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CHAPTER I

Introduction

In this dissertation, we investigate two problems: (1) the problem of establishing

a “gold standard” for developing and optimizing multicomponent interventions that

allows for valid inference about individual components and their interactions (Ch.

III, IV); and (2) the problem of non-regularity that arises in the estimation of optimal

dynamic treatment regimes from longitudinal data on patients (Ch. V). Both these

methodological research directions are motivated by our involvement in the design

and analysis of a smoking cessation trial [88] conducted by the Center for Health

Communications Research (CHCR) at the University of Michigan; a description of

this trial is given in Chapter II.

1.1 Designing Multicomponent Intervention Trials

The first problem investigated in this dissertation is the design of multicomponent

intervention trials. Multicomponent or complex interventions are increasingly being

used in many health domains, e.g. AIDS [41], cardiovascular diseases [28], depres-

sion [105], diabetes [65], drug abuse [68], gerontology [1], obesity [8], and smoking

cessation [88]. While some components may involve a medication, many components

are behavioral, implementation, or delivery factors [28, 105, 88]. As has been rec-

1
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ognized in the literature [1, 18, 39, 86, 103], development and evaluation of these

multicomponent interventions pose additional design challenges over those of single-

component interventions, and these challenges tend to be addressed poorly by the

standard two-group randomized controlled trials. More specifically, such two-group

randomized trials do not provide direct information on which components are active,

whether they have been set at optimal levels, and whether any of the components

interact.

The classical approach and its problem

The classical approach (sometimes called the treatment package strategy) to de-

velop multicomponent interventions [47, 103, 102] consists of constructing a likely

best intervention package based primarily on prior empirical research, readings of

the literature, theory and clinical experience. This intervention is then evaluated in

a standard randomized controlled trial. In the course of this trial, data are collected

not only on the outcomes of primary interest but also on other variables so as to

enable quasi-experimental, non-experimental and post hoc analyses [68, 1, 96, 97]

aimed at shedding light on what worked well and what might need improvement.

Examples of such analyses include regressing outcomes on naturally occurring vari-

ation in participation, compliance, or implementation fidelity. Other observational

analyses include theory-based mediational analyses [103, 106]. The intervention is

often refined based on the findings of these analyses, and then the refined version is

tested in another two-group randomized trial. Sometimes several such iterations are

performed to refine the multicomponent intervention. Thus the questions regarding

individual components and their interactions are answered by observational analyses.

The main problem with this approach is that it depends heavily on the non-
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experimental, observational analyses. As is well-known [44, 72, 74], findings that

are not based on randomization are contaminated by the likely presence of unknown

confounders (e.g. the variables that affect both the receipt of an intervention com-

ponent and the outcome). As a consequence, the effects of individual components

and interactions may be misinterpreted resulting in a suboptimal intervention.

1.1.1 Multiphase Optimization Strategy (MOST)

To address the above problem with the classical approach, an experimental ap-

proach called the Multiphase Optimization Strategy (MOST) was proposed by Collins

et al. [25], and further developed and illustrated by Nair et al. [62]. Examples of suc-

cessful implementation of MOST include the works of Nair et al. [62] in breast cancer

prevention and Strecher et al. [88] in smoking cessation. A description of this smoking

cessation trial can be found in Chapter II.

The MOST approach includes additional evidentiary steps along with the two-

group randomized trial as part of the process of building and evaluating multicompo-

nent interventions. MOST consists of two evidentiary phases to precede and inform

a confirmatory two-group randomized trial. The first phase, called screening, con-

sists of randomized experimentation designed to obtain estimates of the effects of

individual components and selected interactions between components. The resulting

experimental evidence provides the basis for preliminary decisions about which com-

ponents to select for inclusion. A second phase of additional experimentation, called

refining (sometimes called follow-up study), is used to identify the best level of one

or more components, to investigate interactions between components, and to resolve

any other remaining questions. The final confirmatory two-group trial is sometimes

referred to as the confirming phase of the MOST approach. Information on cost and
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burden can be collected in the course of experimentation and included when deci-

sions are made concerning choices of components and/or levels. Conclusions drawn

from the results of the screening and refining phases form the basis for specification

of an intervention (to be tested in the confirmatory trial) that consists of a set of

active components implemented at levels selected to maximize efficacy, effectiveness,

and/or cost-effectiveness.

Even though the screening and refining studies precede a confirmatory random-

ized trial of the “optimized” multicomponent intervention vs. control, they are not

pilot studies by most widely accepted definitions [76, 48, 98]. According to these def-

initions, a pilot study is typically conducted to assess the feasibility (of recruitment,

intervention delivery, data collection) of a full-blown randomized trial; indeed pilot

studies may be conducted with little regard for power, and may not even involve

randomization. By contrast, screening and refining studies as described by Collins

et al. [25] are adequately powered randomized trials intended to assist in refining and

optimizing multicomponent interventions and may themselves be preceded by pilot

studies to assess feasibility.

1.1.2 MOST and Factorial Designs

Full and fractional factorial designs (FFD) that have been extensively used in

agricultural and industrial experiments for many decades [108, 36, 9, 107] can be

used efficiently in the screening phase of MOST. Nair et al. [62] described the use of

FFDs within the MOST framework in two behavioral intervention studies, e.g. Guide

to Decide and Project Quit. One goal of the current dissertation is to establish FFDs

within the MOST framework as the “gold standard” for developing multicomponent

interventions. Below we describe how we will proceed to achieve this goal.
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Justifying the use of FFDs in screening studies

Even though the use of FFDs in the screening phase of MOST was described by

earlier authors [25, 62, 88], there exists a tremendous amount of controversy regarding

the use of factorial designs in the clinical and behavioral intervention trials literature

[16, 103, 67]. Factorial designs have been assessed by biostatisticians in the context

of confirmatory medication trials; the objective has been to evaluate the usefulness

of a combined medication over a single medication. In this context, the criticisms of

factorial designs relate to cost, feasibility, ethics, toxicity of combined medications,

interpretation of main effects in presence of active interactions, and power to detect

interactions. In Chapter III of the current dissertation, which is based on a recent

paper [19], we describe how one can address these common criticisms (and some

misconceptions) regarding the use of (fractional) factorial designs in the context of

screening trials (which is different from evaluation or confirmatory trials) for devel-

oping multicomponent interventions. To the best of our knowledge, addressing the

criticisms against FFDs in the context of the MOST framework (screening phase)

has not been done before.

Additionally in Chapter III, we provide an operationalization of screening studies

using FFDs for up to six components. We also present some hypothetical examples

of follow-up studies, as well as the follow-up study design of Project Quit.

Comparing MOST with the classical approach in a simulation study

MOST is a relatively new experimental framework to a lot of behavioral inter-

vention scientists. We feel that an illustrative simulation study, which shows that

MOST performs better than the classical approach under a lot of simulated scenarios
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that mimic some of the well-known characteristics of real studies, has the promise

of disseminating this framework further. In Chapter IV, which is based on a recent

paper [22], we present such an illustrative simulation study that provides a head-to-

head comparison of MOST (implemented using FFDs) with the classical approach

(two-group randomized trial followed by observational analyses). This comparison is

based on a generative model that involves five intervention components, varying lev-

els of adherence to each component, a negative interaction between two components,

an unknown confounder, and a continuous outcome variable. The simulation results

show that under a lot of different scenarios (e.g. varying effect size and sample size),

the MOST approach (implemented using FFDs) outperform the classical approach in

terms of various criteria, e.g. optimizing the mean outcome of the final intervention

and identifying the best intervention. This chapter, we believe, will strengthen the

case for FFDs within the MOST framework as the “gold standard” for developing

multicomponent interventions.

1.2 Dynamic Treatment Regimes

The second problem studied in this dissertation is the phenomenon of non-regularity

arising in the estimation of the optimal dynamic treatment regimes (DTR). DTRs

are useful tools in treating chronic disorders (e.g., depression, schizophrenia, sub-

stance abuse, HIV infection etc.). In order to manage the waxing and waning nature

of these disorders, clinicians typically treat patients in multiple stages, adapting

the treatment type and dosage to the ongoing measures of an individual patient’s

response, burden, adherence to prior treatment, side effects, and preference. Prac-

tice guidelines for clinicians offer treatment recommendations, but they often rely
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heavily on expert opinion because of limited direct scientific evidence. DTRs rep-

resent a paradigm to operationalize this adaptive clinical practice, and thereby to

improve it. A DTR is a sequence of (treatment) decision rules, one per stage. Each

decision rule takes a patient’s treatment and covariate history as input, and out-

puts a recommended treatment. To make these treatment rules “evidence-based”,

one has to estimate them from longitudinal data on patients in a principled way.

Data for estimating DTRs come from multi-stage studies – either an observational

longitudinal study or a sequential multiple assignment randomized trial (SMART)

[49, 50, 32, 58, 59]. In SMART designs, each patient is followed through stages of

treatment and at each stage the patient is randomized to one of the possible treat-

ment options. Experimental designs similar to SMART have been implemented in

the treatments of schizophrenia [81], depression [78] and cancer [93, 99]. Below we

briefly discuss the framework of multi-stage studies.

1.2.1 The Framework of Multi-stage Studies

For simplicity, let us focus on studies with only two stages of treatment. Longi-

tudinal data on a single patient are given by the trajectory

{O1, A1, O2, A2, O3},

where Oj (j = 1, 2) denotes the covariates observed prior to treatment at the begin-

ning of the j-th stage, O3 is the observation at the end of stage 2, and Aj (j = 1, 2)

is the “action” or treatment assigned at the j-th stage subsequent to observing Oj.

Define history available at each stage as: H1 = O1, H2 = (O1, A1, O2). The study

can have either a single primary outcome Y observed at the end of stage 2, or two

outcomes Y1, Y2 observed at the two stages (and the interest is in Y1 +Y2). Note that
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the case of a single outcome Y observed at the end can be viewed as a case with

Y1 ≡ 0 and Y2 = Y . We assume that the outcomes are specified summaries of ob-

servations and treatments, i.e., Y1 = f1(O1, A1, O2) and Y2 = f2(O1, A1, O2, A2, O3),

with known functions f1, f2. In this simple framework, a DTR is a two-component

vector of decision rules, say (d1, d2), with dj(Hj) ∈ Aj, where Aj represents the set

of possible treatments at the j-th stage. An example of such a decision rule can be:

“stop treatment if ψT Hj > 0, otherwise maintain on current treatment”, where ψ is

a vector of parameters. A DTR is called optimal if it leads to a maximal mean Y

(or, maximal mean sum of Yj’s). The goal is to construct optimal DTRs, e.g. by

estimating the ψ’s featuring in the optimal DTR. Note that this simple framework

of two stages can be generalized to more than two stages. Below we present two

concrete examples.

Two-stage Smoking Cessation Trial (Strecher et al., 2008)

We present a randomized, two-stage, longitudinal, internet-based smoking ces-

sation and relapse prevention study. We will treat this example in great detail in

Chapters II and V; here is only a gentle overview. The stage 1 of this study (Project

Quit) was conducted to find an optimal multicomponent behavioral intervention to

help adult smokers quit smoking; and the stage 2 (Forever Free) was a follow-on

study to help those (among the participants of Project Quit) who already quit stay

quit, and help those who failed at the previous stage with a second chance. Here O1

consists of baseline variables (e.g., motivation, self-efficacy, education), O2 (also Y1)

consists of several stage 1 outcomes (e.g., quit status, reduction in the average num-

ber of cigarettes smoked per day, number of months not smoked during the study

period – all measured at 6 months from the baseline), and O3 (also Y2) consists
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of the same outcome variables measured at stage 2 (12 months from the baseline).

A1 and A2 represent the behavioral interventions given at stages 1 and 2 respectively.

Two-stage Cancer Trials (Wahed and Tsiatis, 2004)

In a two-stage design for cancer trials, patients are often treated initially with

an induction therapy (powerful chemotherapy to induce remission of disease) fol-

lowed by (at some later time-point) either some maintenance therapy to intensify

or augment the effects of induction therapy, if the patient “responds” (shows sign

of remission), or some other induction therapy (switch of treatment), if the patient

does not respond to the initial therapy. Here O1 stands for pre-treatment variables

(e.g., age, sex, ethnicity etc.), A1 is the induction therapy at the first stage, O2 is

whether or not the patient “responds” to initial induction therapy, A2 is either the

maintenance therapy (if the patient responds) or the new induction therapy at the

second stage (if the patient does not respond), and O3 (also the outcome Y ) is the

disease-free survival time.

1.2.2 Estimation and Inference

Methodological developments for estimating DTRs took place in recent times.

Thall et al. [93, 94, 95] considered likelihood-based methods (both frequentist and

Bayesian) for estimating DTRs, primarily in the context of cancer. Murphy et al.

[60] provided a method of estimation for the mean outcome that would have been ob-

served had the study population followed a particular DTR, based on observational

longitudinal data and under the assumption of sequential randomization. Parmi-

giani [64] considered modeling medical decisions by Bayesian approaches. Murphy

[56] provided a semi-parametric regret modeling methodology, sometimes called A-
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Learning [7]. An efficient version of this method was provided by Robins [71]. A good

discussion of the relationship between these methods can be found in Moodie et al.

[55]. Other methods for estimating DTRs include the semi-parametric methods due

to Lunceford et al. [51] and Wahed and Tsiatis [99, 100] in the context of two-stage

cancer trials, with survival distribution as the primary outcome. Rosthoj et al. [73]

considered a case study based on Murphy’s [56] methodology using observational

data. The problem of inference for the parameters of the optimal DTR was studied

by [71].

Non-regularity

Robins [71] identified the problem of non-regularity in the context of estimating

optimal DTRs. As discussed by Robins, the treatment effect parameters at any

stage prior to the last can be non-regular under certain longitudinal distributions

of the data which he called exceptional laws. By non-regularity, we mean that the

asymptotic distribution of the estimator of the treatment effect parameter does not

converge uniformly over the parameter space. This phenomenon of non-regularity

causes bias in estimation, and leads to poor frequentist properties (e.g. coverage

rates) of the confidence intervals. Recently Moodie and Richardson [54] provided a

method called Zeroing Instead of Plugging In (ZIPI) for correcting the bias in the

estimation of the optimal DTRs resulting under exceptional laws.

In Chapter V of this dissertation, we illustrate the problem of non-regularity using

a method of estimation called Q-learning [101, 90, 58]. This method, like Robins’

g-estimation of optimal structural nested mean models, suffers from non-regularity –

the common reason being an underlying non-smooth maximization operation. We

show that under simple conditions, Q-learning is equivalent to an inefficient version
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of Robins’ method; however Q-learning is simpler to visualize. To address non-

regularity, we propose a new estimator called the soft-threshold estimator within the

framework of Q-learning, and compare it with other available estimation techniques

that attempt to address this problem (including the ZIPI or hard-threshold estima-

tor) via extensive simulations. The soft-threshold estimator falls within the class of

shrinkage estimators, and the tuning parameter governing the shrinkage is specified

by an empirical Bayes formulation of the problem. The content of this chapter is

based on a recent paper by Chakraborty et al. [20].

1.2.3 Dynamic Treatment Regimes and Multicomponent Interventions

Note that while developing a DTR, one has to decide on a number of questions,

e.g., when to start treatment, which treatment type and/or dosage to start with,

when to step up (augment) treatment and to which, when to step down treatment

to maintenance or monitoring therapy, and what information to use to make the

above decisions. Thus a DTR can be viewed as a possibly high-dimensional mul-

ticomponent intervention. Hence a series of developmental or screening trials may

be necessary before conducting a confirmatory trial to evaluate a DTR in compar-

ison with a standard alternative treatment (control). Hence the MOST framework

in general, and FFDs in particular, can provide useful tools in the development of

DTRs. This conceptual connection, in a way, ties the two broad problems considered

in this dissertation together.
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1.3 Outline

In the present chapter, we have discussed the MOST framework for developing

multicomponent interventions. We have also introduced the general concept of DTRs

and the phenomenon of non-regularity that arises in the estimation of DTRs. In the

subsequent chapters, we will build on this background and discuss specific research

done along these lines. In Chapter II, we give a detailed description of a study

on smoking cessation [88]. We use the first stage of this study (Project Quit) as

an example where MOST (using FFDs) was successfully implemented. Also in this

smoking cessation study, the problem of estimating the optimal DTR arises naturally.

We use this as a motivating example for the methodology considered in Chapter V.

