2.0 pA; p < 0.05; n = 6). During a washout of all drugs, the response 

partially recovered to –23 ± 9 pA (compared with an initial response of –57 ± 27 

pA; n = 4).  
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Figure 3.8. Evidence that the disinhibition circuit uses the AII amacrine cell. A, 
Six OFF cells were stimulated with repeating dark flashes (contrast, 10%; Vhold, 
approximately –35 to –25 mV) under baseline conditions, with bath-applied 
drugs, and after washing out the drugs. Adding L-AP-4 (A1, 100 µM), MFA (A2, 
200 µM), quinine (A3, 200 µM), or strychnine (A5, 2 µM) to CNQX (200 µM) and 
D-AP-5 (200 µM) sharply reduced the current responses to the flash, whereas 
adding bicuculline (A6, 100 µM) or TEA and 4-AP (A4, 1 mM each) had little 
effect. B, Results for the experiment in A across multiple cells (number of cells in 
parentheses). The bars show the inward current elicited by the 10% contrast 
flash in each drug condition (CNQX and D-AP-5, plus the drug on the x-axis) 
relative to the inward current in the presence of CNQX and D-AP-5 alone. Adding 
L-AP-4, meclofenamic acid, quinine, or strychnine decreased the inward current 
to a small percentage of the original current. Adding bicuculline or TEA and 4-AP 
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had little effect (see Results). Error bars indicate SEM across cells. C, 
Meclofenamic acid (200 µM) applied alone reduced the 10% contrast response 
and also reduced the outward current at the offset of 80% contrast. The inward 
current at high contrast was unaffected, suggesting no general depression of 
OFF bipolar cells. Traces show the average response of five to six cells. D, 
Quinine (200 µM) applied alone produced results similar to C, reducing the 5% 
contrast response and also reducing the outward current at the offset of 80% 
contrast. The inward current at high contrast was unaffected. Traces show the 
average of recordings from four cells. E, ON cells were stimulated with repeating 
bright flashes (contrast, 100%; 20 repeats; Vhold, approximately –63 mV) at two 
levels of mean luminance. Quinine suppressed the inward current only under 
rod-bipolar-driven conditions (~5 x 100 PM*). Traces show the average of 
recordings from three cells. 
 

We next tested a role for a gap junction at the ON cone bipolar AII 

amacrine cell synapse (Deans et al., 2002; Feigenspan et al., 2001; Han & 

Massey, 2005; Lee, Kim et al., 2003; Mills et al., 2001). To test this, we applied 

meclofenamic acid (MFA) (200 µM), which blocks tracer coupling between AII 

cells and ON cone bipolar cells (Pan, Mills, & Massey, 2007). The inward current 

in the presence of CNQX and D-AP-5 (–127 ± 9 pA) was significantly reduced by 

adding MFA (–46 ± 11 pA; p < 0.01; n = 6). We measured a recovery, after 

washing out all drugs, in two cases; one is shown in Figure 3.8A2. In another set 

of experiments, we applied quinine (200 µM), which blocks cx36 gap junctions 

(Schubert et al., 2005; Srinivas, Hopperstad, & Spray, 2001). The inward current 

in the presence of CNQX and D-AP-5 (–52.2 ± 13.9 pA) was significantly reduced 

by adding quinine (–12.9 ± 3.4 pA; p < 0.05; n = 6). The response partially 

recovered after washing out all drugs to –39 ± 22 pA (compared with initial 

response of –50 ± 16 pA; n = 4) (Figure 3.8A3). Quinine can also block potassium 

channels, and so as a control we repeated the above experiment but applied 

potassium channel blockers (1 mM TEA and 1 mM 4-AP) in place of quinine 
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(Imai, Suzuki, Sato, & Tokimasa, 1999).  The inward current in the presence of 

CNQX and D-AP-5 (–134 ± 35 pA) was not blocked by adding TEA and 4-AP (–

113 ± 31 pA; p > 0.10; n = 4), suggesting that quinine did not act by blocking 

potassium channels (Figure 3.8A4). Additional control experiments for MFA and 

quinine are described in a separate section below.  

We next tested roles for glycine and GABA. Glycine receptors were 

blocked with strychnine (2 µM). The inward current in the presence of CNQX and 

D-AP-5 (–31.9 ± 4.2 pA) was completely blocked by adding strychnine (–0.1 ± 1.4 

pA; p < 0.05; n = 7). In general, it was difficult to measure recovery after 

strychnine application, although we were able to measure partial recovery in two 

cells; one is shown in Figure 3.8A5. In separate experiments, we blocked GABAA 

receptors with bicuculline (100 µM). The response in the presence of CNQX and 

D-AP-5 (–93.0 ± 19.2 pA) was only slightly suppressed by adding bicuculline (–

69.5 ± 18.8 pA; n = 6) (Figure 3.8A6).  

The above results are summarized in Figure 3.8B. The inward current response 

at 10% contrast showed, relative to the recording in the presence of D-AP-5 and 

CNQX, a significant percent reduction after adding L-AP-4 (99 ± 5%; p < 0.001), 

MFA (64 ± 8%; p < 0.01), quinine (75 ± 8%; p < 0.001), or strychnine (98 ± 6%; p 

< 0.001) but not after adding TEA and 4-AP (5 ± 24%; p > 0.10) or bicuculline (26 

± 16%; p > 0.05). The small effect of bicuculline could be explained by 

nonspecific effects of bicuculline on glycine receptors (Wang and Slaughter, 

2005 ). These results suggest that the disinhibition circuit for OFF ganglion cells 

depends on mGluR6 receptors, gap junctions, and glycine receptors. These 
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results can be explained most parsimoniously by the above-described circuit: (rod 

) cone  ON cone bipolar cell  AII amacrine cell  OFF ganglion cell 

(Figure 3.1B). 

 

Control experiments further suggest that MFA and quinine block the gap 

junction between AII cells and ON cone bipolar cells 

We performed additional experiments to test whether MFA or quinine had 

unexpected, nonspecific effects on retinal processing, similar to other gap 

junction blockers (Xia & Nawy, 2003). In OFF cells (n = 6; Vhold, –20 to –35 mV), 

applying MFA in isolation did not affect the inward current at 80% contrast 

(control, –591 ± 88 pA; MFA, –601 ± 126 pA; p > 0.4) but did reduce the outward 

rebound current (control, +629 ± 131 pA; MFA, +72 ± 32 pA) by 557 ± 128 pA (p 

< 0.01) (Figure 3.8C). Furthermore, MFA reduced the inward current at 10% 

contrast (control, –209 ± 23 pA; MFA, –47 ± 18 pA) by 162 ± 34 pA (p < 0.01) 

(Figure 3.8C). In additional experiments on OFF cells (n = 4; Vhold, –29 to –36 

mV), applying quinine in isolation did not affect the inward current at 80% contrast 

(control, –804 ± 97 pA; quinine, –775 ± 156 pA; p > 0.4) but did reduce the 

outward rebound current (control, +747 ± 83 pA; quinine, +140 ± 20 pA) by 606 ± 

97 pA (p < 0.01) (Figure 3.8D). Furthermore, quinine reduced the inward current 

at 5% contrast (control, –77 ± 15 pA; quinine, –29 ± 8 pA) by 48 ± 9 pA (p < 0.05) 

(Figure 3.8D). The above results suggest that MFA and quinine interrupt the cone 

 ON cone bipolar  AII amacrine cell  OFF ganglion cell circuit, presumably 

by blocking the ON bipolar  AII cell synapse. The rebound current at high 
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contrast would be driven, at light onset (i.e., dark spot offset), by stimulating the 

AII circuit (Figure 3.6B). The inward current at low contrast would be driven in 

large part by disinhibition from the AII circuit, as described above.  

We performed additional control experiments in ON cells (n = 3; Vhold, –63 to –64 

mV). If quinine blocks the ON cone bipolar cell  AII cell gap junction, then ON 

ganglion cell responses should decrease under conditions that depend heavily on 

the rod bipolar pathway but persist under conditions driven by the cone bipolar 

pathway (Figure 3.1). Under rod-driven conditions, the inward current to the flash 

decreased from –126 ± 49 pA (control) to –29 ± 13 pA in the presence of quinine 

(a difference of 97 ± 37 pA; p < 0.10). At cone-driven levels, however, the inward 

current was similar across conditions (control, –103 ± 31 pA; quinine, –109 ± 34 

pA; p > 0.4) (Figure 3.8E). This result suggests that quinine inhibits the ON cone 

bipolar  AII cell synapse. There were other effects of quinine that we cannot 

explain, such as the more sustained inward current for ON cells at high mean 

luminance (Figure 3.8E). Gap junctions exist at several sites in the retina, 

including the rod  cone gap junction (Deans et al., 2002; Lee, Han et al., 2003) 

and ganglion cell  amacrine cell gap junctions (Schubert et al., 2005; Volgyi, 

Abrams, Paul, & Bloomfield, 2005); thus, some effects of quinine could be 

explained by actions at these alternative sites. However, these control 

experiments are generally consistent with an effect of MFA or quinine at the ON 

cone bipolar  AII cell synapse. 
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Disinhibition from the putative AII amacrine cell circuit drives OFF ganglion 

cell responses under conditions driven by both cone and rod bipolar cells 

Above, we assumed that AII cells synapse directly onto OFF ganglion cell 

dendrites. To test this, we measured responses at lower levels of mean 

luminance (Figure 3.9). At all light levels, the rods should be active (i.e., not 

saturated) (Yin, Smith, Sterling, & Brainard, 2006). At the higher levels, rods 

would contribute primarily through their gap junctions with cones, whereas at the 

lowest levels, the rod bipolar cell should be active and the AII circuit should 

become a dominant mechanism for light responses (Bloomfield & Dacheux, 

2001; Deans et al., 2002; Kolb & Famiglietti, 1974) (Figure 3.1A). Thus, at the 

lower levels of mean luminance, the conductance analysis should reflect the 

switch to the AII circuit. We measured I–V plots for 100% contrast responses at 

four levels of mean luminance (n = 3 OFF cells). At high mean luminance (~5 x 

103 PM*) (see Experimental Procedures), the initial response to the flash showed 

an increased conductance with a J-shaped I–V plot, indicating a mixed 

AMPA/NMDA-mediated response (~5 x 102 PM*: excitation, 33 ± 3 nS, inhibition, 

–1.9 ± 0.7 nS; ~5 x 103 PM*: excitation, 37 ± 7 nS; inhibition, 1.7 ± 0.8 nS). At 

lower mean luminance, however, the response to the flash showed a decreased 

conductance, consistent with a removal of inhibition from the AII circuit (Figure 

3.9B) (~5 x 100 PM*: excitation, 1.7 ± 0.4 nS; inhibition, –6.1 ± 0.2 nS; ~5 x 101 

PM*: excitation, 3.2 ± 0.4 nS; inhibition, –7.6 ± 0.4 nS). Thus, this putative AII 

circuit dominated the response at ~5 x 100–101 PM*, which was the apparent level 

of rod-dominated responses measured previously (Yin et al., 2006).  
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Figure 3.9. The AII circuit can be driven by either rod- or cone-bipolar pathways. 
A, An OFF cell was stimulated with 100% contrast, dark flashes at several levels 
of mean luminance ( 5 x 100–103 PM*; 101–104 PR*). At high mean luminances 
( 5 x 102–103 PM*), the transient inward current (blue strip) reversed to outward 
at positive Vhold, whereas at low mean luminances ( 5 x 100-101 PM*), this current 
became more negative at positive Vhold. At high mean luminance, a sustained 
response (orange strip) showed a pattern that resembled the low mean 
luminance response: increased inward current at positive Vhold. At each mean 
luminance, a rebound outward current (green strip) followed flash offset. Traces 
show the average of 10–20 repeats. B, I–V relationships for the cell in A. The 
transient response (blue circles) at high mean luminances showed a J-shaped 
conductance, indicating a response driven by excitatory (AMPA plus NMDA) 
synapses. The sustained response (orange) showed a negative conductance, 
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indicating substantial disinhibition. Responses at low mean luminances were 
driven by a negative conductance, indicating disinhibition. Dashed lines are linear 
fits to the data (see Experimental Procedures). C, Current–voltage relationship 
for the outward rebound current in A. Conductances at all luminance levels were 
positive and reversed near ECl. 
 

The sustained response to the 100% contrast flash at high mean 

luminance was also apparently driven by a distinct mechanism from the transient 

response (Figure 3.9A) (see also Figure 3.5A). The sustained response also 

included disinhibition (~5 x 102 PM*: excitation, 8.4 ± 1.8 nS; inhibition, –4.9 ± 0.2 

nS; ~5 x 103 PM*; excitation, 6.1 ± 1.7 nS; inhibition, –5.2 ± 0.7 nS), similar to the 

low-contrast response at high mean luminance (Figures 5–7) and the high-

contrast response at low mean luminance (Figure 3.9B). Thus, at high mean 

luminance, the sustained high-contrast response, after the initial excitatory 

response attenuates, also apparently depends on the AII circuit.  

At light onset (i.e., dark spot offset), there was an outward rebound current 

at each level of mean luminance that reversed near ECl (Figure 3.9C). This 

rebound current is presumably caused, at least in part, by activating the AII circuit 

(see Discussion), and the circuit makes a similar contribution at all light levels. 

The inhibitory conductance at the two brighter levels (~5 x 102 PM*: excitation, 0.2 

± 0.7 nS; inhibition, 30 ± 4 nS; ~5 x 103 PM*; excitation, 0.7 ± 0.7 nS; inhibition, 31 

± 6 nS) was larger than that at the two dimmer levels (~5 x 100 PM*: excitation, 

0.1 ± 0.1 nS; inhibition, 5 ± 2 nS; ~5 x 101 PM*: excitation, 0 ± 0.14 nS; inhibition, 

14 ± 1 nS). Still, it was remarkable that, across a 1000-fold change in mean 

luminance, the inhibitory conductance varied by only 6-fold.  



