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CHAPTER I

Introduction

This dissertation, in general, will deal with questions relating to evolution of

pathogens associated with infectious diseases. Impact of infectious diseases, despite

advances in sciences and public health, can not be overstated — the sheer number of

human lives lost (even today they are estimated to be responsible for more than half

of human deaths in sub-Saharan Africa (Lopez et al., 2006)), the debilitating effect

they have in our ability to carry out everyday activities and consequently the socio-

economic health of communities, the threat they pose to wildlife and plants, and

simply the overall burden to our society. Most of the pathogens are microparasite,

that include viruses (such as influenza or HIV), bacteria (such as Bordetella pertussis

that causes whooping cough and Bacillus anthracis that causes anthrax), protozoa

(such as Trypanosoma species that cause sleeping sickness and Plasmodium species

that cause malaria), and pathogenic fungi (such as Candida species that cause thrush

and Tinea pedis that causes Athlete’s foot). They typically have short generation

time relative to their hosts and undergo many generations in the course of a single

infection, allowing for rapid evolution as a consequence of evolutionary pressures. In

this regard, the questions regarding pathogen evolution are central to the study of

infectious diseases.

1
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1.1 The role of host in infectious disease pathogens

In a host-parasite system, particularly in the context of pathogens that cause in-

fectious disease, the incidence and the abundance of the disease inducing pathogen,

as well as the epidemiological characteristics of the disease is expected to be depen-

dent on the interactions between the host and the pathogen. Typically, a pathogen

has to enter a host and proliferate inside of a host, and manage to transmit it’s

progeny to other hosts in the population either before the pathogen is cleared or

before the host is killed. Furthermore, the pathogen has to be able to persist in

the host population by traveling between the hosts. Density of the host, movement

patterns and transmission mechanisms will affect pathogen’s ability to maintain cir-

culation. Hence, from an evolutionary standpoint, the pathogen’s survival hinges

on the interactions it has with the host. Questions regarding the evolution of the

pathogen are inextricably linked to understanding these host-pathogen interactions.

These host-pathogen interactions, then can be, very generally thought to be at

two different levels — (i) between the pathogen and a single host, as the pathogen

infects a host and multiplies within it; and (ii) between the pathogen and the host

population, as the pathogen transmits between hosts and circulates in the host popu-

lation. Within a host, the pathogen is likely to encounter resistance from the immune

system of the host. The host’s immune system has an arsenal of responses, which

vary not only in the way they tackle the invading pathogen but also in their speci-

ficity. The adaptive/acquired immune response that is specific to the pathogen is

activated by the pathogen’s presence and selected for their success at clearing these

pathogens, and consequently, is likely to depend on the pathogen density itself. The

pathogen load within a host, the host’s propensity to shed pathogen, and conse-
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quently the pathogen’s ability to transmit to other hosts is likely to be influenced

by the description of the interaction between the pathogen and part of the host’s

immune response.

The nature of disease spread is such that the infection process in a host is not

independent of infection processes in other hosts. In fact, the propensity of a suscep-

tible host of getting infected, or the force of infection acting on a susceptible host, is

at the most basic level, dependent on both the characteristics of the disease and the

level of infection that is prevalent in the host population. So a fundamentally differ-

ent type interaction – between the pathogen and the host viewed as a population,

arises. In this regard, the consequences for a pathogen’s fitness depends on a dif-

ferent set of questions. Can an infection proliferate across the host population, and

what are its competitive advantage against other strains that have different traits?

Can the infection persist in the population? And how will the structure of the host

population or meta-population affect the answer to the above questions?

1.2 Dissertation outline

In this dissertation, I attempt to explore the role of host in pathogen evolution,

particularly with a view that the interactions the pathogen has with the host are

different at different levels. The focus will be to on formulating models of various

types to address key features of these interactions with respect to the central question

of pathogen evolution. Although the chapters are intended to be stand-alone papers,

the progression of the thesis will somewhat mirror the path of my own exploration.

Chapter II, titled “Integration of within-host and between-host dynamics and

the Invasion-persistence trade-off” will focus on exploring the role of the host both

at the within-host level and at the population level in the maintenance of acute
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and rapidly transmitting pathogens. A slightly modified version of this chapter is

published in the April 2009 edition of The American Naturalist (King et al., 2009).

As a second author, my contributions to this paper were (i) assisting the first author

in the formulation of the model, (ii) numerical implementation of the model, and

(iii) partial writing of sections on the model and results. Here, we build a modeling

framework that (i) captures the within-host dynamics of a pathogen infection; and

(ii) scales it up to population level that allows us to make inferences about the

epidemic dynamics and consequently the risks and fitness associated with such a

pathogen. The nature of the within-host interactions between pathogen and the

host immune system, in conjunction with dose response curves (the relationship

between transmission and pathogen load) play crucial roles in understanding (i) the

evolutionary constraints pathogens face; and (ii) population level fitnesses for the

pathogen. Furthermore, pathogen evolution under such constraint is likely to push

pathogens where population level extinction risks become relevant. This can result

in a trade-off for pathogens — increasing its invasion fitness can result in higher

population level extinction risks. We show that depending on the size of the host

population and the shape of the dose response curve, we can observe contrasting

results — pathogen evolution driving to the edge of its own extinction, as well as

robust persistence of acute pathogen.

Chapter III will extend this model to include (i) structure on the host popula-

tion, (ii) stochasticity in birth, death and transmission processes, and (iii) explicit

competition between strains of pathogen for susceptible hosts. We construct an

individual-based model to implement epidemic and evolutionary dynamics. The host

population is structured into smaller equally sized and globally connected patches.

Epidemic dynamics occur within a patch, but hosts can migrate between patches.
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Multiple strains are allowed to circulate in a population, and their diversity is main-

tained through a mutation process. Strains compete for susceptibles, and are selected

depending on their success in recruiting susceptibles. Evolutionary trajectories and

stable strain distributions are constructed for host populations that differ in patch

sizes and number of patches. Results show significant role of the host structure and

local extinction dynamics on the optimal pathogen life-history traits. Evolutionarily

stable pathogen traits depend on the structure of the host population, both the size

of the local patch and the number of such patches. Host-pathogen interactions at dif-

ferent levels seem to provide conflicting evolutionary signals, and pathogens optimize

their trait to suit the balance of the evolutionary forces in the host population.

Chapter IV will focus on understanding the role of the local extinction dynam-

ics for a pathogen’s life history evolution. We attempt to understand the dynamics

of conflicting evolutionary signals originating at different levels for pathogen, a re-

sult from the earlier section. We construct models for (i) epidemic dynamics of

acute pathogens that are prone to local extinction but circulate in a host meta-

population via rescue effects, and (ii) competition between pathogen strains within

a patch for susceptibles. By observing competition between strains for susceptibles

in a patch and consequently their ability to colonize patches in the meta-population,

we extrapolate evolutionary outcomes in the host meta-population. Results show

that evolutionarily stable or optimal pathogen traits can depend on the structure of

the meta-population, particularly the size of the local host communities, and host

migration rates, among others. The framework of the model is abstract but an-

alytical — allowing us to extract the functional relationship between several key

meta-population parameters and pathogen’s optimal traits. The work will also shed

some light on the nature of the conflicting evolutionary forces, and how they op-
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erate in shaping pathogen evolution. The final two chapters are currently under

preparation to be submitted to peer-reviewed journals.



CHAPTER II

Integration of within-host and between-host dynamics and
the Invasion-persistence Trade-off

2.1 Introduction

The dominant theory pertaining to the pathogen’s life history evolution focuses on

the trade-off between pathogen’s virulence and its transmission. The premise of this

“transmission-virulence” trade-off theory (Anderson and May, 1991; Ewald, 1993;

Frank, 1996; Lenski and May, 1994; Bull, 1994) relies on the implied but conceiv-

able nature of the relationship between the pathogen’s transmission potential within

an infected host and its virulence. A pathogen that seeks to increase the rate of

transmission from a host to another, would spread more rapidly in the host popula-

tion, and consequently have fitness advantage over its less transmissive counterpart.

But increasing the transmission can have costs associated with it. The pathogen,

for example, might have to induce symptoms, or proliferate to large number in the

host to facilitate transmission, both of which can threaten the host’s life. Under the

framework of this trade-off, pathogens are expected to find an intermediate optimal

in-host multiplication rate, and associated exploitation rate that is also intermedi-

ate (May and Anderson, 1983b). This theory has also garnered important empirical

support (Fenner, 1983; Messenger et al., 1999).

A host of work has gone into understanding the mechanistic basis for the na-

7
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ture of relationship between transmission and virulence, as well as the evolutionary

consequences for pathogen (Sasaki and Iwasa, 1991; Antia et al., 1994; Antia and

Lipsitch, 1997; Gilchrist and Sasaki, 2002; Gilchrist and Coombs, 2006; André et al.,

2003; Day and Proulx, 2004; Alizon and van Baalen, 2005). But for rapidly trans-

mitting pathogens that cause acute disease that are not necessarily virulent, the

ability to maintain circulation in the host population can be an equally important

component of its fitness. The epidemics of acute and immunizing infections tend to

go through cycles. Typically, infection rapidly spreads through the susceptible pop-

ulation. Each infected host then recovers from the infection, but acquires immunity

in the process. This depletion of susceptibles results in deep trough in the after-

math of an epidemic peak. Furthermore, these fluctuations can be accentuated by

seasonal forces. In host communities that are relatively small, in particular, smaller

than the critical community size (Bartlett, 1956a; Keeling, 1997), such pathogens are

vulnerable to local extinction. Consequently, a new trade-off can arise at the popu-

lation level, between the pathogen’s transmission rate and its ability to persist in the

population. This “invasion-persistence” trade-off (Grenfell, 2001) mediates a balance

between a strain’s infectious period and its transmission rate. Acute pathogen strains

that cause highly transmissive infections will have an evolutionary advantage over

less acute counterparts by being able to spread more rapidly over the host popula-

tion. However, over a longer term, the epidemics of these infections also face greater

extinction risk compared to less acute strains that cause longer lasting infections.

Hence the short-term invasion advantage comes at a cost of diminished longer term

persistence.

Grenfell (2001), using a simple SIR framework, showed that among pathogens that

have identical basic reproductive number (R0), the ones that are more transmissive
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are also likely to more be vulnerable to extinction. We take a more mechanistic

approach. We construct a within-host model that relates pathogen life history to

epidemic patterns, allowing us to draw on its fitness as well the extinction risks. As

a result, not only can we predict direction of pathogen life history evolution, but also

explore the role of the invasion-persistence trade-off in the evolutionary process.

2.1.1 Story of Bordetellae

This part of the study is also loosely motivated by the different life-history strate-

gies observed in different species of Bordetellae. The Bordetellae pathogens are

gram-negative bacteria that infect the respiratory tracts of a wide range of mam-

malian hosts. The species B. bronchiseptica is common in a variety of mammals

both wild and domesticated, with the notable exception of humans. Its congener, B.

pertussis, on the other hand, is an exclusive parasite of humans. Mira et al. (2006),

analyzing DNA sequence similarity between these two species, found dramatic ge-

nomic changes in the case of B. pertussis, suggesting that B. pertussis went through

intense transformations at around the time of the Neolithic revolution. In particu-

lar, the genome of B. pertussis is substantially smaller than that of B. bronchiseptica

mostly due to loss of numerous multigenic regions, some that are implicated in the

interaction of the pathogen with its host’s immune system. Most notable is the loss,

in B. pertussis of the gene coding for O-antigen assembly. The O-antigen is known

to inhibit the alternative-complement-mediated phagocytosis of the pathogen. B.

pertussis also has lost the type-III secretion system machinery, which is used by B.

bronchiseptica to inhibit phagocytosis by inducing mortality of polymorphonuclear

leukocytes. In contrast, the gene encoding pertussis toxin (PTX) is apparently only

expressed in B. pertussis. PTX is known to delay the recruitment of neutrophils

that play a key role in pathogen clearance (Kirimanjeswara et al., 2005). These
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genetic modifications translate, via modified interactions with host immunity, into

differences in pathology and course of infection.

B. bronchiseptica and B. pertussis differ significantly in pathology and course of

infection. Symptoms of B. bronchiseptica are relatively mild, and typically tend to

persist for the lifetime of the host in the nasal cavity (Kirimanjeswara et al., 2003).

B. pertussis infections, on the other hand, are quite acute, causing severe coughing

(which can progress to spasmodic coughing, i.e., whooping cough, in children), but

are systemically cleared within a month or two at most.

The phenomenon of an acute infectious agent (B. pertussis) evolving from an

ancestor (B. bronchiseptica) producing persistent infection is repeated in the case of

B. parapertussis. The symptoms and course of infection of the B. parapertussis is

markedly similar to that of B. pertussis. Intriguingly, these two human specialists

arose from distinct ancestors. This suggests that a new niche, absent before the

neolithic, opened up for Bordetella as human pathogens; the potential for such a new

niche, however, is far from clear. In particular, it remains to be seen what advantage

B. pertussis might have achieved to compensate for the significantly reduced duration

of infection it has suffered. Bjørnstad and Harvill (2005) hypothesized that invasion-

persistence trade-off may be of consequences in the evolution of the acutely infecting

B. pertussis and B. parapertussis from their chronic B. bronchiseptica-like ancestors.

2.1.2 Modeling Approach

Our approach will to be construct a modeling framework that allows us to evaluate

population level extinction risk of pathogens that exhibit a variety of infection profile.

The infection profile is generated by constructing a within-host model that captures

the essential dynamics of interactions between the pathogen and the host immune

response. The within-host model is combined with transmission and between-host
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models to extrapolate epidemic curves. This allows us to study consequences of

pathogen life-history strategies on invasion and persistence at the population level.

The main insights are as follows: (i) pathogen evolution under the constraints derived

from the mechanistic within-host dynamics can lead to traits in pathogen where the

invasion-persistence trade-off can be important for pathogen life history evolution

(ii) the shape of the dose-response curve (relating pathogen load in a host to its

transmission rate) is a key determinant of the outcome of pathogen evolution, and

(iii) only in host populations above a critical threshold is a robust persistence of

acute pathogens possible.

2.2 Modeling

We begin by setting up a within-host model that captures the transient interaction

of the pathogen with the host’s immune system. The model is chosen to be parsi-

monious as well as flexible enough to describe both acute and persistent infections.

The dynamics at the within-host level is then scaled up to the between-host level

via a dose-response function. Finally, we use the between-host model to compute

epidemic curves in the host population. This allows us to explore the population

level epidemic patterns of the pathogen traits expressed at the within-host level. In

particular, it enables us to make inferences about the fitness the pathogen, and deter-

mine which features of the within-host model lead to emergent trade-offs. The three

parts of the model are described in the following subsections – (i) subsection 2.2.1

describes the within-host models of pathogen-host immune response dynamics; (ii)

subsection 2.2.2 describes the dose-response functions that determine how transmis-

sion rates depend on within-host pathogen load; and (iii) subsection 2.2.3 describes

the between-host epidemic model.
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2.2.1 Within-host models

The commonly used standard SIR-type models assume a constant level of infec-

tiousness in an infected host and an exponentially distributed infectious period. We

approach the within-host level with a few specific things in mind. We aim to build a

more mechanistic model that captures basic features of within-host growth an clear-

ance of pathogen, that qualitatively resembles the infections of Bordetallae. We also

aim to formulate the model in terms of biologically meaningful parameters that are

subject to evolutionary pressures.

A slightly modified version of the model of Pilyugin and Antia (2000) suits this

purpose. The authors proposed a simple model for the in-host interaction of pathogen

with the host’s specific immunity. In this model, the parasite grows exponentially

at the rate r, but is killed upon encounter with immune cells. The kill rate of the

immune response is k. Immune cells are produced at a baseline rate α and have

mean lifetime 1/d. Immune cells proliferate at a rate proportional to the current

rate of killing: the constant of proportionality is γ. Our model is slightly simpler

than that of Pilyugin and Antia (2000) in that we assume handling time associated

with pathogen-immune cell interactions is negligible. Our results are not sensitive

to the model details: inclusion of more realism such as, for example, handling time

in the immune response (which results in a maximum rate of immune response)

or a programmed immune response (which entails an overshoot following pathogen

clearance (Kaech and Ahmed, 2001)), does not change our conclusions. The model

consists of a pair of differential equations for pathogen load P and specific immune
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response X,

(2.1)

dP

da
= r P − k X P

dX

da
= α− dX + γ k X P.

We integrate the differential equations from initial condition P = 1, X = 0. The

model possesses only two dynamical regimes. When d/k < α/r, there is a stable

equilibrium at P = 0, X = α/d. When d/k > α/r, the parasite load exhibits

damped oscillations to a nonzero equilibrium, P = 1
γ

(d/k − α/r), X = r/k. En

route to this equilibrium, however, the pathogen load falls to extremely low values.

In particular, for all parameters we have examined, P falls to less than its initial value

of 1, indicating pathogen clearance. Moreover, this equilibrium must be interpreted

as a pitched battle between pathogen and immune system, an outcome not found

in the class of infections with which we are concerned. Accordingly, we assume the

infection has been cleared once P returns to its initial level. We denote this age of

infection at which the clearance occurs by ac. In both regimes, therefore, the infection

is ultimately cleared, but its duration and severity, i.e., the cumulative parasite load

generated, depends on the parameters.