Chapter III is devoted primarily to addressing the concerns and criticisms against

FFDs in the context of the screening phase of MOST. Here we also provide an

operationalization of screening trials using FFDs and some discussion on follow-up

studies. Chapter IV provides a head-to-head comparison between two competing

approaches to develop multicomponent interventions, e.g., (a) MOST using FFDs,

and (b) traditional two-group randomized trial followed by non-experimental post

hoc analysis, using a complex simulation study. The simulation study shows how

approach (a) outperforms approach (b) in most scenarios.

In chapter V, we present the problem of non-regularity arising in the estimation

of optimal DTRs in full detail. Here we derive Q-learning as an inefficient version

of Robins’ [71] method of estimation in structural nested mean models (SNMM). We

propose the soft-threshold estimator to address non-regularity, and derive it as the

empirical Bayes estimator under a hierarchical Bayesian model. We also present a

comprehensive simulation study to compare different methods in regular as well as
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non-regular settings. Finally, we provide two separate analyses (one is the complete-

case analysis, the other using multiple imputation) of the smoking cessation data to

illustrate the developed methodology.

In chapter VI, we discuss possible extensions and future work. With reference to

the work on designing multicomponent intervention trials, future research consists of

exploring the area of follow-up studies with more rigor. Future research directions

related to DTRs include extending the proposed soft-threshold method to the setting

of more than two treatment options per stage, and devising a consistent bootstrap

procedure for using in non-regular settings. We briefly outline our plans to explore

these in future.



CHAPTER II

The Motivating Study on Smoking Cessation

In this chapter, we will describe the Project Quit and the Forever Free studies,

conducted by the Center for Health Communications Research (CHCR) at the Uni-

versity of Michigan. Together they provide a setting where the problem of estimating

optimal dynamic treatment regime arises naturally; we want to use this setting as

an example to motivate the methods proposed later in this thesis. The Project Quit

study also exemplifies a successful implementation of the MOST framework and the

use of fractional factorial designs (FFDs) therein.

2.1 Project Quit Study

Project Quit is a web-based smoking cessation program developed by researchers

at the Center for Health Communications Research of the University of Michigan,

Ann Arbor, and two health maintenance organizations (HMO), e.g. the Group

Health Cooperative (GHC), Seattle, and the Henry Ford Health System (HFHS),

Detroit. The funding for this study was provided by the National Cancer Insti-

tute (NCI). The subjects of this study were recruited from the population of adult

patients of two health maintenance organizations (HMOs), e.g. GHC and HFHS,

associated with NCI’s Cancer Research Network (CRN). This population provided

14
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a broad representation of ethnicity, gender, age, health status, and geography. The

collaboration allowed the researchers to test some cutting-edge web-based technol-

ogy in a real-world environment that has the infrastructure for both evaluating and

disseminating population-based cancer prevention and control programs. This study

used the MOST framework (implemented using FFDs) to screen and identify the

effects of some psycho-social and communication factors (treatment components) in-

fluencing smoking cessation.

2.1.1 Factors and Study Design

An FFD was used to screen and identify the factors influencing cessation from a

set of potentially active factors of a web-based cessation induction intervention. Six

factors listed below, each at two levels, were considered originally.

Table 2.1: Project Quit Factors and Their Levels
Factor High Level (+) Low Level (−)

Outcome Expectations High Tailoring Depth Low Tailoring Depth
Efficacy Expectations High Tailoring Depth Low Tailoring Depth

Success Stories High Tailoring Depth Low Tailoring Depth
Message Source High Personalization Low Personalization

Message Framing Gain Framing Loss Framing
Message Exposure Single Multiple

The originally planned design was a 32-arm FFD. However, due to an implemen-

tation error, a decision was made later to drop the factor Message Framing from the

study, and subsequently fold the design to have 16 treatment arms. Details of the

study design can be found in [88] and also in chapter III.

The factors of this study were examined across a set of individual characteristics.

These characteristics were baseline level of motivation and self-efficacy (on a 10-point
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scale), barriers (e.g., fear of weight gain, smoking habit of spouse, prevalence of

friends and co-workers who smoke etc.), need for cognition (an individual’s tendency

to engage in and enjoy effortful cognitive endeavors), health locus of control (refers

to the belief that behaviors are causally related to outcomes, or are determined by

external factors such as luck, chance etc.), and socio-demographic (e.g., age, gender,

education, ethnicity) and health status characteristics (e.g., hypertension, diabetes,

heart disease etc.). Interactions of some of these subject characteristics with the

factors were studied.

2.1.2 Data Collection

During the subject recruitment phase, an introductory recruitment letter was sent

to individuals randomly chosen from the study population. The letter explained the

project (describing the research, its purpose, and its risks and benefits) and asked

individuals to voluntarily participate in this project by visiting the web site

http://www.projectquit.org

to complete an electronic consent form and eligibility questionnaire. Subjects were

eligible for the study if they satisfied the following criteria:

1. They were between 21 and 70 years of age.

2. They were assigned to a physician panel at GHC or HFHS as of January 1,

2003.

3. They were capable of communicating in English.

4. They were current smokers, defined as: they had smoked at least 100 cigarettes

in their lifetime, they reported smoking in the last seven days, and they reported
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smoking at least 10 cigarettes per day during the time of this survey.

5. They were not enrolled in any other smoking cessation program, or not using

pharmacological therapy for smoking cessation.

6. They had access to the internet and had an email account that they used to use

at least twice a week.

All eligible individuals who agreed to participate in the study completed a baseline

survey, selected a quit date between two and four weeks from the date of the baseline

survey completion date, and were randomized to one of the treatment arms.

The baseline questionnaire assessed the subject’s smoking history, psychosocial,

health, and demographic characteristics relevant to smoking cessation. Randomiza-

tion was done automatically by the computer and was invisible to the subject. Data

from the baseline survey were used to generate the experimental web site condition

to which the subject was randomly assigned. Subjects were encouraged to complete

the baseline questionnaire through the use of periodic email reminders. Follow-up

assessment was performed six months after initial login. At this time, the subject

was called by a trained telephone interviewer using a computer-assisted telephone

interview (CATI).

2.1.3 Outcome Measures

The primary outcome in the Project Quit study was the seven-day point-prevalence

in smoking cessation (binary) at six months following the baseline assessment. Dur-

ing the 6-month evaluation survey, each subject was asked if s/he had smoked any

cigarettes, even a puff, in the last seven days. A subject answering “yes” to this
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question was marked as a smoker.

A criticism of the above outcome measure is that it is only based on a subject’s

smoking status in last seven days, as opposed to last 6 months. However, data

on some secondary outcomes such as number of months not smoked by a subject,

changes in the number of cigarettes smoked per day and number of quit attempts in

the past 6 months were also collected.

2.2 Forever Free Study

Forever Free is a web-based smoking cessation and relapse prevention program

developed as a follow-on program to the Project Quit study. The funding for this

developmental project was provided by the University of Michigan. The goal of this

study was to help the participants of the Project Quit study – to help the quitters

stay quit and to help the non-quitters continue the quitting process. Subjects of this

study were recruited from the participants of the Project Quit study. During the six-

month CATI follow-up to Project Quit treatment assignment, the participants were

asked if they wanted to participate in the Forever Free program and if they would

mind being contacted about it. The subjects who consented on the phone, received

invitation email for participating in Forever Free. Then the subjects gave their con-

sents online by visiting the Forever Free web site. The subjects who consented were

subsequently randomized to one of the 5 treatment arms discussed below. Subjects

were blocked by their quit status (based on their seven-day point prevalence in the

Project Quit study, HMO membership (GHC vs. HFHS), and exposure in Project

Quit (single or multiple).
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2.2.1 Factors and Study Design

In the Forever Free study, two factors, each at two levels, gave rise to a 2× 2 full

factorial design. Additionally, a control arm was considered for certain comparisons

of interest. Thus a total of 5 treatment arms were constructed. If n be the total

number of participants in this study, then the planned sample size for the control

arm was n
3
, while each of the other 4 arms were planned to have a sample size of n

6
.

Table 2.2: Two Forever Free Factors and Their Levels
Factor High Level (+) Low Level (−)

Tailoring Locus Expert System User Navigation
Graphic Content Graphic Rich Graphic Poor

The intervention primarily consisted of the contents of 8 smoking relapse pre-

vention booklets, written by Dr. Thomas Brandon, and available on the NCI web

site:

http://www.smokefree.gov/pdf.html

The wordings of these booklets were adjusted to reflect that a participant had or had

not quit (according to Project Quit outcome). Each of these booklets is about han-

dling a particular situation when a subject may feel the urge to smoke, e.g., stress,

loneliness etc. The factors determined how these booklets were presented to the

subjects. For example, with reference to the second factor, the graphic poor version

(lower level) included simple clip-art style graphics found in the PDF version of the

booklets, while the graphic rich version (higher level) included enhanced graphics

that better communicated the ideas in the text. Thus there were four versions of

each booklet, viz., graphic rich for those who have quit smoking, graphic poor for
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those who have quit smoking, graphic rich for those who have not quit smoking, and

graphic poor for those who have not quit smoking. On the other hand, the first fac-

tor, tailoring locus, determined whether or not the choice of booklets were tailored

to a particular subject’s needs. In lower level of this factor (user navigation), the

subjects were presented with an web page with links to all the 8 booklets, and they

had to self-select which ones they wanted to review by clicking on appropriate links.

In higher level of this factor (expert system), although the subjects had access to all

the 8 booklets, they were advised to review up to 3 booklets by the “expert”, based

on their answers to a previous questionnaire. Subjects in the control arm did not

get any of these booklets; they only received an encouraging message to quit smoking.

2.2.2 Data Collection

Subjects were invited to participate in this follow-on study as part of the Project

Quit six-month CATI follow-up. They were sent an email reminder with a link to

the site

http://www.projectquit.org/foreverfree

approximately seven days after completing the CATI interview. Information col-

lected in the six-month CATI follow-up were used to tailor the selection of the ap-

propriate booklet for participants in the expert system cells. If a participant failed to

log in to the web site, they were sent email reminders at 1, 3, and 5 days reminding

them to visit the web site to enroll in the follow-on study.

All subjects were sent an email reminder at three months (post enrollment in the

follow-on study) asking them to return to the web site and complete a short survey.
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If a participant failed to visit the web site to complete the survey, they were sent

email reminders at 1, 3, and 5 days asking them to visit the web site to do the three-

month survey. If a subject started the three-month survey but failed to complete it,

they were sent email reminders at 1, 3, and 5 days after they started the three-month

survey asking them to return and complete the three-month survey.

All subjects were sent an email reminder at six months (post enrollment in the

follow-on study) asking them to return to the web site and complete the six-month

survey. If a subject failed to visit the web site to complete the survey, they were

sent email reminders at 1, 3, and 5 days asking them to visit the web site to do

the six-month survey. If a participant started the six-month survey but failed to

complete it, they were sent email reminders at 1, 3, and 5 days after they started the

six-month survey asking them to return to the web site and complete the six-month

survey. Subjects that did not complete the six-month survey on the web were mailed

a copy of the survey to complete. After six months (post enrollment in the follow-on

study), subjects were redirected to the NCI web site to view the booklets. Although

both three-month and six-month data were collected, we will focus on the six-month

data only.

2.2.3 Outcome Measures

The primary outcome in the Forever Free study was seven-day point-prevalence

in smoking cessation, which is binary. At 3-month or 6-month survey, each subject

was asked if s/he had smoked even a single cigarette during the last seven days. A

subject answering “yes” to this question was marked as a smoker.
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As before, secondary outcomes included how many months a subject has been off

cigarettes, changes in the number of cigarettes smoked per day, and number of quit

attempts.

2.3 Dynamic Treatment Regime Framework

Having described the study on smoking cessation, let us now identify the set-up for

estimating a dynamic treatment regime. Note that, in the combined Project Quit –

Forever Free study, two randomizations were done, one is the Project Quit treatment

assignment (1 out of 16), the other is the Forever Free treatment assignment (1 out

of 5). So these are the two time-points in the dynamic treatment regime framework.

Ideally, for each subject, we have a longitudinal record of the form

{O1, A1, O2, A2, O3},

where O1 represents baseline subject characteristics, A1 is the Project Quit treatment

arm the subject was assigned to, O2 stands for the subject characteristics and out-

comes measured during 6-month CATI follow-up, A2 is the Forever Free treatment

arm the subject was assigned to, and O3 stands for the subject characteristics and

outcomes measured during 6-month follow-up from Forever Free treatment assign-

ment. History at each stage can be defined as a suitable lower dimensional summary

of previous O’s and A’s. The primary outcome at each stage is the (binary) seven-

day point prevalence in smoking cessation. Some secondary outcomes (e.g., how long

a subject has been off cigarettes) are also available.

The goal in the present problem is to estimate the optimal dynamic treatment

regime (sequence of individualized treatments) that is most effective in smoking ces-
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sation – the one that maximizes the combined outcome over the two stages, and also

to attach measures of confidence (statistical inference).

For all subsequent analyses in this thesis, we will collapse the 4 different versions

of the Forever Free intervention (due to little difference between them) to form a

single treatment arm and compare it with the control arm.

2.3.1 Preliminary Descriptive Numbers

Here we present some preliminary descriptive numbers relating to the data. As

we see below, a lot of subjects from Project Quit decided not to continue to Forever

Free (only 479 out of 1848 subjects decided to continue); this step was part of the

protocol, and hence these subjects are not considered as drop-out. However note that

only 1401 out of 1848 stage-1 subjects completed the six-month CATI survey; these

1401 subjects are treated as complete cases and would be considered in complete-case

analysis in chapter V; the remaining 447 subjects are considered drop-outs in the

stage-1 data. Similarly, 281 subjects who completed the stage-2 six-month survey

are considered as complete cases in the complete-case analysis in chapter V; the

remaining 479 − 281 = 198 are considered drop-outs in the stage-2 data. Also note

that these numbers will change as we vary the outcome under consideration; here we

focus on the primary outcome (quit status) only.

Table 2.3: Descriptive Numbers about the Smoking Cessation Data
Subjects at different stages of the study n
Subjects who were assigned to a Project Quit treatment arm 1848
Subjects for whom Project Quit 6-month primary outcome is available 1401
Subjects who were assigned to a Forever Free treatment arm 479
Subjects for whom Forever Free 6-month primary outcome is available 281
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Descriptive checks revealed that drop-out was more or less uniform across the

different treatment arms in both stages. In chapter V, we will also present a refined

analysis using multiple imputation (as is well-known, complete case analysis often

gives biased results).



CHAPTER III

Developing Multicomponent Interventions using Fractional
Factorial Designs

Multicomponent interventions composed of behavioral, delivery, or implementa-

tion factors in addition to medications are becoming increasingly common in health

sciences. A natural experimental approach to developing and refining such multi-

component interventions is to start with a large number of potential components and

screen out the least active ones (e.g. the screening phase of MOST). Factorial de-

signs can be used efficiently in this endeavor. In this chapter, we address the common

criticisms and misconceptions regarding the use of factorial designs in the context of

screening studies. We also provide an operationalization of screening studies. As an

example we consider the use of a screening study in the development of a multicom-

ponent smoking cessation intervention. Simulation results are provided to support

the discussions.

3.1 Introduction

As discussed in Chapter I, multicomponent interventions composed of behav-

ioral, delivery, or implementation factors in addition to medications are becoming

increasingly common in health sciences. As has been recognized in the literature
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[1, 18, 39, 86, 103], development and evaluation of these multicomponent interven-

tions pose additional design challenges over those of single-component interventions,

and these challenges tend to be addressed poorly by the standard two-group ran-

domized controlled trials (often followed by non-experimental post hoc analysis to

answer questions regarding individual components and their interactions). In partic-

ular one important challenge is to whittle down a large list of potential components,

by screening out the least active components. Factorial designs are ideally suited to

this endeavor [9].

The primary goal of this chapter is to consider the use of full and fractional

factorial designs in screening out inactive components so as to aid in the development

of high quality multicomponent interventions. We discuss how many of the criticisms

prevalent in the literature concerning the use of full and fractional factorial designs

no longer hold or are of lesser importance in screening1 trials. A secondary goal is

to provide an operationalization of screening trials using full and fractional factorial

designs.

The present work is motivated by our participation in the design of a web-based

smoking cessation study called Project Quit [88] that utilized fractional factorials.