 85 
 

 

Discussion 

Figure 3.1B illustrates our circuit model for contrast processing in the OFF 

ganglion cell under conditions driven by cone bipolar pathways. Responses are 

driven by a combination of excitation mediated by the OFF pathway and 

disinhibition mediated by the ON pathway. The disinhibition arises because a 

light decrement hyperpolarizes ON bipolar cells and electrically coupled AII 

amacrine cells; this latter hyperpolarization decreases glycine release onto the 

OFF ganglion cell. At low contrast, disinhibition plays a relatively large role, 

leading to an inward current at Vrest associated with a negative conductance 

(Figures 5–7, 9). At high contrast, disinhibition plays a smaller role, leading to an 

inward current at Vrest associated with a positive conductance (Figures 5–7, 9). At 

light onset (or dark offset), an inhibitory conductance is observed under 

conditions driven by either rod or cone bipolar pathways (Figures 6B, 8, 9). This 

inhibition would arise from stimulating the AII circuit, which in turn inhibits the OFF 

ganglion cell. Thus, the AII circuit could explain crossover inhibition from ON to 

OFF pathways described previously (Zaghloul et al., 2003). 

 

Support for the circuit model for disinhibition of the OFF pathway 

The disinhibition circuit for OFF cells seems unconventional. Thus, it is 

worth reviewing evidence for each step in the pathway. First, ON bipolar cell 

responses should not be strongly rectifying, so they could signal either light 

increments or decrements to AII cells. Evidence for nonrectifying responses in 
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ON bipolar cells comes from studies of ON ganglion cells. ON ganglion cells 

show excitatory responses that increase or decrease from a baseline level 

(Demb, Zaghloul, Haarsma et al., 2001; Murphy & Rieke, 2006; Zaghloul et al., 

2003) (Figure 3.3). Thus, ON bipolar cells apparently rest near the middle of their 

operating range and neither their voltage responses nor their glutamate release 

strongly rectify. Direct bipolar cell recordings support this interpretation (D. Dacey 

et al., 2000).  

At the next step, current would flow from ON bipolar cells to AII cells. 

Depolarizing an ON bipolar cell causes depolarization of a coupled AII cell 

(Trexler et al., 2005; Veruki & Hartveit, 2002). Furthermore, AII cells responded 

to light under cone-driven conditions (Bloomfield & Dacheux, 2001; D. M. Dacey, 

1999; Pang et al., 2007; Xin & Bloomfield, 1999). The apparent pathway 

mediating the cone-driven response is the following: cone  ON cone bipolar  

AII cell. In support of this, AII light responses persist in the presence of an iGluR 

antagonist, which blocks the synaptic output of rod bipolar cells (Pang et al., 

2007; Trexler et al., 2005; Xin & Bloomfield, 1999). 

At the final step, the AII cell would directly synapse onto the OFF ganglion 

cell. Electron micrographs (EM) suggested that AII glycinergic outputs contact 

both OFF ganglion cell dendrites and their presynaptic OFF bipolar terminals 

(Dacheux & Raviola, 1986; Famiglietti & Kolb, 1975; Kolb, 1979). The relative 

number of these synapses has been estimated by serial section EM. In rat, at 

least 33% of chemical synaptic output from putative AII cells is onto ganglion cell 

dendrites (Chun, Han, Chung, & Wassle, 1993). However, in rabbit, only 4% of 
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output is onto ganglion cell dendrites (Strettoi, Raviola, & Dacheux, 1992). 

Recordings in mouse implied a strong output of AII cells onto OFF ganglion cell 

dendrites. At light levels at which rod bipolar cells are the primary conveyor of rod 

signals to the inner retina (~2 PR*), an OFF α ganglion cell was driven primarily 

by an inhibitory glycinergic synapse (Murphy & Rieke, 2006); this glycinergic 

input is explained by the AII circuit (Murphy & Rieke, 2008). Thus, the dominant 

output of the mouse AII cell (driven by the rod bipolar cell) is onto the OFF 

ganglion cell dendrite. Our recordings at ~10 PR* support this interpretation; the 

OFF ganglion cell response was primarily modulated by an inhibitory 

conductance (Figure 3.9C). Furthermore, from the perspective of the OFF α 

ganglion cell (cat), the direct AII synapses are substantial: they are approximately 

equal in number to those from the OFF cone bipolar cells (Kolb & Nelson, 1993). 

Thus, there is strong evidence for a substantial input from AII cells to OFF 

ganglion cell dendrites in several species. The main exception is the EM study in 

rabbit, and this could reflect a species difference.  

Our model suggests that disinhibition of an OFF ganglion cell is driven 

exclusively by AII cells. However, we cannot rule out a contribution from other 

narrow-field glycinergic amacrine cell types that could act in parallel with the AII 

cell (Menger, Pow, & Wassle, 1998). These other amacrine cell types would have 

to share certain features with the AII cell: excitation from ON bipolar cells and 

inhibitory synapses with the OFF α cell. However, the CNQX/D-AP-5-resistant 

response in the OFF ganglion cell is almost certainly explained exclusively by the 

AII circuit, because this is the only known pathway that can be driven by ON 



 88 
 

bipolar cells through gap junctions and thus does not require an iGluR in the 

circuit (E. Cohen & Sterling, 1990; Kolb, 1979). Because this CNQX/D-AP-5-

resistant response explains the bulk of disinhibition (Figures 7, 8), the AII circuit is 

likely the primary conveyor of disinhibition to the OFF ganglion cell. 

 

Rod and cone inputs to the AII circuit 

At the highest light level tested, responses are driven in approximately 

equal combination by rods and cones (Yin et al., 2006). At this level (~5 x 103 

PM*, ~104 PR*), rods likely act primarily through their electrical synapses with 

cones, assuming that the rod  rod bipolar pathway is saturated. We have not 

measured the level at which the rod bipolar saturates in guinea pig, but several 

lines of evidence suggest that cone bipolar pathways dominate at ~104 PR*. First, 

the excitatory response of OFF ganglion cells persists in the presence of L-AP-4, 

which would block the (ON-type) rod bipolar cell (Figure 3.6B) (Zaghloul et al., 

2003). Furthermore, inhibitory light responses in OFF ganglion cells persist in the 

presence of iGluR antagonists (Figures 7, 8), and these must not depend on rod 

bipolar synapses (Figure 3.1A). Thus, at ~104 PR*, rods apparently drive the 

proposed AII circuit that converges on the OFF ganglion cell, but this contribution 

must arise through their gap junctions with cones.  

At the lowest light level tested here (~10 PR*; ~5 PM*), the response is driven 

exclusively by rods (Yin et al., 2006). At this level, the OFF ganglion cell 

response to light offset (at high contrast) modulated an inhibitory conductance 

almost exclusively (Figure 3.9). This response can be explained by the pathway: 
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rod  rod bipolar  AII cell  ganglion cell. The other route (rod  cone  

cone bipolar  ganglion cell) must be relatively inactive under this condition. 

Thus, rods drive the AII circuit at all light levels, but as light level decreases, the 

pathway for their drive switches between the cone bipolar circuit to the rod bipolar 

circuit (Xin and Bloomfield, 1999; Trexler et al., 2005; Pang et al., 2007). 

 

OFF bipolar input to the AII cell 

We have not considered here an additional synaptic pathway to the AII 

cell. OFF bipolar cells synapse onto AII cells, suggesting that OFF bipolar cells 

can excite the AII, in addition to receiving inhibition from the AII (Chun et al., 

1993; Strettoi et al., 1992; Xin & Bloomfield, 1999). Under most conditions, the 

AII cell depolarizes at light onset, suggesting that ON bipolar excitation 

dominates the light response. However, under certain conditions, the AII shows 

an excitatory response at light offset (Xin & Bloomfield, 1999). How does this 

synapse fit into our model? Some feedforward inhibition onto the OFF ganglion 

cell (Figure 3.6E) could possibly be explained by this synaptic pathway (cone  

OFF cone bipolar  AII cell  OFF ganglion cell). However, at present, we 

cannot distinguish this from other types of amacrine cell that could play the same 

role (Kolb & Nelson, 1993). 

 

Impact of the disinhibition pathway for OFF ganglion cells in situ 

For OFF cells at the lowest contrast level tested (2.5%), the negative 

conductance associated with disinhibition was approximately twice the magnitude 
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of the positive conductance associated with excitation (Figure 3.5). Here, we set 

ECl to be –67 mV, but in situ we expect it to be more negative, approximately –80 

mV (Murphy & Rieke, 2006); we expect Ecation to be 0 mV. Furthermore, OFF 

ganglion cells rest between –60 and –65 mV (Manookin & Demb, 2006; Zaghloul 

et al., 2003). Thus, the driving force on excitation is three to four times larger than 

the driving force on inhibition. Taking into account the conductances and driving 

forces, disinhibition should generate approximately two-thirds of the inward 

current compared with excitation for threshold responses at Vrest (Figure 3.10). As 

the cell depolarizes from rest, the impact of disinhibition would increase. This 

analysis probably underestimates the complete drive from the AII circuit, which 

could also contribute by disinhibiting the OFF bipolar terminal to drive the 

excitatory conductance of the ganglion cell (Molnar & Werblin, 2007). Thus, 

under daylight conditions, the AII circuit contributes substantially to low-contrast 

responses through disinhibition of the OFF pathway. 
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Figure 3.10. Disinhibition contributes substantially to low-contrast responses in 
OFF ganglion cells. Red line shows the total conductance measured from 38 
OFF cells at the lowest contrast tested (2.5%), which is near the threshold for 
responding. ECl was shifted to –80 mV, the expected reversal potential for 
inhibition in situ (see Discussion). The underlying excitatory and inhibitory 
conductances are shown in green and blue, respectively. The expected resting 
potential for OFF cells in situ is between –60 and –65 mV (gray strip). Within this 
range, disinhibition provides approximately two-thirds the current as excitation. 
 
 

Experimental Procedures 

Tissue preparation and electrophysiology 

Hartley guinea pigs were housed in a 12 h light/dark cycle. On the day of 

an experiment, an animal was brought to a room illuminated with red light and 

anesthetized with ketamine (100 mg/kg) and xylazine (10 mg/kg). The animal 

was then decapitated, and both eyes were removed. All procedures conformed to 

National Institutes of Health and University of Michigan guidelines for use and 

care of animals in research. The retina was hemisected under dim white light, 

and the vitreous, lens, and cornea were removed and discarded. The back of the 

eye, including the retina, pigment epithelium, choroid, and sclera, was either 

maintained as a single piece or cut along the vertical midline into two pieces 
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(nasal and temporal halves). Slits were made in each piece of tissue so that the 

retina would lie flat (Demb et al., 1999 ), and the tissue was mounted on filter 

paper with two to three small holes (0.5 mm diameter) punched out. The retina 

was mounted so that the hole positions were aligned with the dorsal retina. Those 

areas of retina over the holes could be later visualized using transmitted infrared 

light. The pieces of retina were stored at room temperature in oxygenated (95% 

O2 and 5% CO2) Ames medium (Sigma, St. Louis, MO) in a light-tight container 

until the time of recording (storage time, 30 min to 5 h). At the time of recording, 

the filter paper, with retina attached, was placed in a chamber on a microscope 

stage and superfused (~6 ml/min) with oxygenated (95% O2 and 5% CO2) Ames 

medium heated to 33–35°C with an in-line heater (TC-344B; Warner Instruments, 

Hamden, CT).  

The retina and electrode were visualized using a cooled CCD camera 

(Retiga 1300C, Qcapture software; Qimaging, Burnaby, British Columbia, 

Columbia) mounted on an Olympus (Center Valley, PA) BX51WI microscope. We 

targeted Y-type/α ganglion cells by recording from the largest cell bodies in the 

ganglion cell layer (diameter, 20–25 µm). Cell type was confirmed by measuring 

light responses and in some cases by analyzing the dendritic tree, as described 

below (see Results). A glass electrode (tip resistance, 2–6 MΩ) was filled with 

recording solution [120 mM cesium-methanesulfonate, 5 mM 

tetraethylammonium (TEA)-Cl, 10 mM HEPES, 3 mM NaCl, 10 mM BAPTA, 2 

mM QX-314-Cl, 2 mM ATP-Mg2+, 0.3 mM GTP-Na+, and 0.10% Lucifer yellow, 

titrated to pH 7.3]. All chemicals were purchased from Sigma (St. Louis, MO) 



 93 
 

except for BAPTA (Invitrogen, Carlsbad, CA), strychnine (Fisher Scientific, 

Pittsburgh, PA), and the glutamate-receptor drugs (CNQX, D-AP-5, and L-AP-4; 

Tocris Bioscience, Bristol, UK).  

Membrane current was amplified, continuously sampled at 10 kHz, and 

stored on a computer using a MultiClamp 700A amplifier, Digidata 1322A analog-

to-digital board, and pClamp 9 software (Molecular Devices, Sunnyvale, CA). 

Junction potential (–9 mV) was corrected in all cases. We wrote programs in 

Matlab (version 7; MathWorks, Natick, MA) to analyze light responses. We 

corrected for an error in the holding potential introduced by the series resistance. 

The corrected holding potential (Vh) was determined by the formula Vh = Vh_uncorr 

– (Ileak
 x RS x (1 – RS_correct)), where Vh_uncorr is the apparent (uncorrected) holding 

potential before the stimulus (in millivolts), Ileak is the leak current (in 

nanoamperes), RS is the series resistance (mean ± SD, 18 ± 6 MΩ; n = 109 

cells), and RS_correct is the series resistance compensation (typically 0.4). RS was 

stable over the recording period (15–57 min). Across cells, RS increased from 16 

± 4 to 21 ± 8 MΩ (mean ± SD) between the first and last recording used in the 

analysis (n = 109). We generally excluded cells from the analysis with RS > 35 

MΩ.  

Results are from 109 cells: 18 ON cells and 91 OFF cells. The zero-current 

potential, at which no current was required to clamp voltage, was –43.1 ± 0.9 mV 

for ON cells (mean ± SEM; n = 11) or –65.3 ± 0.4 mV for OFF cells (n = 38). The 

zero-current potential for a cell was determined from the x-intercept of the 

current–voltage (I–V) plot for the leak current. Below we refer to the zero-current 
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potential as the resting potential (Vrest), although this potential is determined 

partly by the composition of the pipette solution. For example, with sharp 

microelectrodes the resting potential of ON cells was approximately –59 mV 

(Zaghloul et al., 2003), whereas with the present pipette solution the zero-current 

potential for ON cells was more depolarized by 16 mV; this was probably 

caused in part by the potassium channel blockers in the pipette solution. 

