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Chapter I

Introduction

For most applications of nuclear technology, it is necessary to characterize the

associated radiation to ensure that the technology performs as intended and that ad-

equate shielding is provided to protect personnel and radiation-sensitive equipment.

In many of these cases, it is desirable to optimize the shielding designs to minimize

weight and size, and hence cost. An extreme example is in the design of space nuclear

reactors, in which the weight and size of the accompanying radiation shield must be

optimized to reduce both the payload cost and to protect equipment (and personnel

for proposed manned missions). To optimize these conflicting demands, an accurate

estimate of the radiation profile must be obtained.

Currently, two classes of techniques exist to solve these radiation shielding prob-

lems: deterministic methods, in which the integro-differential Boltzmann transport

equation is discretized and the resulting large algebraic system is solved, and Monte

Carlo methods, in which the random history of a particle is simulated and the re-

sults of many random histories are averaged. Deterministic methods tend to be

faster than Monte Carlo methods, but they include undesirable discretization errors

in space, angle, and energy that are not present in Monte Carlo methods. On the

other hand, Monte Carlo solutions include statistical errors, which are not present in

deterministic solutions. In this thesis, we propose several Monte Carlo methods that

use information obtained from computationally inexpensive deterministic methods

to distribute Monte Carlo particles advantageously throughout shielding problems,

in order to acquire the data necessary to optimize the shielding design. Techniques

that couple deterministic and Monte Carlo methods in such a manner are described

as hybrid methods.

Due to the difficulty in solving radiation shielding problems, Monte Carlo meth-

ods must employ “nonanalog” or “variance reduction” techniques to obtain useful

1



solutions. These techniques bias the physical (or analog) transport processes (e.g.

scattering, distance-to-next collision, etc), resulting in Monte Carlo particle distri-

butions that are artificial, or unphysical. Despite the biased (nonanalog) physics,

nonanalog Monte Carlo methods can still acquire non-biased estimates of the solu-

tion by carefully adjusting the statistical weight of the particle to ensure that the

resulting statistical game remains “fair”. For shielding problems, the objective of

these nonanalog techniques is to transport a statistically significant number of Monte

Carlo particles to the regions of phase-space that are important to the calculation –

usually the “deep” parts of the problems, where relatively few physical particles exist.

Typical variance reduction techniques include implicit capture, geometric splitting,

and weight windows.

For the past few decades, the most common type of shielding problem simulated

using Monte Carlo methods has been the source-detector problem, in which a response

is desired in a single location in space. In these problems, the source and detector

are separated by a non-trivial distance, the geometry is often complicated, and the

neutron flux experiences significant attenuation (by 10 or more orders of magnitude)

from the source to the detector. Traditionally, the nonanalog Monte Carlo methods

used to solve these problems have required significant user input to generate and

sufficiently optimize the biasing parameters necessary to obtain a statistically reliable

solution. For example, determining weight window or geometric splitting parameters

required that an experienced engineer, familiar with the physics and geometry of the

problem and the Monte carlo methodology, tinker with the biasing parameters until

a suitable solution was obtained. To a large degree, this laborious task can now be

replaced by automated processes that rely on a deterministic adjoint solution to set

the biasing parameters – the so-called hybrid methods.

The adjoint flux, or “importance” function, has been used considerably to set the

biasing parameters in nonanalog Monte Carlo simulations, since it indicates which

regions of phase space are important to the detector [1–27]. Biasing parameters

based on this important function allow Monte Carlo particles to be “guided” to-

ward the important regions. Early work by Kalos [1] and Coveyou [3] demonstrated

the merits of using the “importance” function to advantageously bias the Monte

Carlo physics; however, these demonstrations were limited to simple problems, due

to limited computational power. As computational power increased, production-level

codes were developed that could solve more complicated source-detector shielding

problems with multi-dimensional geometries; these include MORSE/SAS4 [17, 18],

MCBEND [19,20]. AVATAR [21], TRIPOLI [12–14], and A3MCNP [25–27], each of

2



which utilizes the deterministic adjoint solution to set the biasing parameters.

Specifically, MORSE/SAS4 incorporates an automated procedure that utilizes a

1-D discrete ordinates adjoint solution for source energy biasing, energy biasing at

collisions sites, splitting and Russian rouletting, and path length stretching. The

commercial code MCBEND uses a 3-D adjoint diffusion code to generate biasing pa-

rameters for space- and energy-dependent geometric splitting and Russian roulette.

AVATAR utilized a 3-D discrete ordinates adjoint solution to generate space-, angle-,

and energy-dependent weight windows for MCNP. The French code TRIPOLI has

several means to generate the adjoint solution, including a method based on graph

theory, collision probabilities, and a 2-D discrete ordinates adjoint solver; the ad-

joint solution is used for exponential biasing, quota sampling, and collision bias-

ing. Finally, A3MCNP utilizes a 3D discrete ordinates adjoint solver for space- and

energy-dependent source biasing and weight windows.

In addition to production-level codes, the LIFT method [22,23] was developed at

the University of Michigan to approximate the zero-variance solution for the source-

detector problem. It uses a deterministic estimate of the adjoint solution for source

biasing, collision biasing, and path length biasing.

Recently, as computational power has become more readily available, there has

been interest in obtaining the solution in a much larger region of space than just a

small detector. Several methods have been developed that achieve this, including

Cooper’s weight window method [28] and FW-CADIS [29, 30]. Cooper’s method

utilizes a forward deterministic solution to set a space-, angle-, and energy-dependent

weight window for obtaining a solution throughout the entire system. FW-CADIS

uses both a forward and adjoint solution to set a space- and energy-dependent weight

window for obtaining a solution in any selected region of space, including the entire

system.

In principle, the new work contained in this thesis has many of the same biasing

elements that have been implemented in the codes and methods mentioned above:

source biasing, path length biasing, collision biasing, and weight windows. The

fundamental difference, however, is that here these biasing techniques are not viewed

as individual techniques that can produce better results if used correctly; rather, they

are seen as elements of a comprehensive tool set to distribute Monte Carlo particles

in a user-specified way. Using these methods, the user can control the distribution

of Monte Carlo particles throughout the system in space, angle and energy. These

techniques can be applied to every type of problem, from the classic source-detector

problem, in which a single response value is desired, to a global problem, in which
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the user requires accurate estimates of the angular neutron flux in all phase-space.

Obviously, the distribution of Monte Carlo particles that optimally solves the classic

source-detector problem is different from the particle distribution that optimally

solves the global problem in phase space.

To achieve the user-specified particle distributions, we consider two techniques:

weight window techniques, which impose a requirement on the Monte Carlo particle

distribution without changing the underlying neutron physics, and a technique called

the Transform approach, which comprehensively uses many of the standard biasing

techniques to modify the particle physics to achieve the user-specified distribution of

Monte Carlo particles. These two approaches – the weight window and Transform

approach – exist at the extremities of a continuum of methods that are collectively

described by the General Transform approach. On one end of the continuum are

weight windows, which do not inherently alter the neutron physics (except through

implicit capture), and on the other end is the Transform approach, which biases all

the neutron physics (i.e. the emission of source particles, distance-to-next collision,

and the exiting state of a collided particle). Although this thesis only considers the

Transform approach and weight windows, the General Transform approach provides

a means to bias the physics in a particular way and yet achieve the user-specified

distribution by applying the complementary weight window.

Although the weight window approach is not new, it appears that there is little

precise information in the literature about the effect of a given weight window on

the Monte Carlo particle distribution, even though one of the main objectives of the

weight window is to control the population of Monte Carlo particles. (The other

objective of the weight window is to constrain the weight of the particle, ensuring

that high-weight particles do not produce a high variance in the solution estimate

and that low-weight particles are not tracked when their contribution to the solution

estimate is insignificant.) The Monte Carlo particle distribution resulting from a

weight window is explained in some detail in this thesis.

The Transform approach, which comprehensively changes the particle physics to

achieve the user specified distribution, is also described at length, including all the

various effects on the Monte Carlo simulation. As mentioned, this approach contains

many of the familiar biasing techniques; however, the biasing is the result of a simple

transform that is introduced into the neutron transport equation, not by specifically

altering certain physics that the user decides may be beneficial to the simulation.

The Transform approach does allow some flexibility in which specific physics are

altered, but generally it is most beneficial to modify the physics that result from the
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transform.

Implementing the weight window and Transform approach requires that the user

specify the Monte Carlo particle distribution. We expect that each problem has a

corresponding Monte Carlo particle distribution that optimizes the solution we seek.

In this work, we choose to distribute Monte Carlo particles according to the con-

tributon flux [31–37], or a modified form of the contributon flux, which identifies

the regions of the problem that are important to the desired solution. Within the

shielding community, the contributon concept is well-known and understood to con-

vey theoretical information about the most likely paths that Monte Carlo particles

travel to contribute to a detector response. This information can then be used to

provide qualitative guidance to better optimize the shielding design. In this thesis,

we make practical use of the contributon concept, by choosing to distribute Monte

Carlo particles throughout phase space in ways that are consistent with the contrib-

uton flux. To our knowledge, the work presented in this thesis represents the first

specific application of the contributon concept to a broad class of practical problems.

For the classic source-detector problem, the contributon flux identifies the opti-

mal paths that source particles travel in phase space to contribute to the detector

response. For global calculations, a modified form of the contributon flux is used

to distribute particles in the important regions of phase space. It should be noted

that the contributon flux identifies regions in phase space that are important to the

desired solution while the adjoint flux identifies regions that are important to the de-

tector, not necessarily the solution. This is most evident in the classic source-detector

problem, in which the forward source region is extremely important to the solution

(i.e. the detector response) yet is of relatively little importance to the detector, as

determined by the adjoint flux.

Finally, it should be made clear that while the techniques developed in this thesis

allow Monte Carlo practitioners to populate regions of phase space according to a

specific prescription, they do not directly control the usual statistical metrics that are

used to judge nonanalog Monte Carlo methods, such as the figure of merit. However,

even though no theoretical basis is derived that links the particle distribution to a

statistical metric such as the figure of merit, Monte Carlo particles still populate the

system in a simulation, and it seems logical to try to distribute them throughout

phase space in a way that would beneficially affect the statistical efficiency of the

method. In our numerical simulations, we do in fact see a correlation between putting

particles in a region and an increased figure of merit.

The remainder of this thesis is organized as follows:
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Chapter II: Steady State-Neutral Particle Transport

In this chapter we present the steady state, continuous energy, neutral particle

transport equation for general geometry. We then derive the multigroup approxima-

tion to the transport equation, the standard forward and adjoint diffusion approx-

imations to multigroup transport, and a transport-based correction to the diffusion

equations. Finally, we describe the solution of the transport equation using the

Monte Carlo method with several variance reduction techniques.

Chapter III: Spatially-Discretized Multigroup Diffusion Equations

We present the derivation of a new cell-edge multigroup diffusion discretization

scheme on a three-dimensional Cartesian grid. We then derive grid-based diffusion

coefficients that preserve the asymptotic behavior of the transport solution. This

spatial discretization and the grid-based diffusion coefficients are applicable to both

forward and adjoint diffusion. The resulting discrete diffusion method is used as the

deterministic “transport” solver for the numerical work presented in this thesis.

Chapter IV: Theory

In this chapter, we present a thorough discussion of the weight window and Trans-

form approaches. This includes defining the Monte Carlo particle flux and deriving

expressions that describe the means by which the weight window method and the

Transform approach controls the Monte Carlo particle flux distribution. We also

describe the Monte Carlo sampling techniques and solution estimators for both ap-

proaches.

Chapter V: Source-Detector Problems

Here we introduce the first class of shielding problems in which we are interested

– source-detector problems. Two types of source-detector problems are described –

the flux and response problems – and solution schemes are devised using the weight

window and Transform approach to distribute particles according to the contributon

flux. A basic test problem is used to validate the theory and assess the performance

of each method.
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Chapter VI: Source-Region Problems

The second class of shielding problems is considered here – source-region prob-

lems. Again, two types of source-region problems are described – the flux and re-

sponse problems – and solution schemes are devised using the weight window and

Transform approach to distribute particles according to the contributon flux, or a

slightly modified form of the contributon flux. The same test problem is used to

validate the theory and assess the performance of each method.

Chapter VII: Global Problems

The final class of shielding problems that we discuss is introduced here – global

problems. The two types of global problems are described – the flux and response

problems – and solution schemes are devised using the weight window and Trans-

form approach to distribute particles according to the contributon flux, or a slightly

modified form of the contributon flux. The same test problem is used to validate the

theory and assess the performance of each method.

Chapter VIII: Challenge Problems

In this chapter, we describe a more realistic 3-D multigroup shielding problem

to determine whether the weight window and Transform approaches are capable of

obtaining the desired solution, and to validate the theory and assess the performance

of each method. We consider the source-detector, source-region, and global response

problems.

Chapter IX: Conclusions

Here we review the main ideas and sum up the results presented in the thesis.

We also discuss some interesting and promising ideas for future work.
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Chapter II

Steady State Neutral-Particle Transport

In this chapter we present the steady state, continuous energy, neutral particle

transport equation for general geometry. We then derive the multigroup approxima-

tion to the transport equation, the standard forward and adjoint diffusion approx-

imations to multigroup transport, and a transport-based correction to the diffusion

equations. Finally, we describe the solution of the transport equation using the

Monte Carlo method with several variance reduction techniques.

2.1 The Steady-State Neutral-Particle Transport Equation

The neutral particle transport equation is a linear integro-differential Boltzmann

equation that quantitatively describes neutron balance throughout phase space. For

radiation transport problems, phase space is the seven-dimensional space consisting

of three variables to represent a particle’s spatial location, two variables to represent

a particle’s direction of flight, one variable to represent a particle’s kinetic energy,

and a time variable. In general, the Boltzmann transport equation describes the

distribution of particles throughout phase space or, for time-dependent problems,

the evolution of the particle distribution in time. For this thesis, the only problems

considered are time-independent, or steady state. For these problems, the Boltzmann

equation relates the rate at which particles stream through an element of phase space,

the rate at which particles collide in that element, the rate at which particles scatter

into that element, and the rate at which particles are emitted within that element,

whether by fission or a fixed source.

The linear integro-differential Boltzmann equation for steady-state, continuous-
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energy, neutral-particle transport is given by:

Ω · ∇ψ(x,Ω, E) + Σt(x, E)ψ(x,Ω, E)

=

∫ ∞
0

∫
4π

Σs(x,Ω
′ ·Ω, E ′ → E)ψ(x,Ω′, E ′)dΩ′dE ′ +Q(x,Ω, E),

x ∈ V , Ω ∈ 4π, 0 < E <∞, (2.1a)

with boundary condition

ψ(x,Ω, E) = ψb(x,Ω, E), x ∈ ∂V , Ω · n(x) < 0, 0 < E <∞. (2.1b)

The variables and parameters are defined as follows:

x = position, (x ∈ V), (2.2a)

Ω = direction, (|Ω| = 1), (2.2b)

E = kinetic energy, (0 < E <∞), (2.2c)

ψ(x,Ω, E) = angular flux, (2.2d)

Σt(x, E) = total cross section, (2.2e)

Σs(x,Ω
′ ·Ω, E ′ → E) = differential scattering cross section, (2.2f)

Q(x,Ω, E) = internal source, (2.2g)

ψb(x,Ω, E) =

0 , vacuum boundary,

ψ(x,Ωr, E) , reflecting boundary,
(2.2h)

Ωr = angle of reflection,

= Ω− 2 (Ω · n) n, (2.2i)

n(x) = unit outward normal, (x ∈ ∂V). (2.2j)

For three-dimensional problems, the position x is a three-element vector (i.e.

x = (x, y, z) ) while the direction Ω is a three-element unit vector whose components

are defined by the polar angle φ and the azimuthal angle γ. That is, the direction

vector is given by:

Ω = Ω1 i + Ω2 j + Ω3 k

= cosφ i + sinφ (cos γ j + sin γ k)

= µ i +
√

1− µ2 (cos γ j + sin γk), (2.3)
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where

φ = polar angle, (0 ≤ φ ≤ π/2),

γ = azimuthal angle, (0 ≤ γ < 2π),

µ = cosφ, (−1 ≤ µ ≤ 1). (2.4)

Thus, the direction vector is completely determined by specifying the pair (µ, γ).

The differential scattering cross section can be expressed as a linear combination

of the Legendre polynomials,

Σs(x,Ω
′ ·Ω, E ′ → E) =

∞∑
n=0

2n+ 1

4π
Σsn(x, E ′ → E)Pn(Ω′ ·Ω), (2.5)

where the expansion coefficient, Σsn(x, E ′ → E), is defined as

Σsn(x, E ′ → E) =

∫
4π

Σs(x,Ω
′ ·Ω, E ′ → E)Pn(Ω′ ·Ω)dΩ′. (2.6)

According to the addition theorem, a Legendre polynomial of order n can be expressed

in terms of the spherical harmonic functions as

Pn(Ω′ ·Ω) =
4π

2n+ 1

m=n∑
m=−n

Yn,m(Ω)Y ∗n,m(Ω′), (2.7)

where the spherical harmonics function Yn,m(Ω) is defined as

Yn,m(Ω) = Yn,m(µ, γ) =

[
2n+ 1

4π

(n− |m|)!
(n+ |m|)!

]1/2

(−1)
m+|m|

2 P |m|n (µ)eimγ (2.8)

and P
|m|
n (µ) are the associated Legendre polynomials. They are defined for n ≥ 0

and 0 ≤ m ≤ n by:

Pm
n (µ) = (1− µ2)m/2

dm

dµm
Pn(µ). (2.9)

For this thesis, we will only consider isotropic scattering, in which the series expansion

is truncated after the first term (N = 0). Thus, Eq. 2.5 reduces to

Σs(x,Ω
′ ·Ω, E ′ → E) =

1

4π
Σs0(x, E ′ → E). (2.10)
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2.2 The Multigroup Approximation

In order to solve the transport equation deterministically, we must transform it

into a system of discrete unknowns that can be solved algebraically. To discretize in

energy, we employ the ubiquitous multigroup approximation. Due to its widespread

use, much effort has been invested in generating the multigroup constants that result

from this approximation.

To derive the multigroup approximation, we operate on the continuous-energy

transport equation (Eqs. 2.1) by
∫ Eg−1

Eg
(·) dE, where g is the energy group corre-

sponding to the range (Eg, Eg−1]. The energy group structure is determined by the

boundaries, {Eg}Gg=0, and the number of groups, G; these are selected based on

some consideration of both the accuracy and the computational speed. In order to

complete the derivation and arrive at the standard multigroup equations, we use

the approximation ψ(x,Ω, E) = ϕ(x, E)Ψ(x,Ω), where ϕ(x, E) is the neutron en-

ergy spectrum. The spatial dependence of the neutron energy spectrum generally

corresponds to the various material regions that exist within a given system.

The standard multigroup transport equations are:

Ω · ∇ψg(x,Ω) + Σt,g(x)ψg(x,Ω)

=
G∑

g′=1

∫
4π

Σs,g′→g(x,Ω
′ ·Ω)ψg′(x,Ω

′)dΩ′ +Qg(x,Ω),

x ∈ V , Ω ∈ 4π, 1 ≤ g ≤ G, (2.11a)

with boundary condition

ψg(x,Ω) = ψb,g(x,Ω), x ∈ ∂V , Ω · n(x) < 0, 1 ≤ g ≤ G. (2.11b)

We have defined the following variables and parameters:

ψg(x,Ω) =

∫ Eg−1

Eg

ψ(x,Ω, E)dE, (2.12a)

Σt,g(x) =

∫ Eg−1

Eg
Σt(x, E)ϕ(x, E)dE∫ Eg−1

Eg
ϕ(x, E)dE

, (2.12b)

Σs,g′→g(x,Ω
′ ·Ω) =

∫ Eg′−1

Eg′

∫ Eg−1

Eg
Σs(x,Ω

′ ·Ω, E ′ → E)dE ϕ(x, E ′)dE ′∫ Eg′−1

Eg′
ϕ(x, E ′)dE ′

, (2.12c)
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Qg(x,Ω) =

∫ Eg−1

Eg

Q(x,Ω, E)dE, (2.12d)

ψb,g(x,Ω) =

 0 , vacuum boundary,

ψg(x,Ωr) , reflecting boundary.
(2.12e)

2.3 The Forward Multigroup Diffusion Approximation

The diffusion equation is a low-order, angle-independent approximation to the

transport equation. Despite its range of limited accuracy, it has become the compu-

tational workhorse of the reactor physics community. This is primarily due to the

relatively low computational cost required to solve the diffusion equation compared

to the full transport equation. In this section, we derive the forward multigroup

diffusion equations.

To derive the diffusion equations, we operate on the multigroup transport equa-

tion (Eq. 2.11a) by
∫

4π
(·)dΩ and

∫
4π

Ω(·)dΩ. The first operation gives the zeroth

angular moment of the multigroup transport equation:

∇ · Jg(x) + Σt,g(x)φg(x) =
G∑

g′=1

Σs0,g′→g(x)φg′(x) +Qg(x)

x ∈ V , 1 ≤ g ≤ G. (2.13)

The second operation results in the first angular moment of the multigroup transport

equation:

∇ ·
∫

4π

ΩΩψg(x,Ω)dΩ + Σt,g(x)Jg(x) =
G∑

g′=1

Σs1,g′→g(x) Jg′(x) + Q1,g

x ∈ V , 1 ≤ g ≤ G. (2.14)

where we define the scalar flux φg(x), the current Jg(x), and the zeroth and first

moments of the source as:

φg(x) =

∫
4π

ψg(x,Ω)dΩ, (2.15)

Jg(x) =

∫
4π

Ωψg(x,Ω)dΩ, (2.16)

Qg(x) =

∫
4π

Qg(x,Ω)dΩ, (2.17)
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Q1,g(x) =

∫
4π

ΩQg(x,Ω)dΩ. (2.18)

To complete the derivation, we must introduce three approximations into Eq. 2.14.

1. The angular flux is approximated by a linear function in angle. This is called

the P1 approximation,

ψg(x,Ω) ∼=
1

4π
[φg(x) + 3Ω · Jg(x)] . (2.19)

2. The first angular moment of the differential scattering cross-section, Σs1,g′→g(x),

is approximated by

Σs1,g′→g(x) ∼= δg′,g

G∑
g′′=1

Σs1,g′′→g(x). (2.20)

3. The source, Qg(x,Ω), is isotropic. Under this assumption, the first moment of

the source becomes zero:

Q1,g
∼= 0. (2.21)

In general, none of these approximations may be true; nevertheless, this is what is

done to arrive at the following equation, known as Fick’s Law:

Jg(x) = −Dg(x)∇φg(x). (2.22)

The diffusion coefficient, Dg(x), is given by

Dg(x) =
1

3
(

Σt,g(x)−
∑G

g′′=1 Σs1,g′′→g(x)
) . (2.23)

Finally, substituting Eq. 2.22 into Eq. 2.14, we obtain the multigroup diffusion equa-

tions:

−∇ ·Dg(x)∇φg(x) + Σt,g(x)φg(x) =
G∑

g′=1

Σs0,g′→g(x)φg′(x) +Qg(x),

x ∈ V , 1 ≤ g ≤ G. (2.24)

To obtain the multigroup diffusion boundary condition, we operate on the multi-

group transport boundary condition (Eq. 2.11b) by
∫

Ω·n(x)≤0
|Ω·n(x)|(·)dΩ, introduce
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the P1 approximation (Eq. 2.19) for the case of vacuum boundary conditions, and

use Fick’s Law (Eq. 2.22) where necessary. We obtain:

0 =

 φg(x) + n(x) · 2Dg(x)∇φg(x) , vacuum boundary,

n(x) ·Dg(x)∇φg(x) , reflecting boundary.
(2.25)

2.4 Transport-Corrected Multigroup Diffusion

The transport-corrected multigroup diffusion equation has the same form as the

standard multigroup diffusion equation, with the exception that the diffusion coeffi-

cient is modified to more accurately preserve the asymptotic solution of the transport

equation. (This is not to be confused with asymptotic limits to the transport equa-

tion.) The asymptotic solution to the transport equation is the solution that domi-

nates away from boundaries, sources and material interfaces. For three-dimensional

multigroup transport problems, the asymptotic solution is assumed to be a planar

solution, separable in angle and space:

ψg(x,Ω) = fg(Ω)eλ
tr
g Σt,g(x · ω), (2.26)

where fg(Ω) is the angular distribution of the flux, λtrg is the exponential attenuation

parameter that contains information from the transport equation, and ω is any unit

vector that is proportional to the gradient of the scalar flux and is obtained from

numerically solving the standard diffusion equations.

For multigroup diffusion problems, the analogous expression is the homogeneous

solution to the diffusion equation:

φg(x) = Age

√
ΣR,g

Dg
(x · ω)

, (2.27)

where ΣR,g = Σt,g − Σs,g→g and is known as the removal cross-section.

By equating the exponential attenuation lengths from transport and diffusion,

we obtain a new expression for the diffusion coefficient in terms of the transport

attenuation parameter, λtrg :

Dg(x) =
ΣR,g(x)[

λtrg (x)Σt,g(x)
]2 , (2.28)

where we have specifically designated spatial dependence due to regional differences
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in material properties. This newly-defined diffusion coefficient has the property of

preserving the exponential attenuation rate of the transport solution.

One way to calculate λtrg (x) is to consider the following within-group transport

equation away from sources, boundaries and material interfaces:

Ω · ∇ψg(x,Ω) + Σt,gψg(x,Ω) =

∫
4π

Σs,g→g(Ω
′ ·Ω)ψg(x,Ω

′)dΩ′. (2.29)

Upon substituting the asymptotic solution (Eq. 2.26) into the above transport equa-

tion, we get the following expression:

Σt,g

[
1 + λtrg Ω · ω

]
fg(Ω) =

∫
4π

Σs,g→g(Ω
′ ·Ω)fg(Ω

′)dΩ′. (2.30)

A solution to this equation is fg(Ω) = Fg(Ω · ω). This can be seen by using the

spherical harmonics to evaluate the scattering integral:∫
4π

Σs,g→g(Ω
′ ·Ω)Fg(Ω

′ · ω)dΩ′

=
∞∑
n=0

∞∑
p=0

n∑
m=−n

p∑
q=−p

Σsn,g→gFp,gYn,m(Ω)Y ∗p,q(ω)

∫
4π

Yp,q(Ω
′)Y ∗n,m(Ω′)dΩ′

=
∞∑
n=0

2n+ 1

4π
Σsn,g→gFn,gPn(Ω · ω). (2.31)

We have made the following definitions:

Σsn,g→g =

∫
4π

Σs,g→g(Ω ·Ω′)Pn(Ω ·Ω′)dΩ = 2π

∫ 1

−1

Σs,g→g(µ)Pn(µ)dµ, (2.32)

Fn,g =

∫
4π

Fg(Ω · ω)Pn(Ω · ω)dΩ = 2π

∫ 1

−1

Fg(µ)Pn(µ)dµ. (2.33)

Inserting this result into Eq. 2.30, and only considering anisotropic scattering of order

N (i.e. Σsn,g→g = 0 for n > N), we obtain the expression,

[
1 + λtrg Ω · ω

]
Fg(Ω · ω) =

N∑
n=0

2n+ 1

4π

Σsn,g→g

Σt,g

Fn,gPn(Ω · ω). (2.34)

The right side of the equation is a polynomial of order N , which indicates that we
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will have a solution of the form,

Fg(Ω · ω) =
N∑
n=0

an,g
(Ω · ω)n

1 + λtrg Ω · ω
, a0,g = 1. (2.35)

To solve for the unknowns, λtrg and {an,g}Nn=1, we insert this expression for Fg(Ω ·ω)

into the left hand side of Eq. 2.34 and equate the coefficients of the powers of Ω ·ω.

This results in a linear system of N + 1 equations and N + 1 unknowns. (The zeroth

coefficient, a0,g, was chosen to be unity as a means to normalize the expression.) For

isotropic scattering (N = 0),

Fg(Ω · ω) =
1

1 + λtrg Ω · ω
, (2.36)

F0,g =
2π

λtrg
ln

(
1 + λtrg
1− λtrg

)
. (2.37)

Using these results, we obtain the following transcendental equation that can be

solved for λtrg :

1 =
Σs,0,g→g

2λtrg Σt,g

ln

(
1 + λtrg
1− λtrg

)
. (2.38)

This transcendental expression, which is sometimes referred to as a dispersion re-

lation, can be solved to obtain a value for λtrg . Similarly, we can obtain dispersion

relations for higher order scattering, which can be solved to obtain λtrg .

The transport-corrected diffusion equation (with its modified diffusion coefficient

given by Eq. 2.28) preserves the asymtotic solution of the analytic transport solution

in each energy group. This property makes the solution of this equation useful for

shielding problems by more accurately preserving the exponential attenuation rate

of the solution.

The spatial discretization scheme for the multigroup diffusion equations, whether

transport-corrected or standard, are described in the next chapter.

2.5 The Adjoint Multigroup Diffusion Approximation

The adjoint multigroup diffusion equation is similar in form to the forward multi-

group diffusion equation. It can be derived in the same manner as was done to obtain
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forward diffusion. The adjoint multigroup diffusion equation is given by:

−∇ ·Dg(x)∇φ∗g(x) + Σt,g(x)φ∗g(x) =
G∑

g′=1

Σs,g→g′(x)φ∗g′(x) +Qg(x)

x ∈ V , 1 ≤ g ≤ G, (2.39)

with the parameters defined as they were for forward diffusion. The adjoint multi-

group diffusion boundary condition is given by

0 =

 φ∗g(x) + n(x) · 2Dg(x)∇φ∗g(x) , vacuum boundary,

n(x) ·Dg(x)∇φ∗g(x) , reflecting boundary.
(2.40)

The adjoint diffusion equation is most commonly used for deterministic pertur-

bation analysis and for generating weight windows for source-detector Monte Carlo

simulations. In this thesis, we use the adjoint solution for several of the methods

discussed in later chapters.

A transport-corrected adjoint solution can also be obtained by using Eq. 2.28 for

the diffusion coefficient, where λtrg is still determined using Eqs. 2.34 and Eq. 2.35,

since the within-group equation is the same for the forward and adjoint problems.

2.6 Analog Monte Carlo for Radiation Transport

The Monte Carlo method can be used to solve radiation transport problems by

simulating the history of individual particles and averaging the results over many

histories to obtain quantities of interest, such as the scalar flux or some response.

Each particle history is governed by probability distributions that determine the

detailed characteristics of the history, including the particle’s birth (i.e. location,

direction, energy) and its interactions (i.e. capture, scatter, fission, etc.) as it streams

through various media. In order to understand the method, we need to describe

the probability distributions related to each aspect of the particle’s history. In this

section, we present the probability distributions for analog Monte Carlo and describe

how to sample from them. For simplicity, we impose a Cartesian grid upon the system

composed of Ncells cells, in which the quantities of interest will be obtained. Each

cell Ci,j,k is defined by a spatial element Vc where c is an integer that represents the

map c = i+ jI+kIJ for i ∈ [0, I− 1], j ∈ [0, J − 1], and k ∈ [0, K−1]. The element

Vc is defined for all x = (x, y, z) such that x ∈ [xi−1/2, xi+1/2], y ∈ [yj−1/2, yj+1/2],
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and z ∈ [zk−1/2, zk+1/2] where {xi+1/2}Ii=0, {yj+1/2}Jj=0, {zk+1/2}Kk=0 are the planes

that make up the Cartesian grid. The volume of the element Vc is defined as Vc =

(xi+1/2 − xi−1/2)(yj+1/2 − yj−1/2)(zk+1/2 − zk−1/2).

2.6.1 Sampling for an Interior Source

The probability distribution that corresponds to an interior source is given by:

p(x,Ω, E) =
Q(x,Ω, E)∫

V

∫
4π

∫∞
0
Q(x,Ω, E)dV dΩdE

. (2.41)

For this thesis we only consider isotropic, spatially-uniform sources within each spa-

tial element Vc:

Q(x,Ω, E) =
Qc(E)

4π
, x ∈ Vc, Ω ∈ 4π, 0 < E <∞. (2.42)

This source distribution allows us to rewrite the joint probability distribution as

p(x,Ω, E) = p(x,Ω, E |x ∈ Vc) · p(x ∈ Vc)

= p(x |x ∈ [xi−1/2, xi+1/2]) · p(y | y ∈ [yj−1/2, yj+1/2])

· p(z | z ∈ [zk−1/2, zk+1/2]) · p(µ) · p(γ)

· p(E |x ∈ Vc) · p(x ∈ Vc), (2.43)

where we make the following definitions for the probability distributions:

p(x |x ∈ [xi−1/2, xi+1/2]) =
1

xi+1/2 − xi−1/2

, (2.44)

p(y | y ∈ [yj−1/2, yj+1/2]) =
1

yj+1/2 − yj−1/2

, (2.45)

p(z | z ∈ [zk−1/2, zk+1/2]) =
1

zk+1/2 − zk−1/2

, (2.46)

p(µ) =
1

2
, (2.47)

p(γ) =
1

2π
, (2.48)

p(E |x ∈ Vc) =
Qc(E)∫∞

0
Qc(E ′)dE ′

, (2.49)

p(x ∈ Vc) =
Vc
∫∞

0
Qc(E)dE

Ncells∑
c=1

Vc

∫ ∞
0

Qc(E)dE

. (2.50)
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To obtain the multigroup probability distribution, we integrate p(x,Ω, E) over the

energy range of a group g and use the multigroup definition for the source to obtain:

p(g |x ∈ Vc) =
Qc,g

G∑
g′=1

Qc,g′

, (2.51)

p(x ∈ Vc) =

G∑
g=1

VcQc,g

Ncells∑
c=1

G∑
g=1

VcQc,g

. (2.52)

All these probability distributions except the continuous-energy distribution can be

directly sampled by inverting the cumulative probability distribution. (It is possible

to directly sample the continuous-energy distribution if the indefinite integral of the

source Qc(E) is invertible.) Doing this, we obtain the following results that determine

the initial state of the particle (ξ ∈ [0, 1]):

x = xi−1/2 + ξ
(
xi+1/2 − xi−1/2

)
, (2.53)

y = yj−1/2 + ξ
(
yj+1/2 − yj−1/2

)
, (2.54)

z = zk−1/2 + ξ
(
zk+1/2 − zk−1/2

)
, (2.55)

µ = −1 + 2ξ, (2.56)

γ = 2πξ, (2.57)

E = E0 if ξ =

∫ E0

0
Qc(E

′)dE ′∫∞
0
Qc(E ′)dE ′

, (2.58)

x ∈ Vc0 if

c0−1∑
c=1

Vc

∫ ∞
0

Qc(E)dE ≤ ξ ≤
c0∑
c=1

Vc

∫ ∞
0

Qc(E)dE. (2.59)

where, for each equation above, every ξ represents a different random number. For

the multigroup distribution, we use the following relations:

g = g0 if

g0−1∑
g′=1

Qc,g′ < ξ ≤
g0∑
g′=1

Qc,g′ , (2.60)

x ∈ Vc0 if

c0−1∑
c=1

G∑
g=1

VcQc,g ≤ ξ ≤
c0∑
c=1

G∑
g=1

VcQc,g. (2.61)
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These relations determine a particle’s initial state (x,Ω, E), or (x,Ω, g) for the multi-

group problem. As long as the particle’s energy is greater than zero, it begins to move

throughout the system. The distance that it travels before colliding with an atom

(or molecule) in the medium is described next.

2.6.2 Sampling the Distance-To-Next Collision

The probability distribution that determines the distance-to-next collision can be

obtained from the expression

p(s) = C
ψ(s)

ψ(0)
, (2.62)

where C is the normalization constant and ψ(s) is the flux determined by the equation

that describes transport through a constant medium along the trajectory of a particle:

dψ

ds
(s) + Σtψ(s) = 0,

ψ(0) = ψ0. (2.63)

The solution to this equation is

ψ(s) = ψ0e
−Σts. (2.64)

The resulting probability distribution function, then, is given by

p(s) = Σte
−Σts. (2.65)

To sample from this distribution, we simply invert the cumulative probability distri-

bution to obtain (ξ ∈ [0, 1]):

s = − log(ξ)

Σt(E)
, (2.66)

where we have included the energy dependence of Σt(E), since the energy does not

change along the trajectory. The multigroup distribution is found by simply setting

Σt(E) = Σt,g over the energy range (Eg, Eg−1], where Σt,g is given by Eq. 2.12b. This

results in the following expression:

s = − log(ξ)

Σt,g

. (2.67)

Once a distance has been sampled, the particle is moved to the new location and it

is determined whether the particle has leaked out of the system or remains in the
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system and collides. If the particle has exited the system, the particle history is

terminated; otherwise, the particle is either captured or scattered.

2.6.3 Sampling the Collision Type: Capture or Scatter

The analog Monte Carlo method simulates the actual physical reactions that

occur as particles move throughout the system. In shielding applications, when a

particle collides with an atom (or molecule) of the medium, it either scatters or is

captured according to some probability. The probability that a particle collision

results in a scattering event is given by

pscat(x, E) =
Σs(x, E)

Σt(x, E)
, (2.68)

where the spatial dependence is due to regional material differences. If ξ ≤ pscat(x, E),

the collision results in a scattering event; otherwise, the particle is captured.

2.6.4 Sampling the Scattering Distribution

If a particle undergoes a scattering event, then the outgoing energy and direction

must be determined. The probability that a particle scatters from energy E ′ to E,

and from direction Ω′ to Ω is given by the normalized scattering kernel:

p(x,Ω′ ·Ω, E ′ → E) =
Σs(x,Ω

′ ·Ω, E ′ → E)

Σs(x, E ′)
. (2.69)

Using Eq. 2.10, this distribution can be written as

p(x,Ω′ ·Ω, E ′ → E) = p(x, E ′ → E) · p(x,Ω′ ·Ω |E ′ → E)

=
Σs0(x, E ′ → E)

Σs(x, E ′)
·
N∑
n=0

2n+ 1

4π
Pn(Ω′ ·Ω)

Σsn(x, E ′ → E)

Σs0(x, E ′ → E)
,

(2.70)

where p(x,Ω′ ·Ω |E ′ → E) is the conditional probability distribution function for the

outgoing direction Ω, given that the outgoing energy is E. For scattering of order

N ≤ 2, the cumulative conditional probability distribution function can be inverted

and directly sampled. For higher order scattering, the cumulative conditional prob-

ability distribution is a polynomial of order n > 3; a root solver must be used to

solve this, though, typically rejection sampling is used on the conditional probability

distribution function. The probability density function that describes the outgoing
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energy can be solved directly by inverting the cumulative distribution function if the

function is simple enough, or through rejection sampling if the function is too compli-

cated or is more efficiently sampled through rejection. The multigroup distribution is

given by simply substituting Σsn(x, E ′ → E) = Σsn,g′→g(x) and Σs(x, E) = Σs,g(x).

We obtain:

pg′→g(x,Ω
′ ·Ω) = pg′→g(x) · p(x,Ω′ ·Ω | g′ → g)

=
Σs0,g′→g(x)

Σs,g′(x)
·
N∑
n=0

2n+ 1

4π
Pn(Ω′ ·Ω)

Σsn,g′→g(x,Ω
′ ·Ω)

Σs0,g′→g(x)
, (2.71)

where Σsn,g′→g(x) is defined by Eq. 2.32 and p(x,Ω′ ·Ω | g′ → g) is the conditional

probability distribution for the outgoing direction Ω, given that the particle exits

the scattering event in group g. This distribution is sampled in the same manner as

in the continuous energy case. The discrete probability distribution that determines

the group the particle is in after a scattering event is sampled in the typical way

(ξ ∈ [0, 1]):

g = gs if

gs−1∑
g′′=1

pg′→g′′(x) < ξ ≤
gs∑

g′′=1

pg′→g′′(x). (2.72)

2.7 Particle Weight

A useful concept in Monte Carlo simulations is the statistical weight of the par-

ticle. For analog simulations, the concept of weight is less important, but variance

reduction techniques require the notion of particle weight. The general idea of parti-

cle weight is to allow a particle to represent a different number of physical particles

as it moves throughout phase-space. In analog simulations, a particle begins with

weight w0 = 1, and as the particle moves throughout the system, its weight w does

not change. This means that the particle always represents the same number of phys-

ical particles no matter where it exists in phase-space. For problems where there are

large variations in particle density throughout phase-space, it is not optimal to re-

quire a simulation particle to always represent the same number of physical particles

as it moves through phase space. In non-analog Monte Carlo simulations, we allow

the particle weight to vary. The fraction (or multiple) of a physical particle that the

simulation particle represents at any point in phase-space can be determined by the

simple ratio, w/w0. In general, the particle weight shows up in every interaction and

tally event during the particle history. However, for analog Monte Carlo schemes,
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the weight does not change throughout the particle history, so there has been no

mention of this in the previous sections on particle interactions.

2.8 Estimators

In Monte Carlo simulations, we wish to obtain estimates of some quantity of

interest, such as the the scalar flux or a response. The two basic estimators that

are used to obtain these estimates are the path length estimator and the collision

estimator. Both of these estimators require a bin structure in which to tally. A

common bin structure is an energy set defined by the boundaries {Eg}Gg=0, and a

spatial element set {Vc}Ncells
c=1 with each element having a volume Vc. The bin structure

can also include an angular set; but, for this thesis, we do not use one.

2.8.1 Path Length Estimator

The nth simulation particle provides a path length estimate for the scalar flux

given by

φpath
c,g,n =

QT

Vc

Ic,g,n∑
i=1

liwi, (2.73)

where QT is total system source rate, Ic,g,n is the number of track lengths generated

by the nth simulation particle in volume Vc and in energy group g, li is an individual

track length, and wi is the weight of the particle as it generates the track length li.

Note that since the track length and weight are independent of energy, this estimator

is valid for a continuous-energy as well as multigroup simulation. If we were to use

this type of estimator to obtain a response, then we would need to include the energy-

dependent response in the summation of the track lengths. That is,

Rpath
c,g,n =

QT

Vc

Ic,g,n∑
i=1

Rc(Ei) liwi, (2.74)

whereRc(Ei) represents the response of a particle with energy Ei. For the multigroup

problem, Rc(Ei) = Rc,g.

To obtain the mean value for the scalar flux and the variance of the mean for a

simulation with N particles, we use the following equations:
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φc,g =
1

N

N∑
n=1

φpath
c,g,n (2.75)

=
QT

N Vc

N∑
n=1

Ic,g,n∑
i=1

liwi, (2.76)

Var[φc,g] =
1

N − 1

N∑
n=1

(φpath
c,g,n − φc,g)2 (2.77)

=
N

N − 1

 Q2
T

N V 2
c

N∑
n=1

(
Ic,g,n∑
i=1

liwi

)2

− φ2
c,g

 . (2.78)

During the simulation, the only quantities that need to be stored are the weighted

total path length for the mean and the weighted total path length squared for the

variance of the mean. Similar expressions can be written down to obtain a response.

2.8.2 Collision Estimator

The nth simulation particle provides a collision estimator for the scalar flux that

is given by

φcoll
c,g,n =

QT

Vc

Ic,g,n∑
i=1

wi
Σt,c(Ei)

, (2.79)

where Ic,g,n is the number of collisions by the nth simulation particle in volume Vc in

energy group g, wi is the weight of the particle when it collides with a nucleus, and Ei

is the energy in the range (Eg, Eg−1] at which the particle collides. The multigroup

version of this estimator simply replaces Σt,c(Ei) with Σt,c,g, which results in the

following:

φcoll
c,g,n =

QT

Vc

Ic,g,n∑
i=1

wi
Σt,c,g

. (2.80)

Just like the path length estimator, the collision estimator can also be used to

obtain a response:

Rcoll
c,g,n =

QT

Vc

Ic,g,n∑
i=1

Rc(Ei)wi
Σt,c(Ei)

, (2.81)

where Rc(Ei) again represents the response of a particle with energy Ei. For the

multigroup problem, Rc(Ei) = Rc,g and Σt,c(Ei) = Σt,c,g.

The mean and the variance of the mean are determined in the same way as the
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for the path length estimator:

φc,g =
1

N

N∑
n=1

φcoll
c,g,n (2.82)

=
QT

N Vc

N∑
n=1

Ic,g,n∑
i=1

wi
Σt(Ei)

, (2.83)

Var[φc,g] =
1

N − 1

N∑
n=1

(φcoll
c,g,n − φc,g)2 (2.84)

=
N

N − 1

 Q2
T

N V 2
c

N∑
n=1

(
Ic,g,n∑
i=1

wi
Σt(Ei)

)2

− φ2
c,g

 . (2.85)

We again note that during the simulation, the only quantities that need to be stored

are the sums of the weighted inverse total cross-section for the mean and this quantity

squared for the variance of the mean. The multigroup expression simply replaces

Σt(Ei) with Σt,g. Similar expressions exist for obtaining a response.

2.9 Central Limit Theorem

The Central Limit Theorem states that, if a distribution with a mean µ and

a variance σ2 is sampled from, the distribution of the mean approaches a normal

distribution with mean µ and variance σ2/N as the sample size, N , increases. Due

to this theorem, some fundamental properties of the normal distribution may be used

to describe the statistical characteristics of the estimators. For example, the normal

distribution has the following property

P

(
|X̄N − µ| < l

σN√
N

)
< Cl, (2.86)

where X̄N is the sample mean with a sample size of N , σN is the sample standard

deviation from the original distribution (meaning σN/
√
N is the estimate of the stan-

dard deviation of the normal distribution), and Cl is the confidence level associated

with the confidence interval, a measure of the number of standard deviations l. For

l = 1, 2, and 3 standard deviations, the associated confidence level is Cl = 0.683,

0.954, and 0.997, respectively. This means that, if the sample size is large enough,

the distribution of the sample mean is nearly Gaussian, implying that 68.3% of the

values sampled lie within one standard deviation of the true mean, 95.4% of the
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values lie within two standard deviations of the true mean, and 99.7% of the values

lie within three standard deviations of the true mean. The smaller the variance,

the more sharply peaked the Gaussian distribution, resulting in values of the sample

mean that are much closer to the true mean. For this reason, techniques have been

developed in Monte Carlo simulations to reduce the variance.