2.2.2 Transmission models

The within-host dynamics determine the parasite load P (a) and immune response

at different infection ages. To integrate these dynamics into the between-host model,

we assume a relationship between parasite load and transmission. In particular,

we will assume that the instantaneous transmission rate, β, is a function of age of

infection and parasite load. We explore three families of transmission function:

(i) Linear β. The almost invariable assumption in the literature is that between-

host transmission rate is simply proportional to within-host parasite load: β(a) =
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q1 P (a).

(ii) Delayed β. Because transmission may depend upon the expression of symp-

toms (e.g., coughing) which typically manifest not immediately upon infection

but only after some time has passed, we consider a delayed-onset model of trans-

mission. In this model, β(a) = q2 P (a)/(1 + exp (−s (a− a∗))): transmission is

negligible until a certain time, after which it becomes proportional to parasite

load.

(iii) Saturating β. It is unlikely that the transmission rate is linearly dependent on

parasite load at very high values of the latter. In particular, the probability

of a contact resulting in infection saturates at high innoculum sizes. To inves-

tigate the effects of this saturation effect, we consider a nonlinear coupling of

transmission to parasite load: β(a) = q3 (1− exp (−P (a)/P ∗)).

2.2.3 Between-host Model

At a between-host level, we model the age-specific spread of disease using the

McKendrick-von Foerster equations. To derive these equations, let
∫ a2

a1
i(t, a) da

denote the fraction of the host population at time t consisting of individuals who

were infected between times t − a2 and t − a1. Conservation of individuals implies

that

(2.2)
∂i

∂t
+

∂i

∂a
= −µ(a) i, i(t, 0) = λ(t) (1 + ε sin 2πt) S(t),

where µ(a) is age-specific mortality, λ(t) is the force of infection, the sinusoidal factor

models seasonality in transmission, and S(t) is the fraction of the host population

susceptible to infection at time t. Transmission is assumed to be frequency dependent



15

so that the force of infection is

(2.3) λ(t) =

∫ ac

0

β(a) i(t, a) da =

∫ ac

0

β(a) `(a) i(t− a, 0) da.

Here, `(a) = exp
(
−

∫ a

0
µ(a′) da′

)
denotes the probability that an individual infected

a time units ago has not yet died. For the remainder of the paper, we will assume that

infections are nonlethal; this amounts to assuming a constant death rate: `(a) = e−µa.

To complete the system of equations, we need an equation for the susceptible

fraction S(t). We assume that the susceptible pool is replenished by births and that

the total host population size remains constant in time. We therefore assume that

S(t) obeys

(2.4)
dS

dt
= µ (1− S)− λ(t) (1 + ε sin 2πt) S.

The all-important basic reproductive ratio is given by

R0 =

∫ ac

0

β(a) `(a) da.

Equations (2.2–2.4) can be solved numerically to predict the population-level dy-

namical consequences of a particular set of assumptions at the within-host level. For

all simulations, we assumed that 1% of the host population was initially infected.

2.2.4 Numerical methods

The within-host pathogen load borne by a host is determined by the within-host

models Eq. 2.1. One can numerically integrate these ordinary differential equations

to obtain the trajectory of the pathogen load, P (a). Having computed P (a), each

of the transmission models translates this into between-host transmission rate β(a)

and basic reproductive ratio R0. With β(a) in hand, one can integrate Eqs. 2.2–2.4

to obtain the epidemic curves. We used a simple backward Euler scheme for this

purpose.
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Table 2.1: Model parameters and value(s).
Symbol Parameter Value

Within-host model:
r parasite growth rate 5–130
k kill rate of the immune response 3.5
α baseline production rate of immune response 1
d death rate of immune response 0.5
γ immune response recruitment rate .5 – 1.5 ×10−4

Transmission models:
q1 transmissibility factor, linear model 10−3

q2 transmissibility factor, delayed model 1.5× 10−3

q3 transmissibility factor, saturating model 10−3

a∗ delay constant 0.1
P ∗ saturation constant 5× 105

Between-host model:
µ host mortality rate 0.02
ε seasonality amplitude 0–1

2.2.5 Quantifying extinction risk

Other things being equal, immunising pathogens that give rise to more violent

epidemic fluctuations are less likely to persist over the long term. This is because

extinction risk is greatest immediately following an outbreak, when the fraction of

infected hosts,

H(t) =

∫ ac

0

i(t, a) da,

is at a minimum and therefore the expected number of transmission events is so small

that the probability of failure of transmission becomes appreciable.

Even when R0 > 1, i.e., the endemic equilibrium is, deterministically speaking,

stable, stochastic extinction may occur. Extinction is most likely in the deep trough

immediately following a novel pathogen’s introduction. If the pathogen survives

this trough, extinction risk decreases with time as H approaches equilibrium via

damped oscillations. Seasonal variation in transmission, however, results in sustained

oscillations. In seasonal environments therefore, each outbreak is associated with

elevated risk of extinction. In both cases, the depth of the trough following an
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outbreak gives an indication of the magnitude of this risk. In order to determine how

extinction risk depends on model parameters, we examined the depth of predicted

troughs in two scenarios: (1) a virgin epidemic in a nonseasonal environment and

(2) recurrent epidemics in a seasonal environment. Specifically, we defined H∗ to be

the minimum value of H in each scenario: higher values of H∗ correspond to lower

extinction risk.

What is the connection between H∗ and the critical community size (Bartlett,

1956a, 1957, 1960a; Keeling and Grenfell, 1997)? A definitive answer to this ques-

tion would require a fully stochastic treatment, with concomitant loss of analytical

tractability. However, for a standard, nonseasonal SIR model with demographic

stochasticity, N̊asell (2005) was able to derive an approximate formula for the criti-

cal community size, Ncrit:

(2.5) Ncrit ≈
2πR0

log 2

(
µ + γ

µ (R0 − 1)

)3/2

,

where µ is the host birth rate and γ is the recovery rate. For the purposes of

comparison, we calculate H∗ for the standard nonseasonal SIR model

(2.6)

dS

dt
= µ (1− S)− β S I

dI

dt
= β S I − γ I − µ I

dR

dt
= γ I − µ R

Here, β is the contact rate; 1/γ, the infectious period. As in (2.4), µ is the birthrate

(=death rate) of the host population. Fig. 2.1 shows the results of a comparison

of H∗ for this model with N̊asell’s approximate Ncrit. The results show that these

quantities give essentially the same qualitative picture.
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Figure 2.1: [Left] Surfaces of H∗ (grey scale) and R0 (solid lines) under the standard SIR model
(A.1). Darker area correspond to higher H∗ and higher extinction risk. Increasing the
transmission rate and/or increasing the infectious period increases both the pathogen
fitness and its ability to persist in the population. [Right] Surfaces of the Critical com-
munity size (grey scale) using N̊asell’s approximation and R0 (solid lines). Qualitatively,
− log10 H∗ and log10 Ncrit depend similarly on the transmission rate and the infectious
period.

2.3 Results

In this section, we derive and compare the population-level consequences of the

various assumptions outlined above on within-host pathogen dynamics and trans-

mission. We focus on the pathogen’s evolution, holding the host fixed. Given perfect

cross immunity among strains of pathogens, the pathogen strategy with the high-

est R0 will be the evolutionary stable strategy. The landscape of R0, therefore,

tells us the likely direction of pathogen evolution. However, not all regions of this

landscape are accessible. For a given host population size, certain parameter combi-

nations will with high probability lead to stochastic fadeout, i.e., local extinction of

the pathogen. These regions of parameter space are therefore effectively inaccessi-

ble to the pathogen. We use the quantity H∗, described above, to circumscribe the

accessible region of parameter space.
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Figure 2.2: Samples of within-host dynamics and population level epidemics. [Top-Left] Within-
host pathogen dynamics for three different r values. Also shown are the corresponding
nonseasonal epidemic curves for the [Top-Right] linear transmission model, [Bottom-
Left] delayed transmission model, [Bottom-Right] saturating transmission model. Pa-
rameters, α, d, and k are set to the values shown in the table; γ = 10−4 and ε = 0. In
general, increasing r first increases, then decreases H∗. Increasing acuteness, therefore,
eventually leads to elevated risk of stochastic extinction.
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Fig. 2.2[Top-Left] shows the within-host pathogen dynamics. A key parameter

of this model is the parasite growth rate, r. Higher values of r lead to more acute

infections, which stimulate stronger immune response and are therefore cleared more

rapidly. Fig. 2.2[Top-Right, Bottom-Left & Bottom-Right] show the correspond-

ing population-level dynamics under the three transmission models. In all models,

increasing r eventually results in deeper post-epidemic troughs (lower H∗).

By varying r and another parameter (in this case γ), we can build up surfaces

showing pathogen fitness (R0) and relative stochastic fadeout risk (H∗). Figs. 2.3[Left]

shows the contours of R0 and H∗ under the three transmission models. Under the

linear transmission model, shown in fig. 2.3[Top-Left], R0 increases as we move to-

wards the bottom right corner, where the parasite growth rate, r, is largest and the

immune-cell recruitment rate, γ, smallest. This is to be expected, since a pathogen

that can reproduce rapidly and/or retard immune response will do well. Under

this model, more acute infections generate sharper immune responses, the infectious

period will decrease as r increases. Nevertheless, the cumulative pathogen load pro-

duced over the course of an infection increases with r, so that the net effect is an

increase in R0. It follows that, under the assumptions of this model, a pathogen

maximizing R0 will evolve ever more acute infections.

Limits to the tendency toward acute infection arise at the level of the host pop-

ulation. From Fig. 2.3[Top-Left], we see that, for a given host population size, the

accessible region is bounded above by some H∗ contour. Thus a pathogen evolving

to maximize R0 will increase its growth rate to the maximum value compatible with

the host population size. This suggests that the pathogen should evolve to the brink

of its own local extinction. Similar results have been suggested previously by Sasaki

and Iwasa (1991) under similar framework and by Rand et al. (1995) in a spatially
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explicit, individual-based model. Moreover, as host population increases, the accessi-

ble region expands and allows the evolution of more acute infection. Thus a trade-off

between invasion and persistence emerges.

To see this, consider a scenario in which γ is fixed at 10−4, and the pathogen can

control r. Let us suppose that the host population is of a size such that it supports,

say, − log10 H∗ > 6. In such a scenario, the pathogen will evolve to the highest r

consistent with − log10 H∗ > 6, which is r ≈ 40 (Fig. 2.3[Top-Right]). This optimum

strategy lies on the boundary of the accessible region. Should the host population

increase, the accessible region will grow, since − log10 H∗ is positively related to the

critical community size. If the host population grows so as to support − log10 H∗ > 8.

The pathogen is now free to increase r to about 80: it should evolve to generate a

more acute infection. Again, however, the pathogen is predicted to evolve to the

brink of its own local extinction.

In figure 2.3[Middle], we show the analogous results based on the delayed trans-

mission model. Here, contours of H∗ are similar to those in Fig. 2.3[Top], but the

contours of R0 are very different. The R0 contours bend down at right end (higher

r), an indication that for a given γ, R0 is maximized at an intermediate value of

r. As before, a pathogen maximizing R0 will evolve to the largest r consistent with

H∗ associated with a given population size. For example, if the population allowed

for − log10 H∗ > 4, the optimal r compatible is ≈ 30. Again, this point lies on the

boundary of the accessible region. The optimal r continues to be on the boundary

of the accessible region determined by contours of H∗ until − log10 H∗ > 6. Should

the host population increase to support, say, − log10 H∗ > 8, the optimal r is no

longer to be found on the boundary of the accessible region, but in its interior. The

pathogen should increase r only to this point, where − log10 H∗ ≈ 6, and r ≈ 70,
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Figure 2.3: Surfaces of H∗ and R0 under different transmission models. The left panel shows the
surfaces of R0 (black lines) and H∗ (in grey scale) under the Pilyugin-Antia model
with linear [Top], delayed [Middle] and saturating [Bottom] transmission models, re-
spectively. The right panel plots optimal and maximal r against − log10 H∗ under the
linear [Top], delayed [Middle] and saturating [Bottom] transmission models, respec-
tively. Immune cell proliferation rate, γ, is fixed at 10−4 for the figures in the right
panel. As host population size increases, H∗ decreases (and − log H∗ increases). Max-
imal r compatible with a given host population size and the optimal r, the one that
maximizes pathogen fitness, are shown in solid and dashed lines, respectively. Under
the linear transmission model [Top], the optimal r coincides with the maximal r, where
as under the delayed and saturation transmission models [Middle and Bottom], it cease
to coincide after the population has reached a certain level.
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even though r of up to 90 is feasible. Further increases in the host population size

will not change r.

The same effect is observed under the saturating-transmission model (Fig. 2.3[Bottom]).

Here, increases in pathogen load beyond a certain point no longer lead to increases

in transmission intensity. These diminishing returns, combined with decreasing in-

fectious period, reduce the fitness of extremely acute pathogens. In this respect, the

case is similar to that of the delayed model, under which the peak in pathogen load

passes before the symptoms that facilitate transmission set in. Under both of the

more realistic models, greater acuteness leads to increased transmission only up to a

point; beyond that point, the reduction in infectious period associated with increased

acuteness erodes R0.

To summarize, we find that, for each of the transmission models considered, in-

creased host population size favors the evolution of more acute infections. An addi-

tional effect arises when transmission is not simply proportional to pathogen load:

infections of a pathogen with intermediate acuteness may then be favored. Put an-

other way, under realistic models of transmission, when the host population size is

sufficiently large, the population-level dynamics cease to constrain the acuteness of

infection. Under these conditions only within-host mechanisms impose constraints.

The situation contrasts with that obtained using the more phenomenological SIR

model. Fig. 2.1 shows that H∗ increases (and critical community size decreases)

as R0 increases. Under this simple model, then, no trade-off arises. In the SIR

model, the within-host dynamics is primarily ignored, and the infectiousness of an

individual is assumed to be constant throughout the course of an infection. The

emergent trade-off only becomes evident when a sufficiently realistic description of

within-host dynamics, in particular, the relationship between infectious period and
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infection intensity, is taken into account.

In a nonseasonal environment, the greatest barrier to establishment faced by the

pathogen occurs in the trough immediately following the virgin epidemic. In a sea-

sonal environment, however, outbreaks will recur, with elevated risk of extinction

associated with each one. We can use H∗ to quantify this long-term extinction risk.

For this purpose, we define H∗ to be the minimum of H on the dynamical attrac-

tor. Fig. 2.4 shows that the conclusions from the virgin epidemic hold in seasonal

environments as well. The contours of H∗ show a similar pattern under all transmis-

sion models: in more seasonal environments, troughs are deeper and extinction more

likely. As in the case of nonseasonal framework, under the linear transmission model,

R0 increases with r, and pathogens maximizing R0 should evolve to the edge of their

own extinction. When the transmission is delayed until the onset of symptoms or is

saturating with pathogen load, the maximum R0 is attained at an intermediate value

of r, indicating that pathogens only evolve to this intermediate r whereby avoiding

the edge of extinction.

2.4 Conclusions

Infectious diseases have historically been and continue to be among the most im-

portant public health concerns worldwide not only because of the high burden of

mortality and morbidity but also because of ensuing socio-economic consequences.

Among several important questions pertaining to infectious disease, are questions

of pathogen evolution. Vaccination programs and drug development strategies as

well as changing host ecology mean changing terrain for pathogen and their survival.

Pathogens, with considerably shorter generation, are primed to use evolution towards

their own ends. Here, we have attempted to understand the evolutionary terrain for
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acute and rapidly transmitting pathogens that do not necessarily exhibit virulent

characteristics. We formulate models of within-host infection dynamics and then

scale these models up to derive their between-host dynamical consequences and evo-

lutionary implications. An important insight is that the optimal life-history may also

depend on the size of the local host population through an emergent colonization-

persistence trade-off. In particular, evolution will tend to favour increasing acuteness

to push immunizing pathogens toward the edge of their own extinction. Only in host

populations above a threshold size is robust persistence of these acute pathogens

possible. Similar observations have been made by Sasaki and Iwasa (1991); Rand

et al. (1995).

Several others have pondered on similar questions along the lines of the invasion-

persistence trade-off. Levin and Pimentel (1981) postulated that extinction dynamics

in virulent pathogen can allow for stable selection of avirulent pathogens based on

reduced host survival. Keeling (2000) examined the mathematical underpinnings of

the invasion-persistence trade-off in a meta-population context. He showed that, in

competition between a highly transmissible but extinction-prone strain and a strain

that is less prone to extinction but is also less transmissible, evolution may favor

either strain, depending on their relative within-patch competitive ability, relative

patch-level extinction rate, as well as the degree of stochasticity (itself related to

patch size). Here, we examine the dependence of these parameters on more basic

parameters that govern pathogen life history, as well as the coupling of the within-

host pathogen dynamics to between-host transmission. We find that the shape of

the dose response curve (the transmission model) is crucial in determining how and

when the invasion-persistence trade-off sets in. Under the linear transmission model,

so favoured in the literature, the constraint is active at every population size. The
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pathogen’s growth rate, r, and consequently R0, can increase monotonically with

population size. Under the more realistic models, the effects of the trade-off may be

less clear cut when selection acts both within and between hosts. This highlights two

critical points. First, at large population sizes, selection at the within-host level is

more important than that between hosts. Second, in small populations, selection at

both levels combines—potentially in a non-additive way—to shape the evolutionary

landscape.