 

Visual stimuli 

The stimulus was displayed on a miniature monochrome computer monitor 

(Lucivid MR1–103; MicroBrightField, Colchester, VT) projected through the top 

port of the microscope through a 4x objective and focused on the photoreceptors 

(resolution, 640 x 480 pixels; 60 Hz vertical refresh). The relationship between 

gun voltage and monitor intensity was linearized in software with a lookup table. 

Stimuli were programmed in Matlab as described previously (Brainard, 1997; 

Demb et al., 1999; Pelli, 1997). All stimuli were centered on the cell body.  

Cells were recorded in the superior retina, in which the cone distribution is 

95% M-cones and ~5% S-cones (Rohlich, van Veen, & Szel, 1994; Yin et al., 

2006). During recording, the cell was exposed to stimuli that fluctuated around a 

constant mean luminance. Light level is described as the isomerization rate per 

photopigment molecule (Rhodopsin, M-cone opsin, and S-cone opsin) s–1: PR*, 

PM*, and PS*. Photoisomerization rates were calculated based on the spectral 

output of the monitor, the intensity of the monitor (W/mm–2) at the plane of the 

retina, and the photoreceptor properties described by Yin et al. (2006). The 
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typical mean luminance evoked ~104 PR*, ~5 x 103 PM*, and ~5 x 102 PS*. Under 

these conditions, M-cones and rods contribute approximately equally to the light 

response, whereas S-cones contribute minimally (Yin et al., 2006 ). At this light 

level, rod contributions presumably arise through their gap junctions with cones 

(Bloomfield & Dacheux, 2001). In some cases, we decreased the light level by 

10-, 100-, or 1000-fold. At the two dimmest light levels (~5 x 101 or ~5 x 100 PM*; 

~102 or ~101 PR*), responses are driven by rods (Yin et al., 2006).  

The main protocol consisted of a spot (0.6 mm diameter) presented for 

200 ms alternating with 800 ms at mean luminance (i.e., 1 Hz presentation rate). 

Spot contrast was an increment (for ON cells) or decrement (for OFF cells) of 2.5, 

5, 10, or 80% of the mean luminance. In most conditions, responses were 

averaged over 12 repeats at 2.5 and 5% contrast and over six repeats at 10 and 

80% contrast. In the presence of CNQX, D-AP-5, and either strychnine or 

bicuculline, there were typically oscillations in the response, uncorrelated with the 

light stimulus, that were not blocked by further adding the nicotinic acetylcholine 

receptor antagonist D-tubocurarine (100 µM; n = 2 cells); thus, the oscillations 

apparently arose from residual glutamate responses or from inhibition. Under 

these conditions, 10% contrast spot responses were averaged over 300 repeats. 

These were compared with responses averaged over 100 repeats in the other 

conditions. 

Analysis 

We measured the inward current to a flash by averaging over 80 ms 

centered on the maximal response. Data are reported as mean ± SEM. Statistical 
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significance was determined using a paired t test unless otherwise indicated.  

Current responses to contrast flashes (see Figure 3.4B) were fit with the following 

equation (least-squares fit):  

 

where R(c) is the response at a given contrast level, c is stimulus contrast, Rmax 

is an asymptotic scale factor, n is the steepest slope of the contrast–response 

function, and c50 is the contrast gain (contrast that evokes the half-maximal 

current response) (Albrecht & Hamilton, 1982). 

For the conductance analysis, we analyzed the I–V plot for responses 

evoked at multiple holding potentials. The current responses at each contrast 

were fit with a line, and these data were then used to determine the excitatory 

and inhibitory conductances (gexcitation and ginhibition, respectively) according to the 

following equations (Borg-Graham, 2001; Taylor & Vaney, 2002):  

 

 

 

 

 

where Etotal is the reversal potential of the light-evoked response (x-intercept of 

the linear fit), gtotal
 is the total conductance (slope of the linear fit), and Eexcitation

 

and Einhibition are the excitatory and inhibitory reversal potentials, respectively.  
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The reversal potential for inhibitory synapses (Einhibition; i.e., Cl– reversal) 

was calculated as –67 mV. To test this calculation, we blocked synaptic 

transmission with CoCl2 (3 or 6 µM) and measured the reversal potential of the 

conductance evoked by adding the GABAA agonist muscimol (10 or 100 µM; 

Tocris Bioscience) to the bath. Before and after adding muscimol, we measured 

currents after stepping to several holding potentials around Vrest; the muscimol-

evoked conductance was measured by subtracting the two sets of current 

measurements. In some cases, TEA-Cl (10 mM) was added to the bath solution 

to block K+ channels. Adding CoCl2 and TEA-Cl to the Ames medium increased 

osmolarity by up to ~10% and shifted ECl slightly negative to that calculated for 

Ames medium alone. However, the reversal potential of the muscimol-evoked 

conductance was –2 ± 2 mV from the calculated ECl (n = 5 OFF cells, 1 ON cell), 

suggesting that the calculated ECl is appropriate for the conductance analysis 

used in this study.  

The conductance analysis also assumed that the I–V plots could be well fit 

by a straight line. At high contrast, however, many OFF cells showed a J-shaped 

I–V curve, suggesting the contribution of an NMDA conductance. For these 

responses, we analyzed conductance in the subset of cells in which there were at 

least three current measurements with Vhold positive to –40 mV, in which the 

nonlinearity associated with NMDA conductances would have minimal effect.   

 

Interpretation of I–V plots for light-evoked responses 
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To measure synaptic conductance, ganglion cell responses were 

measured at a series of holding potentials (Vhold values). Leak-subtracted 

response amplitude was plotted versus Vhold in an I–V plot, in which the slope 

indicates the total conductance evoked by the spot and the x-intercept indicates 

the associated reversal potential. In this case, the conductance and reversal 

potential for the spot response are likely to reflect not a single neurotransmitter 

conductance but rather the sum of two or more conductances in parallel. For 

example, if the response were mediated by a glutamate synapse in parallel with a 

"feedforward" inhibitory synapse (GABA or glycine), there would be an increase 

in two conductances (and a positive slope on the I–V plot) with a reversal 

potential between the reversals for the excitatory cation channels (0 mV) and the 

inhibitory receptor channels (–67 mV; see above). Thus, a reversal between 0 

and –67 mV is consistent with an increase in two conductances. If the response 

is instead mediated by a glutamate synapse in parallel with the withdrawal of an 

inhibitory synapse, there would be an increase in an excitatory conductance plus 

a decrease in an inhibitory conductance (disinhibition). The sum of these two 

influences would generate one of three possible patterns. First, if the magnitude 

of the excitation is greater than the magnitude of the disinhibition, the summed 

conductance would be positive and the reversal potential would be >0 mV. 

Second, if the magnitudes of the excitation and disinhibition are equal, the 

summed conductance would have a slope of zero with no reversal. Third, if the 

magnitude of the excitation is less than the magnitude of the disinhibition, the 

summed conductance would be negative with a reversal less than –67 mV.   
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Cell labeling and tissue fixation 

In a subset of cells from this study (n = 9), we analyzed dendritic 

morphology and stratification. These cells were combined with others recorded in 

related studies from our laboratory (n = 33). During whole-cell recording, Lucifer 

yellow in the pipette solution filled the dendritic tree of the cell. After recording, 

the tissue was fixed for 1 h in 4% paraformaldehyde (Electron Microscopy 

Sciences, Hatfield, PA) in 0.1 M PBS (Sigma) at room temperature and then 

stored in 0.1 M PBS at 2–8°C.   

 

Immunocytochemistry 

A purpose of filling ganglion cells was to determine their dendritic 

stratification in the inner plexiform layer (IPL) (Figure 3.1). The tissue was thus 

reacted with an antibody against Lucifer yellow to amplify the fluorescence in the 

dendritic tree. The retina was further stained with a nuclear dye to label cell 

bodies in the ganglion cell layer (GCL) and inner nuclear layer (INL); these cell 

layers define the boundaries of the IPL. Two IPL strata, corresponding to the 

dendrites of ON and OFF cholinergic (starburst) amacrine cells, were also 

labeled with an antibody against choline acetyltransferase (ChAT) to mark 

standard positions in the IPL (Yamada, Bordt, & Marshak, 2005; J. Zhang et al., 

2005).  

The fixed tissue was incubated for 1 h in 6% normal donkey serum (NDS) 

(Jackson ImmunoResearch, West Grove, PA) and 1% Triton X-100 (Sigma) in 
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0.05 M Tris-buffered saline (TBS) (Sigma) to permeabilize the tissue and block 

nonspecific immunolabeling. The tissue was rinsed for 5 min in 0.05 M TBS and 

then incubated overnight at 4°C in blocking buffer (2% NDS, 0.2% Triton X-100 in 

0.05 M TBS) plus goat anti-ChAT antibody (1:200 dilution; Millipore Bioscience 

Research Reagents, Temecula, CA) and rabbit anti-Lucifer yellow antibody 

(1:2000 dilution; Invitrogen). Next, the tissue was rinsed for 30 min in 0.05 M TBS 

and then incubated for 45 min in secondary antibody: donkey anti-goat bound to 

cyanine 3 (Cy3) (1:200 dilution; Jackson ImmunoResearch) and donkey anti-

rabbit bound to FITC (1:400 dilution; Jackson ImmunoResearch) in blocking 

buffer. The tissue was rinsed for 30 min in 0.05 M TBS and incubated for 30 min 

in 0.2% ToPro-3 iodide (Invitrogen) in 0.1 M PBS. The tissue was rinsed for 30 

min (0.1 M PBS) and subsequently mounted with Vectashield (Vector 

Laboratories, Burlingame, CA) and coverslipped. Glass spacers, made from 

coverslips (0.13–0.17 mm thick; Fisherbrand; Fisher Scientific, Hampton, NH), 

were inserted between the coverslip and slide, on opposite sides of the tissue, to 

prevent tissue compression. 

 

Confocal microscopy 

The retina was imaged with an Olympus FluoView 300 confocal 

microscope, and images were captured with FluoView software (Olympus). The 

dendritic field of a filled ganglion cell was captured with a through focal series (z-

stack) at 2 µm intervals with a 40x oil objective [numerical aperture (NA) 1.3] and 

projected onto a single plane. The dendritic field was larger than the field of view, 
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and so multiple projection images were assembled in Photoshop (Adobe 

Systems, San Jose, CA). In addition, one or two z-stacks were taken using a 60x 

oil objective (NA 1.4) at 0.5 µm intervals starting at the inner (vitreal) side of the 

GCL and ending within the middle of the INL. These z-stacks were used to 

determine dendrite position within the IPL. 

 

Morphological analysis 

A ganglion cell dendritic field diameter was measured by outlining the 

dendritic tree using Adobe Photoshop and software written in Matlab. We report 

dendritic tree diameter as the diameter of a circle with area equivalent to the 

polygon.  

Confocal z-stacks were analyzed with programs written in Matlab. 

FluoView software generated a z-stack for each fluorescent signal, the 

dimensions of which were 512 x 512 pixels (236 x 236 µm) in the x–y image 

plane and typically comprised 120–160 slices (60–80 µm) in the z dimension. 

The z-stacks were loaded into Matlab, and a projection of each fluorescent signal 

was displayed by averaging the stacks across the z-dimension for FITC (ganglion 

cell morphology) and Cy3 signals (ChAT labeling). We used custom Matlab 

programs to measure these signals, but other commercial software could be used 

instead (Yamada et al., 2005). For display purposes, the "levels" were adjusted 

in Adobe Photoshop to reduce noise; quantitative analysis, however, is based on 

raw data.  
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When inspecting the z-stacks, it was evident that the tissue was often 

warped. However, by analyzing a smaller area in the x–y dimension (100 x 100 

pixels; 46 x 46 µm), the effect of this distortion was minimized (Figure 3.2A). The 

user selected three to nine such small areas for analysis, and measurements 

were averaged over the analyses from these individual areas. Areas were 

selected over distal regions of the ganglion cell dendritic tree at which point the 

dendrites were well stratified. Within each region, the slices of interest were 

identified as follows. To identify slices centered on ChAT bands and ganglion cell 

dendrites, the fluorescent signals were plotted as a function of slice number 

(Figure 3.2A), and the user selected the approximate peaks of the Cy3 

fluorescence (ChAT bands) and the FITC fluorescence (ganglion cell dendrite). 

To identify slices at the IPL borders, the user viewed a z-stack of the Cy5 

fluorescences (ToPro-3-labeled nuclei) and selected the slice near the middle of 

the GCL and the slice at the IPL/INL border.  

Additional analysis localized the IPL/INL boundary more precisely. The 

user selected the x–y position of the central point of multiple cell bodies within the 

slice containing the initial cells on the vitreal (inner) side of the INL (Figure 3.2B). 

These central points included the nucleolus of a cell, which was typically the 

brightest region in the image. At each of these points, a 3 x 3 pixel (1.4 x 1.4 µm) 

region of interest ("boxed regions") was used to compute fluorescent ToPro-3 

signal as a function of slice number. These boxed regions encompassed an 

intense area of fluorescence in the most proximal (vitreal) layer of cells (by 

design) but only occasionally contained such a signal (by chance) in more distal 
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cell bodies. Thus, by summing the fluorescence across boxed regions, a sharp 

peak in fluorescence was generated at the first layer of cell bodies in the INL, i.e., 

those at the IPL/INL border (Figure 3.2A, dashed black line).  

The peak of each fluorescent signal was used to determine the percentage 

depths of dendrites within the IPL. Third-order polynomials were fitted (using 

standard fitting routines in Matlab) around the estimated fluorescent peaks 

associated with the GCL, ChAT bands, ganglion cell dendrites, and INL (Figure 

3.2A). Fits were made to six to eight points (3–4 µm) around the peak. The peak 

of the fitted line was used to define a given cellular or dendritic layer. The IPL 

width was calculated as the distance between the GCL and the INL peaks. Given 

the IPL width and GCL and INL positions, the positions of the ChAT bands and 

ganglion cell dendrites were expressed as a percentage depth through the IPL 

from 0% at the GCL/IPL border to 100% at the IPL/INL border. The IPL thickness 

was 38 ± 4 µm (mean ± SD; n = 42). Measured positions of ChAT bands showed 

variability (SD) across tissues of ~3% (see Results), which corresponds to ~1.2 

µm.  
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Chapter 4 

Multiple roles for NMDA receptors in early visual processing 

Summary 

AMPA- and NMDA-type glutamate receptors play unique and well-studied 

roles in brain areas involved with learning and memory, but their roles in sensory 

processing remain poorly understood.  Here, we investigated how AMPA and 

NMDA receptors contribute to visual processing in mammalian retinal ganglion 

cells under physiological conditions, in vitro. NMDA-mediated responses were 

present in multiple ganglion cell types but absent in one type, the ON Alpha cell. 