For illustrative purposes, we present a slightly modified version of Project Quit,

following [62]. The investigators decided to study six components Depth of outcome

expectations, Depth of efficacy expectations, Depth of success stories, Personalization

of message source, Mode of message framing, and Exposure schedule (depth refers to

the degree to which the communication was tailored to the background information

on each individual). Since varying all six components across all possible levels in a

single study was logistically prohibitive, the investigators decided to move forward

1Here the term screening refers to screening of intervention components, not screening of study participants.
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in phases, where results of the research conducted in the first phase would inform

the second, and so on [25, 62]. The goal of the first phase was to identify the active

components and screen out inactive components. Each component was varied at two

levels, as is common in screening studies. In addition all individuals were provided

a 10-week free supply of nicotine patches. The investigators decided to use a 16-cell

fractional factorial design (see section 3.3 for details). The primary outcome was

self-reported seven-day point-prevalence abstinence at the 6-month follow-up from

the date of randomization. More information on this study can be found in [88] and

[62], and also in Chapter II of this dissertation.

The remainder of this chapter is organized as follows. Section 3.2 addresses com-

mon criticisms against the use of full and fractional factorial designs for developing

multicomponent interventions. We provide an operationalization of the screening

trials in section 3.3. Examples of possible follow-up studies are given in section 3.4.

We conclude with an overall discussion in section 3.5. Technical review material on

fractional factorial designs appears in the appendix (at the end of this chapter).

3.2 Factorial Designs for Screening Studies

Factorial designs were originally developed in the context of agricultural experi-

ments [108, 36] and are now used in other areas including engineering [9, 107] and

marketing research [29]. Their use in the medical and behavioral fields has been

limited; however there have been a number of papers discussing the usefulness of

these designs in medication and intervention trials [16, 13, 14, 103, 102, 23].

Prior to discussing common criticisms and concerns, we provide a brief review of

both the design and analysis of screening studies. In screening, two-level factorial
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designs, where all components are studied at two levels (these levels can be either

present vs. absent, or two ethically acceptable doses of the component), are usually

used since the goal is to identify important components rather than identify the op-

timal level of each component. If a two-level factorial design involves k components,

then the total number of treatment combinations studied is 2k. Each of the 2k cells

in the design corresponds to a group of subjects assigned to a particular treatment

combination. In screening experiments, k is often large, rendering a full factorial

design with 2k cells infeasible. In such cases, fractional factorial designs (FFDs) [11]

offer a useful alternative since they use fewer cells (see below for more discussion).

For example, in the Project Quit study, a full factorial design with six components

would need 26 = 64 cells. But by using an FFD, it was possible to restrict the study

to only 16 cells, and still be able to estimate all the main effects and some two-way

interactions under reasonable assumptions.

In case of a continuous outcome, the analysis of a 2k full factorial design (or a

2k−p FFD) with total sample size n can be done using a linear regression model. One

can use a model of the form Y = Xβ + ε, where Y represents the n × 1 vector of

observations on the outcome, X is the n ×m design matrix, β is a m × 1 vector of

unknown parameters (m = 2k for full factorial and m = 2k−p for FFD, with more

parameters if baseline variables are included in the analysis model), and ε is the n×1

vector of errors. It is assumed that E(ε) = 0 and Cov(ε) = σ2I. The design matrix

consists of an intercept column, plus columns corresponding to each component and

their interactions of different order coded in −1/1 (i.e., different factorial effects).

The least squares estimator for β along with its covariance matrix are given by

β̂ = (XTX)−1XTY, Cov(β̂) = σ2(XTX)−1.

Note that the estimates of usual ANOVA quantities of interest like the main effect of a
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component or the interaction between two or more components are directly related to

the least squares regression estimates β̂, provided the design matrix is coded in −1/1.

As discussed by Byar et al. [15], the main effect of a component A1 is estimated by

2β̂A1 , A1A2 interaction is estimated by 4β̂A1A2 , and so on. In general, a p-component

(1 ≤ p ≤ k) interaction, say Ai1 . . . Aip (with 1 ≤ i1, . . . , ip ≤ k), is estimated by

2pβ̂Ai1
...Aip

. If variance heterogeneity across different cells is anticipated in a study,

one can use a robust estimator, e.g. sandwich estimator [104] of the covariance

matrix given by

(XTX)−1XT (diag(Y −Xβ̂))2X(XTX)−1

in the linear regression model. But sample sizes should not be too small for this

estimator to work well. Wu and Hamda [107] provide alternative methods to deal

with variance heterogeneity. As discussed by Montgomery et al. [53], the regression

approach can be used for unbalanced2 data, and can estimate the factorial effects

controlling for baseline or stratification variables. In case of binary (more generally,

categorical) outcomes, the regression approach can be generalized via a generalized

linear model. For example, if the outcome is binary, a logistic regression model can

be used to analyze the data from a factorial design [107, Ch. 13]. See [62] and [88]

for examples of such analyses.

3.2.1 Addressing Criticisms against Factorial Designs

Within the biostatistics literature, factorial designs have been assessed primarily

in the context of medication trials; the objective has been to evaluate the usefulness

of a combined medication over a single medication. In contrast, our objective is to

2Balance means that each level of each component appears in same number of cells and is assigned to the same
number of subjects.
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screen out inactive components of a multicomponent intervention; thus full and frac-

tional factorial designs play a different role from that of evaluation. In this context,

many of the common concerns re cost, feasibility, ethics, toxicity of combination

drugs, interpretation of main effects in presence of active interactions, and concern

about power for detecting interactions become moot or of lesser importance. Indeed

many different complaints against factorial designs stem from a few fundamental

issues and hence can be categorized as follows:

1. There are attractive alternatives to FFD.

2. It is not feasible to simultaneously implement multiple multicomponent inter-

ventions.

3. Some components cannot be crossed due to toxicity or ethical considerations.

4. The interpretation of main effects when interactions exist is complicated.

5. Power is low, or in other words the required sample size is high.

In the following, we address these broad classes of criticisms against factorial designs

in the present context of screening studies for developing multicomponent interven-

tions.

Attractive alternatives to FFD

The traditional approach of empirically developing multicomponent interventions,

sometimes called the treatment package strategy [47, 103, 102], is to formulate a

“likely best” intervention based on existing literature, theory, and clinical experi-

ence. Additionally investigators may use information from limited experimentation

with some of the components either in stand-alone trials or in trials in which one
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component is varied at a time while the remaining components are set at fixed lev-

els. Implicitly one often assumes that more treatment is always better so the “likely

best” intervention includes many components. An additional implicit assumption is

that any ill effects due to including inactive components are minor. The developed

multicomponent intervention is then evaluated in a standard two-arm randomized

trial. These two-arm trials are confirmatory in that they are designed to provide

high quality information on whether the multicomponent intervention performs bet-

ter than the standard; they are not designed to provide direct information on which

components are active, whether they have been set at optimal levels, and whether

there is any interaction between the components [86]. To address the latter ques-

tions, investigators may use observational analyses, such as a dose-response with the

level of subject adherence to the treatment as the dose [68, 1, 96, 97], or theory-

based mediational analysis [103, 106]. The intervention is often refined based on

the findings of these analyses, and then the refined version is tested in another two-

arm randomized trial. Sometimes several such iterations are performed to refine the

multicomponent intervention.

The main problem with this approach is that it depends heavily on the non-

experimental, observational analyses. As is well-known [44, 72, 74], findings that

are not based on randomization are contaminated by the likely presence of unknown

confounders3 (e.g. the variables that affect both the receipt of a component and the

outcome). As a consequence, the effects of individual components and interactions

may be misinterpreted resulting in a suboptimal intervention. Collins et al. [22] pro-

vided a head-to-head comparison between the above approach and an experimental

procedure using FFDs in an extensive simulation study. This comparison was based

3In the literature on FFDs, the term confounding often refers to aliasing of effects. Here we use confounding to
mean mixing of treatment effects with effects of other variables that affect both the receipt of treatment and the
outcome, and thus keep confounding distinct from aliasing.
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on a simulated model involving five components, varying levels of adherence to each

component, an unknown confounder, and a continuous outcome. Also, the model in-

cluded an antagonistic interaction between two components. The simulation results

showed that the FFD-based experimental approach outperformed the traditional ap-

proach (two-arm randomized trial followed by observational analyses) in terms of

various criteria, e.g. optimizing the mean outcome of the final intervention and iden-

tifying the best multicomponent intervention. See chapter IV for further details. Of

course the relative merit of the FFD-based experimental approach depends on the

degree of confounding; using observational analyses to investigate interactions might

work well when the unknown confounder is only weakly related to the receipt of the

components or the outcome.

Another alternative to FFDs is to conduct a series of dismantling or subtractive

trials [103] where a “more complete” version of the multicomponent intervention is

compared with a reduced version with one or more components eliminated. A close

variant of this is known as the constructive strategy [103] or treatment augmentation

design [45], where a base intervention is compared with an augmented version in

which one or more components are added to the base intervention. Yet another al-

ternative is known as the comparative treatment strategy [103], where several versions

of the intervention are directly compared. For example, if there are k components

under consideration, a comparative strategy would compare (k + 1) experimental

arms: k arms, each setting a single component at the high level and the rest at the

low level, plus a control arm where all components are set at the low level. The

above three approaches (i.e., dismantling, constructive, and comparative strategies)

sometimes come under the umbrella term of single-factor designs [23] whenever the

experimental arms under comparison differ by manipulating a single factor.
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Note that there are several problems with using a series of single-factor experi-

mental designs to construct a multicomponent intervention. First, as discussed by

Box et al. [9, pp. 510-513], the use of single-factor designs often tacitly assumes that

the effect of one component is independent of the levels of other components. This

is not true in general, e.g. when there is a sizeable interaction between the compo-

nents. Thus adopting a single-factor design often implicitly assumes that there is

no interaction. Because of this limitation, using a series of single-factor designs to

construct a multicomponent intervention may fail to achieve the best intervention.

The second problem regarding single-factor designs arises in designing the tri-

als, e.g. deciding which factor to add (in constructive strategy) or subtract (in

dismantling strategy), or which two versions of the multicomponent interventions

to compare (in comparative strategy). These decisions are often driven by theory,

cost, burden, or the results of observational analyses. To the extent that the results

are driven by observational dose-response analyses of the amount of treatment re-

ceived, they are vulnerable to confounding bias. As a consequence, in the sequence

of single-factor trials conducted to find the best multicomponent intervention, active

components may be accidentally eliminated in a dismantling strategy, and less ac-

tive components may be erroneously added earlier than more active components in

a constructive strategy.

A third problem with single-factor designs is that they often require many more

subjects than comparable factorial designs to achieve similar power [23], rendering

factorial designs a more efficient choice.

To summarize, in contrast to the treatment package strategy or the single-factor

designs, inference about individual components in FFDs are strictly based on ran-

domization, and hence less vulnerable to confounding bias. Furthermore, single-
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factor experiments are not equipped to take care of interactions, and often have

higher sample size requirement. Although some aliasing of effects happens in FFDs,

the investigator can control this based on prior substantive knowledge (see below for

more discussion on aliasing). Thus by using FFDs, one often trades uncontrolled

confounding for controlled aliasing. Thus full and fractional factorial experimental

designs offer a gold standard for developing multicomponent interventions. In the

following, we will discuss feasibility.

Feasibility of the design

When the number of components (k) is moderately large, full factorial designs may

be impractical due to cost of designing and implementing too many cells, i.e., making

each treatment combination work together and ensuring implementation fidelity by

staff [103]. This criticism has been the main motivation behind the development of

FFDs. It is possible to select an FFD with substantially fewer cells, but still estimate

the main effects (and sometimes important two-way interactions) without bias and

with the same precision as in a full factorial design under plausible assumptions. A

full factorial design allows the estimation of every individual factorial effect, including

all higher order interactions. However, in absence of compelling prior theory or

evidence to the contrary, third- and higher-order interactions are likely negligible

in size in most multicomponent interventions [9, 62]. FFDs sacrifice the ability to

estimate some of these higher order interactions, and in return, enable the study to

have fewer cells. The choice of interactions to be sacrificed is informed by scientific

theory, past studies, and investigator’s experience. The practical price paid to buy

the economy offered by an FFD is that the effects of interest, such as the main

effects and two-way interactions, are aliased with some higher order interactions.
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When two or more effects are aliased, one can estimate only the sum of the aliased

effects. To overcome this problem, ideally an FFD is chosen in which each “aliased

bundle” includes only one effect that is a priori believed to be active, with any other

effects included in the bundle likely negligible in size. If this is not possible, follow-

up experiments [52, 107, 25] can be conducted to settle any ambiguity about which

effects are most important in the aliased bundle of effects. The above ideas were

used by both Project Quit [88] and Guide to Decide [62] to design FFD trials. A

technical review of aliasing and FFDs is given in Appendix A.

The strong use of theory and investigators’ experience in determining which inter-

actions to alias in an FFD is often initially disconcerting to scientists. Note however

that in a two-arm randomized trial of a multicomponent intervention vs. control,

the multicomponent intervention must be determined completely by theory and in-

vestigator’s experience, and furthermore in these two-arm trials every factorial effect

(main effects and interactions) is aliased with every other effect. Thus all analy-

ses concerning individual components hinge on the use of a correct model; if the

model is too simple then finding out what each effect is estimating is often difficult

or even impossible. In this regard, FFDs offer a clearly better option in that the

entire aliasing pattern is under the investigator’s control, and there are principled

ways (e.g. follow-up experiments) to disentangle any aliased effect. Moreover in

non-experimental studies (that often follows the two-group comparisons) in which

often the receipt of treatment depends on adherence to or availability of certain

components, staff decisions as to who to offer what treatment etc., the resulting

confounding is uncontrolled.

Often concerns about feasibility are intertwined with a perceived need to include

many subjects in each cell of the design; this may occur because investigators er-
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roneously think that comparisons between individual cells will be required. This

however is not the case; see below for a discussion of this along with power consid-

erations. None-the-less there are some situations in which investigators are unable

to hire sufficient staff so as to implement multiple multicomponent interventions or

are unable to train the staff to implement multiple multicomponent interventions

simultaneously. In these settings FFDs are not feasible.

Inability to cross some components

To use factorial designs, one must be able to cross the components without chang-

ing dose (i.e., all combinations should be implementable). This has been a fundamen-

tal concern regarding the use of factorial designs in medication trials. In medication

trials, toxicity often precludes the combined use of multiple components (e.g. drugs)

unless the dosage is altered [16, 67]. That is, the combination of drug A and drug B

uses lower doses of both A and B, compared to the case when either drug A or drug

B is used alone. In such cases, the components lose their meanings, and factorial

designs become inappropriate. Here we consider only those components, that when

crossed, retain their meaning. This includes most behavioral, delivery, or imple-

mentation components, as well as multiple medications as long as they use different

biological pathways.

When some components cannot be crossed, the clinical trials literature provides

some approaches. Byar et al. [15] discussed incomplete factorial designs along with

analysis strategies to take care of such cases. These designs are full or fractional

factorial designs, minus some unpermitted combinations. Although these designs

are not balanced (see the second footnote for a definition of balance), one can still

estimate many of the relevant factorial effects.
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Interpretation of main effects

It is well-known that the definition of the main effect, in the presence of sizeable

interactions [16, 67], differs from investigators’ conceptual definition of the effect of

a component. To address this criticism, here we provide precise definitions of main

effects and simple effects that commonly arise in various designs for multicomponent

interventions, and establish their interrelationship.

For simplicity, consider a 2 × 2 factorial design with two components, say A1

and A2, and continuous outcome Y . The presence and absence (or, high and low

level) of each component is coded +1 and −1 respectively. Let µ(−,−), µ(−,+), µ(+,−)

and µ(+,+) be the mean outcomes corresponding to the absent-absent, absent-present,

present-absent, and present-present cells of the design respectively. At the population

level, the main effect of the component A1 is defined by 1
2
(E1 + E2), where E1 =

(µ(+,+) − µ(−,+)) and E2 = (µ(+,−) − µ(−,−)) are two simple effects, denoting the

effect of A1 when A2 is fixed at high and low level respectively. Thus the main

effect of A1 is defined as the average4 of the two simple effects E1 and E2, and hence

can be interpreted as the effect of A1 when half the subjects in the population are

exposed to (the high level of) A2 and the remaining half are not. On the other hand,

when conceptualizing the treatment effect of A1, an investigator usually thinks of

the simple effect denoting “the effect of A1 in absence of A2” [67, p. 506], i.e., E2.