This result has been derived in the context of a well-mixed population, i.e., mass-

action kinetics. How might more realistic assumptions regarding host population

structure change our conclusions? The simplest approach here is to consider a host

population with two levels of mixing, i.e., a meta-population. Preliminary simula-

tions of a stochastic meta-population model show that subdivision of a population

into local patches always effectively increases the critical community size. This effect

is modest until the degree of connectivity among patches becomes quite small; for

very small connectivities, the effective critical community size grows rapidly as con-

nectivity decreases. The effect of meta-population structure, then, at least within

this simple one-strain model, appears to be entirely quantitative: the qualitative

picture remains as we have described. Interesting spatial effects may arise in models

with explicit competition among strains. We develop an individual based model,

that includes meta-population structure and explicit competition amongst pathogen

strains to fully explore these effects in chapter III).

We have focused on the case of a completely avirulent, that is, nonlethal, family

of pathogens. As we have shown, under realistic transmission functions, when the

population size is sufficiently large, the invasion-persistence trade-off is not enforced.

In such a regime, then, one expects that, other things being equal, virulence is one
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factor that will influence pathogen evolution. When the host-population is small,

however, the evolutionary forces acting on a virulent pathogen will depend on the in-

tricate constraints among transmission, infectious period, and virulence—constraints

imposed, again, by the interaction of the pathogen with the host’s immune system.

While theoretical models of pathogen evolution abound, empirical support is avail-

able only in a relatively small number of case-studies. This may in part be because

conspicuous shifts in life-history optima will only happen in the face of rapid changes

in host population structure (or invasion into a new host, as in the case myxomatosis

in European rabbits; Fenner 1983). The dawn of the Neolithic era some 10000 yr

ago offers an interesting ‘historical experiment’ of relevance. The Neolithic revolution

was marked by numerous changes in human community structure and agricultural

practice. In particular, sizes and densities of human settlements increased massively

as hunter-gatherers adopted more sedentary agrarian lifestyles and human popula-

tion growth rates stabilized at 0.1% per year (Eshed et al., 2004). In an intriguing

recent review, Mira et al. (2006) argue that the evidence for dramatic changes in

the genomes of human-associated bacteria represents the signature of rapid evolu-

tion in the face of the altered host community structure. Our theoretical exploration

is motivated by the independent emergence of two epidemic strains of Bordetella

(B. pertussis and B.parapertussis) that cause acute whooping cough and whooping

cough-like illness in humans. The ancestor of these, B. bronchiseptica cause more-or-

less chronic, nonlethal infection in a wide range of non-human mammals (Bjørnstad

and Harvill, 2005). Interestingly, Mira et al. (2006) uses genomic analysis of B.

bronchiseptica vs B. pertussis as a key exhibit; full genome sequences was recently

published for all three species (Parkhill et al., 2003). Mira et al. (2006) argue that

intense genomic changes—reduction in size, loss of genes coding for functions related
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to free-living metabolism, etc.—can be dated to around the time of the Neolithic

revolution. We speculate that this may be an instance where invasion-persistence

trade-off shaped life history evolution in these pathogens. The acute strains that

currently circulate are the evolutionary response to the radically larger population

sizes of human host — the larger host populations having served as fertile grounds

for pathogens to evolve their life history to become more acute.



CHAPTER III

Host population induces conflicting pressures on pathogen
life history evolution

3.1 Introduction

In a host-parasite system, particularly in the context of pathogens that cause

infectious disease, the incidence and the abundance of the disease inducing pathogen,

and the epidemiological characteristics of the disease is expected to be dependent on

the interactions between the host and the pathogen. Typically, a pathogen has to

enter a host and proliferate inside of a host, and manage to transmit its progeny to

other hosts in the population either before the pathogen is cleared or before the host is

killed. Furthermore, the pathogen has to be able to persist in the host population by

traveling between the hosts. Hence, from an evolutionary standpoint, the pathogen’s

survival hinges on the interactions it has with the host.

These host-pathogen interactions can be, very generally at two different levels – (i)

between the pathogen and a single host, as the pathogen infects a host and multiplies

within it; and (ii) between the pathogen and the host population, as the pathogen

transmits between hosts and circulates in the host population. Within a host, the

pathogen is likely to encounter resistance from the immune system of the host. The

host’s immune system has an arsenal of responses, which vary not only in the way

they tackle the invading pathogen but also in their specificity. The adaptive/acquired

30
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immune response that is specific to the pathogen is activated by the pathogen’s

presence and selected for their success at clearing these pathogens, and consequently,

is likely to depend on the pathogen density itself. The pathogen load within a host,

the host’s propensity to shed pathogen, and consequently the pathogen’s ability to

transmit to other hosts is likely to be influenced by the description of the interaction

between the pathogen and part of the host’s immune response.

At a larger scale, the pathogen has to circulate in a host population, by successfully

transmitting between hosts. The host population can vary in size, and the way it

is structured, and this makeup of the host population itself can affect pathogen’s

ability to sustain in the population and its abundance. Extinction of the pathogen as

a result of the size of the host population is one well known effect. Bartlett’s seminal

work on measles showed that observed gaps in the patterns of recurrent epidemics in

smaller towns in England in the pre-vaccination era could be explained by accounting

for the risk of extinction due to pure demographic stochasticity. (Bartlett, 1956b,

1957, 1960b) These fade-out events are a direct result of depletion of susceptibles,

especially pertinent to acute and immunizing diseases such as measles. The chance

of a fade-out event for a particular disease epidemic relates directly to the size of the

host population; smaller the size, likelier it is that the susceptibles deplete and result

in a fade-out. Furthermore, should the size of the local host population be below a

critical threshold, the critical community size, the disease will not persist in such a

population, even when its invasive fitness given by the reproductive number, R0 is

above the critical threshold of 1.

This has prompted consideration of possible consequences for evolution of pathogen

life history. A possible trade-off, between a pathogen’s invasive fitness and its abil-

ity to persist in the population, has been postulated by Grenfell (2001). Given two
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pathogen of identical invasive fitness, i.e. equal R0, one that is more acute that

drives the susceptible pool to lower levels is likely to be disadvantaged when the

host population size is relatively small (closer to critical community size). We have

shown in chapter 2 that this invasion-persistence trade-off can indeed be relevant for

evolution of pathogen life history. If one were to consider a fitness landscape for a

pathogen, the direction in which pathogen’s invasive fitness, R0 increases can very

well be in the direction in which its extinction risk grows, when one considers the

within-host mechanisms that are biologically plausible.

These insights for trade-offs and potential evolutionary consequences though over-

looks the rescue effect that host migration between host communities might bring.

Indeed, when one considers a host population in a larger meta-population, with hosts

migrating between these communities, there are significant effects pertaining to the

disease extinction. Epidemics on the brink of extinction, or even already extinct at

the local community level, can be rescued when there are simultaneous but possibly

asynchronous epidemics occurring in a nearby community. It is then relevant to

consider, if the meta-population effects quell the local community level extinction

risks.

Models that consider host population with structure and relate to or directly ex-

amine the evolutionary consequences have varied both in their approach and their

insights. A common approach has been to place hosts in a two-dimensional space, and

weight their frequency of contacts according to the physical distance between hosts

in the space. When contacts are limited to hosts in their local neighborhood, Boots

and Sasaki (1999) have observed “self shading” behavior, where virulent pathogens

quickly deplete susceptible hosts in its local neighborhood, diminishing its chances

of spreading. The authors also find that increase in the frequency of global contacts
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allows these virulent pathogens to escape extinction, and hence a selection of more

virulent pathogens. In a similar model, but allowing for waning of immunity, van Bal-

legooijen and Boerlijst (2004) observe various spatial patterns ranging from localized

disease outbreaks to epidemics spreading in waves through the space. Simulations

that explored the evolutionary dynamics showed evolution towards pathogen traits

that maximized outbreak frequency (the number of times a host becomes infected),

instead of R0. In the absence of any physiological trade-off at the within-host level,

the authors argue that the pathogen evolution can be constrained by this emergent

trade-off at the population level. These results suggest that adding structure in the

host population can bring about further meta-population level patterns that might

affect the disease epidemiology and consequently muddles the notion of pathogen fit-

ness. It is also unclear whether these results do hinge on the particular description of

the space and or on the asynchronous behavior that is normally associated with the

meta-population dynamics. Nor is it helpful pinning down the underlying dynamics

at work, and predicting what the fitness landscape for the pathogen looks like and

how it might change with the description of the host structure.

In a more deliberate effort to capture the consequences of extinction risks on

pathogen evolution, Keeling (2000) explores a model that scales the between host

interactions to meta-population level. A competition between two strains, a fitter

(higher R0) but extinction prone one and a relatively less fit but also less extinction

prone one, he finds, can result in domination of either strain or a coexistence be-

tween them. He points out that the coupling between patches and the stochasticity

in the meta-population as primary factors that determine the evolutionarily stable

strategies. The within-patch competition is modeled to operate at a separate time

scale, and the strain composition is assumed to tilt towards the one with larger R0
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over time. The extinction risk for a pathogen is assumed to linearly scale with R0.

In contrast, we build an individual based model, where both the competition within

a patch for susceptibles, and the local extinction dynamics are handled explicitly.

The details of the model are described in section 3.2.

In this paper, our goal is to understand the evolution of pathogen traits in struc-

tured host populations. Our approach will be to begin with a parsimonious model

that describes the underlying within-host and transmission mechanisms. This pro-

vides a mechanistic basis for a relationship between transmission rates and length of

infection for a pathogen. We observe the evolution of pathogens constrained by this

relationship in a model that allows for explicit competition between pathogen strains.

While the evolutionarily stable strategy (ESS) is the one that maximizes between

host transmission, i.e. one with the highest R0, for homogeneously mixing popula-

tion, we will show that adding structure in the host population will change these

ESS. In particular, structure in the population can result in an emergent patch level

dynamics — extinction and colonization at the patch level, and consequently allow

for patch level selection. As a result evolutionary pressures are acting at two levels,

modulated by competition for hosts at the between-host level and by colonization-

extinction dynamics at the between-patch level. Furthermore, a pathogen’s fitnesses

at two levels, corresponding to the abilities to compete for hosts and to colonize

patches, do not correlate. In fact, we show that pathogens that maximize their

between-host transmission necessarily forgo their ability to transmit and exist at the

patch level. The effect of these conflicting evolutionary forces can allow for a range of

evolutionary trajectory depending on the magnitudes of each of the forces, which in

turn depends on the host structure. In particular, patchiness in the host population

rewards pathogen that are less acute but persistent.
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Linear, and saturating
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Figure 3.1: A flow chart to illustrate the schematics of the model. We consider the evolutionary
forces on a specific pathogen trait, r, which is its within-host proliferation rate. The
within-host model relates this trait to calculate the pathogen load, P , and the duration
of the infection, ac. The transmission model translates the pathogen load to the host
transmission potential, β. The epidemiological model then generates the epidemics of
pathogen with the prescribed transmission rate and infectious period. Pathogens are
selected based on the relative abundance in the host meta-population.

3.2 Models

The general approach we take is to systematically model the effect of variation

in pathogen traits and more generally their life history strategies firstly on the char-

acteristics of the infection, primarily the intensity and the duration of the infection

within a host, and then consequently on epidemic patterns in a host population.

These epidemic patterns themselves are likely to vary depending on the way the

host population is structured, particularly the risk that they face of extinction and

their the role of the “rescue effect” in maintaining in the host. The variation in

pathogen’s ability to sustain in the host population in turn is modeled to affect the

selection of the pathogen traits, thereby completing the feedback loop. We begin

by modeling dynamics at the within-host level, and then scale them up to between-

host and population levels. At the within-host level, we seek to capture the basic

mechanisms of pathogen growth and its interaction with the immune system with
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relative parsimony. Yet, the model needs to be flexible enough to allow for a range

of different types of infections. The model we use enables us to first, identify biolog-

ically significant parameters, and second, observe the effects on them when they are

subject to evolutionary pressures. Transmission functions that describe the pathogen

shedding rates for hosts at different stages of their infection, translate these within-

host dynamics to between-host level. The deterministic models for within-host and

transmission dynamics are detailed in the subsection 3.2.1. We have previously used

McKendrick-von Foerster equations to explore the dynamics unfold at the population

level (also see the Appendix B.1).

Here, we implement an individual based model to the study of disease spread and

extinction patterns in structured host population. This choice is motivated by several

factors. First, stochasticity, both in host demographic processes and transmission

dynamics, are intrinsic in extinction or fade-out events that we aim to focus on. In

an individual based framework, demographic and transmission processes easily and

perhaps more naturally translate into stochastic processes. Second, we consider host

populations that are structured. Later in this section, we will describe in detail the

way in which we structure the host population. But regardless of the structure, by

individually tracking every single host, we can easily add this additional attribute

of the host in the model. Finally, perhaps the most important motivation is to

be able implement explicit competition between pathogen strains and capture the

evolutionary dynamics more comprehensively. This is important because we expect

the evolutionary process to depend on two fundamentally different dynamics; (i)

the invasion dynamics which deals with the ability of pathogen strains to compete

for susceptibles, and (ii) persistence, which relates to their ability to circulate in

the meta-population by avoiding extinction. The standard pairwise strain invasion
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analysis can run into potentially tricky questions. Such questions can involve directly

comparing fitness given by the two criteria. For example, if strain A has slightly

higher R0 than strain B, but is also slightly more likely to go extinct, what are

the evolutionary consequences? This framework, in contrast, allows us to directly

implement the strain competition, and the evolutionary consequences can directly

emerge. It also allows for circulation of multiple strains, and multiple invasion and

re-invasion dynamics are naturally incorporated. This method also provides not only

the final evolutionary optima, but also the trajectories, which can be more insightful.

The individual-based model is fully described in subsection 3.2.2.

3.2.1 Models of within-host and transmission dynamics

We use a fairly generic description of the pathogen-host immune system inter-

actions to model the within-host dynamics. The model is a slight modification of

a model proposed by Pilyugin and Antia (2000). Here, the course of infection is

modeled in the most basic terms: the parasite load, P , as a function of the age of

infection, a, defined as the time elapsed since innoculation. Pathogens are modeled

to grow exponentially at the rate r, but are killed at the rate k upon encounters

with host immune response, X. The successful killing of the pathogen proliferates

the growth of the immune response at the rate γ. α and d are background growth

and death rates for these immune cells.

(3.1)

dP

da
= r P − k X P

dX

da
= α− dX + γ k X P

This system of differential equations is initiated with a single pathogen in the

absence of the specific immune cells signifying start of an infection, i.e P = 1, X = 0.

There are two dynamical regimes in this system with stable equilibria at (i) P =
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0, X = α/d when d/k < α/r, and (ii) P = 1
γ
(d/k − α/r), X = r/k when d/k > α/r.

En route to the second non-zero equilibrium, however, the parasite load, P exhibits

damped oscillations falling to extremely low values. We interpret this as pathogen

clearance, as P falls below the critical pathogen load of initial dose, 1 before it

reaches the equilibrium. Consequently, in both regimes, the host is infectious until

age ac when the pathogen load returns to the initial dose. The pathogen growth rate

parameter r plays a key role in shaping the infection - low r results in less acute and

more persistent infection, whereas, high r results in more acute and less persistent

infection. (Also see fig. 3.2) Additionally, the pathogen growth rate is likely to be

most sensitive to evolutionary pressures faced by pathogens. For these reasons, we

take r to be the parameter indicative of the evolutionary dynamics.

The pathogen load an infectious host is carrying affects the host’s shedding rate

at different stages of infection and consequently its contribution to the force of infec-

tion. The simplest, a linear model, assumes a proportional increase in the shedding

rate as pathogen load increases. However, in a biologically more realistic scenario

the shedding rate is likely to saturate with pathogen load. Transmission mechanisms

involved, for example coughing in Bordetellae, is likely to act as a bottleneck in sat-

urating the expulsion of pathogen propagules. This saturating model and the linear

model are described by the equations below:

Linear Saturating

β(P (a)) = ql P (a) β(P (a)) = qs (1− exp(−P (a)/P ∗))

Here, β(a) is the transmission rate of an infectious host that was infected a time

units ago.
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Figure 3.2: Transmission rates, duration of infection and R0 as a result of within-host and transmis-
sion dynamics. [Left] Dose response generated by within-host and transmission models
vary with r. Here, we observe the length of infection (on the vertical axis) and average
infection rate (on the horizontal axis). The figure shows the trace of paths, for both
linear and saturating transmission models, when parameter r increases from 3 to 40.
The infections tend to become more acute and less persistent in both cases, but the
infection rates saturate for the saturating transmission model. [Right] Consequently, R0

also varies with r. For linear model, R0 keeps increasing with r, whereas for saturating
model, it reaches a maximum at r = r∗.
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3.2.2 Model for population structure and evolutionary dynamics

Models incorporating structure in the population have taken many different di-

rections, primarily depending on the particular heterogeneity that is relevant to the

disease epidemics at hand. Some are explicit in space, where host contacts are con-

fined in a neighborhood of its location, sometimes also allowing some random global

contacts outside of the neighborhood. (Boots and Sasaki, 2000; van Ballegooijen

and Boerlijst, 2004) Others focus on the network of contact structure, which might

take certain forms depending on social or other factors. Since our interest lies in

exploring extinction events, a more appropriate choice is a simple globally-connected

meta-population model, where we partition the host population into smaller patches,

similar to Hanski’s “patch” model (Hanski and Gilpin, 1991) or Ball’s “household”

model (Ball et al., 1997). The host population comprises of NP patches of size n.