OFF Alpha and Delta cells used NMDA receptors for encoding different contrast 

ranges: the full range (Alpha), including near-threshold responses, versus a high 

range (Delta).  The Delta cell expressed the NR2B subunit, consistent with an 

extra-synaptic NMDA receptor location that is stimulated by glutamate spillover 

during high contrast. The contrast-independent role for NMDA receptors in OFF 

Alpha cells correlated with two circuit properties: high contrast sensitivity and low 

presynaptic basal glutamate release. 

 

Introduction 

Excitatory synaptic transmission in the CNS is mediated primarily by 

glutamate neurotransmission.  Glutamate is released from a presynaptic axon 
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terminal onto receptors on a postsynaptic dendrite.  Postsynaptic ionotropic 

glutamate receptors (iGluRs) can be divided primarily into two classes, AMPA 

and NMDA, which differ on a number of fundamental properties (for review, see 

(Dingledine et al., 1999; Erreger et al., 2004)). For example, AMPA receptors 

have fast kinetics (deactivation time of <3 ms), whereas NMDA receptors have 

slower kinetics (deactivation time of >30 ms).  Most types of AMPA receptor (i.e., 

depending on subunit composition) have low Ca2+ permeability, whereas NMDA 

receptors have high permeability.  Finally, the AMPA receptor mediates a 

voltage-independent cation conductance (over the physiological range), whereas 

the NMDA receptor mediates a voltage-dependent conductance that is blocked 

near the resting potential (Vrest) by extracellular Mg2+. 

AMPA and NMDA receptors are typically expressed by the same neuron 

where they play complementary roles in information processing.  For example, a 

hippocampal neuron’s AMPA and NMDA receptors together establish long-term 

changes in synaptic function.  Glutamate release evokes AMPA receptor-

mediated depolarization which, following relief of Mg2+ block, allows Ca2+ to flow 

through NMDA receptors and mediate long-term changes in synaptic efficacy 

(Malenka & Bear, 2004).  AMPA and NMDA receptors are also expressed in 

sensory neurons (Kwon, Nelson, Toth, & Sur, 1992; Myme, Sugino, Turrigiano, & 

Nelson, 2003; Nelson & Sur, 1992).  However, long-term changes in synaptic 

efficacy are not desirable in sensory circuits suggesting that NMDA receptors 

play some other role in information processing. 
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To investigate the roles of AMPA and NMDA receptors in sensory 

processing, we studied retinal ganglion cells, the output neurons of the retina. 

There are ~15 discrete types of ganglion cell that each collect inputs selectively 

from a subset of glutamatergic bipolar cells and other inhibitory and excitatory 

interneurons (amacrine cells) (Field & Chichilnisky, 2007; Masland, 2001; 

Wassle, 2004).  We studied here the role of NMDA receptors in visual processing 

by combining whole-cell recording of identified ganglion cell types in an intact 

mammalian retina under physiological conditions with synaptic inhibition intact.  

We developed a method to describe light-evoked conductances as the weighted 

sum of the underlying ligand-gated receptor conductances in order to 

characterize the NMDA receptor contribution to natural sensory stimulation. 

Many types of ganglion cell express NMDA receptors (E. D. Cohen, 2000; 

E. D. Cohen & Miller, 1994; Diamond & Copenhagen, 1993; Kalbaugh, Zhang, & 

Diamond, 2009; Manookin et al., 2008; Massey & Miller, 1990; Miller, 2008; 

Mittman, Taylor, & Copenhagen, 1990; Sagdullaev et al., 2006; J. Zhang & 

Diamond, 2009).  However, we report here that at least one type lacks the NMDA 

receptor; this lack of expression correlated with a high rate of presynaptic 

glutamate release.  In two other cell types, NMDA receptors were used to encode 

either the full range of visual contrast or only the high end of this range.  This 

difference in contrast coding corresponded to a difference in NR2B subunit 

expression and a difference in contrast sensitivity in the firing rate.  Thus, NMDA 

receptors play multiple functional roles in the retina, and the expression of the 
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receptor and specific subunits varies with specialized properties of the 

presynaptic circuitry. 

Results 

We measured responses to visual stimuli and NMDA application in a 

whole-mount preparation of the intact, in vitro guinea pig retina (see 

Experimental Procedures). Ganglion cells (n = 197) were recorded with patch 

electrodes (~3-5 MΩ). Targeting large cell bodies led to recordings of three 

ganglion cell types: ON Alpha, OFF Alpha and OFF Delta.  These types differ in 

their light-evoked conductance and in their dendritic tree stratification, as 

described previously (Manookin et al., 2008). Input resistance was 19±5 MΩ 

(mean±SD) (ON Alpha; n = 11), 26 ± 6 MΩ (OFF Alpha; n = 68) and 37±11 MΩ 

(OFF Delta; n = 29); series resistance across all recordings was 15±4 MΩ (n = 

171; compensated typically by 40%; see Experimental Procedures). We also 

recorded from a few other types of ganglion cell with smaller cell bodies.  In most 

cases, the morphology of these cells was analyzed as described previously to 

characterize dendritic tree stratification and diameter (Manookin et al., 2008).  

Results below are reported as mean±SEM. 

 

NMDA receptor-mediated conductance is present in multiple ganglion cell 

types but not in the ON Alpha cell 

We tested for the presence of NMDA receptors by recording the response 

to NMDA puffed directly onto ganglion cells.  The first goal was to test whether 

NMDA receptors were expressed by the three major cell types studied here.  The 
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second goal was to characterize the NMDA receptor current-voltage (I-V) 

relationship in intact cells so that we could later determine how these channels 

contributed to visual responses using a fitting procedure described below. 

Following an initial characterization of cell type, based on extracellular 

and/or whole-cell light-evoked responses (see Experimental Procedures), we 

recorded the NMDA puff response with synaptic transmission blocked or strongly 

attenuated.  To block synaptic transmission, we bath-applied the Ca2+ channel 

blocker Co2+ (6 mM) along with the NMDA receptor co-agonist glycine (6 mM) 

(Miller, 2008).  In another case, we made an extracellular ringer that included 

Cd2+ (1 mM) plus the co-agonists D-serine (200 µM) and glycine (6 mM; see 

Experimental Procedures) (Gustafson, Stevens, Wolosker, & Miller, 2007; 

Kalbaugh et al., 2009).  In a third case, we applied the L-type Ca2+ channel 

blocker isradipine (30 uM) plus D-serine (200 µM), glycine (6 mM) and 

antagonists to glycine receptors (strychnine, 2 µM), GABAA receptors 

(bicuculline, 100 µM) and AMPA/kainate receptors (DNQX, 50 µM).  In all three 

conditions, we tested for the presence of NMDA responses.  However, the 

quantitative analysis of NMDA responses was based on the third condition 

(isradipine plus receptor antagonists) because Co2+ and Cd2+ attenuate the 

NMDA response and Co2+ does so in a voltage-dependent manner (Ascher & 

Nowak, 1988). 

NMDA always evoked a response (i.e., current at Vhold = -40 ± 5 mV) in 

OFF Alpha cells (-256 ± 30 pA; n = 29) and OFF Delta cells (-121 ± 15 pA; n= 

14), and the I-V relationship showed the characteristic voltage-dependent ‘J-
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shaped’ conductance (Mayer, Westbrook, & Guthrie, 1984; Nowak, Bregestovski, 

Ascher, Herbet, & Prochiantz, 1984) (Figure 4.1A, B).  However, the ON Alpha 

cell showed no response to NMDA (-0.06 ± 1.9 pA; n = 6) (Figure 4.1C).  In 

separate recordings, we confirmed that ON Alpha cells responded to puffs of 

glycine or the GABAA agonist muscimol (data not shown), and thus it was 

possible to elicit puff-evoked agonist responses from these cells.  We conclude 

that ON Alpha cells do not express NMDA receptors. 

Previous work suggested that virtually all ganglion cells, including various 

ON cell types, express NMDA receptors (Sagdullaev et al., 2006; J. Zhang & 

Diamond, 2009), and so we tested further the presence of these receptors in 

other types of ON or ON-OFF cells.  In a sample of 10 cells with small cell bodies 

(10-20 µm diameter), every cell showed an NMDA-mediated response with the 

characteristic J-shaped conductance (-154 ± 49 pA at Vhold = -40 ± 5 mV).  Data 

from one example cell (an ON direction-selective cell; (Manookin et al., 2008)) 

are shown in Figure 4.1D.  While we have not tested exhaustively for the 

presence of NMDA receptors in all ~15 ganglion cell types, the collected results 

suggest multiple types express NMDA receptors but that at least one type does 

not. 
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Figure 4.1.  Most ganglion cell types express NMDA receptors.   
Puff-evoked application of NMDA generated a response in OFF Alpha (A), OFF 
Delta (B) and an ON direction-selective (DS) cell (D) but not in an ON Alpha cell 
(C).  Insets show responses at two Vholds (horizontal scale, 2 sec; vertical scale, 
200 pA).  Here and below Vholds of the traces are indicated within the figure.  Gray 
bar indicates sampling area. 
 

Population analysis generates robust ligand-gated receptor basis functions 

for evaluating light-evoked conductances 

A major goal of this work is to describe light-evoked responses as the 

weighted sum of the underlying ligand-gated receptor conductances.  This 

method was applied previously but only in cases where the total conductance 

was relatively linear and hence a major NMDA-component was not evident 

(Murphy & Rieke, 2006; Roska & Werblin, 2001; Taylor & Vaney, 2002; van Wyk, 

Taylor, & Vaney, 2006).  The ganglion cell AMPA receptor conductance is 

approximately linear and reverses at ~0 mV (Beaudoin, Manookin, & Demb, 

2008).  Below, we established similar conductance ‘basis functions’ for the other 
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major receptor classes: the inhibitory (GABA/glycine) receptors and the NMDA 

receptor. 

To measure the inhibitory receptor basis function, we blocked synaptic 

transmission with Co2+ (6 mM) and puffed glycine (200 µM) or muscimol (1 mM).  

These agonists evoked large outward currents as the membrane was stepped 

positive to ECl (-67 mV) (Figure 4.2A). However, upon return to the original Vhold, 

there was typically both an inward leak current and an inward agonist-evoked 

current (i.e., reversed in sign from the original response) (Figure 4.2B).  These 

results suggest a substantial change in the intracellular Cl- concentration during 

the Vholds positive to ECl.  We thus took a second approach to measure the 

inhibitory receptor basis function. 

We recorded the response to a brief negative contrast flash in an OFF cell 

in the presence of the NMDA receptor antagonist D-AP5 (100 µM).  Thus, the 

response was driven by a combination of AMPA and GABA/glycine receptors.  

Following the excitatory response to the flash, there was a ‘rebound’ response 

that comprised an inhibitory current plus the suppression of a basal excitatory 

current (i.e., an active resting AMPA conductance that was suppressed during 

the rebound); the sum of these two conductances results in a reversal potential 

negative to ECl.  With this protocol, responses at the beginning and upon the 

return to the original Vhold were relatively stable (Figure 4.2C).  We therefore used 

these measurements to characterize the inhibitory receptor basis function.  To do 

so, we subtracted from the rebound response a negative AMPA conductance 

and derived a GABA/glycine-mediated conductance (Figure 4.2D). 
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We performed a population analysis on the normalized inhibitory receptor 

conductance.  The conductance at each Vhold was determined by dividing the 

current amplitude by the driving force on chloride; measurements at Vhold’s within 

10 mV of ECl were excluded, as these produced spurious results.  The 

conductance-voltage (g-V) relationship was fit with an exponential function (see 

Experimental Procedures; Figure 4.2E).  The resulting fit was converted back to 

currents to generate the population I-V basis function for inhibitory receptors 

(Figure 4.2F).  The same procedure was used to generate the I-V basis function 

for inhibitory receptors of OFF Delta cells (Figure 4.2G).  

A similar procedure was used to generate the NMDA receptor basis 

function.  The puff-evoked NMDA responses described above (isradipine + 

receptor antagonists condition) generated I-V plots that typically reversed 

negative to 0 mV (OFF Alpha: -8.9 ± 1.9 mV, n = 14 cells; OFF Delta: -7.9 ± 1.5 

mV, n = 14 cells).  We assumed that the negative reversal was due to an 

unblocked feed-forward inhibition onto the cells.  [The reversal potential in the 

Co2+ or Cd2+ conditions, where synaptic transmission was blocked more 

completely, reversed closer to zero, at -5.3 ± 1.3 mV (n = 7 cells) and -1.2 ± 1.3 

mV (n = 8 cells), respectively.]  We thus subtracted the inhibitory receptor basis 

function described above to generate the NMDA response in each cell (Figure 

4.2H).  These were converted to conductance as described above and the 

population was fit (see Experimental Procedures; Figure 4.2I). Conductance was 

converted back to current to generate the population I-V basis functions for the 

NMDA response of both OFF Alpha and Delta cells (Figure 4.2J, K).   
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Figure 4.2. Generating robust basis functions for ligand-gated 
conductances. 
A, An OFF Alpha cell was stimulated with a glycine puff at several Vholds.  
Command voltages (inset) ranged from -65 to +60 mV (horizontal scale, 10 sec).  
B, Leak-subtracted traces from A at three Vholds.  The blue and red traces were 
recorded at identical command voltages at the beginning (blue) and end (red) of 
the voltage steps.  The difference in actual Vhold reflects the correction for the 
series resistance (see Experimental Procedures). 
C, An OFF Alpha cell was stimulated with a 100%-contrast dark flash with NMDA 
receptors blocked (D-AP5, 100 µM).  The response was measured 50 ms after 
the peak rebound current (window size, 20 ms). 
D, Current-voltage plot of the responses in C. A putative negative conductance 
was subtracted (magenta) to force the chloride current through the calculated ECl.   
E, The conductance was calculated as a function of Vhold for 15 OFF Alpha cells.  
Each symbol represents the conductance of a cell.   
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F, The current-voltage relationship for the same cells generally showed mild 
rectification that deviated from a linear conductance.  A function was fit to the 
data and was used as the GABA/glycine basis function (black solid line).   
G, Same format at F. for OFF Delta cells (n = 6).   
H, NMDA was puffed onto an OFF Alpha cell at several Vholds.  The puff evoked 
an NMDA conductance (black).  A putative inhibitory conductance (green) was 
subtracted to force the NMDA current through Ecation (orange).   
I, The conductance-voltage relationship was calculated from the puffing data and 
normalized to a 1-nS peak conductance.  The responses were fitted with a 
function (black line).   
J, The current-voltage relationship in the same cells (n = 12 OFF alpha cells).  
The fitted line (black) was calculated using the function in I.   
K, Same as J. for OFF Delta cells. 
 