2.10 Variance Reduction

The analog Monte Carlo method was described in Section 2.6. For problems with

high scattering ratios and small optical thicknesses, the analog Monte Carlo method

is sufficient, but for most real world problems, variance reduction techniques must be

employed. Two common techniques are implicit capture (sometimes called survival

biasing) and weight windows [38–40].

2.10.1 Implicit Capture

A simple way to decrease the variance is to simulate capture implicitly. Instead

of ending a simulation particle’s history by capture, the particle’s weight is reduced

by the probability that the particle survives the collision event and scatters. That

is, if the weight of the particle is wi upon entering a collision event at (x,Ω, E), then

the weight at which the particle exits the collision event wf is given by:

wf = wi
Σs(x, E)

Σt(x, E)
. (2.87)

The multigroup equivalent is given by:

wf = wi
Σs,g(x)

Σt,g(x)
. (2.88)

This technique generally allows more Monte Carlo particles to penetrate to greater

distances, which results in the accumulation of more data for each of the tallies.

However, in the deeper parts of the problem, the particle weights can vary substan-

tially, resulting in an undesirably large variance associated with high-weight particles,

and undesirably long computation times for low-weight particles. To mitigate these

effects, we introduce another variance reduction technique – weight windows.
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2.10.2 Weight Windows

The basic idea of the weight window is to constrain the weight of Monte Carlo

particles to lie within some specified range [wl, wu]. The upper and lower bound

are chosen in reference to a central point, wc, within the range: wl = wc/m and

wu = mwc where m is usually chosen to be roughly 3. In general, the weight window

center wc can be a function of space, energy and angle, but this thesis restricts its

use to space and energy only.

Since the weight window constrains the weight of Monte Carlo particles, we can

use weight windows in conjunction with implicit capture to mitigate the effect of

high-weight particles on the variance and of low-weight particles on the computation

time. If a particle’s weight exceeds the upper bound of the weight window, wu, then

the particle is split into several particles whose weights will lie within the weight

window. That is, if w > wu, we split the particle into n new particles each having

weight wsplit:

n = Round
(wu
w

)
, (2.89)

wsplit =
w

n
, (2.90)

where the function Round() represents standard rounding. We note that the total

weight of the original particle is conserved in splitting (i.e. w = nwsplit). Most Monte

Carlo algorithms only track one particle at a time, meaning that n−1 particles must

be “banked” until one of the split particles is terminated. Then the rest of the

particles are allowed to finish, one at a time. If the weight window center is chosen

poorly, much splitting can occur, resulting in a massive particle bank that quickly

depletes computer memory.

To constrain the particle weight at the lower bound, Russian roulette is performed.

When w < wl, we sample a random number ξ ∈ [0, 1] and either terminate the

particle or reset its weight to wc:

if ξ <
w

wc
, reset w = wc,

if ξ >
w

wc
, terminate w = 0. (2.91)

Russian roulette does not preserve the weight for an individual history, but for a
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large number of histories the weight is preserved on the average. That is,

wavg = wc · preset + 0 · pterminate

= wc ·
w

wc
+ 0 ·

(
1− w

wc

)
= w. (2.92)

It should be apparent that Russian roulette and splitting can be applied to continuous

energy problems as well as multigroup problems. For continuous energy problems,

wc = wc(x, E) and for multigroup problems wc = wc,g(x). In subsequent chapters, a

fuller explanation will be given of weight windows, especially related to the choice of

wc.
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Chapter III

Spatially-Discretized Transport-Corrected

Multigroup Diffusion Equations

The spatial discretization of the diffusion equation is derived in this chapter for

standard diffusion, but with modifications for the transport-corrected diffusion equa-

tion. The spatially-discretized transport-corrected diffusion equation attempts to

preserve the asymptotic transport solution on any Cartesian grid. Wherever a de-

terministic estimate of the forward or adjoint scalar flux is required for the work

presented in this thesis, we use the solution to the spatially-discretized transport-

corrected diffusion equations presented in this chapter.

3.1 The Cell-Edge Diffusion Discretization

To obtain a diffusion equation that can be solved deterministically, a spatial ap-

proximation must be introduced. The spatial approximation that we use is called

the cell-edge diffusion discretization. To derive this approximation, we utilize the

widely-used finite volume method for numerical discretization, which involves inte-

grating the equation over a finite volume surrounding a grid point. In 3-D Cartesian

geometry, this volume is a hexahedral box. The bounds of integration, which deter-

mine the box volume, are determined according to the location of the corner point

within the rectilinear grid, shown in Figure 3.1. The four types of grid point locations

are the following: interior, face, edge, and corner.

Using the finite volume method, we can derive a set of discretized equations that

describe the scalar flux at every grid point, φg,i+1/2,j+1/2,k+1/2, for i ∈ [0, I], j ∈ [0, J ],

and k ∈ [0, K]. We assume that within each cell (defined by the eight grid points that

make up its corners) the material properties are uniform. However, since the finite

volume is fixed about a grid point (i.e. one of the cell corners), there will be constants
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Figure 3.1: Three-dimensional grid for the cell-edge diffusion discretization.

such as cross sections that will be averages of all the cell constants that surround the

grid point. To simplify the derivation, we use the following nomenclature to describe

these cell-averaged constants and the basic features of the mesh:

Basic Mesh Parameters and Definitions

∆xi = length of cell (i,j,k) in the x-direction, (3.1a)

∆yj = length of cell (i,j,k) in the y-direction, (3.1b)

∆zk = length of cell (i,j,k) in the z-direction, (3.1c)

Vi,j,k = ∆xi∆yj∆zk, (3.1d)

x0 = x1/2, (3.1e)

xI+1 = xI+1/2, (3.1f)

y0 = y1/2, (3.1g)

yJ+1 = yJ+1/2, (3.1h)

z0 = z1/2, (3.1i)

zK+1 = zK+1/2. (3.1j)
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Volume-Weighted Cross-Sections and Source

Σ̄interior
g,i,j,k =

1

8

[
(ΣgV )i,j,k + (ΣgV )i,j+1,k + (ΣgV )i,j,k+1 + (ΣgV )i,j+1,k+1

+ (ΣgV )i+1,j,k + (ΣgV )i+1,j+1,k + (ΣgV )i+1,j,k+1 + (ΣgV )i+1,j+1,k+1

]
, (3.2a)

Σ̄x-face
g,i,j,k =

1

8

[
(ΣgV )i,j,k + (ΣgV )i,j+1,k + (ΣgV )i,j,k+1 + (ΣgV )i,j+1,k+1

]
, (3.2b)

Σ̄y-face
g,i,j,k =

1

8

[
(ΣgV )i,j,k + (ΣgV )i+1,j,k + (ΣgV )i,j,k+1 + (ΣgV )i+1,j,k+1

]
, (3.2c)

Σ̄z-face
g,i,j,k =

1

8

[
(ΣgV )i,j,k + (ΣgV )i+1,j,k + (ΣgV )i,j+1,k + (ΣgV )i+1,j+1,k

]
, (3.2d)

Σ̄x-edge
g,i,j,k =

1

8

[
(ΣgV )i,j,k + (ΣgV )i+1,j,k

]
, (3.2e)

Σ̄y-edge
g,i,j,k =

1

8

[
(ΣgV )i,j,k + (ΣgV )i,j+1,k

]
, (3.2f)

Σ̄z-edge
g,i,j,k =

1

8

[
(ΣgV )i,j,k + (ΣgV )i,j,k+1

]
, (3.2g)

Σ̄corner
g,i,j,k =

1

8

[
(ΣgV )i,j,k

]
. (3.2h)

Discretized Diffusion Operator

X interior
g,i,j,k =

1

4

[(
DgV

∆x2

)
i,j,k

+

(
DgV

∆x2

)
i,j+1,k

+

(
DgV

∆x2

)
i,j,k+1

+

(
DgV

∆x2

)
i,j+1,k+1

]
,

(3.3a)

Y interior
g,i,j,k =

1

4

[(
DgV

∆y2

)
i,j,k

+

(
DgV

∆y2

)
i+1,j,k

+

(
DgV

∆y2

)
i,j,k+1

+

(
DgV

∆y2

)
i+1,j,k+1

]
,

(3.3b)

Z interior
g,i,j,k =

1

4

[(
DgV

∆z2

)
i,j,k

+

(
DgV

∆z2

)
i+1,j,k

+

(
DgV

∆z2

)
i,j+1,k

+

(
DgV

∆z2

)
i+1,j+1,k

]
,

(3.3c)

Xy-face
g,i,j,k =

1

4

[(
DgV

∆x2

)
i,j,k

+

(
DgV

∆x2

)
i,j,k+1

]
, (3.3d)

Xz-face
g,i,j,k =

1

4

[(
DgV

∆x2

)
i,j,k

+

(
DgV

∆x2

)
i,j+1,k

]
, (3.3e)

Y x-face
g,i,j,k =

1

4

[(
DgV

∆y2

)
i,j,k

+

(
DgV

∆y2

)
i,j,k+1

]
, (3.3f)

Y z-face
g,i,j,k =

1

4

[(
DgV

∆y2

)
i,j,k

+

(
DgV

∆y2

)
i+1,j,k

]
, (3.3g)
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Zx-face
g,i,j,k =

1

4

[(
DgV

∆z2

)
i,j,k

+

(
DgV

∆z2

)
i,j+1,k

]
, (3.3h)

Zy-face
g,i,j,k =

1

4

[(
DgV

∆z2

)
i,j,k

+

(
DgV

∆z2

)
i+1,j,k

]
, (3.3i)

Xedge
g,i,j,k =

1

4

[(
DgV

∆x2

)
i,j,k

]
, (3.3j)

Y edge
g,i,j,k =

1

4

[(
DgV

∆y2

)
i,j,k

]
, (3.3k)

Zedge
g,i,j,k =

1

4

[(
DgV

∆z2

)
i,j,k

]
. (3.3l)

Area (on Boundary)

Āx-face
g,i,j,k =

1

4

[
(∆y∆z)i,j,k + (∆y∆z)i,j+1,k + (∆y∆z)i,j,k+1 + (∆y∆z)i,j+1,k+1

]
, (3.4a)

Āx-face, y-edge
g,i,j,k =

1

4

[
(∆y∆z)i,j,k + (∆y∆z)i,j+1,k

]
, (3.4b)

Āx-face, z-edge
g,i,j,k =

1

4

[
(∆y∆z)i,j,k + (∆y∆z)i,j,k+1

]
, (3.4c)

Āx-face, corner
g,i,j,k =

1

4

[
(∆y∆z)i,j,k

]
, (3.4d)

Āy-face
g,i,j,k =

1

4

[
(∆x∆z)i,j,k + (∆x∆z)i+1,j,k + (∆x∆z)i,j,k+1 + (∆x∆z)i+1,j,k+1

]
, (3.4e)

Āy-face, x-edge
g,i,j,k =

1

4

[
(∆x∆z)i,j,k + (∆x∆z)i+1,j,k

]
, (3.4f)

Āy-face, z-edge
g,i,j,k =

1

4

[
(∆x∆z)i,j,k + (∆x∆z)i,j,k+1

]
, (3.4g)

Āy-face, corner
g,i,j,k =

1

4

[
(∆x∆z)i,j,k

]
, (3.4h)

Āz-face
g,i,j,k =

1

4

[
(∆x∆y)i,j,k + (∆x∆y)i+1,j,k + (∆x∆y)i,j+1,k + (∆x∆y)i+1,j+1,k

]
, (3.4i)

Āz-face, x-edge
g,i,j,k =

1

4

[
(∆x∆y)i,j,k + (∆x∆y)i+1,j,k

]
, (3.4j)

Āz-face, y-edge
g,i,j,k =

1

4

[
(∆x∆y)i,j,k + (∆x∆y)i,j+1,k

]
, (3.4k)

Āz-face, corner
g,i,j,k =

1

4

[
(∆x∆y)i,j,k

]
. (3.4l)

When the multigroup diffusion equation is integrated over the finite volume, there

are three types of integrals that must be evaluated in terms of the unknown flux

variables in order to solve the resulting equations – reaction rate integrals, diffusion
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rate integrals, and leakage rate integrals. To evaluate these, we must use the following

approximations:

1. Reaction Rate Integrals∫ zk+1

zk

∫ yj+1

yj

∫ xi+1

xi

Σg(x)φg(x)dxdydz ≈ φg,i+1/2,j+1/2,k+1/2Σ̄g,i,j,k. (3.5)

2. Diffusion Rate Integrals∫ zk+1

zk

∫ yj+1

yj

Dg(xi, y, z)
∂φg
∂x

(xi, y, z)dydz

≈ Xg,i,j,k

(
φg,i+1/2,j+1/2,k+1/2 − φg,i−1/2,j+1/2,k+1/2

)
, (3.6a)

∫ zk+1

zk

∫ xi+1

xi

Dg(x, yj, z)
∂φg
∂y

(x, yj, z)dxdz

≈ Yg,i,j,k
(
φg,i+1/2,j+1/2,k+1/2 − φg,i+1/2,j−1/2,k+1/2

)
, (3.6b)

∫ yj+1

yj

∫ xi+1

xi

Dg(x, y, zk)
∂φg
∂z

(x, y, zk)dxdy

≈ Zg,i,j,k
(
φg,i+1/2,j+1/2,k+1/2 − φg,i+1/2,j+1/2,k−1/2

)
. (3.6c)

3. Leakage Rate Integrals∫ zk+1

zk

∫ yj+1

yj

Dg(xi, y, z)
∂φg
∂x

(xi, y, z)dydz

≈ Ag,i,j,kφg,i+1/2,j+1/2,k+1/2, xi = 0, X, (3.7a)

∫ zk+1

zk

∫ xi+1

xi

Dg(x, yj, z)
∂φg
∂y

(x, yj, z)dxdz

≈ Ag,i,j,kφg,i+1/2,j+1/2,k+1/2, yj = 0, Y, (3.7b)

∫ yj+1

yj

∫ xi+1

xi

Dg(x, y, zk)
∂φg
∂z

(x, y, zk)dxdy

≈ Ag,i,j,kφg,i+1/2,j+1/2,k+1/2, zk = 0, Z. (3.7c)
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where Σ̄g,i,j,k is defined by Eqs. 3.2, Xg,i,j,k, Yg,i,j,k, and Zg,i,j,k are defined by Eqs.

3.3, and Ag,i,j,k is defined by Eqs. 3.4. The specific constant depends on the type of

grid point (i.e. interior, face, edge, or corner).

Interior

For an interior grid point, we operate on the diffusion equation (Eq. 2.24) by∫ zk+1

zk

∫ yj+1

yj

∫ xi+1

xi
(·)dxdydz to obtain the following equation:

− Z interior
g,i,j,k φg,i+1/2,j+1/2,k−1/2 − Y interior

g,i,j,k φg,i+1/2,j−1/2,k+1/2 −X interior
g,i,j,k φg,i−1/2,j+1/2,k+1/2

+ C interior
g,i,j,k φg,i+1/2,j+1/2,k+1/2 −X interior

g,i+1,j,kφg,i+3/2,j+1/2,k+1/2

− Y interior
g,i,j+1,kφg,i+1/2,j+3/2,k+1/2 − Z interior

g,i,j,k+1φg,i+1/2,j+1/2,k+3/2

= Sinterior
g,i,j,k ,

1 ≤ g ≤ G, 1 ≤ i ≤ I − 1, 1 ≤ j ≤ J − 1, 1 ≤ k ≤ K − 1, (3.8)

where

C interior
g,i,j,k = X interior

g,i,j,k +X interior
g,i+1,j,k + Y interior

g,i,j,k + Y interior
g,i,j+1,k + Z interior

g,i,j,k

+ Z interior
g,i,j,k+1 + Σ̄interior

R,g,i,j,k, (3.9a)

Sinterior
g,i,j,k =

G∑
g′=1
g′ 6=g

Σ̄interior
s,g′→g,i,j,kφg′,i+1/2,j+1/2,k+1/2 + Q̄interior

g,i,j,k . (3.9b)

Face: x=0

For a boundary grid point on the face x = 0, we operate on the diffusion equation

(Eq. 2.24) by
∫ zk+1

zk

∫ yj+1

yj

∫ x1

x1/2
(·)dxdydz and use the boundary condition (Eq. 2.25)

to obtain the following equation:

− Zx-face
g,1,j,kφg,1/2,j+1/2,k−1/2 − Y x-face

g,1,j,kφg,1/2,j−1/2,k+1/2

+ Cx-face
g,1,j,kφg,1/2,j+1/2,k+1/2 −X interior

g,1,j,k φg,3/2,j+1/2,k+1/2

− Y x-face
g,1,j+1,kφg,1/2,j+3/2,k+1/2 − Zx-face

g,1,j,k+1φg,1/2,j+1/2,k+3/2

= Sx-face
g,1,j,k,

1 ≤ g ≤ G, 1 ≤ j ≤ J − 1, 1 ≤ k ≤ K − 1, (3.10)
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where

Cx-face
g,1,j,k = Bx-face

g,1,j,k +X interior
g,1,j,k + Y x-face

g,1,j,k + Y x-face
g,1,j+1,k + Zx-face

g,1,j,k

+ Zx-face
g,1,j,k+1 + Σ̄x-face

R,g,1,j,k, (3.11a)

Bx-face
g,1,j,k =


Ax-face

g,1,j,k

2
, vacuum boundary,

0 , reflecting boundary,
(3.11b)

Sx-face
g,1,j,k =

G∑
g′=1
g′ 6=g

Σ̄x-face
s,g′→g,1,j,kφg′,1/2,j+1/2,k+1/2 + Q̄x-face

g,1,j,k. (3.11c)

Face: x=X

For a boundary grid point on the face x = X, we operate on the diffusion equation

(Eq. 2.24) by
∫ zk+1

zk

∫ yj+1

yj

∫ xI+1/2

xI
(·)dxdydz and use the boundary condition (Eq. 2.25)

to obtain the following equation:

− Zx-face
g,I,j,kφg,I+1/2,j+1/2,k−1/2 − Y x-face

g,I,j,kφg,I+1/2,j−1/2,k+1/2

−X interior
g,I,j,k φg,I−1/2,j+1/2,k+1/2 + Cx-face

g,I,j,kφg,I+1/2,j+1/2,k+1/2

− Y x-face
g,I,j+1,kφg,I+1/2,j+3/2,k+1/2 − Zx-face

g,I,j,k+1φg,I+1/2,j+1/2,k+3/2

= Sx-face
g,I,j,k,

1 ≤ g ≤ G, 1 ≤ j ≤ J − 1, 1 ≤ k ≤ K − 1, (3.12)

where

Cx-face
g,I,j,k = X interior

g,I,j,k +Bx-face
g,I,j,k + Y x-face

g,I,j,k + Y x-face
g,I,j+1,k + Zx-face

g,I,j,k

+ Zx-face
g,I,j,k+1 + Σ̄x-face

R,g,I,j,k, (3.13a)

Bx-face
g,I,j,k =


Ax-face

g,I,j,k

2
, vacuum boundary,

0 , reflecting boundary,
(3.13b)

Sx-face
g,I,j,k =

G∑
g′=1
g′ 6=g

Σ̄x-face
s,g′→g,I,j,kφg′,I+1/2,j+1/2,k+1/2 + Q̄x-face

g,I,j,k. (3.13c)

Face: y=0

For a boundary grid point on the face y = 0, we operate on the diffusion equation

(Eq. 2.24) by
∫ zk+1

zk

∫ y1

y1/2

∫ xi+1

xi
(·)dxdydz and use the boundary condition (Eq. 2.25)
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to obtain the following equation:

− Zy-face
g,i,1,kφg,i+1/2,1/2,k−1/2 −Xy-face

g,i,1,kφg,i−1/2,1/2,k+1/2

+ Cy-face
g,i,1,kφg,i+1/2,1/2,k+1/2 −Xy-face

g,i+1,1,kφg,i+3/2,1/2,k+1/2

− Y interior
g,i,1,k φg,i+1/2,3/2,k+1/2 − Zy-face

g,i,1,k+1φg,i+1/2,1/2,k+3/2

= Sy-face
g,i,1,k,

1 ≤ g ≤ G, 1 ≤ i ≤ I − 1, 1 ≤ k ≤ K − 1, (3.14)

where

Cy-face
g,i,1,k = Xy-face

g,i,1,k +Xy-face
g,i+1,1,k +By-face

g,i,1,k + Y interior
g,i,1,k + Zy-face

g,i,1,k

+ Zy-face
g,i,1,k+1 + Σ̄y-face

R,g,i,1,k, (3.15a)

By-face
g,i,1,k =


Ay-face

g,i,1,k

2
, vacuum boundary,

0 , reflecting boundary,
(3.15b)

Sy-face
g,i,1,k =

G∑
g′=1
g′ 6=g

Σ̄y-face
s,g′→g,i,1,kφg′,i+1/2,1/2,k+1/2 + Q̄y-face

g,i,1,k. (3.15c)

Face: y=Y

For a boundary grid point on the face y = Y , we operate on the diffusion equation

(Eq. 2.24) by
∫ zk+1

zk

∫ yJ+1/2

yJ

∫ xi+1

xi
(·)dxdydz and use the boundary condition (Eq. 2.25)

to obtain the following equation:

− Zy-face
g,i,J,kφg,i+1/2,J+1/2,k−1/2 − Y interior

g,i,J,k φg,i+1/2,J−1/2,k+1/2

−Xy-face
g,i,J,kφg,i−1/2,J+1/2,k+1/2 + Cy-face

g,i,J,kφg,i+1/2,J+1/2,k+1/2

−Xy-face
g,i+1,J,kφg,i+3/2,J+1/2,k+1/2 − Zy-face

g,i,J,k+1φg,i+1/2,J+1/2,k+3/2

= Sy-face
g,i,J,k,

1 ≤ g ≤ G, 1 ≤ i ≤ I − 1, 1 ≤ k ≤ K − 1, (3.16)

where

Cy-face
g,i,J,k = Xy-face

g,i,J,k +Xy-face
g,i+1,J,k + Y interior

g,i,J,k +By-face
g,i,J,k + Zy-face

g,i,J,k

+ Zy-face
g,i,J,k+1 + Σ̄y-face

R,g,i,J,k, (3.17a)
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By-face
g,i,J,k =


Ay-face

g,i,J,k

2
, vacuum boundary,

0 , reflecting boundary,
(3.17b)

Sy-face
g,i,J,k =

G∑
g′=1
g′ 6=g

Σ̄y-face
s,g′→g,i,J,kφg′,i+1/2,J+1/2,k+1/2 + Q̄y-face

g,i,J,k. (3.17c)

Face: z=0

For a boundary grid point on the face z = 0, we operate on the diffusion equation

(Eq. 2.24) by
∫ z1
z1/2

∫ yj+1

yj

∫ xi+1

xi
(·)dxdydz and use the boundary condition (Eq. 2.25) to

obtain the following equation:

− Y z-face
g,i,j,1 φg,i+1/2,j−1/2,1/2 −Xz-face

g,i,j,1φg,i−1/2,j+1/2,1/2

+ Cz-face
g,i,j,1φg,i+1/2,j+1/2,1/2 −Xz-face

g,i+1,j,1φg,i+3/2,j+1/2,1/2

− Y z-face
g,i,j+1,1φg,i+1/2,j+3/2,1/2 − Z interior

g,i,j,1 φg,i+1/2,j+1/2,3/2

= Sz-face
g,i,j,1,

1 ≤ g ≤ G, 1 ≤ i ≤ I − 1, 1 ≤ j ≤ J − 1, (3.18)

where

Cz-face
g,i,j,1 = Xz-face

g,i,j,1 +Xz-face
g,i+1,j,1 + Y z-face

g,i,j,1 + Y z-face
g,i,j+1,1 +Bz-face

g,i,j,1

+ Z interior
g,i,j,1 + Σ̄z-face

R,g,i,j,1, (3.19a)

Bz-face
g,i,j,1 =


Az-face

g,i,j,1

2
, vacuum boundary,

0 , reflecting boundary,
(3.19b)

Sz-face
g,i,j,1 =

G∑
g′=1
g′ 6=g

Σ̄z-face
s,g′→g,i,j,1φg′,i+1/2,j+1/2,1/2 + Q̄z-face

g,i,j,1. (3.19c)

Face: z=Z

For a boundary grid point on the face z = Z, we operate on the diffusion equation

(Eq. 2.24) by
∫ zK+1/2

zK

∫ yj+1

yj

∫ xi+1

xi
(·)dxdydz and use the boundary condition (Eq. 2.25)

to obtain the following equation:
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− Z interior
g,i,j,K φg,i+1/2,j+1/2,K−1/2 − Y z-face

g,i,j,Kφg,i+1/2,j−1/2,K+1/2

−Xz-face
g,i,j,Kφg,i−1/2,j+1/2,K+1/2 + Cz-face

g,i,j,Kφg,i+1/2,j+1/2,K+1/2

−Xz-face
g,i+1,j,Kφg,i+3/2,j+1/2,K+1/2 − Y z-face

g,i,j+1,Kφg,i+1/2,j+3/2,K+1/2

= Sz-face
g,i,j,K ,

1 ≤ g ≤ G, 1 ≤ i ≤ I − 1, 1 ≤ j ≤ J − 1, (3.20)

where

Cz-face
g,i,j,K = Xz-face

g,i,j,K +Xz-face
g,i+1,j,K + Y z-face

g,i,j,K + Y z-face
g,i,j+1,K + Z interior

g,i,j,K

+Bz-face
g,i,j,K + Σ̄z-face

R,g,i,j,K , (3.21a)

Bz-face
g,i,j,K =


Az-face

g,i,j,K

2
, vacuum boundary,

0 , reflecting boundary,
(3.21b)

Sz-face
g,i,j,K =

G∑
g′=1
g′ 6=g

Σ̄z-face
s,g′→g,i,j,Kφg′,i+1/2,j+1/2,K+1/2 + Q̄z-face

g,i,j,K . (3.21c)

X-Edge: y=0, z=0

For a boundary grid point on the edge (x, 0, 0), we operate on the diffusion equa-

tion (Eq. 2.24) by
∫ z1
z1/2

∫ y1

y1/2

∫ xi+1

xi
(·)dxdydz and use the boundary condition (Eq. 2.25)

to obtain the following equation:

−Xedge
g,i,1,1φg,i−1/2,1/2,1/2 + Cx-edge

g,i,1,1 φg,i+1/2,1/2,1/2 −Xedge
g,i+1,1,1φg,i+3/2,1/2,1/2

− Y z-face
g,i,1,1φg,i+1/2,3/2,1/2 − Zy-face

g,i,1,1φg,i+1/2,1/2,3/2

= Sx-edge
g,i,1,1 ,

1 ≤ g ≤ G, 1 ≤ i ≤ I − 1, (3.22)

where

Cx-edge
g,i,1,1 = Xedge

g,i,1,1 +Xedge
g,i+1,1,1 +By-face, x-edge

g,i,1,1 + Y z-face
g,i,1,1 +Bz-face, x-edge

g,i,1,1

+ Zy-face
g,i,1,1 + Σ̄x-edge

R,g,i,1,1, (3.23a)

By-face,x-edge
g,i,1,1 =


Ay-face, x-edge

g,i,1,1

2
, vacuum boundary,

0 , reflecting boundary,
(3.23b)
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Bz-face,x-edge
g,i,1,1 =


Az-face, x-edge

g,i,1,1

2
, vacuum boundary,

0 , reflecting boundary,
(3.23c)

Sx-edge
g,i,1,1 =

G∑
g′=1
g′ 6=g

Σ̄x-edge
s,g′→g,i,1,1φg′,i+1/2,1/2,1/2 + Q̄x-edge

g,i,1,1 . (3.23d)

X-Edge: y=Y, z=0

For a boundary grid point on the edge (x, Y, 0), we operate on the diffusion

equation (Eq. 2.24) by
∫ z1
z1/2

∫ yJ+1/2

yJ

∫ xi+1

xi
(·)dxdydz and use the boundary condition

(Eq. 2.25) to obtain the following equation:

− Y z-face
g,i,J,1φg,i+1/2,J−1/2,1/2 −Xedge

g,i,J,1φg,i−1/2,J+1/2,1/2 + Cx-edge
g,i,J,1 φg,i+1/2,J+1/2,1/2

−Xedge
g,i+1,J,1φg,i+3/2,J+1/2,1/2 − Zy-face

g,i,J,1φg,i+1/2,J+1/2,3/2

= Sx-edge
g,i,J,1 ,

1 ≤ g ≤ G, 1 ≤ i ≤ I − 1, (3.24)

where

Cx-edge
g,i,J,1 = Xedge

g,i,J,1 +Xedge
g,i+1,J,1 + Y z-face

g,i,J,1 +By-face, x-edge
g,i,J,1 +Bz-face, x-edge

g,i,J,1

+ Zy-face
g,i,J,1 + Σ̄x-edge

R,g,i,J,1, (3.25a)

By-face,x-edge
g,i,J,1 =


Ay-face, x-edge

g,i,J,1

2
, vacuum boundary,

0 , reflecting boundary,
(3.25b)

Bz-face,x-edge
g,i,J,1 =


Az-face, x-edge

g,i,J,1

2
, vacuum boundary,

0 , reflecting boundary,
(3.25c)

Sx-edge
g,i,J,1 =

G∑
g′=1
g′ 6=g

Σ̄x-edge
s,g′→g,i,J,1φg′,i+1/2,J+1/2,1/2 + Q̄x-edge

g,i,J,1 . (3.25d)

X-Edge: y=0, z=Z

For a boundary grid point on the edge (x, 0, Z), we operate on the diffusion

equation (Eq. 2.24) by
∫ zK+1/2

zK

∫ y1

y1/2

∫ xi+1

xi
(·)dxdydz and use the boundary condition
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(Eq. 2.25) to obtain the following equation:

− Zy-face
g,i,1,Kφg,i+1/2,1/2,K−1/2 −Xedge

g,i,1,Kφg,i−1/2,1/2,K+1/2 + Cx-edge
g,i,1,Kφg,i+1/2,1/2,K+1/2

−Xedge
g,i+1,1,Kφg,i+3/2,1/2,K+1/2 − Y z-face

g,i,1,Kφg,i+1/2,3/2,K+1/2

= Sx-edge
g,i,1,K ,

1 ≤ g ≤ G, 1 ≤ i ≤ I − 1, (3.26)

where

Cx-edge
g,i,1,K = Xedge

g,i,1,K +Xedge
g,i+1,1,K +By-face, x-edge

g,i,1,K + Y z-face
g,i,1,K + Zy-face

g,i,1,K

+Bz-face, x-edge
g,i,1,K + Σ̄x-edge

R,g,i,1,K , (3.27a)

By-face,x-edge
g,i,1,K =


Ay-face, x-edge

g,i,1,K

2
, vacuum boundary,

0 , reflecting boundary,
(3.27b)

Bz-face,x-edge
g,i,1,K =


Az-face, x-edge

g,i,1,K

2
, vacuum boundary,

0 , reflecting boundary,
(3.27c)

Sx-edge
g,i,1,K =

G∑
g′=1
g′ 6=g

Σ̄x-edge
s,g′→g,i,1,Kφg′,i+1/2,1/2,K+1/2 + Q̄x-edge

g,i,1,K . (3.27d)

X-Edge: y=Y, z=Z

For a boundary grid point on the edge (x, Y, Z), we operate on the diffusion

equation (Eq. 2.24) by
∫ zK+1/2

zK

∫ yJ+1/2

yJ

∫ xi+1

xi
(·)dxdydz and use the boundary condition

(Eq. 2.25) to obtain the following equation:

− Zy-face
g,i,J,Kφg,i+1/2,J+1/2,K−1/2 − Y z-face

g,i,J,Kφg,i+1/2,J−1/2,K+1/2 −Xedge
g,i,J,Kφg,i−1/2,J+1/2,K+1/2

+ Cx-edge
g,i,J,Kφg,i+1/2,J+1/2,K+1/2 −Xedge

g,i+1,J,Kφg,i+3/2,J+1/2,K+1/2

= Sx-edge
g,i,J,K ,

1 ≤ g ≤ G, 1 ≤ i ≤ I − 1, (3.28)

where

Cx-edge
g,i,J,K = Xedge

g,i,J,K +Xedge
g,i+1,J,K + Y z-face

g,i,J,K +By-face, x-edge
g,i,J,K + Zy-face

g,i,J,K

+Bz-face, x-edge
g,i,J,K + Σ̄x-edge

R,g,i,J,K , (3.29a)

40



By-face,x-edge
g,i,J,K =


Ay-face, x-edge

g,i,J,K

2
, vacuum boundary,

0 , reflecting boundary,
(3.29b)

Bz-face,x-edge
g,i,J,K =


Az-face, x-edge

g,i,J,K

2
, vacuum boundary,

0 , reflecting boundary,
(3.29c)

Sx-edge
g,i,J,K =

G∑
g′=1
g′ 6=g

Σ̄x-edge
s,g′→g,i,J,Kφg′,i+1/2,J+1/2,K+1/2 + Q̄x-edge

g,i,J,K . (3.29d)

Y-Edge: x=0, z=0

For a boundary grid point on the edge (0, y, 0), we operate on the diffusion equa-

tion (Eq. 2.24) by
∫ z1
z1/2

∫ yj+1

yj

∫ x1

x1/2
(·)dxdydz and use the boundary condition (Eq. 2.25)

to obtain the following equation:

− Y edge
g,1,j,1φg,1/2,j−1/2,1/2 + Cy-edge

g,1,j,1φg,1/2,j+1/2,1/2 − Y edge
g,1,j+1,1φg,1/2,j+3/2,1/2

−Xz-face
g,1,j,1φg,3/2,j+1/2,1/2 − Zx-face

g,1,j,1φg,1/2,j+1/2,3/2

= Sy-edge
g,1,j,1 ,

1 ≤ g ≤ G, 1 ≤ j ≤ J − 1, (3.30)

where

Cy-edge
g,1,j,1 = Bx-face, y-edge

g,1,j,1 +Xz-face
g,1,j,1 + Y edge

g,1,j,1 + Y edge
g,1,j+1,1 +Bz-face, y-edge

g,1,j,1

+ Zx-face
g,1,j,1 + Σ̄y-edge

R,g,1,j,1, (3.31a)

Bx-face,y-edge
g,1,j,1 =


Ax-face, y-edge

g,1,j,1

2
, vacuum boundary,

0 , reflecting boundary,
(3.31b)

Bz-face,y-edge
g,1,j,1 =


Az-face, y-edge

g,1,j,1

2
, vacuum boundary,

0 , reflecting boundary,
(3.31c)

Sy-edge
g,1,j,1 =

G∑
g′=1
g′ 6=g

Σ̄y-edge
s,g′→g,1,j,1φg′,1/2,j+1/2,1/2 + Q̄y-edge

g,1,j,1 . (3.31d)

Y-Edge: x=X, z=0

For a boundary grid point on the edge (X, y, 0), we operate on the diffusion

equation (Eq. 2.24) by
∫ z1
z1/2

∫ yj+1

yj

∫ xI+1/2

xI
(·)dxdydz and use the boundary condition
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(Eq. 2.25) to obtain the following equation:

− Y edge
g,I,j,1φg,I+1/2,j−1/2,1/2 −Xz-face

g,I,j,1φg,I−1/2,j+1/2,1/2 + Cy-edge
g,I,j,1φg,I+1/2,j+1/2,1/2

− Y edge
g,I,j+1,1φg,I+1/2,j+3/2,1/2 − Zx-face

g,I,j,1φg,I+1/2,j+1/2,3/2

= Sy-edge
g,I,j,1 ,

1 ≤ g ≤ G, 1 ≤ j ≤ J − 1, (3.32)

where

Cy-edge
g,I,j,1 = Xz-face

g,I,j,1 +Bx-face, y-edge
g,I,j,1 + Y edge

g,I,j,1 + Y edge
g,I,j+1,1 +Bz-face, y-edge

g,I,j,1

+ Zx-face
g,I,j,1 + Σ̄y-edge

R,g,I,j,1, (3.33a)

Bx-face,y-edge
g,I,j,1 =


Ax-face, y-edge

g,I,j,1

2
, vacuum boundary,

0 , reflecting boundary,
(3.33b)

Bz-face,y-edge
g,I,j,1 =


Az-face, y-edge

g,I,j,1

2
, vacuum boundary,

0 , reflecting boundary,
(3.33c)

Sy-edge
g,I,j,1 =

G∑
g′=1
g′ 6=g

Σ̄y-edge
s,g′→g,I,j,1φg′,I+1/2,j+1/2,1/2 + Q̄y-edge

g,I,j,1. (3.33d)

Y-Edge: x=0, z=Z

For a boundary grid point on the edge (0, y, Z), we operate on the diffusion

equation (Eq. 2.24) by
∫ zK+1/2

zK

∫ yj+1

yj

∫ x1

x1/2
(·)dxdydz and use the boundary condition

(Eq. 2.25) to obtain the following equation:

− Zx-face
g,1,j,Kφg,1/2,j+1/2,K−1/2 − Y edge

g,1,j,Kφg,1/2,j−1/2,K+1/2 + Cy-edge
g,1,j,Kφg,1/2,j+1/2,K+1/2

− Y edge
g,1,j+1,Kφg,1/2,j+3/2,K+1/2 −Xz-face

g,1,j,Kφg,3/2,j+1/2,K+1/2

= Sy-edge
g,1,j,K ,

1 ≤ g ≤ G, 1 ≤ j ≤ J − 1, (3.34)

where

Cy-edge
g,1,j,K = Bx-face, y-edge

g,1,j,K +Xz-face
g,1,j,K + Y edge

g,1,j,K + Y edge
g,1,j+1,K + Zx-face

g,1,j,K

+Bz-face, y-edge
g,1,j,K + Σ̄y-edge

R,g,1,j,K , (3.35a)
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Bx-face,y-edge
g,1,j,K =


Ax-face, y-edge

g,1,j,K

2
, vacuum boundary,

0 , reflecting boundary,
(3.35b)

Bz-face,y-edge
g,1,j,K =


Az-face, y-edge

g,1,j,K

2
, vacuum boundary,

0 , reflecting boundary,
(3.35c)

Sy-edge
g,1,j,K =

G∑
g′=1
g′ 6=g

Σ̄y-edge
s,g′→g,1,j,Kφg′,1/2,j+1/2,K+1/2 + Q̄y-edge

g,1,j,K . (3.35d)

Y-Edge: x=X, z=Z

For a boundary grid point on the edge (X, y, Z), we operate on the diffusion

equation (Eq. 2.24) by
∫ zK+1/2

zK

∫ yj+1

yj

∫ xI+1/2

xI
(·)dxdydz and use the boundary condition

(Eq. 2.25) to obtain the following equation:

− Zx-face
g,I,j,Kφg,I+1/2,j+1/2,K−1/2 − Y edge

g,I,j,Kφg,I+1/2,j−1/2,K+1/2 −Xz-face
g,I,j,Kφg,I−1/2,j+1/2,K+1/2

+ Cy-edge
g,I,j,Kφg,I+1/2,j+1/2,K+1/2 − Y edge

g,I,j+1,Kφg,I+1/2,j+3/2,K+1/2

= Sy-edge
g,I,j,K ,

1 ≤ g ≤ G, 1 ≤ j ≤ J − 1, (3.36)

where

Cy-edge
g,I,j,K = Xz-face

g,I,j,K +Bx-face, y-edge
g,I,j,K + Y edge

g,I,j,K + Y edge
g,I,j+1,K +Bx-face, y-edge

g,I,j,K

+ Zx-face
g,I,j,K + Σ̄y-edge

R,g,I,j,K , (3.37a)

Bx-face,y-edge
g,I,j,K =


Ax-face, y-edge

g,I,j,K

2
, vacuum boundary,

0 , reflecting boundary,
(3.37b)

Bz-face,y-edge
g,I,j,K =


Az-face, y-edge

g,I,j,K

2
, vacuum boundary,

0 , reflecting boundary,
(3.37c)

Sy-edge
g,I,j,K =

G∑
g′=1
g′ 6=g

Σ̄y-edge
s,g′→g,I,j,Kφg′,I+1/2,j+1/2,K+1/2 + Q̄y-edge

g,I,j,K . (3.37d)

Z-Edge: x=0, y=0

For a boundary grid point on the edge (0, 0, z), we operate on the diffusion equa-

tion (Eq. 2.24) by
∫ zk+1

zk

∫ y1

y1/2

∫ x1

x1/2
(·)dxdydz and use the boundary condition (Eq.
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2.25) to obtain the following equation:

− Zedge
g,1,1,kφg,1/2,1/2,k−1/2 + Cz-edge

g,1,1,kφg,1/2,1/2,k+1/2 −Xy-face
g,1,1,kφg,3/2,1/2,k+1/2

− Y x-face
g,1,1,kφg,1/2,3/2,k+1/2 − Zedge

g,1,1,k+1φg,1/2,1/2,k+3/2

= Sz-edge
g,1,1,k,

1 ≤ g ≤ G, 1 ≤ k ≤ K − 1, (3.38)

where

Cz-edge
g,1,1,k = Bx-face, z-edge

g,1,1,k +Xy-face
g,1,1,k +By-face, z-edge

g,1,1,k + Y x-face
g,1,1,k + Zedge

g,1,1,k

+ Zedge
g,1,1,k+1 + Σ̄z-edge

R,g,1,1,k, (3.39a)

Bx-face,z-edge
g,1,1,k =


Ax-face, z-edge

g,1,1,k

2
, vacuum boundary,

0 , reflecting boundary,
(3.39b)

By-face,z-edge
g,1,1,k =


Ay-face, z-edge

g,1,1,k

2
, vacuum boundary,

0 , reflecting boundary,
(3.39c)

Sz-edge
g,1,1,k =

G∑
g′=1
g′ 6=g

Σ̄z-edge
s,g′→g,1,1,kφg′,1/2,1/2,k+1/2 + Q̄z-edge

g,1,1,k. (3.39d)

Z-Edge: x=X, y=0

For a boundary grid point on the edge (X, 0, z), we operate on the diffusion

equation (Eq. 2.24) by
∫ zk+1

zk

∫ y1

y1/2

∫ xI+1/2

xI
(·)dxdydz and use the boundary condition

(Eq. 2.25) to obtain the following equation:

− Zedge
g,I,1,kφg,I+1/2,1/2,k−1/2 −Xy-face

g,I,1,kφg,I−1/2,1/2,k+1/2 + Cz-edge
g,I,1,kφg,I+1/2,1/2,k+1/2

− Y x-face
g,I,1,kφg,I+1/2,3/2,k+1/2 − Zedge

g,I,1,k+1φg,I+1/2,1/2,k+3/2

= Sz-edge
g,I,1,k,

1 ≤ g ≤ G, 1 ≤ k ≤ K − 1, (3.40)

where

Cz-edge
g,I,1,k = Xy-face

g,I,1,k +Bx-face, z-edge
g,I,1,k +By-face, z-edge

g,I,1,k + Y x-face
g,I,1,k + Zedge

g,I,1,k

+ Zedge
g,I,1,k+1 + Σ̄z-edge

R,g,I,1,k, (3.41a)
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Bx-face,z-edge
g,I,1,k =


Ax-face, z-edge

g,I,1,k

2
, vacuum boundary,

0 , reflecting boundary,
(3.41b)

By-face,z-edge
g,I,1,k =


Ay-face, z-edge

g,I,1,k

2
, vacuum boundary,

0 , reflecting boundary,
(3.41c)

Sz-edge
g,I,1,k =

G∑
g′=1
g′ 6=g

Σ̄z-edge
s,g′→g,I,1,kφg′,I+1/2,1/2,k+1/2 + Q̄z-edge

g,I,1,k. (3.41d)

Z-Edge: x=0, y=Y

For a boundary grid point on the edge (0, Y, z), we operate on the diffusion

equation (Eq. 2.24) by
∫ zk+1

zk

∫ yJ+1/2

yJ

∫ x1

x1/2
(·)dxdydz and use the boundary condition

(Eq. 2.25) to obtain the following equation:

− Zedge
g,1,J,kφg,1/2,J+1/2,k−1/2 − Y x-face

g,1,J,kφg,1/2,J−1/2,k+1/2 + Cz-edge
g,1,J,kφg,1/2,J+1/2,k+1/2

−Xy-face
g,1,J,kφg,3/2,J+1/2,k+1/2 − Zedge

g,1,J,k+1φg,1/2,J+1/2,k+3/2

= Sz-edge
g,1,J,k,

1 ≤ g ≤ G, 1 ≤ k ≤ K − 1, (3.42)

where

Cz-edge
g,1,J,k = Bx-face, z-edge

g,1,J,k +Xy-face
g,1,J,k + Y x-face

g,1,J,k +By-face, z-edge
g,1,J,k + Zedge

g,1,J,k

+ Zedge
g,1,J,k+1 + Σ̄z-edge

R,g,1,J,k, (3.43a)

Bx-face,z-edge
g,1,J,k =


Ax-face, z-edge

g,1,J,k

2
, vacuum boundary,

0 , reflecting boundary,
(3.43b)

By-face,z-edge
g,1,J,k =


Ay-face, z-edge

g,1,J,k

2
, vacuum boundary,

0 , reflecting boundary,
(3.43c)

Sz-edge
g,1,J,k =

G∑
g′=1
g′ 6=g

Σ̄z-edge
s,g′→g,1,J,kφg′,1/2,J+1/2,k+1/2 + Q̄z-edge

g,1,J,k. (3.43d)

Z-Edge: x=X, y=Y

For a boundary grid point on the edge (X, Y, z), we operate on the diffusion

equation (Eq. 2.24) by
∫ zk+1

zk

∫ yJ+1/2

yJ

∫ xI+1/2

xI
(·)dxdydz and use the boundary condition
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(Eq. 2.25) to obtain the following equation:

− Zedge
g,I,J,kφg,I+1/2,J+1/2,k−1/2 − Y x-face

g,I,J,kφg,I+1/2,J−1/2,k+1/2 −Xy-face
g,I,J,kφg,I−1/2,J+1/2,k+1/2

+ Cz-edge
g,I,J,kφg,I+1/2,J+1/2,k+1/2 − Zedge

g,I,J,k+1φg,I+1/2,J+1/2,k+3/2

= Sz-edge
g,I,J,k,

1 ≤ g ≤ G, 1 ≤ k ≤ K − 1, (3.44)

where

Cz-edge
g,I,J,k = Xy-face

g,I,J,k +Bx-face, z-edge
g,I,J,k + Y x-face

g,I,J,k +By-face, z-edge
g,I,J,k + Zedge

g,I,J,k

+ Zedge
g,I,J,k+1 + Σ̄z-edge

R,g,I,J,k, (3.45a)

Bx-face,z-edge
g,I,J,k =


Ax-face, z-edge

g,I,J,k

2
, vacuum boundary,

0 , reflecting boundary,
(3.45b)

By-face,z-edge
g,I,J,k =


Ay-face, z-edge

g,I,J,k

2
, vacuum boundary,

0 , reflecting boundary,
(3.45c)

Sz-edge
g,I,J,k =

G∑
g′=1
g′ 6=g

Σ̄z-edge
s,g′→g,I,J,kφg′,I+1/2,J+1/2,k+1/2 + Q̄z-edge

g,I,J,k. (3.45d)

Corner: x=0, y=0, z=0

For a boundary grid point on the corner (0, 0, 0), we operate on the diffusion

equation (Eq. 2.24) by
∫ z1
z1/2

∫ y1

y1/2

∫ x1

x1/2
(·)dxdydz and use the boundary condition (Eq.