In absence of interaction between the components, this mismatch does not cause a

problem since the two simple effects are equal. However, the main effect could be

very different from the simple effect of A1 in presence of a sizeable interaction.

4The main effect is usually defined as the average of simple effects as presented above. However, in general, a
weighted average over the distribution of the simple effects in the population may be a better definition.
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If a dismantling strategy is followed (dismantling A1 from the full package involv-

ing both A1 and A2), then the effect estimated is simply (µ(+,+)−µ(−,+)) = E1. This

effect could also be estimated if the constructive strategy is followed (augmenting

A1 to the base intervention consisting of A2 only). Thus these alternative designs

estimate simple effects rather than main effects. Lastly one can imagine a treatment

package effect, e.g. (µ(+,+)−µ(−,−)), which is estimated when the “likely best” pack-

age consisting of the present or high level of all the components is compared with a

control consisting of the absent or low levels of all the components. This does not

correspond to any of the simple effects.

For three two-level components, the main effect of a component A1 is defined as

1
4
(E1 + E2 + E3 + E4), where E1 = (µ+,+,+) − µ(−,+,+)), E2 = (µ(+,+,−) − µ(−,+,−)),

E3 = (µ(+,−,+) − µ(−,−,+)), and E4 = (µ(+,−,−) − µ(−,−,−)) are the four simple effects

(and also can be interpreted as the effects resulting from different dismantling or

constructive trials). The most common simple effect is E4, i.e., “effect of A1 in

absence of other components”, and is often conceptualized as the treatment effect

of A1. In general, for a setting involving k two-level components, there are 2k−1

simple effects that can be interpreted as effects resulting from different constructive

or dismantling trials. The main effect is simply the average of these 2k−1 simple

effects.

To more clearly understand the alternative definitions and how they differ in

the presence of an interaction, consider a regression formulation. Suppose the true

data-generating model, where A1, A2 are coded in 0/1, is given by

Y = b0 + b1A1 + b2A2 + b12A1A2 + ε.(3.1)

If we use a regression analysis with the −1/1 coding, e.g. we fit β0 + β1A1 + β2A2 +

β12A1A2, then we estimate the following transformed model (now A1, A2 are coded
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in −1/1):

Y =
(
b0 +

b1 + b2

2
+

b12

4

)
+

(b1

2
+

b12

4

)
A1 +

(b2

2
+

b12

4

)
A2 +

(b12

4

)
A1A2 + ε.

The main effect of A1 is 2β̂1, which estimates the population quantity 2
(

b1
2

+ b12
4

)
=

b1 + b12
2

(this main effect continues to be the average effect of A1 on Y over the levels

of A2). In contrast, the two simple effects of A1 are b1 (effect of A1 when A2 is

absent), and b1 +b12 (effect of A1 when A2 is present). The main effect and the effect

commonly conceptualized as the treatment effect of A1, i.e., b1, differ by the quantity

1
2
b12 in presence of an active interaction (b12 6= 0). If we apply the reasoning of the

Hierarchical Ordering Principle5 [107] to this setting, then in general we expect that

b12, if nonzero, is likely of smaller size than b1 and b2.

To summarize, when there is an interaction, the main effect has the interpretation

of the average effect of A1 on Y over the levels of other components. This is quite

different from what is often conceptualized as the treatment effect of A1, e.g. the

simple effect of A1 on Y setting other components to lower level. However the crucial

point is that in screening studies, the goal is to screen components efficiently, and

not to estimate either the simple effect or the main effect of a component per se. The

important issue for screening is whether this difference in definition impinges on our

ability to screen components. So in this context, the concern about the definition of

main effects is actually a concern about power to screen components. We address

this concern below in great detail (see the third issue below under the Power heading).

5The Hierarchical Ordering Principle is an assumption commonly made in design of experiments in the absence
of substantive theory or prior results suggesting otherwise. It states that lower-order effects are more likely to be
important than higher-order effects, and effects of the same order are equally likely to be important.
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Power

Several issues lead to concerns about power when factorial designs are considered.

First, investigators sometimes use factorial designs to evaluate or compare a few mul-

ticomponent interventions, e.g. compare one cell against another cell [42], or other-

wise assess simple effects. This naturally leads to a large sample size requirement

since each cell (group of subjects) must be large. However to screen components,

we primarily focus on main effects and sometimes also a few anticipated two-way

interactions. The focus on main effects and lower order interactions for the purpose

of screening can be partially justified by the Hierarchical Ordering Principle [107],

which says that main effects and lower order interactions are likely more important

than higher order interactions. Recall the main effect of a factor is an average of all

the 2k−1 simple effects. Thus even though several components are studied, the total

sample size required for assessing the significance of a main effect is the same as that

for a two-group trial involving a single component (for example in a linear model, the

estimator of the main effect is proportional to the difference between the means of

two groups of cells; all cells in the FFD belong to one or the other group). Further-

more, in the multiphase approach to intervention development [25, 62], ascertaining

the best treatment combination is done through follow-up studies, in which one usu-

ally focuses on only a few combinations of components while holding the levels of the

remaining components constant. See section 3.4 for a discussion of follow-up studies.

Second, there is concern about the loss of balance and subsequent loss of power

due to study dropout. In most intervention studies, patient dropout is inevitable,

thus resulting in unequal cell sizes. As discussed by Montgomery et al. [53], this is

an issue for all clinical trials rather than a criticism of factorial designs; modern-

day missing data techniques will be needed in the analysis, as is the case with any
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randomized clinical trial.

A third issue related to power is how one should formulate the test statistics to

detect the effects of treatment components in a screening study. Note that in a

screening study the goal is to screen out inactive components, and not to estimate

either a simple effect or a main effect per se. Below we show that even when the data

are generated using non-zero simple effects, often the power to detect the resulting

main effect is higher than the power to detect the original simple effect. Hence in

a screening study, formulating the test statistics based on main effects is in general

better than formulating test statistics based on simple effects. To discuss this con-

sider again the 2×2 factorial design with two components, say A1 and A2, r subjects

per cell, and the continuous outcome Y . The true data-generating model is specified

in terms of simple effects, which is consistent with an investigator’s conceptualiza-

tion. Thus the true data-generating model is given by (3.1) in which the components

A1, A2 are coded in 0/1. In the following, we show that by basing the test statistic

on main effects, we can in general screen non-zero simple effects with greater power.

For simplicity, assume Var(ε) = σ2 is known (and homogeneous across cells). If

a linear regression model with 0/1 coding is used as in Piantadosi [67, pp. 508-509]

then the following model is fit:

β0 + β1A1 + β2A2 + β12A1A2.(3.2)

Here β1, the coefficient of A1, is a simple effect representing the comparison of the

(1, 0) cell with the (0, 0) cell, i.e., β1 = µ(1,0)−µ(0,0) = b1, where µ(1,0) is the population

mean of Y in the (1, 0) cell, and so on. Now β1 is estimated by β̂1 = Ȳ(1,0) − Ȳ(0,0),

where Ȳ(1,0) is the sample mean of Y in the (1, 0) cell, and so on. Clearly, E(β̂1) = b1,
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and

V ar(β̂1) = V ar(Ȳ(1,0)) + V ar(Ȳ(0,0)) =
σ2

r
+

σ2

r
=

2σ2

r
.

So the signal-to-noise ratio (SNR) governing the power to screen A1 when basing the

test statistics on simple effects is

SNRsimple =
|E(β̂1)|√
Var(β̂1)

=
|b1|
√

r√
2σ

.

On the other hand, if we use the analysis model (3.2) with −1/1 coding, it follows

that

β1 =
1

4

[
(µ(+,+) − µ(−,+)) + (µ(+,−) − µ(−,−))

]

=
1

2
× (the main effect of A1)

=
1

2
× (the average of 2 simple effects),

and is estimated by the sample version β̂1 (where µ is replaced by Ȳ ). Then,

E(β̂1) = β1 =
(b1

2
+

b12

4

)
,

V ar(β̂1) =
1

4
× 1

2
× (variance of an estimated simple effect) =

1

4
× 1

2
× 2σ2

r
=

σ2

4r
.

So the signal-to-noise ratio governing the power to screen A1 when basing the test

statistics on main effects is

SNRmain =
|E(β̂1)|√
Var(β̂1)

=
∣∣∣b1 +

b12

2

∣∣∣
√

r

σ
.

A measure of relative efficiency of the two ways of forming the test statistics in

screening A1 is given by

η =
SNRmain

SNRsimple

=
√

2
∣∣∣b1 +

b12

2

∣∣∣/|b1| =
√

2
∣∣∣1 +

b12

2b1

∣∣∣.
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In absence of an interaction (i.e., b12 = 0), η =
√

2 > 1, and hence basing the test

statistic on main effects gives higher power for screening components. In case of

synergistic interaction (i.e., b1 and b12 are of same sign), η is even larger, leading

to higher power. Even in case of antagonistic interaction (i.e., b1 and b12 are of

opposite sign), the way of basing the test statistic on main effects gives higher power

in screening components (i.e., η > 1) if b1 < 0 and 0 < b12 < −(2 +
√

2)b1, or if

b1 > 0 and 0 > b12 > −(2 − √2)b1. If we have k (≥ 2) components in a factorial

experiment, and there may be a two-way but no higher-order interaction in the true

data-generating model, then the relative efficiency of the two ways of forming the

test statistic (measured by η) increases with k. A verification of this appears in

Appendix B.

To illustrate the power implications of basing the test statistics on main effects

rather than simple effects in a regression analysis, we consider a small simulation

study with the data-generating model Y |A1, A2 ∼ N(µ = b0 + b1A1 + b2A2 +

b12A1A2, σ = 1), where A1, A2 are coded in 0/1. That is, the data-generating model

is specified in terms of simple effects (as is usually conceptualized by an investiga-

tor). The coefficients b1, b2 are set according to Cohen’s [21] small or medium effect

size (i.e., b1 = b2 = 0.2, 0.5). The coefficient b12 of the interaction term is varied:

b12 = b1, b1/2, 0,−b1/2,−b1 (i.e., same size and sign as b1, half the size of and same

sign as b1, absent, half the size of b1 but of opposite sign, same size as b1 but of

opposite sign). A 0.05 level of significance is used throughout, while varying the

sample size: n = 100, 200, 500. The goal of this simulation is to illustrate that even

when the data-generating model is specified in terms of simple effects, basing the

test statistics on main effects leads to higher power in most settings than basing

the test statistics on simple effects. Note that the signal-to-noise ratios govern the
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corresponding powers. In the following, we consider the power to screen A1 both in

presence and absence of an interaction term A1A2 (synergistic as well as antagonis-

tic). Table 3.1 contains a Monte Carlo estimate (using 1000 iterations) of the power

for screening A1 under different scenarios.

Table 3.1: Power to screen A1 in absence and presence of an interaction
n Interaction Interaction b1 = 0.2 b1 = 0.5

Size (b12) Type Using Using Using Using
simple effect main effect simple effect main effect

Same (= b1) synergistic 0.1030 0.2910 0.4150 0.9550
Half (= b1

2 ) synergistic 0.1030 0.2290 0.4150 0.8730
100 Absent (= 0) none 0.1030 0.1720 0.4150 0.6830

Half (= − b1
2 ) antagonistic 0.1030 0.1110 0.4150 0.4420

Same (= −b1) antagonistic 0.1030 0.0820 0.4150 0.2290
Same (= b1) synergistic 0.1690 0.5440 0.6920 1.0000
Half (= b1

2 ) synergistic 0.1690 0.3940 0.6920 0.9870
200 Absent (= 0) none 0.1690 0.2840 0.6920 0.9430

Half (= − b1
2 ) antagonistic 0.1690 0.1720 0.6920 0.7510

Same (= −b1) antagonistic 0.1690 0.1040 0.6920 0.3940
Same (= b1) synergistic 0.3460 0.9210 0.9740 1.0000
Half (= b1

2 ) synergistic 0.3460 0.8040 0.9740 1.0000
500 Absent (= 0) none 0.3460 0.6050 0.9740 1.0000

Half (= − b1
2 ) antagonistic 0.3460 0.3730 0.9740 0.9870

Same (= −b1) antagonistic 0.3460 0.1890 0.9740 0.8040

Note that in Table 3.1, the power to screen A1 is higher in general when the test

statistic is based on main effects compared to when it is based on simple effects (e.g.

comparing the 4th vs. 5th column, and comparing the 6th vs. 7th column), except

when the interaction is of same size and opposite in sign as the simple effect of A1 (as

expected from the above discussion). However according to the Hierarchical Ordering

Principle [107], interactions are usually of smaller order of magnitude than the main

effects (absent strong scientific theory to the contrary), and hence this is a fairly

unlikely scenario. A secondary point to note is that when the test statistic is based

on main effects, there is a decrease in power to screen A1 as the interaction term b12

decreases from highly synergistic to highly antagonistic (moving down the 5th and
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7th columns). However, when the test statistic is based on simple effects, the power

for screening A1 is independent of the size of the interaction term b12 (moving down

the 4th and 6th columns). But the decrease in power in the 5th and 7th columns due

to interaction often does not pose a serious threat (as compared to the loss of power

from using simple effects in the test statistic) if the goal is to screen components,

since in most settings the way of basing the test statistic on main effects gives better

power anyway.

A fourth issue related to power is the power to detect interactions. Factorial de-

signs are often criticized on the ground that the power to detect an interaction is

much lower than the power to detect a main effect of the same size [67, 53]. However,

it is also recognized that factorial designs are the only experimental designs that can

systematically investigate interactions. To overcome the low power for detecting in-

teractions in a confirmatory (not screening) trial, the general recommendation in the

literature [16] is that if an interaction is strongly anticipated based on the investiga-

tor’s prior knowledge, the study should be powered with larger sample size. When

criticizing factorial designs on the ground of low power for interactions in the present

context of screening trials for developing multicomponent interventions, it is useful

to consider the pros and cons of the possible alternatives. The natural alternative

is to conduct non-experimental analyses using treatment adherence or other post-

randomization outcomes as doses or factor levels from a randomized trial or to use

observational data sets. As discussed previously, the relative merit of FFDs over the

above strategy depends on the degree of confounding in the data. The crux is that

the low power to detect interactions in a factorial design can be offset by its ability to

perform valid estimation and inference, and its ability to control (by design) aliasing

in a principled manner, in comparison to observational analyses.
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3.3 Operationalization of Screening Trials

This section provides an example of how screening trials can be operationalized

using FFDs. The choice of an appropriate FFD is often governed by prior knowledge

regarding the intervention to be developed. To move forward, two definitions are

useful. An FFD is completely characterized by its defining relation [107], a rule from

which the aliasing pattern of the FFD can be obtained. Moreover, FFDs are some-

times categorized by their resolution. Loosely speaking, the higher the resolution,

the better is the design. Resolution IV and resolution V designs are considered here.

In particular, in a resolution V design, main effects are aliased with 4-way (or higher

order) interactions, and 2-way interactions are aliased with 3-way (or higher order)

interactions. Likewise in a resolution IV design, main effects are aliased with 3-way

(or higher order) interactions, and 2-way interactions are aliased with other 2-ways

(or higher order). Typically resolution V designs are better than resolution IV de-

signs, but resolution V designs require more cells. Hence investigators may adopt

lower resolution designs due to cost and feasibility constraints. Further review of the

defining relation and resolution are given in the Appendix A. In the following, we

first discuss the screening design used in the Project Quit study. Next, we discuss a

general approach to construct screening designs (e.g., appropriate FFDs).

Screening design in the Project Quit study

Denote the six components of the Project Quit study, e.g. depth of outcome

expectations, depth of efficacy expectations, depth of success stories, personalization

of message source, mode of message framing, and exposure schedule by A1, A2,
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A3, A4, A5, and A6 respectively. In this study, prior knowledge suggested that

the interactions between outcome expectations and efficacy expectations (A1A2),

outcome expectations and success stories (A1A3), outcome expectations and message

framing (A1A5), and efficacy expectations and message framing (A2A5) were likely

active (let us call them anticipated interactions), and that all other interactions

should be negligibly small in size. So a design was constructed such that one could

estimate the A1A2, A1A3, A1A5, and A2A5 interactions, assuming all others to be

small. Due to cost constraints, 16 cells were used in the design. So the design used

was a 16-cell FFD with the defining relation

(3.3) I = A1A2A4A5 = A1A3A4A6 = A2A3A5A6.