Hosts mix homogeneously within a patch and transmission event also occur only

within a patch, but hosts can migrate between patches.

An individual host inhabits in one of the total NP patches, and can be in one of

the three states, susceptible (S), infected (I) or recovered (R). An infected host can

be further characterized by the pathogen strain it is carrying. Multiple infections

are disallowed, and the cross-immunity between the strains is assumed to be perfect.

The course of infection in an infected host depends on the pathogen strain r. In

particular, the pathogen load a host is carrying at age of infection a, P (a) follows

a deterministic course given by the within-host model given by Eq. (3.1) where the

parameter r corresponds to the pathogen strain it is carrying. The host recovers once

the infection is cleared — the clearance criterion is that the pathogen load to returns

to the initial level. The infection imparts life-long immunity, so the recovered hosts

do not enter the infection cycle again.
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The transmission occurs only within a patch, and it is assumed to be frequency

dependent. In a patch, each infected host contributes to the total force of infection

in the patch. If a host carries a pathogen load P (a), then β(P (a)) is the contribution

to the total force of infection. β(P (a)) depends on the transmission model and age

of infection but does not vary between strains. Since there are multiple strains in

circulation, we calculate strain specific force of infection for all circulating pathogens.

The strain specific force of infection for a strain r in a patch j is:

λr,j =
1

nj

∑
all hosts in patch j infected with r

β(P (a)),

where, nj is the size of the patch j. The total force of infection is the sum of all

strain-specific forces of infection, i.e. λj =
∑

r λr,j. So a susceptible host in patch

j faces a total force of infection λj, and the probability it will become infected in a

small time step ∆t is 1−e−λj ∆t. Furthermore, the probability that this new infected

will carry strain r is proportional to the contribution of λr to λ. Hence the strains

compete for susceptibles within a patch through the force of infection they generate

in the patch.

The birth and death rates of the host are held equal at a constant rate µ, so the

average population size remains constant. The probability that a host dies in time

∆t is 1−e−µ ∆t, and the number of total births is distributed binomially (binom(n =∑
j nj, p = 1− e−µ ∆t)). The new born susceptibles are equally likely to land in any

of the patches, since the patches are assumed to be of equal size n. The hosts also

migrate between patches at a given migration rate m, so the number of hosts that

migrate in time step ∆t is distributed binomially (binom(n =
∑

j nj, p = 1−e−m ∆t)).

These migrating hosts are equally likely to land in any of the patches, so any two

patches are equally connected.

The evolutionary process is fueled by the competition between strains, and the
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diversity of the strains is maintained by a mutation process. During each transmission

event, a strain r is likely to mutate with probability m. Mutation event is drawing a

new strain s from a normal distribution with mean r and a fixed standard deviation

σ.

Each run is initialized by infecting 1% of population by a single strain drawn from

uniform distribution between r = 3 and r = 10. A single run is assumed to have led

to pathogen extinction when there are no infecteds left. Evolutionary trajectory is

constructed by finding the average r (weighted by the number of hosts each strain

is present in) at each time t. 1000 runs were simulated for each set of parameters.

The evolutionary trajectory of the strain distribution is the distribution of average

r in these 1000 runs. For each simulation (of 1000 runs for a set of parameters)

considered, with the exception of one simulation corresponding to single patch with

linear transmission (discussed in subsection 3.3.1), the strain distribution converges

to an apparently stable distribution. The time taken by the simulations to converge,

though, can vary. The steady-state distributions are generated by excluding the

transient period. 1000 more runs reinitialized, according to the state of runs at the

end of the transient period, and progressed for 2000 more time units to derive the

steady-state strain distributions. Time step ∆t was taken to be 0.01.

3.2.3 Fitness measure, R0

If we take the number of patches, NP = 1, and disallow mutation, i.e. set χ = 0,

the model reduces to a stochastic version of the model we discussed in Chapter 2.

The details are also described in appendix B.1. In such a setting, for a given pathogen

with growth rate r, we can deterministically calculate the net reproductive number,

R0 =

∫ ac

0

β(a) exp(−µ a) da.
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Table 3.1: Parameters for the meta-population model.
Symbol Parameter Value

Within-host model:
r parasite growth rate 3–60
k kill rate of the immune response 3.5
α baseline production rate of immune response 1.0
d death rate of immune response 0.5
γ immune response recruitment rate 0.1

Transmission models:
ql transmissibility factor, linear model 1.0
qs transmissibility factor, saturating model 100.0
P ∗ saturation constant -0.01

Population model:
NP number of patches 1–200
n size of the patch 20–2000
m migration rate 0.1
µ host mortality rate 0.1
χ mutation rate (probability per transmission event) 0.01
σ mutation size (standard deviation) 0.35

Fig. 3.2(Right) shows the R0 for a range of pathogens for both transmission models.

R0 increases monotonically with r for a linear transmission model — the more acute

the pathogen, the better they fare in between-host transmission. In contrast, R0

reaches a maximum at an intermediate r for a saturating transmission model, a

consequence of diminishing returns for increasing pathogen load as the pathogen

shedding rate saturates.

3.3 Results

3.3.1 Single patch model and evolution to the edge of extinction

In a single patch model, hosts mix homogeneously within the population. Diver-

sity of pathogen strains are maintained through mutation events, and the strains that

circulate at any point in time are competing against each other for susceptible hosts.

We observe the evolution of the pathogen strains over time. The strain distribution is

expected to change over time, and eventually converging to values representing evo-

lutionarily stable pathogen strategy, when they exist. For linear transmission model,



44

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

time

r

0 2000 4000 6000 8000

0
10

20
30

40
50

60

0
10

20
30

40
50

60

0.00 0.25 0.50 0.75 1.00

prob. of extinction

Figure 3.3: The evolution to the edge of extinction. Simulation results for a single patch model
(initialized with 2000 hosts) with a linear transmission showing pathogen evolution
over time. We construct the pathogen distribution at a given time, r(t), by observing
the average r of the pathogen present at that time, t, in each of the 1000 simulations. In
the left panel, shades of grey shows the pathogen densities, and the solid line plots the
average of the distribution r(t). The evolutionary trajectory shows pathogen evolution
towards higher acuteness corresponding to higher r. Consequently, they also become
more prone to extinction events, shown by the red cross marks. Probability of extinction
(proportion of simulations that result in extinction) increases as r grows, as shown in
the right panel. In the absence of external constraints, a linear transmission model in a
single patch population shows the pathogen evolving to the edge of their own extinction.
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this distribution continues to change in the direction of higher r, corresponding to

shorter and more acute infections as shown in Fig. 3.3. This is to be expected, since

the net reproductive number, R0 increases with r (Fig. 3.2[Right]). As the pathogens

continually increase r, they become more acute. Acute infections burn through the

pool of susceptibles quickly, hence risking stochastic fadeout. The direction of evo-

lution leads the pathogen to the brink of their own extinction. This is in agreement

with our results in Chapter 2.

Under the saturating transmission model, R0 is maximized for intermediate r.

Diminishing returns sets in for the pathogen increasing their pathogen load beyond

this r. Consequently, pathogens evolve to this optimal value, which is evolution-

arily stable as long as the population is large enough to sustain such a pathogen.

Fig. 3.3.1[Left] shows that the strain distribution settles around r = 16. This coin-

cides with r∗, the r that maximizes R0 (Fig. 3.3.1[Right]).

3.3.2 Population structure and approximation of the emergent patch dynamics

To explore the role of population structure, we subdivide the host population

into smaller patches (NP patches of size n). We find that the evolutionarily stable

pathogen strain varies widely depending on the structure of the host population. We

focus on the effect of two meta-population parameters, (i) the size of the patch, n,

and (ii) the number of patches, NP .

Under the saturation transmission model, with NP = 1 and n = 2000, we already

showed (Fig. 3.3.1) that the steady state distribution of the pathogen strain was

centered around a mean of r = 16, the strain that maximizes R0. Increasing n in

this case will only reduce the frequency of extinction, but not change the steady

state distribution. Decreasing n will increase the frequency of extinction, and if

it is small enough the steady state distribution might not be reached. For meta-
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2000 hosts) with a saturating transmission model. Pathogens evolve to a evolutionarily
stable r, this is equal to the r that maximizes the net reproductive number R0. Note that
R0 for a linear transmission model increases monotonically with r without a maximum.
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Figure 3.5: Steady state strain distributions. [Top-Left] For n fixed at 100, and changing NP . [Top-
Right] For n fixed at 50, and changing NP . [Bottom-Left] For Np fixed at 100, and
changing n. [Bottom-Right] For Np fixed at 50, and changing n.
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populations with NP larger than 1, the evolutionarily stable strains were always

below r = 16. But in general, increasing the size of the patch selected for more

acute pathogens. Fig. 3.5 [Bottom-Left] shows the steady state strain distributions,

when Np is fixed at 100, and n is varied between 20 to 50. Distributions moves move

slightly to the right as n increases. Results are more pronounced for Np = 50 and

n is taken up to 100. (Fig. 3.5 [Bottom-Right]) Increasing n results in two things.

First, the frequency of the local extinction are reduced allowing for selection of more

acute pathogens. Second, even in the case where local extinctions are prevalent, the

number for transmission events within a patch in increased. This should also favor

more acute pathogen since they have higher R0 (up to r = 16).

The effect of changing Np was less intuitive. Meta-populations with many small

patches appeared to favor pathogen significantly less acute than the one that maxi-

mized R0. In fact, increasing the total population size by adding more patches tended

to select for less acute pathogen. In Fig. 3.5 [Top-Left], we plot the strain distribu-

tions at the respective steady states for meta-populations with number of patches,

Np varying between 10 and 60, and patch size fixed at n = 100. The transmission

model is taken to be saturating. Simulations with NP smaller than 10 result in global

extinction, and NP greater than 60 is infeasible due to the size of the computation.

But in the range of Np considered, the steady state strain distributions move and ac-

cumulate to the left towards lower r as NP increases from 10 to 60. Similar behavior

can also be seen for n = 50 in Fig. 3.5 [Top-Right].

While it is not completely obvious why there are significantly different ESS, es-

pecially with lower acuteness, in patchier populations, it is still quite clear that the

original measure of pathogen fitness, R0 is not sufficient in including the effect of

population level dynamics. In a population model, where there are large number of
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small patches, it is more worthwhile to think of the dynamics at the patch level. Con-

sider an infected patch, a patch that has infected hosts. When an infected host from

this patch moves to a susceptible patch, a patch that has susceptible hosts, it turns

into an infected patch. The infected patch goes through an epidemic, and the hosts

recover, turning the patch to a recover patch. This recovered patch, through birth

and migration replenishes susceptibles hosts and turns into a susceptible patch again,

and the cycle continues. The following set of equations provide an approximation to

the patch dynamics:

(3.2)

dSP

dt
= f(µ) RP − ῑ m n SP

IP

NP

dIP

dt
= ῑ m n SP

IP

NP

− 1

δ̄
IP

dRP

dt
=

1

δ̄
IP − f(µ) RP

where, SP , IP , RP and NP are number of susceptible, infected, recovered and total

patches respectively; µ is the host birth rate; n is the per patch population; m is

the between patch migration rate; ῑ is the average proportion of infected hosts in an

infected patch; and δ̄ is the average duration on an epidemic. Susceptible patches

become infected when infected hosts move from an infected patch to a susceptible

patch. The rate at which that will happen will depend on the between-patch mi-

gration rate, σ, the average number of infected host in an infected patch, given by

the product of ῑ and n, and the probability such patches interact (in exchange of

hosts), which is given by the product of SP and IP /NP . An epidemic in a patch will

last δ̄ on average, at which point the patch becomes recovered. The recovered patch

themselves turn susceptible, the rate f(µ) is a function of the host birth rate, µ.

One can also draw comparison with the general Levins model (Levins, 1969),



50

●●

0 r** 5 10 15 r* 20 25

0
1

2
3

4

●

0
5

10
15

20

R
0P R
0

r

Linear, R0

Saturating, R0

Linear, R0P

Saturating, R0P

Figure 3.6: R0 and R0P have different optima for saturating transmission model. R0 is maximized
at r = r∗, whereas R0P is maximized for r = r∗∗. Here, R0P is calculated with patch
size, n = 30, and migration rate, m = 0.1.
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described by the following equation:

(3.3)
dp

dt
= c p (1− p)− e p

where, p is the fraction of occupied patches, and c and e are colonization and

patch level extinction rates respectively. The appropriate analogy would be to think

of the patches being occupied by pathogens carried by hosts. In comparison, ῑ m n

is the colonization rate, and 1
δ̄

is the patch level extinction rate. The key distinction

between the Levins model, and our patch dynamics model is that patches in our

model do not become susceptible immediately after the pathogen becomes extinct

in a patch. Since the hosts remain immune to the pathogen once they recover, the

patches consisting of recovered hosts, remain in recovered class, not available for

the pathogens to occupy. The recovered patches turn into susceptible ones once the

old recovered hosts are replaced by new susceptible hosts through births and deaths.

This formulation is also closely related to the model proposed by Keeling et al. (2004)

— ours neglects dispersal events (migration of infected hosts from and to infected

patches) for simplicity.

In our formulation, the average number of new infected patches resulting from a

single infected patch, the patch-level R0,

R0P = ῑ δ̄ m n.

Quantities ῑ and δ̄ can be approximated both deterministically and stochastically.

The resulting R0P are shown Fig. B.2 of appendix B.2.

3.3.3 Evolutionary consequences of selections at different levels

The key issue here is that the fitness measures, R0 and R0P can have different

optima, as seen in Fig. 3.6. Pathogen evolution in a less patchy population is governed
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by a single population dynamics, and the fitness in such such a case is given by

R0. Pathogens find that ESS r = rmax that maximizes R0. In a patchy population,

however, the pathogen evolution is governed by patch dynamics. The fitness measure

in this scenario is given by R0P , and pathogens find ESS r = r∗∗ that maximizes this

fitness. When we explore a range of populations, as shown in Fig. 3.7, we see that

the ESS r varies from r∗ to r∗∗ as we make the population patchier. This suggests

that a pathogen in a given population will face evolutionary pressures functioning

at two different levels. A pathogen that is more successful at spreading within a

patch is also more likely to burn through the susceptibles quickly and go extinct

much more rapidly within the patch. Consequently, there is a shorter window for

the pathogen to colonize a new patch. In contrast, a pathogen that causes a more

persistent infection, is able to also persist longer in a patch and hence favored to

be able to move to a susceptible patch and avoid extinction. But it is inferior in

its ability to spread within a patch. The exact structure of the population is going

to determine the optimum growth rate for the pathogen, and a balance of selection

pressures at two levels.

This also highlights the fact that increase in the host population does not have a

single effect on the pathogen evolution. If the increase in the population constitutes

increase in patch sizes, within-patch selection pressure is increased, favoring more

acute pathogen. On the other hand, if one were to increase the number of patches,

this increases availability of susceptible patches, and hence favor pathogens that are

successful at colonizing patches — the persistent ones.
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3.4 Discussion

In this chapter we have taken a “bottom-up” approach; beginning with a model for

pathogen and host immune system interaction at the within-host level and explored

the full dynamics of disease epidemics unfold in structured host populations. We

focus on the pathogen evolution modeled via explicit competition between pathogen

strains for susceptible hosts. We find that structure in the population plays a critical

role in determining the trajectory of pathogen evolution. While in a large well-

mixed population, pathogens evolve to a stable strategy corresponding to optimal

pathogen traits depending on their between-host fitness, i.e., the one maximizing

R0, the evolutionarily stable strategies diverge from this optima as the population

becomes patchier. In populations with large number of small patches, emergent

patch level dynamics governs the pathogen evolution. Consequently, the pathogens

more equipped to out-survive its competitors within a patch, the one maximizing

R0P is evolutionarily stable.