2.25) to obtain the following equation:

+ Ccorner
g,1,1,1φg,1/2,1/2,1/2 −X

edge
g,1,1,1φg,3/2,1/2,1/2 − Y

edge
g,1,1,1φg,1/2,3/2,1/2

− Zedge
g,1,1,1φg,1/2,1/2,3/2 = Scorner

g,1,1,1, 1 ≤ g ≤ G, (3.46)

where

Ccorner
g,1,1,1 = Bx-face, corner

g,1,1,1 +Xedge
g,1,1,1 +By-face, corner

g,1,1,1 + Y edge
g,1,1,1 +Bz-face, corner

g,1,1,1

+ Zedge
g,1,1,1 + Σ̄corner

R,g,1,1,1, (3.47a)

Bx-face, corner
g,1,1,1 =


Ax-face, corner

g,1,1,1

2
, vacuum boundary,

0 , reflecting boundary,
(3.47b)
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By-face, corner
g,1,1,1 =


Ay-face, corner

g,1,1,1

2
, vacuum boundary,

0 , reflecting boundary,
(3.47c)

Bz-face, corner
g,1,1,1 =


Az-face, corner

g,1,1,1

2
, vacuum boundary,

0 , reflecting boundary,
(3.47d)

Scorner
g,1,1,1 =

G∑
g′=1
g′ 6=g

Σ̄corner
s,g′→g,1,1,1φg′,1/2,1/2,1/2 + Q̄corner

g,1,1,1. (3.47e)

Corner: x=0, y=Y, z=0

For a boundary grid point on the corner (0, Y, 0), we operate on the diffusion

equation (Eq. 2.24) by
∫ z1
z1/2

∫ yJ+1/2

yJ

∫ x1

x1/2
(·)dxdydz and use the boundary condition

(Eq. 2.25) to obtain the following equation:

− Y edge
g,1,J,1φg,1/2,J−1/2,1/2 + Ccorner

g,1,J,1φg,1/2,J+1/2,1/2 −Xedge
g,1,J,1φg,3/2,J+1/2,1/2

− Zedge
g,1,J,1φg,1/2,J+1/2,3/2 = Scorner

g,1,J,1, 1 ≤ g ≤ G, (3.48)

where

Ccorner
g,1,J,1 = Bx-face, corner

g,1,J,1 +Xedge
g,1,J,1 + Y edge

g,1,J,1 +By-face, corner
g,1,J,1 +Bz-face, corner

g,1,J,1

+ Zedge
g,1,J,1 + Σ̄corner

R,g,1,J,1, (3.49a)

Bx-face, corner
g,1,J,1 =


Ax-face, corner

g,1,J,1

2
, vacuum boundary,

0 , reflecting boundary,
(3.49b)

By-face, corner
g,1,J,1 =


Ay-face, corner

g,1,J,1

2
, vacuum boundary,

0 , reflecting boundary,
(3.49c)

Bz-face, corner
g,1,J,1 =


Az-face, corner

g,1,J,1

2
, vacuum boundary,

0 , reflecting boundary,
(3.49d)

Scorner
g,1,J,1 =

G∑
g′=1
g′ 6=g

Σ̄corner
s,g′→g,1,J,1φg′,1/2,J+1/2,1/2 + Q̄corner

g,1,J,1. (3.49e)

Corner: x=0, y=0, z=Z

For a boundary grid point on the corner (0, 0, Z), we operate on the diffusion

equation (Eq. 2.24) by
∫ zK+1/2

zK

∫ y1

y1/2

∫ x1

x1/2
(·)dxdydz and use the boundary condition
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(Eq. 2.25) to obtain the following equation:

− Zedge
g,1,1,Kφg,1/2,1/2,K−1/2 + Ccorner

g,1,1,Kφg,1/2,1/2,K+1/2 −Xedge
g,1,1,Kφg,3/2,1/2,K+1/2

− Y edge
g,1,1,Kφg,1/2,3/2,K+1/2 = Scorner

g,1,1,K , 1 ≤ g ≤ G, (3.50)

where

Ccorner
g,1,1,K = Bx-face, corner

g,1,1,K +Xedge
g,1,1,K +By-face, corner

g,1,1,K + Y edge
g,1,1,K +Bz-face, corner

g,1,1,K

+ Zedge
g,1,1,K + Σ̄corner

R,g,1,1,K , (3.51a)

Bx-face, corner
g,1,1,K =


Ax-face, corner

g,1,1,K

2
, vacuum boundary,

0 , reflecting boundary,
(3.51b)

By-face, corner
g,1,1,K =


Ay-face, corner

g,1,1,K

2
, vacuum boundary,

0 , reflecting boundary,
(3.51c)

Bz-face, corner
g,1,1,K =


Az-face, corner

g,1,1,K

2
, vacuum boundary,

0 , reflecting boundary,
(3.51d)

Scorner
g,1,1,K =

G∑
g′=1
g′ 6=g

Σ̄corner
s,g′→g,1,1,Kφg′,1/2,1/2,K+1/2 + Q̄corner

g,1,1,K . (3.51e)

Corner: x=0, y=Y, z=Z

For a boundary grid point on the corner (0, Y, Z), we operate on the diffusion

equation (Eq. 2.24) by
∫ zK+1/2

zK

∫ yJ+1/2

yJ

∫ x1

x1/2
(·)dxdydz and use the boundary condition

(Eq. 2.25) to obtain the following equation:

− Zedge
g,1,J,Kφg,1/2,J+1/2,K−1/2 − Y edge

g,1,J,Kφg,1/2,J−1/2,K+1/2 + Ccorner
g,1,J,Kφg,1/2,J+1/2,K+1/2

−Xedge
g,1,J,Kφg,3/2,J+1/2,K+1/2 = Scorner

g,1,J,K , 1 ≤ g ≤ G, (3.52)

where

Ccorner
g,1,J,K = Bx-face, corner

g,1,J,K +Xedge
g,1,J,K + Y edge

g,1,J,K +By-face, corner
g,1,J,K + Zedge

g,1,J,K

+Bz-face, corner
g,1,J,K + Σ̄corner

R,g,1,J,K , (3.53a)

Bx-face, corner
g,1,J,K =


Ax-face, corner

g,1,J,K

2
, vacuum boundary,

0 , reflecting boundary,
(3.53b)
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By-face, corner
g,1,J,K =


Ay-face, corner

g,1,J,K

2
, vacuum boundary,

0 , reflecting boundary,
(3.53c)

Bz-face, corner
g,1,J,K =


Az-face, corner

g,1,J,K

2
, vacuum boundary,

0 , reflecting boundary,
(3.53d)

Scorner
g,1,J,K =

G∑
g′=1
g′ 6=g

Σ̄corner
s,g′→g,1,J,Kφg′,1/2,J+1/2,K+1/2 + Q̄corner

g,1,J,K . (3.53e)

Corner: x=X, y=0, z=0

For a boundary grid point on the corner (X, 0, 0), we operate on the diffusion

equation (Eq. 2.24) by
∫ z1
z1/2

∫ y1

y1/2

∫ xI+1/2

xI
(·)dxdydz and use the boundary condition

(Eq. 2.25) to obtain the following equation:

−Xedge
g,I,1,1φg,I−1/2,1/2,1/2 + Ccorner

g,I,1,1φg,I+1/2,1/2,1/2 − Y edge
g,I,1,1φg,I+1/2,3/2,1/2

− Zedge
g,I,1,1φg,I+1/2,1/2,3/2 = Scorner

g,I,1,1, 1 ≤ g ≤ G, (3.54)

where

Ccorner
g,I,1,1 = Xedge

g,I,1,1 +Bx-face, corner
g,I,1,1 +By-face, corner

g,I,1,1 + Y edge
g,I,1,1 +Bz-face, corner

g,I,1,1

+ Zedge
g,I,1,1 + Σ̄corner

R,g,I,1,1, (3.55a)

Bx-face, corner
g,I,1,1 =


Ax-face, corner

g,I,1,1

2
, vacuum boundary,

0 , reflecting boundary,
(3.55b)

By-face, corner
g,I,1,1 =


Ay-face, corner

g,I,1,1

2
, vacuum boundary,

0 , reflecting boundary,
(3.55c)

Bz-face, corner
g,I,1,1 =


Az-face, corner

g,I,1,1

2
, vacuum boundary,

0 , reflecting boundary,
(3.55d)

Scorner
g,I,1,1 =

G∑
g′=1
g′ 6=g

Σ̄corner
s,g′→g,I,1,1φg′,I+1/2,1/2,1/2 + Q̄corner

g,I,1,1. (3.55e)

Corner: x=X, y=Y, z=0

For a boundary grid point on the corner (X, Y, 0), we operate on the diffusion

equation (Eq. 2.24) by
∫ z1
z1/2

∫ yJ+1/2

yJ

∫ xI+1/2

xI
(·)dxdydz and use the boundary condition
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(Eq. 2.25) to obtain the following equation:

− Y edge
g,I,J,1φg,I+1/2,J−1/2,1/2 −Xedge

g,I,J,1φg,I−1/2,J+1/2,1/2 + Ccorner
g,I,J,1φg,I+1/2,J+1/2,1/2

− Zedge
g,I,J,1φg,I+1/2,J+1/2,3/2 = Scorner

g,I,J,1, 1 ≤ g ≤ G, (3.56)

where

Ccorner
g,I,J,1 = Xedge

g,I,J,1 +Bx-face, corner
g,I,J,1 + Y edge

g,I,J,1 +By-face, corner
g,I,J,1 +Bz-face, corner

g,I,J,1

+ Zedge
g,I,J,1 + Σ̄corner

R,g,I,J,1, (3.57a)

Bx-face, corner
g,I,J,1 =


Ax-face, corner

g,I,J,1

2
, vacuum boundary,

0 , reflecting boundary,
(3.57b)

By-face, corner
g,I,J,1 =


Ay-face, corner

g,I,J,1

2
, vacuum boundary,

0 , reflecting boundary,
(3.57c)

Bz-face, corner
g,I,J,1 =


Az-face, corner

g,I,J,1

2
, vacuum boundary,

0 , reflecting boundary,
(3.57d)

Scorner
g,I,J,1 =

G∑
g′=1
g′ 6=g

Σ̄corner
s,g′→g,I,J,1φg′,I+1/2,J+1/2,1/2 + Q̄corner

g,I,J,1. (3.57e)

Corner: x=X, y=0, z=Z

For a boundary grid point on the corner (X, 0, Z), we operate on the diffusion

equation (Eq. 2.24) by
∫ zK+1/2

zK

∫ y1

y1/2

∫ xI+1/2

xI
(·)dxdydz and use the boundary condition

(Eq. 2.25) to obtain the following equation:

− Zedge
g,I,1,Kφg,I+1/2,1/2,K−1/2 −Xedge

g,I,1,Kφg,I−1/2,1/2,K+1/2 + Ccorner
g,I,1,Kφg,I+1/2,1/2,K+1/2

− Y edge
g,I,1,Kφg,I+1/2,3/2,K+1/2 = Scorner

g,I,1,K , 1 ≤ g ≤ G, (3.58)

where

Ccorner
g,I,1,K = Xedge

g,I,1,K +Bx-face, corner
g,I,1,K +By-face, corner

g,I,1,K + Y edge
g,I,1,K + Zedge

g,I,1,K

+Bz-face, corner
g,I,1,K + Σ̄corner

R,g,I,1,K , (3.59a)

Bx-face, corner
g,I,1,K =


Ax-face, corner

g,I,1,K

2
, vacuum boundary,

0 , reflecting boundary,
(3.59b)
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By-face, corner
g,I,1,K =


Ay-face, corner

g,I,1,K

2
, vacuum boundary,

0 , reflecting boundary,
(3.59c)

Bz-face, corner
g,I,1,K =


Az-face, corner

g,I,1,K

2
, vacuum boundary,

0 , reflecting boundary,
(3.59d)

Scorner
g,I,1,K =

G∑
g′=1
g′ 6=g

Σ̄corner
s,g′→g,I,1,Kφg′,I+1/2,1/2,K+1/2 + Q̄corner

g,I,1,K . (3.59e)

Corner: x=X, y=Y, z=Z

For a boundary grid point on the corner (X, Y, Z), we operate on the diffusion

equation (Eq. 2.24) by
∫ zK+1/2

zK

∫ yJ+1/2

yJ

∫ xI+1/2

xI
(·)dxdydz and use the boundary condi-

tion (Eq. 2.25) to obtain the following equation:

− Zedge
g,I,J,Kφg,I+1/2,J+1/2,K−1/2 − Y edge

g,I,J,Kφg,I+1/2,J−1/2,K+1/2 −Xedge
g,I,J,Kφg,I−1/2,J+1/2,K+1/2

+ Ccorner
g,I,J,Kφg,I+1/2,J+1/2,K+1/2 = Scorner

g,I,J,K , 1 ≤ g ≤ G, (3.60)

where

Ccorner
g,I,J,K = Xedge

g,I,J,K +Bx-face, corner
g,I,J,K + Y edge

g,I,J,K +By-face, corner
g,I,J,K + Zedge

g,I,J,K

+Bz-face, corner
g,I,J,K + Σ̄corner

R,g,I,J,K , (3.61a)

Bx-face, corner
g,I,J,K =


Ax-face, corner

g,I,J,K

2
, vacuum boundary,

0 , reflecting boundary,
(3.61b)

By-face, corner
g,I,J,K =


Ay-face, corner

g,I,J,K

2
, vacuum boundary,

0 , reflecting boundary,
(3.61c)

Bz-face, corner
g,I,J,K =


Az-face, corner

g,I,J,K

2
, vacuum boundary,

0 , reflecting boundary,
(3.61d)

Scorner
g,I,J,K =

G∑
g′=1
g′ 6=g

Σ̄corner
s,g′→g,I,J,Kφg′,I+1/2,J+1/2,K+1/2 + Q̄corner

g,I,J,K . (3.61e)

3.2 Numerical Solution Technique

Equations 3.8 - 3.61 are an algebraic system of G(I + 1)(J + 1)(K + 1) equations

and unknowns. To solve this system, we cast these equations in matrix form for each
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group g and use a standard algorithm for the numerical solution of linear systems (e.g.

conjugate gradient, gaussian elimination, etc.). For problems with no upscattering,

we can obtain the scalar flux by solving these matrix equations from the highest

energy group (g = 1) to the lowest (g = G). Mathematically, we represent this as

LD
g φg = Sg, g = 1 ... G (3.62)

where LD
g is the “diffusion” matrix, Sg is the source vector, which includes both the

fixed source and the downscattering source, and φg is the scalar flux vector that

describes the spatial solution in group g.

Most shielding problems neglect upscattering, since its contribution to the scat-

tering source is either negligible or non-existent. However, if upscattering is included,

then the above technique must be modified to obtain a converged source Sg in the

groups with upscattering; this is done by iterating through the groups with upscat-

tering until the upscattering source has converged to some specified criterion.

3.3 Grid-Adjusted Diffusion Coefficient

The discretization of the diffusion equation introduces additional error in the

solution. To mitigate these effects, we derive an expression for the diffusion coefficient

that more accurately preserves the attenuation rate of the continuous solution in

regions with uniform material properties and a uniform grid. By uniform grid, we

simply mean a grid in which the dimensions of each cell Ci,j,k within a particular

region are fixed, i.e., (∆x,∆y,∆z)i,j,k = (c1, c2, c3).

To begin the derivation, we compare the within-group, discretized diffusion equa-

tion to the within-group, spatially-continuous diffusion equation for a region away

from sources and boundaries with uniform material properties and a uniform grid.

The within-group, spatially-continuous diffusion equation is given by Eq. 2.24 with

the scattering and fixed source set to zero:

−Dg
∂2φg
∂x2

(x, y, z)−Dg
∂2φg
∂y2

(x, y, z)−Dg
∂2φg
∂z2

(x, y, z) + ΣR,gφg(x, y, z) = 0. (3.63)

The discretized equation that we are interested in is the one that describes diffusion

at an interior grid point (Eq. 3.8) with the scattering and fixed source set to zero:
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−Dx
g

φg,i+3/2,j+1/2,k+1/2 − 2φg,i+1/2,j+1/2,k+1/2 + φg,i−1/2,j+1/2,k+1/2

∆x2

−Dy
g

φg,i+1/2,j+3/2,k+1/2 − 2φg,i+1/2,j+1/2,k+1/2 + φg,i+1/2,j−1/2,k+1/2

∆y2

−Dz
g

φg,i+1/2,j+1/2,k+3/2 − 2φg,i+1/2,j+1/2,k+1/2 + φg,i+1/2,j+1/2,k−1/2

∆z2

+ ΣR,gφg,i+1/2,j+1/2,k+1/2 = 0, (3.64)

where we have used the assumption of uniformity of material properties and grid

and have rearranged the discretized equation to more closely resemble the contin-

uous equation. We have also denoted the discretized diffusion coefficient by the

superscripts x, y, and z, indicating that we expect the coefficient to be dependent

on the grid dimensions. To determine these coefficients, we insert the continuous

solution (Eq. 2.27) into both equations and equate analogous terms. The discrete

form of the continuous solution, φg, is a simple evaluation at the grid point:

φg,i+1/2,j+1/2,k+1/2 = Age

r
ΣR,g
Dg

(xi+1/2ωg,x+yj+1/2ωg,y+zk+1/2ωg,z)
. (3.65)

Substituting Eq. 3.65 into the within-group, spatially-continuous diffusion equa-

tion (Eq. 3.63) results in the following expression:

{
−ΣR,gω

2
g,x − ΣR,gω

2
g,y − ΣR,gω

2
g,z + ΣR,g

}
φg,i+1/2,j+1/2,k+1/2 = 0. (3.66)

Substituting Eq. 3.65 into the within-group, discretized diffusion equation (Eq.

3.64) results in the following equation:

{
−

2Dx
g

∆x2

[
cosh

(
ωg,x∆x

√
ΣR,g

Dg

)
− 1

]
−

2Dy
g

∆y2

[
cosh

(
ωg,y∆y

√
ΣR,g

Dg

)
− 1

]

−
2Dz

g

∆z2

[
cosh

(
ωg,z∆z

√
ΣR,g

Dg

)
− 1

]
+ ΣR,g

}
φg,i+1/2,j+1/2,k+1/2 = 0. (3.67)

By equating the analogous terms in Eq. 3.66 and Eq. 3.67, we obtain the necessary
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requirements for more accurately preserving the continuous solution:

Dx
g =

Dg

2

(
ωg,x∆x

√
ΣR,g

Dg

)2

cosh
(
ωg,x∆x

√
ΣR,g

Dg

)
− 1

, (3.68a)

Dy
g =

Dg

2

(
ωg,y∆y

√
ΣR,g

Dg

)2

cosh
(
ωg,y∆y

√
ΣR,g

Dg

)
− 1

, (3.68b)

Dz
g =

Dg

2

(
ωg,z∆z

√
ΣR,g

Dg

)2

cosh
(
ωg,z∆z

√
ΣR,g

Dg

)
− 1

. (3.68c)

We note that the discretized diffusion coefficients limit to the continuous diffusion

coefficient as the grid size shrinks to zero, as it should:

lim
∆x→0

Dx
g = Dg, (3.69a)

lim
∆y→0

Dy
g = Dg, (3.69b)

lim
∆z→0

Dz
g = Dg. (3.69c)

To implement these grid-adjusted diffusion coefficients, we simply modify Eqs.

3.3 by substituting Dx
g for Dg in definitions for Xg,i,j,k, D

y
g for Dg in definitions for

Yg,i,j,k, and Dz
g for Dg in definitions for Zg,i,j,k. This adjustment is particularly useful

for transport-corrected diffusion, since the objective is to preserve the asymptotic

transport solution for diffusion. For transport-corrected diffusion, Eqs. 3.68 become:

Dx
g =

ΣR,g

λ2
gΣ

2
t,g

1

2

(ωg,x∆xλgΣt,g)
2

cosh (ωg,x∆xλgΣt,g)− 1
, (3.70a)

Dy
g =

ΣR,g

λ2
gΣ

2
t,g

1

2

(ωg,y∆yλgΣt,g)
2

cosh (ωg,y∆yλgΣt,g)− 1
, (3.70b)

Dz
g =

ΣR,g

λ2
gΣ

2
t,g

1

2

(ωg,z∆zλgΣt,g)
2

cosh (ωg,z∆zλgΣt,g)− 1
, (3.70c)

where we recall that λg represents an analytic approximation to the exponential at-

tenuation parameter for the asymptotic transport solution and that ωg is obtained

by standard diffusion. This means that in order to use grid-adjusted asymptotic dif-

fusion, both λg and ωg must be obtained; however, the computational time required
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to obtain these quantities is small compared to the computational time expended on

a Monte Carlo simulation.

The spatially-discretized, transport-corrected diffusion equation (with its grid-

adjusted diffusion coefficient given by Eqs. 3.70) preserves the asymtotic solution

of the analytic transport solution in each energy group, for any spatial grid. This

property makes the solution of this equation useful for shielding problems, by more

accurately preserving the exponential attenuation rate of the solution.

3.4 The Cell-Edge Adjoint Diffusion Discretization

By comparing the forward diffusion equation (Eqs. 2.24 and 2.25) to the adjoint

diffusion equation (Eqs. 2.39 and 2.40), we see that the only difference is the scat-

tering term: for adjoint diffusion, we sum over the outgoing energy group, while for

forward diffusion, we sum over the incoming energy group. Due to this minor dif-

ference, we can use all the discretized equations for adjoint diffusion with the source

term Sg,i,j,k modified by replacing Σs,g′→g,i,j,k with Σs,g→g′,i,j,k in the scattering source.

To preserve the attenuation rate of the continuous standard adjoint diffusion

solution or the transport-corrected adjoint diffusion solution, we use Eqs. 3.68 with

Dg defined according to standard adjoint diffusion or transport-corrected adjoint

diffusion and ωg determined by a previous adjoint diffusion solution. The solution

technique is the same as described in Section 3.2 for forward diffusion, except the

solution is obtained by starting from the lowest energy group (g = G) and working

up to the highest energy group (g = 1).
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Chapter IV

Theoretical Issues

Many different types of problems need to be solved in applications of radiation

transport. One very challenging problem is the deep-penetration (shielding) problem.

Deterministic and Monte Carlo methods both have difficulties solving these problems.

Some common difficulties encountered in deterministic methods are ray effects, which

result from solving the transport equation along a fixed number of discrete angular

ordinates rather than as a continuous angular function, and spatial oscillations, which

result from low-order spatial approximations and imposed closure relations that are

non-physical. Advanced deterministic methods seek to minimize these effects.

The primary challenge for the Monte Carlo method is obtaining good statistical

information at various locations of interest in phase-space. This is especially problem-

atic for shielding problems, in which the solution varies by many orders of magnitude

across the physical system. If an analog Monte Carlo method were employed to solve

a shielding problem, an enormous amount of computational time would be required

to simulate enough particles to obtain adequate statistical information in regions far

from the source. In fact, even using implicit capture requires extraordinary computa-

tional resources for difficult shielding problems. The main deficiency in both analog

Monte Carlo and Monte Carlo with implicit capture is that statistically significant

particles are not distributed throughout phase space in an advantageous way.

For the analog Monte Carlo method, all Monte Carlo particles have the same

statistical significance, since they all maintain the same weight throughout their

histories; however, most of the particle histories are spent near the source, and few

particles travel to the deep regions of the problem. For Monte Carlo with implicit

capture, the particles still spend most of their history near the source, although

they do disperse further from the source than for the analog method; however, the

particle weights can vary dramatically, leading to a very large variance. In this case,
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the Monte Carlo information can have poor statistical quality and require a very long

run-time, due to processing particles with very low weights.

To achieve a more efficient Monte Carlo solution, we use two techniques: weight

windows and a new technique referred to as the Transform approach. Both of these

techniques achieve a more efficient solution by constraining the weights of the par-

ticles and advantageously distributing the particles throughout phase space. This

chapter describes weight windows and the Transform approach in detail, with a spe-

cific emphasis on distributing Monte Carlo particles according to a user-specified

distribution.

4.1 The Monte Carlo Particle Flux

The motivation for using weight windows and the Transform approach is that

they allow the user to distribute Monte Carlo particles in a particular way. For this

reason, we begin by defining the Monte Carlo particle flux, a quantity which describes

how Monte Carlo particles are distributed throughout phase space.

We first define the Monte Carlo particle density Nmc(x,Ω, E, w):

Nmc(x,Ω, E, w)dV dΩ dE dw

= expected number of Monte Carlo particles in dV about x,

traveling in directions in dΩ about Ω, with energies between

E and E + dE, with weights between w and w + dw. (4.1)

We now define various Monte Carlo particle flux quantities:

M(x,Ω, E, w) = vNmc(x,Ω, E, w)

= weight-dependent angular Monte Carlo particle flux, (4.2)

m(x,Ω, E) =

∫ ∞
0

M(x,Ω, E, w)dw

= angular Monte Carlo particle flux, (4.3)

M(x, E) =

∫
4π

m(x,Ω, E)dΩ

= (energy-dependent) scalar Monte Carlo particle flux, (4.4)

M(x) =

∫ ∞
0

M(x, E)dE

= (energy-integrated) scalar Monte Carlo particle flux. (4.5)
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The angular Monte Carlo particle flux m(x,Ω, E) is analogous to the angular neutron

flux ψ(x,Ω, E); the (energy-dependent) scalar Monte Carlo particle fluxM(x, E) is

analogous to the (energy-dependent) scalar neutron flux φ(x, E); and the (energy-

integrated) scalar Monte Carlo particle flux M(x) is analogous to the (energy-

integrated) scalar neutron flux φ(x). For this thesis we are interested in “controlling”

the scalar Monte Carlo particle flux; both weight windows and the Transform ap-

proach allow us to do this.

In a Monte Carlo simulation, the angular neutron flux is related to the weight-

dependent Monte Carlo particle flux through the following relation:

ψ(x,Ω, E) =

∫ ∞
0

wM(x,Ω, E, w)dw. (4.6)

We will use the definitions of the Monte Carlo particle flux along with Eq. 4.6 to

describe the weight window approach and the Transform approach in terms of the

scalar Monte Carlo particle flux, M(x, E).

4.2 Weight Windows

The use of weight windows has primarily been limited to simulating source-

detector problems, in which a solution is desired at a single location in space. In

these problems the source and detector are separated by a non-trivial distance, the

geometry is often complicated, and the solution experiences significant attenuation

(by 10 or more orders of magnitude) from the source to the detector. The weight

windows are determined either from the solution of the adjoint transport equation

or by an experienced engineer who is familiar with the physics and geometry of the

problem and the Monte Carlo methodology. For shielding problems, several source-

detector problems are simulated with each detector (or several detectors) placed in

a region of interest, perhaps in a room where instrumentation exists or a corridor

through which people pass.

As computational resources have become more readily available and more efficient

for computationally-costly calculations, it has become reasonable to consider using

Monte Carlo methods to obtain the solution everywhere (or in a relatively large

spatial region) rather than at specific locations in space. To this end, weight windows

have been proposed for obtaining global solutions in space [28–30,41]. In this section,

we provide a more thorough understanding of the weight window, specifically by

deriving a simple expression that relates the Monte Carlo particle flux to the weight
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window center.

4.2.1 The Monte Carlo Particle Flux

Weight windows have been used to improve the statistical quality of the data

(i.e. reduce the variance) by mitigating the effect of high-weight particles on the

variance and to improve the efficiency of the calculation by eliminating the unnec-

essary computational time consumed by processing low-weight particles. However,

little attention has been given to understanding how the energy- and space-dependent

weight window center should be chosen to obtain the best solution. As mentioned,

the adjoint solution is commonly used for source-detector problems, mainly due to

its intuitive appeal as an importance function for a given detector response; however,

little is known about the effect of this choice of weight windows on the simulation.

We propose using a weight window that not only constrains the weight of the

particle but also distributes particles in an optimal manner. To accomplish this goal,

we derive an expression that relates the weight window center, w(x, E), and the

Monte Carlo particle flux, M(x, E).

Since the weight window constrains the particle weight about the weight window

center, we consider the Monte Carlo particle distribution that results from particles

at (x, E) having a weight that is approximately equal to the weight window center,

w(x, E). Mathematically, we express this distribution in terms of the Monte Carlo

particle flux as

M(x,Ω, E, w) ≈ m(x,Ω, E)δ[w − w(x, E)]. (4.7)

Then, to relate the Monte Carlo particle flux M(x, E) to the weight weight

window center w(x, E), we substitute this approximation into Eq. 4.6 and integrate

over all angles. We obtain

φ(x, E) ≈ w(x, E)M(x, E). (4.8)

We use this simple expression in two ways. First, we use it to determine the

appropriate weight windows for a problem, in which a specified M(x, E) is desired.

In this case, we are most interested in the following form of Eq. 4.8:

w(x, E) =
φ(x, E)

M(x, E)
. (4.9)

This expression allow us to choose weight windows based on the desired Monte Carlo

particle flux. The utility of doing this will become more apparent as we demonstrate
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its use for shielding problems in which a solution is required in a detector, in a

significant portion of phase-space, or everywhere.

Eq. 4.8 also determines the Monte Carlo particle flux distribution that occurs

when a specified set of weight windows that is used for a specific problem. These

weight windows may have been generated by an experienced user or some unknown

means, and their effect on the simulation is unclear. The following form of Eq. 4.8

allows one to obtain the Monte Carlo particle flux distribution that occurs when a

given set of weight windows is used:

M(x, E) =
φ(x, E)

w(x, E)
. (4.10)

This expression allows one to ascertain some characteristics of the simulation, such

as whether to anticipate excessive splitting or Russian roulette. If the Monte Carlo

particle flux distribution seems unsatisfactory, then new weight windows can be gen-

erated using Eq. 4.9 with the desired Monte Carlo particle flux distribution. (Of

course, this expression also requires some knowledge of the solution φ, which could

be obtained after the Monte Carlo solution has been acquired, using the given set of

weight windows, or from an inexpensive deterministic or diffusion solution.)

In this thesis, we use an approximate deterministic solution to approximate the

weight window in Eq. 4.9. Since deterministic solutions are discrete in space and

energy, our weight windows are approximated as histograms in space and energy:

w(x, E) = wc,g, x ∈ Vc, Eg < E ≤ Eg−1. (4.11)

Here the spatial elements {Vc}Ncells
c=1 comprise the spatial domain of the problem and

the energy segments {(Eg, Eg−1]}Gg=0 comprise the energy domain.

4.2.2 Weight Window Physics for Monte Carlo Sampling

In Chapter 2, we described the probability distributions that are applicable to

neutron transport. For the most part, these relationships are still valid, except that

we must include the weight of the particle in our discussion. In addition, implicit

capture is always used with weight windows; for this reason, we replace the analog

collision process with implicit capture. In this section we provide a brief derivation

of the probability distributions and the corresponding expressions that describe the

particle weight for various processes.
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Sampling an Interior Source

To describe the probability distribution for an interior source that accounts for

particle weight, we begin with the term in the transport equation that corresponds

to an interior source and factor it into the total problem source rate QT , the joint

probability distribution p(x,Ω, E), and the initial particle weight w0 = w0(x, E):

Q(x,Ω, E) = QT · p(x,Ω, E) · w0(x, E), (4.12)

where

QT =

∫
V

∫ ∞
0

∫
4π

Q(x,Ω, E)

w(x, E)
dΩdEdV, (4.13)

p(x,Ω, E) =

Q(x,Ω, E)

w(x, E)∫
V

∫ ∞
0

∫
4π

Q(x,Ω, E)

w(x, E)
dΩdEdV

, (4.14)

w0(x, E) = w(x, E). (4.15)

The initial particle weight is set to the center of the weight window w(x, E) in order

that there be no splitting or Russian rouletting when a particle is initialized.

For this thesis we only consider isotropic, spatially-uniform sources within each

spatial element Vc:

Q(x,Ω, E) =
Qc(E)

4π
, x ∈ Vc, Ω ∈ 4π, 0 < E <∞, (4.16)

and an angle-independent weight window that is uniform for E ∈ (Eg, Eg−1] and for

x ∈ Vc:
w(x, E) = wc,g, x ∈ Vc, Eg < E ≤ Eg−1. (4.17)

This source distribution and weight window allow us to rewrite the joint proba-

bility distribution as

p(x,Ω, E) = p(x |x ∈ Vc)

· p(Ω)

· p(E |Eg < E ≤ Eg−1,x ∈ Vc)

· p(Eg < E ≤ Eg−1 |x ∈ Vc)

· p(x ∈ Vc), (4.18)
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where we make the following definitions for the probability distributions:

p(x |x ∈ Vc) = p(x |x ∈ Vc) · p(y |x ∈ Vc) · p(z |x ∈ Vc), (4.19)

p(x |x ∈ Vc) =
1

xi+1/2 − xi−1/2

, (4.20)

p(y |x ∈ Vc) =
1

yj+1/2 − yj−1/2

, (4.21)

p(z |x ∈ Vc) =
1

zk+1/2 − zk−1/2

, (4.22)

p(Ω) = p(µ) · p(γ), (4.23)

p(µ) =
1

2
, (4.24)

p(γ) =
1

2π
, (4.25)

p(E |Eg < E ≤ Eg−1,x ∈ Vc) =
Qc(E)∫ Eg−1

Eg

Qc(E
′)dE ′

, (4.26)

p(Eg < E ≤ Eg−1 |x ∈ Vc) =

∫ Eg−1

Eg

Qc(E
′)

wc,g

dE ′

G∑
g′=1

∫ Eg′−1

Eg′

Qc(E
′)

wc,g′
dE ′

, (4.27)

p(x ∈ Vc) =

G∑
g=1

∫ Eg−1

Eg

Qc(E)Vc
wc,g

dE

Ncells∑
c=1

G∑
g=1

∫ Eg−1

Eg

Qc(E)Vc
wc,g

dE

. (4.28)

The total problem source rate is given by

QT =

Ncells∑
c=1

G∑
g=1

∫ Eg−1

Eg

Qc(E)Vc
wc,g

dE, (4.29)

and the initial weight of the particle becomes

w0(x, E) = wc,g, x ∈ Vc, Eg < E ≤ Eg−1. (4.30)

To obtain the multigroup probability distribution, we integrate p(x,Ω, E) over

the energy range of a group g and use the multigroup definition for the source to

62



obtain:

1 =

∫ Eg−1

Eg

p(E |Eg < E ≤ Eg−1,x ∈ Vc)dE, (4.31)

p(g |x ∈ Vc) =

Qc,g

wc,g

G∑
g′=1

Qc,g′

wc,g′

, (4.32)

p(x ∈ Vc) =

G∑
g=1

Qc,gVc
wc,g

Ncells∑
c=1

G∑
g=1

Qc,gVc
wc,g

. (4.33)

All these probability distributions, except the continuous-energy distribution, can be

directly sampled by inverting the cumulative probability distribution. (It is possible

to directly sample the continuous-energy distribution if the indefinite integral of the

source Qc(E) is invertible.) When we do this, we obtain the following results that

determine the initial state of the particle (ξ ∈ [0, 1]):

x = xi−1/2 + ξ
(
xi+1/2 − xi−1/2

)
, (4.34)

y = yj−1/2 + ξ
(
yj+1/2 − yj−1/2

)
, (4.35)

z = zk−1/2 + ξ
(
zk+1/2 − zk−1/2

)
, (4.36)

µ = −1 + 2ξ, (4.37)

γ = 2πξ, (4.38)

E = E0 if ξ =

∫ E0

Eg
Qc(E

′)dE ′∫ Eg−1

Eg
Qc(E ′)dE ′

, (4.39)

g = g0 if

g0−1∑
g′=1

p(Eg′ < E ≤ Eg′−1 |x ∈ Vc)

< ξ ≤
g0∑
g′=1

p(Eg′ < E ≤ Eg′−1 |x ∈ Vc), (4.40)

x ∈ Vc0 if

c0−1∑
c=1

p(x ∈ Vc) < ξ ≤
c0∑
c=1

p(x ∈ Vc). (4.41)

The multigroup distributions also use the above equations to sample for g and x ∈ Vc,
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with the multigroup definition of the source.

These relations determine a particle’s initial state (x,Ω, E), or (x,Ω, g) for the

multigroup problem. As long as the particle’s energy is greater than zero, it begins

to move throughout the system. The distance it travels before colliding with an atom

(or molecule) in the medium is described next.

Sampling the Distance-To-Next Collision

The distance-to-next collision is sampled as described in Chapter 2. For continuous-

energy Monte Carlo, the distribution describing the distance-to-next collision is given

by

p(s) = Σt,c(E)e−Σt,c(E)s, (4.42)

where we have assumed homogeneous material properties while a particle moves

within spatial element Vc. To sample this distribution, we invert the cumulative

probability distribution to obtain

s = − ln(ξ)

Σt,c(E)
. (4.43)

For multigroup problems, we replace Σt,c(E) with Σt,c,g.

Sampling the Scattering Distribution

To determine the distribution that describes the emission of a particle after a

collision and the resulting weight change, we consider the integrand of the scattering

integral in the neutron transport equation. This integrand describes the discrete

physics that determine the emerging state of a neutron, (x,Ω, E), given that it

experiences a collision in phase space at (x,Ω′, E ′) with x ∈ Vc:

Σs,c(Ω
′ ·Ω, E ′ → E)ψ(x,Ω′, E ′)

= pc(Ω
′ ·Ω, E ′ → E) · wscat,c(E ′) ·Rcoll,c(x,Ω

′, E ′), (4.44)

where pc(Ω
′ · Ω, E ′ → E) is the joint probability distribution, wscat,c(E

′) is the

multiplicative weight change that results from the collision, and Rcoll,c(x,Ω
′, E ′) is

the collision rate.

The probability distribution can be defined as:

pc(Ω
′ ·Ω, E ′ → E) = pc(Ω

′ ·Ω |E ′ → E) · pc(E ′ → E), (4.45)
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where

pc(Ω
′ ·Ω |E ′ → E) =

Σs,c(Ω ·Ω′, E ′ → E)

Σs0,c(E ′ → E)
, (4.46)

pc(E
′ → E) =

Σs0,c(E
′ → E)

Σs,c(E ′)
. (4.47)

The multiplicative weight change is defined as

wscat,c(E) =
Σs,c(E)

Σt,c(E)
. (4.48)

The collision rate is defined as

Rcoll,c(x,Ω, E) = Σt,c(E)ψ(x,Ω, E). (4.49)

Sampling these probability distributions can be complicated for continuous-energy

Monte Carlo, and many emission laws exist. For simplicity, we only show mathe-

matically how one could sample these distributions, since this thesis is limited to

multigroup computations.

To sample the energy of the emerging particle, E, we use the following expression

(ξ ∈ [0, 1]):

E = E0 if ξ =

∫ E0

0

pc(E
′ → E ′′)dE ′′. (4.50)

To sample the initial direction, we first represent the direction vector, Ω, in

terms of another orthonormal basis of R3, {Ω′,Ω′⊥1
,Ω′⊥2

}, then sample the direction

cosines with reference to this basis, and finally rotate back to the canonical basis of

R3, {i, j,k}. That is, we represent the outgoing direction Ω as

Ω = Ωr
1 Ω′ + Ωr

2 Ω′⊥1
+ Ωr

3 Ω′⊥2
. (4.51)

After sampling the direction cosines (Ωr
1,Ω

r
2,Ω

r
3), we rotate back to the canonical

basis, where Ω is represented as

Ω = Ω1i + Ω2j + Ω3k. (4.52)

The rotation is given by the following equations:

Ω1 = Ωr
1 Ω′1 + Ωr

2 Ω′⊥1,1
+ Ωr

3 Ω′⊥2,1
, (4.53a)
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Ω2 = Ωr
1 Ω′2 + Ωr

2 Ω′⊥1,2
+ Ωr

3 Ω′⊥2,2
, (4.53b)

Ω3 = Ωr
1 Ω′3 + Ωr

2 Ω′⊥1,3
+ Ωr

3 Ω′⊥2,3
. (4.53c)

We define the orthonormal basis, {Ω′,Ω′⊥1
,Ω′⊥2

}, noting that Ω′ is the incoming

particle direction that is already known. The other two vectors that form the set are

simply vectors that exist in the plane perpendicular to Ω′ and orthogonal to each

other. We have defined the basis set in two ways. The first is when Ω′ = ±k (i.e.

Ω′1 = 0 and Ω′2 = 0); the second is when Ω′ 6= ±k (i.e. either Ω′1 or Ω′2 is non-zero,

or both are non-zero).

For the first case, Ω′ = ±k, the non-canonical basis set for R3 is defined as

Ω′ = Ω′3 k, Ω′3 = ±1, (4.54a)

Ω′⊥1
= i, (4.54b)

Ω′⊥2
= j. (4.54c)

After sampling the direction cosines in the non-canonical basis, (Ωr
1,Ω

r
2,Ω

r
3), we

use Eqs. 4.53 to determine the initial direction cosines in the canonical basis set,

(Ω1,Ω2,Ω3).

For the second case, Ω′ 6= ±k, the non-canonical basis set for R3 is defined as

Ω′ = Ω′1i + Ω′2j + Ω′3k, (4.55a)

Ω′⊥1
=

Ω′2√
Ω′21 + Ω′22

i− Ω′1√
Ω′21 + Ω′22

j, (4.55b)

Ω′⊥2
=

Ω′1Ω′3√
Ω′21 + Ω′22

i +
Ω′2Ω′3√

Ω′21 + Ω′22
j−
√

Ω′21 + Ω′22 k, (4.55c)

where we note that
√

Ω′21 + Ω′22 6= 0 since Ω′ 6= ±k. After sampling the direction

cosines in the non-canonical basis, (Ωr
1,Ω

r
2,Ω

r
3), we use Eqs. 4.53 to determine the

initial direction cosines in the canonical basis set, (Ω1,Ω2,Ω3).

Finally, we specify how to sample the direction cosines in the non-canonical basis,

(Ωr
1,Ω

r
2,Ω

r
3). When Ω is represented in terms of the non-canonical basis, Ω = Ωr

1 Ω′+

Ωr
2 Ω′⊥1

+ Ωr
3 Ω′⊥2

, the probability distribution for the initial direction can be written

as

pc(Ω
′ ·Ω |E ′ → E) = pc(µ |E ′ → E) · p(γ), (4.56)

where we have defined the probability distributions for the polar angle cosine µ and
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the azimuthal angle γ as follows:

pc(µ |E ′ → E) =
N∑
n=0

2n+ 1

2

Σs,c,n(E ′ → E)

Σs,c,0(E ′ → E)
Pn(µ), (4.57a)

p(γ) =
1

2π
. (4.57b)

We can sample the probability distribution function for the azimuthal angle γ by

directly inverting the cumulative distribution function: γ = 2πξ with ξ ∈ [0, 1]. The

probability distribution for the polar angle cosine µ can be sampled by directly invert-

ing the cumulative distribution function for lower order sampling or using rejection

sampling for higher order scattering.