This is a resolution IV design where some of the 2-way interactions are aliased with

other 2-way interactions. The anticipated 2-way interactions are listed on the left-

hand side of the following aliasing equations (obtained from (3.3)):

A1A2 = A4A5

A1A3 = A4A6

A1A5 = A2A4

A2A5 = A1A4

Note that the anticipated interactions were aliased with other 2-way interactions that

were considered negligible, and hence were estimable without bias. The defining rela-

tion I = A1A2A3A5 = A1A3A4A6 = A2A4A5A6 was “cleverly” chosen to accomplish

this goal. Of course, the investigator’s assumption about the interactions could be

wrong. But one can verify any critical working assumptions made in the screening

study using follow-up studies [25].
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Screening design construction in general

As a starting point we assume that regardless of the number of components stud-

ied, the number of cells used can be at most 16 (equal to the number of cells used in

the Project Quit study). Of course this number can vary from one setting to another.

If 4 or fewer components are to be studied, a full factorial design can be used. If 5

components, say A1, . . . , A5 are to be studied, then one should use the resolution V

FFD with the defining relation I = A1A2A3A4A5 (this is the case in the Guide to

Decide project described by [62]). If 6 components, say A1, . . . , A6 are to be studied,

resolution IV designs are generally recommended. If prior knowledge suggests a few

anticipated 2-way interactions, an FFD can be chosen carefully so that the antic-

ipated 2-way interactions are not aliased with each other (this consideration often

drives the construction of the design). Assuming the unanticipated interactions to

be negligible, this ensures that each anticipated interaction can be estimated without

bias. When there is only one anticipated interaction, any 16-cell resolution IV FFD

can be used. However, for two or more anticipated interactions, choices are limited.

Software (e.g., SAS PROC FACTEX, JMP, Minitab) can be used to generate the

designs in such cases (they provide one possible design that satisfies the constraints

of resolution and/or anticipated interactions, instead of giving the complete list of

possible designs). For two or three anticipated interactions, the complete set of rec-

ommended designs are given in Table 3.2.

Power and sample size in screening trials

In a screening trial using a factorial design, the power calculation used to size

the trial focuses on main effects of each component. Thus the power calculation

is similar to that of a two-arm randomized trial in that the two levels of a single
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component (averaged over the levels of all other components) serve as the two arms.

Below we provide the power calculation for the Project Quit study as an example.

For Project Quit, the planned initial recruitment size was 2000; this number was

chosen to achieve a total sample size of 1500 for the analysis, anticipating a 75%

response rate at the 6-month follow-up. Assuming no differential attrition across

cells, this meant roughly 750 subjects per level of each intervention component. The

primary outcome was binary, e.g. seven-day point-prevalence smoking cessation at

the 6-month follow-up. So the power analysis involved binomial calculations (using

a normal approximation) assuming a baseline average cessation rate of 10% found

in a previous study [33]. For each main effect, the sample size of 750 per level

provides approximately 80% power for detecting a 4.5% difference in cessation rates.

The same power characteristics exist for each of the six components. Note that to

Table 3.2: Recommended resolution IV FFDs under varying anticipated interactions
Case Anticipated interactions Recommended designs

of the form (defining relations)
1 A1A2, A3A4 I = A1A2A3A5 = A1A3A4A6 = A2A4A5A6

(no component shared) I = A1A2A3A5 = A2A3A4A6 = A1A4A5A6

I = A1A2A4A5 = A1A3A4A6 = A2A3A5A6

I = A1A2A4A5 = A2A3A4A6 = A1A3A5A6

I = A1A2A3A6 = A1A3A4A5 = A2A4A5A6

I = A1A2A3A6 = A2A3A4A5 = A1A4A5A6

I = A1A2A4A6 = A1A3A4A5 = A2A3A5A6

I = A1A2A4A6 = A2A3A4A5 = A1A3A5A6

2 A1A2, A1A3 I = A1A2A4A5 = A1A3A4A6 = A2A3A5A6

(one component shared) I = A1A2A4A6 = A1A3A4A5 = A2A3A5A6

I = A1A2A4A5 = A1A3A5A6 = A2A3A4A6

I = A1A2A5A6 = A1A3A4A5 = A2A3A4A6

I = A1A2A4A6 = A1A3A5A6 = A2A3A4A5

I = A1A2A5A6 = A1A3A4A6 = A2A3A4A5

3 A1A2, A3A4, A5A6 same as case 1
4 A1A2, A1A3, A4A5 I = A1A2A5A6 = A1A3A4A6 = A2A3A4A5

I = A1A2A4A6 = A1A3A5A6 = A2A3A4A5

5 A1A2, A1A3, A2A4 I = A1A2A5A6 = A1A3A4A5 = A2A3A4A6

I = A1A2A5A6 = A1A3A4A6 = A2A3A4A5

6 A1A2, A1A3, A1A4 I = A1A2A5A6 = A1A3A4A5 = A2A3A4A6

7 A1A2, A1A3, A2A3 same as case 2
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achieve the same power to detect the same difference in cessation rates, one would

need the same sample size in a usual two-arm study (so the sample size requirement

is not increased by using a factorial design). The formula for calculating power in

the present set-up is given by

Φ

( √
n
2
|∆| − zα/2

√
2p(1− p)√

p(1− p) + (p + ∆)(1− p−∆)

)
,

where n is the total sample size, p is the baseline cessation rate, ∆ is the change in

cessation rate to be detected, α is the Type I error, zα/2 is the upper 100(α
2
)% cutoff

point of a standard normal distribution, and Φ is the standard normal distribution

function.

Additional practical considerations regarding study duration and cost

A primary advantage of using factorial designs in a screening study lies in its

efficiency, i.e., its ability to answer several screening questions (regarding multiple

intervention components) quickly from a single study. The use of an FFD-based

approach in Project Quit was motivated by the concern that advances in communi-

cation technologies were moving well beyond the understanding of message content,

presentation, and delivery principles in the field of smoking cessation. Investigators

of this study realized that research using the field’s most widely-used designs (e.g.

randomized trials with a small number of groups) [33, 87, 89, 91] would take years

to assess even a few basic questions. By the time these findings would be dissemi-

nated, the technology and target populations would likely have been changed (e.g.

become more sophisticated in their understanding of a communications channel),

and consequently the field would continue to lag behind. Thus in the context of this

concern, the FFD-based multiphase approach provided a huge benefit by offering a

shorter total study duration to answer so many questions compared to the alternative
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designs.

There are two kinds of cost associated with designing multicomponent interven-

tion trials, e.g., (1) cost associated with sample size requirement, and (2) cost of

designing and implementing different cells. We have already discussed that the sam-

ple size requirement does not go up by using an FFD. The only additional cost of

designing an FFD over a two-group trial is the cost of designing and delivering too

many versions of the intervention which might limit the applicability of FFDs in cer-

tain settings. In case of Project Quit, the intervention was delivered entirely through

the internet. So the delivery of 16 versions of the multicomponent intervention did

not cost additional staff time and training over and above the cost of software pro-

gramming to generate the different versions, which turned out to be manageable.

See Collins et al. [23] for a detailed comparison of FFDs with single-factor designs

(dismantling, constructive and comparative trials) from a resource management per-

spective.

Screening analysis

The screening analysis uses a linear model (in case of continuous outcome) or a

generalized linear model (in case of binary or categorical outcome). A few consider-

ations to be made during the analysis are:

1. The level of significance α for testing the effects in the screening study might

be set higher than 0.05 to achieve greater power for detecting effects. α can

be viewed as a tuning parameter of the procedure. One possible choice is to

use α = 0.1 for the main effects and anticipated two-way interactions, and a

Bonferroni-corrected 0.1 level for the unanticipated interactions.

2. As an alternative (or augmentation) to performing significance tests at the
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screening study, one can rank-order the absolute values of the test statistic

corresponding to the factorial effects (or equivalently p-values) and move to

follow-up studies with the largest m. Then this m becomes a tuning parameter

of the procedure. This approach should work better in case all individual effects

are small, but together they produce some effect (significance test often accepts

the null hypothesis of no effect in such cases, and hence perform poorly). To be

resistant to the noise in the data, one may choose to rank-order only the main

effects and anticipated interactions. This strategy with m = 3 was followed in

the simulation study described in [22].

Examples of the screening analysis in the Guide to Decide and Project Quit studies

can be found in [62] and [88]. Based on the screening analysis of the Project Quit

study, the investigators decided to move to the follow-up study with the components

having the highest two p-values (e.g. success stories and message source). Fur-

thermore since three of the components (outcome expectations, efficacy expectations

and success stories) were set at levels corresponding to high depth of tailoring versus

low depth of tailoring, the investigators considered a regression of overall depth of

tailoring (over all components) and found that as the depth of tailoring increased

the smoking cessation rate increased. Hence the investigators decided to use a high

depth of tailoring in the follow-up study.

3.4 Follow-up Studies

In the process of developing a multicomponent intervention, an investigator often

conducts follow-up studies involving the significant6 factorial effects from the screen-

6Throughout this section, we use the term significant loosely to mean any effects that come out important
according to the screening analysis strategy outlined above.
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ing study to fine-tune the results, e.g. finding the best level (or dose) of a significant

component which is either continuous or has more than two levels by a dose-response

experiment (where the subjects are randomized to ethically acceptable doses of the

component), or de-aliasing significant aliased interactions by a smaller factorial ex-

periment. In this section, first we provide a few hypothetical examples (of varying

level of complexity) of follow-up studies to provide some general intuition, and then

briefly describe the follow-up phase of the Project Quit study.

Hypothetical examples

In the following examples, for simplicity, we assume that there are 6 components

in the study, e.g. A1, . . . , A6, out of which only A1 is a 3-level component (say, high,

medium, low levels – only high and low levels are studied at the screening trial) and

the rest are binary (high and low). High values of the outcome are preferred. A

16-cell resolution IV FFD is used as the screening design (see section 3.3 for details).

We assume throughout that three-way (or higher-order) interactions are negligible

in size compared to the noise in the data; hence even though main effects are aliased

with three-way interactions, we assign the estimated effect to the main effect.

Example 1: Suppose the significant effects along with their signs based on screening

analysis are:

A1(+), A2(+), A3(−), A5(−), A2A3 = A4A5(−),

where the aliased interaction A2A3 is unanticipated but A4A5 is anticipated. So the

investigator may dismiss A2A3 as a possible effect and assign the observed effect

entirely to A4A5. Since the main effect of A4 is insignificant, the main effect of A5 is

negative, and the A4A5 interaction is negative, it is reasonable to set A4 at its high
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level and A5 at its low level to maximize the mean outcome. Also, from the signs

of the estimated main effects of A2 and A3 (and ignoring the unanticipated A2A3

interaction), A2 and A3 should be set at their high and low levels respectively. Since

A6 is insignificant, it should be set at low level. Hence the follow-up study might

be a 2-group trial varying A1 at its medium and high levels (since its main effect

is positive), setting A2, A3, A4, A5, and A6 at high, low, high, low, and low level

respectively. If A4 is an expensive or particularly component then it may be worth-

while to affirm that A4 is not significant yet its interaction with A5 is. In that case,

the follow-up study can be a 8-group trial where the two levels of A1 (high/medium)

are crossed with two levels of A4 and A5 each. In all the groups, A2, A3, and A6

should be set at high, low, and low level respectively.

Example 2: Suppose the significant effects along with their signs based on screening

analysis are:

A1(+), A3(+), A1A3 = A2A6(−),

where aliased interaction A1A3 is anticipated but A2A6 is unanticipated. As before,

we dismiss A2A6 based on prior considerations and assign the observed effect to

A1A3. The follow-up study could be a 6-group trial crossing three levels of A1 with

two levels of A3. In all the groups, the levels of A2, A4, A5, and A6 should be set at

the low level.

Example 3: Suppose the significant effects along with their signs based on screening

analysis are:

A1(+), A2(+), A3(+), A5(−), A2A3 = A4A5(−),

where both the interactions A2A3 and A4A5 involved in the aliased bundle are unan-
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ticipated. Since the main effect of A4 is insignificant, the main effect of A5 is negative,

and the aliased A4A5 interaction is negative (even though we are not sure if the ob-

served effect is really due to A4A5), one reasonable step would be to set A4 at its high

level (provided the high level of A4 is not very expensive or burdensome) and A5 at

its low level (note that our decision about the optimum levels of A4 and A5 would

be same when A4A5 effect is really negative as when A4A5 is null). Also, we would

set A6 to the low level. If there is concern about the potential A2A3 interaction then

the follow-up study could be a 8-group trial, where medium and high levels of A1

are crossed with the two levels of A2 and A3 each to form the 8 groups (setting A4,

A5, and A6 at high, low, and low levels respectively).

Follow-up study design of Project Quit

An alternative to the follow-up studies outlined above is provided by Project Quit

study, in which all components were two-level (hence a dose-response experiment

was unnecessary) and no (unanticipated) aliased interaction were found significant

(hence no de-aliasing experiment was necessary). The investigators decided to study

different aspects (not studied in the screening trial) of the two important components

(e.g. success stories and message source). The decision was to vary message source

at two levels (high/low) of additional personalization, and to vary success stories

in terms of the archetype (language and picture) of the hypothetical character in

the story at three levels (e.g. a rebel, care-giver, or self-made character). Two new

two-level components, e.g. order (of appearance on the web site: success stories

first vs. health advice first) and email quit status request (yes/no) were added to the

follow-up study. Subjects randomized to the “yes” level of email quit status request

were contacted by the study staff at regular intervals about their quit status. The
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follow-up study consisted of 25 groups in total: 24 groups from the 2 × 3 × 2 × 2

factorial structure of the above 4 components, plus a control group. In all groups, the

original components from the screening trial not studied in the follow-up study were

set as follows: deeply-tailored efficacy expectation and outcome expectation mes-

sages, gain framing, and multiple exposures. All three levels of the success stories

were also deeply-tailored. The control group received the best intervention accord-

ing to the results of screening study (e.g., highly personalized source at the first

session only, deeply-tailored story with fixed archetype as in the screening study,

deeply-tailored efficacy expectation and outcome expectation messages, gain fram-

ing, and multiple exposures) – they did not receive any email about their quit status.

3.5 Discussion

Multicomponent interventions are becoming increasingly common in health sci-

ences. In this chapter, we have addressed the criticisms and misconceptions regarding

the use of full and fractional factorial designs (e.g. attractive alternatives to and fea-

sibility of such designs, inability to cross components, interpretation of main effects,

and concerns about power) in the context of screening studies to develop multicom-

ponent interventions. Other issues regarding the use of factorial designs, as discussed

by Couper et al. [26], are slower recruitment rate (since subjects need to meet the in-

clusion criteria for all the components) and potential lower compliance (due to a more

complicated treatment protocol) than single-component trials. However, these are

common to any studies of multicomponent interventions, and not problems specific

to factorial designs.

We provided some examples of follow-up studies that often need to be conducted



57

(e.g. to de-alias significant aliased interactions) after the completion of the screening

study. Further strategies for conducting follow-up studies can be found, for example,

in [52] and [107]. Also, in case there is at least one component with more than

two levels (e.g. a continuous component), dose-response experiments [10, 61] where

subjects are randomized to ethical doses should be used to find the optimal dose of

these components. Operationalizing a wider variety of follow-up studies needs more

targeted future research.

In our discussion of FFDs, we assumed that third- and higher-order interactions

are negligible [9, 62]. This is not a binding constraint. Suppose prior knowledge

suggests that interactions up to order 3 involving a certain component are likely

important, whereas even two-way interactions involving some other components are

negligible. One can still use a carefully chosen FFD [107].

One setting in which factorial designs are not well suited is when the main effects

of all the individual components are weak, but there are some high-order interac-

tions in the data-generating model that produce a strong effect on the outcome (i.e.,

a setting where the Hierarchical Ordering Principle is violated). Another important

caveat regarding the use of factorial designs for developing multicomponent inter-

ventions is the presence of nested components (e.g. levels of component B are nested

within the levels of component A). Generalization of the usual factorial designs called

nested factorials [85, 3] can incorporate nested components. Analysis of such designs

can employ mixed-effects models [82]. A somewhat similar issue is when some inter-

vention components are applied most naturally in a grouped setting. For example,

some intervention components are provided to all patients at a clinic [30] or to all

children in a classroom or school [37]. Development of an experimental framework

tailored to such settings is an avenue for future research. To conclude, FFDs provide
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a powerful tool for conducting screening studies to aid in the development of multi-

component interventions.