The role of host population structure in pathogen evolution has been pointed out

by a number of authors. Ball et al. (1997) derive a threshold quantity for pathogen

invasion in the context of several meta-population models. Their metric for the av-

erage number of new infected patches resulting from a single infected patch, R∗(Ball

et al., 1997; Ball and Neal, 2002) simplifies to R0P for structurally similar “household”

model. The effectiveness of R∗ over R0 in predicting the disease invasion threshold

has also been pointed out by Cross et al. (2005, 2006) in host population grouped

into spatially distributed patches. The authors suggest that in a patchy population

chronic infections benefit from having more time for between-patch transmissions,

yet for the selection of pathogen to be effective at this scale there should be signifi-
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cant patch level extinction risks. We have shown that host population structure, in

particular the size and the number of patches, plays an important role in allowing

for extinction and colonization dynamics to unfold at the patch level.

Large scale meta-population patterns, and their role in shaping pathogen traits

have also been observed in spatially explicit models, such as “self shading” behavior

reported by Boots and Sasaki (1999) and pathogen evolution towards maximizing

outbreak frequency instead of R0 in van Ballegooijen and Boerlijst (2004)’s model.

Models in developed in this framework, though, present a difficult challenge of quan-

tifying evolutionary forces active at a larger scale. In the absence of such a measure,

the predictions of evolutionarily stable strategies will lack theoretical basis. We have

also shown that the shift in the evolutionary pressure in structured population is not

completely a function of space. The bottleneck that structure in the host population

provides, whether it is explicitly defined in space or not, still can potentially shape

the pathogen evolution.

The behavior of evolution of pathogen towards a self-destructive end is an interest-

ing yet a challenging result to interpret. As we have discussed in our previous work,

when (i) transmission is modeled to increase linearly with pathogen load, and (ii)

the hosts mix homogeneously in a single population, we observe pathogen evolution

towards the brink of their own extinction. While both of these modeling assump-

tions are simplistic and have various shortcomings, it is not obvious initially that

this should also create a self-destructive evolutionary trajectory. Acute and rapidly

transmitting pathogens are known to be vulnerable to stochastic extinction. Simi-

lar phenomena has also been observed previously by Rand et al. (1995), albeit in a

spatial individual-based model framework. One interpretation of this result is that

modeling transmission to grow linearly with the pathogen load is flawed. There are
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likely to be bottlenecks in transmission mechanism that would not allow for such a

linear relationship. Additionally, the host biology might now allow for an unbounded

growth of parasites, given resource limitation. (Levin and Pimentel, 1981)

Here we have specifically explored pathogens that are avirulent. The course of the

infection and the clearance were modeled using a within-host model. Literature on

evolution of pathogen virulence have primarily focused on the physiological trade-off

between transmission and virulence (Anderson and May, 1991; Frank, 1996), includ-

ing the role of within-host dynamics in such trade-off (Antia et al., 1994; Gilchrist and

Coombs, 2006; André et al., 2003; Alizon and van Baalen, 2005). But the invasion-

persistence trade-off can be of consequence for virulent pathogens as well. First,

virulence factors will affect the course of infection in a host, depending how the viru-

lence itself is modeled. A common approach is to let virulence increase with pathogen

load, in which case, pathogens that increase their acuteness beyond a certain level

will face diminishing returns due to increasing death risk it poses to the host. This

will result in pathogens with intermediate growth rate and virulence to maximize R0,

similar to the saturating transmission model. Pathogens should evolve to such opti-

mal virulence in a single patch setting provided the size of the patch is large enough.

But in a meta-population context, where the local patches are small enough to pose

extinction risk to the pathogen, rescue effect will play a significant role, in the same

way it does for avirulent pathogens. Faced with evolutionary pressure arising at the

meta-population level, virulent pathogen can evolve to low acuteness and virulence

in such meta-populations.

We have managed to show evolutionary pressures acting different levels can be

in conflict. While there is a clear domination of between-host selection for large

patches, and between-patch selection for large number of small patches, it remains
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a challenge to resolve this conflict for anything in between. How might the balance

of evolutionary pressures change as the population is changing in structure? Our

simulations suggest that as patch size increases, so does the frequency of between-

host transmission. This in turn increases the force of selection acting at this scale

favoring more acute pathogens. But once pathogens are acute enough so that local

extinctions are frequent, the role of rescue effect becomes more critical. Interestingly

the pathogens that survive from the rescue effect tend to be the ones that are more

persistent. These more persistent pathogens are better colonizer, since they produce

larger epidemics, primarily due to their ability to persist longer in the host. So if

there are large number of patches that are open for colonization, this increases the

frequency of colonization events and selection at the patch level. To address this issue

in detail, one will need to work on a modeling framework that accounts for dynamics

and evolution at both levels. In chapter IV, we take a modeling approach towards

this end. By exploring epidemic dynamics in a meta-population, and competition

dynamics within a patch, we further show the role of meta-population parameters

in determining the balance of competition and colonization events, which then affect

the evolutionarily stable traits.

Finally, we will return to Bordetellae infections, the original motivation for this

project. The independent emergence of two acute strains of Bordetellae, B. pertus-

sis and B. parapertusis in humans from relatively less acute but persistent B. bron-

chiseptica, only common in mammals raised the question of the role of host structure

in their divergent evolutionary paths (Bjørnstad and Harvill, 2005). In our previous

work, we laid the framework that illustrates the functioning of “invasion persistence”

trade-off within a single well mixed population. Here, in a meta-population context,

the extinction dynamics coupled with colonization, allows for selection of different
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pathogen traits depending on the population structure. A strain circulating in an

animal host is likely to evolve persistent characteristics due to the inherently patchy

structure. A well mixed human population can provide fertile grounds for pathogen

to forgo traits of persistence and maximize fitness by proliferating rapidly within a

host and then transmit rapidly across the population.



CHAPTER IV

Epidemic and evolutionary dynamics in meta-populations

4.1 Introduction

The epidemic dynamics of acute, rapidly transmitting infections that impart long

lasting immunity typically exhibit strong cyclical behavior — high and steep epi-

demic peaks followed by deep troughs. Empirical data for the well studied measles

dynamics in the pre-vaccination era in the UK provides a classic example (Grenfell

and Harwood, 1997; Bolker and Grenfell, 1995). There can be a number of reasons

for this periodicity, such as the seasonal trends in factors that affect transmission

or more complex interaction between stochasticity and spatial aspect of the disease

transmission, but the basis of it can be understood in terms of the basic processes

inherent in such epidemic dynamics — the infection and the recovery processes. Ini-

tially, the infection rapidly spreads through the population that primarily constitutes

of susceptibles. The infected hosts soon recover from the infection and in the process

gain immunity. As a result the epidemic process slows down considerably due to

lack of susceptibles. If birth and migration rates (the processes that replenish the

susceptibles) are relatively low, the depletion of susceptibles can result in an abrupt

end to what would otherwise be a continuation of cyclical epidemic patterns. This

fade out, or local extinction behavior has been documented and well studied for

59
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measles (Bartlett, 1956a, 1957; Keeling and Grenfell, 1997), and is also of relevance

to whooping cough.

What are the implications of such extinction dynamics for evolution of pathogen

life history? Chapter II of this thesis explored this question in the context of a single

homogeneously mixing host population. The key insight was that mechanistic within-

host dynamics can lead to selection of pathogens that are not only more acute but

also more extinction prone. Given the size of the host population, acute and highly

transmissive strains generally spread across a host population faster than milder but

more persistent ones, but they risk of going extinct in the population. This invasion-

persistence trade-off (Grenfell, 2001) can result in evolution of intermediate acuteness

in strains, depending on the size of the host population as well as the nature of the

transmission.

In smaller host populations, particularly if they are below the critical community

size (Bartlett, 1956a, 1957; Keeling and Grenfell, 1997; N̊asell, 2005), epidemic pat-

terns of such infections that are prone to local extinction can be episodic (Grenfell

and Harwood, 1997; Bjørnstad and Grenfell, 2008). Epidemics deplete the suscep-

tibles in the local community driving the pathogen to local extinction, only to be

reignited later by a pathogen existing elsewhere in the host meta-population via the

rescue-effect (Earn et al., 1998; Grenfell, 2001). To truly assess the evolutionary

consequences of these local extinction risk, one would have to account for rescue-

effects that emerge at the meta-population level. It is then relevant to ask how the

invasion-persistence trade-off manifests in a meta-population context.

In this regard there are two major insights that serve as motivation for the model-

ing choices in this chapter. The first insight comes from work by Keeling (2000). The

author models competition between two strains, characterized by their difference in
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R0 and local extinction risk, in a meta-population with infinitely many patches. By

explicitly separating the time scales of within-patch and between-patch interactions,

and exploring the evolution of distribution of the mixture of the two strains, he finds

that coupling of the patches and the stochasticity in the model are key factors in de-

termining the evolutionarily stable strains. In particular, high patch coupling and/or

low stochasticity favors a more acute strain, and the converse scenario favors a more

persistent strain. The simulation based study of patchy host population in chapter III

provides additional insights on the evolutionary forces at play in a meta-population

with frequent local extinctions. Pathogen are selected not only based on their R0

(how well they perform within a patch of hosts), but also based on how well they

colonize patches. Our results show that there is an inherent conflict of evolutionary

pressures, one that arises at the patch level to maximize between host transmission,

and one at the meta-population level that maximizes the between-patch circulation.

Hence the optimal pathogen characteristics are contingent upon the host-population

structure, patch size and migration rate.

The goal of this chapter is to understand the evolutionary implications for pathogens

that face extinction risk in their local host community, but benefit from the rescue

effects that emerge due to the meta-population dynamics. In contrast to Keeling

(2000), we consider a host meta-population where the local patches are well below

the critical community size. Local epidemics always end with local extinction of the

pathogen, but the size and the duration of the epidemics, as well as the interval

between two epidemics, inter-epidemic period (or the fade-out length) are modeled

to vary with the host demographic rates, the structure of the meta-population and

with the strain traits. Meta-population models for disease in this regard (Grenfell

and Harwood, 1997; Keeling et al., 2004) have built on ecological meta-population
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models (Levins and Culver, 1971; Hanski and Gilpin, 1991). We adapt a slight vari-

ant of the widely used Levins-type model (Levins and Culver, 1971). In section 4.2,

we describe the meta-population model and the disease dynamics in this setting.

In order to be able to ask questions regarding pathogen evolution, we will need to

integrate models of competition between pathogen strains within the meta-population

framework. We present two models, one that examines the invasion dynamics in the

standard way, and an alternative model for pathogen competition. These are de-

scribed in section 4.3. We extend these models of competition to find evolutionarily

stable or optimal pathogen traits, and examine the effect of change in population

structure on these traits.

Finally, we examine the effects of the host structure and demographics on pathogen

evolution. To do this, we adapt this general framework in the context of simplified

SIR model, as described in section 4.4. We find that the structure of the meta-

population, the migration rate of hosts and the size of the patch will influence the

invasion dynamics and the competition among strains for susceptibles within a lo-

cal patch and globally in the meta-population. Evolutionarily stable, and optimal

pathogen traits change as these meta-populations change in structure. In particular,

meta-population with higher migration rates favor more transmissive strains. As

the host interactions become more localized, strains that are less transmissive but

more persistent are selected. The model for pathogen competition illustrates how

pathogen’s ability to compete for susceptibles within a patch, and its ability to colo-

nize patches can favor different pathogen traits, resulting in conflicting evolutionary

pressures that arise at two levels. The optimal strain finds a balance of different

traits, and this balance is dependent on the structure of the meta-population.
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Figure 4.1: The Epidemic dynamics in a patch within the meta-population. The patch is in an
epidemic phase when there are infectious hosts in the patch. This phase lasts for dura-
tion δ. All of the infectious hosts eventually recover, and the patch enters a refractory
phase, which lasts for duration z. Once the patch is replenished with susceptibles, it is
“susceptible” to new epidemics. It enters a waiting phase which lasts for duration W .

4.2 Meta-population Model

We consider a host meta-population that is a collection of infinitely many small

and equally sized patches (local host communities), each of size n. This in similar

to Levins-type meta-population model (Levins and Culver, 1971), except we do not

explicitly keep track of the number of the patches. All of the host’s interactions are

restricted to hosts within its own patch, but the patches interact with each other

through movement of individual hosts. We assume that this host migration rate, m,

is constant throughout the meta-population. An individual host that is moving out

of a patch is equally likely to land in any patch.

Now, consider that there is an infection prevalent in the meta-population. Each

patch is going through different phases of epidemic dynamics. The epidemic dynam-

ics we consider are caricatures of episodic epidemics observed in a meta-population
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of small local communities where the disease goes locally extinct after an epidemic.

The epidemic starts with a single infected host, and spreads through the population

in the patch. The infection lasts for a certain duration in each infected host, and

eventually each one of them recovers. This epidemic phase lasts for a duration of

∆. Once the epidemic phase is over, the patch remains in a refractory phase, where

the recovered hosts one-by-one become susceptible to the infection. If the infection

is fully immunizing, this phase will last until there are enough new born susceptibles

in the patch. If the immunity from the infection wanes, this phase will also depend

on the duration of immunity. Let us assume that this phase lasts for duration Z.

Once sufficiently many of these hosts are susceptible, we will assume that it will

enter a waiting phase. The patch is susceptible to new epidemic, and is waiting

for an infected host (from a different patch) to migrate into the patch and start an

epidemic. We will assume that this waiting time W is a random variable distributed

exponentially with parameter λ, i.e, W ∼ exp (λ). Once the epidemic starts, the

patch cycles through all the phases.

The final size of an epidemic and its duration in a stochastic setting will have

variability. Typically, these distributions tend to be bimodal — the epidemic ei-

ther fizzles before taking off, or it takes off and follows a fairly deterministic course.

With this in mind, we simplify the epidemic process by considering only these two

extremes. The epidemic either takes off with probability ε, in which case they will

last for a fixed duration ∆ = δ, otherwise, we assume that there is no epidemic.

The length of epidemic, δ, though, depends both on the patch size, n, and on the

characteristics of the infection, the later of the two is expected to have direct evo-

lutionary consequences. So, we focus on the variability of the epidemic durations

(and sizes) arising from difference in pathogen traits. We approximate δ for different
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patch sizes and pathogen strains using a simplified SIR model in subsection 4.4.2.

The refractory period is assumed to fixed at Z = z, and is taken to be independent

of pathogen strain — we revisit the implication of this assumption in the conclusion

of this chapter.

As long as λ > 0, a patch moves through a chain of phases, epidemic(PE),

refractory(PR) and waiting(PW ), with waiting times ∆, Z, and W , in each phase

respectively. This process can be thought of a Markov chain in continuous time and

with finite states PE, PR, and PW . The probability that the patch will be in given a

state in near future will only depend on which state it is now, regardless of where it

has been in the past. Furthermore, since it always possible for a patch in any phase

to get to any other phase, this is an irreducible chain that will attain a stationary

state. In this stationary state, the probability of the patch being in any particular

phase is the average waiting time in that phase as a fraction of sum of average waiting

times in all phases. Hence,

P(PE) =
E(∆)

S
=

δ

S
; P(PR) =

E(Z)

S
=

z

S
; and P(PW ) =

E(W )

S
=

1
λ

S
,

where S = δ + z + 1
λ
. We will call λ to be the force of epidemic, since the waiting

time for a susceptible patch to start the epidemic is dictated by this parameter. If

this force of epidemic is high, the patch is likely to cycle through more quickly, and

if it is low, the patch is likely to be waiting phase for longer.

We imagine that what we observe in a single patch is representative of any other

patch. In particular, we assume the epidemic dynamics in a given patch is inde-

pendent of what is happening in another patch, i.e. epidemics between patches are

asynchronous. One scenario under which this assumption will fail is if the migration

rate is very high, or if there are too few patches. In such a scenario the dynam-

ics of the patches will likely synchronize, and hence the force of epidemic is likely
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to fluctuate in time with epidemic dynamics (Bjørnstad et al., 1999; Bjørnstad and

Bolker, 2000). A careful thought should be given to understand the conditions for

synchronization of patch dynamics, but will be beyond the scope of this endeavor.

Our model operates under the assumptions that there are infinitely many patches

and the migration rate is small enough such that patch level epidemic dynamics are

asynchronous. Under these assumptions, the force of epidemic prevalent in the meta-

population, λ, should be constant during the stationary state of this patch dynamics.

This force of epidemic, though, should be in fact be generated by the epidemic dy-

namics of the patches themselves. This will give a self-consistency requirement for λ.

In particular, if m is the migration rate of individual hosts, ε is the probability that

a single migrant sparks an epidemic, and Ae is the area under the epidemic curve,

then,

λ =

migration
rate︷︸︸︷
m ·

prob. epidemic
is sparked︷︸︸︷

ε ·

P(PE)︷ ︸︸ ︷
δ

δ + z + 1
λ

·

avg. height
of epidemic︷︸︸︷

Ae

δ
=

m ε Ae

δ + z + 1
λ

.

And, by satisfying this self consistency condition, we get λ =
m ε Ae − 1

δ + z
.

(4.1)

Since λ > 0, we must have m ε Ae > 1. Ecologically this makes sense – the patch

level epidemic dynamics (cycling through the three phases) can only persist if m,

ε and Ae are large enough such that on average an epidemic can result in another

epidemic at some other patch. This general framework is adapted in the context of

simplified SIR model in subsection 4.4.2.