The direction cosines for Ω in the rotated orthonormal basis {Ω′,Ω′⊥1
,Ω′⊥2

} are

given by

Ωr
1 = µ, (4.58a)

Ωr
2 =

√
1− µ2 cos(γ), (4.58b)

Ωr
3 =

√
1− µ2 sin(γ). (4.58c)

To summarize, we sample the probability distribution in Eqs. 4.57 for the outgoing

direction, we use Eqs. 4.58 to obtain the direction cosines in the non-canonical basis

defined by Eqs. 4.54 and Eqs. 4.55, and finally we use Eqs. 4.53 to obtain the direction

cosines for the initial direction in the standard canonical basis.

The multigroup probability distributions are found by considering the analogous

multigroup scattering kernel:

Σs,c,g′→g(Ω
′ ·Ω)ψg(x,Ω

′) = pc(Ω
′ ·Ω, g′ → g) · wscat,c,g′ ·Rcoll,c,g′(x,Ω

′), (4.59)

where pc(Ω
′ ·Ω, g′ → g) is the probability distribution for the multigroup scattering

process, wscat,c,g′ is the multiplicative weight change that results from the collision,

and Rcoll,c,g′(x,Ω
′) is the collision rate.

The multigroup probability distribution can be defined as

pc(Ω
′ ·Ω, g′ → g) = pc(Ω

′ ·Ω | g′ → g) · pc,g′→g, (4.60)
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where

pc(Ω
′ ·Ω | g′ → g) =

Σs,c,g′→g(Ω
′ ·Ω)

Σs0,c,g′→g
, (4.61)

pc,g′→g =
Σs0,c,g′→g

Σs,c,g′
. (4.62)

The multiplicative weight change for the multigroup problem is defined as

wscat,c,g =
Σs,c,g

Σt,c,g

. (4.63)

The multigroup collision rate is given by

Rcoll,c,g(x,Ω) = Σt,c,gψg(x,Ω). (4.64)

To sample the outgoing energy group, we use the following prescription:

g = g0 if

g0−1∑
g′′=1

pc,g′→g′′ < ξ ≤
g0∑

g′′=1

pc,g′→g′′ . (4.65)

The outgoing direction is sampled the same way for multigroup problems as for

continuous energy problems. The only difference is that the probability distribution

for the azimuthal angle now contains multigroup cross-sections:

pc(Ω
′ ·Ω | g′ → g) = pc(µ | g′ → g) · p(γ), (4.66)

where

pc(µ | g′ → g) =
∑ 2n+ 1

2

Σsn,c,g′→g

Σs0,c,g′→g
Pn(µ), (4.67)

p(γ) =
1

2π
. (4.68)

4.2.3 Estimators

The path length estimator and the collision estimator are exactly the same as

those described in Chapter 2. The bin structure that we use to tally is defined for

the energy range by the boundaries {Eg}Gg=0 and spatially by the set {Vc}Ncells
c=1 with

each element having a volume Vc. In general, we wish to obtain an estimate of the
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scalar flux φ(x, E) and/or a response R(x), defined as

R(x) =

∫ ∞
0

ΣR(x,E)φ(x, E)dE, (4.69)

where ΣR(x, E) is the response function (e.g. a reaction cross-section or dose conver-

sion factor) used to calculate an energy-integrated response such as a reaction rate

or biological dose.

Path Length Estimator

The nth simulation particle provides a path length estimate for the scalar flux

φ(x, E) that is given by

φpath
c,g,n =

QT

Vc

Ic,g,n∑
i=1

liwi, (4.70)

where QT is total system source rate, Ic,g,n is the number of track lengths generated

by the nth simulation particle in volume Vc and in energy group g, li is an individual

track length, and wi is the weight of the particle as it generates the track length li.

Since the track length and weight are independent of energy, this estimator is valid

for a continuous-energy as well as multigroup simulation.

To obtain the mean value for the scalar flux and the variance of the mean for a

simulation with N particles, we use the following equations:

φpath
c,g =

1

N

N∑
n=1

φpath
c,g,n (4.71)

=
QT

N Vc

N∑
n=1

Ic,g,n∑
i=1

liwi, (4.72)

Var
[
φpath
c,g

]
=

1

N − 1

N∑
n=1

(
φpath
c,g,n − φpath

c,g

)2
(4.73)

=
N

N − 1

 Q2
T

N V 2
c

N∑
n=1

(
Ic,g,n∑
i=1

liwi

)2

− φpath
c,g

2

 . (4.74)

During the simulation, the only quantities that must be stored are the total weighted

path length for the mean and the total weighted path length squared for the variance

of the mean.

The nth simulation particle provides a path length estimate of the response R(x)
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given by

Rpath
c,g,n =

QT

Vc

Ic,g,n∑
i=1

ΣR,c(Ei)liwi, (4.75)

where most of the parameters have been defined for the estimate of the scalar flux:

Ei is the energy of the particle in the range (Eg, Eg−1] and ΣR,c(E) is the response

parameter in spatial element Vc. For the multigroup estimator, we replace the

continuous-energy response parameter ΣR,c(Ei) with the multigroup form ΣR,c,g.

To obtain the mean value of the response and the variance of the mean response

for a simulation with N particles, the following equations are used:

Rpath
c,g =

1

N

N∑
n=1

Rpath
c,g,n, (4.76)

Var
[
Rpath
c,g

]
=

1

N − 1

N∑
n=1

(
Rpath
c,g,n −Rpath

c,g

)2
. (4.77)

Just like the scalar flux estimator, the only quantities that need to be stored are the

total weighted path length for the mean and the total weighted path length squared

for the variance of the mean, where the total weighted path length is given by the

summation in Eq. 4.75

Collision Estimator

The nth simulation particle provides a collision estimate of the scalar flux φ(x, E)

given by

φcoll
c,g,n =

QT

Vc

Ic,g,n∑
i=1

wi
Σt(Ei)

, (4.78)

where Ic,g,n is the number of collisions by the nth simulation particle in volume Vc in

energy group g, wi is the weight of the particle when it collides with a nucleus, and Ei

is the energy in the range (Eg, Eg−1] at which the particle collides. The multigroup

version of this estimator simply replaces Σt(Ei) with Σt,g.

The mean and the variance of the mean are determined in the same way as the

for the path length estimator:
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φcoll
c,g =

1

N

N∑
n=1

φcoll
c,g,n (4.79)

=
QT

N Vc

N∑
n=1

Ic,g,n∑
i=1

wi
Σt(Ei)

, (4.80)

Var
[
φcoll
c,g

]
=

1

N − 1

N∑
n=1

(
φcoll
c,g,n − φcoll

c,g

)2
(4.81)

=
N

N − 1

 Q2
T

N V 2
c

N∑
n=1

(
Ic,g,n∑
i=1

wi
Σt(Ei)

)2

− φcoll
c,g

2

 . (4.82)

During the simulation, the only quantities that need to be stored are the sums of the

weighted inverse total cross-section for the mean and this quantity squared for the

variance of the mean. The multigroup expression replaces Σt(Ei) with Σt,g.

The nth simulation particle provides a collision estimator of the response R(x)

given by

Rcoll
c,g,n =

QT

Vc

Ic,g,n∑
i=1

wi
ΣR,c(Ei)

Σt,c(Ei)
, (4.83)

where most of the parameters have been defined for the estimate of the scalar flux.

ΣR,c(E) is the response parameter in spatial element Vc. For the multigroup esti-

mator, we simply replace the continuous-energy response parameter ΣR,c(Ei) with

ΣR,c,g and Σt,c(Ei) with Σt,c,g.

The mean and the variance of the mean are determined in the same way as the

for the path length estimator:

Rcoll
c,g =

1

N

N∑
n=1

Rcoll
c,g,n, (4.84)

Var
[
Rcoll
c,g

]
=

1

N − 1

N∑
n=1

(
Rcoll
c,g,n −Rcoll

c,g

)2
. (4.85)

Just like the scalar flux estimator, the only quantities that need to be stored are

the sums of the weighted inverse total cross-section for the mean and this quantity

squared for the variance of the mean, where the weighted total inverse total cross-

section is given by the summation in Eq. 4.83.
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4.3 The General Transform

In addition to extending and clarifying weight windows, this thesis introduces a

new approach to solving deep-penetration problems. We refer to this as the General

Transform, the objective of which is the same as that of the weight windows: to ad-

vantageously distribute Monte Carlo particles throughout phase space. The General

Transform consists of a wide range of techniques to“control”the Monte Carlo particle

distribution, including the standard weight window approach and a new technique

referred to simply as the Transform approach. This section describes the General

Transform and then focuses exclusively on the Transform approach, which primar-

ily achieves the objective of advantageously distributing Monte Carlo particles by

modifying the particle physics rather than through a weight window.

The basic transform to be introduced into the neutron transport equation is given

by

ψ(x,Ω, E) = T̂ (x,Ω, E)f(x,Ω, E). (4.86)

Here ψ(x,Ω, E) is the angular neutron flux and T̂ (x,Ω, E) is the deterministically-

obtained “transform” function, which ensures that f(x,Ω, E) is approximately pro-

portional to the user-specified Monte Carlo particle distribution. Substituting this

transform into the neutron transport equation produces a transformed transport

equation for f(x,Ω, E) describing the particle physics that disperse particles through-

out the system according to the desired distribution. When the Monte Carlo method

is used to simulate this equation for f , the Monte Carlo particles distribute them-

selves according to the user-specified distribution. To recover the actual solution ψ,

the transform (Eq. 4.86) is used.

Before introducing this transform into the neutron transport equation and using

the transformed equation to describe the particle physics, we develop a simple expres-

sion that relates the angular Monte Carlo particle flux m(x,Ω, E), the “transform”

function T̂ (x,Ω, E), and a weight window center w(x, E). This expression allows us

to correctly choose the “transform” function and the weight window center to achieve

the desired Monte Carlo particle distribution.

4.3.1 The Monte Carlo Particle Flux

In a Monte Carlo simulation for f(x,Ω, E), the function f is related to the

weight-dependent Monte Carlo particle flux M through the following relation (c.f.
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Eq. 4.6):

f(x,Ω, E) =

∫ ∞
0

wM(x,Ω, E, w)dw. (4.87)

Since a weight window is used (regardless of whether one is needed to constrain the

particle weight), the weight-dependent Monte Carlo particle flux can be approxi-

mated as in Eq. 4.7 by

M(x,Ω, E, w) ≈ m(x,Ω, E)δ[w − w(x, E)], (4.88)

where m(x,Ω, E) is the angular Monte Carlo particle flux and w(x, E) is the weight

window center. Substituting this approximation into Eq. 4.87, we obtain:

f(x,Ω, E) ≈ w(x, E)m(x,Ω, E). (4.89)

If the weight window is chosen to be unity, then f is proportional to the angular

Monte Carlo particle flux. The implication of this is that the particle physics of

the transformed transport equation for f have been modified such that f(x,Ω, E) is

proportional to the angular Monte Carlo particle flux m(x,Ω, E).

Finally, substituting Eq. 4.89 into Eq. 4.86, we obtain:

ψ(x,Ω, E) ≈ T̂ (x,Ω, E)w(x, E)m(x,Ω, E). (4.90)

This expression enables the user to choose the “transform” function T̂ (x,Ω, E) and

a weight window w(x, E) to ensure that the Monte Carlo particles are distributed

throughout phase-space according to the user’s prescription. The ability to choose

the “transform” function and the weight window center provides the user with the

flexibility to decide whether to use a weight window to achieve the user-specified

Monte Carlo particle flux, to modify the particle physics to achieve the desired dis-

tribution, or some combination of both.

For a conventional weight window, we let T̂ (x,Ω, E) = 1. Then, f = ψ, in-

dicating that the transformed transport equation is actually the neutron transport

equation, as it should be for the standard weight window approach. Integrating Eq.

4.90 over all angles, we obtain the previous expression relating the weight window

center to the scalar Monte Carlo particle flux (Eq. 4.8):

φ(x, E) ≈ w(x, E)M(x, E). (4.91)
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We recall that this expression can be used to generate weight windows that produce

a specified scalar Monte Carlo particle flux. Thus, the General Transform approach

encompasses a strict utilization of the weight window to achieve the desired distri-

bution. In this thesis, we will continue to refer to this strict utilization of weight

windows as the weight window approach.

To use an approach that strictly modifies the particle physics, we let w(x, E) =

1 and choose T̂ (x,Ω, E) to achieve the desired Monte Carlo particle distribution

m(x,Ω, E):

T̂ (x,Ω, E) =
ψ(x,Ω, E)

m(x,Ω, E)
. (4.92)

In this case, the primary objective of the weight window is not to significantly alter

the Monte Carlo particle distribution, since the modified physics accomplish this; it

is to ensure that the particle weight remains constrained. Since the weight window

is centered about unity throughout phase-space, the modifications should function

to keep the particle weight nearly constant as it moves through phase-space. We

refer to this technique, which completely modifies the particle physics, simply as the

Transform approach, dropping the identifier “General” from the description. This

thesis does not investigate those techniques that exist in the continuum between the

Transform approach and the weight window approach.

Just as the problem domain was discretized in space and energy to accommodate

the weight window, the Transform approach also requires the same discretization,

except that the “transform” function T̂ (x,Ω, E) is not necessarily a histogram; it

can retain a functional form in both space and angle. That is,

T̂ (x,Ω, E) = T̂c,g(x,Ω), x ∈ Vc, Eg < E ≤ Eg−1, Ω ∈ 4π. (4.93)

In general, this function is discontinuous across the boundary of adjacent spatial

elements. This discontinuity is important when the transform (Eq. 4.86) is introduced

into the neutron transport equation, since the transport equation contains a spatial

derivative in the streaming term. The specific functional form of the “transform”

function will be introduced later.

Ideally, the angular Monte Carlo particle flux is chosen to optimize the problem

solution, which could range from calculating a single response in a detector to ob-

taining the angular neutron flux everywhere in phase-space. Each of these problems

requires a unique Monte Carlo particle distribution to optimize their respective so-

lutions. Despite this, we have chosen a form that seems to have a wide range of
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applicability. We define the angular Monte Carlo particle flux as

m(x,Ω, E) =
ψc(x,Ω, E)

B(x)
, (4.94)

where B(x) is a space-dependent parameter that corresponds to the type of problem

to be solved, whether source-detector, source-region, or global. As a function, B(x)

is a simple histogram in space. The function ψc(x,Ω, E) is known as the angular

contributon flux (or angular response flux) [33]; it is defined as the product of the

forward angular neutron flux and the adjoint angular neutron flux:

ψc(x,Ω, E) = ψ(x,Ω, E)ψ∗(x,Ω, E). (4.95)

The forward angular flux ψ basically represents the relative number of particles at

a point in phase-space, while the adjoint angular flux (or “importance” function) ψ∗

represents the relative importance of a point in phase-space to the response. The

product of these two represents the relative contribution of particles at that point in

phase-space to the response, based on both the relative number of particles at that

point and the relative importance of that point to the response. The contributon

flux has mostly been understood from the perspective of the source-detector problem.

However, the benefit of having a quantity, such as the contributon flux, to determine

the important regions of phase-space has led us to generalize it from the source-

detector problem to global problems. This will be discussed in greater detail in the

chapters pertaining to the source-detector problem, the source-region problem, and

the global problem.

Integrating the angular Monte Carlo particle flux over all angles, we obtain the

(energy-dependent) scalar Monte Carlo particle flux:

M(x, E) =

∫
4π

m(x,Ω, E)dΩ

=

∫
4π

ψc(x,Ω, E)

B(x)
dΩ

=
φc(x, E)

B(x)
, (4.96)

where φc(x, E) is the (energy-dependent) scalar contributon flux. It is defined as
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φc(x, E) =

∫
4π

ψc(x,Ω, E)dΩ

=

∫
4π

ψ(x,Ω, E)ψ∗(x,Ω, E)dΩ. (4.97)

Finally, integrating Eq. 4.96 over all energy, we obtain the (energy-integrated) scalar

Monte Carlo particle flux:

M(x) =

∫
4π

M(x, E)dE

=

∫
4π

φc(x, E)

B(x)
dE

=
φc(x)

B(x)
, (4.98)

where φc(x) is the (energy-integrated) scalar contributon flux. It is defined as

φc(x) =

∫ ∞
0

φc(x, E)dE

=

∫ ∞
0

∫
4π

ψ(x,Ω, E)ψ∗(x,Ω, E)dΩdE. (4.99)

4.3.2 The Transformed Transport Equation

To derive the transport equation that approximately distributes particles accord-

ing to a user-specified distribution, we begin with the neutron transport equation

(Eq. 2.1):

Ω · ∇ψ(x,Ω, E) + Σt(x, E)ψ(x,Ω, E)

=

∫ ∞
0

∫
4π

Σs(x,Ω
′ ·Ω, E ′ → E)ψ(x,Ω′, E ′)dΩ′dE ′ +Q(x,Ω, E),

x ∈ V , Ω ∈ 4π, 0 < E <∞, (4.100a)

with boundary condition

ψ(x,Ω, E) = ψb(x,Ω, E), x ∈ ∂V , Ω · n(x) < 0, 0 < E <∞. (4.100b)

Since the “transform” function T̂ (x,Ω, E) is discontinuous across the boundary

of adjacent spatial elements, the transform is applied within each spatial element
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that comprises the spatial domain, and an interior continuity condition is introduced

to ensure that the transform is valid across the boundaries of the spatial elements.

Substituting Eq. 4.86 into Eq. 4.100 and rearranging, we obtain the following trans-

formed transport equation for f(x,Ω, E):

Ω · ∇f(x,Ω, E) + Σ̂t(x,Ω, E)f(x,Ω, E)

=

∫ ∞
0

∫
4π

Σ̂s(x,Ω
′ ·Ω, E ′ → E)f(x,Ω′, E ′)dΩ′dE ′ + Q̂(x,Ω, E),

x ∈ Vc, Ω ∈ 4π, Eg < E < Eg−1, (4.101a)

with boundary condition

f(x,Ω, E) = ψ̂b(x,Ω, E), x ∈ ∂Vc, Ω · n(x) < 0, 0 < E <∞, (4.101b)

and continuity condition

T̂ (x,Ω, E)f(x,Ω, E)|x∈Vc−
= T̂ (x,Ω, E)f(x,Ω, E)|x∈Vc+ . (4.101c)

The notation Vc− and Vc+ denotes that these elements are adjacent to one another.

We have also made the following definitions:

Σ̂t(x,Ω, E) = Σt(x, E) + Ω · ∇ ln[T̂ (x,Ω, E)], (4.102a)

Σ̂s(x,Ω
′ ·Ω, E ′ → E) = Σs(x,Ω

′ ·Ω, E ′ → E)
T̂ (x,Ω′, E ′)

T̂ (x,Ω, E)
, (4.102b)

Q̂(x,Ω, E) =
Q(x,Ω, E)

T̂ (x,Ω, E)
, (4.102c)

ψ̂b(x,Ω, E) =
ψb(x,Ω, E)

T̂ (x,Ω, E)
. (4.102d)

Just as the neutron transport equation describes the interaction of neutrons in

a medium, the transformed transport equation (Eq. 4.101) describes the interac-

tion of “f -particles” in a medium. It is apparent that the form of the transformed

transport equation is identical to the neutron transport equation, except that the

cross-sections have been modified. Each term in the transformed transport equation

shares the same meaning as in the neutron transport equation – streaming, collision,

scattering source, interior source, and boundary source. The solution to this trans-

formed equation f(x,Ω, E) remains positive if the “transform” function is positive.
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4.3.3 The “Transform” Function, T̂ (x,Ω, E)

To explicitly write the probability distributions that describe the behavior of

particles subjected to the transformed transport equation, the “transform” function

T̂ (x,Ω, E) must be approximated by simpler functions. These functions are defined

in terms of the angular Monte Carlo particle flux, defined by Eq. 4.94 as:

m(x,Ω, E) =
ψc(x,Ω, E)

B(x)
. (4.103)

where B(x) is the space-dependent parameter corresponding to the type of problem

to be solved, whether source-detector, source-region, or global; and ψc(x,Ω, E) is

the angular contributon flux.

Having specified the general form of the angular Monte Carlo particle flux, the

”transform” function is given as

T̂ (x,Ω, E) =
B(x)

ψ∗(x,Ω, E)
. (4.104)

We can approximate the adjoint angular flux within a spatial element Vc as the

product of the adjoint scalar flux φ∗(x, E) and an angular component hc(Ω, E):

ψ∗(x,Ω, E) ≈ φ∗(x, E)hc(Ω, E), x ∈ Vc. (4.105)

The adjoint scalar flux has the prescribed functional form

φ∗(x, E) = φ∗c,g(x, E), x ∈ Vc, Eg < E ≤ Eg−1

= Ac,ge
λc,gΣt,c(E)(x− x) · ωc,g , (4.106)

where xc is an arbitrary reference point in Vc, and Ac,g, λc,g and ωc,g are parameters

obtained from a deterministic simulation. These are explicitly defined in terms of a

discrete deterministic solution in a later section. For most problems, it is unlikely

that Eq. 4.105 exactly describes the deterministically-obtained adjoint angular flux

within the spatial element Vc; therefore, discontinuities exist in this approximation

across cell boundaries.

The angular component hc(Ω, E) is approximated by substituting Eq. 4.105 into

the homogenous mono-energetic adjoint transport equation with φ∗(x, E) defined by

Eq. 4.106. This adjoint transport equation for x ∈ Vc is given as
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−Ω · ∇ψ∗(x,Ω, E) + Σt,c(E)ψ∗(x,Ω, E)

=

∫
4π

Σs,c(Ω ·Ω′, E)ψ∗(x,Ω′, E)dΩ′, x ∈ Vc. (4.107)

Substituting Eq. 4.105 into this transport equation with E ∈ (Eg, Eg−1] yields

Σt,c(E)[1− λc,gΩ · ωc,g]hc(Ω, E)

=

∫
4π

Σs,c(Ω ·Ω′, E)hc(Ω
′, E)dΩ′, Eg < E ≤ Eg−1. (4.108)

The form of this equation is similar to Eq. 2.30 from Chapter 2 with fg(Ω) =

hc(Ω, E), λtrg = −λc,g, and the multigroup parameters substituted for the analo-

gous continuous energy parameters. The particular formulation of this equation,

whether multigroup or continuous energy, is irrelevant to the form of the solution.

Using the solution of Eq. 2.30 given in Chapter 2, we obtain the following expression

for hc(Ω, E):

hc(Ω, E) ≈

N∑
n=0

an,c,g(E) [Ω · ωc,g]n

1− λc,gΩ · ωc,g
, a0,c,g(E) = 1. (4.109)

For a fixed energy E, an exact eigenvalue can be determined. However, since this

expression uses an approximate eigenvalue λc,g over an entire energy range, the ex-

pression itself can only be an approximation to the solution of Eq. 4.108. In practice,

we do not solve this equation to determine λc,g; we use a deterministic solution to

acquire it, based on the exponential attenuation of the adjoint scalar flux. This is

explained in the next section.

Since this thesis only considers isotropic scattering, we use the following simple

expression for the angular component:

hc(Ω, E) = hc,g(Ω), Eg < E ≤ Eg−1

= [1− λc,gΩ · ωc,g]−1. (4.110)

For λc,g ≥ 1, hc,g(Ω) can become infinite or negative; both of these conditions are

unphysical and can cause difficulties during the simulation. For this reason, we

introduce the following bound:

0 ≤ λc,g ≤ |λtrc,g|, (4.111)
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where λtrc,g is obtained from solving the multigroup equivalent of Eq. 4.108. (The

solution strategy is the same as that given in Chapter 2 to solve Eq. 2.30.) This

condition ensures that the angular component hc,g(Ω) remains positive and bounded.

To summarize, we define the “transform” function as

T̂ (x,Ω, E) =
B(x)

ψ∗(x,Ω, E)
, (4.112)

where B(x) depends on the type of problem to be solved and has the form

B(x) = Bc, x ∈ Vc. (4.113a)

The adjoint angular flux ψ∗(x,Ω, E) is approximated as

ψ∗(x,Ω, E) = φ∗c,g(x, E)hc,g(Ω), x ∈ Vc, Eg < E ≤ Eg−1, (4.113b)

with

φ∗c,g(x, E) = Ac,ge
λc,gΣt,c(E)(x− xc) · ωc,g , (4.113c)

hc,g(Ω) = [1− λc,gΩ · ωc,g]−1. (4.113d)

The equivalent multigroup expressions simply replace the continuous-energy cross-

section with a multigroup one, i.e. Σt,c(E) = Σt,c,g. In the next section, we describe

how to obtain the parameters λc,g and ωc,g, as well as Ac,g and xc.

4.3.4 The Transform Parameters

The adjoint angular flux estimate ψ∗(x,Ω, E) is given by:

ψ∗(x,Ω, E) = φ∗c,g(x, E)hc,g(Ω), Eg < E ≤ Eg−1, x ∈ Vc, (4.114)

where

φ∗c,g(x, E) = Ac,ge
λc,gΣt,c(E)(x− xc) · ωc,g , (4.115)

hc,g(Ω) = [1− λc,gΩ · ωc,g]−1. (4.116)

To determine the parameters Ac,g, λc,g, xc, and ωc,g, we approximate φ∗c,g(x, E)

as

φ∗c,g(x, E) ≈ Ac,ge
βc,g · (x− xc), Eg < E ≤ Eg−1, x ∈ Vc, (4.117)
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where βc,g is defined as βc,g = λc,gΣt,c,gωc,g. The expression is approximate since

the continuous-energy cross-section is approximated by the multigroup cross-section,

i.e., Σt,c(E) ≈ Σt,c,g.

To determine the transform parameters, we must approximately fit these func-

tions to a deterministic estimate of the adjoint scalar flux Φ∗(x, E). In our work we

use cell-edge, transport-corrected, multigroup adjoint diffusion described in Chapter

3 to obtain this adjoint scalar flux estimate.

To proceed, we recall that the subscript c is a cell index that represents the

mapping from the three-dimensional Cartesian indices (i, j, k) to the one-dimensional

index c: c = i+jI+kIJ . Using the three-dimensional notation prescribed in Chapter

3 for the cell-edge diffusion equations, we can define the parameters xc, Ac,g, λc,g,

and ωc,g.

The parameter xc is any reference point in the cell Ci,j,k. We define it to be the

centroid of the cell:

xc =

(
xi−1/2 + xi+1/2

2
,
yj−1/2 + yj+1/2

2
,
zk−1/2 + zk+1/2

2

)
. (4.118)

Defining xc as the centroid fixes the value of Ac,g as the scalar flux estimate at

the centroid of cell Ci,j,k. Since the cell-edge discretization provides the value of the

flux at the corners of each cell, we approximate the value at the centroid by a simple

average of the corner values:

Ac,g = Φ∗c,g,

=
1

8

(
Φ∗g,i−1/2,j−1/2,k−1/2 + Φ∗g,i−1/2,j−1/2,k+1/2 + Φ∗g,i−1/2,j+1/2,k−1/2

+ Φ∗g,i−1/2,j+1/2,k+1/2 + Φ∗g,i+1/2,j−1/2,k−1/2 + Φ∗g,i+1/2,j−1/2,k+1/2

+ Φ∗g,i+1/2,j+1/2,k−1/2 + Φ∗g,i+1/2,j+1/2,k+1/2

)
. (4.119)

To obtain the remaining parameters, we first define the average flux at the cen-

troid of each cell face:

Φ∗g,i±1/2,j,k = average flux for a face within cell Ci,j,k at (xi±1/2, yj, zk),

=
1

4

(
Φ∗g,i±1/2,j−1/2,k−1/2 + Φ∗g,i±1/2,j−1/2,k+1/2

+ Φ∗g,i±1/2,j+1/2,k−1/2 + Φ∗g,i±1/2,j+1/2,k+1/2

)
, (4.120)
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Φ∗g,i,j±1/2,k = average flux for a face within cell Ci,j,k at (xi, yj±1/2, zk),

=
1

4

(
Φ∗g,i−1/2,j±1/2,k−1/2 + Φ∗g,i−1/2,j±1/2,k+1/2

+ Φ∗g,i+1/2,j±1/2,k−1/2 + Φ∗g,i+1/2,j±1/2,k+1/2

)
, (4.121)

Φ∗g,i,j,k±1/2 = average flux for a face within cell Ci,j,k at (xi, yj, zk±1/2),

=
1

4

(
Φ∗g,i−1/2,j−1/2,k±1/2 + Φ∗g,i−1/2,j+1/2,k±1/2

+ Φ∗g,i+1/2,j−1/2,k±1/2 + Φ∗g,i+1/2,j+1/2,k±1/2

)
. (4.122)

We can now define βc,g = (βc,g,x, βc,g,y, βc,g,z) by using the ratio of the average

flux at the midpoints on opposing faces:

βc,g,x = x-direction exponential attenuation parameter in cell Ci,j,k,

=
1

∆xi
ln

(
Φ∗g,i+1/2,j,k

Φ∗g,i−1/2,j,k

)
, (4.123)

βc,g,y = y-direction exponential attenuation parameter in cell Ci,j,k,

=
1

∆yj
ln

(
Φ∗g,i,j+1/2,k

Φ∗g,i,j−1/2,k

)
, (4.124)

βc,g,z = z-direction exponential attenuation parameter in cell Ci,j,k,

=
1

∆zk
ln

(
Φ∗g,i,j,k+1/2

Φ∗g,i,j,k−1/2

)
. (4.125)

Finally, we define λc,g and ωc,g in terms of βc,g:

λc,g =


||βc,g||2
Σt,c,g

,
||βc,g||2
Σt,c,g

≤ |λtrc,g|,

|λtrc,g| , otherwise,

(4.126)

ωc,g =
βc,g
||βc,g||2

. (4.127)

The next section discusses the modified physics that are employed during a Monte

Carlo simulation of the transformed transport equation.

4.3.5 Modified Physics for Monte Carlo Sampling

To implement the Transform approach in a Monte Carlo simulation, the prob-

ability distributions that describe the particle interactions in the medium must be
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defined, as well as particle weight changes at boundaries. This includes probability

distributions that describe an internal source, the distance-to-next collision, and the

re-emission state upon collision; and it includes the weight change that results when

a particle passes through a cell boundary and the weight change that results when a

particle encounters a symmetric (reflecting) boundary.

Sampling an Interior Source

In order to describe the probability distribution for an interior source that ac-

counts for particle weight, we begin with the term in the transformed transport

equation (Eq. 4.101) that corresponds to an interior source and factor it into the

total problem source rate for the modified source QT , the joint probability distri-

bution for the interior modified source p(x,Ω, E), and the initial particle weight

w0 = w0(x, E):

Q̂(x,Ω, E) = Q̂T · p(x,Ω, E) · w0(x, E). (4.128)

As noted in Chapter 2, we only consider isotropic, spatially-uniform sources

within each spatial element Vc:

Q(x,Ω, E) =
Qc(E)

4π
, x ∈ Vc, 0 < E <∞. (4.129)

This source distribution allows us to rewrite the joint probability distribution in

terms of the following conditional and marginal probability distributions:

p(x,Ω, E) = p(x |x ∈ Vc)

· p(Ω |Eg < E ≤ Eg−1,x ∈ Vc)

· p(E |Eg < E ≤ Eg−1,x ∈ Vc)

· p(Eg < E ≤ Eg−1 |x ∈ Vc)

· p(x ∈ Vc), (4.130)

where we have defined the marginal and conditional distributions as:

p(x |x ∈ Vc) = p(x |x ∈ Vc) · p(y |x ∈ Vc) · p(z |x ∈ Vc), (4.131)

p(x |x ∈ Vc) =
1

xi+1/2 − xi−1/2

, (4.132)

p(y |x ∈ Vc) =
1

yj+1/2 − yj−1/2

, (4.133)
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p(z |x ∈ Vc) =
1

zk+1/2 − zk−1/2

, (4.134)

p(Ω |Eg < E ≤ Eg−1,x ∈ Vc) =
hc,g(Ω)∫

4π

hc,g(Ω
′)dΩ′

, (4.135)

p(E |Eg < E ≤ Eg−1,x ∈ Vc) =
Qc(E)∫ Eg−1

Eg

Qc(E
′)dE ′

, (4.136)

p(Eg < E ≤ Eg−1 |x ∈ Vc) =

Ac,g

∫
4π

hc,g(Ω)dΩ

∫ Eg−1

Eg

Qc(E
′)dE ′

G∑
g′=1

Ac,g′

∫
4π

hc,g′(Ω)dΩ

∫ Eg′−1

Eg′

Qc(E
′)dE ′

, (4.137)

p(x ∈ Vc) =

G∑
g=1

VcAc,g
Bc

∫
4π

hc,g(Ω)dΩ

∫ Eg−1

Eg

Qc(E)dE

Ncells∑
c′=1

G∑
g=1

Vc′Ac′,g
Bc′

∫
4π

hc′,g(Ω)dΩ

∫ Eg−1

Eg

Qc′(E)dE

. (4.138)

The total modified source rate is defined as

Q̂T =

Ncells∑
c=1

G∑
g=1

VcAc,g
Bc

∫
4π

hc,g(Ω)dΩ

∫ Eg−1

Eg

Qc(E)dE. (4.139)

The initial particle weight has been defined, noting that the particle is born within

the spatial element Vc and within the energy range (Eg, Eg−1]:

w0(x, E) = eλc,gΣt,c(E)(x− xc) · ωc,g , Eg < E ≤ Eg−1, x ∈ Vc. (4.140)

As can be seen, the initial weight is not exactly unity. Based on numerical simu-

lations, it was determined that using an exponential spatial distribution within the

cell provided no advantage over simply using a uniform spatial distribution with an

initial weight equal to the exponential shown above. It should be noted that as the

cells size approaches zero, the initial weight also approaches unity.

The multigroup form of the probability distributions is found by using the defi-

nition of the multigroup source, Qc,g =
∫ Eg−1

Eg
Qc(E)dE, and integrating p(x,Ω, E)

over the energy group g defined by the range (Eg, Eg−1]:

1 =

∫ Eg−1

Eg

p(E |Eg < E ≤ Eg−1,x ∈ Vc)dE, (4.141)
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p(g |x ∈ Vc) = p(Eg < E ≤ Eg−1 |x ∈ Vc)

=

Ac,gQc,g

∫
4π

hc,g(Ω)dΩ

G∑
g′=1

Ac,g′Qc,g′

∫
4π

hc,g′(Ω)dΩ

, (4.142)

p(x ∈ Vc) =

G∑
g=1

VcAc,g
Bc

Qc,g

∫
4π

hc,g(Ω)dΩ

Ncells∑
c′=1

G∑
g=1

Vc′Ac′,g
Bc′

Qc′,g

∫
4π

hc′,g(Ω)dΩ

. (4.143)

The multigroup form of the total modified source is given by

Q̂T =

Ncells∑
c=1

G∑
g=1

VcAc,g
Bc

Qc,g

∫
4π

hc,g(Ω)dΩ, (4.144)

and the multigroup form of the initial weight is given by using Σt,c(E) = Σt,c,g when

E ∈ (Eg, Eg−1]:

w0,g(x) = eλc,gΣt,c,g(x− xc) · ωc,g , x ∈ Vc. (4.145)

The following equations show how to sample from the probability distributions

for all the variables except the initial direction (ξ ∈ [0, 1]):

x = xi−1/2 + ξ
(
xi+1/2 − xi−1/2

)
, (4.146)

y = yj−1/2 + ξ
(
yj+1/2 − yj−1/2

)
, (4.147)

z = zk−1/2 + ξ
(
zk+1/2 − zk−1/2

)
, (4.148)

E = E0 if ξ =

∫ E0

Eg
Qc(E

′)dE ′∫ Eg−1

Eg
Qc(E ′)dE ′

, (4.149)

g = g0 if

g0−1∑
g′=1

p(Eg′ < E ≤ Eg′−1 |x ∈ Vc)

< ξ ≤
g0∑
g′=1

p(Eg′ < E ≤ Eg′−1 |x ∈ Vc), (4.150)

x ∈ Vc0 if

c0−1∑
c=1

p(x ∈ Vc) < ξ ≤
c0∑
c=1

p(x ∈ Vc). (4.151)

To sample from the angularly-biased distribution for the initial direction, we

85



represent the direction vector, Ω, in terms of another orthonormal basis of R3,

{ωc,g,νc,g,υc,g}, sample the direction cosines with reference to this basis, and then

rotate back to the canonical basis of R3, {i, j,k}. That is, we represent the initial

direction Ω as

Ω = Ωr
1ωc,g + Ωr

2νc,g + Ωr
3υc,g, (4.152)

and then, after sampling the direction cosines (Ωr
1,Ω

r
2,Ω

r
3), we rotate back to the

canonical basis, where Ω is represented as

Ω = Ω1i + Ω2j + Ω3k. (4.153)

The rotation is given by the following equations:

Ω1 = Ωr
1ωc,g,1 + Ωr

2νc,g,1 + Ωr
3υc,g,1, (4.154a)

Ω2 = Ωr
1ωc,g,2 + Ωr

2νc,g,2 + Ωr
3υc,g,2, (4.154b)

Ω3 = Ωr
1ωc,g,3 + Ωr

2νc,g,3 + Ωr
3υc,g,3. (4.154c)

We have defined the orthonormal basis, {ωc,g,νc,g,υc,g}, noting that ωc,g is the

transform parameter that has already been defined. The other two vectors that form

the set are vectors that exist in the plane perpendicular to ωc,g and orthogonal to

each other. We have defined the basis set in two ways. The first is when ωc,g = ±k

(i.e. ωc,g,1 = 0 and ωc,g,2 = 0); the second is when ωc,g 6= ±k (i.e. either ωc,g,1 or

ωc,g,2 is non-zero, or both are non-zero).

For the first case, ωc,g = ±k, the non-canonical basis set for R3 is defined as

ωc,g = ωc,g,3k, ωc,g,3 = ±1, (4.155a)

νc,g = i, (4.155b)

υc,g = j. (4.155c)

After sampling the directions cosines in the non-canonical basis, (Ωr
1,Ω

r
2,Ω

r
3), we

use Eqs. 4.154 to determine the initial direction cosines in the canonical basis set,

(Ω1,Ω2,Ω3).

For the second case, ωc,g 6= ±k, the non-canonical basis set for R3 is defined as

ωc,g = ωc,g,1i + ωc,g,2j + ωc,g,3k, (4.156a)

νc,g =
ωc,g,2√

ω2
c,g,1 + ω2

c,g,2

i− ωc,g,1√
ω2
c,g,1 + ω2

c,g,2

j, (4.156b)
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υc,g =
ωc,g,1ωc,g,3√
ω2
c,g,1 + ω2

c,g,2

i +
ωc,g,2ωc,g,3√
ω2
c,g,1 + ω2

c,g,2

j−
√
ω2
c,g,1 + ω2

c,g,2k, (4.156c)

where we note that
√
ω2
c,g,1 + ω2

c,g,2 6= 0 since ωc,g 6= ±k. Again, after sampling

the directions cosines in the non-canonical basis, (Ωr
1,Ω

r
2,Ω

r
3), we use Eqs. 4.154 to

determine the initial direction cosines in the canonical basis set, (Ω1,Ω2,Ω3).

Finally, we specify how to sample the direction cosines in the non-canonical

basis, (Ωr
1,Ω

r
2,Ω

r
3). When Ω is represented in terms of the non-canonical basis,

Ω = Ωr
1ωc,g + Ωr

2νc,g + Ωr
3υc,g, the angularly-biased probability distribution for the

initial direction becomes

p(Ω |Eg < E ≤ Eg−1,x ∈ Vc) = p(µ |Eg < E ≤ Eg−1,x ∈ Vc) · p(γ)

=

1

1− λc,gµ∫ 1

−1

1

1− λc,gµ′
dµ′
· 1

2π
. (4.157)

These distributions are sampled using the following equations (ξ ∈ [0, 1]):

µ =
1

λc,g

[
(1 + λc,g)

(
1− λc,g
1 + λc,g

)ξ
− 1

]
, (4.158a)

γ = 2πξ. (4.158b)

The direction cosines are given by

Ωr
1 = µ, (4.159a)

Ωr
2 =

√
1− µ2 cos(γ), (4.159b)

Ωr
3 =

√
1− µ2 sin(γ). (4.159c)

To summarize, we use Eqs. 4.158 to sample the probability distribution for the

initial direction, we use Eqs. 4.159 to obtain the direction cosines in the non-canonical

basis defined by Eqs. 4.155 and Eqs. 4.156, and finally we use Eqs. 4.154 to obtain

the direction cosines for the initial direction in the standard canonical basis.
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Sampling the Distance-To-Next Collision

The probability distribution that determines the distance-to-next collision is ob-

tained from the expression

p(s |Ω, E) = C0
f(s,Ω, E)

f(0,Ω, E)
, (4.160)

where C0 is the normalization constant and f(s,Ω, E) is the flux determined by

the equation that describes transport through the spatial element Vc and along the

trajectory of a particle traveling in the direction Ω and with energy E:

∂f

∂s
(s,Ω, E) + Σ̂t,c(Ω, E)f(s,Ω, E) = 0,

f(0,Ω, E) = f0(Ω, E), (4.161)

where Σ̂t,c(Ω, E) is the effective total interaction cross-section in the spatial element

Vc:
Σ̂t,c(Ω, E) = Σt,c(E) [1− λc,gΩ · ωc,g] , Eg < E ≤ Eg−1. (4.162)

The solution to this equation is

f(s,Ω, E) = f0(Ω, E)e−Σ̂t,c(Ω, E)s. (4.163)

The resulting probability distribution function, then, is given by

p(s |Ω, E) = Σ̂t,c(Ω, E)e−Σ̂t,c(Ω, E)s. (4.164)

To sample from this distribution, we invert the cumulative probability distribution

to obtain (ξ ∈ [0, 1]):

s = − ln(ξ)

Σ̂t,c(Ω, E)
. (4.165)

The multigroup expression is found by setting Σ̂t,c(Ω, E) = Σ̂t,c,g(Ω), where

Σ̂t,c,g(Ω) is defined as

Σ̂t,c,g(Ω) = Σt,c,g [1− λc,gΩ · ωc,g] . (4.166)

(Dwivedi [42] proposed an importance biasing function for solving homogenous slab

shielding problems that included an effective total cross-section similar to Eq. 4.166.

Depinay [24] extended this work to 3-D source-detector problems by applying a
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specific importance function that resullts in a similar effective total cross-section.)

The angle-dependent cross-section causes a particle to travel farthest when its

direction, Ω, is equal to ωc,g; it travels the shortest distance when its direction is

equal to −ωc,g. For most shielding problems the vector ωc,g points toward the deep

regions of the problem, and thus particles have a tendency to stream farther when

traveling toward the deep regions of the problem. This attribute of the modified

physics allows particles to spread out more uniformly across the system.

Sampling the Scattering Distribution

The scattering distribution is probably the most challenging aspect in implement-

ing the Transform approach. With no biasing, the scattering distribution is already

complicated, with many emission laws existing for continuous-energy Monte Carlo.

The Transform approach allows for variations in how we sample, but the most ef-

fective ones also tend to be the most challenging. Here, we present the sampling

technique that had the most advantageous effect on the figure of merit (based on our

experiments with various techniques).

To determine the scattering distribution that describes the emission of a particle,

we consider the integrand of the scattering integral in the transformed transport

equation (Eq. 4.101). This integrand describes the mechanics that determine the

emerging state of a particle, (x,Ω, E), given that the particle had a collision in

phase space at (x,Ω′, E ′) with x ∈ Vc:

Σs,c(Ω
′ ·Ω, E ′ → E)

ψ∗(x,Ω, E)

ψ∗(x,Ω′, E ′)
f(x,Ω′, E ′)

= pc(Ω
′ ·Ω, E ′ → E) · wscat,c(x,Ω

′, E ′, E) ·Rcoll,c(x,Ω
′, E ′), (4.167)

where pc(Ω
′ · Ω, E ′ → E) is the joint conditional probability distribution for the

modified scattering process, wscat,c(x,Ω
′, E ′, E) is the multiplicative weight change

that results from the collision, and Rcoll,c(x,Ω, E) is the collision rate.

For a particle that collides at x ∈ Vc and emerges with an energy E ∈ (Eg, Eg−1],

the joint probability distribution pc(Ω
′ ·Ω, E ′ → E) can be defined in terms of the

following conditional and marginal probability distributions:

pc(Ω
′ ·Ω, E ′ → E) = pc(Ω

′ ·Ω |E ′ → E)

· pc(E ′ → E |Eg < E ≤ Eg−1)

· pc(Eg < E ≤ Eg−1), (4.168)
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where we have defined the conditional probability distributions as

pc(Ω
′ ·Ω |E ′ → E) =

hc,g(Ω)Σs,c(Ω
′ ·Ω, E ′ → E)∫

4π

hc,g(Ω
′′)Σs,c(Ω

′ ·Ω′′, E ′ → E)dΩ′′
, (4.169)

pc(E
′ → E |Eg < E ≤ Eg−1) =

∫
4π

hc,g(Ω
′′)Σs,c(Ω

′ ·Ω′′, E ′ → E)dΩ′′∫ Eg−1

Eg

∫
4π

hc,g(Ω
′′)Σs,c(Ω

′ ·Ω′′, E ′ → E ′′)dΩ′′dE ′′
,

(4.170)

pc(Eg < E ≤ Eg−1) =

∫ Eg−1

Eg

Ac,g

∫
4π

hc,g(Ω
′′)Σs,c(Ω

′ ·Ω′′, E ′ → E ′′)dΩ′′dE ′′

G∑
g′′=1

∫ Eg′′−1

Eg′′

Ac,g′′

∫
4π

hc,g′′(Ω
′′)Σs,c(Ω

′ ·Ω′′, E ′ → E ′′)dΩ′′dE ′′

.