 

Light-evoked responses can be modeled with three ligand-gated receptor 

basis functions under physiological conditions 

To characterize the role of NMDA receptors in light-evoked responses, we 

fit I-V plots with the weighted sum of three ligand-gated receptor basis functions 

(Figure 4.3C).  A cell was presented with a 200-ms decrement from the mean 

luminance (contrast, -50%; spot diameter, 0.2 mm; Figure 4.3A1).  The I-V 

relationship for the excitatory portion of the response showed a J-shaped 

conductance (Figure 4.3B1), which was well fit by the weighted sum of the three 

basis functions (Figure 4.3C).  We tested the validity of the fit by recording the 

same response with NMDA receptors blocked (D-AP5, 100 µM) (Figure 4.3A2).  

Under this condition, the I-V relationship became more linear (Figure 4.3B2), and 

consequently the fitted NMDA component declined (Figure 4.3D).  The drug no 

doubt had effects throughout the retinal network, and so it is not surprising that 

the AMPA and GABA/glycine components changed somewhat as well. 
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We performed additional validation experiments, using D-AP5, across 

multiple cells and contrast conditions (Figure 4.3E, F).  In both OFF Alpha and 

Delta cells, and across three contrasts, D-AP5 suppressed the NMDA component 

with good selectivity. NMDA receptors contributed to OFF Alpha cell responses 

at each contrast (Figure 4.3E1), and the NMDA-receptor component was 

suppressed by D-AP5 (Figure 4.3E2; 25%, control: 2.8 ±0.7 nS, D-AP5: -0.1 ± 0.3 

nS;  50%, control: 3.8 ± 1.0 nS, D-AP5: -0.3 ± 0.2 nS;  100%, control: 4.4 ± 1.3 

nS, D-AP5: -0.5 ± 0.3 nS;  p < 0.005 in all cases, paired t-test; n =10 cells).  OFF 

Delta cells displayed a negligible NMDA-receptor conductance to the -25% 

contrast flash (conductance, 0.14 ± 0.24 nS; p > 0.3; n = 5 cells; Figure 4.3F1).  

However, an NMDA-receptor component was observed at the two highest 

contrasts, and this conductance was suppressed in the presence of D-AP5 (-

50%, control: 0.8 ± 0.4 nS, D-AP5: 0.2 ± 0.4 nS; -100%, control: 1.8 ± 0.3 nS, D-

AP5: 0.2 ± 0.3 nS; p < 0.05 for both contrasts; n = 5 cells; Figure 4.3F).  These 

contrast-dependent conductances are analyzed further below in a larger 

population of cells.  Here and below, the reported NMDA conductance for light 

responses represents the conductance at -62 mV, near Vrest for OFF Alpha and 

Delta cells; the NMDA conductance increases substantially at more depolarized 

potentials (Figure 4.2I). 

The response to NMDA puffing suggested that ON Alpha cells lack NMDA 

receptors, and light-evoked responses supported this conclusion.  The ON cell’s 

I-V relationship for the excitatory response to positive contrasts was relatively 

linear (Figure 4.3G), and the fit lacked an NMDA component across several 
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contrasts (Figure 4.3H).  For negative contrasts, ON Alpha cells showed a 

negative AMPA component, consistent with a high tonic level of AMPA receptor 

activity that can decrease substantially to negative contrast (Manookin et al., 

2008; Murphy & Rieke, 2006; Pang et al., 2003; Trong & Rieke, 2008; Zaghloul 

et al., 2003). Thus, the lack of an NMDA component in the ON Alpha cell’s light 

response correlated with an apparently high basal rate of glutamate release. 
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Figure 4.3.   
A, In an OFF Alpha cell, a dark flash (contrast, -50%) evoked large current 
responses under control conditions (A1) and with NMDA receptors blocked (A2).   
B, Current-voltage plots for the cell in A.  The I-V plot was J-shaped under 
control conditions (B1) but became linear in the presence of the NMDA-receptor 
antagonist (B2).   
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C, Visual responses were modeled as the sum of three ligand-gated 
conductances.   
D, The model estimated the conductances in B (control, white bars; D-AP5, gray 
bars).    
E, The three ligand-gated conductances as a function of contrast (n = 10 OFF α 
cells).  The NMDA-receptor conductance (green; E1) was suppressed in the 
presence of D-AP5 (E2).   
F, Same as E. for OFF Delta cells.  
G, An ON Alpha cell was presented a bright flash (inset; contrast, +100%; 
diameter, 0.5 mm; horizontal scale, 200 ms; vertical scale, 1 nA).  The I-V plot 
was relatively linear. 
H, ON Alpha cell conductance was explained by  an AMPA conductance plus 
feedforward inhibition, with effectively no NMDA component (n = 11 cells). 
 

NMDA receptors contribute to low-contrast responses in OFF Alpha cells 

Results in Figure 4.3 (parts E1, F1) suggested that OFF Alpha cells but 

not Delta cells have a prominent NMDA receptor contribution to responses at 

25% contrast.  We tested further the contrast sensitivity of the NMDA 

conductance in a larger set of cells and expanded the analysis to a lower 

contrast range.  To achieve good signal-to-noise without evoking excessively 

large responses (i.e., to prevent errors in Vhold; see Experimental Procedures), 

spot diameter was either 0.2 mm (25-100% contrast) or 0.4 mm (3-12% 

contrast). 

At low contrast, OFF Alpha cells showed a J-shaped I-V relationship that 

reversed positive to 0 mV (Figure 4.4A1).  The response could be modeled as a 

combination of a mixed AMPA/NMDA conductance and the removal of inhibition 

(or ‘disinhibition’; Manookin et al., 2008).  The disinhibition was smaller than in 

previous measurements using a larger spot size (0.6-mm diameter; Manookin et 

al., 2008).  At higher contrast levels, there was again a mixed AMPA/NMDA 

conductance but the inhibitory conductance became positive (Figure 4.4B1). The 
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total inhibition onto the OFF Alpha cell comprises a mix of disinhibition, which we 

previously showed was glycinergic (Manookin et al., 2008), and a feed-forward 

inhibition, which we show below is GABAergic.  The relative weight of these two 

sources of inhibition depended on the spot size (as well as contrast).  

Specifically, the feed-forward inhibition became relatively large with small spot 

stimuli; however, we did not quantify this size-dependence further.  The NMDA 

component persisted at all contrast levels, including the lowest level (contrast, 

3%) (Figure 4.4A2).  This contrast approximates the threshold for OFF Alpha 

cells, suggesting that NMDA receptors contribute to minimal levels of excitatory 

stimulation (Dhingra et al., 2003). 

A similar analysis in OFF Delta cells suggested that NMDA receptors do 

not contribute at ~25% contrast or below (Figure 4.4C2, D2).  Rather, the 

response at lower contrasts combined AMPA and disinhibitory conductances 

(Figure 4.4C, D).  At high contrast, the mix of three conductances resulted in a 

‘U-shaped’ I-V relationship (Figure 4.4D1), whereas at low contrast, there was a 

relatively linear negative conductance (Figure 4.4C1).  We conclude that OFF 

Alpha and Delta cells use NMDA receptors over different contrast ranges: the full 

range (Alpha) versus a high range (Delta). 

To investigate the time-course of the three conductances, we fitted data 

over time and averaged across cells (Figure 4.4E-H; see Experimental 

Procedures).  For the OFF Alpha cells at all contrasts, and for the OFF Delta 

cells at high contrast, the time course of the AMPA and NMDA conductances 

were similar.  Thus, it was not the case that the AMPA and NMDA components 
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served separate transient versus sustained components of the response, as in 

salamander ganglion cells (recorded with inhibition blocked)  (Diamond & 

Copenhagen, 1993; Mittman et al., 1990; Taylor, Chen, & Copenhagen, 1995). 
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Figure 4.4.  NMDA receptors contribute to different ranges of contrast 
coding in two OFF ganglion cell types. 
A1-D1, Contrast responses at stated Vholds and I-V plots for OFF Alpha (A1, B1) 
and OFF Delta cells (C1, D1).  Lines show fitted response based on basis 
functions.  (Insets, horizontal scale: 200ms. Vertical scale: 1 nA for A1 and B1; 
100 pA for C1; 500 pA for D1.) Spot size was 0.4-mm dia. for low contrast (A1, 
C1) and 0.2-mm dia. for high contrast (B1, D1). 
A2-D2, Fitted conductances as a function of contrast. 
E-H, Time course of fitted conductances at each contrast for the two cell types. 
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NMDA receptors in OFF Alpha cells are driven by minimal spatial 

stimulation 

The 3% contrast responses in OFF Alpha cells suggested a role for NMDA 

receptors in encoding minimal excitatory stimulation.  We tested this further using 

a minimal spatial stimulus: a small square (25 x 25 µm) about the size of a 

presynaptic bipolar cell’s dendritic tree. These trees are ~30-50 µm diameter, 

although the receptive field size is larger: ~50-100 µm diameter (Berntson & 

Taylor, 2000; D. Dacey et al., 2000; Wassle, Puller, Muller, & Haverkamp, 2009; 

A. J. Zhang & Wu, 2009).  Thus, the stimulus should excite one or a small 

number of bipolar cells.  Generating responses with adequate signal-to-noise, 

even after averaging (14 repeats at each Vhold), required a high contrast (-100%). 

An OFF Alpha cell’s response to the square stimulus is shown in Figure 

4.5A. The response at each Vhold differed significantly from zero (p < 0.05, paired 

t-test) for all but the one Vhold (-15 mV) near the reversal potential for the 

response.  In 10 out of  22 cells, flash responses were significantly different from 

zero for at least six of eight Vholds, and in these cells the stimulus evoked 

significant (p < 0.05) AMPA, NMDA and GABA/glycine receptor conductances 

(Figure 4.5B).  Because the response was relatively noisy, we performed a 

control analysis of a later period (700 ms following stimulus presentation); this 

control response yielded small conductances close to zero (<0.1 nS) (Figure 

4.5C). We conclude that NMDA receptors are recruited by minimal spatial 

stimulation in OFF Alpha cells suggesting that activity at a small number of 

synapses activates these receptors. 
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Figure 4.5.  NMDA receptors are activated in OFF Alpha cells by minimal spatial 
stimulation.   
A. A 25 x 25 um square at high contrast (-100%) evoked an excitatory response 
with an NMDA component.  I-V plot shows response during peak excitation and 
during a later control time interval (700 ms after stimulus onset). Inset; horizontal 
scale, 200 ms; vertical scale, 100 pA).   
B, The average response comprised three ligand-gated conductances.   
C, The response in the control interval was minimal. 
 

Blocking inhibition increases presynaptic basal glutamate release and 

obscures the NMDA component of the contrast response. 

Studies in salamander demonstrated both an AMPA and NMDA 

component to the light response after blocking synaptic inhibition (Diamond & 

Copenhagen, 1993; Mittman et al., 1990; Taylor, Mittman, & Copenhagen, 1996).  

We recorded under similar conditions here in OFF Alpha cells to study excitatory 

receptors in relative isolation. A major source of inhibition onto OFF Alpha cells 

comes from the AII amacrine cell, a glycinergic interneuron that plays a role in 

both dark- and light-adapted conditions (Bloomfield & Dacheux, 2001; Manookin 

et al., 2008; Murphy & Rieke, 2008; van Wyk, Wassle, & Taylor, 2009).  The AII 
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cell is driven by the ON pathway, and ON bipolar cells hyperpolarize in the 

presence of L-AP4, an agonist of the mGluR6 receptor which resides on ON 

bipolar dendrites and causes cation channel closure (Nakajima et al., 1993; 

Slaughter & Miller, 1981).  We thus applied L-AP4 (50 µM) plus the GABAA 

antagonist bicuculline (100 µM) to block much of the direct inhibition onto the 

ganglion cell (Fletcher, Koulen, & Wassle, 1998; Koulen et al., 1997; Wassle, 

Koulen, Brandstatter, Fletcher, & Becker, 1998). 

The combination of L-AP4 and bicuculline affected both the spontaneous 

and light-evoked synaptic conductances.  During recordings at the mean 

luminance, the inward leak current at ECl increased from -85 ± 32 pA to -366 ± 59 

pA (n = 6; p < 0.005; paired t-test).  Furthermore, the drugs blocked both the 

feed-forward inhibitory current at stimulus onset (contrast: -50%) and the 

subsequent inhibitory rebound (Figure 4.6A1, B1).  The feed-forward inhibition is 

not blocked by L-AP-4 alone (Manookin et al., 2008), suggesting that here it was 

blocked by bicuculline and is therefore mediated by GABAA receptors. 

Across several contrasts, the drugs suppressed the fitted inhibitory 

component of the I-V plot (p < 0.05 at each contrast level).  Unexpectedly, the 

drugs also suppressed the NMDA component (p < 0.05 at each contrast level) 

(Figure 4.6A2, B2).  We reasoned that, in the presence of the drugs, the 

increased excitatory leak current resulted from a substantial increase in basal 

glutamate release.  To estimate the change in basal release, we measured under 

control conditions the outward current at ECl during the ‘rebound’ response when 

glutamate release is temporarily suppressed (+180 ± 64 pA, n = 6). The 
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difference between this value and the leak under control conditions suggests that 

the inward current due to basal release was ~265 pA.  The increased leak 

current during the drug condition was about double this value, ~546 pA, 

suggesting that basal release increased roughly two-fold in the presence of the 

drugs. It is possible that under these conditions, the NMDA receptors become 

continuously active, because their long time constant would not allow recovery 

between release events resulting in a continual stimulation at baseline (see 

Discussion). 