4.3 Models of pathogen competition and invasion dynamics

Given the disease dynamics in the meta-population model we introduced, we are

interested in understanding the nature of competition between pathogen strains,

and ultimately what evolutionarily optimal pathogen traits are likely to be. In this
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Figure 4.2: Invasion dynamics in the patch model. The expected arrival of the resident is time
t = 0. The invader arrives at time t = h. Depending on h, it recruits/infects ξ(h)
susceptibles.

section, we will introduce two different approaches to this. In subsection 4.3.1, we

develop a model of invasion dynamics. The meta-population is considered to be in a

steady state with a resident strain, and we ask whether an invading strain introduced

in a patch will be able to generate a force of epidemic that will result in successful

colonization of new patches. In subsection 4.3.2, we will introduce a different model

for competition. Here we consider a fragmented meta-population, where two different

strains are simultaneously present, but in different habitats. We ask which of the

two strains is more likely to capture a new susceptible patch.

4.3.1 Model for invasion dynamics

Consider a meta-population, that is characterized by {patch size, n; migration

rate of individual hosts between patches, m; and host demographics that results in

refractory period of length z}. Typical setting for invasion analysis is to assume that

the meta-population is inhabited by a resident strain, R, and the epidemic dynamics
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has reached a steady state. From the steady state distribution, it is possible to infer

the probability of this patch being in a given phase – epidemic, refractory or waiting

(and the average duration of each phase).

Suppose that a pathogen of an invader strain I is introduced into this meta-

population. The success of this pathogen is determined by (i) its ability to recruit

susceptibles within patch; and (ii) its ability then to generate epidemics at other

patches. Within a patch, the competition between the two strains is for susceptibles

and is likely to depend on a variety of factors: the strain characteristics, the size of

the patch, but also on the timing of the arrival of each strain. We know that the

average duration of waiting period in the meta-population is 1/λ, λ being the force

of epidemic in the meta-population. Let t = 0, be the time when the resident strain

starts the epidemic, which lasts for δ. The resident would have waited for 1/λ from

the end of the refractory period, which lasted for z. Hence, an epidemic cycle can be

taken to be from t = −z − 1/λ to t = δ, for the total duration of z + 1/λ + δ. The

invader I is equally likely to have arrived at any time during the epidemic cycle. So

the arrival time of I, H is uniformly distributed in the interval [−z− 1/λ, δ]. So, the

probability that arrival of the invader strain occurs at time t < h, or the cumulative

distribution function of invader arrival times is:

Fh = P(H < h) =
h + z + 1/λ

z + 1/λ + δ
,

and the respective density function, fh =
1

z + 1/λ + δ
.

(4.2)

Let us now suppose that ξI(h) is the number of susceptibles infected by strain I if it

arrives at time h. Then, the average number of susceptibles captured by this invader

during the course of the epidemic is:

(4.3) ω = fh

∫ δ

− 1
λ

ξI(h)dh.
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Note that the integral only starts from −1/λ since there is no chance of sparking an

epidemic when the patch is in refractory period.

Ultimately, we are interested in whether this invader that was introduced into

the patch will be able to sustain in the meta-population by being able to spark an

epidemic in a new patch. A host that has been infected by this new strain has to

migrate while it is infectious and successfully spark an epidemic. Hence, the number

of new patches this invader will capture will be (or the number of new epidemic

sparked):

(4.4) ζ(I, R) = m ε ω
1

γI

,

where, m is the migration rate, ε is the probability that this single migrant will

successfully start an epidemic, and 1/γI is the duration of the infection caused by

this new strain. Apart from being a function of the traits of two strains, ζ is also

dependent on the host demographics rates, and the meta-population parameters.

Also note that since the epidemic dynamics is in a steady state for the resident

strain – an epidemic of the resident strain on average produces exactly one new

epidemic. This implies that if ζ(I, R) > 1, then the invader I can successfully invade

into the meta-population currently inhabited by R.

4.3.2 Model for strain competition

Here, we introduce a slightly different model of strain competition. Let us con-

sider a scenario where two strains X and Y both simultaneously exist in the meta-

population. It is unclear what the dynamics of disease is likely to be in such a

meta-population, since the epidemic dynamics of each of the strains could possibly

be interacting with each other. Regardless, we will assume here that both of the

strains have reached their respective steady states. Hence, the force of epidemic that
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t=0 t=h*

strain Y
strain X

Figure 4.3: If strain X enters the patch h∗ after Y , then the infected-time generated by X (the
shaded area underneath epidemic curve for strain X) is equal to that generated by Y
(the shaded area underneath epidemic curve for strain Y ). If X arrives before h∗, then
it will generate larger infected-time, and take over the patch. Otherwise, Y will keep
the patch.
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each strain generates is given by λX and λY , respectively.

Suppose that a patch has just recently become susceptible, and we are interested

in knowing which one of the two strains is more likely to take this patch. The number

of susceptibles X and Y will recruit, as discussed previous section, will depend on

their infection characteristics, the size of the patch, and the timing of their arrival.

Here, the waiting time for arrival of both of the strains are exponentially distributed

with rate given by their respective forces of epidemic. So, the waiting time for arrival

of X, WX ∼ exp(λX), and the waiting time for arrival of Y , WY ∼ exp(λY ).

Let us suppose that X arrives h time units after Y , and consequently X captures

ξX(h) susceptibles, and Y captures ξY (h) susceptibles. Let us further suppose that

the average duration of infections of X and Y are 1/γX and 1/γY , respectively. The

product of the number of infecteds with a strain and the average duration of the

infection, infected-time, is ξX(h)
γX

for X and ξY (h)
γY

for Y . Further, let us suppose that

there is a unique h∗(X, Y ), such that ξX(h)
γX

= ξY (h)
γY

, i.e. they both generate equal

infected-time.(See Fig. 4.3 for illustration) Note that if strain X needs to arrive

h∗(X, Y ) after Y for both to generate equal infected-time, then equivalently, Y need

to arrive h∗(X, Y ) before X. So, h∗(Y,X) = −h∗(X, Y ). Now, if X arrives earlier

than h∗(X, Y ) time units before Y does then X will generate larger infected-time.

In such a case, we will say that X will take over the patch, otherwise Y will. The

probability that this will happen, P(WX < WY + h∗), is:

P(WX < WY + h∗) =

∫ ∞

0

P(WX < wY + h∗|WY = wY ) P(WY = wY )dwY

=

∫ ∞

0

(1− e−(wY +h∗) λX ) λY e−wY λY dwY

=
λX + λY (1− e−h∗ λX )

λX + λY

.

(4.5)
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We will denote this criterion,

C(X, Y ) =
λX + λY (1− e−h∗ λX )

λX + λY

.

If both strains are identical to each other (X = Y ), they can only generate equal

infected-times, if they both arrive at the same time. Hence, h∗(X, Y ) = 0. Similarly,

their forces of epidemic are identical, i.e. λX = λY . So, C(X, Y ) = 1/2. As expected,

X and Y are equally likely to take the patch.

We will use the edge of the above criterion, C(X, Y ) = 1
2
, to derive the following

condition:

(4.6) −h∗(X, Y ) =
1

λX

log
λX + λY

2 λY

.

Consider a pair of strains X 6= Y that satisfy this condition. It is not clear a priori

that for any strain Y , there will necessarily be a strain X satisfying this condition.

But regardless, if we expect it to be fulfilled, this condition, interestingly relates

the fitnesses at two levels. If strain X has a time advantage of h∗(X, Y ) over Y

while competing for susceptibles within a patch, Y must compensate by generating

additional force of epidemic at the meta-population level by the quantity given by the

right hand side of the above equation. Conversely, if h∗(X, Y ) > 0, then the above

condition can only be satisfied if λX < λY . So, this condition is only applicable if

the fitnesses at the two levels are acting in the opposite directions. We shall see in

subsequent section that such a scenario is indeed plausible.

4.3.3 Evolutionary stability and optimality condition

We have described two different models for comparing pathogen in a pairwise

manner. The model of invasion dynamics gave us a criterion for determining whether

an invader strain can successfully invade a meta-population inhabited by a resident
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strain. This model is amenable to the standard evolutionary stability analysis. The

standard notion of evolutionary stability relies on examining whether a new trait

introduced in a small proportion in a population with a resident trait, will fare

better than the resident trait. If no new traits can do better, then the existent trait

is evolutionarily stable (Hofbauer and Sigmund, 1998). We will adapt this idea in

this context and call a strain R to be evolutionarily stable if:

(4.7) ζ(I, R) < ζ(R,R) for all I 6= R.

Recall that ζ(I, R) is number of epidemics sparked by strain I on average, when

introduced into a meta-population with already resident strain, R. So the above

condition is equivalent to saying that a strain R is evolutionarily stable if it produces

on average the largest number of epidemics (compared to any other strains) when

introduced in the meta-population of itself.

The model of competition examined a different scenario. Here the pathogen are

assumed to be at their respective steady states, and competing for a susceptible

patch. If the criterion C(X, Y ) > 1
2

is satisfied then strain X will out-compete Y at

recruiting a new patch. We can extend this idea by asking which strain is optimal

at competing for patches. We begin with the condition given by equation (4.6).

Let us consider a competition between strain s and a slightly variant strain s + ∆s.

Then, −h∗(s, s + ∆s) is the time advantage the variant s + ∆s will have over s,

since −h∗(s, s + ∆s) = h∗(s + ∆s, s). Consequently, s + ∆s will face a reduction in

its force of epidemic λs+∆s. And, for s + ∆s to be as likely as s to take the patch,

1
λs+∆s

log λs+λs+∆s

2λs
should be equal to the time advantage, −h∗(s, s + ∆s). Then for

a strain s = sOPT that is locally optimal, the marginal gain in terms of the time

advantage should be negated by the marginal loss in the force of infection, such that

it there is no change in the its ability to compete for a patch. Dividing both sides
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by ∆s and taking the limit as ∆s → 0, we arrive to the following condition:

(4.8) lim
∆s→0

−h∗(s, s + ∆s)

∆s
= lim

∆s→0

1
λs+∆s

log λs+λs+∆s

2λs

∆s
.

We will call strain sOPT , evolutionarily optimal, and is different from evolutionarily

stable strain described earlier. Implicit in the construction of the above condition is

an assumption that a strain and its close variant have similar traits. So in particular,

the surfaces of h∗ and λ are required to be continuous and differentiable.

4.4 Evolutionary dynamics in a SIR setting

The framework we have developed in the previous sections is fairly general, and

purposely so. We have not made any assumptions regarding the details of the epi-

demic process. The meta-population model only requires that the patch epidemic is

ignited by an infected migrant, and always ends after a certain duration. Similarly,

the competition model assumes that for a pair of strains, we can characterize the

within-patch fitness differential in terms of h∗ – the time advantage the one strain

has over the other. Given an epidemic process, we can compare the epidemic size of

each strains when both compete for susceptibles in the same patch, and consequently

find the advantage in terms of time, one has over the other. In this section, we will

apply the model we developed for patches where the epidemic process follows the

standard SIR dynamics. SIR dynamics are relatively simple, they are well studied

and have been successfully used for several disease models. This makes it a suitable

beginning point for exploring the evolutionary dynamics.

A standard SIR model tracks hosts in different compartments depending on their

infection status. Susceptibles (S) become infected (I) at a rate proportional to the

rate at which they mix. Each infected recovers from the infection, the average

duration of the infection being L. These hosts are then tracked in the recovered (R)
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compartment. To simplify the ensuing dynamics, we will make a few assumptions.

The first one is to ignore host birth and death processes while looking at the patch

epidemic. There are a few reasons for this. First, in a deterministic setting, SIR

epidemic with birth and death produce periodic dynamics, and the epidemics can

reach to very small numbers, but never end. So the notion of size and the duration of

the epidemic has to rely on arbitrary cut-off. Second, we imagine the infection and

recovery processes to be relatively faster than the demographic turnover rates. So, in

relatively small patches in particular, the duration and the size of the epidemic might

not be drastically affected by these demographic rates. Third, from a view point of

the pathogen competition and evolution the host demographic rates are exogenous,

something they have no bearing over. So the effect of the demographic rates can

be observed by adjusting relevant parameters, after the evolutionary conditions have

been derived.

The second assumption is to assume that infection and recovery processes can

be separated. If the patches are relatively small and the infections spread fairly

quickly – basically infecting all of the hosts, before the recovery process sets in, then

separating the two processes will give a fair approximation of the epidemic. As a

result, the problem simplifies enormously allowing for analytical results – something

we are striving for. We will discuss the shortcomings, possible repercussions of some

of these assumptions in the conclusion section.

In subsection 4.4.1, we describe how competition for susceptibles within a patch

unfolds for two competing strains. This will include derivations of quantities ξ(h),

and h∗ that were used to describe invasion and competition dynamics. The parame-

ters for the meta-population model are estimated in subsection 4.4.2. And finally, we

discuss evolutionarily stable and optimal strain characteristics in subsection 4.4.3.
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4.4.1 Within-patch competition

Competition between strains in SI setting

Consider a virgin epidemic of a resident pathogen strain at a patch. Suppose that

a virgin epidemic with a resident pathogen with transmission rate β is in progress at a

patch with size n+1. At time, h an invasive strain migrates into the patch. We begin

with a simple scenario where only transmission event are allowed. Recovery process

is introduced later on. We will divide the epidemic into two phases – the first phase

with only the resident strain, and the second phase with both strains. We begin by

examining the epidemic in the first phase. If S is the number of susceptibles and Ir

is the number of infecteds due to the resident strains, the equation below describes

this scenario.

(4.9)
dS

dt
= −β S Ir.

Since, Ir = n + 1− S, and by letting τ = β t in (4.9), we get,

dS

dτ
= −S Ir = S (n + 1− S),(4.10)

with the initial condition S(0) = n, and Ir(0) = 1. The solution to (4.10) is S(τ) =

n (n + 1)

n + e(n+1) τ
. Consequently, the number of susceptibles recruited by the resident

strain, Ir(τ) = n + 1− S(τ). (Bailey, 1964)

The second phase of the epidemic succeeds the first phase. It begins with in-

troduction of a single infected host by a new invasive strain. The invasive strain is

characterized by a different transmission rate, which we’ll suppose to be k β. The

number of susceptibles at the onset of this phase is equal to the susceptibles remain-

ing at the end of the first phase. Similarly, the number of infected by the resident

strain initially is equal to the number of hosts recruited by the resident strains by

the end of the first phase. If we denote the number of infected hosts by this invasive
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strain by Ii, and let the time it takes for the first phase to end be h, then this new

system with both the resident and the invading strains will be as follows:

dS

dτ
= −S Ir − k S Ii

dIr

dτ
= S Ir

dIi

dτ
= k S Ii,

with initial condition, {S0 = S(h), I0 = Ir(h), Ii = 1}.

(4.11)

The set of equations (4.11) does not yield a solution directly, but it can be further

simplified to get some useful results. First, we can equate Ii in terms of Ir.

Since,
dIi

dIr

= k
Ii

Ir

, Ii = c Ik
r , where c = I−k

0 .

Furthermore, S = n + 2− Ir − Ii, so we get,

dIr

dτ
= Ir S = Ir (n + 2− Ir − Ii) = Ir (n + 2− Ir −

Ik
r

Ik
0

),

where, I0 = Ir(h) = n + 1− n (n + 1)

n + e(n+1) h
.

(4.12)

Derivation of ξ(h)

Since transmission is the only process in this system, we expect the system to

settle to the point where there are no susceptibles remaining. The population is

divided between the hosts recruited by the resident strain and the hosts recruited by

the invading strain. Let ξr and ξi be the number of susceptibles recruited by resident

R, and invader, I, respectively. At such a fixed point, we expect dIr

dτ
= 0. Hence,
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Figure 4.4: Illustration of ξ. In the vertical axis, we plot the number of susceptibles recruited by
resident, ξr (in solid lines), and the number of susceptibles recruited by invader, ξi

(in dashed lines), when the invader arrives h (in the horizontal axis) units after the
resident. Colors distinguish the different types of invaders, where k = βi/βr. n = 100,
and βr = 1. The number of susceptibles recruited by the invader in given patch (with
size n), depends on its relative transmission rate, k, and its arrival time compared to
the resident, h.
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from equation (4.12), we have:

n + 2− Ir −
Ik
r

Ik
0

= 0, where, I0 = n + 1− n (n + 1)

n + e(n+1) h
.

Ir = ξr, and Ii = n + 2− Ir = ξi when the system has settled.

So, h(ξr) =
1

β

[
1

n + 1
log

n ξr (n + 2− ξr)
−1
k

(n + 1)− ξr (n + 2− ξr)
−1
k

]
.

(4.13)

Note that in the original parametrization of time, we had scaled time by setting

τ = t β. Hence, there is an extra factor of 1
β

in the calculation of h. So, if the

resident, R were to recruit ξr susceptibles, and invader I were to recruit the remaining

n+2−ξr susceptibles by the end of the epidemic, then, the arrival time of the invader,

h, is given by the above equation. Furthermore, h is a monotonic function in the

interval ξr ∈ [1, n + 1]. So the inverse of this function, h−1(ξr) exist, although it

is not possible to write in a closed form for all k. This inverse function will give

the number of susceptibles captured by R, i.e. ξr(h) = h−1(ξr). Consequently, the

number of susceptibles recruited by invader arriving h time units after the resident,

ξi(h), is given by the equation below:

(4.14) ξi(h) = n + 2− h−1.