(4.171)

The collision rate is defined as

Rcoll,c(x,Ω
′, E ′) = Σ̂t,c(Ω

′, E ′)f(x,Ω′, E ′). (4.172)

The multiplicative weight change for a particle that collides in Vc is defined as

wscat,c(x,Ω
′, E ′, E) = e[λc,gΣt,c(E)ωc,g − λc,g′Σt,c(E

′)ωc,g′ ] · (x− xc)

·
G∑

g′′=1

∫ Eg′′−1

Eg′′

∫
4π

Ac,g′′

Ac,g′
Σs,c(Ω

′ ·Ω′′, E ′ → E ′′)hc,g′′(Ω
′′)dΩ′′dE ′′

· 1

hc,g′(Ω′)Σ̂t,c(Ω′, E ′)
, Eg′ < E ′ ≤ Eg′−1, Eg < E ≤ Eg−1.

(4.173)

As mentioned previously, sampling these distributions is one of the more compli-

cated aspects of continuous-energy Monte Carlo, and many scattering and emission

laws exist. For simplicity, we show mathematically how one could sample these

distributions, since this thesis is limited to multigroup computations (ξ ∈ [0, 1]):

E = E0 if ξ =

∫ E0

Eg′′

pc(E
′ → E ′′ |Eg′′ < E ′′ ≤ Eg′′−1)dE ′′, (4.174)
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g = g0 if

g0−1∑
g=1

p(Eg < E ≤ Eg−1) < ξ ≤
g0∑
g=1

p(Eg < E ≤ Eg−1). (4.175)

To sample from the angularly-biased distribution for the outgoing direction, Ω,

we define the probability distribution as

pc(Ω
′ ·Ω |E ′ → E) = p(µ |E ′ → E) · p(γ |µ,E ′ → E), (4.176)

where we have represented both the incoming and outgoing direction vectors in the

orthonormal basis introduced in the section on sampling the interior source (i.e.

Ω = Ωr
1ωc,g + Ωr

2νc,g + Ωr
3υc,g), and we have used the spherical harmonic expansion

for the scattering cross-section:

p(µ |E ′ → E) =

N∑
n=0

Σsn,c(x, E
′ → E)Yn,0(Ω′)an,0

Pn(µ)

1− λc,gµ
N∑
n=0

Σsn,c(x, E
′ → E)Yn,0(Ω′)an,0

∫ 1

−1

Pn(µ′)

1− λc,gµ′
dµ′

, (4.177)

p(γ |µ,E ′ → E) =

N∑
n=0

n∑
m=−n

Σsn(x, E ′ → E)Yn,m(Ω′)an,m
P
|m|
n (µ)e−imγ

1− λc,gµ

2π
N∑
n=0

Σsn(x, E ′ → E)Yn,0(Ω′)an,0
Pn(µ)

1− λc,gµ

, (4.178)

an,m = (−1)
m+|m|

2

[
2n+ 1

4π

(n− |m|)!
(n+ |m|)!

]1/2

. (4.179)

For isotropic or linearly anisotropic scattering, these distributions can be sampled

by inverting the cumulative probability distribution. For higher order scattering,

rejection sampling must be used.

The multigroup probability distributions are found by considering the analogous

multigroup scattering kernel:

Σs,c,g′→g(Ω
′ ·Ω)

ψ∗g(x,Ω)

ψ∗g′(x,Ω
′)
fg′(x,Ω

′)

= pc(Ω
′ ·Ω, g′ → g) · wscat,c,g′,g(x,Ω

′) ·Rcoll,c,g′(x,Ω
′), (4.180)

where pc(Ω · Ω′, g′ → g) is the joint conditional probability distribution for the

multigroup scattering process, wscat,c,g′,g(x,Ω
′) is the multiplicative weight change
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that results from the collision, and Rcoll,c,g′(x,Ω
′) is the multigroup collision rate.

For a particle that collides at x ∈ Vc and emerges in energy group g, the joint

conditional probability distribution pc(Ω
′ ·Ω, g′ → g) can be defined as

pc(Ω
′ ·Ω, g′ → g) = pc(Ω

′ ·Ω | g′ → g) · pc,g′→g, (4.181)

where we have defined the angularly-biased probability distributions as

pc(Ω
′ ·Ω | g′ → g) =

Σs,c,g′→g(Ω ·Ω′)
1− λc,gΩ · ωc,g∫

4π

Σs,c,g′→g(Ω
′′ ·Ω′)

1− λc,gΩ′′ · ωc,g
dΩ′′

, (4.182)

pc,g′→g =

∫
4π

Σs,c,g′→g(Ω
′ ·Ω′′)

1− λc,gΩ′′ · ωc,g
dΩ′′

G∑
g′′=1

∫
4π

Σs,c,g′→g′′(Ω
′ ·Ω′′)

1− λc,g′′Ω′′ · ωc,g′′
dΩ′′

. (4.183)

To sample from the distribution that selects for the exiting group, we use the

following criterion (ξ ∈ [0, 1]):

g = g0 if

g0−1∑
g′′=1

pc,g′→g′′ < ξ ≤
g0∑

g′′=1

pc,g′→g′′ . (4.184)

The angularly-biased multigroup probability distribution that describes the out-

going angle is treated the same way as for the continuous-energy case:

pc(Ω
′ ·Ω | g′ → g) = pc(µ |g′ → g) · pc(γ |µ, g′ → g), (4.185)

where

pc(µ | g′ → g) =

N∑
n=0

Σsn,c,g′→gYn,0(Ω′)an,0
Pn(µ)

1− λc,gµ
N∑
n=0

Σsn,c,g′→gYn,0(Ω′)

∫ 1

−1

an,0
Pn(µ′)

1− λc,gµ′
dµ′

, (4.186)

p(γ |µ, g′ → g) =

N∑
n=0

n∑
m=−n

Σsn,c,g′→gYn,0(Ω′)an,m
Pn(µ)e−imγ

1− λc,gµ

2π
N∑
n=0

Σsn,c,g′→gYn,0(Ω′)an,0
Pn(µ)

1− λc,gµ
dµ

, (4.187)
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an,m = (−1)
m+|m|

2

[
2n+ 1

4π

(n− |m|)!
(n+ |m|)!

]1/2

. (4.188)

These distributions are sampled in the same way as the continuous-energy distribu-

tions.

A simple example that is valid for both multigroup and continuous energy is to

consider the case of isotropic scattering. The probability distribution, in this case,

is the same as for the interior source:

pc(Ω
′ ·Ω |E ′ → E) =

1

1− λc,gΩ · ωc,g∫
4π

1

1− λc,gΩ′′ · ωc,g
dΩ′′

, (4.189)

and it is sampled in the same way as the interior source.

The multigroup collision rate is defined as

Rcoll,c,g′(x,Ω
′) = Σ̂t,c,g′(Ω

′)fg′(x,Ω
′), (4.190)

where Σt,c,g(Ω) = Σt,c,g[1− λc,gΩ · ωc,g].
The multigroup multiplicative weight change for a particle that collides in Vc is

defined as

wscat,c,g′,g(x,Ω
′) = e[λc,gΣt,c,gωc,g − λc,g′Σt,c,g′ωc,g′ ] · (x− xc)

·
G∑

g′′=1

∫
4π

Ac,g′′

Ac,g′
Σs,c,g′→g′′(Ω

′ ·Ω′′)hc,g′′(Ω′′)dΩ′′

· 1

hc,g′(Ω′)Σ̂t,c,g′(Ω′)
. (4.191)

The probability distributions defined in this section were chosen to eliminate ex-

cessive computational time, while still preserving as many of the modified physics as

possible. Specifically, the probability distribution used to sample for the outgoing en-

ergy (Eq. 4.170, 4.171, 4.183) could have been defined to include the space-dependent

exponential factor contained in the estimate of ψ∗. However, this results in a prob-

ability distribution that depends on the location of the collision event; thus, the

probability distribution would have to be calculated on the fly, which requires much

more computational cost than a prior-to-runtime construction of the probability dis-

tribution in each spatial element Vc. Mathematically, this produces no bias in the

estimate of the solution; however, it does mean that the distributions to sample for
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energy are a slight approximation to a complete modification of the particle physics.

Since the weight window is centered about unity, we expect the multiplicative

weight change to be approximately equal to unity as well; then, there is little or no

weight change upon collision. To show the conditions that are required to effect a

negligible weight change upon collision, we again consider Eq. 4.167, which describes

the discrete scattering process.

Σs,c(Ω
′ ·Ω, E ′ → E)

ψ∗(x,Ω, E)

ψ∗(x,Ω′, E ′)
f(x,Ω′, E ′)

= pc(Ω
′ ·Ω, E ′ → E) · wscat,c(x,Ω

′, E ′, E) ·Rcoll,c(x,Ω
′, E ′). (4.192)

As mentioned, we have made a slight approximation to the complete modified physics

by not including the space-dependent exponential factor in the probability distribu-

tions for the outgoing energy. However, to determine the conditions that result in a

negligible weight change, we neglect this approximation. In this case, we define the

components of the scatter kernel as

pc(x,Ω
′ ·Ω, E ′ → E) =

Σs,c(Ω
′ ·Ω, E ′ → E)ψ∗(x,Ω, E)∫ ∞

0

∫
4π

Σs,c(Ω
′ ·Ω”, E ′ → E”)ψ∗(x,Ω”, E”)dΩ”dE”

,

(4.193)

wscat,c(x,Ω
′, E ′) =

∫ ∞
0

∫
4π

Σs,c(Ω
′ ·Ω”, E ′ → E”)ψ∗(x,Ω”, E”)dΩ”dE”

Σ̂t,c(Ω′, E ′)ψ∗(x,Ω′, E ′)
,

(4.194)

Rcoll,c(x,Ω
′, E ′) = Σ̂t,c(Ω

′, E ′)f(x,Ω′, E ′). (4.195)

Then, to determine the conditions under which the weight change is negligible,

we set the multiplicative weight change (Eq. 4.194) to unity and rearrange:

Σ̂t,c(Ω, E)ψ∗(x,Ω, E) =

∫ ∞
0

∫
4π

Σs,c(Ω ·Ω′, E → E ′)ψ∗(x,Ω′, E ′)dΩ′dE ′. (4.196)

Recall that we approximate ψ∗(x,Ω, E) as

ψ∗(x,Ω, E) = Ac,ge
λc,gΣt,c(E)(x− xc) · ωc,g hc,g(Ω),

x ∈ Vc, Eg < E ≤ Eg−1, Ω ∈ 4π. (4.197)
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Substituting this into Eq. 4.196, we recover the adjoint transport equation with no

source:

−Ω · ∇ψ∗(x,Ω, E) + Σt,c(Ω, E)ψ∗(x,Ω, E) =∫ ∞
0

∫
4π

Σs,c(Ω ·Ω′, E → E ′)ψ∗(x,Ω′, E ′)dΩ′dE ′. (4.198)

Thus, the conditions required for the weight change to be small or negligible are the

following:

1. ψ∗(x,Ω, E) is well-approximated by Eq. 4.197.

2. The adjoint interior source is small compared to the adjoint scattering source

within Vc.

The second condition is dependent on the adjoint problem, specifically, whether

the adjoint scattering source or the adjoint interior source dominates locally. For

problems with a localized adjoint source, such as source-detector problems and to

some extent source-region problems, this condition certainly holds.

Weight Change at Boundaries

Even though we are simulating the transformed equation, the objective is still to

recover the solution of the original neutron transport equation, ψ(x,Ω, E). For non-

pathological problems, the solution ψ will be continuous throughout phase space,

and we require that it remain continuous in our simulation. However, since the

“transform” function T̂ (x,Ω, E) is, in general, discontinuous across cell interfaces,

the function f must also be discontinuous. The continuity condition (Eq. 4.101c)

mathematically encapsulates this property. Thus, we account for this discontinuity

in the function f(x,Ω, E) in our Monte Carlo simulation by discontinuously adjusting

the weight of the particle as it streams across cell interfaces. That is, we preserve

continuity of the angular neutron flux at an interface between two cells by adjusting

the weight of the Monte Carlo particle.

In order to determine the weight change as a particle streams from spatial element

Vc− to another Vc+ , we use the continuity condition (Eq. 4.101c):

T̂ (x,Ω, E)f(x,Ω, E)|x∈Vc−
= T̂ (x,Ω, E)f(x,Ω, E)|x∈Vc+ . (4.199)

This equation implies that if a particle with weight w− passes through an interface
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at x, the new weight w+ as it leaves the interface will be given by

w+ = w−
T̂ (x,Ω, E)|x∈Vc−

T̂ (x,Ω, E)|x∈Vc+

. (4.200)

Ideally there would be no weight change as a particle passes through an interface.

However, because we do not ensure continuity of the angular adjoint flux approxima-

tion ψ∗(x,Ω, E) (see Eq. 4.105) across cells, in addition to the problem-dependent

function B(x) already specified to be a histogram in space, a discontinuity will exist.

Eq. 4.200 describes the weight change.

In addition to requiring continuity of the angular neutron flux throughout the

interior phase-space of the problem, we also require continuity of ψ at symmetric

(reflecting) boundaries:

ψ(xb,Ωr, E) = ψ(xb,Ω, E), (4.201)

where xb is a point on the symmetric boundary, Ω is the direction in which the

particle was traveling before hitting the reflecting boundary, and Ωr is the reflected

direction that the particle travels in after colliding with the boundary. [In terms of

the incoming angle Ω and the normal to the surface n = n(xb), we can write the

reflected angle as Ωr = Ω− 2 (Ω · n) n.]

Using the transform (Eq. 4.86), we obtain the following relation:

T̂ (xb,Ωr, E)f(xb,Ωr, E) = T̂ (xb,Ω, E)f(xb,Ω, E). (4.202)

We again interpret this equation as a description of the weight change from w to wr

due to a particle hitting a reflecting boundary:

wr = w
T̂ (xb,Ω, E)

T̂ (xb,Ωr, E)
. (4.203)

4.3.6 Estimators

To obtain estimates of the quantities of interest, such as the scalar flux φ(x, E)

or a response R(x), we use a modified path length estimator and a modified collision

estimator. The bin structure that we use to tally is defined for the energy range by

the boundaries {Eg}Gg=0 and spatially by the set {Vc}Ncells
c=1 with each spatial element

having a volume Vc.
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Path Length Estimator

The nth simulation particle provides a path length estimate for the scalar flux

φ(x, E) that is given as the following for Ei ∈ (Eg, Eg−1] and xi ∈ Vc:

φpath
c,g,n =

Q̂T

Vc

Ic,g,n∑
i=1

wi

∫ li

0

T̂ (xi + sΩi,Ωi, Ei)ds, (4.204)

where Q̂T is the total modified source rate, Ic,g,n is the number of track lengths

generated by the nth simulation particle in volume Vc, Ei is the particle’s energy,

Ωi is the particle’s direction, wi is the particle’s weight, and xi is the initial spatial

location of the ith streaming path, which has length li. Inserting the functional form

of T̂ (x,Ω, E) into the expression, we get

φpath
c,g,n =

Q̂T

Vc

Ic,g,n∑
i=1

wi
T̂ (xi,Ωi, Ei)− T̂ (xi + liΩi,Ωi, Ei)

λc,gΣt,c(Ei)Ωi · ωc,g
. (4.205)

We recall

T̂ (x,Ω, E) =
B(x)

ψ∗(x,Ω, E)
, (4.206)

where

ψ∗(x,Ω, E) = φ∗c,g(x, E)hc,g(Ω), x ∈ Vc, Eg < E ≤ Eg−1, (4.207)

B(x) = Bc, x ∈ Vc, (4.208)

and

φ∗c,g(x, E) = Ac,ge
λc,gΣt,c(E)(x− xc) · ωc,g , (4.209)

hc,g(Ω) = [1− λc,gΩ · ωc,g]−1. (4.210)

The multigroup version of the path length estimator is given by replacing the continuous-

energy cross-section with the multigroup one, i.e., Σt,c(E) = Σt,c,g.

To obtain the mean scalar flux and the variance of the mean for a simulation

with N particles, the following equations are used for both continuous-energy and

multigroup Monte Carlo:

φpath
c,g =

1

N

N∑
n=1

φpath
c,g,n, (4.211)
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Var
[
φpath
c,g

]
=

1

N − 1

N∑
n=1

(
φpath
c,g,n − φpath

c,g

)2
. (4.212)

Just as in a standard Monte Carlo simulation, the only quantities that need to be

stored are the total weighted path length for the mean and the total weighted path

length squared for the variance of the mean, where the total weighted path length is

given by the summation in Eq. 4.205.

The nth simulation particle provides a path length estimate for the responseR(x)

that is given as the following (Ei ∈ (Eg, Eg−1] and xi ∈ Vc):

Rpath
c,g,n =

Q̂T

Vc

Ic,g,n∑
i=1

wiΣR,c(Ei)

∫ li

0

T̂ (xi + sΩi,Ωi, Ei)ds, (4.213)

where most of the parameters have been defined for the estimate of the scalar flux.

ΣR,c(E) is the response parameter in spatial element Vc. Inserting the functional

form of T̂ (x,Ω, E) into the expression, we get

Rpath
c,g,n =

Q̂T

Vc

Ic,g,n∑
i=1

wiΣR,c(Ei)
T̂ (xi,Ωi, Ei)− T̂ (xi + liΩi,Ωi, Ei)

λc,gΣt,c(Ei)Ωi · ωc,g
, (4.214)

where T̂ (x,Ω, E) has been defined above. The multigroup version is given by replac-

ing the continuous-energy cross-section with the multigroup one (i.e. Σt,c(E) = Σt,c,g

and ΣR,c(E) = ΣR,c,g).

To obtain the mean value for the scalar flux and variance of the mean for a

simulation with N particles, we use the following equations for both continuous-

energy and multigroup Monte Carlo:

Rpath
c,g =

1

N

N∑
n=1

Rpath
c,g,n, (4.215)

Var
[
Rpath
c,g

]
=

1

N − 1

N∑
n=1

(
Rpath
c,g,n −Rpath

c,g

)2
. (4.216)

Just like the scalar flux estimator, the only quantities that need to be stored are the

total weighted path length for the mean and the total weighted path length squared

for the variance the mean, where the total weighted path length is given by the

summation in Eq. 4.214.
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Collision Estimator

The nth simulation particle provides a collision estimate for the scalar flux that

is given as the following for Ei ∈ (Eg, Eg−1] and xi ∈ Vc:

φcoll
c,g,n =

Q̂T

Vc

Ic,g,n∑
i=1

wi
T̂ (xi,Ωi, Ei)

Σ̂t,c(Ωi, Ei)
, (4.217)

where Q̂T is the total modified source rate, Ic,g,n is the number of collisions generated

by the nth simulation particle in volume Vc, Ei is the particle’s energy when it

collides, Ωi is the particle’s direction when it collides, wi is the particle’s weight

when it collides, xi is the particle’s spatial location when it collides, and Σ̂t,c(Ω, E)

is the effective total cross-section. The multigroup version of this estimator replaces

the continuous-energy cross-section with the multigroup one, i.e., Σt,c(E) = Σt,c,g.

To obtain the mean scalar flux and variance of the mean for a simulation with N

particles, the following equations are used for both continuous-energy and multigroup

Monte Carlo:

φcoll
c,g =

1

N

N∑
n=1

φcoll
c,g,n, (4.218)

Var
[
φcoll
c,g

]
=

1

N − 1

N∑
n=1

(
φcoll
c,g,n − φcoll

c,g

)2
. (4.219)

Just as in a standard Monte Carlo simulation, the only quantities that need to be

stored are the sums of the weighted inverse total effective cross-section for the mean

and this quantity squared for the variance of the mean, where the weighted total

inverse total cross-section is given by the summation in Eq. 4.217.

The nth simulation particle provides a collision estimate for the response R(x)

that is given as the following (Ei ∈ (Eg, Eg−1] and xi ∈ Vc):

Rcoll
c,g,n =

Q̂T

Vc

Ic,g,n∑
i=1

wiΣR,c(Ei)
T̂ (xi,Ωi, Ei)

Σ̂t,c(Ωi, Ei)
, (4.220)

where most of the parameters have been defined for the estimate of the scalar flux,

and ΣR,c(E) is the response parameter in spatial element Vc. The multigroup version

of this estimator replaces the continuous-energy cross-section with the multigroup one

(i.e. Σt,c(E) = Σt,c,g and ΣR,c(E) = ΣR,c,g).

To obtain the mean value for the scalar flux and variance of the mean for a
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simulation with N particles, we use the following equations for both continuous-

energy and multigroup Monte Carlo:

Rcoll
c,g =

1

N

N∑
n=1

Rcoll
c,g,n, (4.221)

Var
[
Rcoll
c,g

]
=

1

N − 1

N∑
n=1

(
Rcoll
c,g,n −Rcoll

c,g

)2
. (4.222)

Just like the scalar flux estimator, the only quantities that must be stored are the

sums of the weighted inverse total effective cross-section for the mean and this quan-

tity squared for the variance of the mean, where the sum of the weighted inverse

total effective cross-section is given by the summation in Eq. 4.220.

4.4 Summary

In this chapter, we have introduced the General Transform approach, which was

shown to encompasses the standard weight window approach and a new Transform

approach. The General Transform is given as

ψ(x,Ω, E) = T̂ (x,Ω, E)f(x,Ω, E), (4.223)

which is then substituted into the neutron transport equation to obtain the trans-

formed transport equation for f . The expression that relates the“transform”function

T̂ (x,Ω, E), the weight window center w(x, E) and the angular Monte Carlo particle

flux m(x,Ω, E) is given by

ψ(x,Ω, E) ≈ T̂ (x,Ω, E)w(x, E)m(x,Ω, E). (4.224)

To obtain the standard weight window approach, we set T̂ (x,Ω, E) = 1. Then,

f = ψ, indicating that the transformed transport equation is the neutron transport

equation, as it should be for the weight window approach. Finally, the weight window

center is related to the scalar Monte Carlo particle flux by the expression:

φ(x, E) ≈ w(x, E)M(x, E). (4.225)

This expression allows the user to construct a weight window to achieve a certain

Monte Carlo particle distribution or to determine what Monte Carlo particle distri-
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bution results from a certain weight window.

To obtain the Transform approach, we set w(x, E) = 1. In this case, we choose

the “transform” function T̂ (x,Ω, E) to achieve a user-specified angular Monte Carlo

particle flux. For this thesis, we have chosen a form of the angular Monte Carlo

particle flux which can be applied to a wide range of problems:

m(x,Ω, E) =
ψ(x,Ω, E)ψ∗(x,Ω, E)

B(x)
(4.226)

Thus, the “transform” function has the following form

T̂ (x,Ω, E) =
B(x)

ψ∗(x,Ω, E)
, (4.227)

where a simple approximation to ψ∗(x,Ω, E) is used and B(x) is dependent on the

type of problem, whether source-detector, source-region, or global.

Both the weight window approach and the Transform approach were discussed in

detail in this chapter, including theory and practical implementation details. In the

following chapters, we consider the application of weight windows and the Transform

approach to source-detector problems, source-region problems, and global problems.

For Monte Carlo codes that already allow weight windows, the weight window ap-

proach is very easy to implement. The Transform approach requires much more effort

to implement, since the particle physics are extensively modified. We also expect the

computational expense per particle to be higher for the Transform approach than for

weight windows; thus, for the Transform approach to be advantageous over weight

windows, it must significantly reduce the variance.
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Chapter V

Source-Detector Problems

Most Monte Carlo shielding simulations have focused on source-detector problems,

in which a single response is desired rather than estimates of the flux at every spatial

location. That is, we wish to obtain

RD =
1

VD

∫
VD

∫ ∞
0

∫
4π

ΣR(x, E)ψ(x,Ω, E)dΩdEdV, (5.1)

where ΣR(x, E) is the response function and VD is the detector region. For most

source-detector problems, VD is less than a few mean free paths thick and is typically

smaller than the source region. If VD is located far from the source region, then these

problems tend to be easier to solve if efficient techniques are employed to guide the

Monte Carlo particles from the source to the detector. A common approach is to use

a weight-window that is proportional to the inverse adjoint scalar flux.

In this chapter, we solve two source-detector problems: the response problem, in

which a single response RD is desired (e.g. Eq. 5.1), and the flux problem, in which

the energy-dependent scalar flux φ(x, E) is desired in the detector region. The scalar

flux ψ(x, E) is defined as

φ(x, E) =

∫
4π

ψ(x,Ω, E)dΩ. (5.2)

We discuss and evaluate three solution techniques: FW-CADIS [29, 30], a weight

window technique developed at Oak Ridge National Laboratory; our weight window;

and the Transform approach. For most source-detector problems our weight window

and FW-CADIS are similar to the standard weight window approach, in which the

weight window is inversely proportional to the adjoint scalar flux φ∗(x, E). However,

the definition of the adjoint source depends on the type of problem – flux or response.
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5.1 The Contributon Flux

In this work, we choose to distribute Monte Carlo particles according to the con-

tributon flux [31–37], or a modified form of the contributon flux, which identifies

the regions of the problem that are important to the desired solution. Within the

shielding community, the contributon concept is well-known and understood to con-

vey theoretical information about the most likely paths that Monte Carlo particles

travel to contribute to a detector response. This information can then be used to

provide qualitative guidance to better optimize the shielding design. In this thesis,

we make practical use of the contributon concept, by choosing to distribute Monte

Carlo particles throughout phase space in ways that are consistent with the contrib-

uton flux. To our knowledge, the work presented in this thesis represents the first

specific application of the contributon concept to a broad class of practical problems.

Monte Carlo practitioners have found that, for source-detector problems, choosing

a weight window that is inversely proportional to the adjoint scalar flux works well.

This weight window is given by

w(x, E) =
C−1

0

φ∗(x, E)
, (5.3)

where C0 is a suitable constant. Using Eq. 4.10 from Chapter IV, we find that this

weight window yields a Monte Carlo particle flux distribution that is approximately

proportional to the scalar contributon flux φc(x, E):

M(x, E) =
φ(x, E)

w(x, E)

= C0φ(x, E)φ∗(x, E)

≈ 4πC0

∫
4π

ψ(x,Ω, E)ψ∗(x,Ω, E)dΩ

= 4πC0φ
c(x, E), (5.4)

where φc(x, E) is the scalar contributon flux. Thus, the standard weight window,

which has been used for the past several decades to solve source-detector problems,

roughly distributes Monte Carlo particles according to the contributon flux. To our

knowledge, this relationship between the standard weight window and a Monte Carlo

particle distribution that is proportional to the contributon flux has not been de-

scribed in the literature.

Due to the intuitive appeal of distributing Monte Carlo particles according to the
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contributon flux ψc(x,Ω, E) = ψ(x,Ω, E)ψ∗(x,Ω, E), which represents the relative

contribution of particles at a point in phase space to the detector response (or flux),

and its successful use historically, we shall continue to rely on the contributon flux as

a means to distribute Monte Carlo particles. For this reason, we shall closely examine

the contributon flux, specifically, the forward contributon transport equation and the

adjoint contributon transport equation.

For a given adjoint and forward problem, the forward and adjoint contribu-

ton transport equations are equivalent expressions for the angular contributon flux

ψc(x,Ω, E). The difference between the two is that the forward-based contributon

equation describes the transport of contributons from the forward source region to

the detector, with particle physics similar to those described by the forward neu-

tron transport equation, while the adjoint-based contributon equation describes the

transport of contributons from the detector to the forward source region, with par-

ticle physics similar to those described by the adjoint neutron transport equation.

To derive the forward and adjoint contributon transport equations, we begin

with the forward neutron transport equation and the adjoint transport equation.

The forward transport equation is given by Eq. 2.1:

Ω · ∇ψ(x,Ω, E) + Σt(x, E)ψ(x,Ω, E)

=

∫ ∞
0

∫
4π

Σs(x,Ω
′ ·Ω, E ′ → E)ψ(x,Ω′, E ′)dΩ′dE ′ +Q(x,Ω, E),

x ∈ V , Ω ∈ 4π, 0 < E <∞, (5.5a)

with vacuum boundary condition

ψ(x,Ω, E) = 0, x ∈ ∂V , Ω · n(x) < 0, 0 < E <∞. (5.5b)

The full continuous-energy adjoint neutron transport equation is given as

−Ω · ∇ψ∗(x,Ω, E) + Σt(x, E)ψ∗(x,Ω, E)

=

∫ ∞
0

∫
4π

Σs(x,Ω ·Ω′, E → E ′)ψ∗(x,Ω′, E ′)dΩ′dE ′ +Q∗(x,Ω, E),

x ∈ V , Ω ∈ 4π, 0 < E <∞, (5.6a)

with vacuum boundary condition

ψ∗(x,Ω, E) = 0, x ∈ ∂V , Ω · n(x) > 0, 0 < E <∞. (5.6b)
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Substituting ψ = ψc/ψ∗ into Eq. 5.5 and rearranging, we obtain the forward

contributon transport equation:

Ω · ∇ψc(x,Ω, E) + {Σt(x, E)−Ω · ∇ ln [ψ∗(x,Ω, E)]}ψc(x,Ω, E)

=

∫ ∞
0

∫
4π

Σs(x,Ω
′ ·Ω, E ′ → E)

ψ∗(x,Ω, E)

ψ∗(x,Ω′, E ′)
ψc(x,Ω′, E ′)dΩ′dE ′

+Q(x,Ω, E)ψ∗(x,Ω, E), x ∈ V , Ω ∈ 4π, 0 < E <∞, (5.7a)

with vacuum boundary condition

ψc(x,Ω, E) = 0, x ∈ ∂V , Ω · n(x) < 0, 0 < E <∞. (5.7b)

This equation has the same transport features as the forward equation, except that

the material-dependent parameters have been modified by the adjoint angular flux.

In a Monte Carlo simulation, this equation describes most precisely how we would like

to transport particles in phase space from the source to the detector in order achieve

a Monte Carlo particle distribution that is proportional to the contributon flux; the

weight window approach and the Transform approach both roughly accomplish this.

The weight window approach does it by applying a specific weight window, while the

transform does it by modifying the particle physics through the“transform” function.

Two characteristics of the forward contributon transport equation provide insight

into some of the qualitative properties of the solution:

1. Forward contributons do not leak out of the system, due to an infinite effective

total cross-section for contributons located on a boundary (i.e. x ∈ ∂V) and

exiting the system (i.e. Ω · n(x) > 0). For these x and Ω, the effective total

cross-section in Eq. 5.7 can be written as

Σt(x, E)−Ω · ∇ ln [ψ∗(x,Ω, E)]

=
−Ω · ∇ψ∗(x,Ω, E) + Σt(x, E)ψ∗(x,Ω, E)

ψ∗(x,Ω, E)

=

∫∞
0

∫
4π

Σs(x,Ω ·Ω′, E → E ′)ψ∗(x,Ω′, E ′)dΩ′dE ′ +Q∗(x,Ω, E)

ψ∗(x,Ω, E)

≈ ∞, x ∈ ∂V , Ω · n(x) > 0. (5.8)

This result follows from substituting the right side of the adjoint neutron trans-

port equation for the left side and applying the vacuum boundary condition.

[We also notice that the effective total cross-section is never negative, because

105



the adjoint angular flux, scattering source, and fixed source are never negative.]

2. Forward contributons are removed from the system only in the detector region.

This follows by examining the contributon absorption rate in an arbitrary spa-

tial element dV about x. The absorption rate Rabs(x) in dV about x is defined

as

Rabs(x)dV = collision rate in dV about x− inscattering rate in dV about x

=

∫ ∞
0

∫
4π

{Σt(x, E)−Ω · ∇ ln [ψ∗(x,Ω, E)]}ψc(x,Ω, E)dΩdE

−
∫ ∞

0

∫
4π

∫ ∞
0

∫
4π

Σs(x,Ω
′ ·Ω, E ′ → E)

ψ∗(x,Ω, E)

ψ∗(x,Ω′, E ′)
ψc(x,Ω′, E ′)dΩ′dE ′dΩdE

=

∫ ∞
0

∫
4π

{∫∞
0

∫
4π

Σs(x,Ω ·Ω′, E → E ′)ψ∗(x,Ω′, E ′)dΩ′dE ′

ψ∗(x,Ω, E)

+
Q∗(x,Ω, E)

ψ∗(x,Ω, E)

}
ψ(x,Ω, E)ψ∗(x,Ω, E)dΩdE

−
∫ ∞

0

∫
4π

∫ ∞
0

∫
4π

Σs(x,Ω ·Ω′, E → E ′)ψ∗(x,Ω′, E ′)ψ(x,Ω, E)dΩdEdΩ′dE ′

=

∫ ∞
0

∫
4π

Q∗(x,Ω, E)ψ(x,Ω, E)dEdΩ =

{
> 0, x ∈ VD

0, x /∈ VD
. (5.9)

Since the detector is the only region with a positive absorption rate, contribu-

tons can only be removed from the system in the detector. Outside the detector,

contributons undergo scattering events only.

Together, these two characteristics provide some insight into the qualitative form of

the forward contributon solution. For the source-detector problem, we expect forward

contributons to begin in the forward source region and “rattle around” the system

until they are eventually removed in the detector. This results in a contributon flux

that is largest along the optimal paths from the forward source to the detector. To

best resolve the detector response or flux, it is desirable to distribute Monte Carlo

particles in proportion to the contributon flux.

The adjoint formulation of the contributon transport equation is obtained by
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substituting ψ∗ = ψc/ψ into Eq. 5.6. We obtain

−Ω · ∇ψc(x,Ω, E) + {Σt(x, E) + Ω · ∇ ln[ψ(x,Ω, E)]}ψc(x,Ω, E)

=

∫ ∞
0

∫
4π

Σs(x,Ω ·Ω′, E → E ′)
ψ(x,Ω, E)

ψ(x,Ω′, E ′)
ψc(x,Ω′, E ′)dΩ′dE ′

+Q∗(x,Ω, E)ψ(x,Ω, E), x ∈ V , Ω ∈ 4π, 0 < E <∞, (5.10a)

with vacuum boundary condition

ψc(x,Ω, E) = 0, x ∈ ∂V , Ω · n(x) > 0, 0 < E <∞. (5.10b)

This equation has the same transport features as the adjoint transport equation,

except that the material-dependent parameters have been modified by the forward

angular flux. This equation describes a transport process that is very different from

one typically used in a Monte Carlo simulation, since it describes the transport of

adjoint contributons from the detector to the forward source region.

Since the objective of the weight window techniques and Transform approach is to

distribute Monte Carlo particles according to the contributon flux, so this formulation

provides a direct means to define an adjoint contributon source that achieves a fa-

vorable contributon distribution for the particular problem – response or flux. Specif-

ically, since the adjoint neutron source comprises the adjoint contributon source (see

Eq. 5.10) and is not defined by the problem statement, it can be chosen by the user

to produce an appropriate contributon distribution. (Recall that the problem state-

ment only specifies the forward neutron source, not the adjoint neutron source; thus,

we are free to define it as we wish.) To see how the adjoint neutron source is selected,

we first identify the adjoint contributon source in Eq. 5.10. It is given by the last

term in the equation:

Qc(x,Ω, E) = Q∗(x,Ω, E)ψ(x,Ω, E). (5.11)

Then, the adjoint neutron source is defined as

Q∗(x,Ω, E) =
Qc(x,Ω, E)

ψ(x,Ω, E)
, (5.12)

where Qc(x,Ω, E) has some user-specified properties. These properties depend on

the type of problem – flux or response, which are discussed in subsequent sections.

The same two characteristics of the forward contributon transport equation exist
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for the adjoint contributon transport equation:

1. Adjoint contributons do not leak out of the system due to an infinite effective

total cross-section for contributons located on a boundary (i.e. x ∈ ∂V) and

exiting the system (i.e. Ω · n(x) < 0). For these x and Ω, the effective total

cross-section in Eq. 5.10 can be written as

Σt(x, E)+Ω · ∇ ln [ψ(x,Ω, E)]

=
Ω · ∇ψ(x,Ω, E) + Σt(x, E)ψ(x,Ω, E)

ψ(x,Ω, E)

=

∫∞
0

∫
4π

Σs(x,Ω
′ ·Ω, E ′ → E)ψ(x,Ω′, E ′)dΩ′dE ′ +Q(x,Ω, E)

ψ(x,Ω, E)

≈ ∞, x ∈ ∂V , Ω · n(x) < 0. (5.13)

This result follows from substituting the right side of the forward neutron

transport equation (Eq. 5.5) for the left side and applying the vacuum bound-

ary condition. [We again note that the effective total cross-section is never

negative, since the forward angular flux, scattering source, and fixed source are

never negative.]

2. Adjoint contributons are removed from the system only in the forward source

region. This follows by examining the contributon absorption rate in an arbi-

trary spatial element dV about x. The absorption rate Rabs(x) in dV about x

is defined as

Rabs(x)dV = collision rate in dV about x− inscattering rate in dV about x

=

∫ ∞
0

∫
4π

{Σt(x, E) + Ω · ∇ ln [ψ(x,Ω, E)]}ψc(x,Ω, E)dΩdE

−
∫ ∞

0

∫
4π

∫ ∞
0

∫
4π

Σs(x,Ω ·Ω′, E → E ′)
ψ(x,Ω, E)

ψ(x,Ω′, E ′)
ψc(x,Ω′, E ′)dΩ′dE ′dΩdE

=

∫ ∞
0

∫
4π

{∫∞
0

∫
4π

Σs(x,Ω
′ ·Ω, E ′ → E)ψ(x,Ω′, E ′)dΩ′dE ′

ψ(x,Ω, E)

+
Q(x,Ω, E)

ψ(x,Ω, E)

}
ψ(x,Ω, E)ψ∗(x,Ω, E)dΩdE

−
∫ ∞

0

∫
4π

∫ ∞
0

∫
4π

Σs(x,Ω
′ ·Ω, E ′ → E)ψ(x,Ω′, E ′)ψ∗(x,Ω, E)dΩdEdΩ′dE ′
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=

∫ ∞
0

∫
4π

Q(x,Ω, E)ψ∗(x,Ω, E)dEdΩ =

{
> 0, x ∈ VS,
= 0, x /∈ VS,

(5.14)

where VS is the forward source region. Since the forward source region is

the only spatial region with a positive adjoint contributon absorption rate,

these adjoint contributons can only be removed from the system in this region.

Outside the forward source region, adjoint contributons undergo scattering

events only.

Together, these two characteristics provide some insight into the qualitative form of

the adjoint contributon solution. For the source-detector problem, we expect adjoint

contributons to be born in the detector and “rattle around” the system until they

are removed in the forward source region. This results in a contributon flux that is

largest along the optimal paths from the detector to the forward source.

Although the forward and adjoint contributon equations do not share the same

transport physics, they both produce the same solution: the contributon flux. In

addition, they both emit source particles at the same rate: the forward contributon

source emits forward contributons in the forward source region at the same rate that

the adjoint contributon source emits adjoint contributons in the detector. This can

be shown by integrating either the forward (or adjoint) contributon equation over

space, angle and energy and substituting the equivalent expression for the effective

total cross-section into the expression (see Eqs. 5.8, 5.9, 5.13, and 5.14 for examples

of this substitution). This results in the classic relation between the forward and

adjoint problem:∫
VS

∫ ∞
0

∫
4π

Q(x,Ω, E)ψ∗(x,Ω, E)dΩdEdV

=

∫
VD

∫ ∞
0

∫
4π

Q∗(x,Ω, E)ψ(x,Ω, E)dΩdEdV. (5.15)

Thus, two formulations of the contributon problem exist – forward and adjoint,

result in the same solution, but are very different conceptually. In this thesis, we

use the adjoint contributon equation to define the adjoint neutron source and the

forward contributon equation to describe the desired particle physics for an actual

Monte Carlo simulation.

In the next two sections, we describe the adjoint contributon source that is ap-

propriate for the response problem and flux problem, respectively, and we describe

how the Transform approach, our weight window, and FW-CADIS solves each of
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these problems.

5.2 The Response Problem

As previously mentioned, in source-detector response problems we wish to obtain

a single number – an energy-integrated response RD in the detector region VD:

RD =

∫
VD

∫ ∞
0

∫
4π

ΣR(x, E)ψ(x,Ω, E)dΩdEdV. (5.16)

For all three approaches – the Transform approach, our weight window, and FW-

CADIS – we define the adjoint contributon source as:

Qc(x,Ω, E) =

{
ΣR(x, E)ψ(x,Ω, E), for x ∈ VD,

0, otherwise.
(5.17)

This adjoint contributon source emits contributons (response particles) at a rate

proportional to their relative contribution to the detector response in space, energy

and angle. This results in a contributon distribution throughout phase-space that

corresponds to the desired response.

The adjoint neutron source is determined from Eq. 5.12:

Q∗(x,Ω, E) =
Qc(x,Ω, E)

ψ(x,Ω, E)

=

{
ΣR(x, E), for x ∈ VD,

0, otherwise.
(5.18)

Historically, this is the adjoint source that is used to generate the standard weight

window for the source-detector problem.

5.3 The Flux Problem

In source-detector flux problems, we wish to obtain the energy-dependent scalar

flux φ(x, E) in the detector region VD:

φ(x, E) =

∫
4π

ψ(x,Ω, E)dΩ. (5.19)

Traditionally, the source-detector problem has focused on obtaining one value, the

response. However, the methodology presented in this chapter provides no such
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limitations.

Just as in the previous section on the response problem, the adjoint contributon

source must be defined. For all three approaches – FW-CADIS, our weight window,

and the Transform approach – the adjoint contributon source is defined as:

Qc(x,Ω, E) =


ψ(x,Ω, E)

φ(x, E)
, for x ∈ VD,

0, otherwise.
(5.20)

At every spatial location x in the detector and for every energy E, this source emits

contributons at a uniform rate (i.e. Qc(x, E) =
∫

4π
Qc(x,Ω, E)dΩ = 1) with an

angular distribution proportional to their contribution to the scalar flux. This cor-

responds to treating every spatial location x ∈ VD and energy E as equally relevant

to the solution we seek – the energy-dependent scalar flux φ(x, E).

The adjoint neutron source is determined from Eq. 5.12:

Q∗(x,Ω, E) =
Qc(x,Ω, E)

ψ(x,Ω, E)

=


1

φ(x, E)
, for x ∈ VD,

0, otherwise.
(5.21)

5.4 The Transform Approach

Now that the adjoint problem has been completely defined for the source-detector

problem – flux or response, the Transform approach is easily implemented. The

“transform” function that we use in this thesis is given by Eq. 4.104 as

T̂ (x,Ω, E) =
B(x)

ψ∗(x,Ω, E)
. (5.22)

This transform function produces a distribution proportional to the angular contrib-

uton flux, modified by the spatial parameter B(x):

m(x,Ω, E) =
ψc(x,Ω, E)

B(x)
. (5.23)

The spatial parameter B(x) achieves two things:

1. It flattens out the Monte Carlo particle flux in regions that have a concentration

of Monte Carlo particles that is higher than in the detector. This effectively
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forces particles out of regions, such as the forward source region, that are highly

resolved statistically to other spatial regions that contribute to the detector

response (or flux) but are less resolved.

2. It ensures that rapid changes in the Monte Carlo particle flux do not occur near

the detector. This prevents excessive splitting and rouletting near the detector.

For problems in which the detector volume is “small” (at most a few mean free

paths thick), the function B(x) is set equal to unity. For detectors with a somewhat

larger volume, yet still only a few mean free paths thick, the following expression is

used:

B(x) = α(x)φ̃c(x) + 1− α(x), (5.24)

where

φ̃c(x) =

∫ ∞
0

φ(x, E)φ̃∗(x, E)dE, (5.25)

φ̃∗(x, E) = Cnormφ
∗(x, E), (5.26)

Cnorm =

[
1

VD

∫
VD

∫ ∞
0

φ(x, E)φ∗(x, E)dEdV

]−1

, (5.27)

α(x) =

1 + e

(
φ̃c

max∈VD

φ̃c(x)
− φ̃c(x)

φ̃c
max∈VD

)
−1

. (5.28)

The function φ̃c(x) is a normalized approximation to the energy-integrated scalar

contributon flux φc(x). That is,

φ̃c(x) = Cnorm

∫ ∞
0

φ(x, E)φ∗(x, E)dE

≈ 4πCnorm

∫ ∞
0

∫
4π

ψ(x,Ω, E)ψ∗(x,Ω, E)dΩdE

= 4πCnormφ
c(x). (5.29)

The normalization constant Cnorm scales the adjoint scalar flux to ensure that rapid

changes in the Monte Carlo particle flux, resulting from splitting or Russian roulette,

do not occur near the detector due to rapid changes in the spatial parameter α(x).

To demonstrate this, we begin with Eq. 4.96:
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M(x, E) =
φc(x, E)

B(x)

=
φc(x, E)

α(x)φ̃c(x) + 1− α(x)

≈ φc(x, E), for x near the detector. (5.30)

The last statement follows if the detector is still relatively small. Then,

φ̃c(x) = Cnorm

∫ ∞
0

φ(x, E)φ∗(x, E)dE

=

∫∞
0
φ(x, E)φ∗(x, E)dE

1
VD

∫
VD

∫∞
0
φ(x, E)φ∗(x, E)dEdV

(5.31)

≈ 1, for x near the detector. (5.32)

Finally, the spatial parameter α(x) is used to continuously adjust the distribution

of the Monte Carlo particle flux M(x) from one that is proportional to the scalar

contributon flux φc(x) to one that is constant, depending on the magnitude of φ̃c(x)

relative to the maximum value in the detector, φ̃c
max∈VD

. This flattens the distribution

of particles in regions, such as the forward source region, where the concentration of

Monte Carlo particles may be higher than in the detector region. Effectively, this

flattening forces particles into other spatial regions of the system that are less resolved

statistically, and yet remain important to the detector response. To demonstrate this

more clearly, let us consider what happens if φ̃c(x)� φ̃c
max∈VD

or φ̃c(x)� φ̃c
max∈VD

.