3.6 Appendix A: Defining Relation and Resolution of an FFD

The defining relation of an FFD specifies the aliasing. Suppose a study involving

five components, say A1, . . . , A5, is restricted to 16 cells (as in the Guide to Decide

study described in [62]). Then a 1
2

fraction of the 25 full factorial design should

be used. With 16 cells, one can construct a full factorial with 4 components, say

with A1, . . . , A4. The strategy is to alias the fifth component, say A5, with the 4-

way interaction A1A2A3A4. This means, the column (in the design matrix) of A5 is

identical to that of the element-wise product of the columns of A1, A2, A3, and A4,

i.e., A5 = A1A2A3A4. Note that all the elements in any of the columns are either

+1 or −1. So element-wise product of any column with itself leads to the identity

column, say I (with all its entries +1). In particular, A5A5 = I. Multiplying both

sides of the equation A5 = A1A2A3A4 by A5 gives

I = A1A2A3A4A5.(3.4)

The condition (3.4) completely specifies the aliasing pattern of the 25−1 FFD under

consideration, and hence called its defining relation. The alias of any factorial effect

can be found by multiplying both sides of (3.4) by that effect and then using the

facts that AjI = Aj and AjAj = I for all j. The word A1A2A3A4A5 is called the

defining word. The length (i.e., number of elements) of the defining word is called

the resolution of the design. So the design specified by (3.4) is a resolution V design.

In a resolution V design, the main effects are aliased with 4-way interactions, and the

2-way interactions are aliased with 3-way interactions. In a setting where the third-
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or higher-order interactions are negligible, resolution V FFDs are almost as good

as the full factorials in that the main effects and 2-way interactions are estimable

without bias.

However due to cost and feasibility constraints, one often has to use smaller (than

1
2
) fraction of full factorial designs, leading to lower resolution. The Project Quit

study described before used a resolution IV FFD. In the following, we illustrate reso-

lution IV designs with an example. Suppose there are 6 components, say A1, . . . , A6

in a study that is restricted to 16 cells (as in Project Quit). This means constructing

a 1
4

fraction of the 26 (= 64 cells) full factorial design. With 16 cells, one can con-

struct a full factorial with 4 components, say with A1, . . . , A4. Now, the strategy is

to make the columns of the remaining two components A5 and A6 identical to some

higher-order interactions. One such choice is to set A5 = A1A3A4 and A6 = A2A3A4.

Using the same rules as before, one gets I = A1A3A4A5 from the first aliasing rela-

tion, and I = A2A3A4A6 from the second aliasing relation. Multiplying these two, a

third equation I = A1A2A5A6 follows. Thus the defining relation of this FFD is

(3.5) I = A1A3A4A5 = A2A3A4A6 = A1A2A5A6.

By definition, (3.5) is a resolution IV design, since the length of each defining word is

4. In a resolution IV design, the main effects are aliased with 3-way or higher-order

interactions, but the 2-way interactions are aliased with other 2-ways.

3.7 Appendix B: Relative Efficiency of The Two Ways of Forming The
Test Statistic

Here we show that if there are k (≥ 2) components in a factorial experiment, and

there may be a two-way but no higher-order interaction in the true data-generating
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model, then the relative efficiency of the two ways of forming the test statistic (mea-

sured by η) increases with k.

Note that in 0/1 coding, regardless of the total number of components (k), β1,

the coefficient of A1, is a simple effect given by µ(1,0,...,0)−µ(0,...,0); the corresponding

estimator is β̂1 = Ȳ(1,0,...,0) − Ȳ(0,...,0), where Ȳ(1,0,...,0) is the sample mean of Y in the

(1, 0, . . . , 0) cell, and so on. It follows that E(β̂1) = b1, and V ar(β̂1) = 2σ2/r (since

β̂1 is a comparison of two cells each of size r). So when using simple effects to form

the test statistic, the signal-to-noise ratio governing the power to detect A1 in the 2k

design is same as that in a 2× 2 design considered before, e.g.,

SNRsimple =
|E(β̂1)|√
Var(β̂1)

=
|b1|
√

r√
2σ

.

In −1/1 coding,

β1 =
1

2
× (the main effect of A1) =

1

2
× (the average of 2k−1 simple effects),

which is estimated by its sample version β̂1 where all the µ’s in the expression of

simple effects are replaced by the corresponding Ȳ ’s. In case there is a two-way

interaction (b12) but no higher-order interaction in the true data-generating model,

E(β̂1) = β1 = ( b1
2

+ b12
4

),

V ar(β̂1) =
1

4
× 1

2k−1
× (variance of an estimated simple effect)

=
1

4
× 1

2k−1
× 2σ2

r
=

σ2

2kr
,

and SNRmain =
|E(β̂1)|√
Var(β̂1)

= 2(k/2−1)
∣∣∣b1 +

b12

2

∣∣∣
√

r

σ
.

Thus, η =
SNRmain

SNRsimple

= 2(k−1)/2
∣∣∣1 +

b12

2b1

∣∣∣, an increasing function of k.



CHAPTER IV

Comparison of the MOST Approach and a Single
Randomized Trial for Developing Multicomponent

Interventions

This chapter provides a head-to-head comparison between two competing ap-

proaches to developing multicomponent interventions: (a) the classical approach

consisting of a standard two-group randomized trial followed by post hoc analyses,

and (b) the MOST approach. Here we present results from a simulation study in

which the classical and the MOST approaches were applied to the same randomly

generated data. As we will see, the MOST approach resulted in better mean inter-

vention outcomes under medium or large effect size, whereas the classical approach

resulted in better mean intervention outcomes when the effect size was small.

4.1 Introduction

In this chapter, we describe a simulation study to contrast and explicate the rela-

tive advantages and disadvantages of two different approaches to empirically building

and evaluating multicomponent interventions. The more typically used approach, la-

beled here the classical approach (sometimes called the treatment package strategy),

consists of constructing a likely best intervention a priori, evaluating the interven-

61
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tion in a standard randomized controlled trial, and following it up with observational

analyses. On the other hand, the emergent MOST approach [25, 62] discussed in

Chapter I involves programmatic phases of empirical research and discovery aimed

at identifying individual component effects and the best combination of components

and levels. The MOST approach makes use of fractional factorial designs (FFD)

discussed in Chapter III.

This chapter describes a simulation study that addresses the following questions:

(1) Which approach, the classical or the MOST, is better at identifying (a) more

efficacious interventions? (b) the correct set of intervention components and levels?

(c) the best setting of a component with several possible settings? (d) the active

components that should be included? (e) the inactive components that should be

excluded? (2) What is the impact of overall intervention effect size on the absolute

and relative performance of the two approaches? We also briefly summarize the re-

sults of additional simulations performed to assess the generalizability of the results.

4.2 Methods

4.2.1 Overview of the Simulation

In this simulation the behavioral scientist intends to build and evaluate a multi-

component intervention. Based on existing literature, prior study results and clinical

experience, the scientist has identified five intervention components, denoted A1−A5,

each of which is hypothesized to have a positive effect on an outcome variable Y .

Components A2−A5 can be either included in the intervention or not included, thus

they can assume only two levels. A1 can assume three levels: low, medium, or high.

In building and evaluating the behavioral intervention the scientist has access to

N = 1200 subjects. We chose N = 1200 because it is not uncommon for behavioral
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intervention trials to have sample sizes at least this large; examples include [88],

which had N = 1848 subjects; [89], which had N = 3971 subjects; and [77], which

had N = 1421 subjects. In appendix C, we summarize the results of additional

simulations using smaller and larger sample sizes.

Data sets were generated using a procedure (described below) designed to reflect

some of the complexity that can occur in real intervention studies. Both the classical

approach and the MOST approach were separately applied to each generated data

set. The goal of each approach was to arrive at the most efficacious intervention,

expressed in terms of an outcome variable Y . The classical approach consisted of

selecting components and dosages a priori and performing a two-group randomized

trial using all available subjects. This was followed by post-hoc analyses. By con-

trast, the MOST approach began with an initial screening experiment for preliminary

selection of components, based on a portion of the sample. This was followed by a

set of refining experiments to finalize selection of components and dosages, based on

the remaining portion of the sample.

4.2.2 Data Generation Model

The data generation model used in this simulation study was inspired by the

conceptual model used in a large behavioral intervention trial called Fast Track [27].

This data generation model was designed to be only partially consistent with the

behavioral scientist’s hypotheses described above, in order to mimic the commonly

occurring real-life situation in which some of an investigator’s hypotheses are true

and some are false. Although the investigator hypothesized that all five components

would have a positive effect on the outcome, in the data generation model the only

active components were A1, A2, and A4. In addition, the relation between A1 and Y
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Figure 4.1: Data generation model for simulation.

was curvilinear such that the medium level of A1 was associated with higher values

of Y than other levels of A1 (and the high level of A1 was associated with higher

values of Y than the low level of A1). Thus the optimal configuration of intervention

components is A1 included in the intervention and set to the medium level; A2 and

A4 included; and A3 and A5 not included.

Additional complexity was introduced in the data generation model in three dif-

ferent ways to reflect circumstances that frequently occur in real-world intervention

settings. First, to represent the amount of each component actually received by

(rather than assigned to) participants, adherence variables Ad1 −Ad5 were modeled

for each of the five components A1−A5. Adherence was modeled as 100% for A2 (i.e.,

Ad2 = A2) and partial for the remaining components (0 ≤ Ad ≤ A); see Appendix
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A for details. Second, to mimic the confounding that can result when post-hoc anal-

yses use non-randomized comparisons, unknown participant characteristics that can

affect both adherence and the outcome were included. In a real-life setting, there

are likely to be many such confounding variables. For simplicity, they were modeled

here by a single unobserved binary variable called Type, with Type = 1 representing

participants likely to register a higher value of Y , and Type = 0 representing partici-

pants likely to register a lower value of Y . In addition to its relation with Y , Type is

positively associated with the level of adherence (except Ad2 which is always 100%)

so that participants are more likely to adhere and hence receive more treatment if

Type = 1. Thus, Type causes a spurious positive correlation between the levels of

adherence (except Ad2) and Y , which in turn makes the estimates of component ef-

fects based on the post-hoc analyses positively biased. Third, when participants are

offered multiple behavioral intervention components of varying attractiveness, some

may adhere closely to the more attractive components and reduce their adherence

to the others. This has a deleterious effect if some of the less attractive components

are more efficacious. To mimic this, a negative interaction was modeled between A4

and A5, such that A5 induced a reduced adherence to A4. This means that all else

being equal, an intervention that included both A4 and A5 is less efficacious than

one that included A4 without A5. This phenomenon is called subadditivity.

Figure 1 is a pictorial representation of the data generation model, details of which

are provided in Appendix A. Figure 1 is a directed acyclic graph [66]; the presence of

an arrow from one variable to another indicates that the former variable may have

a causal effect on the latter variable. A square represents an observed variable, and

a circle represents an unknown, and hence unobserved, variable. The absence of an

arrow indicates conditional independence; for example, given the variable Ad1, Y
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is independent of A1. In Figure 1 all relations have a positive (if any) dependency

except the A5 to Ad4 relation, which is labeled with a minus sign. To maintain

simplicity and clarity of exposition no other population heterogeneity was built into

the simulation. Thus in the following analyses it would not be useful to control

for observed participant characteristics or other observed pretreatment variables.

Averaging over the distribution of Type and Ad1−Ad5 produces the marginal linear

model

(4.1) E[Y |A1, . . . , A5] = c0 + c1A1 + c11A
2
1 + c2A2 + c4A4 + c45A4A5

Furthermore the variance of Y given A1, . . . , A5 is a function of the components

A1, . . . , A5, that is, the variance is nonconstant (see Appendix A).

4.2.3 Experimental conditions

In the simulation there were three effect size conditions for the interventions, cor-

responding to Cohen’s [21] benchmark values for standardized effect sizes of small

(d = 0.2), medium (d = 0.5) and large (d = 0.8). Effect sizes were defined in terms

of the ideal intervention as a whole, in other words, for the two-group comparison

of the best treatment combination (A1 set to medium, A2 and A4 included, A3 and

A5 not included) versus a control group. Active main effects were roughly equal in

magnitude, and the effect corresponding to the active interaction (A4A5) was roughly

half the size of the main effects. All other intervention component main effects and

interactions were set to 0. Across all three effect size conditions, the effect of Type

was set equal to d = 0.9. For each of the three effect size conditions, 1000 simu-

lated data sets of N = 1200 random experimental subjects were generated. Each

generated data set was used twice: once for the classical approach, and once for the
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MOST approach. All the results presented in Tables 4.1-4.3 are averages based on

the 1000 simulated data sets.

4.2.4 Operationalization of the classical and the MOST approaches

This section contains a brief overview of the operationalizations of the classical

and the MOST approaches. A detailed description of the MOST approach can be

found in Appendix B.

The classical approach

The classical approach employed all N = 1200 experimental subjects in a single

randomized trial of the multicomponent treatment vs. control, followed by post hoc

analysis. The treatment group was given an intervention consisting of A1 set to

“high” and all of the other components included; the control group was given an in-

tervention with A1 set to “low” and none of the other components included. Because

only homogeneous subpopulations were considered in this simulation study (see the

data generation model above), there were no pretreatment variables to be controlled.

As is traditional, a two-group comparison was performed for the overall efficacy of

the intervention. However, regardless of the outcome of this comparison, decisions

about whether individual components should be retained in the intervention were

based on post-hoc dose-response analyses (with the levels of adherence Ad1, . . . , Ad5

as doses) on the treatment group of subjects as follows:

Step 1: Identify components with sufficient variation in dose to enable dose-

response analyses. Received dose (adherence) could vary between 0 and 2 for A1 and

between 0 and 1 for A3 − A5 (adherence was always 100 percent for A2, so there
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was no variation). Any components for which naturally occurring variation in dose

was greater than an arbitrary threshold of 0.01 were considered to have sufficient

variation to enable dose-response analyses. Any components with variation in dose

less than 0.01 could not be examined further, and were automatically included in

the final intervention.

Step 2: Multiple regression. The outcome Y was regressed on the following vari-

ables: doses of all components with sufficient variation in dose; two-way interactions

between them; and, if Ad1 was included in the regression, a quadratic term for Ad1

(an implicit assumption here is that the scientist knows that A1 has more than two

levels).

Step 3: Select components and levels. The estimated regression function was eval-

uated at each combination of levels of the components that had sufficient variation

in dose (by plugging in possible values of A’s in place of Ad’s, e.g., 0, 1, or 2 for

Ad1, and 0 or 1 for Ad3 − Ad5). The level combination that produced the largest

predicted value of Y was identified.

Step 4: Final intervention. The final intervention identified by the classical ap-

proach consisted of (a) the low-variation components identified in Step 1, each set to

1 (2 in the case of A1), plus (b) the configuration of components and levels identified

in Step 3.

The MOST approach

The MOST approach used the same N = 1200 subjects as the classical approach,
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but employed N = 800 subjects in an initial screening phase and reserved N = 400

for a subsequent refining phase. In the screening phase, a factorial experiment in-

volving all five components was conducted, with only the low and the high levels

of A1 included. To conserve resources, a 16-condition balanced fractional factorial

design was used instead of a 32-condition complete factorial; see Appendix B for a

technical discussion about the particular choice of fraction and the rationale behind

it. This experiment was used to identify significant main effects and 2-way interac-

tions. Intervention components were selected based on the results of the screening

phase using the following decision rules. First, any component with a significant

main effect and not involved in a significant interaction was selected for inclusion in

the intervention. A main effect was deemed significant if it possessed one of the three

largest positive t-statistics or if the associated t-test was significant at the 0.10 level

and positive. The decision rule to take the three largest was arbitrary to an extent;

below we summarize the results of additional simulations that varied this decision

rule. Interactions were deemed significant if the associated t-test was significant at

the 0.10 level. Next, any components involved in significant two-component interac-

tions were examined further. The combination of the two components that produced

the highest marginal cell mean on Y was selected for inclusion. This procedure is

described in more detail in Appendix B.

In this study the purpose of the refining phase was to determine the optimal value

of A1. Therefore, if A1 and all its interactions were insignificant, the refining phase

was not conducted. Otherwise, additional experimentation to revise the selected

level for A1 was conducted as follows: (a) If the main effect of A1 was significant

but no interactions were significant, the refining experiment was a two-group com-



70

parison of level 2 of A1 against level 1 of A1. In this experiment the remaining

components were set at the levels indicated by the screening phase. The results of

this experiment yielded the best level for A1. (b) If there were one or two significant

interactions involving A1, a factorial experiment was conducted crossing A1 with the

components involved in the interactions, with the remaining components set to the

levels indicated by the screening phase. These results yielded the best levels for A1

and for the components that interacted with A1. More detail appears in Appendix B.