To test this idea, we suppressed glutamate release onto the OFF ganglion 

cell by presenting a light flash (+100% contrast).  In some cells, there was a clear 

inverted J-shaped function (Figure 4.6C1) indicating the block of baseline NMDA-

receptor activity.  Across cells, the light flash caused a negative AMPA and 

NMDA conductance combined with an inhibitory conductance that reflects 

inhibition that was not completely blocked under this drug condition (Figure 

4.6C2).  We conclude that suppressing synaptic inhibition with drugs alters the 

NMDA component of the light response by increasing the basal release of 

glutamate; this increase results in apparent saturation of the NMDA receptor and 

thereby attenuates the NMDA component of the excitatory contrast response 

(see Discussion). 
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Figure 4.6.  Increasing presynaptic glutamate release suppressed evoked 
NMDA-receptor responses.  
A, An OFF Alpha cell was presented with dark flash (contrast, -50%).  The flash 
evoked an inward current near the chloride reversal and an outward current 
positive to zero mV (A1, inset; horizontal scale, 200 ms; vertical scale, 1000 pA).  
The flash caused a J-shaped conductance (A1).  Flashes of three different 
contrasts were presented to OFF Alpha cells (A2; n = 6 cells).  The flashes 
produced a large NMDA-receptor conductance and a net feed-forward inhibition 
(x-axis, flash contrast; y-axis, conductance).  
B, In the same cell (A), we presented the stimulus in the presence of bath-
applied L-AP4 and bicuculline.  Current responses were suppressed and the 
overall conductance because linear (B1).  Across cells, both the NMDA-receptor-
mediated and inhibitory conductances were strongly suppressed (B2). 
C, An OFF Alpha cell was presented with a bright flash (contrast, +100%; 
duration, 200 ms; diameter, 0.2 mm) in the presence of L-AP4 and bicuculline.  
The current responses were outward at -61 mV and inward at +35 mV (C1, inset; 
horizontal scale, 200 ms; vertical scale, 500 pA).  The evoked conductance had 
an inverted J-shape, indicating a removal of excitation (C1).  Across cells, the 
flash induced a removal of an AMPA-receptor and NMDA-receptor conductance 
and an increased inhibitory conductance (C2; n = 11 cells). 
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OFF Delta cells express NMDA receptors comprised of the NR2B subunit 

The NMDA receptor is a heterotetramer comprised of two NR1 subunits 

and two other subunits (NR2 and/or NR3).  Four subtypes of NR2 subunits exist 

(A, B, C, and D) and each of these subtypes confers distinct properties (Erreger 

et al., 2004; Monyer et al., 1992).  Each NR2 subtype is expressed in the retina 

at some stage of development (Kalloniatis et al., 2004).  At maturity, NR2A-

containing receptors were localized to the synapse with AMPA receptors, 

whereas NR2B subunits were localized outside the synapse (J. Zhang & 

Diamond, 2009).  Furthermore, NMDA receptors were typically localized at the 

synapse in OFF ganglion cells but outside the synapse in ON cells (Sagdullaev 

et al., 2006; J. Zhang & Diamond, 2009). 

We tested for the presence of NR2B subunits in OFF cell responses by 

applying ifenprodil (10 µM), which has a >400-fold higher affinity for NMDA 

receptors comprised of NR2B subunits compared to those comprised of NR2A 

subunits (Williams, 1993).  Puffing NMDA onto an OFF Alpha cell in the presence 

of bath-applied ifenprodil did not suppress the response (i.e., NMDA 

conductance at -62 mV) relative to baseline (control, 7.7 ± 2.2 nS; drug, 7.8 ± 2.2 

nS; n = 7 cells; p > 0.4; paired t-test) (Figure 4.7A, C).  However, the puff 

response in an OFF Delta cell was strongly suppressed (control, 4.8 ± 0.4 nS; 

drug, 0.19 ± 0.09 nS; n = 7 cells; p < 0.001; paired t-test) (Figure 4.7B, C).  In two 

additional OFF Delta cells, the current evoked by the NMDA puff (Vhold = ~-40 

mV) was monitored continuously while applying ifenprodil and then washing it 

out; the block by ifenprodil was partially reversible (Figure 4.7D).  
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We next determined whether NR2B subunits contributed to the NMDA 

component of visual responses by presenting negative contrast in the presence 

of ifenprodil.  In an OFF Alpha cell, a -50% contrast spot evoked a J-shaped 

conductance that largely persisted in the presence of ifenprodil (Figure 4.7E).  

Across cells, the fitted NMDA conductance declined slightly (control 5.4 ± 0.9 nS; 

ifenprodil, 4.8 ± 0.8 nS; p > 0.15; n = 7 cells) (Figure 4.7G).  In an OFF Delta cell, 

a -50% contrast spot evoked a U-shaped conductance that was converted to a 

negative conductance (disinhibition) in the presence of ifenprodil (Figure 4.7F). 

Across cells, the NMDA conductance declined significantly in the presence of the 

drug (control 1.2 ± 0.4 nS; ifenprodil, -0.3 ± 0.09 nS; p < 0.01; n = 6 cells) (Figure 

4.7G).  Both NMDA puffing and light response measurements suggest that NR2B 

subunits explain the majority of the NMDA-mediated response in OFF Delta cells 

but not OFF Alpha cells. 
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Figure 4.7.  Distinct NMDA receptor subtypes contribute to OFF Alpha and Delta 
cell responses.   
A, NMDA was puffed onto an OFF Alpha cell under control conditions (A1) and 
with NR2B subunits inhibited (ifenprodil; A2). Puff responses (inset; horizontal 
scale, 2 sec; vertical scale, 1000 pA) were also similar between conditions.   
B, Ifenprodil suppressed the NMDA conductance in an OFF Delta cell (B2) 
compared to control (B1) (inset; horizontal scale, 2 sec; vertical scale, 1000 pA), 
suggesting expression of NR2B subunits. 
C, Puff-evoked NMDA conductances for OFF Alpha (orange circles) and OFF 
Delta cells (green squares) under control conditions (x-axis) and in the presence 
of ifenprodil (y-axis).  
D, Puff-evoked NMDA currents (Vhold, -40 mV) for two OFF Delta cells under 
control conditions (blue), in the presence of ifenprodil (green), and after washing 
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out ifenprodil (red). Responses for a single cell (inset; horizontal scale, 2 sec; 
vertical scale, 100 pA) show the average of six puffs. 
E, An OFF Alpha cell was presented with a dark flash (contrast, -50%; duration, 
200 ms; diameter, 0.2 mm).  The flash elicited an inward current at -70 mV and 
an outward current positive to 0 mV (inset; horizontal scale, 200 ms; vertical 
scale, 1000 pA) under control (D1) and drug (D2) conditions.   
F, An OFF Delta cell was presented with a dark flash (contrast, -100%; duration, 
200 ms; diameter, 0.2 mm).  The transient component of the response (inset, 
shaded area; horizontal scale, 200 ms; vertical scale, 100 pA) showed a 
relatively linear I-V relationship (i.e., primarily disinhibition) in the presence of 
ifenprodil.   
G, The visually-evoked NMDA conductances for OFF �  and OFF �  cells under 
control (x-axis) and in the presence of ifenprodil (y-axis).  
H, The extracellular (spike) contrast-response curves for OFF Alpha (orange 
circles; n = 16) and Delta (green squares; n = 8) cells show the spike rate (y-axis) 
as a function of contrast (x-axis). 
 

OFF Alpha and Delta cells show different degrees of contrast sensitivity in 

the firing response 

We asked how the differences between OFF Alpha and Delta cells in their 

NMDA receptor function and subunit expression correlate with firing properties.  

Using loose-patch extracellular recordings, cells were stimulated with a spot 

stimulus (0.4-mm diameter) at various negative contrast levels (Figure 4.7H).  

OFF Alpha cells showed a relatively high gain at low contrast, as shown 

previously with a similar stimulus; responses then saturated above ~30% (Demb 

et al., 2004; Manookin et al., 2008).  OFF Delta cells, by comparison, had a 

relatively low contrast gain with a roughly linear relationship between contrast 

and firing rate.  Thus, the OFF Alpha cell’s use of NMDA receptors to encode the 

full contrast range correlated with a relatively high gain in the firing response. 
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Discussion 

The results of this study show three ways in which ganglion cells encode 

contrast using iGluRs.  ON Alpha cells lacked NMDA receptors and encoded 

contrast using only AMPA receptors (Figure 4.1, 3H).  OFF Alpha cells 

expressed both AMPA and NMDA receptors and used both to encode the full 

contrast range (Figure 4.1, 3, 4).  OFF Delta cells expressed both AMPA and 

NMDA receptors but used NMDA receptors only for the high contrast range 

(Figure 4.1, 3, 4).   

The difference between the OFF Alpha and Delta cell NMDA-receptor-

mediated responses suggests a possible difference in the receptor location 

(Figure 4.8A).  Results suggest that OFF Alpha cells have NMDA receptors at 

the synapse, in which case the AMPA and NMDA receptors would experience 

stimulation at similar levels of contrast across the full range; whereas OFF Delta 

cells have NMDA receptors at an extrasynaptic location, in which case, the 

AMPA receptors would be stimulated across the full contrast range but NMDA 

receptors would be stimulated only at high contrast, when release spills over to 

extrasynaptic sites. 

Spontaneous responses (i.e., mini EPSCs) from unknown types of OFF 

ganglion cells showed an NMDA-receptor component (Sagdullaev et al., 2006; J. 

Zhang & Diamond, 2009).  These data are consistent with the OFF Alpha cell 

recordings to minimal contrast or spatial stimulation (Figures 4, 5), suggesting a 

synaptic location of the receptor.  Recordings from unknown types of ON cells 
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and some OFF cells showed minis that were mediated exclusively by AMPA 

receptors, whereas evoked responses were mediated by both AMPA and NMDA 

receptors (Chen & Diamond, 2002; Kalbaugh et al., 2009; Matsui, Hosoi, & 

Tachibana, 1998; Mittman et al., 1990; Sagdullaev et al., 2006).  These data are 

consistent with the OFF Delta cell recordings, where high rates of release (i.e., at 

high contrast) were required to generate an NMDA component to the response. 

The apparent difference in location of NMDA receptors in OFF Alpha and 

Delta cells corresponded to a difference in NR2 subunit expression: the OFF 

Delta cell alone showed an NR2B component to the response (i.e., blocked by 

ifenprodil).  The NR2B subunit is found primarily at extrasynaptic sites (J. Zhang 

& Diamond, 2009).  Extrasynaptic NMDA receptors are found more commonly in 

ON ganglion cells, but they are found also in some OFF cells (J. Zhang & 

Diamond, 2009).  Some OFF cells showed a mix of synaptic NR2A and 

extrasynaptic NR2B subunits in the same cell (J. Zhang & Diamond, 2009).  Our 

results suggest that some OFF cell types have near exclusive (or dominant) 

expression of only one of these configurations. 

Given that most mammalian ON ganglion cell types express the NMDA 

receptor (E. D. Cohen, 1998, 2000; Kalbaugh et al., 2009; Massey & Miller, 1988; 

Sagdullaev et al., 2006; J. Zhang & Diamond, 2009), it was surprising that the 

ON Alpha cell did not (Figures 1, 3).  However, an in vivo study of the cat eye 

supports this conclusion: ON Y/Alpha cells (in the presence of bicuculline) did not 

respond to NMDA application ((Boos, Muller, & Wassle, 1990); but see (E. D. 

Cohen et al., 1994)).  Furthermore, only a fraction of dissociated ganglion cells 
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(of unknown types) showed an NMDA response, suggesting that NMDA receptor 

expression is not uniform across cell types (Aizenman, Frosch, & Lipton, 1988; 

Karschin, Aizenman, & Lipton, 1988).   

The lack of NMDA receptors in ON Alpha cells might be explained by the 

tonic rate of their presynaptic glutamate release. Recordings here and elsewhere 

suggest that the rate of glutamate release onto the ON Alpha cell is relatively 

high (Figure 4.3) (Murphy & Rieke, 2006; Trong & Rieke, 2008; Zaghloul et al., 

2003).  The exact rate is unknown.  However, the number of glutamate receptors 

on ON and OFF Alpha cells is similar and so the relatively high tonic level of 

excitatory activity in the ON cell must correspond to a relatively high rate of basal 

release at each synapse (Xu, Vasudeva, Vardi, Sterling, & Freed, 2008).  The 

high rate of glutamate release could saturate an NMDA receptor, rendering it 

useless for encoding increases above the basal rate.  To illustrate the impact of 

basal release on AMPA versus NMDA receptors, we performed a simulation. 
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Figure 4.8  
A, Model for AMPA and NMDA receptor expression in ON Alpha, OFF Alpha, 
and OFF Delta cells. OFF Delta cells alone express extrasynaptic NR2B-
containing NMDA receptors. 
B, Computational model of iGluR glutamate dose-response relationship.  
Presynaptic glutamate release was modeled as an instantaneous rise to a 
glutamate concentration followed by an exponential decay (τ = 1.2 ms).  Single-
channel responses from an NR2A-containing NMDA receptor (red) show current 
response to a 1 mM glutamate pulse.  NMDA receptors showed greater 
sensitivity to glutamate than AMPA receptors, responding at lower glutamate 
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concentrations.  NMDA receptors also saturated at lower glutamate 
concentrations than AMPA receptors. 
C, Trains of glutamate pulses were presented at several baseline rates followed 
by a 200-ms increase in release rate.  NR1/NR2A receptors responded to the 10-
Hz increase from baseline with an inward current.  The magnitude of the inward 
current was similar for the 0-Hz (cyan) and 10-Hz (green) backgrounds, but the 
increase relative to baseline was larger for the condition with low basal release. 
D, Glutamate release trains were simulated for four iGluRs (peak molarity, 1 
mM).  The background release rate strongly influenced the ability of receptors to 
respond to a subsequent increase in glutamate concentration.  The one 
exception, the non-desensitizing AMPA receptor, responded linearly across all 
conditions. 
E, The trains were presented at a lower peak glutamate concentration (0.1 mM) 
to simulate conditions with lower open probability of single channels.  Under this 
condition, iGluRs showed a more linear response and larger operating range. 
 