For α(x), this results in

α(x) =

{
0, φ̃c(x)� φ̃c

max∈VD
,

1, φ̃c(x)� φ̃c
max∈VD

.
(5.33)

Thus, α(x) is an exponential within the domain [0, 1]. Using this result in Eq. 5.24,

we obtain the limits of B(x):

B(x) =

{
1, φ̃c(x)� φc

max∈VD
,

φ̃c(x), φ̃c(x)� φ̃c
max∈VD

.
(5.34)
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Finally, the Monte Carlo particle flux at the limits is obtained using Eq. 4.96:

M(x) =

{
φc(x), φ̃c(x)� φ̃c

max∈VD
,

(4πCnorm)−1 , φ̃c(x)� φ̃c
max∈VD

.
(5.35)

where we have used the approximation given by Eq. 5.29 to derive the result for

φ̃c(x)� φ̃max∈VD
. Thus, B(x) normalizes the Monte Carlo particle flux to be flat in

spatial regions that would have a higher Monte Carlo particle flux than in the detector

if B(x) were equal to unity everywhere and to be proportional to the contributon

flux in areas where fewer particles exist than within the detector. Effectively, this

forces Monte Carlo particles to disperse from highly concentrated (resolved) regions

to those that have fewer particles but still contribute to the detector response (or

flux).

As noted earlier, for detectors that are smaller than the forward source region,

B(x) = 1. Under this condition (i.e. VD < VS), we expect that the form of B(x)

given by Eq. 5.24 should limit to unity. To see this, we recall that contributons are

emitted and removed from the system only in the forward source region and the

detector. Thus, we expect the concentration of contributons to be largest in these

regions. To get a measure of the contributon flux in the detector and forward source

regions, we consider the average contributon generation rate in each. We define:

Q̄c
D = average adjoint contributon source rate in the detector

=
1

VD

∫
VD

∫ ∞
0

∫
4π

Q∗(x,Ω, E)ψ(x,Ω, E)dΩdEdV, (5.36)

Q̄c
S = average forward contributon source rate in the forward source region

=
1

VS

∫
VS

∫ ∞
0

∫
4π

Q(x,Ω, E)ψ∗(x,Ω, E)dΩdEdV. (5.37)

Then, using the classic relation given in Eq. 5.15, the ratio of the average generation

rate of contributons in the forward source region to the average generation rate in

the detector is given by:
Q̄c
S

Q̄c
D

=
VD
VS
. (5.38)

This relation indicates that if the forward source region is smaller than the detector

region, there will be a higher concentration of contributons in the forward source

region than in the detector region, and vice versa for a forward source region that is

larger than the detector. Thus, for the case VD < VS, we expect φ̃c(x) < φ̃c
max∈VD

for
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all x ∈ V , which results in α(x)→ 0, or B(x) = 1.

Finally, since B(x) is obtained from a deterministic calculation, we describe the

discretized form of this function. Consistent with the discretization notation, we

use the script subscript c to represent a cell defined by the spatial element Vc. The

superscript c continues to identify the contributon flux. Using this nomenclature,

B(x) is defined as follows:

B(x) = Bc, x ∈ Vc
= αcφ̃

c
c + 1− αc, (5.39)

where

φc
c = Cnorm

G∑
g=1

φc,gφ
∗
c,g, (5.40)

Cnorm =

[
1

VD

∑
c:Vc⊆VD

G∑
g=1

φc,gφ
∗
c,g

]−1

, (5.41)

αc =

1 + e

(
φ̃c

max∈VD

φ̃c
c
− φ̃c

c

φ̃c
max∈VD

)
−1

. (5.42)

The“transform” function has now been completely defined for the source-detector

problem and can be used as described in Section 4.3 to implement the Transform

approach.

5.5 Our Weight Window

In Section 4.2.1, we found that the weight window center w(x, E) and the scalar

Monte Carlo particle flux M(x, E) are related by Eq. 4.9:

w(x, E) =
φ(x, E)

M(x, E)
. (5.43)

For the source-detector flux or response problem, our weight window is used to

distribute Monte Carlo particles according to the scalar contributon flux distribution,

with the same modification used for the Transform approach, i.e. B(x). We define
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the Monte Carlo particle flux as

M(x, E) =
φc(x, E)

B(x)
, (5.44)

where the spatial parameter B(x) was described in detail in the previous section on

the Transform approach (Eq. 5.24). Then, the weight window is approximated as

w(x, E) =
B(x)φ(x, E)

φc(x, E)

≈ B(x)

φ∗(x, E)
, (5.45)

where we approximate the scalar contributon flux φc(x, E) as

φc(x, E) ≈ φ(x, E)φ∗(x, E). (5.46)

This weight window should produce a scalar Monte Carlo particle flux similar to

that of the Transform approach, but without modifying any of the particle physics.

The spatial parameter B(x) accomplishes the same objectives here as it did before:

1. It flattens out the Monte Carlo particle flux M(x) in regions that have a

concentration of Monte Carlo particles that is higher than in the detector,

effectively forcing particles out of regions that are highly resolved statistically

to other regions that contribute to the detector response but are less resolved.

2. It again ensures that rapid changes in the Monte Carlo particle flux do not

occur near the detector due to rapid changes of the spatial parameter α(x) (see

Eq. 5.24). This prevents excessive splitting and rouletting near the detector.

With our weight window completely defined for the source-detector problem, it

can be implemented according to the specifications given in the general section on

weight windows, Section 4.2.

5.6 FW-CADIS

For the source-detector problem, FW-CADIS reduces to the classical weight win-

dow, where the weight window is inversely proportional to the adjoint scalar flux:

w(x, E) =
1

φ∗(x, E)
. (5.47)
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According to Eq. 4.8 given in Section 4.2.1, this weight window results in a Monte

Carlo particle flux that is approximately proportional to the scalar contributon flux:

M(x, E) =
φ(x, E)

w(x, E)

= φ(x, E)φ∗(x, E)

≈ φc(x, E). (5.48)

As mentioned in Chapter IV, it is not clear from the literature whether Monte Carlo

practitioners using this weight window have been aware that it distributes Monte

Carlo particles according to the scalar contributon flux.

As with our weight window, all the details necessary to implement the FW-CADIS

weight window are in Section 4.2.

5.7 Numerical Test Problem

To verify that the methods perform as the theory predicts, and to compare the

methods for efficiency and statistical quality, we consider a relatively simple multi-

group problem that 1) assesses how well the approaches perform on a multigroup

shielding problem, and 2) verifies that the methods perform as the theory predicts.

Specifically, we consider a homogeneous 3-group cube with a localized source in the

center that emits particles in the top energy group.

5.7.1 Problem Description

For this homogenous 3-group problem, the geometry is chosen to be a 50 cm

homogeneous cube with a 2 cm cubic source at its center and vacuum boundaries.

Because this problem is symmetric, we only need to obtain a solution in one octant;

we do this by imposing symmetric (reflecting) boundaries that pass through the

center of the source. Figure 5.1 demonstrates this geometry: a 25 cm homogeneous

cube with a 1 cm cubic source in the corner, symmetric boundary conditions at the

planes that cut through the source, and vacuum boundaries at the exterior planes.

The source is a unit source (1 cm−3s−1), in the first energy group only. The total

cross-section is set equal to unity throughout space and energy (i.e. Σt,g = 1 cm−1).

The scattering matrix is provided in the material data table of Figure 5.1.

To make this problem a true source-detector problem, we placed a 1 cm cubic

detector near the furthest corner from the source, 1.5 cm from all three vacuum
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boundaries. The detector was not placed directly on the boundary of the system

to avoid edge effects, specifically those resulting from being incapable of completely

capturing the property of contributons on the boundary – no leakage due to an

infinite effective total cross-section (see Section 5.1).

Source

(Q1=1 cm-3s-1)

1 cm

25 cm
x

z

y

Σt,g = 1.0 cm-1

Detector

Data \ g 1 2 3
Σt,g (cm−1) 1.0 1.0 1.0

Σs,g→1 (cm−1) 0.6 0.0 0.0
Σs,g→2 (cm−1) 0.1 0.7 0.0
Σs,g→3 (cm−1) 0.05 0.1 0.8
Qg (cm−3s−1) 1.0 0.0 0.0

Figure 5.1: Problem Geometry and Material Properties

Figure 5.2 demonstrates that this problem is indeed a shielding problem, with the

scalar flux being attenuated by 20 orders of magnitude in the first energy group, 18

orders of magnitude in the second group, nearly 16 orders of magnitude in the third

group, and roughly 17 orders of magnitude in the energy-integrated (total) flux. As

can be seen in Figure 5.2, the total flux is composed mostly of group-1 flux near the

source and mostly of group-3 flux near the detector.

The objective of the source-detector flux problem is to obtain scalar flux φD,g for

all g in the detector, where φD,g is defined as

φD,g =
1

VD

∫
VD

∫ Eg−1

Eg

φ(x, E)dEdV. (5.49)

The objective of the source-detector response problem is to obtain the response RD

in the detector. We investigate a special response, the energy-integrated (total) flux,

denoted simply as φD and defined as

φD =
3∑
g=1

φD,g. (5.50)
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Figure 5.2: Scalar Flux along the plane x = y

(For this response, we set ΣR(x, E) = 1.) To analyze the results, we plot the figure of

merit, the simulated scalar Monte Carlo particle flux, and the theoretically predicted

scalar Monte Carlo particle flux for the second energy group and the total flux. These

plots appear in Figures 5.3 - 5.14 and consist of a 2D plane that stretches from the

z-axis to the cube edge farthest from the source (i.e. the plane x = y) and the line

from the source corner to the detector corner (i.e. the line x = y = z). These values

are computed on a uniform 0.5 cm grid that is imposed on the problem geometry.

Thus, the system consists of 125,000 spatial elements, each denoted by Vc. (The

source and detector each consist of eight spatial elements.)

The energy-dependent scalar Monte Carlo particle flux Mc,g and the energy-

integrated scalar Monte Carlo particle flux Mc are volume-averaged quantities de-

termined directly from the Monte Carlo simulation. The figures of merit (FOM) in

each spatial element Vc are defined as

FOMc,g =
1

Var [φc,g]

φ2
c,g

Tcpu

,
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FOMc =
1

Var [φc]

φ2
c

Tcpu

, (5.51)

where Tcpu is the total run time, and φc,g, φc, and the corresponding variances are

volume-averaged quantities obtained directly from the Monte Carlo simulation.

The theoretically predicted energy-dependent scalar Monte Carlo particle flux

M̃c,g averaged over Vc is given for each method as:

M̃XFORM
c,g ≈ C0

φc,gΦ
∗
c,g

Bc

, (5.52)

M̃WW
c,g = C0

φc,gΦ
∗
c,g

Bc

, (5.53)

M̃FWCADIS
c,g = C0φc,gΦ

∗
c,g, (5.54)

where XFORM identifies the Transform approach, WW identifies our weight window,

and FWCADIS identifies the FW-CADIS weight window. To remain consistent

with the Monte Carlo particle flux resulting from the weight window, the Monte

Carlo estimate of the forward scalar flux φc,g is treated as the “exact” forward scalar

flux, and the deterministic estimate of the adjoint scalar flux Φ∗c,g is used since it

corresponds to the weight window. The Transform approach scalar flux estimate is an

approximation of the scalar Monte Carlo flux produced by the Transform approach:

M(x, E) =

∫
4π
ψ(x,Ω, E)ψ∗(x,Ω, E)dΩ

B(x)

≈ C0
φ(x, E)φ∗(x, E)

B(x)
. (5.55)

For all three approaches, the theoretically predicted energy-integrated scalar

Monte Carlo particle flux M̃c is given as:

M̃c =
3∑
g=1

M̃c,g. (5.56)

For both the response problem and flux problem, the energy-dependent scalar

flux φc,g and the total scalar flux φc are tallied, even though the flux problem is

tailored to obtain just φc,g and the response problem is tailored to obtain φc. To see

the difference between the flux problem and the response problem, we examine the

data in a representative energy group – the second group – and the data for the total
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flux. We expect that the methods tailored to the flux problem will produce better

statistical results for the second energy group, while those tailored to the response

(total flux) problem will produce better statistical results for the total flux data.

5.7.2 Numerical Results

The group-2 data for the flux problem is presented in Figures 5.3 - 5.5, including

the figure of merit, the simulated Monte Carlo particle flux, and the theoretically

predicted Monte Carlo particle flux; the corresponding group-2 data for the response

(total flux) problem appears in Figures 5.6 - 5.8. Likewise, the total flux data for

the flux problem is presented in Figures 5.9 - 5.11 and the corresponding data for

the response problem appears in Figures 5.12 - 5.14. For clarity, all the 2D figures

have a black rectangle in the upper right corner to denote the detector region and

a dashed line tracing out the diagonal from the source to the detector (i.e. the line

x = y = z). The 1D figures are plots along this line with dashed vertical lines

indicating the detector location. Table 5.1 and Table 5.2 provide the detector FOM

and the simulated Monte Carlo particle flux, respectively, for each energy group and

for all methods and problems.

Table 5.1: Detector FOM for all methods and all groups

Problem Method
FOM

Group 1 Group 2 Group 3 Total

Flux
(φD,g)

FW-CADIS 0.502 0.949 2.043 2.204
WW 0.496 0.989 2.125 2.308

XFORM 6.752 6.246 7.720 8.443

Response
(φD)

FW-CADIS 0.015 0.204 4.556 4.674
WW 0.015 0.216 4.816 4.942

XFORM 0.125 1.344 23.22 24.53

The data in Table 5.1 indicates that the Transform approach performs more

efficiently in every energy group for both the flux problem and the response problem.

For the flux problem, in which we wish to obtain statistical results in every energy

group, the Transform approach FOM is 13 times greater than that of the weight

window approaches in the first energy group, over 6 times greater in the second

energy group, nearly 4 times greater in the third energy group, and nearly 4 times

greater for the total flux. For the response problem, in which we wish to optimize

the calculation to obtain the total flux, the Transform approach FOM is over 8 times

greater than that of the weight window approaches in the first energy group, over 6
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Table 5.2: Detector simulated MC particle flux for all methods and all groups

Problem Method
Simulated MC Particle Flux

Group 1 Group 2 Group 3 Total

Flux
(φD,g)

FW-CADIS 0.020 0.015 0.020 0.055
WW 0.038 0.029 0.039 0.106

XFORM 0.111 0.081 0.100 0.293

Response
(φD)

FW-CADIS 0.00016 0.0018 0.047 0.049
WW 0.00035 0.0040 0.104 0.108

XFORM 0.00127 0.0134 0.253 0.266
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Figure 5.3: Group 2 FOM for Source-Detector (SD) Flux Problem
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Figure 5.4: Group 2 Simulated MC Particle Flux for SD Flux Problem
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Figure 5.5: Group 2 Predicted MC Particle Flux for SD Flux Problem
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Figure 5.6: Group 2 FOM for SD Response Problem
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Figure 5.7: Group 2 Simulated MC Particle Flux for SD Response Problem
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Figure 5.8: Group 2 Predicted MC Particle Flux for SD Response Problem
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Figure 5.9: Total FOM for SD Flux Problem
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Figure 5.10: Total Simulated MC Particle Flux for SD Flux Problem
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Figure 5.11: Total Predicted MC Particle Flux for SD Flux Problem
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Figure 5.12: Total FOM for SD Response Problem
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Figure 5.13: Total Simulated MC Particle Flux for SD Response Problem
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Figure 5.14: Total Predicted MC Particle Flux for SD Response Problem
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time greater in the second energy group, 5 times greater in the third energy group,

and nearly 5 times greater for the total flux. The weight window approaches are

nearly equal since the detector is the same size as the forward source region, so that

B(x) is close to unity for our weight window.

In addition, the flux problem data in Table 5.1 demonstrate a much more uniform

FOM from group to group than does the response problem data. For the flux problem

data, the weight window methods both have a FOM that varies by a factor of 4 across

the three energy groups, and the Transform approach has a FOM that varies by a

factor of 1.3. For the response problem data, the weight window methods both have a

FOM that varies by a factor of 300 across the three energy groups, and the Transform

approach varies by by a factor of nearly 200. This is to be expected: the objective of

the flux problem is to achieve roughly uniform results for every energy group, while

the objective of the response problem is to optimize the total flux. Since most of the

contribution to the total flux in the detector comes from the third energy group, the

third energy group should be the most resolved statistically.

The data provided in Table 5.1 show that if the objective is to obtain good

results for every energy group, the flux problem should be solved; if the objective

is to obtain the total flux, the response problem should be solved. This is clearly

seen by comparing the flux problem FOM to the response problem FOM for the first

energy group and for the total flux. In the first energy group, the FOM values for

the flux problem are 200-300 times greater than for the response problem; while for

the total flux, the FOM values for the response problem are 2-3 times greater than

for the flux problem. Therefore, each method has its utility.

Figures 5.3, 5.6, 5.9, and 5.12 demonstrate the distribution of the FOM in the 2D

plane (x = y) and along the diagonal (x = y = z). The figures show that the FOM

is greatest along the diagonal from the source to the detector. Figures 5.3 and 5.6

further clarify the difference between the flux problem and response problem, where

the response problem FOM decreases much more rapidly than the flux problem FOM,

due to the negligible contribution of the group-2 flux to the response (total flux). All

the figures except Figure 5.6 show a saddle-like shape that peaks at the source and

detector. Intuitively, this FOM distribution should resolve the detector response

(flux) reasonably well, since the regions of space that have the largest contribution

to the detector response (flux) are the most resolved statistically (i.e. have the largest

FOM).

To explain some of the results observed in the FOM figures and table, we in-

vestigate the Monte Carlo particle flux. Specifically, we are interested in whether a
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correlation exist between the FOM and the Monte Carlo particle flux, and whether

the theory developed in Chapter IV accurately predicts the simulated Monte Carlo

particle flux.

Table 5.2 demonstrates that, for the flux problem, all the methods approximately

populate the detector with the same Monte Carlo particle flux. For all three methods,

the Monte Carlo particle flux across the three energy groups varies by only a factor

of roughly 1.4, a small differential compared to the physical neutron flux, which

varies by nearly two orders of magnitude from the first group to the third group.

For the response problem, Table 5.2 shows that the Monte Carlo particle flux varies

dramatically from group 1 to group 3 – by at least two orders of magnitude. The

proportion of Monte Carlo particles within each group is roughly proportional to the

scalar neutron flux within each group in the detector. (The group-3 scalar neutron

flux is roughly an order of magnitude larger than the group-2 scalar flux and 2 orders

of magnitude larger than the group-1 scalar flux.) These results, for both the flux

and response problem, are consistent with the desired objectives of each method.

To further illustrate that the simulations behave as theoretically predicted, we

compare the simulated Monte Carlo particle flux to the theoretically predicted Monte

Carlo particle flux. The simulated Monte Carlo particle flux is depicted in Figures

5.4, 5.7, 5.10, and 5.13 for the various problems and the corresponding predicted

Monte Carlo particle flux is shown in Figures 5.5, 5.8, 5.11, and 5.14. The 1D Monte

Carlo particle flux plots include both the simulated (actual) data and the predicted

(theory) data to better compare the accuracy of the theory. By comparing the 1D

and 2D figures, we observe that there is very good agreement between the simulated

and predicted Monte Carlo particle flux. The most significant deviation exists in

the Transform approach, where the predicted Monte Carlo particle flux is only an

approximation. Both weight window methods, however, show nearly exact agreement

between the theoretical predictions and the simulated values.

Finally, by examining the Monte Carlo particle flux figures, it is clear that a

correlation exists between the Monte Carlo particle flux and the FOM, since the

shape of the curves is similar. However, by comparing the FOM data in Table 5.1

with the simulated Monte Carlo particle flux data in Table 5.2, we find that they are

only loosely correlated. For example, in the flux problem the weight window FOM

values vary by a factor of 4 across groups while the Monte Carlo particle flux varies by

only 1.4. This indicates that there are other factors besides the Monte Carlo particle

flux that influence the FOM. However, it does seem that up to a point, a higher

particle flux does correlate with a larger FOM. This can be observed in the response
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problem data, where each group has a progressively higher FOM corresponding to a

progressively higher particle flux.

5.8 Summary

In this section, we have described the source-detector problem – both the response

problem and flux problem. To solve both problems, we chose to distribute the Monte

Carlo particle flux according to the contributon flux (or some slightly modified form

of the contributon flux) by employing an appropriate weight window or “transform”

function. To implement either the weight windows or Transform approach, it was

necessary to define the adjoint problem that corresponds to the intended solution –

the detector flux or response. We did this by first determining an appropriate adjoint

contributon source and then obtaining the corresponding adjoint neutron source.

Finally, we examined a simple 3-group test problem to validate the theory and assess

the performance of each method. The results indicate that the theory is correct:

for a given weight window or “transform” function, the Monte Carlo particle flux

is determined. The results also indicate that despite the additional computational

cost per particle of the Transform approach, it produces a larger FOM than the

weight window methods, since it more faithfully models the physics of the forward

contributon equation. Lastly, it was determined that the FOM and the Monte Carlo

particle flux are correlated, but only loosely. Thus, the theory presented here allows

us to very precisely specify the Monte Carlo particle flux, but only approximately

optimize the FOM.
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Chapter VI

Source-Region Problems

In source-region problems, we wish to estimate a solution throughout a significant

region of the system rather than just in a small detector, as in the source-detector

problem. However, like the source-detector problem, there are two types of source

region problems – the flux problem and the response problem. The objective of the

source-region flux problem is to obtain the scalar neutron flux φ(x, E) throughout

the region of interest; the objective of the source-region response problem is to obtain

the response

R(x) =

∫ ∞
0

ΣR(x, E)φ(x, E)dE, (6.1)

throughout the region of interest.

To solve these problems, we extend the concepts developed in the previous chapter

for the source-detector problem. Namely, the Monte Carlo particle flux is distributed

proportional to a contributon flux, since this distribution corresponds to the relative

contribution of a particle at a point in phase-space to the response (or flux). As in the

source-detector problem, by defining the adjoint contributon source in a specific way,

a Monte Carlo particle flux distribution is achieved that corresponds to the intended

solution – flux or response. From the adjoint contributon source, the adjoint neutron

source is determined, and the adjoint problem can be solved and used to implement

the weight window and Transform approaches.
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6.1 The Response Problem

As previously mentioned, in source-region response problems we wish to obtain

an energy-integrated response

R(x) =

∫ ∞
0

∫
4π

ΣR(x, E)ψ(x,Ω, E)dΩdE (6.2)

in a region VR of the system V . In all three approaches – the Transform approach, our

weight window, and FW-CADIS – a suitable adjoint contributon source is defined

as:

Qc(x,Ω, E) =


ΣR(x, E)ψ(x,Ω, E)∫∞

0

∫
4π

ΣR(x, E ′)ψ(x,Ω′, E ′)dΩ′dE ′
, for x ∈ VR,

0, otherwise.

(6.3)

At every point x, this source emits contributons (response particles) at a rate pro-

portional to their relative contribution to the spatial response R(x). Also, the total

contributon emission rate is the same for every point x ∈ VR, i.e.,

Qc(x) =

∫ ∞
0

∫
4π

Qc(x,Ω, E)dΩdE

= 1. (6.4)

Thus, every spatial location x essentially functions as a point detector which emits

contributons at a rate proportional to the contribution to the response R(x), and

every point detector is treated with equal importance by emitting particles at the

same rate. Thus, the source-region problem can be viewed as the superposition of

many source-detector problems, where each detector is a point x ∈ VR.

The adjoint neutron source is determined from Eq. 5.12:

Q∗(x,Ω, E) =
Qc(x,Ω, E)

ψ(x,Ω, E)

=


ΣR(x, E)∫∞

0

∫
4π

ΣR(x, E ′)ψ(x,Ω′, E)dΩ′dE ′
, for x ∈ VR,

0, otherwise.

(6.5)

With the adjoint problem completely defined, the various methods can be imple-

mented to solve the source-region response problem. Each method is discussed later

in this chapter.
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6.2 The Flux Problem

In source-region flux problems we wish to obtain the energy-dependent scalar flux

φ(x, E) in the region VR. Just as in the previous section on the response problem, the

adjoint contributon source must be defined. For all three approaches – FW-CADIS,

our weight window, and the Transform approach – a suitable adjoint contributon

source is defined as:

Qc(x,Ω, E) =


ψ(x,Ω, E)

φ(x, E)
, for x ∈ VR,

0, otherwise.
(6.6)

At every spatial location x in the region and for every energy E, this adjoint contribu-

ton source emits contributons at a uniform rate (i.e. Qc(x, E) =
∫

4π
Qc(x,Ω, E)dΩ =

1) with an angular distribution proportional to their contribution to the scalar flux.

Similar to the response problem, every point x essentially functions as a point detec-

tor that uniformly emits contributons in energy. This results in a contributon flux

that corresponds most closely to obtaining a statistically resolved estimate of the

scalar flux for every energy.

The adjoint neutron source is determined from Eq. 5.12:

Q∗(x,Ω, E) =
Qc(x,Ω, E)

ψ(x,Ω, E)

=


1

φ(x, E)
, for x ∈ VR,

0, otherwise.
(6.7)

6.3 The Transform Approach

Now that the adjoint problem has been completely defined for the source-region

problems – flux and response – the transform approach is easily implemented. The

“transform” function that we use in this thesis is given by Eq. 4.104 as

T̂ (x,Ω, E) =
B(x)

ψ∗(x,Ω, E)
. (6.8)

This transform function produces a angular Monte Carlo particle flux distribution

proportional to the angular contributon flux, modified by the spatial parameter B(x):

m(x,Ω, E) =
ψc(x,Ω, E)

B(x)
. (6.9)
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For source-region problems, B(x) [defined below in Eq. 6.10] achieves three things:

1. Within the region of interest, it results in an energy-dependent Monte Carlo

particle flux M(x, E) that is proportional to the relative contribution of the

Monte Carlo particles to the response (flux) at x and produces an energy-

integrated Monte Carlo flux M(x) that is approximately uniform across the

region. Thus Monte Carlo particles are roughly distributed uniformly in space

within the region and in energy according to their relative contribution to the

space-dependent response or flux.

2. Outside the“detector”region, it distributes Monte Carlo particles in proportion

to the contributon flux, but it flattens out the Monte Carlo particle flux in

regions with a concentration of Monte Carlo particles that is higher than in

the “detector” region. Effectively, this forces particles out of regions that are

highly resolved statistically, such as the forward source region, into other spatial

regions that contribute to the region response or flux but are less resolved.

3. It ensures that rapid changes in the Monte Carlo particle flux do not occur near

the boundary of the region. This prevents excessive splitting and rouletting

near the region.

The form of B(x) for source-region problems is given as

B(x) =

{
φ̃c(x), for x ∈ VR,

α(x)φ̃c(x) + 1− α(x), otherwise,
(6.10)

where all the parameters except the normalization constant are defined exactly as

they were for source-detector problems:

φ̃c(x) =

∫ ∞
0

φ(x, E)φ̃∗(x, E)dE, (6.11)

φ̃∗(x, E) = Cnormφ
∗(x, E), (6.12)

Cnorm =

[
A−1
∂VR\∂V

∫
∂VR\∂V

∫ ∞
0

φ(x, E)φ∗(x, E)dEdA

]−1

, (6.13)

α(x) =

1 + e

(
φ̃c

max∈VR

φ̃c(x)
− φ̃c(x)

φ̃c
max∈VR

)
−1

. (6.14)

Here φ̃c(x) is a normalized approximation to the energy-integrated scalar contribu-

ton flux φc(x), α(x) is used outside the region of interest to continuously adjust the
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distribution of the Monte Carlo particle flux M(x) from one that is proportional

to the scalar contributon flux φc(x) to one that is constant (depending on the mag-

nitude of φ̃c(x) relative to the maximum value in the region φ̃c
max∈VR

), and Cnorm

is a normalization constant that scales the adjoint scalar flux to ensure that rapid

changes in the Monte Carlo particle flux (resulting from splitting or Russian roulette)

do not occur at the boundary of the region of interest due to rapid changes in the

spatial parameter α(x). The set-theory notation ∂VR \ ∂V denotes all points x on

the boundary of the region of interest but not on the boundary of the system. This

set of points constitutes a portion of the surface of the region; it has a surface area

denoted by A∂VR\∂V .

To see how B(x) accomplishes the first objective – that Monte Carlo particles

are roughly distributed uniformly in space within the region and according to their

relative contribution to the space dependent response or flux – we begin with Eq.

4.96:

M(x, E) =
φc(x, E)

B(x)

=
φc(x, E)

φ̃c(x)
, x ∈ VR

≈ (4πCnorm)−1φ
c(x, E)

φc(x)
, x ∈ VR. (6.15)

The last statement follows from Eq. 5.29. Finally, integrating Eq. 6.15 over energy,

we obtain the energy-integrated (total) Monte carlo particle flux at x ∈ VR:

M(x) ≈ (4πCnorm)−1, x ∈ VR. (6.16)

Together, Eq. 6.15 and 6.16 affirm the first objective – that the Monte Carlo particle

flux is uniformly distributed in VR and according to the relative contribution to the

response (or flux) in energy.

The rationale for the second objective – to flatten a high concentration of Monte

Carlo particles outside the region – follows from the analysis provided in Chapter V,

since the form of B(x) outside the region is the same for the source-detector problem

(see Eq. 5.35). To understand how the constant Cnorm approximately normalizes the

adjoint flux to prevent major fluctuations in the Monte Carlo particle flux near the
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transition area at the region boundary, we begin with Eq. 4.96:

M(x, E) =
φc(x, E)

B(x)

=
φc(x, E)

α(x)φ̃c(x) + 1− α(x)

≈ φc(x, E), for x near the region boundary. (6.17)

The last statement follows if the contributon flux does not vary dramatically along

the boundary of the region. Then,

φ̃c(x) = Cnorm

∫ ∞
0

φ(x, E)φ∗(x, E)dE

=

∫∞
0
φ(x, E)φ∗(x, E)dE

A−1
∂VR\∂V

∫
∂VR\∂V

∫∞
0
φ(x, E)φ∗(x, E)dEdA

≈ 1, for x near the region boundary. (6.18)

Thus, inside the region of interest, the source-region form of B(x) achieves a

roughly uniform Monte Carlo particle flux with an energy distribution that is pro-

portional to the relative contribution to the spatially-dependent response or flux.

Outside the region, B(x) distributes particles according to the contributon flux ex-

cept in regions with relatively high concentrations of Monte Carlo particles; in these

regions, the Monte Carlo particle flux is flattened by forcing Monte Carlo particles

to disperse to other statistically important regions with a lower concentrations of

Monte Carlo particles.

The “transform” function has now been completely defined for the source-region

problem and can be used as described in Section 4.3 to implement the Transform

approach.

6.4 Our Weight Window

In Section 4.2.1, we found that the weight window center w(x, E) and the scalar

Monte Carlo particle flux M(x, E) are related by Eq. 4.9:

w(x, E) =
φ(x, E)

M(x, E)
. (6.19)
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For the source-region flux or response problem, our weight window is used to dis-

tribute Monte Carlo particles according to the scalar contributon flux distribution,

with the same modification used for the Transform approach, i.e. B(x). We define

the Monte Carlo particle flux as

M(x, E) =
φc(x, E)

B(x)
, (6.20)

where the spatial parameter B(x) was described in detail in the previous section on

the Transform approach (see Eq. 6.10). Then, the weight window is approximated

as

w(x, E) =
B(x)φ(x, E)

φc(x, E)

≈ B(x)

φ∗(x, E)
, (6.21)

where we have approximated the scalar contributon flux φc(x, E) as

φc(x, E) ≈ φ(x, E)φ∗(x, E). (6.22)

This weight window produces a scalar Monte Carlo particle flux similar to that

of the Transform approach, but without modifying any of the particle physics. The

spatial parameter B(x) accomplishes the same objectives here:

1. Within the region of interest, it results in an energy-dependent Monte Carlo

particle flux M(x, E) that is proportional to the relative contribution of the

Monte Carlo particles to the response (flux) at x and produces an energy-

integrated Monte Carlo flux M(x) that is approximately uniform across the

region. Thus, Monte Carlo particles are roughly distributed uniformly in space

within the region and according to their relative contribution to the space-

dependent response or flux.

2. Outside the “detector” region, it flattens out the Monte Carlo particle flux

M(x) in regions with a higher concentration of Monte Carlo particles than in

the “detector” region, effectively forcing particles out of those regions that are

highly resolved statistically to other regions that contribute to the “detector”

region response but are less resolved.

3. It ensures that rapid changes in the Monte Carlo particle flux do not occur
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near the region due to rapid changes of the spatial parameter α(x) (see Eq.

6.10). This prevents excessive splitting and rouletting near the boundary of

the region.

With our weight window completely defined for the source-region problem, it can

be implemented according to the specifications given in the general section on weight

windows, Section 4.2.

6.5 FW-CADIS

For the source-region problem, the FW-CADIS weight window maintains the form

of the classical weight window, which is inversely proportional to the adjoint scalar

flux:

w(x, E) =
1

φ∗(x, E)
. (6.23)

Again, according to Eq. 4.8 given in Section 4.2.1, this weight window results in a

Monte Carlo particle flux that is approximately proportional to the scalar contributon

flux:

M(x, E) =
φ(x, E)

w(x, E)

= φ(x, E)φ∗(x, E)

≈ φc(x, E). (6.24)

As with our weight window, all the details necessary to implement the FW-CADIS

weight window are in Section 4.2.

6.6 Numerical Test Problem

To verify that the methods perform as the theory predicts, and to compare the

methods for efficiency and statistical quality, we consider the simple 3-group problem

introduced in the previous chapter with an enlarged“detector” region VR. Our objec-

tives remain the same: 1) to assess how well the approaches perform on a multigroup

shielding problem, and 2) to verify that the methods perform as the theory predicts.

6.6.1 Problem Description

Figure 6.1 demonstrates the geometry: a 25 cm homogeneous cube with a 1 cm

cubic source in the corner, symmetric boundary conditions at the planes that cut

144



through the source, and vacuum boundaries at the exterior planes. The source is a

unit source (1 cm−3s−1), in the first energy group only. The total cross-section is

set equal to unity throughout space and energy (i.e. Σt,g = 1 cm−1). The scattering

matrix is provided in the material data section of the Figure 6.1.

To make this problem a source-region problem, we select an 8 cm cubic region

in the furthest corner from the source, 1.5 cm from all three vacuum boundaries.

Just as in the source-detector problem, the region was selected to be away from the

boundary of the system to avoid edge effects, specifically those resulting from being

incapable of completely capturing the property of contributons on the boundary–no

leakage due to an infinite effective total cross-section (see Section 5.1).

Source

(Q1=1 cm-3s-1)

1 cm

25 cm
x

z

y

Σt,g = 1.0 cm-1

Detector

8 cm

Data \ g 1 2 3
Σt,g (cm−1) 1.0 1.0 1.0

Σs,g→1 (cm−1) 0.6 0.0 0.0
Σs,g→2 (cm−1) 0.1 0.7 0.0
Σs,g→3 (cm−1) 0.05 0.1 0.8
Qg (cm−3s−1) 1.0 0.0 0.0

Figure 6.1: Problem Geometry and Material Properties

Figure 6.2 again demonstrates that this problem is indeed a shielding problem,

with the scalar flux being attenuated by 20 orders of magnitude in the first energy

group, 18 orders of magnitude in the second group, nearly 16 orders of magnitude in

the third group, and roughly 17 orders of magnitude in the energy-integrated (total)

flux. Within the region of interest, the scalar flux is attenuated by over 5 orders of

magnitude in the first and second energy group, and nearly 5 orders of magnitude in

the third energy group and for the total flux. As can be seen from the figures, the

total flux is composed mostly of group-1 flux near the source and mostly of group-3

flux near the “detector” region.

The objective of the source-region flux problem is to obtain the scalar flux φc,g

for every energy group g and in every spatial element Vc within the region VR, where
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(d) Total

Figure 6.2: Scalar Flux along the plane x = y

the scalar flux φc,g is defined as

φc,g =
1

Vc

∫
Vc

∫ Eg−1

Eg

φ(x, E)dEdV. (6.25)

The objective of the source-region response problem is to obtain the response Rc in

each spatial element Vc within the region VR. We again investigate a special response,

the energy-integrated (total) flux, denoted simply as φc and defined as

φc =
3∑
g=1

φc,g. (6.26)

(For this response, we set ΣR(x, E) = 1.) To analyze the results, we plot the figure

of merit, the simulated scalar Monte Carlo particle flux, the theoretically predicted

scalar Monte Carlo particle flux, and the region statistics for the second energy group

and the total flux. These plots appear in Figures 6.3 - 6.18 and consist of a 2D plane

that stretches from the z-axis to the cube edge farthest from the source (i.e. the plane

x = y), the line from the source corner to the far corner (i.e. the line x = y = z),

and the FOM and Monte Carlo particle flux statistics throughout the entire region
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of interest. These values are computed on a uniform 0.5 cm grid that is imposed on

the problem geometry. Thus, the system consists of 125,000 spatial elements, each

denoted by Vc. (The source contains 8 spatial elements and the “detector” region

contains 4,096.)

The energy-dependent scalar Monte Carlo particle flux Mc,g and the energy-

integrated scalar Monte Carlo particle flux Mc are volume-averaged quantities de-

termined directly from the Monte Carlo simulation. The figures of merit (FOM) in

each spatial element Vc are defined as

FOMc,g =
1

Var [φc,g]

φ2
c,g

Tcpu

,

FOMc =
1

Var [φc]

φ2
c

Tcpu

, (6.27)

where Tcpu is the total run time, and φc,g, φc, and the corresponding variances are

volume-averaged quantities obtained directly from the Monte Carlo simulation.

The theoretically predicted energy-dependent scalar Monte Carlo particle flux

M̃c,g averaged over Vc is given for each method as:

M̃XFORM
c,g ≈ C0

φc,gΦ
∗
c,g

Bc

, (6.28)

M̃WW
c,g = C0

φc,gΦ
∗
c,g

Bc

, (6.29)

M̃FWCADIS
c,g = C0φc,gΦ

∗
c,g, (6.30)

where XFORM identifies the Transform approach, WW identifies our weight window,

and FWCADIS identifies the FW-CADIS weight window. To remain consistent with

the Monte Carlo particle flux resulting from the weight window, the Monte Carlo

estimate of the forward scalar flux φc,g is treated as the“exact”forward scalar flux and

the deterministic estimate of the adjoint scalar flux Φ∗c,g is used since it corresponds to

the weight window. The transform approach scalar flux estimate is an approximation

of the scalar Monte Carlo flux produced by the Transform approach:

M(x, E) =

∫
4π
ψ(x,Ω, E)ψ∗(x,Ω, E)dΩ

B(x)

≈ C0
φ(x, E)φ∗(x, E)

B(x)
. (6.31)
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For all three approaches, the theoretically predicted energy-integrated scalar

Monte Carlo particle flux M̃c is given as:

M̃c =
3∑
g=1

M̃c,g. (6.32)

For both the response problem and flux problem, the energy-dependent scalar

flux φc,g and the total scalar flux φc are tallied, even though the flux problem is

tailored to obtain just φc,g and the response problem is tailored to obtain φc. To see

the difference between the flux problem and the response problem, we examine the

data in a representative energy group – the second group – and the data for the total

flux. We expect that the methods tailored to the flux problem will produce better

statistical results for the second energy group, while those tailored to the response

(total flux) problem will produce better statistical results for the total flux data.

6.6.2 Numerical Results

The group-2 data for the flux problem is presented in Figures 6.3 - 6.6, including

the figure of merit, the simulated Monte Carlo particle flux, the theoretically pre-

dicted Monte Carlo particle flux, and the region statistics; the corresponding group-2

data for the response (total flux) problem appears in Figures 6.7 - 6.10. Likewise, the

total flux data for the flux problem is presented in Figures 6.11 - 6.14 and the corre-

sponding data for the response problem appears in Figures 6.15 - 6.18. For clarity,

all the 2D figures contain a black rectangle to denote the region and a dashed line to

trace out the diagonal from the source to the far corner (i.e. the line x = y = z). The

1D figures are plots along this line with dashed vertical lines indicating the region

location. In addition, Tables 6.1 - 6.4 and Tables 6.5 - 6.8 provide the region FOM

and the simulated Monte Carlo particle flux statistics, respectively, for each energy

group and for all methods and problems.

For source-region problems, in which a solution is obtained in every spatial ele-

ment in the region, a single metric for assessing and comparing methods does not

exist. However, one measure that conveys some information about the efficiency and

accuracy of the solution in the entire region is the median FOM, since it relays that

half the spatial elements in the region have an FOM below this value and half have

an FOM that is greater than this value. (In addition, the maximum and minimum

values of the FOM could be used to bound the FOM in the lower and upper half.)

In this thesis, we use the median value as well as figures to assess and compare the

148



Table 6.1: Region FOM statistics for group-1 flux

Problem Method
Group-1 FOM

Min Max Median Mean

Flux
(φc,g)

FW-CADIS 0.027 0.428 0.193 0.204
WW 0.045 0.486 0.313 0.300

XFORM 0.081 1.675 1.073 1.024

Response
(φc)

FW-CADIS 0.00041 0.040 0.0069 0.0090
WW 0.0011 0.046 0.013 0.014

XFORM 0.0011 1.127 0.035 0.040

Table 6.2: Region FOM statistics for group-2 flux

Problem Method
Group-2 FOM

Min Max Median Mean

Flux
(φc,g)

FW-CADIS 0.040 0.647 0.279 0.298
WW 0.058 0.769 0.526 0.495

XFORM 0.086 1.636 1.055 1.008

Response
(φc)

FW-CADIS 0.0066 0.254 0.065 0.078
WW 0.011 0.297 0.129 0.128

XFORM 0.016 1.641 0.281 0.288

Table 6.3: Region FOM statistics for the group-3 flux

Problem Method
Group-3 FOM

Min Max Median Mean

Flux
(φc,g)

FW-CADIS 0.066 1.138 0.498 0.535
WW 0.092 1.370 1.008 0.937

XFORM 0.115 1.821 1.259 1.189

Response
(φc)

FW-CADIS 0.143 2.478 1.106 1.179
WW 0.212 2.888 2.165 2.004

XFORM 0.322 4.875 3.376 3.185

Table 6.4: Region FOM statistics for the total flux

Problem Method
Total Flux FOM

Min Max Median Mean

Flux
(φc,g)

FW-CADIS 0.072 1.138 0.567 0.616
WW 0.103 1.556 1.161 1.071

XFORM 0.129 2.118 1.456 1.367

Response
(φc)

FW-CADIS 0.149 2.685 1.163 1.246
WW 0.225 2.991 2.276 2.104

XFORM 0.339 5.324 3.702 3.469
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Table 6.5: Region simulated MC particle flux for the group-1 flux

Problem Method
Group-1 Simulated MC Particle Flux
Min Max Median Mean

Flux
(φc,g)

FW-CADIS 4.4E-05 0.0022 0.00060 0.00072
WW 0.032 0.050 0.040 0.040

XFORM 0.042 0.264 0.121 0.130

Response
(φc)

FW-CADIS 3.1E-07 0.00014 1.6E-05 2.4E-05
WW 0.00032 0.0030 0.0010 0.0010

XFORM 0.00042 0.013 0.0025 0.0031

Table 6.6: Region simulated MC particle flux for the group-2 flux

Problem Method
Group-2 Simulated MC Particle Flux
Min Max Median Mean

Flux
(φc,g)

FW-CADIS 3.8E-05 0.0019 0.00056 0.00066
WW 0.031 0.046 0.037 0.037

XFORM 0.041 0.162 0.103 0.103

Response
(φc)

FW-CADIS 7.2E-06 0.00074 0.00013 0.00018
WW 0.0044 0.015 0.0082 0.0084

XFORM 0.0059 0.060 0.020 0.023

Table 6.7: Region simulated MC particle flux for the group-3 flux

Problem Method
Group-3 Simulated MC Particle Flux
Min Max Median Mean

Flux
(φc,g)

FW-CADIS 6.1E-05 0.0025 0.00082 0.00094
WW 0.046 0.062 0.052 0.052

XFORM 0.064 0.157 0.126 0.124

Response
(φc)

FW-CADIS 0.00018 0.0068 0.0023 0.0026
WW 0.117 0.156 0.135 0.135

XFORM 0.141 0.376 0.295 0.291

Table 6.8: Region simulated MC particle flux for the total flux

Problem Method
Total Simulated MC Particle Flux

Min Max Median Mean

Flux
(φc,g)

FW-CADIS 0.00014 0.0065 0.0020 0.0023
WW 0.112 0.158 0.129 0.129

XFORM 0.146 0.569 0.351 0.357

Response
(φc)

FW-CADIS 0.00018 0.0076 0.0024 0.0028
WW 0.123 0.170 0.145 0.144

XFORM 0.148 0.429 0.320 0.317
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Figure 6.3: Group-2 FOM for SR Flux Problem

151



1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0  5  10  15  20  25  30  35

d = (x2 + y2)1/2

 0

 5

 10

 15

 20

 25

z

(a) Transform Approach (2D)

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0  5  10  15  20  25  30  35

d = (x2 + y2)1/2

 0

 5

 10

 15

 20

 25

z

(b) Our Weight Window (2D)

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0  5  10  15  20  25  30  35

d = (x2 + y2)1/2

 0

 5

 10

 15

 20

 25

z

(c) FW-CADIS (2D)

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  5  10  15  20  25  30  35  40  45

FW-CADIS
WW

XFORM

(d) All Methods (1D)

Figure 6.4: Group-2 Simulated MC Particle Flux for SR Flux Problem

152



1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0  5  10  15  20  25  30  35

d = (x2 + y2)1/2

 0

 5

 10

 15

 20

 25

z

(a) Transform Approach (2D)

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0  5  10  15  20  25  30  35

d = (x2 + y2)1/2

 0

 5

 10

 15

 20

 25

z

(b) Our Weight Window (2D)

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0  5  10  15  20  25  30  35

d = (x2 + y2)1/2

 0

 5

 10

 15

 20

 25

z

(c) FW-CADIS (2D)

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  5  10  15  20  25  30  35  40  45

FW-CADIS (actual)
FW-CADIS (theory)
WW (actual)
WW (theory)
XFORM (actual)
XFORM (theory)

(d) All Methods (1D)
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Figure 6.9: Group-2 Predicted MC Particle Flux for SR Response Problem
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Figure 6.12: Total Simulated MC Particle Flux for SR Flux Problem

158



performance of the various methods.