Fig. 4.4 shows ξ curves for a range of different invaders. As expected, an invader cap-

tures more susceptibles the earlier it arrives (smaller h), leaving less for the resident.

So, ξi is large for small h and decreases as h increases, and the trend is opposite for

ξr. The ξ-curves shift to the right as k increases: the more transmissive strains can

arrive later and still manage to recruit bulk of the susceptibles.

Derivation of h∗

Recall from section 4.3.2 that we defined h∗ in a context of a competition between

two strains X and Y . Suppose that strain X arrives h time units after Y , and they
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Figure 4.5: Surfaces of h∗ and λ. [Left] Surface of h∗ as k and g varies. Here, we take n = 99, and
β = 1. So, for example point (2,2) gives h∗(k = 2, g = 2) – the time advantage for a
strain whose infection is twice as transmissive and last half as long. [Right] Surfaces of
λ (force of epidemic) for a range of β and γ. Parameters: {n = 100,m = 0.1, z = 10}.
λ < 0 in the unshaded region – the meta-population epidemic dynamics cannot persist
in this region. In the feasible region, as expected, λ increases as β increases and γ
decreases in general. The dotted line is R0-invariant (β/γ is constant).

each recruit ξX(h) and ξY (h) susceptibles, respectively. If the infections of X and

Y on average last 1/γX and 1/γY time units, respectively, then the infected-time

generated by each is ξX(h)
γX

and ξY (h)
γY

, respectively. Then, h = h∗(X, Y ) is that unique

arrival time of X with respect to Y , such that ξX(h)
γX

= ξY (h)
γY

, i.e. they both generate

equal infected-time.

Let g = γX

γY
. Then at h = h∗, ξY = n+2

1+g
, and consequently, ξX = n + 2 − ξY =

n + 2− n+2
1+g

. Substituting these in equation (4.13), we get the equation for h∗.

(4.15) h∗(k, g) =
1

β

[
1

n + 1
log

n (n+2
1+g

) (n + 2− n+2
1+g

)
−1
k

n + 1− (n+2
1+g

) (n + 2− n+2
1+g

)
−1
k

]
.

Note, that we have parametrized h∗ in terms of k = βX

βY
and g = γX

γY
, with β = βY .

Fig. 4.5[Left] shows the plot of h∗ for a range of k and g.
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4.4.2 Parameters of the meta-population

Here we estimate size and duration of the epidemic in an SIR setting with the

assumptions we laid out earlier. In a SIR model, with no recovery, the expected

waiting time for jth infection E(tj) =
1

β j (n− j + 1)
. And, the total expected wait-

ing time is the sum of expected waiting times of each infections,
1

β

n∑
j=1

1

j (n− j + 1)
.

(See Appendix C.2) The duration of infection is L (L = 1/γ if γ is the recovery

rate). The epidemic ends when the very last infected recovers, so the duration of

the epidemic is the time it takes for the nth host to get infected and additional L to

recover. Hence, the average duration of epidemic, δ, for a pathogen characterized by

transmission rate β, and recovery rate γ, in a patch of size n is given by the equation

below.

δ =
1

β

n∑
j=1

1

j (n− j + 1)
+ L.

The area under this epidemic curve, is simply n L, since everyone gets infected and

each was infectious for period L.

So, Ae = n L.

The average refractory period, z is going to depend on birth and death processes,

loss of immunity if relevant, and possibly also on the size of the patch. (See Ap-

pendix C.2) We assume the evolution of the host to be fixed, so the birth and death

rates of the host are treated exogenously in the model of pathogen evolution. The

loss of immunity can certainly be an evolutionarily sensitive parameter. For now, we

ignore evolution along this direction, and fix the refractory period.

Parameter ε is the probability that a single migrant sparks an epidemic. We

take ε = β
β+γ

– this is the probability that transmission occurs before recovery.

Fig. 4.5[Right] shows the plot of λ for a range of β and γ.
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Figure 4.6: Evolutionarily stable pathogen strains. Using the model for invasion dynamics, one can
find the evolutionarily stable strain. With the evolutionary constraint γ = θ β, strains
can be compared in a linear manner. k = βi/βr, so k = 1.5 implies an invader that is
one and a half time more transmissive. If the strain is less than evolutionarily stable
(β < βES), the strains with larger β will be able to invade it. Similarly, if the strain
is more than evolutionarily stable(β > βES), the strains with smaller β will be able to
invade it. Evolutionarily stable strain βES produces the largest ζ when introduced into
the meta-population of itself.

4.4.3 Evolutionary stability and optimal strains

The framework we have built allows us to compare strains in a pairwise manner.

For the invasion model, as described in subsection 4.3.3, we can exhaustively compare

strains to find the evolutionarily stable strain. This is computationally expensive, and

results are hard to interpret. Instead we look for evolutionarily stable strain among

a specified group of strains. Suppose the strains evolve along the line γ = θ β. This

is equivalent to looking at evolution of strains that have the same R0. Note that

R0 = n β
γ

= n
θ

in our setting.

Under a given evolutionary constraint, θ, we will seek for an evolutionarily stable

strain, by examining the invasion dynamics between a strain and its close variant. If

we let βi = k βr, and k = 1 being the resident, then γi = k γr = k θ βr. Then ζ(1, k)

for k around 1, gives the ability of a close variant to invade a meta-population of the

currently resident strain. If ζ(1, 1) < ζ(1, k) for k > 1, then strains that are more
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transmissive (and also less persistent) are fitter, and if ζ(1, 1) < ζ(1, k) for k < 1

then the trend is reversed. And for the evolutionarily stable strain with transmission

rate βES, ζ(1, k) < ζ(1, 1) for all k 6= 1. Figure 4.6 illustrates this process of finding

this evolutionarily stable strain.

For the competition model, with the same constraint, γ = θ β, we are able to find

the optimal strain traits, without having to rely on the exhaustive search. Consider

two slightly different strains characterized completely by the difference in β, say, β

and β + ∆β. With this constraint, the force of epidemic will be a function of β.

(Also see appendix C.4)

λ(β) =
m n− (1 + θ) θ β

(1 + θ) (1 + q θ + z θ β)
, where,

q =
n∑

j=1

1

j (n− j + 1)
.

(4.16)

The condition given by equation (4.8), can be adapted for this scenario.

(4.17) lim
∆β→0

−
h∗(n, k = g = β+∆β

β
)

∆β
= lim

∆β→0

1
λ(β+∆β)

log λ(β)+λ(β+∆β)
2λ(β)

∆β
.

We find the limits of both sides of the equation (4.17) separately. The details of the

calculations are included in appendix C.5. On the right hand side, we find that,

lim
∆β→0

1
λ(β+∆β)

log λ(β)+λ(β+∆β)
2λ(β)

∆β
=

dλ

dβ

1

2λ2
.

On the left hand side, we find that,

lim
∆β→0

−h∗(n, k, g)

∆β
= −

log n+2
2
− 1

β2 n
.

Equating both the sides, we find,

(4.18) −
log n+2

2
− 1

β2 n
=

dλ

dβ

1

2 λ2
.
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By substituting both λ and dλ
dβ

with their equivalents in terms of β, this results in a

quadratic equation for β.

Aβ2 + Bβ + C = 0, where,

A = (1 + θ)2θ2 − n θ(1 + θ) [(1 + θ)(1 + q θ) + z m n]

2
[
log n+2

2
− 1

] ,

B = −2 m n θ (1 + θ), and

C = m2 n2.

(4.19)

The positive solution to this quadratic equation gives the evolutionarily optimal

strain.

βOPT =
−B −

√
B2 − 4AC

2A
=

mn

1 +
√

Q
,

where, Q =
n [(1 + θ)(1 + qθ) + zmn]

θ(1 + θ)2
[
log n+2

2
− 1

] .

(4.20)

Details of derivation, and the conditions for existence are given in appendix C.6.

4.5 Discussion on the results

4.5.1 Comparison of two models

We explored the dynamics of pathogen strain competition in a host meta-population.

We described two different models of pathogen competition. The first model is akin

to the standard invasion dynamics analysis and is described in subsection 4.3.1. It

examined the ability of pathogen strain to invade the meta-population currently oc-

cupied by a different strain. Quantities used for the analysis are calculated in subsec-

tion 4.4.1, in the context of a simplified SIR model. In subsection 4.4.3, we extended

this model to derive the notion of evolutionary stability. The second model, described

in subsection 4.3.2, focused on competition between already established strains for

an empty patch. This model is also used in the context of a simplified SIR model by

calculating appropriate quantities as described in subsection 4.4.1. Optimality con-
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ditions for this model, described in subsection 4.4.3, are derived analytically. This

avoids having to exhaustively compare strains to find the optima.

Pathogen strain that are evolutionarily stable under the invasion criterion tend

to be more persistent than the strain that are optimal in competing for open patch

when there both in equilibrium condition. This can be seen in the the figures 4.7,4.8,

and 4.9. The evolutionarily stable strains βES (shown in left panels) have smaller

transmission rates compared to optimal ones, βES (shown in right panels). More

persistent strains generally produce larger force of epidemic in the meta-population,

and hence are more difficult to be invaded. But their competition to take a patch

favors more transmissive strains. Changing migration rate, the size of the patch, and

the length of refractory period, have qualitatively similar effect on both evolutionarily

stable and optimal strains.

4.5.2 Conflicting evolutionary pressures

By simplifying the within-patch epidemic dynamics, in particular by separating

the infection and recovery processes and neglecting the role of host demograph-

ics, we were able to attain an analytical expression h∗, given by equation (4.15),

that quantified pathogen’s competitive fitness at recruiting susceptibles within patch.

Fig. 4.5[Left] shows h∗ as k and g varies. As k increases, so does the h∗ – as expected,

a more transmissive strain has more time to come in and invade. As g increases, h∗

decreases – shorter lasting strains have less time to invade. Given that R0 in this case

is proportional to β
γ
, a diagonal line g = k is R0-invariant. Interestingly, h∗ is not

invariant along this line. On the line g = k, h∗ < 0 for k < 1, and h∗ > 0 for k > 1.

This suggests that among the strains that have the same R0, a more transmissive

one will have a larger window of time to come in and invade.

At the meta-population level, we are able to calculate the force of epidemic gener-
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ated by a pathogen strain λ. Figure 4.5[Right] plots the surfaces of λ. An interesting

feature to note is that this force of epidemic changes along the R0-invariant line.

Two strains with the same R0 can have different patch level epidemic dynamics, and

consequently different contribution to the force of epidemic. In particular, among

the strains that have equal R0, the one that prolongs the epidemic produces larger

λ.

This points to how the dynamics at two levels can result in conflicting evolution-

ary pressures for the pathogen. While more transmissive strains are favored when

pathogens are competing for susceptibles within a patch, the meta-population dy-

namics governed by patch colonization are better suited for strains that prolong the

epidemic by prolonging the infection. The model for strain competition developed

in subsection 4.3.2 provides a framework where these two forces can be seen to be

interacting.

4.5.3 Effect of migration rate and size of the patch

In Fig. 4.7, we explore the effect of migration rate, m, on both evolutionarily

stable traits, and evolutionarily optimal traits. Both, evolutionarily stable traits,

βES (Fig. 4.7[Left]), and evolutionarily optimal traits βOPT (Fig. 4.7[Right]), move

further along the evolutionary constraint γ = θβ, when migration rate is increased.

Meta-population with higher host migration rate favors more transmissive strains.

Ecologically, increasing migration rate, increases the force of epidemic in the meta-

population. The patches are likely to wait shorter for an epidemic to start, and hence

a migrating pathogen is more likely to land where an epidemic is already in progress.

Pathogens that are more transmissive are more likely to out-compete already present

strains, and are favored in such a scenario.

The size of the patch n, also affects the evolutionarily stable (βES) and evolution-
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Figure 4.7: Evolutionarily stable and optimal strains as migration rate changes. Change in evolu-
tionarily stable/optimal β along the evolutionary constraint γ = θβ, as migration rate
m changes. Patch size is fixed at n = 100, and the refractory phase is fixed at z = 10.
[Left] Dots are evolutionarily stable strains, βES , using invasion model. [Right] Dots
are evolutionarily optimal strains, βOPT , using competition model.
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Figure 4.8: Evolutionarily stable and optimal strains as patch size changes. Change in evolutionar-
ily stable/optimal β along the evolutionary constraint γ = θβ, as patch size n changes.
Migration rate is fixed at m = 0.2, and the refractory phase is fixed at z = 10. [Left]
Dots are evolutionarily stable strains, βES , using invasion model. [Right] Dots are
evolutionarily optimal strains, βOPT , using competition model.
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Figure 4.9: Evolutionarily stable and optimal strains as refractory period changes. Change in evo-
lutionarily stable/optimal β along the evolutionary constraint γ = θβ, as the refractory
period z changes. Migration rate is fixed at m = 0.2, and the patch size is fixed
at n = 100. [Left] Dots are evolutionarily stable strains, βES , using invasion model.
[Right] Dots are evolutionarily optimal strains, βOPT , using competition model.

arily optimal (βOPT ) traits. As seen in Fig. 4.8, increasing n shifts the locations of

βES (Fig. 4.8[Left]), and βOPT (Fig. 4.8[Right]), to the right and up. Increasing the

size of the patch increases the number of migrating hosts, the way we have it in our

model. Hence the force of epidemic increases with n for the same reason as when

the migration rate increases. And this leads to a more favorable condition for more

transmissive strain.

4.5.4 Effect of refractory period

In our model, we have taken refractory period to be exogenous to the strain

evolution model. This period is likely to depend mostly on the host mortality rates

if the infection results in a life-long immunity. Hosts that have longer life-span,

and hence smaller mortality rates will result in longer refractory periods. Increasing

the refractory period z, shifts the evolutionarily stable, βES (Fig. 4.9[Left]) and

evolutionarily optimal βOPT (Fig. 4.9[Right]) traits to the left and down. Other things
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being equal, a longer refractory phase means that the patches are less likely to be in

epidemic phase, and hence the force of epidemic in the meta-population is smaller.

This in turn prolongs the waiting phase. Hence a migrant is more likely to land

in a susceptible patch in the waiting phase. This favors pathogen that are less

transmissive.

4.6 Conclusions

Epidemic dynamics in meta-populations or host populations with structure or

heterogeneity are known to exhibit several interesting but equally complex and con-

founding features. Extinction events, for one, are inherently stochastic phenomena,

and when the size of the local communities (patches) are on the order of the critical

community size, one is likely to observe variability in the extinction events. Keel-

ing (2000) examines the evolutionary consequences for pathogens with varying local

extinction risks in a meta-population context. He finds that the intensity of the

patch coupling, as well as the stochasticity in the meta-population can affect the

evolutionarily stable strategies (ESS), with ESS ranging from ones that represent

pathogen strains that are persistent, to highly transmissive ones that are close to

local extinction. Here we have taken a different approach — letting patches go ex-

tinct but allowing the time between epidemics to vary depending on the overall force

of epidemic in the meta-population. The force of epidemic, λ, is related to, among

other things, the migration rate, m, size of the epidemic, Ae, and the nature of the

infection. We find that changing the force of epidemic, either by changing the host

migration rate or the size of the patch, will affect the likelihood of finding the patch

in a given state; susceptible to an epidemic, refractory or in an epidemic phase.

Bjørnstad and Grenfell (2008) develop a more comprehensive hazard model to derive
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distributions of inter-epidemic period (which is analogous to the sum of the refractory

and waiting period in our model). The shape of these distributions and the effect

of various components such as the migration rate and host demographics are qual-

itively similar to what we observe in our model. Consequently, meta-populations

with higher prevalence of epidemics will mean that pathogens are more likely to

be competing for susceptibles. In contrast, meta-populations with longer lag be-

tween different episodes of epidemics, will find pathogen more frequently entering

susceptible patches available for them to colonize. Given that pathogen strains are

competing for susceptibles in a patch and for susceptible patches themselves, the

force of epidemic determines the composition of different levels of competitions the

pathogen strains face. Are they more likely to be competing for susceptibles within

a patch, or for empty susceptibles patches — this is a key element in determining

the appropriate fitness for pathogen.

Another key insight is that that a pathogen’s ability to compete for susceptibles

and its ability to colonize patches in general can be at conflict. In small patches where

pathogens compete for susceptibles hosts, the pathogen that spreads faster is able

to recruit more susceptibles and hence favored. But pathogen’s ability to compete

for patches is mostly governed by duration of the epidemic, which tends to be larger

when the infections are longer lasting. This feature is accentuated in our framework

where we have simplified the SIR model by separating the time scales of infection

and recovery. In particular, we assume that everyone in the patch becomes infected

before they recover. This simplification facilitates understanding the competition

between strains within a patch. In particular, quantities ξ(h) and h∗ become more

readily available. Extending this to a complete SIR model, at least until now is only

numerically possible, and computing this numerically is computationally expensive.