 

Glutamate receptor models show how high basal glutamate release can 

saturate responses and obscure contrast coding 

In the simulation, release was random (Poisson; (Freed, 2000a, 2000b)) 

and increased in rate from zero to 40 Hz (Figure 4.8B); this range is consistent 

with the estimated range for ribbon synapses (DeVries, Li, & Saszik, 2006; 

Freed, 2000a, 2000b; Jackman et al., 2009; Singer, 2007; Singer et al., 2004).  

For simplicity, release events were modeled by exponential functions: 

instantaneous steps to a non-zero glutamate Molarity followed by a return to 

baseline with a time constant of 1.2 ms (Clements, Lester, Tong, Jahr, & 

Westbrook, 1992) (Figure 4.8B).  Responses were modeled by summing across 

receptors (20 receptors/synapse) and synapses (50, total).  Realistic single 

channel properties were based on published reports of an AMPA receptor with or 

without desensitization (i.e., in the absence or presence of cyclothiazide; 

(Dzubay & Jahr, 1999)), and NMDA receptors composed of the NR2A subunit 
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(Erreger et al., 2005) or NR2B subunit (Banke, Dravid, & Traynelis, 2005).  The 

response time course and open probability for a single event are shown in Figure 

4.8B. 

We simulated the response to a contrast flash by increasing the release 

rate for 200 ms above a baseline level.  The increment values were 5-40 Hz 

above the baseline values of 0-20 Hz (Figure 4.8C, D).  Following the increment, 

the release was set to zero for 300 ms, which mimicked the apparent drop in 

release during the ‘rebound’ response.  Increasing the release from the baseline 

level evoked an increase in inward current, but the gain (i.e., slope) of this 

increase depended strongly on the receptor type and the baseline release rate 

(Figure 4.8D).  The non-desensitizing AMPA receptor, as expected, simply 

summed the events and so behaved linearly in all cases.  For low baseline 

release rates (0 or 2 Hz), the desensitizing AMPA receptor and both NMDA 

receptors showed high gain for small increments (5-10 Hz) and saturation for 

large increments (20-40 Hz).  For high baseline release rates (10 or 20 Hz), 

these three receptors all showed low gain across the full increment range or were 

saturated.  We re-ran all models given a lower peak concentration in synaptic 

glutamate (0.1 mM), which effectively lowers the open probability of the channels 

and thus reduces the rate of receptor desensitization of individual channels 

(Figure 4.8E).  This manipulation reduced response saturation across all models 

and conditions. 

We draw several conclusions from the model.  First, the saturation of the 

NMDA receptor component in the OFF Alpha cell response in the presence of 
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high basal release (L-AP4 + bicuculline condition, Figure 4.6) could be explained 

by the properties of the NMDA receptor (Figure 4.8D).  Second, the OFF Alpha 

cell’s ability to respond in the presence of high basal release with an AMPA 

receptor component suggests that these receptors are not strongly desensitizing 

(Figure 4.8D).  Furthermore, the ON Alpha cell’s ability to respond under control 

conditions in the presence of a high basal release of glutamate also suggests the 

use of a non-desensitizing AMPA receptor (Figure 4.3H). 

OFF bipolar cells must also encode changes from a high basal release 

rate (i.e., ~20-40 Hz) (DeVries et al., 2006; Jackman et al., 2009; Singer, 2007; 

Singer et al., 2004) and apparently do so using several strategies.  First, they do 

not employ NMDA receptors (Hartveit, 1997), which would apparently be 

saturated under high release conditions (Figure 4.8D).  Second, they use AMPA 

receptors that show little desensitization or recover relatively quickly from 

desensitization (DeVries, 2000; Pang, Gao, Barrow, Jacoby, & Wu, 2008).  Third, 

some OFF bipolar types use kainate receptors that recover slowly from 

desensitization, but these types position their dendrites relatively far from 

synaptic release sites effectively lowering the peak concentration of glutamate 

which can minimize the effects of desensitization (DeVries et al., 2006) (compare 

AMPA receptor in Figure 4.8D, E).  The properties of AMPA receptors in specific 

ganglion cell types remain to be elucidated, but we predict that many types will 

use a non-desensitizing AMPA receptor similar to some OFF bipolar cells. 

Why would there be a difference in the NMDA receptor expression and 

presumed receptor location between OFF Alpha and Delta cells?  These cells 
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encode contrast in the firing rate differently (Figure 4.7G).  OFF Alpha cells show 

high contrast gain, which requires sensitive responses at low contrast (Figure 

4.7H).  NMDA receptors are apparently recruited to support these responses.  

This may seem surprising given that the NMDA conductance is mostly blocked 

near Vrest.  However, NMDA receptors in multiple systems contribute near Vrest 

including responses to spontaneous release (Binshtok, Fleidervish, Sprengel, & 

Gutnick, 2006; Espinosa & Kavalali, 2009; Fleidervish, Binshtok, & Gutnick, 

1998).  Furthermore, an NMDA-receptor contribution may facilitate signal-to-

noise at low contrast given the long time constant of the response (Demb et al., 

2004).  NMDA receptors also complement AMPA receptors in that, over the 

physiological range (-80 to -40 mV), the driving force on the two channels change 

in opposite directions.  Thus, as the AMPA receptors lose driving force at high 

contrast, the NMDA-receptor conductance increases (Diamond & Copenhagen, 

1993).  The OFF Delta cell showed a linear contrast response curve, and thus 

the use of apparent extrasynaptic NMDA receptors may be useful for preventing 

a nonlinear response compression at high contrast.  Future studies will be 

required to determine whether the three patterns of AMPA/NMDA receptor 

contributions at retinal synapses generalizes to the other cell types. 

 

Experimental Procedures 

Tissue preparation and electrophysiology 

The experimental procedures have been described in detail previously 

(Demb et al., 1999; Manookin et al., 2008).  Hartley guinea pigs were housed in a 
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12-h dark/light cycle.  The animal was dark adapted for one hour before further 

procedures were carried out.  The animal then was taken to a room illuminated 

with dim red light and anesthetized with an intramuscular injection of ketamine 

(100 mg/kg) and xylazine (10 mg/kg).  While under anesthesia, the animal was 

decapitated and both eyes were removed in dim red light.  All procedures 

conformed to National Institutes of Health and University of Michigan guidelines 

for use and care of animals in research.  The retina was hemisected and the 

vitreous, lens, and cornea were removed and discarded.  The back of the eye 

was cut into two pieces along the vertical midline and each piece was placed on 

a piece of filter paper and stored at room temperature in oxygenated (95% O2, 

5% CO2) Ames’ medium (Sigma-Aldrich, St. Louis, MO, USA).  The tissue was 

stored in a light-tight container until the time of recording (storage time, 0.5-5 h).  

At the time of recording, the retina was placed in a chamber on a microscope 

stage and superfused (~6 ml min-1) with oxygenated Ames’ medium heated to 

33–35◦C with an in-line heater (TC-344B, Warner Instruments, Hamden, CT, 

USA).  In one experiment, synaptic transmission was blocked using Cd2+.  For 

this experiment, we used an extracellular Ringer solution containing (in mM) 1.15 

CaCl2, 1.24 MgSO4, 3.1 KCl, 0.5 potassium methylsulfate, 120 NaCl, 6 glycine, 6 

d-glucose, 0.2 D-serine, 22.6 NaHCO3, 1 CdCl2).  We did not use the Cd2+ puffing 

data for generating the NMDA receptor basis function as the Ringer was different 

from the Ames’ solution used to record light responses. 

The retina and electrode were visualized using a cooled CCD camera 

(Retiga 1300C, Qcapture software; Qimaging Corporation, Burnaby, British 
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Columbia, Canada) mounted on an Olympus BX51WI microscope (Olympus; 

Center Valley, PA, USA).  We targeted ON and OFF Y-type/Alpha and OFF Delta 

ganglion cells by recording from the largest cell bodies in the ganglion cell layer 

(diameter: 20–25 � m). Cell type was confirmed by measuring light responses 

and in some cases by analyzing the stratification of the dendritic tree, as 

previously described (Manookin et al., 2008).  OFF Alpha and Delta ells were 

readily distinguishable by their responses to full-contrast, square-wave spots: 

near ECl, the dark spot elicited an inward current of ~0.7-2 nA in OFF Alpha cells, 

whereas the inward current never exceeded 0.5 nA in OFF Delta cells.  A glass 

electrode (tip resistance, 3–5 MΩ) was filled with Ames’ solution for recording 

extracellular spiking or intracellular solution for whole-cell recording of membrane 

currents.  Intracellular solution consisted of the following (in mM): 120 cesium 

methanesulphonate, 5 TEA-Cl, 10 HEPES, 3 NaCl, 10 BAPTA, 2 QX-314-Cl, 2 

ATP-Mg, 0.3 GTP-Na with 0.10% Lucifer Yellow, titrated to pH 7.3.  All chemicals 

were purchased from Sigma-Aldrich (St Louis, MO, USA) except for the 

following: BAPTA (Invitrogen; Eugene, OR, USA); strychnine (Fisher, Hampton, 

NH, USA); D-serine, D-AP5, and L-AP4 (Tocris; Bristol, UK).   

Membrane current was amplified, sampled at 10 kHz, and stored on a 

computer using a MultiClamp 700A amplifier, Digidata 1322A analog–digital 

board and pCLAMP 9 software (Axon Instruments; Union City, CA, USA). 

Junction potential (-9 mV) was corrected in all cases.  Light responses were 

analysed with custom programs written in Matlab (version 7.4; The Mathworks; 
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Natick, MA, USA).  An error in the holding potential (Vhold) introduced by the 

series resistance was corrected by the formula: 

, 

where Vhold,uncorr is the apparent (uncorrected) holding potential (in mV), I leak is 

the leak current (in nA), RS is the series resistance (15.0 MΩ; S.D. = 4.5; n = 171 

cells) and RS,correct is the series resistance compensation.  We excluded cells 

from the analysis with RS >25 MΩ.  RS,correct was typically 0.4; higher values 

sometimes resulted in oscillations that destroyed the seal.  The uncompensated 

series resistance was 9.4 MΩ (S.D. = 3.7).  Using this technique, we corrected 

for the voltage error during the leak current, but the additional voltage error 

during the response was not corrected.  To minimize the errors during a 

response, we excluded recordings with an uncompensated voltage drop of >10 

mV during the response. 

 

Visual stimuli 

The stimulus was displayed on a miniature monochrome computer 

monitor (Lucivid MR1-103; Microbrightfield; Colchester, VT, USA) projected 

through the top port of the microscope through a 4× objective and focused on the 

photoreceptors (resolution, 640×480 pixels; 60 Hz vertical refresh).  The 

relationship between gun voltage and monitor intensity was linearized in software 

with a lookup table. Stimuli were programmed in Matlab as previously described 

(Demb et al., 1999).  All stimuli were centered on the cell body.  Cells were 

recorded in the superior retina, where the cone distribution is ~95% M-cones and 
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~5% S-cones (Rohlich et al., 1994; Yin et al., 2006).  During recording, the cell 

was exposed to stimuli that fluctuated around a constant mean luminance.  Light 

level is described as the photoisomerization rate per photoreceptor (rod, M-cone 

or S-cone) per second: PR*, PM* and PS*, respectively.  Photoisomerization rates 

were calculated based on the spectral output of the monitor, the intensity of the 

monitor (W mm-2) at the plane of the retina, and the photoreceptor properties 

described in Yin et al. (2006).  The mean luminance evoked ~5×103 PR*, ~103 

PM*, and ~102 PS*.  Under these conditions, M-cones and rods contribute about 

equally to the light response (Yin et al., 2006).  At this light level, rod 

contributions presumably arise primarily through their gap junctions with cones 

but not through the rod bipolar circuit (Bloomfield & Dacheux, 2001; Manookin et 

al., 2008). 

The primary stimulus was a spot (duration, 200 ms) centered on the cell 

body.  In ON Alpha cells the spot diameter was 0.5 mm at all contrasts.  In all 

other cells, the spot diameter varied with stimulus intensity.  For high-contrast 

stimuli (contrast, 25-100%), a small spot (diameter, 0.2 mm) was used to 

decrease the response size and, thus, decrease the voltage drop across the 

pipette tip caused by the uncompensated series resistance.  A larger spot 

(diameter, 0.4 mm) was used for low-contrast stimuli (contrast, 3-12%) to 

increase the signal-to-noise ratio.  A spot was presented at each of nine holding 

potentials.  A cell was held at a given holding potential for no more than 15 

seconds.  During the spot presentation, the stimulus program sent a transistor-

transistor logic (TTL) pulse through the serial port at each frame presentation.  
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TTL pulses were recorded in Clampex and later analyzed to check for skipped 

frames and confirm proper alignment of the responses.  The voltage output of the 

video card was also recorded in Clampex as a secondary control. 

 

Basis functions 

The basis function for AMPA-receptors was determined from puffing 

experiments published previously (Beaudoin et al., 2008).  The AMPA-receptor 

current was a linear function of membrane voltage, 

, 

where the current response (I) is the product of the conductance (g) and the 

electrical driving force (voltage, V; cation reversal potential, Ecation).   

To determine the NMDA-receptor basis function, synaptic transmission 

was suppressed and NMDA was puffed onto the dendrites of a ganglion cell.  In 

each cell, the conductance-voltage relationship was calculated and fit with the 

following equation (least-squares fit): 

. 

This equation reflects the relationship between the conductance (g) and 

voltage (V), where [Mg2+]o is the extracellular magnesium concentration (1.2 

mM).  The constants representing voltage-dependence and the magnesium 

dependence of the NMDA-receptor (α and β, respectively) (Gerstner & Kistler, 

2002; Jahr & Stevens, 1990a, 1990b) were free parameters in the fit (Figure 4.2). 

In each cell, the g-V relationship was normalized to a maximal 

conductance of 1 nS.  The fit was then performed on the normalized data across 
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cells.  The fits produced values that became the NMDA-receptor basis function 

for OFF Alpha cells (α, 0.059 mV-1; β, 9.3 mM; n = 12 cells) and OFF Delta cells 

(α, 0.055 mV-1; β, 4.3 mM; n = 10 cells).  The conductances were converted to 

currents using the following equation: 

. 