The FOM data in Tables 6.1 - 6.4 indicate that the Transform approach performs

most efficiently in every energy group for both the flux problem and the response

problem, as determined by the median FOM. These tables also indicate that our

weight window performs better than the FW-CADIS weight window. For the flux

problem, in which we wish to obtain statistical results in every energy group, the

Transform approach has a median FOM that is 3-6 times greater than that of the

weight window approaches in the first energy group, 2-4 times greater in the second

energy group, 1-3 times greater in the third energy group, and 1-3 times greater for

the total flux. For the response problem, in which we wish to optimize the calculation

to obtain the total flux, the Transform approach median FOM is 3-5 times greater

than that of the weight window approaches in the first energy group, 2-4 time greater

in the second energy group, 2-3 times greater in the third energy group, and 2-3 times

greater for the total flux. Figures 6.6 and 6.10 present the group-2 FOM statistics

for the entire region, specifically, the number of spatial elements that correspond to

a particular FOM for the flux problem and response problem, respectively; Figures

6.14 and 6.18 are the corresponding FOM data for the total flux. In each figure, it

is clear that the Transform approach has more spatial elements at a higher FOM

than the weight window methods. Between the weight window methods, our weight

window has a larger number of spatial elements at a higher FOM. Thus the figures

are consistent with the analysis using the median FOM as a metric.

Just as in the source-detector flux problem, the source-region flux problem data

in Tables 6.1 - 6.4 demonstrate a much more uniform median FOM from group to

group than does the response problem data. For the flux problem data, the weight

window methods both have a median FOM that varies by a factor of roughly 3 across

the three energy groups, and the Transform approach has a median FOM that varies

by a factor of 1.2. For the response problem data, the weight window methods both

have a FOM that varies by a factor of 150 across the three energy groups, and the

Transform approach varies by by a factor of nearly 100. This is to be expected, since

the objective of the flux problem is to achieve roughly uniform results for every energy

group, while the objective of the response problem is to optimize the total flux. Since

most of the contribution to the total flux in the region comes from the third energy

group, we expect the third energy group to be the most resolved statistically.

The data provided in Tables 6.1 - 6.4 show that if the objective is to obtain good

results for every energy group, the flux problem should be solved; if the objective

is to obtain the total flux, the response problem should be solved. This is clearly
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seen by comparing the flux problem FOM to the response problem FOM for the first

energy group and for the total flux. In the first energy group, the median FOM

values for the flux problem are 25-30 times greater than for the response problem;

while for the total flux, the median FOM values for the response problem are 2-3

times greater than for the flux problem. Therefore, each method has its utility.

Figures 6.3, 6.7, 6.11, and 6.15 demonstrate the distribution of the FOM in the

2D plane (x = y) and along the diagonal (x = y = z). The figures show that the

FOM is greatest along the diagonal from the source to the region. Figures 6.3 and 6.7

further clarify the difference between the flux problem and response problem, where

the response problem FOM decreases much more rapidly than the flux problem FOM,

again due to the negligible contribution of the group-2 flux to the response (total

flux). All the figures except Figure 6.7 show a saddle-like shape that peaks at the

source. Intuitively, this FOM distribution should resolve the region response (flux)

reasonably well, since the regions of space that have the largest contribution to the

region response (flux) are the most resolved statistically.

Tables 6.5 - 6.8 demonstrate that for the flux problem, all the methods approxi-

mately populate the region with the same median Monte Carlo particle flux. For all

three methods, the Monte Carlo particle flux across the three energy groups varies

by only a factor of roughly 1.4, a small differential compared to the actual neutron

flux which varies by nearly two orders of magnitude from the first group to the third

group in the region of interest. For the response problem, Tables 6.5 - 6.8 show

that the Monte Carlo particle flux varies dramatically from group 1 to group 3 – by

at least two orders of magnitude. The proportion of Monte Carlo particles within

each group is roughly proportional to the scalar neutron flux within each group in

the region. (The group-3 scalar neutron flux is roughly an order of magnitude larger

than the group-2 scalar flux and 2 orders of magnitude larger than the group-1 scalar

flux.) These results, for both the flux and response problem, are consistent with the

desired objectives of each method.

To further illustrate that the simulations behave as expected, the simulated Monte

Carlo particle flux is compared to the theoretically predicted Monte Carlo particle

flux. The simulated Monte Carlo particle flux is depicted in Figures 6.4, 6.8, 6.12, and

6.16 for the various problems and the corresponding predicted Monte Carlo particle

flux is shown in Figures 6.5, 6.9, 6.13, and 6.17. The 1D Monte Carlo particle flux

plots include both the simulated (actual) data and the predicted (theory) data to

better compare the accuracy of the theory. By comparing the 1D and 2D figures,

we observe that there is very good agreement between the simulated and predicted
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Monte Carlo particle flux. The most significant deviation exists in the Transform

approach, where the predicted Monte Carlo particle flux is only an approximation.

Both weight window methods, however, show nearly exact agreement between the

theoretical predictions and the simulated values.

Just as in the source-detector analysis, it is clear from the Monte Carlo particle

flux figures that a positive correlation exists between the Monte Carlo particle flux

and the FOM, since the shape of the curves is similar.

6.7 Summary

In this section, we have described source-region problems – both the response

problem and flux problem. To solve these problems, we chose to distribute the Monte

Carlo particle flux according to the contributon flux (or some slightly modified form

of the contributon flux) by employing an appropriate weight window or “transform”

function. To implement the weight windows or Transform approach, it was necessary

to define the adjoint problem that corresponds to the intended solution – the region

flux or response. We did this by first defining the appropriate adjoint contributon

source and then deriving the corresponding adjoint neutron source. Finally, we ex-

amined a 3-group test problem to validate the theory and assess the performance of

each method. The results indicate that the theory is correct: for a given weight win-

dow or “transform” function, the Monte Carlo particle flux is correctly predicted by

the theory. The results also indicate that despite the additional computational cost

per particle of the Transform approach, it produces a larger FOM than the weight

window methods, since it more faithfully models the physics of the forward contribu-

ton equation. Also, our weight window outperforms the FW-CADIS weight window

by modifying the contributon distribution with the spatial parameter B(x). In fact,

the FOM for the FW-CADIS weight window falls off by an order of magnitude inside

the region of interest. Lastly, the results indicate that there is a positive correlation

between the FOM and the Monte Carlo particle flux, but no exact theoretical model

has been identified to predict the correlation.

Since source-region problems are really just a superposition of many source-

detector problems, the prescriptions (and results) given here reduce to those in the

previous chapter when the region VR shrinks down to a few spatial elements. As the

region expands to fill the entire space, we expect the methods to continue to perform

similar to the 3-group problem tested here, except with more variation within the

region VR. The next chapter discusses problems in which the region VR expands to
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fill the entire space.
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Figure 6.13: Total Predicted MC Particle Flux for the Source-Region (SR) Flux
Problem
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Figure 6.14: Total Region Statistics by Number of Voxels for SR Flux Problem
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Chapter VII

Global Problems

In global problems, we wish to estimate a solution throughout the entire system,

rather than just in a portion of space, as in source-detector and source-region prob-

lems. However, like the source-detector and source region problems, there are two

types of global problems – the flux problem and the response problem. The objective

of the global flux problem is to obtain the scalar neutron flux φ(x, E) throughout the

entire system and for all energies; the objective of the global response problem is to

estimate the response

R(x) =

∫ ∞
0

ΣR(x, E)φ(x, E)dE, (7.1)

throughout the system.

To solve these problems, we extend the concepts developed in the previous two

chapters for the source-detector and source-region problem. Namely, the Monte Carlo

particle flux is distributed proportional to a contributon flux, since this distribution

corresponds to the relative contribution of a particle at a point in phase-space to the

response (or flux). As in both the source-detector and source-region problems, by

defining the adjoint contributon source in a specific way, a Monte Carlo particle flux

distribution is achieved that corresponds to the intended solution – flux or response.

From the adjoint contributon source, the adjoint neutron source is determined and

the adjoint problem can be solved and used to implement the weight window and

Transform approaches.

Although we choose to solve global problems by distributing Monte Carlo particles

according to the contributon flux, there are other logical options that follow from the

work done by Cooper [28] in developing a global weight window for monoenergetic

problems. The first option – a uniform Monte Carlo particle flux distribution in
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space and energy – solves the flux problem, in which an accurate estimate of the

scalar flux is desired at all spatial locations and for all energy. That is, the desired

Monte Carlo particle flux is given by

M(x, E) = C−1
0 , (7.2)

where C0 is an arbitrary constant. According to Eq. 4.8, the weight window that

accomplishes this distribution is the following:

w(x, E) = C0φ(x, E). (7.3)

This weight window only requires the forward solution.

Another logical Monte Carlo particle distribution that follows from Cooper’s work

is to disperse particles in energy according to the energy spectrum of the physical

particles, but uniformly in space. That is, the desired Monte Carlo particle flux is

given by

M(x, E) = C−1
0

φ(x, E)∫ ∞
0

φ(x, E ′)dE ′
, (7.4)

where C0 is an arbitrary constant. Integrating this distribution over energy demon-

strates that the energy-integrated (total) Monte Carlo particle flux is uniform in space

(i.e. M(x) = C−1
0 ). Using Eq. 4.8, we obtain the weight window that accomplishes

this distribution:

w(x, E) = C0

∫ ∞
0

φ(x, E ′)dE ′. (7.5)

This weight window is energy-independent and also only requires the forward so-

lution. Since those energies which are more populated with physical particles often

tend to have a greater contribution to quantities of interest, this Monte Carlo particle

distribution is perhaps more useful and practical than one that populates all space

and energy equally with Monte Carlo particles.

Although these two particle distributions are specific to obtaining certain solu-

tions, they demonstrate that other options exist to distribute Monte Carlo particles,

in addition to distributing particles according to the contributon flux. Specifically,

these do not require information from an adjoint calculation.
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7.1 The Response Problem

As previously mentioned, in global response problems we wish to obtain an energy-

integrated response

R(x) =

∫ ∞
0

∫
4π

ΣR(x, E)ψ(x,Ω, E)dΩdE, (7.6)

at all points x in the entire system V .

For all three approaches – Transform approach, our weight window, and FW-

CADIS, a suitable adjoint contributon source is defined as:

Qc(x,Ω, E) =
ΣR(x, E)ψ(x,Ω, E)∫∞

0

∫
4π

ΣR(x, E ′)ψ(x,Ω′, E ′)dΩ′dE ′
. (7.7)

At every point x, this source emits contributons (response particles) at a rate pro-

portional to their relative contribution to the spatial response R(x). Also, the total

contributon emission rate is the same for every point x ∈ V , i.e.,

Qc(x) =

∫ ∞
0

∫
4π

Qc(x,Ω, E)dΩdE

= 1. (7.8)

Thus, every spatial location x essentially functions as a point detector which emits

contributons at a rate proportional to the contribution to the response R(x), and

every point detector is treated with equal importance by emitting particles at the

same rate. Thus, the global problem can also be viewed as the superposition of many

source-detector problems, where each detector is a point x ∈ V .

The adjoint neutron source is determined from Eq. 5.12:

Q∗(x,Ω, E) =
Qc(x,Ω, E)

ψ(x,Ω, E)

=
ΣR(x, E)∫∞

0

∫
4π

ΣR(x, E ′)ψ(x,Ω′, E)dΩ′dE ′
. (7.9)

With the adjoint problem completely defined, the various methods can be imple-

mented to solve the global response problem. Each method is discussed later in this

chapter.
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7.2 The Flux Problem

In global flux problems, we wish to estimate the energy-dependent scalar flux

φ(x, E) for all energies E and for all x in the entire system V . Just as in the previous

section on the response problem, the adjoint contributon source must be defined. For

all three approaches – Transform approach, our weight window, and FW-CADIS, a

suitable contributon source is defined as:

Qc(x,Ω, E) =


ψ(x,Ω, E)

φ(x, E)
, for x ∈ V ,

0, otherwise.
(7.10)

At every spatial location x and for every energy E, this adjoint contributon source

emits contributons at a uniform rate (i.e. Qc(x, E) =
∫

4π
Qc(x,Ω, E)dΩ = 1) with

an angular distribution proportional to their contribution to the scalar flux. Similar

to the response problem, every point x essentially functions as a point detector

that uniformly emits contributons in energy. This results in a contributon flux that

corresponds most closely to obtaining a statistically resolved estimate of the scalar

flux for every energy.

The adjoint neutron source is determined from Eq. 5.12:

Q∗(x,Ω, E) =
Qc(x,Ω, E)

ψ(x,Ω, E)

=


1

φ(x, E)
, for x ∈ V ,

0, otherwise.
(7.11)

7.3 The Transform Approach

Now that the adjoint problem has been completely defined for global problems –

flux and response – the transform approach is easily implemented. The “transform”

function that we use in this thesis is given by Eq. 4.104 as

T̂ (x,Ω, E) =
B(x)

ψ∗(x,Ω, E)
. (7.12)

This produces an angular Monte Carlo particle flux distribution proportional to the

angular contributon flux, modified by a spatial parameter B(x) defined below:

m(x,Ω, E) =
ψc(x,Ω, E)

B(x)
. (7.13)
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For global problems, B(x) achieves one thing: it results in an energy-dependent

Monte Carlo particle flux M(x, E) that is proportional to the relative contribution

of the Monte Carlo particles to the response (flux) at x and produces an energy-

integrated Monte Carlo fluxM(x) that is approximately uniform across the system.

Thus, Monte Carlo particles are roughly distributed uniformly in space and in energy

according to their relative contribution to the space-dependent response or flux.

The form of B(x) for global problems is given as

B(x) = φc(x), (7.14)

where we approximate the scalar contributon flux φc(x) as

φc(x) ≈
∫ ∞

0

φ(x, E)φ∗(x, E)dE. (7.15)

To see how how B(x) distributes Monte Carlo particles uniformly in space and

according to their relative contribution to the space dependent response or flux, we

begin with the Eq. 4.96:

M(x, E) =
φc(x, E)

B(x)

=
φc(x, E)

φc(x)
. (7.16)

Integrating Eq. 7.16 over energy, we obtain the energy-integrated (total) Monte Carlo

particle flux at x ∈ V :

M(x) ≈ (4πCnorm)−1, x ∈ V . (7.17)

Together, Eqs. 7.16 and 7.17 affirm that the distribution of the Monte Carlo particles

flux is uniform in space and proportional to the relative contribution to the response

(or flux) in energy, as determined by the contributon flux.

The “transform” function has now been completely defined for the global problem

and can be used as described in Section 4.3 to implement the Transform approach.
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7.4 Our Weight Window

In Section 4.2.1, we showed that the weight window center w(x, E) and the scalar

Monte Carlo particle flux M(x, E) are related by Eq. 4.9:

w(x, E) =
φ(x, E)

M(x, E)
. (7.18)

For the global flux or response problem, our weight window distributes Monte Carlo

particles according to the scalar contributon flux distribution, with the same mod-

ification used for the Transform approach, i.e. B(x). We define the Monte Carlo

particle flux as

M(x, E) =
φc(x, E)

B(x)
, (7.19)

where the spatial parameter B(x) was defined in the previous section on the Trans-

form approach (see Eq. 7.14). Then, the weight window is approximated as

w(x, E) =
B(x)φ(x, E)

φc(x, E)

≈ B(x)

φ∗(x, E)
, (7.20)

where we have approximated the scalar contributon flux φc(x, E) as

φc(x, E) ≈ φ(x, E)φ∗(x, E). (7.21)

This weight window produces a scalar Monte Carlo particle flux similar to that

of the Transform approach, but without modifying any of the particle physics. The

spatial function B(x) accomplishes the same objective here: it results in an energy-

dependent Monte Carlo particle flux M(x, E) that is proportional to the relative

contribution of the Monte Carlo particles to the response (flux) at x and produces

an energy-integrated Monte Carlo flux M(x) that is approximately uniform across

the system. Thus, Monte Carlo particles are roughly distributed uniformly in space

and according to their relative contribution to the space-dependent response or flux.

With our weight window completely defined for the global problem, it can be

implemented according to the specifications given in the general section on weight

windows, Section 4.2.
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7.5 FW-CADIS

For the global problem, the FW-CADIS weight window maintains the form of the

classical weight window, where the weight window is inversely proportional to the

adjoint scalar flux:

w(x, E) =
1

φ∗(x, E)
. (7.22)

Again, according to Eq. 4.8 given in Section 4.2.1, this weight window results in a

Monte Carlo particle flux that is approximately proportional to the scalar contributon

flux:

M(x, E) =
φ(x, E)

w(x, E)

= φ(x, E)φ∗(x, E)

≈ φc(x, E). (7.23)

As with our weight window, all the details necessary to implement the FW-CADIS

weight window are in Section 4.2.

7.6 Numerical Test Problem

To verify that the methods perform as the theory predicts, and to compare the

methods for efficiency and statistical quality, we consider the 3-group problem in-

troduced in the previous two chapters with the entire system as the solution space.

Our objectives remain the same: 1) to assess how well the approaches perform on

a multigroup shielding problem, and 2) to verify that the methods perform as the

theory predicts.

7.6.1 Problem Description

Figure 7.1 demonstrates the geometry as before: a 25 cm homogeneous cube with

a 1 cm cubic source in the corner, symmetric boundary conditions at the planes that

cut through the source, and vacuum boundaries at the exterior planes. The source

is a unit source (1 cm−3s−1), in the first energy group only. The total cross-section is

set equal to unity throughout space and energy (i.e. Σt,g = 1 cm−1). The scattering

matrix is provided in the material data section of the Figure 7.1. For global problems,

the entire system is the solution space.

Figure 7.2 demonstrates that this problem is indeed a shielding problem, with the
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Source

(Q1=1 cm-3s-1)

1 cm

25 cm
x

z

y

Σt,g = 1.0 cm-1

Data \ g 1 2 3
Σt,g (cm−1) 1.0 1.0 1.0

Σs,g→1 (cm−1) 0.6 0.0 0.0
Σs,g→2 (cm−1) 0.1 0.7 0.0
Σs,g→3 (cm−1) 0.05 0.1 0.8
Qg (cm−3s−1) 1.0 0.0 0.0

Figure 7.1: Problem Geometry and Material Properties

scalar flux being attenuated by 20 orders of magnitude in the first energy group, 18

orders of magnitude in the second group, nearly 16 orders of magnitude in the third

group, and roughly 17 orders of magnitude in the energy-integrated (total) flux.

The objective of the global flux problem is to obtain the scalar flux φc,g for every

energy group g and in every spatial element Vc within the system, where the scalar

flux φc,g is defined as

φc,g =
1

Vc

∫
Vc

∫ Eg−1

Eg

φ(x, E)dEdV. (7.24)

The objective of the global response problem is to obtain the response Rc in each

spatial element Vc within the system. We again investigate a special response, the

energy-integrated (total) flux, denoted simply as φc and defined as

φc =
3∑
g=1

φc,g. (7.25)

(For this response, we set ΣR(x, E) = 1.) To analyze the results, we plot the figure

of merit, the simulated scalar Monte Carlo particle flux, the theoretically predicted

scalar Monte Carlo particle flux, and the global statistics for the second energy group

and the total flux. These plots appear in Figures 7.3 - 7.18 and correspond to a 2D

plane that stretches from the z-axis to the cube edge farthest from the source (i.e.

the plane x = y), the line from the source corner to the far corner (i.e. the line
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Figure 7.2: Scalar Flux along the plane x = y

x = y = z), and the FOM and Monte Carlo particle flux statistics throughout the

entire system. These values are computed on a uniform 0.5 cm grid that is imposed

on the problem geometry. Thus, the system consists of 125,000 spatial elements,

each denoted by Vc. (The source contains 8 spatial elements.)

The energy-dependent scalar Monte Carlo particle flux Mc,g and the energy-

integrated scalar Monte Carlo particle flux Mc are volume-averaged quantities de-

termined directly from the Monte Carlo simulation. The figures of merit (FOM) in

each spatial element Vc are defined as

FOMc,g =
1

Var [φc,g]

φ2
c,g

Tcpu

,

FOMc =
1

Var [φc]

φ2
c

Tcpu

, (7.26)

where Tcpu is the total run time, and φc,g, φc, and the corresponding variances are

volume-averaged quantities obtained directly from the Monte Carlo simulation.

The theoretically predicted energy-dependent scalar Monte Carlo particle flux
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M̃c,g averaged over Vc is given for each method as:

M̃XFORM
c,g ≈ C0

φc,gΦ
∗
c,g

Bc

, (7.27)

M̃WW
c,g = C0

φc,gΦ
∗
c,g

Bc

, (7.28)

M̃FWCADIS
c,g = C0φc,gΦ

∗
c,g, (7.29)

where XFORM identifies the Transform approach, WW identifies our weight window,

and FWCADIS identifies the FW-CADIS weight window. To remain consistent with

the Monte Carlo particle flux resulting from the weight window, the Monte Carlo

estimate of the forward scalar flux φc,g is treated as the“exact”forward scalar flux and

the deterministic estimate of the adjoint scalar flux Φ∗c,g is used since it corresponds to

the weight window. The transform approach scalar flux estimate is an approximation

of the scalar Monte Carlo flux produced by the Transform approach:

M(x, E) =

∫
4π
ψ(x,Ω, E)ψ∗(x,Ω, E)dΩ

B(x)

≈ C0
φ(x, E)φ∗(x, E)

B(x)
. (7.30)

For all three approaches, the theoretically predicted energy-integrated scalar

Monte Carlo particle flux M̃c is given as:

M̃c =
3∑
g=1

M̃c,g. (7.31)

For both the response problem and flux problem, the energy-dependent scalar

flux φc,g and the total scalar flux φc are tallied, even though the flux problem is

tailored to obtain just φc,g and the response problem is tailored to obtain φc. To see

the difference between the flux problem and the response problem, we examine the

data in a representative energy group – the second group – and the data for the total

flux. We expect that the methods tailored to the flux problem will produce better

statistical results for the second energy group, while those tailored to the response

(total flux) problem will produce better statistical results for the total flux data.

Even though global problems provide the solution everywhere, they require greater

computational time than source-detector or even source-region problems. For this

reason, it is desirable to have some measure that describes how many source-detector
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calculations can be performed at the same computational cost as a single global prob-

lem. Then, if the solution is not required everywhere in the system, the user can

decide whether to solve several source-detector problems or a single global problem.

To derive an expression for the number of source-detector problems that could

be solved before the computational expense becomes greater than solving a single

global problem, we evaluate the run time required to achieve a variance of less than

some criterion ε in a characteristic detector volume for both the source-detector and

global problems. That is, the number of source-detector problems NSD:G that can be

run in the same time as a single global problem is given by the ratio

NSD:G =
Tglobal

Tsd

, (7.32)

where Tsd and Tglobal are the run times required to achieve a variance less than ε for

the source-detector and global problems, respectively. Mathematically, we represent

this condition as

Var [φD] < ε, (7.33)

where φD represents the mean Monte Carlo estimate of the the group-dependent flux

or the total flux in the detector region. (For simplicity, the subscript g is not included

for the group-dependent flux.) To calculate this variance in a simulation, we use the

approximation

Var [φD] ≈ Var [φD,n]

N
, (7.34)

where Var [φD,n] is the sample variance, which converges to an estimate of the true

variance – a constant – as the number of particles N gets large. The number of

particles is related to the run time Tcpu through the approximation

N = Tcpu ∗ TPP, (7.35)

where TPP is the average time per particle for a given Monte Carlo simulation.

TPP converges to a constant as N becomes large for a specific method and problem.

Introducing Eqs. 7.34 and 7.35 into Eq. 7.33 results in the following run time criteria

to achieve a variance of the estimated mean flux that is less than ε:

Tcpu >
Var [φD,n] ∗ TPP

ε
. (7.36)

For a given simulation in which the sample variance and average time per particle
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has converged, the numerator can be written as

Var [φD,n] ∗ TPP = T0

Var [φD,n]0
N0

φ2
D

φ2
D

= φ2
D

Var [φD]0 T0

φ2
D

=
φ2
D

FOMD,0

, (7.37)

where the subscript 0 represents the fixed values obtained in a simulation: the number

of particles run N0, the actual simulation run time T0, the calculated variance of the

mean Var [φD]0, and the corresponding FOMD,0 given by Eq. 7.26. Thus, the run

time criteria to achieve a variance less than ε is given by

Tcpu >
φ2
D

εFOMD,0

. (7.38)

Finally, the number of source-detector problems that can be run in the same time

as one global problem to achieve a variance of exactly ε is given by substituting the

run times given by Eq. 7.38 into Eq. 7.32 for the source-detector and global problem.

The result is the following equation:

NSD:G =
FOMD,sd

FOMD,global

, (7.39)

where the FOMs for the source-detector and global problems are calculated in the

detector region. This equation neglects the user time required to set up every source-

detector problem.

7.6.2 Numerical Results

The group-2 data for the flux problem is presented in Figures 7.3 - 7.6, including

the figure of merit, the simulated Monte Carlo particle flux, the theoretically pre-

dicted Monte Carlo particle flux, and the global statistics; the corresponding group-2

data for the response (total flux) problem appears in Figures 7.7 - 7.10. Likewise,

the total flux data for the flux problem is presented in Figures 7.11 - 7.14 and the

corresponding data for the response problem appears in Figures 7.15 - 7.18. In the

2D figures, the entire plots are relevant to the solution since global problems require

the solution everywhere. The 1D figures are plots along the line where the most

attenuation occurs from the source to the far corner. In addition, Tables 7.1 - 7.4
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and Tables 7.5 - 7.8 provide the global FOM and the simulated Monte Carlo particle

flux statistics, respectively, for each energy group and for all methods and problems.

Table 7.1: Global FOM statistics for group-1 flux

Problem Method
Group-1 FOM

Min Max Median Mean

Flux
(φc,g)

FW-CADIS 0.0021 1787 0.037 0.453
WW 0.022 12.57 0.073 0.081

XFORM 0.041 4.052 0.158 0.154

Response
(φc)

FW-CADIS 1.5E-05 1491 0.0039 0.321
WW 0.00041 11.01 0.010 0.021

XFORM 0.00074 4.240 0.017 0.028

Table 7.2: Global FOM statistics for group-2 flux

Problem Method
Group-2 FOM

Min Max Median Mean

Flux
(φc,g)

FW-CADIS 0.0016 124.6 0.048 0.201
WW 0.040 0.848 0.126 0.129

XFORM 0.0532 0.294 0.183 0.175

Response
(φc)

FW-CADIS 0.00021 175.7 0.021 0.201
WW 0.0051 1.243 0.060 0.074

XFORM 0.0089 0.476 0.079 0.090
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Table 7.3: Global FOM statistics for the group-3 flux

Problem Method
Group-3 FOM

Min Max Median Mean

Flux
(φc,g)

FW-CADIS 0.0023 36.87 0.078 0.184
WW 0.063 0.267 0.217 0.211

XFORM 0.055 0.343 0.222 0.216

Response
(φc)

FW-CADIS 0.0052 85.76 0.173 0.391
WW 0.166 0.617 0.447 0.435

XFORM 0.122 0.886 0.506 0.500

Table 7.4: Global FOM statistics for the total flux

Problem Method
Total Flux FOM

Min Max Median Mean

Flux
(φc,g)

FW-CADIS 0.0030 1664 0.102 0.651
WW 0.069 11.73 0.285 0.295

XFORM 0.0970 4.006 0.316 0.302

Response
(φc)

FW-CADIS 0.0053 1722.685 0.195 0.872
WW 0.170 12.72 0.507 0.502

XFORM 0.200 4.892 0.623 0.601

Table 7.5: Global simulated MC particle flux for the group-1 flux

Problem Method
Group-1 Simulated MC Particle Flux
Min Max Median Mean

Flux
(φc,g)

FW-CADIS 1.9E-06 1.172 7.1E-05 0.00043
WW 0.029 1.016 0.043 0.047

XFORM 0.025 0.871 0.095 0.097

Response
(φc)

FW-CADIS 3.0E-09 1.179 6.3E-06 0.00029
WW 0.00024 1.021 0.0037 0.0084

XFORM 0.00031 0.886 0.0061 0.014

Table 7.6: Global simulated MC particle flux for the group-2 flux

Problem Method
Group-2 Simulated MC Particle Flux
Min Max Median Mean

Flux
(φc,g)

FW-CADIS 1.3E-06 0.119 6.6E-05 0.00021
WW 0.026 0.081 0.040 0.041

XFORM 0.027 0.097 0.079 0.075

Response
(φc)

FW-CADIS 2.0E-07 0.184 3.1E-05 0.00022
WW 0.0037 0.151 0.018 0.022

XFORM 0.0040 0.144 0.028 0.034
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Table 7.7: Global simulated MC particle flux for the group-3 flux

Problem Method
Group-3 Simulated MC Particle Flux
Min Max Median Mean

Flux
(φc,g)

FW-CADIS 1.6E-06 0.032 9.3E-05 0.00020
WW 0.023 0.061 0.054 0.053

XFORM 0.028 0.127 0.090 0.088

Response
(φc)

FW-CADIS 4.9E-05 0.088 0.00025 0.00050
WW 0.058 0.141 0.131 0.128

XFORM 0.059 0.302 0.196 0.194

Table 7.8: Global simulated MC particle flux for the total flux

Problem Method
Total Simulated MC Particle Flux

Min Max Median Mean

Flux
(φc,g)

FW-CADIS 5.7E-06 1.323 0.00023 0.00084
WW 0.093 1.123 0.138 0.141

XFORM 0.093 1.002 0.271 0.261

Response
(φc)

FW-CADIS 5.1E-06 1.451 0.00029 0.0010
WW 0.102 1.243 0.155 0.158

XFORM 0.100 1.106 0.250 0.242
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Figure 7.3: Group-2 FOM for Global Flux Problem
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Figure 7.4: Group-2 Simulated MC Particle Flux for Global Flux Problem
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Figure 7.5: Group 2 Predicted MC Particle Flux for Global Flux Problem
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Figure 7.7: Group-2 FOM for Global Response Problem
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Figure 7.8: Group-2 Simulated MC Particle Flux for Global Response Problem
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Figure 7.9: Group-2 Predicted MC Particle Flux for Global Response Problem
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Figure 7.11: Total FOM for Global Flux Problem

Just as for source-region problems, no single metric exists for assessing and com-

paring methods for global problems, in which the whole system is the solution space.

For this reason, we again consider the median FOM as a metric that conveys infor-

mation about the efficiency and accuracy of the solution, since it relays that half the

spatial elements in the region have an FOM below this value and half have an FOM

that is greater than this value. (The maximum and minimum values of the FOM

could be used to bound the FOM in the lower and upper half.) Therefore, we again

use the median value as well as figures to assess and compare the performance of the

various methods.

The FOM data in Tables 7.1 - 7.4 indicate that the Transform approach performs

most efficiently in every energy group for both the flux problem and the response

problem, as determined by the median FOM. The data also indicates that our weight

window performs at a comparable level to the Transform approach for the second

and third energy group as well as for the total flux. From this, we can infer that

the additional benefit from simulating the forward contributon physics is somewhat

undermined by the additional computational cost required to simulate this physics.
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Figure 7.12: Total Simulated MC Particle Flux for Global Flux Problem

For the flux problem, in which we wish to obtain statistical results in every energy

group, the Transform approach has a median FOM that is 2-4 times greater than that

of the weight window approaches in the first energy group. In the second and third

energy group as well as for the total flux, the median FOM for the transform approach

and our weight window is roughly 3 times greater than for the FW-CADIS weight

window. For the response problem, in which we wish to optimize the calculation to

obtain the total flux, the Transform approach median FOM is 2-4 times greater than

that of the weight window approaches in the first energy group. In the second and

third energy group as well as for the total flux, the median FOM for the Transform

approach and our weight window are 2.5-4 time greater than for the FW-CADIS

weight window. Figures 7.6 and 7.10 present the group-2 FOM statistics for the entire

region, specifically, the number of spatial elements that correspond to a particular

FOM for the flux problem and response problem, respectively; Figures 7.14 and 7.18

are the corresponding FOM data for the total flux. In each figure, the Transform

approach clearly has more spatial elements at a higher FOM than the FW-CADIS

weight window and slightly more than our weight window. Thus the figures are
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Table 7.9: Detector vs global group-1 data

Problem Method
Detector
FOMD

Global
FOMD

ND:G

Flux
(φc,g)

FW-CADIS 0.502 0.0091 55
WW 0.496 0.069 7

XFORM 6.752 0.271 25

Response
(φc)

FW-CADIS 0.015 0.00017 88
WW 0.015 0.0013 12

XFORM 0.125 0.0027 46

Table 7.10: Detector vs global group-2 data

Problem Method
Detector
FOMD

Global
FOMD

ND:G

Flux
(φc,g)

FW-CADIS 0.949 0.012 79
WW 0.989 0.098 10

XFORM 6.246 0.230 27

Response
(φc)

FW-CADIS 0.205 0.0019 107
WW 0.216 0.016 14

XFORM 1.344 0.034 40

consistent with the analysis using the median FOM as a metric.

The global flux problem data in Tables 7.1 - 7.4 demonstrate a much more uniform

median FOM from group to group than does the response problem data. For the

flux problem data, the weight window methods both have a median FOM that varies

by a factor of nearly 3 across the three energy groups, and the Transform approach

has a median FOM that varies by a factor of 1.4. For the response problem data,

the weight window methods both have a FOM that varies by a factor of 45 across

the three energy groups, and the Transform approach varies by a factor of nearly 30.

Table 7.11: Detector vs global group-3 data

Problem Method
Detector
FOMD

Global
FOMD

ND:G

Flux
(φc,g)

FW-CADIS 2.043 0.019 108
WW 2.125 0.187 11

XFORM 7.720 0.335 23

Response
(φc)

FW-CADIS 4.556 0.046 99
WW 4.816 0.432 11

XFORM 23.22 0.861 27
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Table 7.12: Detector vs global total flux data

Problem Method
Detector
FOMD

Global
FOMD

ND:G

Flux
(φc,g)

FW-CADIS 2.204 0.021 105
WW 2.308 0.204 11

XFORM 8.443 0.366 23

Response
(φc)

FW-CADIS 4.674 0.048 97
WW 4.942 0.443 11

XFORM 24.53 0.891 28

This is to be expected, since the objective of the flux problem is to achieve roughly

uniform results for every energy group, while the objective of the response problem

is to optimize the total flux.

The data provided in Tables 7.1 - 7.4 show that if the objective is to obtain good

results for every energy group, the flux problem should be solved; if the objective

is to obtain the total flux, the response problem should be solved. This is clearly

seen by comparing the flux problem FOM to the response problem FOM for the first

energy group and for the total flux. In the first energy group, the median FOM values

for the flux problem are 7-10 times greater than for the response problem; while for

the total flux, the median FOM values for the response problem are roughly 2 times

greater than for the flux problem. Therefore, each method has its utility.

Figures 7.3, 7.7, 7.11, and 7.15 demonstrate the distribution of the FOM in the

2D plane (x = y) and along the diagonal (x = y = z). Figures 7.3 and 7.7 further

clarify the difference between the flux problem and response problem, where the

response problem FOM decreases much more rapidly than the flux problem FOM in

the second energy group away from the source, again due to the limited contribution

of the group-2 flux to the response (total flux) away from the source.

Tables 7.5 - 7.8 demonstrate that for the flux problem, all the methods approxi-

mately populate the system with the same median Monte Carlo particle flux. For all

three methods, the Monte Carlo particle flux across the three energy groups varies

by only a factor of 1.5-3. This is a small differential compared to the actual neutron

flux, which varies substantially by group across the system, especially in the deep

parts of the problem where it varies by at least two orders of magnitude from the

first group to the third group. For the response problem, Tables 7.5 - 7.8 shows that

the Monte Carlo particle flux varies from group 1 to group 3 by a factor of 30-45.

These results, for both the flux and response problem, are consistent with the desired
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objectives of each method.

To further illustrate that the simulations behave as expected, the simulated Monte

Carlo particle flux is compared to the theoretically predicted Monte Carlo particle

flux. The simulated Monte Carlo particle flux is depicted in Figures 7.4, 7.8, 7.12, and

7.16 for the various problems and the corresponding predicted Monte Carlo particle

flux is shown in Figures 7.5, 7.9, 7.13, and 7.17. The 1D Monte Carlo particle flux

plots include both the simulated (actual) data and the predicted (theory) data to

better compare the accuracy of the theory. By comparing the 1D and 2D figures,

we observe that there is very good agreement between the simulated and predicted

Monte Carlo particle flux. The most significant deviation exists in the Transform

approach, where the predicted Monte Carlo particle flux is only an approximation.

Both weight window methods, however, show nearly exact agreement between the

theoretical predictions and the simulated values.

Just as in the source-detector and source-region analysis, it is clear from the Monte

Carlo particle flux figures that a positive correlation exists between the Monte Carlo

particle flux and the FOM, since the shape of the curves is similar.

Finally, Tables 7.9 – 7.12 provide data on the number of source-detector problems

that could be run in the same time as one single global problem. This data is useful

if the user does not need the solution everywhere, but still in a large number of

locations, perhaps along the boundary of the system. The data from the FW-CADIS

method demonstrates that 55 to 108 source detector problems could be run before

the a global problem makes sense. This shows very clearly that, while FW-CADIS is

well-suited for source-detector problems, it is less well-suited for global calculations.

Our weight window demonstrates that 11 to 14 source-detector problems could be

run before a global calculation would make more sense. This demonstrates how

much more efficient our weight window is than the FW-CADIS for obtaining good

statistical results in the deep parts of the problem for global calculations. Finally,

the data for the Transform approach shows that roughly 30 source-detector problems

could be solved for the cost of one global calculation. This data indicates that,

although the Transform approach performs better than the weight window methods

for all problems, it functions much better for source-detector problems than for global

problems.
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7.7 Summary

In this section, we have described global problems – both the response problem

and flux problem. To solve these problems, we chose to distribute the Monte Carlo

particle flux according to the contributon flux (or some slightly modified form of

the contributon flux) by employing an appropriate weight window or “transform”

function. To implement either the weight windows or Transform approach, it was

necessary to define the adjoint problem that corresponds to the intended solution

– the global flux or response. We did this by first defining an appropriate adjoint

contributon source and then deriving the corresponding adjoint neutron source. Fi-

nally, we examined a 3-group test problem to validate the theory and assess the

performance of each method. The results indicate that the theory is correct: for a

given weight window or “transform” function, the Monte Carlo particle flux is cor-

rectly predicted by the theory. The results also indicate that the Transform approach

and our weight window produce a larger FOM than the FW-CADIS weight window

method; our weight window and the Transform approach have comparable FOMs.

Thus for global problems, the extra computational cost per particle necessary for the

Transform approach begins to undermine the benefits of more accurately simulating

the forward contributon physics. Finally, the results again indicate that there is a

positive correlation between the FOM and the Monte Carlo particle flux, but no

exact theoretical model has been identified to predict the correlation.
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Figure 7.13: Total Predicted MC Particle Flux for Global Flux Problem
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Figure 7.14: Total Global Statistics by Number of Voxels for Global Flux Problem
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Chapter VIII

Challenge Problems

In this chapter, we consider a much more challenging shielding problem than

the one considered in the previous three chapters (i.e., the 3-group homogeneous

cube). This problem more closely resembles a typical shielding problem with het-

erogenous geometry, a larger number of energy groups (ten), and coupled neutron-

photon physics. For this problem, we forego attempting to acquire statistically re-

solved estimates of the scalar flux in every energy group – the flux problem – and

focus on the response problem, in which we wish to obtain the energy-integrated

response

R(x) =

∫ ∞
0

ΣR(x, E)φ(x, E)dE, (8.1)

in (i) a small detector, (ii) a significant region of the system, or (iii) throughout the

entire system. These problems, of course, correspond to the source-detector, source-

region and global response problems, respectively. (For the source-detector problem,

the detector response was defined to be the volume-averaged response RD; however,

for small detectors R(x) ≈ RD.) The problem contains coupled neutron-photon

physics, so we investigate both the neutron response and the photon response. As in

previous chapters, we again consider the energy-integrated (total) flux for neutrons

and photons, in which ΣR(x, E) = 1.

To solve these problems, we utilize the concepts developed in the previous three

chapters for the source-detector, source-region and global problems. Thus, the Monte

Carlo particle flux is distributed proportional to a contributon flux, since this distri-

bution corresponds to the relative contribution of a particle at a point in phase-space

to the response (or flux). By defining the adjoint contributon source in a specific

way, a Monte Carlo particle flux distribution is achieved that corresponds to the

intended response – neutron or photon. From the adjoint contributon source, the

adjoint neutron (or photon) source is determined, and the adjoint problem can be
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solved and used to implement the weight window and Transform approaches. In this

chapter, we do not repeat the implementation details for the weight window and

transform approaches, since those were thoroughly discussed in previous chapters

and their application here is a straighforward extension. When modifications are

made to the previously developed theory, they will be highlighted and explained, if

necessary.

8.1 The Neutron Response Problem

In neutron response problems, we wish to obtain the energy-integrated neutron

response

RN (x) =

∫ ∞
0

∫
4π

ΣR,N (x, E)ψN (x,Ω, E)dΩdE, (8.2)

for all points x in the space VP . Here, the subscript N identifies each parameter

or function as corresponding to neutrons (i.e., neutron response, neutron response

parameter, and angular neutron flux); the space VP corresponds to the specific type

of problem:

VP =


VD, source-detector problem,

VR, source-region problem,

V , global problem.

(8.3)

In this chapter, the detector response has a slightly different definition from its

classic definition as a volume-averaged quantity RD. However for small detectors,

R(x) ≈ RD. Therefore, for source-detector problems, we can use the methodology

developed for source-region problems and expect a negligible effect on the solution

as long as the detector is small.

For all three approaches (Transform approach, our weight window, and FW-

CADIS) and for all three problems (source-detector, source-region, and global), a

suitable adjoint contributon source is defined as:

Qc(x,Ω, E) =


ΣR,N (x, E)ψN (x,Ω, E)∫∞

0

∫
4π

ΣR,N (x, E ′)ψN (x,Ω′, E ′)dΩ′dE ′
, for x ∈ VP ,

0, otherwise.

(8.4)

At every point x ∈ VP , this source emits contributons (response particles) at a rate

proportional to their relative contribution to the spatial neutron response RN (x).
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Also, the total contributon emission rate is the same for every point x ∈ VP , i.e.,

Qc(x) =

∫ ∞
0

∫
4π

Qc(x,Ω, E)dΩdE

= 1. (8.5)

Thus, every spatial location x essentially functions as a point detector which emits

contributons at a rate proportional to the contribution to the neutron response

RN (x), and every point detector is treated with equal importance by emitting par-

ticles at the same rate.

The adjoint neutron source is determined from Eq. 5.12:

Q∗(x,Ω, E) =
Qc(x,Ω, E)

ψ(x,Ω, E)

=


ΣR(x, E)∫∞

0

∫
4π

ΣR(x, E ′)ψ(x,Ω′, E)dΩ′dE ′
, for x ∈ VP ,

0, otherwise.

(8.6)

Since the adjoint source emits only neutrons and the scattering matrix used in this

problem only allows neutron-to-photon scattering, photons do not appear in the ad-

joint problem. Thus, it is also unnecessary to consider them in the forward problem.

This results in a decoupled system in which only the neutrons must be simulated.

For deterministic methods, this implies that only the energy groups corresponding

to the neutrons must be considered, and for Monte Carlo methods it implies that

only the neutrons must be simulated.

8.2 The Photon Response Problem

In photon response problems, we wish to obtain the energy-integrated photon

response

Rγ(x) =

∫ ∞
0

∫
4π

ΣR,γ(x, E)ψγ(x,Ω, E)dΩdE, (8.7)

in the space VP . Here, the subscript γ identifies each parameter or function as

corresponding to photons (i.e., photon response, photon response parameter, and

angular photon flux); the space VP is again defined as

VP =


VD, source-detector problem,

VR, source-region problem,

V , global problem.

(8.8)
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For all three approaches (Transform approach, our weight window, and FW-

CADIS) and for all three problems (source-detector, source-region, and global), a

suitable adjoint contributon source is defined as:

Qc(x,Ω, E) =


ΣR,γ(x, E)ψγ(x,Ω, E)∫∞

0

∫
4π

ΣR,γ(x, E ′)ψγ(x,Ω′, E ′)dΩ′dE ′
, for x ∈ VP ,

0, otherwise.