91

However, estimates obtained by separating the two processes are still very close to

the quantity we derived from the complete SIR model, albeit for only a handful of

parameters. As expected, the simplified model is closer to the complete SIR model

where recovery process is relatively slower compared to the infection process. This

is discussed in greater detail in appendix C.3.

The results can also be interpreted in a scenario where the strains do not com-

pletely exhaust the susceptibles. If the size of the epidemic is ñ, i.e. ñ of the n in

the patch get infected over the course of the epidemic, then the force of epidemic

will be scaled down by the same factor. Consequently, the average waiting period

will be longer and the refractory period shorter. Now, if epidemic sizes for both

the competing strains are equal, then the strains will compete for these ñ available

susceptibles in the same manner as we model. Note that the size of the epidemic is

dependent on R0. The size of the epidemic in an density dependent SIR model with

no host demographics is given by the following relation (Brauer, 2008; Kermack and

McKendrick, 1927):

log n− log S∞ = R0

[
1− S∞

n

]
,

where S∞ is the number of susceptibles that escape the infection — so ñ = n− S∞.

So competition between two strains with equal R0, which is what we have considered,

can be handled in the same manner, by scaling the force of epidemic by a factor of

ñ
n
. A more accurate measure might also consider the change in the length of the

refractory period, which will be slightly shorter but equal for both strains. So the

qualitative results we have offered should hold.

We have also assumed that the refractory period to be constant among pathogen

strains. For infections that impart life long immunity, and with the assumption that

every single host in the patch becomes infected in an epidemic, this refractory period
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is going to depend on the host birth rate and the size of the patch, both of which

are independent of pathogen strain parameters. But more realistically, infection

characteristics can affect the length of the refractory period. For example, if we

allow the size of the epidemic to vary depending on the strain, then the time for

the patch to replenish enough susceptibles to come out of the refractory period can

change. But if the size of the epidemic itself is dependent on R0, then by the same

argument as in the above paragraph, the results should qualitatively hold.

Our choice to only consider evolution among pathogens that have identical repro-

ductive number, R0, can perhaps be understood in light of the above two scenarios

we discussed. Some of the assumptions we have made to simplify the model, limits

us to make more general predictions. A possible future direction then is to expand

this model so that it can be flexible enough to ask questions for pathogens that face

evolutionary constraints that are biologically motivated, increasing the scope of the

work. Yet, it should be pointed out that by focusing on pathogens that are other-

wise indistinguishable in terms of their fitness (same R0), we have argued that the

dynamics of meta-population epidemics provides an additional dimension in which

pathogen fitness can vary.

A number of researchers have explored questions relating to pathogen evolution in

spatially explicit host population (Boots and Sasaki, 1999, 2000; Boots et al., 2004;

van Ballegooijen and Boerlijst, 2004). The works report emergent spatial patterns,

such as epidemic waves (van Ballegooijen and Boerlijst, 2004), and “self-shading”

behaviour (Boots and Sasaki, 2000) can affect pathogen fitness, and as a consequence

act as mechanisms that drive pathogen evolution. In the light that epidemic patterns

of spatially explicit meta-population, especially in conjunction with stochasticity,

can exhibit degrees of synchronous behaviour (Grenfell and Bolker, 1998; Rohani
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et al., 1999; Keeling et al., 2004), it is not far fetched to imagine that these patterns

will affect pathogen evolution. In that respect, we have taken a different course by

considering spatially implicit meta-population that in particular diminishes emergent

spatial patterns such as synchrony. By disentangling effects of synchrony, we suggest

that different evolutionary pressures can arise at different levels regardless of the

space. In patchy host populations, where extinctions are frequent, we are likely to

observe dynamics at both levels in action.
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APPENDIX A

Chapter II: Integration of within-host and between-host
dynamics and the Invasion-persistence Trade-off

A.1 Standard compartmental models and the classical Transmission-
Virulence trade-off

Consider a simple scenario, where the hosts are grouped into compartment based

on their epidemiological status – compartment S if they are susceptible to the in-

fection, compartment I if they are infected (and infectious), and compartment R if

they have recovered from the infection, and consequently immune to further infec-

tion. Hosts in each compartment are indistinguishable from one another, and they

move from one compartment to another with rates associated with the underlying

biological/epidemiological processes. The susceptibles are replenished via birth, and

the per-capita birth rate is taken to be b. Death removes hosts from each compart-

ment, and the background mortality rate is µ. Infected hosts face an additional

disease-related mortality, the rate per unit time is ν. A susceptible host becomes

infected upon successful transmission of the infection; this transmission rate is β.

Infected hosts recover from the infection at the rate γ. The following set of ordinary

differential equations describe this deterministic system.
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(A.1)

dS

dt
= b (S + I + R)− β S I − µ I

dI

dt
= β S I − (µ + ν + γ) I

dR

dt
= γ I − µ R

In this framework, the fitness of the pathogen associated with the infection is the

net reproductive number, R0. This is the number of secondary infections originating

from a single infected in a disease-free host population. (This number derived in this

deterministic framework is the average compared to a stochastic counterpart.)

(A.2) R0 =
β N

µ + γ + ν
.

Other things being equal, a pathogen with higher R0 is the fitter — it is able to

invade host population infected with a lesser strain and is also able to resist colo-

nization by other strains (Anderson and May, 1991). R0 is directly proportional to

the transmission rate β, and inversely proportional to disease-related mortality rate

ν. Hence, R0 is maximized by increasing β and decreasing ν. So completely be-

nign and extremely transmissive pathogen are the fittest from this perspective. The

transmission-virulence trade-off is then based on the implied relationship between

transmission and virulence. This trade-off theory predicts that a virulent pathogen

may kill its host so fast, or stimulate such a strong immune response, that it may

have little time to transmit to a secondary host (May and Anderson, 1983a). A more

commensalistic pathogen, by contrast, may have so low a within-host multiplication

rate that it fails to shed sufficiently many propagules to successfully engender infec-

tion in recipient hosts. This can lead to an intermediate optimal host-exploitation

rate with associated intermediate infectious period and degree of acuteness.
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APPENDIX B

Chapter III: Host population induces conflicting pressures
on pathogen life history evolution

B.1 McKendrick-von Foerster equations

We consider the spread of a disease in a well mixed homogeneous population,

where the transmission rate of a single host during an infection is varying, specified

by the mechanistic model described earlier by equations 2.1. The transmission rate

of a host infected a units of time ago is β(a). Let
∫ a2

a1
i(t, a) da be the fraction of

host at time t infected between times t−a1 and t−a2. Then, the fraction of infected

host at time t that have progressed a units into their infection follows:

(B.1)
∂i

∂t
+

∂i

∂a
= −µ(a) i, i(t, 0) = λ(t) S(t),

where µ(a) is age-specific mortality, λ(t) is the force of infection, and S(t) is the

fraction of the host population susceptible to infection at time t. The force of infection

is

(B.2) λ(t) =

∫ ac

0

β(a) i(t, a) da =

∫ ac

0

β(a) `(a) i(t− a, 0) da.

Here, ac is the time when the infection is cleared in the host, and `(a) = exp
(
−

∫ a

0
µ(a′) da′

)
denotes the probability that an individual infected a time units ago has not yet died.

We will assume that infections are nonlethal; this amounts to assuming a constant
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Figure B.1: Estimates of R0P for linear [Left] and saturating [Right] models, using both determinis-
tic and stochastic frameworks. The stochastic curve is the average over 100 simulations.
The curves are similar both models, and they attain a maximum for r ≈ 4.

death rate: `(a) = e−µa. We assume that the total host population remains constant,

and the fraction of susceptible, S(t) obeys

(B.3)
dS

dt
= µ (1− S)− λ(t) S.

B.2 Approximation of epidemic sizes

For small enough patches, we consider the extinction of the pathogen in the patch

when the fraction of infected hosts,

H(t) =

∫ ac

0

i(t, a) da,

reaches the minimum. We define the average duration of the epidemic δ̄ to be this

duration. Similarly, the average fraction of infected,

ῑ =
1

δ̄

∫ δ̄

0

H(t) dt.
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The patch-level net reproductive number, R0P = ῑ δ̄ m n. We can also stochastically

estimate R0P . Shown in Fig. B.2 are the estimates of R0P using both the deterministic

and stochastic frameworks for patch sizes n = 30, 50, and 80. The curves show that

they attain a maximum for r ≈ 4.
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APPENDIX C

Chapter IV: Epidemic and evolutionary dynamics in
meta-populations

C.1 More on invasion model

It is of interest to know what ζ(R,R) will be. Since the resident is in steady state,

a resident epidemic will on average generate exactly one epidemic. Hence, intuitively

one would expect ζ(R,R) = 1. We carry out the calculation in the SIR setting to

see if and when this is true.

(C.1) ζ(R,R) = m ε ω
1

γR

fh

∫ δ

− 1
λ

ξ(h) dh =
λ

n

[∫ −δ

− 1
λ

ξ(h)dh +

∫ δ

−δ

ξ(h)dh

]
.

Note that (i) ξ(h) = n, when, h < −δ, so

∫ −δ

− 1
λ

ξ(h)dh = n

(
1

λ
− δ

)
.

And, (ii) ξ(h) is symmetric about {h = 0, ξ = n/2}, so

∫ δ

−δ

ξ(h)dh = 2δ
n

2
.

(C.2) Hence, ζ(R,R) =
λ

n

[
n

(
1

λ
− δ

)
+ 2δ

n

2

]
= 1.

Here, we have assumed that 1/λ > δ, to subdivide the integral. If this condition

does hold then ζ(R,R) = 1. But if λ is large then ζ(R,R) is not necessarily 1. One

should note though that we can refine this condition, since ξ(h) in general becomes

0 much earlier that h = δ. So, we can subdivide the integral at this earlier point,

which is more likely to be smaller that the average waiting time, 1/λ.
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C.2 On waiting time of k of n arrivals

Consider, there are n individuals, and you are interested in the waiting time for

k of such arrivals. The arrival of each individual is independent of the others, and

exponentially distributed with parameter λ. The waiting time for jth arrival, tj is

also distributed exponentially, but weighted by the number of individuals waiting,

i.e. ftj = λ (n− j + 1) eλ (n−j+1) tj . The total waiting time is the sum of each arrival

times,
∑k

j=1 tj. The expected waiting time for jth arrival E(tj) =
1

λ (n− j + 1)
.

And, the total expected waiting time is the sum of expected waiting times of each

arrivals,
1

λ

k∑
j=1

1

n− j + 1
.

This same idea can be employed to look at the progression of an epidemic pro-

cess. We turn to the simple SIR epidemic, with only infection and no recovery

or demographic processes. Consider an epidemic at a state where there are j in-

fecteds and n − j + 1 susceptibles. The force of infection on each individual sus-

ceptible is β j (n − j + 1). So the waiting time for (j + 1)th infection, ftj =

β j (n− j + 1) eβ j (n−j+1) tj . The expected waiting time for this (j + 1)th infection is

1

β j (n− j + 1)
, and the expected waiting time for the entire population to become

infected is
1

β

n∑
j=1

1

j (n− j + 1)
(Bailey, 1963, 1964).

C.3 Comparing with SIR simulation

The simplification, we made on the SIR model, allowed us to derive ξ (the number

of susceptibles captured by the invader and the resident) as a function of h (the

difference in their arrival). It is then of interest, to compare then to ξs generated

by simulating a complete SIR model. Fig. C.1 compares ξi in the two setting. As

expected, the simplification we made to the SIR model, is more accurate when the
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Figure C.1: Plots of ξi for different ks. [Left] for βr = 1 and [Right] for βr = 0.1. The solid lines
are calculated using equation (4.14), and the dashed lines are estimated by simulating
a standard SIR model. Here, n = 100, and γr = 1. The derivation is closer to the
complete SIR dynamics when the transmission rates are higher.

transmission rates are higher.

C.4 SIR meta-population

With SIR-type epidemic dynamics, the force of epidemic, λ =
mε Ae − 1

δ + z
, where,

Ae = n
γ
, δ = q

β
+ 1

γ
with, q =

n∑
j=1

1

j (n− j + 1)
, and ε = β

β+γ
. So, λ =

mβ n
γ(β+γ)

− 1
q
β

+ 1
γ

+ z
,

and with the constraint, γ = θβ, we get

λ =
m n− (1 + θ) θ β

(1 + θ) (1 + q θ + z θ β)
.

We can also find how λ changes with β; and in fact,

dλ

dβ
=
−θ [(1 + θ) (1 + q θ) + z m n]

(1 + θ) (1 + q θ + z θ β)2
.

C.5 Limits and evolutionary optimum

Consider two slightly different strains, characterized by their difference in trans-

mission rates β and β + ∆β. The forces of epidemic they will generate in the
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meta-population will then be λ(β) and λ(β + ∆β), respectively. But, λ(β + ∆β) =

λ + dλ
dβ

∆β. The condition for finding the evolutionary optimum is:

lim
∆β→0

−
h∗(n, k = g = β+∆β

β
)

∆β
= lim

∆β→0

1
λ(β+∆β)

log λ(β)+λ(β+∆β)
2λ(β)

∆β
.

First, consider the right hand side of this equation, which we will denote by φ.

φ =
1

λ(β + ∆β)
log

λ(β) + λ(β + ∆β)

2λ(β)

=
1

λ + dλ
dβ

∆β
log (

dλ

dβ

1

2λ
∆β + 1)

Since, the Taylor expansion of log (bx + 1), around 0, is bx− b2x2

2
+

b3x3

3
+ . . .

φ =

[
1

λ + dλ
dβ

∆β

] [
dλ

dβ

1

2λ
∆β − 1

2

[
dλ

dβ

1

2λ
∆β

]2

+ . . .

]

And, lim
∆β→0

φ

∆β
=

dλ

dβ

1

2λ2
= φ̂.

On the left hand side of the equation, in the calculation of h∗, k = g = β+∆β
β

= 1+∆β
β

.

And, ∆β = β(k − 1). So,

lim
∆β→0

−h∗(n, k, g)

∆β
= − 1

β
lim
k↓1

h∗

k − 1
.

Now, let ĥ∗ = limk↓1
h∗

k−1
.

ĥ∗ = lim
k↓1

h∗

k − 1
= lim

k↓1

f(k)

g(k)
where,

f(k) =
1

β

[
1

n + 1
log

n (n+2
1+k

) (n + 2− n+2
1+k

)
−1
k

n + 1− (n+2
1+k

) (n + 2− n+2
1+k

)
−1
k

]
, and

g(k) = k − 1.

Now, since, lim
k↓1

f(k) = lim
k↓1

g(k) = 0, and lim
k↓1

f ′(k)

g′(k)
exists, we use l’Hopital’s rule to

find the limit. So, lim
k↓1

f(k)

g(k)
= lim

k↓1

f ′(k)

g′(k)
. Clearly, g′(k) = 1, and it turns out that

f ′(k) = dh∗

dk
can be calculated, and is equal to

1

β

[
− 1

k+1
+ log u

k2 − n+2
u k (k+1)2

n + 1− w u
−1
k

]
,
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where, u = n + 2 − n+2
k+1

, and w = n+2
k+1

. So, lim
k↓1

f ′(k)

g′(k)
= lim

k↓1
f ′(k) =

log n+2
2
− 1

β n
.

Hence, ĥ∗ =
log n+2

2
− 1

β n
. And,

lim
∆β→0

−h∗(n, k, g)

∆β
= − 1

β
lim
k↓1

h∗

k − 1
= −

log n+2
2
− 1

β2 n
.

C.6 More on evolutionarily optimal strains

The quadratic equation for optimal β = βOPT is Aβ2 + Bβ + C = 0, where,

A = (1 + θ)2θ2 − n θ(1 + θ) [(1 + θ)(1 + q θ) + z m n]

2
[
log n+2

2
− 1

] ,

B = −2 m n θ (1 + θ), and

C = m2 n2.

The discriminant, B2 − 4AC =
4m2n3θ(1 + θ) [(1 + θ)(1 + qθ) + zmn]

2
[
log n+2

2
− 1

] is greater

than 0 as long as n > 2(e− 1). Hence the roots are guaranteed to be real. The two

roots of the quadratic equation are:

−B ±
√

B2 − 4AC

2A
=
−2m nθ (1 + θ)

[
1±

√
Q

]
−2(1 + θ)θ [Q− 1]

=
mn

1±
√

Q

where, Q =
n [(1 + θ)(1 + qθ) + zmn]

θ(1 + θ)2
[
log n+2

2
− 1

]
Root

mn

1 +
√

Q
is always positive as long as n > 2(e−1), and root

mn

1−
√

Q
will be neg-

ative as long as Q > 1 or n [(1 + θ)(1 + q θ) + z m n] > 2
[
log n+2

2
− 1

]
(1 + θ)θ. Nu-

merically, these are well within the range of biologically realistic parameters we will

consider. Hence, given the population size n, migration rate m, duration of refrac-

tory phase z, and the evolutionary constraint γ = θβ, βOPT =
−B −

√
B2 − 4AC

2A
=

mn

1 +
√

Q
, is the evolutionary optimum.
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