The GABAA/glycine conductance-voltage relationship was modeled as an 

exponential function with an offset (b): 

. 

The function exponentially relates conductance (g) and voltage by two 

constants (a and b).  Rebound data were fit for OFF Alpha (a, 3.9 x 10-3; b, 

0.2060; n = 15 cells) and OFF Delta cells (a, 4 x 10-4; b, 0.1926; n = 6) (Figure 

4.2E, 2F).  The fitted equation was then used as the basis function for 

GABA/glycine receptors.  The conductances were converted to currents using 

the following equation:  

, 

where ECl is the chloride reversal potential (-67 mV). 

 

Analysis 

The current response to a contrast flash was determined by subtracting 

the leak current at baseline (first 500 ms).  The flash response was measured by 

averaging over a 50-ms window centered on the peak excitatory response (~50-

100 ms following flash onset).  Responses were modeled as the sum of three 
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underlying ligand-gated currents mediated by AMPA, NMDA, and GABA/glycine 

receptors using the following equation (least-squares fit): 

. 

We used this technique to estimate the ligand-gated conductances during 

the peak excitatory response.  We also performed this analysis as a function of 

time (Figure 4.4E-H).  The temporal current response was downsampled to 1 

kHz and the analysis was performed on the current responses at each point in 

time (least-squares fit).  For ON and ON-OFF cells, the OFF Alpha cell basis 

functions for GABA/glycine and NMDA receptors were used (e.g., Figure 4.3H).   

 The conductances were also fit as a function of time.  In OFF cells, this 

analysis was specific to the excitatory portion of the response, as the ‘rebound’ 

response typically showed large amplitude currents with voltage errors >10 mV.  

Attempting to fit these portions often resulted in a negative AMPA conductance 

and a positive NMDA conductance that were perfectly anti-correlated over time.  

We assumed this pattern reflects an inability to model responses composed of 

very large currents at some holding potentials.   

 

Glutamate receptor modeling 

AMPA and NMDA receptors were modeled using Channel Lab (version 2; 

Synaptosoft, Inc, Decatur, GA).  Presynaptic glutamate release was modeled as 

an instantaneous step to a peak glutamate concentration (0.1 or 1.0 mM) 

followed by an exponential decay (τ = 1.2 ms).  The timing of presynaptic release 

was modeled as a Poisson process for each synapse (50 independent synapses) 
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with 20 receptors of each type per synapse.  Synaptic release trains were 

generated in Matlab and run at a sample rate of 10 kHz in Channel Lab.  The 

release rate increased for 200 ms to simulate the 200-ms contrast flash 

response.  Each receptor was modeled as a state machine (Markov chain) 

containing several states and transitions between the states according to 

published values (Banke et al., 2005; Dzubay & Jahr, 1999; Erreger et al., 2005), 

and the model was run as a Monte Carlo simulation.  All models were available 

with the Channel Lab software.  The model predicted the current responses for 

the synaptic release trains at -62 mV—the approximate Vrest for OFF cells. 
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Chapter 5 

Conclusions 

My thesis research focused on understanding how neural circuits and 

synapses encode information.  The retina is an ideal system for studying 

information encoding in the brain as one can record responses to natural stimuli 

with the synaptic circuitry intact.  The retina contains approximately 20 different 

classes of ganglion cell.  Each cell type processes a particular aspect of a visual 

scene.  This specialization suggests that each ganglion cell type has a unique 

combination of circuitry, receptors, and intrinsic properties.  This thesis focused 

on the circuitry and receptors for ON α, OFF α, and OFF δ ganglion cells.  These 

three cell types receive distinct patterns of excitatory and inhibitory input 

(Chapters 3 and 4), and they also show unique patterns of AMPA and NMDA 

receptor expression (Chapter 4).  Furthermore, the spiking responses in these 

cell types reveal a distinct pattern of contrast encoding (Chapters 3 and 4). 

 Figure 3.4 illustrates the spiking response of ON α cells to bright flashes.  

The response shows a relatively high slope at low contrast; the response then 

saturates at high contrast.  The contrast gain was relatively high at low contrast, 

suggesting that the ON α circuit is tuned to encoding low-contrast changes.  The 

ON α cell also experienced a relatively high basal glutamate release, allowing the 

circuit to encode both increments and decrements in contrast (Chapter 4).  
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Furthermore, the circuit configuration for ON cells was a combination of 

excitation and feedforward inhibition at all contrasts tested (Chapters 3 and 4).  

Synaptically, this corresponded to functional expression of AMPA receptors to 

encode presynaptic glutamate release and GABA and/or glycine receptors to 

encode feedforward inhibition (Chapter 4).  Our computational model for AMPA 

and NMDA receptors suggests that, given the high tonic rate of glutamate 

release onto the ON cell dendrites, these cells must express a non-desensitizing 

AMPA receptor (see Figure 4.8). 

Spike responses in OFF α cells also reveal a steep slope at low contrast 

(Figures 3.4, 4.7), suggesting a high sensitivity to low contrast decrements.  

However, this high gain/sensitivity at low contrast causes the response to 

saturate at high contrast.  The OFF α cell receives a relatively low rate of 

presynaptic glutamate release.  Basal release is sufficient, however, that when 

removed following high-contrast stimulation, the OFF cell undergoes a period of 

reduced sensitivity—slow contrast adaptation (Chapter 2) (Manookin & Demb, 

2006).  Still the basal release rate is low relative to ON cells, allowing for the use 

of synaptic NMDA receptors (Chapter 4).  Inhibitory synapses also play a 

fundamental role in the OFF α circuit (Manookin et al., 2008).  Excitation in the 

OFF bipolar circuit (e.g. from a decrement in contrast) causes increased 

feedforward inhibition (through GABAA receptors) and disinhibition (through 

glycine receptors) (see Chapters 3 and 4).  This disinhibition arises through the 

AII amacrine cell and plays a relatively large role in encoding low contrast stimuli. 
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The AII amacrine circuit plays an even greater role in OFF δ cells.  OFF δ 

cells receive less excitatory input than OFF α cells and, thus, disinhibition plays a 

prominent role in encoding the full range of negative contrasts (Figure 4.4).  

These factors likely contribute to the δ cell’s distinct contrast encoding.  The δ cell 

contrast response reveals a linear relationship between contrast and spike rate 

(Figure 4.7).  In other words, the gain at low contrast was identical to that at high 

contrast, suggesting an approximately equal sensitivity to all contrast 

decrements.   

These data also suggest a possible correlation between high gain and 

excitatory synaptic input—gain was higher in cell types receiving relatively larger 

levels of presynaptic glutamate input (ON and OFF α cells), whereas gain was 

lower and contrast encoding was linear in the OFF δ cell, which was driven 

mostly by the removal of inhibitory glycine release.  Experiments in other 

ganglion cell types are needed to elucidate such principles of circuit encoding. 

 

Slow contrast adaptation in ganglion cells arises largely from plasticity at 

the level of presynaptic bipolar cells. 

Several studies suggested that an intrinsic mechanism was responsible 

for slow contrast adaptation in retinal ganglion cells (Baccus & Meister, 2002; 

Solomon et al., 2004).  This idea followed from research in the cortex, which 

demonstrated that in some neurons the afterhyperpolarization causing slow 

adaptation arose from an intrinsic mechanism (Sanchez-Vives et al., 2000a, 

2000b).  However, our ganglion cell recordings revealed a presynaptic 
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mechanism for slow contrast adaptation arising in bipolar cells (Manookin & 

Demb, 2006) (see Chapter 2). 

 Our findings are consistent with a model where, at the offset of high 

contrast, bipolar cell glutamate release drops below the normal background rate.  

This decrease in excitation hyperpolarizes the ganglion cell, resulting in an 

afterhyperpolarization and suppressed spiking.  Bipolar cell glutamate release 

returns to baseline levels over several seconds, eventually returning the ganglion 

cell to the previous level of basal excitability. 

 

Disinhibition plays an important role in OFF cell contrast encoding 

The findings described in Chapter 3 present an unconventional role for the 

AII amacrine cell in visual coding.  Previously, the prevailing view had stated that 

an AII amacrine cell drives visual processing under very dim light conditions 

where few photons are available for light encoding.  Thus, the AII amacrine cell is 

often referred to as the ‘rod amacrine cell’ for its prominent role in scotopic vision.  

Here, we demonstrate that for OFF α cells, the AII amacrine cell plays a vital role 

in daylight (photopic) vision (Manookin et al., 2008).  Other experiments have 

demonstrated that the AII also provides disinhibition to OFF δ cells (data not 

shown).  These results suggest that ON bipolar cells should not show strong 

rectification, allowing them to signal both increments and decrements in light 

intensity to the AII amacrine cell.  Indeed, the ON bipolar cell providing input to 

the ON α cell shows little rectification, having a high basal release near the 

middle of its operating range (Chapter 4). 
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 Current flows from an ON cone bipolar cell to an AII amacrine cell through 

gap junctions.  Thus, depolarizing an ON bipolar would, in turn, depolarize the AII 

cell; likewise, a dark flash would hyperpolarize an ON bipolar cell and, 

subsequently, an AII cell.  Furthermore, recent findings provide physiological 

evidence (Manookin et al., 2008; Murphy & Rieke, 2008) for direct inhibitory 

(glycinergic) synapses from AII cells to OFF ganglion cells and presynaptic OFF 

bipolar terminals.  The high rate of basal excitation in the ON pathway results in 

high basal AII cell activation, resulting in inhibition of OFF cells at baseline.  

Hyperpolarizing the ON pathway with a dark flash causes the AII cell to remove 

glycine release from OFF cell dendrites and presynaptic OFF bipolar terminals.  

In this way, the AII amacrine cell, an inhibitory neuron, extends the excitatory 

operating range of some OFF ganglion cells and, possibly, OFF bipolar cells. 

 

The roles of AMPA and NMDA receptors in contrast encoding 

 Excitatory input through glutamate receptors plays a prominent role in 

visual encoding.  The results in Chapter 4 show three ways in which ganglion 

cells encode light information using AMPA and NMDA receptors.  OFF α and δ 

cells showed functional expression of both receptor types.  In OFF α cells, both 

receptors were utilized in encoding the full range of negative contrasts.  

However, in OFF δ cells, NMDA receptors contributed only at high contrast (> 

25%).  These findings are consistent with a synaptic NMDA receptor localization 

in OFF α cells and an extrasynaptic localization in OFF δ cells. 
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 The distinction in apparent NMDA receptor location correlated with NR2 

subunits in the OFF cells.  OFF δ cells showed a striking bias toward NR2B 

subunit expression, as NMDA receptor currents were strongly suppressed in the 

presence of an NR2B antagonist (ifenprodil).  Ifenprodil had little effect on OFF α 

cells, indicating that NR2B subunit expression was minimal in these cells. 

 The NMDA puffing and light stimulation experiments demonstrated that 

ON α cells do not express functional NMDA receptors.  The lack of NMDA 

receptors in ON α cells might be explained by the high tonic rate of their 

presynaptic glutamate release.  Recordings here and elsewhere suggest that the 

rate of glutamate release onto the ON α cell is relatively high (Figure 4.3) 

(Murphy & Rieke, 2006; Trong & Rieke, 2008; Zaghloul et al., 2003).  The exact 

rate is unknown.  However, the number of synapses on ON and OFF α cells is 

similar and so the relatively high tonic level of excitatory activity in the ON cell 

must correspond to a relatively high rate of basal release at each synapse (Xu et 

al., 2008).  The high rate of glutamate release could saturate an NMDA receptor, 

rendering it useless for encoding increases above the basal rate.  This 

conclusion was confirmed with computational models of AMPA and NMDA 

receptors (Figure 4.8). 

 

Future directions 

Mechanism for slow contrast adaptation in bipolar cells 

 The findings in Chapter 2 demonstrate that slow adaptation arises in 

bipolar cells.  However, the mechanism remains an open question.  One 
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hypothesis is that slow adaptation arises in bipolar cell synaptic terminals.  This 

hypothesis could be tested with whole-cell recordings from bipolar cells.  

Sinusoidal current would be injected at 6 Hz and presynaptic release would be 

determined by measuring glutamate transporter currents.  In this way, the 

amount of adaptation in the bipolar membrane potential and synaptic output 

could be compared and the source of adaptation could be isolated.  

Pharmacological experiments could also be done to isolate the specific cellular 

mechanism. 

 

The roles of NMDA receptors in contrast encoding 

Another open question involves the function of NMDA receptors in OFF 

Alpha and Delta cells.  In Chapter 4, I did not address the role of NMDA 

receptors in the spike response, but understanding spike encoding of contrast is 

my ultimate goal.  Recording spike responses with NMDA receptors blocked 

could provide a great deal of insight into the function of NMDA receptors in 

spiking.  Blocking NMDA receptors with D-AP-5 in the bath is not optimal due to 

possible circuit effects.  However, in a separate experiment I was able to block 

NMDA receptors internally by adding 1 mM MK-801 to the pipette solution (data 

not shown).  Preliminary results from this experiment suggest that NMDA 

receptors serve to keep the response gain high at low contrast in the OFF α cell. 

 

Receptor subunit expression 
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 My thesis research used a variety of techniques (e.g. pharmacology, 

whole-cell recording) to infer the circuit and synaptic properties of ganglion cell 

inputs.  However, the precise receptor profiles for ON and OFF ganglion cells 

remains an open question.  For example, our recordings in the presence of an 

NR2B antagonist (ifenprodil) suggested that OFF α cells do not significantly 

express NR2B subunits, but this does not confirm the expression of NR2A 

subunits.  In fact, NR2C, NR2D, and NR3A subunits are all expressed in retinal 

ganglion cells (Fletcher et al., 2000; Kalloniatis et al., 2004).  These receptor 

subunits confer distinct kinetics, binding properties, and current responses on the 

NMDA receptor response (Nakanishi et al., 2009; Qian, Buller, & Johnson, 2005; 

Santucci & Raghavachari, 2008).   

 Receptor subunit expression could be determined using two techniques: 

single cell RT-PCR to determine mRNA expression and antibody staining to 

reveal receptor expression in dendritic membrane.  The same techniques could 

also be used to determine AMPA receptor subunit composition in ON α cells, as 

these AMPA receptors should show minimal desensitization. 
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