Evaluation of outcomes of each approach

Because in this simulation the true data generation model is known, it is possible

to use this model to evaluate the performance of the classical and the MOST ap-

proaches. After the final intervention was determined using either the classical or the

MOST approach, the data generation model was used to compute the expectation of

the distribution of Y that would be obtained if the intervention were applied to all

subjects in the population. These expectations, E(Y )classical and E(Y )MOST , were

the outcome variables used to evaluate the performance of each approach. In real

life this step would instead consist of conducting a large confirmatory randomized

trial comparing the final intervention to an appropriate control group. This is called

the confirming phase of the MOST approach [25, 62].

4.3 Results

As was described above, the classical approach and the MOST approach each

identifies a final multicomponent intervention for every simulated data set. The

two final multicomponent interventions are then evaluated using the known data
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generation model. All the results presented in Tables 4.1-4.3 are averaged over the

1000 simulated data sets.

Table 4.1: Mean Intervention Outcome under Classical and MOST Approaches (averaged over 1000
simulated data sets)

Effect Size E(Y )classical E(Y )MOST Difference Maximum
(standard error) (standard error) (standard error) Possible E(Y )

Small 1.72 (0.00) 1.69 (0.01) 0.03 (0.01) 1.99
Medium 2.35 (0.01) 2.58 (0.01) -0.23 (0.02) 2.99
Large 3.01 (0.02) 3.75 (0.01) -0.74 (0.02) 4.00

Table 4.1 shows the mean outcome of the classical and MOST approaches, the

mean difference between them, and standard errors. For reference, the maximum

possible mean outcome value is included. Table 4.1 shows that in the small effect

size condition E(Y )classical was approximately two percent larger than E(Y )MOST ,

indicating that in this condition the average intervention outcome was slightly better

for the classical approach. In the medium and large effect size conditions the average

intervention outcome was about 10 and 25 percent larger, respectively, for the MOST

approach. The difference between the classical and MOST approaches is significant

at the 0.05 level in every condition.

Table 4.2: Comparison of Classical and MOST Approaches on E(Y) (Percentage of Data Sets)
Effect Size E(Y )classical E(Y )MOST Neither

Higher Higher Higher (tied)
Small 54.2 40.8 5.0

Medium 32.3 62.4 5.3
Large 14.9 75.7 9.4

Table 4.2 shows the percent of data sets in which each approach “won” by identi-

fying an intervention that yielded a larger value of the outcome E(Y ). In the small

effect size condition the classical approach was about 1.3 times more likely than

the MOST approach to identify an intervention that yielded a larger E(Y ). In the

medium and large effect size conditions the effect was reversed, with the MOST ap-
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proach about 1.9 and 5.1 times more likely, respectively, to identify an intervention

that yielded a larger E(Y ).

Table 4.3: Accuracy of Component Selection under Classical and MOST Approaches (Percentage
of Data Sets)

Effect Size Classical MOST
Correct Combination of Components/Levels Identified

Small 1.9 7.5
Medium 3.7 24.3
Large 5.5 52.0

All Active Components Identified
Small 48.5 14.5

Medium 48.4 37.3
Large 48.2 73.5

All Inactive Components Identified
Small 20.0 45.7

Medium 19.5 61.0
Large 19.2 68.5

Table 4.3 depicts the accuracy with which each approach selected intervention

components and levels for inclusion in the intervention or identified components for

exclusion. The first section of the table shows the percent of data sets in which

the correct configuration of components and levels was identified. As expected, this

number increased for both approaches as effect size increased. In every condition the

MOST approach was much more likely to identify the correct configuration. One

reason for the better performance of the MOST approach is that it identified the

medium level of A1 as optimal more frequently than the classical approach (in 61.3

vs. 11.8 percent of data sets in the small effect size condition, 90.7 vs. 31.0 percent

in the medium effect size condition, and 98.3 vs. 40.6 percent in the large effect size

condition). Another reason is that the MOST approach included the component A5

(which, as described above, produced a subadditive effect in presence of the active

component A4) in the intervention much less frequently (in 25.4 vs. 57.6 percent of

data sets in the small effect size condition, 11.5 vs. 57.2 percent in the medium effect
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size condition, and 6.5 vs. 56.9 percent in the large effect size condition).

The second section of Table 4.3 shows the percentage of data sets in which all ac-

tive components were correctly selected, irrespective of whether inactive components

were mistakenly selected, and irrespective of the selected level of A1. The classi-

cal approach outperformed the MOST approach on this criterion for the small and

medium effect size conditions. For the MOST approach the performance improved

dramatically (from 14.5 to 73.5 percent) as the effect size increased. However, the

performance of the classical approach was fairly constant (ranging from 48.2 to 48.5

percent) across the effect size conditions.

The third section of Table 4.3 shows the percentage of data sets in which all inac-

tive components were correctly excluded, irrespective of whether some active inter-

vention components were incorrectly excluded. Across all three effect size conditions

the performance of the MOST approach was better than the classical approach. Here

too performance improved as effect size increased for the MOST approach, but not

for the classical approach.

Other sample sizes and numbers of main effects retained

We conducted some additional simulations in order to investigate whether the

results reported here held across variation along two dimensions. One was sample

size. The other was the decision rule used in the MOST approach for selecting in-

tervention components for inclusion based on main effects estimates. In a series of

nine simulations we investigated three different sample sizes, N = 600, N = 1200,

and N = 2500; and three different decision rules: retention of the intervention com-

ponents corresponding to the largest two, three, and four main effects. The overall

pattern of results was very consistent. In general the classical approach tended to
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produce a larger E(Y ) than the MOST approach in conditions involving both a small

effect size and a small sample size. The MOST approach tended to produce a larger

E(Y ) than the classical approach in the medium and large effect size conditions, even

in the small sample size condition. The MOST approach tended to produce larger

E(Y ) than the classical approach when the decision rule called for retaining a larger

number of main effects; in the conditions in which the four largest main effects were

retained the MOST approach consistently produced the larger E(Y ), even in the

conditions involving both a small effect size and a small sample size. More details

can be found in Appendix C.

4.4 Discussion

The simulation reported here compared one possible operationalization of the

MOST approach to one possible operationalization of the classical approach. Which

approach performed best depended upon which criterion was used to evaluate the

approaches and also upon intervention effect size.

When the two approaches were evaluated in terms of overall intervention outcome,

the classical approach performed better than the MOST approach when the inter-

vention effect size was small, and the MOST approach performed better than the

classical approach when the intervention effect size was medium or large. The MOST

approach suffered somewhat from a lack of power in the small effect size condition.

One reason why the classical approach tended to be outperformed by the MOST ap-

proach in the medium and large effect size conditions is confounding by the unknown

participant characteristic Type. Type introduced a positive bias that had an impact

on the results of the classical approach primarily in two areas. First, this positive
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bias made the high level of A1 look better than the medium level in the post-hoc

dose-response analysis. Second, the positive bias also masked the subadditive effect

of A5 on A4 in the post-hoc analysis, sometimes leading to the incorrect inclusion

of the component A5. Type had little or no impact on the results of the MOST

approach because this approach depended primarily on estimates of main effects and

interactions based on data from randomized experiments, which are much less likely

to be biased by confounding than are post hoc non-experimental analyses [83].

When success at identifying the best combination of components and levels was

the criterion, the MOST approach was the better of the two across all effect sizes.

This is directly due to the greater impact of confounding on the classical approach

as compared to the MOST approach. For example, confounding by Type made the

classical approach more likely to lead to choose an incorrect level of A1, as men-

tioned above, even though a quadratic term was appropriately included in regression

analyses.

When the two approaches were evaluated in terms of successfully including all

of the active components, the classical approach performed better than the MOST

approach in the small and medium effect size conditions, and the MOST approach

performed better when effect sizes were large. The MOST approach detected active

components at a higher rate as effect size increased, due to the corresponding in-

crease in power. By contrast, the classical approach detected active components at

a relatively constant rate across increasing effect sizes. The primary reason for this

is that in our operationalization of the classical approach the components with low

variability in adherence were automatically included, irrespective of effect size. For

example, the active component A2 was always included because the received dose,

Ad2, was always equal to the assigned value of A2 (100% adherence).
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The MOST approach outperformed the classical approach in all effect size condi-

tions when the criterion was successfully identifying inactive or potentially counter-

productive components that should be eliminated from the intervention. Again, this

is attributable to the differential impact of confounding. Because Type is positively

associated with both Y and Ad’s, it induced a positive bias in the non-experimental

analyses that led the classical approach to a preference for including components

over excluding them.

Choosing an approach to intervention building

Our results suggest that when medium or large intervention effect sizes are an-

ticipated, the use of the MOST approach is likely to result in identifying a more

potent intervention than the classical approach. When a small intervention effect is

anticipated, the choice is less clear. Multicomponent interventions with small overall

effect sizes may be made up of either (a) mostly inactive components with one or two

components with relatively large effect sizes, or (b) fairly equally efficacious but weak

components, which together produce a detectable aggregate effect even though no

individual component has a detectable effect. In situation (a), the MOST approach

may be helpful in identifying the inactive components. In situation (b), in order

to perform well the MOST approach would need to be powered to detect the weak

individual component effects. Here the classical approach may be a better choice.

One drawback of the classical approach is that all subjects in the treatment arm

receive all the components, and so the main effects of all the components and their

interactions of every order are confounded (aliased). In contrast, in the MOST

approach if a fractional factorial design is used, the main effects and two-way in-

teractions are confounded with only higher order interactions deemed negligible in
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size, and hence do not affect the results. If a full factorial design is used there is no

confounding of main effects and interactions.

It is possible that some other variant of the classical method, e.g., dismantling

experiments [103], would have performed better than the approach used in the simu-

lation reported here. However, as long as post hoc analyses on non-randomized data

(e.g., adherence) are used, the performance of any version of the classical method will

depend on the degree of confounding present in the data. In situations in which the

degree of confounding is very low or nonexistent, the version of the classical approach

we have used and other reasonable variants would probably perform as well as the

MOST approach. Of course, in most cases the degree and nature of confounding is

not under the investigator’s control and may be difficult to anticipate. Because the

MOST approach is entirely based on randomization, it is much less vulnerable to

confounding.

Although the MOST approach was better overall at identifying the best configu-

ration of components and levels, the success rate ranged from a high of 52 percent

to a low of about 7.5 percent. Thus there is plenty of room for improvement, partic-

ularly when effect sizes are small. It is possible that an augmented approach or even

an entirely different approach could result in a higher success rate. One promising

avenue for intervention refinement may lie in exploring ideas from engineering pro-

cess control, as discussed in [69].

Differences in resource requirements

One question that arises in considering the MOST approach is whether the ad-

ditional experimentation required by this approach necessarily demands an increase

in cost over the classical approach. The MOST approach calls for a design that can
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isolate the effects of individual components. In the screening phase this will usually

be some variation of a factorial design, requiring implementation of numerous condi-

tions, each of which represents a different version of the intervention. For example, a

full factorial design involving k two-level components requires implementation of 2k

treatment conditions, which may be costly. By contrast, irrespective of the number

of components studied the classical approach typically requires implementation of

only two conditions, a treatment and a control.

Two important costs are experimental subjects and implementation of experi-

mental conditions. In this simulation the MOST approach used exactly the same

number of experimental subjects as the classical approach, suggesting that it is no

more demanding with respect to sample size. When a factorial design is used, given

a fixed number of subjects an investigator may test as many components as desired

– the power to detect every main effect in this way is about the same as testing that

component in a single-component two-group study with the same sample size. This

means that factorial experiments make very efficient use of experimental subjects.

Power and sample size considerations (e.g., for testing main effects) in a factorial

setting can be found in [16, 42, 53, 17]; see also Chapter III.

However, even when in the MOST approach the same number of subjects is used

as in a comparable classical approach, there may be additional costs associated with

implementing a wider variety of versions of the intervention and conducting follow-

up experiments. It may also take more time to implement the MOST approach, and

may require more training of intervention delivery staff. Although these logistics and

costs associated with the MOST approach are a serious consideration, highly efficient

fractional factorial designs offer a way to keep the number of experimental conditions

manageable. Some assumptions about higher-order interactions being negligible are
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necessary in order to take advantage of the economy offered by a fractional factorial

over a full factorial design. The particular fractional design used in the simulations

reported here did not allow estimation of 3-way or higher order interactions; instead,

it required the assumption that they are negligible in size. Many fractional factorial

designs are available. If prior knowledge suggests that some 3-way interactions can

be important, an investigator can choose a different fractional design that allows

estimation of 3-way interactions [107].

Even with a highly efficient design, the investigators in empirical settings some-

times have to make decisions based on results of past studies and auxiliary analysis

performed on data from the current study. This is particularly true when numerous

interactions are anticipated. An example of such an analysis can be found in [88].

The short-term costs of building and evaluating an intervention must be weighed

against long-range costs and benefits. Our results suggest that the MOST approach

may help identify more efficient and streamlined interventions by identifying inactive

components for elimination. As Allore et al. [1, p. 14] noted, “Since each component

of an intervention adds to the overall cost and complexity, being able to directly es-

timate component effects could greatly enhance efficiency by reducing the number of

components introduced into clinical practice”. Our results also suggest that under

many circumstances the MOST approach may be likely to identify a more efficacious

intervention than the classical approach. Thus, in some applications the long-range

gains in terms of increased efficiency and public health benefits expected to result

from the MOST approach may offset any additional up-front intervention develop-

ment costs.
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4.4.1 Limitations

This simulation was designed to take an initial look at the question of whether the

MOST approach is a reasonable way to build interventions. It involved only a very

small set of conditions out of the infinite number of possibilities that can occur in

practice. There are a number of potentially important factors that were not varied in

the simulation. A few of these are: the underlying structural model, which could be

varied to include features such as more 2-way interactions, higher-order interactions,

and the presence of mediating variables; the degree of confounding, here reflected

by the variable Type; the number of components under consideration; the number

of active vs. inactive components; other effect sizes besides the three used here; the

impact of measurement noise on the outcome variable; the effect of complex data

structures such as nesting (e.g. individuals within classrooms; patients within clin-

ics); incorporating cost and burden in decisions about which components and levels

should make up an intervention; and the operationalization of the classical approach

used. Many other additional factors could be considered. Despite the limitations of

this study and the need for additional research, we believe that the results of the

simulation show clearly that the MOST approach is a promising alternative.

4.4.2 Conclusions

The classical approach is currently the most well-established approach to empiri-

cal development of behavioral interventions. However, an emergent strategy, labeled

here the MOST approach, provides a systematic way of making evidence-based deci-

sions about which components and which levels of the components should comprise

an intervention. Comparison of the two approaches in real-world empirical settings
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is impractical. In the present chapter a simulation was presented that provides this

comparison by modeling a plausible empirical scenario. The results suggested that

the MOST approach merits serious consideration, because it has the potential to

help intervention scientists to build more potent behavioral interventions. Possible

exceptions to this are interventions with a small overall effect size, particularly those

that are the cumulative effect of many weak components. More research is needed

on methods to identify the optimal intervention, and thereby increase public health

benefits.

4.5 Appendix A: Data Generating Model

The data generating model is described below in terms of equations involving the

intervention components (A1 −A5), the measures of adherence (Ad1 −Ad5), an un-

known confounder Type (T ), and the outcome (Y ). In this model, A2−A5 can take

two values: 0 or 1 (absent or present); while A1 can be 0, 1, or 2 (low, medium, or

high). Note that subjects may receive a different dose of a component than that as-

signed. Measures of adherence (Ad’s) simply represent these doses. A multiplicative

model is used below to describe the relation between A’s and Ad’s. The confounder

Type follows a Bernoulli (1/2) distribution.

A → Ad:

Ad1 = (η10 + η11 T + e1) · A1

Ad2 = A2

Ad3 = (η30 + η31 T + e3) · A3

Ad4 = (η40 + η41 T + η42A5 + e4) · A4
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Ad5 = (η50 + η51 T + e5) · A5

where each of e1, e3, e4, and e5 follows a normal distribution N(0, σ2
e), σe = 0.1.