(8.9)

At every point x ∈ VP , this source emits contributons (response particles) at a rate

proportional to their relative contribution to the spatial photon response Rγ(x).

Also, the total contributon emission rate is the same for every point x ∈ VP , i.e.,

Qc(x) =

∫ ∞
0

∫
4π

Qc(x,Ω, E)dΩdE

= 1. (8.10)

Again, this indicates that every spatial location x essentially functions as a point

detector which emits contributons at a rate proportional to the contribution to the

photon response Rγ(x), and every point detector is treated with equal importance

by emitting particles at the same rate.

The adjoint photon source is determined from Eq. 5.12:

Q∗(x,Ω, E) =
Qc(x,Ω, E)

ψ(x,Ω, E)

=


ΣR(x, E)∫∞

0

∫
4π

ΣR(x, E ′)ψ(x,Ω′, E)dΩ′dE ′
, for x ∈ VP

0, otherwise.

(8.11)

Although the adjoint source only emits photons, neutrons can be produced in scat-

tering events, since the scattering matrix used in this problem allows for neutron-

to-photon scattering. Thus, neutrons appear in the adjoint problem, and for the

same reason are also necessary in the forward problem. This results in a coupled

system in which both neutrons and photons must be simulated. For deterministic

methods, this implies that the energy groups corresponding to both the photons and

neutrons must be considered, and for Monte Carlo methods it implies that photons

and neutrons must be simulated.
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8.3 Numerical Test Problem

For the challenge problems, our objectives are the following: 1) to test whether the

methods developed in this thesis are capable of obtaining a solution in a challenging

shielding problem, 2) to verify that the methods perform as the theory predicts, and

3) to compare the methods for efficiency and statistical quality. Unlike the 3-group

problem in the previous three chapters, this problem was simulated on a supercom-

puter, for which consistent run times were difficult to obtain. For this reason, the

figure of merit is less reliable as an indicator of the efficiency and statistical quality

of the solution. Despite this, we still use the figure of merit to assess performance,

but we use it in a more qualitative than quantitative way.

8.3.1 Problem Description

The problem consists of a shielded box of uranium oxide fuel suspended in a pool

of water, with several layers of concrete and lead surrounding the pool. Specifically,

the structure is a 300 cm heterogeneous cube with a 20 cm cubic source of uranium

dioxide at its center, surrounded by multiple layers of concrete, steel, water, and lead

for shielding. At the edges are vacuum boundaries, and running parallel to the z-

axis are twelve concrete columns to support the “roof” of the structure. Because this

problem is symmetric along the planes cutting through the source (i.e., the planes

x = 0, y = 0 and z = 0 for a source centered at (0, 0, 0)), we only need to obtain

a solution in one octant; we do this by imposing symmetric (reflecting) boundaries

that pass through the center of the source along the planes mentioned. Figure 8.1

demonstrates this geometry: a 150 cm heterogeneous cube with a 10 cm cubic source

of uranium oxide in the corner, surrounded by multiple layers of shielding material,

with symmetric boundary conditions at the planes that cut through the source and

vacuum boundaries at the exterior planes. The dimensions of each layer of shielding

material are given in Figure 8.1.

Since the focus of this work is shielding problems, we imposed a fixed source

on the uranium oxide cube, consisting of prompt fission neutrons and prompt fission

photons, each described by an analytic expression. The prompt fission neutron source

is given as

χ(E) = ae−E/b sinh
√
cE, (8.12)

where χ(E) has units of neutrons MeV−1 fission−1 [43]. For thermal fission of U-235,

a = 0.5535 MeV−1 fission−1, b = 1.0347 MeV, and c = 1.6214 MeV−1 [43]. The
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Figure 8.1: Problem Geometry

prompt fission photon source is given as

Nγ(E) =


6.6, 0.1 < E < 0.6 MeV,

20.2e−1.78E, 0.6 < E < 1.5 MeV,

7.2e−1.09E, 1.5 < E < 10.5 MeV,

(8.13)

where Nγ(E) has units of photons MeV−1 fission−1 [43].

These expressions are used to define the forward neutron source QN (x,Ω, E) and
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the forward photon source Qγ(x,Ω, E):

QN (x,Ω, E) =
C0

4π

χ(E)

VS
, x ∈ VS, Ω ∈ 4π, 0 < E < Emax, (8.14)

Qγ(x,Ω, E) =
C0

4π

Nγ(E)

VS
, x ∈ VS, Ω ∈ 4π, 0 < E < Emax, (8.15)

where VS is the volume of the source and C0 is an arbitrary scaling factor with units

of MeV−1 fission−1. Since we are only considering multigroup problems in this thesis,

we define the multigroup neutron and photon source within each spatial element Vc
as

QN ,c,g =

∫
Vc

∫ Eg−1

Eg

QN (x,Ω, E)dEdV

=
C0

4π

Vc
VS

∫ Eg−1

Eg

χ(E)dE, (8.16)

Qγ,c,g =

∫
Vc

∫ Eg−1

Eg

Qγ(x,Ω, E)dEdV

=
C0

4π

Vc
VS

∫ Eg−1

Eg

Nγ(E)dE. (8.17)

Table 8.1 describes the energy group boundaries {Eg}Gg=1 for the challenge problem,

in which seven neutron groups and three photon groups are used. The 10-group

source used for this problem appears in the Appendix within Tables B.9 and B.10,

which also specify the uranium dioxide cross-sections, in addition to the fixed source.

We obtained the 10-group cross sections for the materials – concrete, water, lead,

steel and uranium dioxide – by collapsing the 67-group BUGLE-96 cross-section

library [44] using a simple arithmetic average over the groups within the range

[Eg, Eg−1]. The cross-sections, along with the isotopic/elemental composition of the

materials, appear in the Appendix.

Figure 8.2 demonstrates that this problem is indeed a shielding problem, with

the total neutron scalar flux being attenuated by nearly 18 orders of magnitude, and

the total photon scalar flux by roughly 15 orders of magnitude.

The objective of the response problem is to obtain the response Rc in each spatial

element Vc within the space VP . The response that we investigate is the energy-

integrated (total) flux, denoted simply as φN ,c for neutrons and φγ,c for photons.
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Table 8.1: Energy bounds for 10-group problem

Particle g
Energy Bound Eg

(MeV)

Neutron

0 1.7332E+01
1 4.9659E+00
2 2.2313E+00
3 6.0810E-01
4 4.0868E-02
5 3.3546E-03
6 1.0677E-05
7 1.0000E-11

Photon

8 1.4000E+01
9 5.0000E+00
10 1.0000E+00
11 2.0000E-01
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Figure 8.2: Scalar Flux along the plane x = y

Mathematically, they are defined as

φN ,c =
1

Vc

∫
Vc

∫ E0

E7

φ(x, E)dEdV, (8.18)

φγ,c =
1

Vc

∫
Vc

∫ E8

E11

φ(x, E)dEdV, (8.19)

where the energy bounds Eg are defined in Table 8.1.

To analyze the results, we plot the figure of merit, the simulated scalar Monte

Carlo particle flux, and the theoretically predicted scalar Monte Carlo particle flux

for the total neutron flux and the total photon flux. These plots appear in Figures

8.3 - 8.24 and describe a 2D plane that stretches from the z-axis to the cube edge

farthest from the source (i.e. the plane x = y), the line from the source corner to

204



the far corner (i.e. the line x = y = z), and the FOM and Monte Carlo particle

flux statistics throughout VP for the source-region and global problems. (Since the

detector region VD is small, there is not enough data to construct a meaningful figure

from the FOM and Monte Carlo particle flux data.) These values are computed on

a uniform 1.0 cm grid that is imposed on the problem geometry. Thus, the system

consists of 3,375,000 spatial elements, each denoted by Vc. (The source region VS
contains 1000 spatial elements.)

The source-detector solution space VD is a 4 cm cube located in the corner farthest

from the source, 4 cm from each vacuum boundary, and contains 64 spatial elements.

The space VR is the 40 cm cubic region in the corner farthest from the source and

contains 64,000 spatial elements. The global solution space includes all 3,375,000

spatial elements in the system V .

The total neutron and photon scalar Monte Carlo particle fluxes are volume-

averaged quantities determined directly from the Monte Carlo simulation. The figure

of merit (FOM) in each spatial element Vc is defined as

FOMc =
1

Var [φc]

φ2
c

Tcpu

, (8.20)

where Tcpu is the total run time, and φc and the corresponding variance are volume-

averaged quantities obtained directly from the Monte Carlo simulation. In this case,

φc represents either the neutron or photon scalar flux.

For each energy group, the theoretically predicted scalar Monte Carlo particle

flux M̃c,g averaged over Vc is given for each method as:

M̃XFORM
c,g ≈ C1

φc,gΦ
∗
c,g

Bc

, (8.21)

M̃WW
c,g = C1

φc,gΦ
∗
c,g

Bc

, (8.22)

M̃FWCADIS
c,g = C1φc,gΦ

∗
c,g, (8.23)

where XFORM identifies the Transform approach, WW identifies our weight window,

and FWCADIS identifies the FW-CADIS weight window. To remain consistent

with the Monte Carlo particle flux resulting from the weight window, the Monte

Carlo estimate of the forward scalar flux φc,g is treated as the “exact” forward scalar

flux, and the deterministic estimate of the adjoint scalar flux Φ∗c,g is used since it

corresponds to the weight window. The transform approach scalar flux estimate is an
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approximation of the scalar Monte Carlo flux produced by the Transform approach:

M(x, E) =

∫
4π
ψ(x,Ω, E)ψ∗(x,Ω, E)dΩ

B(x)

≈ C0
φ(x, E)φ∗(x, E)

B(x)
. (8.24)

For all three approaches, the theoretically predicted total Monte Carlo particle

fluxes for neutrons and photons are given as:

M̃N ,c =
7∑
g=1

M̃c,g, (8.25)

M̃γ,c =
10∑
g=8

M̃c,g. (8.26)

We recall that in the neutron response problem, photons are not simulated since

they do not contribute to the neutron response; however, in the photon response

problem, neutrons are simulated since they are important to the photon response,

even though they are not directly included in any estimator tallies.

Just as in Chapter VII on global problems, we would like to have an expression

that allows us to decide whether to run several source-detector problems or a single

global problem if we really do not need the solution everywhere. The expression that

was derived in Chapter VII to determine the number of source-detector problems

that could be run in the same time as a single global problem to meet a variance

criterion in a characteristic detector region is given by Eq. 7.39:

NSD:G =
FOMD,sd

FOMD,global

, (8.27)

where the FOMs for the source-detector and global problems are calculated in the

detector region. Again, this equation does not include the user time required to set

up each source-detector problem.

8.3.2 Numerical Results

The data for the neutron response (total flux) problems is presented in Figures

8.3 - 8.13, including the figure of merit, the simulated Monte Carlo particle flux,

and the theoretically predicted Monte Carlo particle flux; the corresponding data

for the photon response (total flux) problems appears in Figures 8.14 - 8.24. For
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clarity, the 2D figures associated with the source-detector and source region problems

contain a black rectangle to denote the “detector” region; the 1D figures include

dashed vertical lines indicating the “detector” region location. All the 2D figures also

contain a dashed line to trace out the diagonal from the source to the far corner

(i.e. the line x = y = z); the 1D figures are plots along this line. In addition,

Tables 8.2 and 8.3 provide the global FOM and the simulated Monte Carlo particle

flux statistics, respectively, for the source-detector, source region and global neutron

response problems. Tables 8.4 and 8.5 provide the corresponding data for the source-

detector, source-region and global photon response problems.

Table 8.2: FOM statistics for the total neutron flux

Response
Problem

Method
Total Flux FOM

Min Max Median Mean

Source-
Detector

FW-CADIS 0.028 0.062 0.040 0.041
WW 0.018 0.104 0.038 0.043

XFORM 0.162 0.348 0.261 0.256

Source-
Region

FW-CADIS 0.0022 0.105 0.034 0.035
WW 0.0021 0.144 0.045 0.047

XFORM 0.0045 0.182 0.119 0.112

Global
FW-CADIS 6.9E-05 0.785 0.0034 0.0043

WW 0.00028 0.024 0.0045 0.0058
XFORM 0.00074 0.021 0.0052 0.0059

Table 8.3: Monte Carlo particle flux statistics for the total neutron flux

Response
Problem

Method
Total Simulated MC Particle Flux

Min Max Median Mean

Source-
Detector

FW-CADIS 0.00087 0.0019 0.0014 0.0014
WW 0.0019 0.0021 0.0020 0.0020

XFORM 0.0035 0.0072 0.0046 0.0050

Source-
Region

FW-CADIS 1.6E-06 0.00014 4.1E-05 4.4E-05
WW 0.00023 0.00042 0.00033 0.00033

XFORM 0.00031 0.0027 0.00093 0.00091

Global
FW-CADIS 2.6E-08 0.0078 2.4E-06 9.1E-06

WW 0.00016 0.0074 0.00048 0.00052
XFORM 0.00030 0.0094 0.0011 0.0012
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Table 8.4: FOM statistics for the total photon flux

Response
Problem

Method
Total Flux FOM

Min Max Median Mean

Source-
Detector

FW-CADIS 0.00020 0.0035 0.0011 0.0012
WW 0.00026 0.0032 0.0012 0.0012

XFORM 0.00062 0.0046 0.0015 0.0016

Source-
Region

FW-CADIS 3.7E-05 0.0076 0.0014 0.0016
WW 3.9E-05 0.018 0.0042 0.0046

XFORM 0.00011 0.024 0.0048 0.0058

Global
FW-CADIS 1.4E-05 0.592 0.0019 0.0070

WW 4.4E-05 0.041 0.0030 0.0039
XFORM 1.4E-05 0.028 0.0031 0.0035

Table 8.5: Monte Carlo particle flux statistics for the total photon flux

Response
Problem

Method
Total Simulated MC Particle Flux

Min Max Median Mean

Source-
Detector

FW-CADIS 6.6E-05 0.00049 0.00013 0.00017
WW 0.00020 0.00044 0.00029 0.00029

XFORM 0.00015 0.0024 0.00027 0.00052

Source-
Region

FW-CADIS 2.6E-08 0.00013 3.8E-06 6.5E-05
WW 3.3E-05 0.0023 0.00020 0.00025

XFORM 1.5E-05 0.014 0.00031 0.00058

Global
FW-CADIS 7.9E-14 0.00092 1.8E-05 8.1E-06

WW 3.0E-05 0.0054 0.0011 0.0011
XFORM 6.0E-07 0.021 0.0012 0.0015
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Figure 8.3: Total Flux FOM for Source-Detector (SD) Neutron Problem
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Figure 8.4: Total Simulated MC Particle Flux for SD Neutron Problem
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Figure 8.5: Total Predicted MC Particle Flux for SD Neutron Problem
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Figure 8.6: Total Flux FOM for Source-Region (SR) Neutron Problem

212



1e-11
1e-10
1e-09
1e-08
1e-07
1e-06
1e-05
1e-04
1e-03
1e-02

 0  50  100  150  200

d = (x2 + y2)1/2

 0
 20
 40
 60
 80

 100
 120
 140

z

(a) Transform Approach (2D)

1e-11
1e-10
1e-09
1e-08
1e-07
1e-06
1e-05
1e-04
1e-03
1e-02

 0  50  100  150  200

d = (x2 + y2)1/2

 0
 20
 40
 60
 80

 100
 120
 140

z

(b) Our Weight Window (2D)

1e-11
1e-10
1e-09
1e-08
1e-07
1e-06
1e-05
1e-04
1e-03
1e-02

 0  50  100  150  200

d = (x2 + y2)1/2

 0
 20
 40
 60
 80

 100
 120
 140

z

(c) FW-CADIS (2D)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0  50  100  150  200  250  300

FW-CADIS
WW

XFORM

(d) All Methods (1D)

Figure 8.7: Total Simulated MC Particle Flux for SR Neutron Problem
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Figure 8.8: Total Predicted MC Particle Flux for SR Neutron Problem
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Figure 8.9: Statistics by Number of Voxels for SR Neutron Problem

Table 8.6: Detector vs global total neutron and photon flux data

Response
Problem

Method
Detector
FOMD

Global
FOMD

ND:G

Neutron
(φc,g)

FW-CADIS 0.040 0.0011 105
WW 0.038 0.0055 11

XFORM 0.261 0.0086 23

Photon
(φc)

FW-CADIS 0.0011 2.45E-05 45
WW 0.0012 0.00038 3

XFORM 0.0015 0.00043 3

No single metric exists for assessing and comparing methods for the various prob-

lems; thus, we again consider the median FOM as a metric that conveys information

about the efficiency and accuracy of the solution, since it relays that half the spatial

elements in the region have an FOM below this value and half have an FOM that is

greater than this value. (The maximum and minimum values of the FOM can also

be used to bound the FOM in the lower and upper half.) Therefore, we again use

the median value and the figures to assess and compare the performance of the var-

ious methods, even for the source-detector problems where there are only 64 spatial

elements.

As previously mentioned, since the challenge problems are simulated on a super-

computer, we expect the FOM data to have some variability that is not inherent in

the methods themselves. Despite this, we identify some patterns in the FOM data

that are consistent with the simpler problem simulated in the previous three chap-

ters. Specifically, the median FOM data for the total neutron flux given in Table
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Figure 8.10: Total Flux FOM for Global Neutron Problem

8.2 indicates that the Transform approach generally outperforms the weight window

methods, especially for the source-detector problem. The general trend, evidenced

here and in previous chapters, is that the performance of the Transform approach

generally degrades as the region of interest becomes larger. This means that as

particles are allowed to spread out more in space, the benefits associated with the

Transform approach (specifically the angularly biased scattering and angularly de-

pendent distance-to-next collision) are not substantial enough to compensate for the

additional computational cost associated with the method. This explains why the

Transform approach’s median FOM for the total photon flux given in Table 8.4 is

comparable to the weight window approaches: since photons are not readily attenu-

ated in the large water region, they readily spread out within the water region with no

large gradients to drive them toward the “detector” region. (Recall that the gradient

of the adjoint flux determines the strength of the angular biasing parameters in the

Transform approach.) Thus, the source-detector and source region median FOMs for

the photon flux are only comparable to the weigh window methods because the extra

contributon physics implemented in the Transform approach have a small effect on
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Figure 8.11: Total Simulated MC Particle Flux for Global Neutron Problem

guiding the particles toward the “detector” region. Figure 8.15 and 8.18 show the

simulated Monte Carlo particle flux for the source-detector and source-region photon

problems, respectively.

To decide whether to simulate a source-detector, source-region, or detector prob-

lem obviously depends on the application. The neutron FOM data in Table 8.2

shows that there can be a substantial benefit to simulating only the source-detector

or source-region problem, with a median FOM that is over an order of magnitude

larger than the median FOM for the global problem. The minimum FOM also shows

that the median FOM is much more tightly bound for the source-detector problem

than for the global problem. The photon FOM data in Table 8.4 indicates that the

median FOM is larger for the global problem than for the source-detector problem.

This result again occurs because photons readily fill the large water and concrete re-

gions and produce good statistics there; whereas the detector region VD exists behind

several thick layers of lead. Thus, the median favors the global problem; however, the

minimum FOM indicates that the median detector FOM is more tightly bound than

the median global FOM. Figures 8.9 and 8.13 present the neutron FOM statistics
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Figure 8.12: Total Predicted MC Particle Flux for Global Neutron Problem

for the source-region and global problem, respectively; specifically, they represent

the number of spatial elements that correspond to a particular FOM. Figures 8.20

and 8.24 are the corresponding photon FOM data. This data indicates that for all

the problems except the global neutron problem, the Transform approach and our

weight window have a larger number of spatial elements at a higher FOM than the

FW-CADIS method. In the global neutron problem, the methods are comparable.

The simulated Monte Carlo particle flux is depicted in Figures 8.4, 8.7, and 8.11

for the source-detector, source-region and global neutron response problem, respec-

tively, and the corresponding predicted Monte Carlo particle flux is shown in Figures

8.5, 8.8, and 8.12. For the photon response, the simulated Monte Carlo particle flux

is depicted in Figures 8.15, 8.18, and 8.22 for the source-detector, source-region and

global problem, respectively, and the corresponding predicted Monte Carlo particle

flux is shown in Figures 8.16, 8.19, and 8.23. The 1D Monte Carlo particle flux plots

include both the simulated (actual) data and the predicted (theory) data, to better

compare the accuracy of the theory. By comparing the 1D and 2D figures, we observe

that there is good agreement between the simulated and predicted Monte Carlo par-
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Figure 8.13: Statistics by Number of Voxels for Global Neutron Problem

ticle flux. The most significant deviation exists in the Transform approach, where the

predicted Monte Carlo particle flux is only an approximation. Both weight window

methods, however, show excellent agreement between the theoretical predictions and

the simulated values.

As before, the challenge problem results indicate that a positive correlation exists

between the FOM and the Monte Carlo particle flux since the shape of the curves

is similar. However, comparing the 1D plots of the simulated Monte Carlo particle

flux and the FOM demonstrates that there certainly is no obvious correlation since

the particle flux data tends to be much smoother than the FOM data.

Finally, Table 8.6 provides data on the number of source-detector problems that

could be run in the same time as one single global problem for the neutron and

photon flux problems. This data is useful if the user does not need the solution

everywhere but still in a large number of locations, perhaps along the boundary of

the system. The data from the FW-CADIS method demonstrates that 105 source-

detector neutron flux problems could be run before the a global problem makes sense

while 45 source-detector photon flux problems could be simulated. This shows that,

while FW-CADIS is well-suited for source-detector problems, it is less well-suited

for global calculations. Our weight window demonstrates that 11 source-detector

neutron flux problems could be run before a global calculation would make more sense

while 3 source-detector photon flux problems could be simulated. This demonstrates

how much better our weight window is than the FW-CADIS for obtaining good

statistical results in the deep parts of the problem for global calculations. Finally,

the data for the Transform approach shows that 23 source-detector neutron flux

problems could be solved for the cost of one global calculation while only 3 could
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be simulated for the photon flux problem before the computational cost exceeds one

global calculation.

8.4 Summary

In this section, we have described a challenge problem to assess whether the

methods presented in this thesis can adequately solve a more realistic shielding prob-

lem. The results indicate that all the methods are able to solve the source-detector,

source-region, and global neutron and photon response problems by employing the

methodology described in the previous three chapters. In addition, the challenge

problem again validates the theory: for a given weight window or “transform” func-

tion, the Monte Carlo particle flux is correctly predicted by the theory. Finally, the

results indicate that there is a positive correlation between the FOM and the Monte

Carlo particle flux, but the figures here show that there may be less of a correlation

than is suggested by the simpler 3-group problem.
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Figure 8.14: Total Flux FOM for Source-Detector (SD) Photon Problem
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Figure 8.15: Total Simulated MC Particle Flux for SD Photon Problem
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Figure 8.16: Total Predicted MC Particle Flux for SD Photon Problem

223



1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0  50  100  150  200

d = (x2 + y2)1/2

 0
 20
 40
 60
 80

 100
 120
 140

z

(a) Transform Approach (2D)

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0  50  100  150  200

d = (x2 + y2)1/2

 0
 20
 40
 60
 80

 100
 120
 140

z

(b) Our Weight Window (2D)

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0  50  100  150  200

d = (x2 + y2)1/2

 0
 20
 40
 60
 80

 100
 120
 140

z

(c) FW-CADIS (2D)

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  50  100  150  200  250  300

FW-CADIS
WW

XFORM

(d) All Methods (1D)

Figure 8.17: Total Flux FOM for Source-Region (SR) Photon Problem
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Chapter IX

Conclusions

In this thesis we have described in detail two methods – weight windows and

the Transform approach – that allow Monte Carlo practitioners to disperse Monte

Carlo particles throughout phase space according to a user-specified distribution.

The weight window approach uses splitting and Russian roulette, resulting from a

specific weight window, to achieved the user-specified distribution; it does not mod-

ify the underlying particle physics. This weight window is specified by a simple but

useful theory that relates the Monte Carlo particle distribution to the weight win-

dow center. The Transform approach accomplishes the user-specified distribution by

comprehensively modifying the underlying particle physics through the introduction

of a specific transform into the neutron transport equation; the Monte Carlo method

is then used to simulate this new equation with its modified particle physics. We de-

rived an expression that relates the Monte Carlo particle distribution to a“transform”

function that accomplishes the objectives of the Transform approach. The weight

window and Transform approach are included within a more general framework for

distributing particles, referred to as the General Transform approach.

The weight window and Transform approaches have been developed for and ap-

plied to three geometric classes of shielding problems: source-detector, source-region,

and global problems. In the source-detector problem, a solution, such as the scalar

flux or response, is desired in a single location in space – the detector; usually, the

source and detector are separated by a non-trivial distance, the geometry is often

complicated, and the solution experiences significant attenuation (by 10 or more or-

ders of magnitude) from the source to the detector. (The classic source-detector

problem is to obtain a single response in the detector.) In the source-region problem,

a solution is desired throughout a significantly large “detector” region; it shares many

similarities to the source-detector problem except that the region of interest is large
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enough to exhibit significant attenuation within its domain. Finally, in the global

problem, the solution is desired throughout the entire system; this problem is the

most challenging, since good statistical results are required at all points in space. For

each of these problems, two types of solution were considered – the energy-dependent

scalar flux φ(x, E) and a space-dependent response R(x). (For the source-detector

problem, we sometimes considered a single-valued response, RD since R(x) ≈ RD

for a small detector.) The major difference between these two problems lies in how

particles are distributed in the energy domain. For the flux problem, Monte Carlo

particles should be distributed nearly uniformly in energy, since we require the scalar

flux at every energy. For the response problem, Monte Carlo particles should be dis-

tributed in a way that more optimally resolves the space-dependent response.

To solve these problems, we implemented the Transform approach and two weight

window techniques, the FW-CADIS weight window and our own weight window.

For each technique, the Monte Carlo particles were distributed proportional to the

contributon flux, or a modified form of the contributon flux, which estimates the

relative importance of each phase-space element to the solution – flux or response.

To obtain this particle distribution for each of the methods requires an estimate of

the adjoint flux and sometimes the forward flux. However, since the adjoint problem

is not inherently defined by the problem statement, we need to specify the correct

adjoint source that corresponds to the type of solution we seek – flux or response – and

the geometric class – source-detector, source-region, or global. This adjoint source

can be defined for each problem type by identifying a suitable adjoint contributon

source that corresponds to the desired solution; this is described in detail in Chapter

V.

In Chapters V – VII, a test problem is solved indicating that all three methods

are capable of obtaining the response and flux for the source-detector, source-region,

and global problem. The Transform approach generally performed better than the

weight window techniques; however, relative to the other methods, it performed much

better for the source-detector problem than for the global problem. This indicates

that the additional computational cost associated with simulating the contributon

physics begins to undermine the gain for problems in which a solution is desired in an

extended region of space. Our weight window generally performed better than the

FW-CADIS method for the source-region and global problems; this can be attributed

to modifying the Monte Carlo particle distribution in the “detector” region to be

more uniform in space. This test problem also validated the theoretical expression

relating the Monte Carlo particle distribution to the weight window center and the
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“transform” function for the weight window techniques and Transform approach,

respectively.

In addition to the test problem, a more realistic challenge problem was consid-

ered in Chapter VIII. All methods were able to obtain the total neutron and photon

flux for each geometric class of problems — source-detector, source-region, and global

problems. Although we did not make specific conclusions about the efficiency of each

method due to the variability in the calculations obtained on the supercomputer, we

did notice similar patterns seen in the test problem. Specifically, the Transform ap-

proach performed better than the weight window approaches when the “detector”

region was small and the materials were optically thick to prevent particles from

easily dispersing throughout the system. Again, the results for the weight window

techniques validated the theoretical expressions relating the Monte Carlo particle

distributions with the weight window center. Although the results for the Trans-

form approach were only an approximation to the theoretical expression relating the

Monte Carlo particle distribution and the “transform” function, they demonstrated

reasonable agreement.

Overall, we have demonstrated in this thesis that weight window techniques and

the Transform approach can be used to distribute Monte Carlo particles throughout

phase space according to a user-specified distribution. Although we provided no

theoretical expression that relates the Monte Carlo particle flux and the figure of

merit, there seems to be a positive correlation between the two. Even without a

theoretical link between the two, Monte Carlo particles exist within the system with

some distribution; it seems better to have tools that allow the user to prescribe these

distributions clearly.

We present here some ideas for future work:

1. The most obvious next step is to apply the weight window techniques and

Transform approach to a continuous-energy Monte Carlo code. The weight

window techniques would be simple to implement, since they are imposed on

the system without altering the underlying particle physics. Most of the effort

would be allocated toward determining an appropriate energy group structure

for the deterministically-generated weight window. The Transform approach

would be much more difficult to implement in a continuous-energy Monte

Carlo code, since it requires adjusting the particle physics. This implicitly

means sampling different probability distributions, which can be complicated

for continuous-energy Monte Carlo calculations.
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2. Another interesting pursuit would be to develop an algorithm, based on the

methodology given in this thesis, that uses information obtained in the Monte

Carlo simulation to generate the weight window and “transform” function pa-

rameters during run-time, or to at least adjust deterministically obtained pa-

rameters. The update would be performed at periodic intervals (e.g. every

100,000 particles) and would need to include some means to assess whether the

data is statistically resolved enough to use. [Something similar to this is done

now in MCNP to generate weight windows.]

3. Other forms of the General Transform approach, which include mixing weight

windows with some modifications to the physics, should be investigated to

determine whether they are more cost-effective than the full-blown Transform

approach. Also, an angle-dependent weight window should be investigated

based on the theory developed here.

4. If possible, a theory should be developed that clarifies the correlation between

the Monte Carlo particle flux and metrics such as the FOM. This theoretical

model would include deriving expressions that describe the effect of weight

windows on the variance.

5. The work in this thesis has focused on distributing Monte Carlo particles ac-

cording to the contributon flux; however, this is certainly not the only option.

Other distributions may be better for specific types of problems; these should

be investigated theoretically and experimentally.

6. A thorough comparison of source-detector and global problems should be per-

formed to determine whether a correlation based on problem size and material

properties can be developed to predict the number of source-detector problems

that can be run before a global problem makes more sense, when using the

weight window or Transform approaches.
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Appendix A

Atomic Composition of Materials

This appendix contains the atomic composition of each material used in the challenge

problem in Chapter VIII: concrete, water, stainless steel 304, lead, and uranium

dioxide.

Table A.1: Composition of concrete

Isotope/Element Number Density (cm−3) Atom Percent (%)
H-1(H20) 7.77e-3 10.4

C 1.15e-4 0.155
O-16 4.38e-2 58.9
Na-23 1.05e-3 1.41

Mg 1.48e-4 0.199
Al-27 2.39e-3 3.21

Si 1.58e-2 21.2
K 6.93e-4 0.932
Ca 2.29e-3 3.08

Fe-54 1.85e-5 0.0249
Fe-56 2.87e-4 0.386
Fe-57 6.57e-6 0.00883
Fe-58 8.76e-7 0.00118

Table A.2: Composition of water

Isotope/Element Number Density (cm−3) Atom Percent (%)
H-1(H20) 4.95e-2 66.7

O-16 2.48e-2 33.3
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Table A.3: Composition of stainless steel 304

Isotope/Element Number Density (cm−3) Atom Percent (%)
C 2.37E-04 0.273
Si 8.93E-04 1.03

Cr-50 7.56E-04 0.870
Cr-52 1.46E-02 16.8
Cr-53 1.65E-03 1.90
Cr-54 4.12E-04 0.474
Mn-55 1.52E-03 1.75
Fe-54 3.44E-03 3.96
Fe-56 5.35E-02 61.5
Fe-57 1.22E-03 1.40
Fe-58 1.63E-04 0.188
Ni-58 5.84E-03 6.717
Ni-60 2.23E-03 2.56
Ni-61 9.66E-05 0.111
Ni-62 3.07E-04 0.353
Ni-64 7.78E-05 0.0895

Table A.4: Composition of lead

Isotope/Element Number Density (cm−3) Atom Percent (%)
Pb-206 7.94E-03 24.4
Pb-207 7.28E-03 22.4
Pb-208 1.73E-02 53.2

Table A.5: Composition of uranium dioxide

Isotope/Element Number Density (cm−3) Atom Percent (%)
U-235 4.96E-04 0.742
U-238 2.18E-02 32.582
O-16 4.46E-02 66.676
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Appendix B

Multigroup Cross-Sections for Materials

This appendix contains the multigroup cross-sections for each material used in the

challenge problem in Chapter VIII: concrete, water, stainless steel 304, lead, and

uranium dioxide. These macroscopic cross-sections were obtained by weighting the

isotopic/elemental microscopic cross-sections from the BUGLE-96 library [44] with

the atomic compositions listed in Appendix A for each material and collapsing them

to the 10-group structure given in Table 8.1 by arithmetically averaging over each

energy group.

Table B.1: Concrete cross-sections for groups 1-5

Data \ g 1 2 3 4 5
Σt,g (cm−1) 1.13E-01 1.29E-01 2.23E-01 3.46E-01 3.63E-01

Σs,g→1 (cm−1) 4.21E-02 5.70E-03 5.70E-03 2.93E-03 6.12E-03
Σs,g→2 (cm−1) 0.0 5.13E-02 1.67E-02 9.96E-03 3.62E-03
Σs,g→3 (cm−1) 0.0 0.0 1.45E-01 6.55E-02 7.13E-03
Σs,g→4 (cm−1) 0.0 0.0 0.0 2.82E-01 4.58E-02
Σs,g→5 (cm−1) 0.0 0.0 0.0 0.0 2.85E-01
Σs,g→6 (cm−1) 0.0 0.0 0.0 0.0 0.0
Σs,g→7 (cm−1) 0.0 0.0 0.0 0.0 0.0
Σs,g→8 (cm−1) 0.0 0.0 0.0 0.0 0.0
Σs,g→9 (cm−1) 0.0 0.0 0.0 0.0 0.0
Σs,g→10 (cm−1) 0.0 0.0 0.0 0.0 0.0

238



Table B.2: Concrete cross-sections for groups 6-10

Data \ g 6 7 8 9 10
Σt,g (cm−1) 3.93E-01 4.48E-01 5.58E-02 7.62E-02 1.33E-01

Σs,g→1 (cm−1) 2.01E-03 1.25E-03 2.55E-04 3.39E-03 4.64E-03
Σs,g→2 (cm−1) 2.44E-03 1.19E-04 4.64E-05 1.28E-03 2.74E-03
Σs,g→3 (cm−1) 1.72E-03 6.31E-05 2.84E-04 1.44E-03 3.64E-04
Σs,g→4 (cm−1) 1.10E-02 9.21E-05 1.67E-03 3.85E-03 8.35E-04
Σs,g→5 (cm−1) 5.74E-02 4.29E-04 2.56E-03 9.64E-03 5.55E-03
Σs,g→6 (cm−1) 3.00E-01 1.04E-04 6.71E-04 8.19E-02 9.74E-03
Σs,g→7 (cm−1) 0.0 3.37E-01 1.56E-02 8.09E-02 1.12E-02
Σs,g→8 (cm−1) 0.0 0.0 1.80E-02 2.45E-02 1.24E-02
Σs,g→9 (cm−1) 0.0 0.0 0.0 3.70E-02 2.77E-02
Σs,g→10 (cm−1) 0.0 0.0 0.0 0.0 3.54E-02

Table B.3: Water cross-sections for groups 1-5

Data \ g 1 2 3 4 5
Σt,g (cm−1) 8.49E-02 1.47E-01 2.65E-01 5.94E-01 9.89E-01

Σs,g→1 (cm−1) 1.70E-02 2.72E-03 6.18E-03 8.60E-03 1.99E-02
Σs,g→2 (cm−1) 0.0 1.93E-02 2.82E-02 4.40E-02 2.27E-02
Σs,g→3 (cm−1) 0.0 0.0 7.70E-02 1.33E-01 4.32E-02
Σs,g→4 (cm−1) 0.0 0.0 0.0 2.86E-01 2.34E-01
Σs,g→5 (cm−1) 0.0 0.0 0.0 0.0 6.37E-01
Σs,g→6 (cm−1) 0.0 0.0 0.0 0.0 0.0
Σs,g→7 (cm−1) 0.0 0.0 0.0 0.0 0.0
Σs,g→8 (cm−1) 0.0 0.0 0.0 0.0 0.0
Σs,g→9 (cm−1) 0.0 0.0 0.0 0.0 0.0
Σs,g→10 (cm−1) 0.0 0.0 0.0 0.0 0.0

Table B.4: Water cross-sections for groups 6-10

Data \ g 6 7 8 9 10
Σt,g (cm−1) 1.10E+00 1.49E+00 1.79E-02 2.63E-02 4.74E-02

Σs,g→1 (cm−1) 1.03E-02 5.55E-03 3.71E-05 9.66E-04 1.55E-03
Σs,g→2 (cm−1) 1.56E-02 7.57E-04 0.00E+00 2.82E-03 9.94E-04
Σs,g→3 (cm−1) 1.05E-02 4.02E-04 0.00E+00 1.26E-03 7.02E-06
Σs,g→4 (cm−1) 6.98E-02 5.87E-04 0.00E+00 4.70E-03 1.70E-05
Σs,g→5 (cm−1) 3.15E-01 2.73E-03 0.00E+00 3.46E-02 2.49E-04
Σs,g→6 (cm−1) 6.05E-01 5.84E-05 0.00E+00 4.95E-01 4.53E-03
Σs,g→7 (cm−1) 0.0 9.51E-01 4.14E-02 4.88E-01 4.70E-03
Σs,g→8 (cm−1) 0.0 0.0 9.11E-03 6.41E-03 1.30E-09
Σs,g→9 (cm−1) 0.0 0.0 0.0 1.46E-02 2.86E-03
Σs,g→10 (cm−1) 0.0 0.0 0.0 0.0 6.61E-03
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Table B.5: Stainless steel 304 cross-sections for groups 1-5

Data \ g 1 2 3 4 5
Σt,g (cm−1) 2.71E-01 2.91E-01 2.67E-01 3.71E-01 8.76E-01

Σs,g→1 (cm−1) 1.43E-01 9.54E-03 1.62E-02 2.93E-03 2.71E-03
Σs,g→2 (cm−1) 0.0 1.46E-01 2.77E-02 5.74E-03 1.86E-04
Σs,g→3 (cm−1) 0.0 0.0 2.13E-01 2.02E-02 5.09E-04
Σs,g→4 (cm−1) 0.0 0.0 0.0 3.51E-01 1.44E-03
Σs,g→5 (cm−1) 0.0 0.0 0.0 0.0 7.75E-01
Σs,g→6 (cm−1) 0.0 0.0 0.0 0.0 0.0
Σs,g→7 (cm−1) 0.0 0.0 0.0 0.0 0.0
Σs,g→8 (cm−1) 0.0 0.0 0.0 0.0 0.0
Σs,g→9 (cm−1) 0.0 0.0 0.0 0.0 0.0
Σs,g→10 (cm−1) 0.0 0.0 0.0 0.0 0.0

Table B.6: Stainless steel 304 cross-sections for groups 6-10

Data \ g 6 7 8 9 10
Σt,g (cm−1) 9.91E-01 9.62E-01 2.37E-01 2.72E-01 4.32E-01

Σs,g→1 (cm−1) 7.53E-04 9.94E-04 7.39E-03 1.02E-02 9.90E-03
Σs,g→2 (cm−1) 3.40E-08 9.27E-11 2.57E-03 6.23E-03 9.42E-03
Σs,g→3 (cm−1) 2.30E-05 2.71E-12 1.31E-03 2.21E-03 2.25E-03
Σs,g→4 (cm−1) 2.52E-05 2.35E-08 1.78E-03 2.37E-03 1.52E-03
Σs,g→5 (cm−1) 3.17E-03 5.02E-06 1.23E-02 1.78E-02 1.45E-02
Σs,g→6 (cm−1) 9.50E-01 6.53E-06 2.28E-03 3.78E-03 1.68E-02
Σs,g→7 (cm−1) 0.0 8.41E-01 1.47E-03 3.51E-03 3.74E-02
Σs,g→8 (cm−1) 0.0 0.0 1.46E-02 9.20E-02 1.25E-01
Σs,g→9 (cm−1) 0.0 0.0 0.0 5.77E-02 1.98E-01
Σs,g→10 (cm−1) 0.0 0.0 0.0 0.0 2.37E-01

Table B.7: Lead cross-sections for groups 1-5

Data \ g 1 2 3 4 5
Σt,g (cm−1) 1.86E-01 2.43E-01 1.79E-01 2.68E-01 3.40E-01

Σs,g→1 (cm−1) 1.06E-01 3.57E-03 2.56E-03 6.33E-04 5.14E-04
Σs,g→2 (cm−1) 0.0 1.80E-01 7.19E-03 1.27E-03 2.74E-05
Σs,g→3 (cm−1) 0.0 0.0 1.71E-01 7.45E-03 3.82E-05
Σs,g→4 (cm−1) 0.0 0.0 0.0 2.66E-01 1.39E-03
Σs,g→5 (cm−1) 0.0 0.0 0.0 0.0 3.31E-01
Σs,g→6 (cm−1) 0.0 0.0 0.0 0.0 0.0
Σs,g→7 (cm−1) 0.0 0.0 0.0 0.0 0.0
Σs,g→8 (cm−1) 0.0 0.0 0.0 0.0 0.0
Σs,g→9 (cm−1) 0.0 0.0 0.0 0.0 0.0
Σs,g→10 (cm−1) 0.0 0.0 0.0 0.0 0.0
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Table B.8: Lead cross-sections for groups 6-10

Data \ g 6 7 8 9 10
Σt,g (cm−1) 3.60E-01 3.68E-01 5.28E-01 4.79E-01 7.01E-01

Σs,g→1 (cm−1) 1.05E-04 2.04E-04 5.45E-04 5.46E-03 8.41E-03
Σs,g→2 (cm−1) 3.08E-07 0.00E+00 3.61E-05 1.16E-05 7.92E-04
Σs,g→3 (cm−1) 7.15E-07 6.70E-12 9.30E-05 5.42E-05 5.03E-06
Σs,g→4 (cm−1) 4.06E-06 5.30E-12 2.70E-04 3.29E-04 1.62E-04
Σs,g→5 (cm−1) 2.64E-04 7.72E-10 8.82E-04 4.50E-03 2.91E-03
Σs,g→6 (cm−1) 3.56E-01 4.44E-07 2.28E-04 1.05E-03 1.64E-03
Σs,g→7 (cm−1) 0.0 3.59E-01 6.77E-04 3.73E-03 2.43E-03
Σs,g→8 (cm−1) 0.0 0.0 9.11E-03 3.08E-01 1.61E-01
Σs,g→9 (cm−1) 0.0 0.0 0.0 1.26E-01 1.81E-01
Σs,g→10 (cm−1) 0.0 0.0 0.0 0.0 1.96E-01

Table B.9: Uranium dioxide cross-sections and fixed source for groups 1-5

Data \ g 1 2 3 4 5
Σt,g (cm−1) 2.02E-01 2.22E-01 2.82E-01 4.25E-01 4.96E-01

Σs,g→1 (cm−1) 9.81E-02 4.38E-03 6.67E-03 2.72E-03 3.13E-03
Σs,g→2 (cm−1) 0.0 1.15E-01 7.05E-03 1.32E-03 7.90E-06
Σs,g→3 (cm−1) 0.0 0.0 1.92E-01 3.86E-02 2.46E-06
Σs,g→4 (cm−1) 0.0 0.0 0.0 3.94E-01 9.51E-03
Σs,g→5 (cm−1) 0.0 0.0 0.0 0.0 4.59E-01
Σs,g→6 (cm−1) 0.0 0.0 0.0 0.0 0.0
Σs,g→7 (cm−1) 0.0 0.0 0.0 0.0 0.0
Σs,g→8 (cm−1) 0.0 0.0 0.0 0.0 0.0
Σs,g→9 (cm−1) 0.0 0.0 0.0 0.0 0.0
Σs,g→10 (cm−1) 0.0 0.0 0.0 0.0 0.0
Qg (cm−3s−1) 2.61E+10 6.01E+11 1.43E+12 3.42E+11 4.85E+09
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Table B.10: Uranium dioxide cross-sections and fixed source for groups 6-10

Data \ g 6 7 8 9 10
Σt,g (cm−1) 1.54E+00 1.16E+00 4.60E-01 4.33E-01 6.75E-01

Σs,g→1 (cm−1) 7.20E-04 3.83E-04 2.89E-04 4.94E-03 6.99E-03
Σs,g→2 (cm−1) 1.06E-06 8.14E-14 1.08E-06 2.17E-02 1.01E-02
Σs,g→3 (cm−1) 2.91E-08 2.18E-12 1.15E-07 2.27E-03 2.11E-02
Σs,g→4 (cm−1) 4.38E-08 8.60E-13 1.79E-07 3.68E-04 8.63E-04
Σs,g→5 (cm−1) 8.67E-03 4.21E-13 5.27E-06 1.24E-03 2.55E-03
Σs,g→6 (cm−1) 1.01E+00 1.05E-04 6.90E-05 9.44E-03 1.45E-02
Σs,g→7 (cm−1) 0.0 3.99E-01 9.70E-03 4.43E-03 9.49E-03
Σs,g→8 (cm−1) 0.0 0.0 2.04E-02 3.75E-02 9.43E-02
Σs,g→9 (cm−1) 0.0 0.0 0.0 6.94E-02 1.04E-01
Σs,g→10 (cm−1) 0.0 0.0 0.0 0.0 1.24E-01
Qg (cm−3s−1) 1.13E+08 2.03E+04 9.47E+09 7.37E+11 2.49E+12
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