Note that there is no non-adherence to component A2. The right hand side of

the equations in the above display are truncated such that Adj ∈ [0, Aj],∀j. The

subsequent equations are only approximate due to this truncation.

Ad → Y :

Y = β1 T + β2 Ad1 + β3 Ad2
1 + β4 Ad2 + β5 Ad4 + εY ; εY ∼ N(0, 3).

Marginal Form of Y , averaged over Ad’s:

Averaging over Ad’s, we get

Y = β1 T + β2 (η10 + η11 T ) A1 + β3

(
(η10 + η11 T )2 + e2

1

)
A2

1 + β4 A2

+ β5 (η40 + η41 T ) A4 + β5 η42 A4 A5

+
(
εY + e1 β2 A1 + 2e1 β3 (η10 + η11 T ) A2

1 + e4 β5 A4

)
(4.2)

Let eT denote the sum of the 4 terms in the last row of the above display. Note

that the term eT has zero mean but heteroscedastic variance because some of the

ej’s occur in products with the components. Because of zero mean, eT functions like

an error term. The generated Y will have a mean of the form

E[Y |A1, . . . , A5] =
1

2
β1 + β2 (η10 +

1

2
η11) A1 + β3 (η2

10 +
1

2
η2

11 + η10 η11 + σ2
e)A

2
1

+ β4 A2 + β5 (η40 +
1

2
η41) A4 + β5 η42 A4 A5

= c0 + c1 A1 + c11 A2
1 + c2 A2 + c4 A4 + c45 A4 A5(4.3)

where each cj is a function of (η, β, σe). In the simulations, we set these parameter

values to ensure certain effect sizes as defined in the following section. Equation (4.3)
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above corresponds to equation (4.1) appearing in the main text.

Standardized Effect Size

In our simulations, we set the parameter values so that the standardized effect

size (Cohen’s d) for the two-group comparison of the best treatment combination

(A1 = A2 = A4 = 1, A3 = A5 = 0) vs. the control where A1 is set to its low level and

all other components are absent (i.e., Ai = 0,∀i) enjoys Cohen’s benchmark values

(small=0.2, medium=0.5, large=0.8). Cohen’s d in this case is explicitly defined as:

d =
E

(
Y |A1 = A2 = A4 = 1; A3 = A5 = 0

)
− E

(
Y |Ai = 0,∀i

)
√

1
2

[
Var

(
Y |A1 = A2 = A4 = 1; A3 = A5 = 0

)
+ Var

(
Y |Ai = 0,∀i

)]

=
c1 + c11 + c2 + c4

f(η, β, σe)
,(4.4)

where f is some function of η, β, σe as can be seen from (4.2). The numerator follows

from (4.3).

Parameter Values for Specific Standardized Effect Sizes

From now on we denote the parameter values used in a given simulation with a

superscript 0. The true parameter values η0 and β0 are chosen so that the following

conditions are satisfied:

1. The standardized effect size d as defined above attains Cohen’s benchmark val-

ues (small=0.2, medium=0.5, large=0.8).

2. The active main effects (considered in the screening phase) are roughly equal in
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magnitude, while the active interaction is half the size of active main effects:

2c1 + 4c11 = c2 = c4 = c, say(4.5)

c45 = − c

2

3. The middle level of A1 (i.e., A1 = 1) is best, and the main effect of A1 between

levels 1 and 2 (as considered in refining phase) is also equal to the main effects

considered in screening phase, i.e.,

(c1 + c11)− (2c1 + 4c11) = −c1 − 3c11 = c(4.6)

4. The level of confounding, as quantified by β1η11 (= β1η31 = β1η41 = β1η51), is

made equal to c corresponding to the large effect size (d = 0.8).

The values of the η0 stay the same across different effect sizes and are set to:

η0
10 = η0

30 = η0
40 = η0

50 = 0.50;

η0
11 = η0

31 = η0
41 = η0

51 = 0.25; η0
42 = −0.3125.

If we keep the η’s and σe fixed, then f(η, β, σe) appearing in the denominator of

(4.4) can be written as g(c), a function of just c. Also, each β can be expressed as a

function of c. From (4.4), (4.5), and (4.6), we get

d =
4c

g(c)
(4.7)

For all three values of d (=0.2, 0.5, 0.8), we solve (4.7) for c by recursive method

(calculating g(c) by Monte Carlo integration). We get c = 0.165, 0.415, 0.667 for

small, medium, and large effect size respectively. From the values of c, we can easily

obtain the β values.
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The β values corresponding to small standardized effect sizes are:

β0
1 = 2.6680; β0

2 = 0.9240; β0
3 = −0.5945; β0

4 = 0.1650; β0
5 = 0.2640.

The β values corresponding to medium standardized effect sizes are:

β0
1 = 2.6680; β0

2 = 2.3240; β0
3 = −1.4953; β0

4 = 0.4150; β0
5 = 0.6640.

The β values corresponding to large standardized effect sizes are:

β0
1 = 2.6680; β0

2 = 3.7352; β0
3 = −2.4033; β0

4 = 0.6670; β0
5 = 1.0672.

4.6 Appendix B: Operationalization of the MOST Approach

As in the classical approach, each scientist following the MOST approach studies

all the five components. In the screening phase only the two extreme levels (out of

three) of A1 are considered. We restrict the number of cells to 16 in our simulations,

so a 16-cell resolution V balanced fractional factorial design with defining word I =

A1A2A3A4A5 is used (see Appendix A of the Chapter III for a technical discussion

on defining word and resolution). The defining word completely specifies the aliasing

pattern in the design. The above choice of design was used in a behavioral study

on breast cancer prevention [62]. Since this is a resolution V design, the 2-way

interactions are not aliased with each other (aliased with three-way interactions,

as can be seen from the defining word). In general, the investigators choose the

defining word based on prior substantive knowledge concerning the potential strength

of higher order interactions relative to the likely noise in the data (e.g. if the size

of any three-way interaction is likely small compared to the noise level of the data,

one can be more confident that the detected two-interaction effect is due to the two-

way interaction and not to a three-way interaction). This is in accordance with the

Hierarchical Ordering Principle [107, p. 112] which states that, absent strong prior
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knowledge, higher order interactions can be expected to be of smaller size than lower

order interactions. Note that in the setting described in the main text (N = 1200

subjects), only 800 subjects are used by each scientist in the screening phase of the

study.

Screening Phase Analysis

The experiment is simulated using the 16-cell balanced fractional factorial design.

A standard analysis of variance (ANOVA) is performed on the outcome Y and the

five components. In the screening phase, the following steps are followed:

1. A 10% level of significance is used for testing the main effects and two-way

interactions (to have greater power).

2. If the no. of significant effects is less than 3, rank-order the absolute values

of the t-statistics corresponding to the main effects only (assuming that main

effects are more likely to be significant than two-way interactions) and identify

the largest 3. Move to the refining phase with the corresponding effects (treating

them as significant).

In step 2 above, we chose the number of components to retain (say, k) to be equal to

3 to ensure that at least 50% of the components always pass the screening phase (3

is the smallest integer greater than or equal to 5/2, 5 is the total no. of components).

Since in general we expect that only a few components are likely to be active, the

choice to carry forward the top 3 components to the refining phase is a reasonable

one. By doing so, we are being conservative about the hypothesized effect of the

components. This is a tuning parameter of the procedure and can vary from one

investigator to another. We have conducted simulations for two other choices of this

number (e.g., k = 2 and 4). A summary of simulation results across all three choices
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of k (e.g., 2, 3, and 4) can be found in Appendix C.

Moving Towards Refining Phase

As mentioned in the main text, a part of the original sample in each simulated

data set is reserved for the refining phase. The refining phase may or may not be

conducted depending on the results obtained in the screening phase. In general the

refining phase is employed in the simulation if (1) the three-level component A1 is

significant in the screening phase, or (2) there is at least one significant interaction

involving A1 (see Algorithm 1 below). The MOST approach, just like the classical

approach, assumes the prior knowledge that A1 is a special component having more

than two levels. The refining phase uses multi-group experiments; standard analysis

of variance, with 5% level of significance is used. In the setting described in the

paper (N = 1200 subjects), the remaining 400 subjects are used by each scientist in

the refining phase of the study.

Algorithm 1

This algorithm is used in the simulation to determine which components should be

retained and which should be rejected, based on the results of the screening phase.

Input: set of components, significant effects (both main and interaction effects),

estimated effect sizes, and signs of effects.

Output: best (treatment) combination.

Initialize: best combination = [0, 0, 0, 0, 0], a 5-component vector. In the following,

we will use the notation best combination(i) to denote the i-th element of the vector

best combination.
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1. Go through the set of components (i = 1 : 5): If main effect and all interactions

of component i are insignificant, set best combination(i) = 0. If main effect of

component i is significant, but none of its interactions are, look at the sign. If

sign(i) = +1, set best combination(i) = 1. Else, best combination(i) = 0.

2. Now for any significant interaction, find [P1, P2] = parent components of that

interaction.

(a) If the main effect of the component P1 (P2) is insignificant, initialize sign(P1) =

0 (sign(P2) = 0). If P1 (P2) is significant, initialize sign(P1) (sign(P2)) to

the sign of its main effect (either +1 or −1), respectively.

(b) Define sign vector as the vector consisting of sign(P1), sign(P2), and sign(interaction).

(c) If sign(P1) = 0 but sign(P2) 6= 0, set sign(P1) = sign(P2)×sign (interaction).

Do a similar operation for P2.

(d) If both parents are insignificant, i.e., sign(P1) = sign(P2) = 0, go to step 4.

3. If sign(P1)×sign(P2) = sign(interaction), set best combination(P1) = (sign(P1)+

1)/2, and best combination(P2) = (sign(P2) + 1)/2.

4. For a significant interaction:

– if sign vector= [0, 0, 1], compare the cell means where both P1 and P2 are

set to +1 (so the interaction P1P2 is also set to +1) vs. where both P1 and

P2 are set to −1 (so P1P2 is set to +1).

– if sign vector= [0, 0,−1], compare the cell means where P1 = +1, P2 = −1

(so P1P2 = −1) vs. where P1 = −1, P2 = +1 (so P1P2 = −1).

– otherwise, do cell-mean comparison of the following four cells: P1 = +1, P2 =

+1 (so P1P2 = +1), P1 = −1, P2 = −1 (so P1P2 = +1), P1 = −1, P2 = +1
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(so P1P2 = −1), P1 = +1, P2 = −1 (so P1P2 = −1).

The combination of (P1, P2) that gives the highest cell mean is used to determine

the best combination. This step implicitly assumes that the four cells do not

differ with respect to other active components.

Note that the order in which step 2 considers interactions impacts the results.

For example if sign(P1) = 0, sign(P2) = −1, sign(P1P2) = −1, sign(P3) = +1,

sign(P1P3) = −1, then the best combination setting for P1 will depend on the order

in which the interactions are considered. The simulations used the natural ordering,

e.g., significant interactions from the ordered list 12, ..., 15, 23, ..., 25, 34, 35, 45

(using the notation ij to denote the interaction AiAj).

Refining Phase

1. When A1 and all its interactions are insignificant, there is no refining phase.

The best treatment combination is found by Algorithm 1.

2. When A1 is significant, but none of its interactions are so, the refining phase

uses a two-group follow-up experiment, in which A1 is varied across the two

groups, setting other components at their optimum level (obtained by applying

Algorithm 1 on the screening phase results). One group receives the intermedi-

ate level of A1 (not studied in screening phase), the other receives one extreme

level depending on the sign of the screening phase estimate of the effect of A1

(the level is the higher extreme if the sign is a +, lower extreme otherwise).

Thus, the best treatment combination is found.

3. If only one interaction involving A1 is significant, a 6-group follow-up experiment

(3 levels of A1 × 2 levels of the other component forming the interaction), setting
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all other components at their optimum levels as found by Algorithm 1, is used.

4. If two interactions involving A1 are significant, then a 12-group (3 × 22 = 12)

follow-up experiment is used in the refining phase.

5. For three or more significant interactions involving A1, conducting follow-up

experiment becomes increasingly problematic (constructing many treatment

groups), and also results become less reliable (low power for comparing many

groups). In our simulations, no refining experiment is conducted in such cases

– the best combination is determined by applying Algorithm 1 to the results of

screening phase. As mentioned in the previous page, the order in which step

2 of Algorithm 1 considers interactions impacts the results. The simulations

used the natural ordering, e.g., significant interactions from the ordered list 12,

..., 15, 23, ..., 25, 34, 35, 45 (using the notation ij to denote the interaction

AiAj). However, these cases occurred very rarely in our simulation, and hence

this step was rarely employed. In real life, investigators can come up with rules

to proceed based on additional analysis (see [88], for an example).

The abstract discussion of Algorithm 1 and refining phase possibilities are made

more concrete below with the help of three simulated examples:

Example 1

Suppose at the screening phase, the significant effects along with their signs are:

A1(+), A2(+), A3(−)

Before running any follow-up experiment, Algorithm 1 will operate on this as follows:

• Best combination is initialized as [0, 0, 0, 0, 0].
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• By Step 1, A1, A2, A3, A4 and A5 are set to 1, 1, 0, 0, and 0 respectively. So

Best combination becomes [1, 1, 0, 0, 0].

Since only the main effect of A1 (but none of its interactions) is significant at the

screening phase, a 2-group follow-up experiment is conducted at the refining phase,

where the 2 groups correspond to the levels 1 and 2 of A1. In both groups, A2, A3,

A4, and A5 are fixed at levels 1, 0, 0, and 0 respectively – as determined by Algorithm

1 above.

Example 2

Suppose at the screening phase, the significant effects along with their signs are:

A1(+), A2(+), A4(+), A1A2(+), A4A5(−)

Before running any follow-up experiment, Algorithm 1 will operate on this as follows:

• Best combination is initialized as [0, 0, 0, 0, 0].

• By Step 1, A3 is set to 0. Best combination remains same as before.

• By Step 2 (a – c), sign vector for the interaction A1A2 is (1, 1, 1), and the sign

vector for the interaction A4A5 is (1,−1,−1).

• By Step 3, best combination becomes [1, 1, 0, 1, 0].

Since one interaction involving A1 is significant at the screening phase, a 6-group

follow-up experiment is conducted at the refining phase, where the 6 groups cor-

respond to the combinations (0, 0), (0, 1), (1, 0), (1, 1), (2, 0), and (2, 1) of the

components A1 and A2. In all 6 groups, A3, A4, and A5 are fixed at levels 0, 1, and

0 respectively – as determined by Algorithm 1 above.
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Example 3

Suppose at the screening phase, the significant effects along with their signs are:

A1(+), A2(+), A5(+), A2A3(−), A3A5(+)

Before running any follow-up experiment, Algorithm 1 will operate on this as follows:

• Best combination is initialized as [0, 0, 0, 0, 0].

• By Step 1, A1 is set at 1 and A4 is set at 0. Best combination becomes

[1, 0, 0, 0, 0].

• By Step 2 (a – c), sign vector for the interaction A2A3 is (1,−1,−1), and the

sign vector for the interaction A3A5 is (1, 1, 1).

• Step 3 applied to the interaction A2A3 sets A2 at 1 and A3 at 0. Best combina-

tion becomes [1, 1, 0, 0, 0].

• Step 3 applied to the interaction A3A5 sets A3 at 1 and A5 at 1. Thus the best

combination becomes [1, 1, 1, 0, 1].

This is an example where the order in which interactions are considered in Algorithm

1 affects the results. Since in our simulations, we considered natural ordering as de-

scribed in Algorithm 1, A3A5 is considered after A2A3. We could have ended up with

a different best combination (e.g., [1, 1, 0, 0, 1]) had we considered A3A5 before A2A3.

Since only the main effect of A1 (but none of its interactions) is significant at the

screening phase, a 2-group follow-up experiment is conducted at the refining phase,

where the 2 groups correspond to the levels 1 and 2 of A1. In both groups, A2, A3,

A4, and A5 are fixed at levels 1, 1, 0, and 1 respectively – as determined by Algorithm
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1 above.

The matlab code for the entire simulation can be found at

http://www.stat.lsa.umich.edu/~bibhas/MOSTcode.html

4.7 Appendix C: Summary Results across Different Simulation Condi-
tions

We conducted a series of simulations in order to investigate whether the results

reported in the main text held across variation along two dimensions: (1) sample

size (N), and (2) number of largest main effects retained in the screening phase as a

decision rule (k). We investigated three different sample sizes: N = 600 (400+200),

1200 (800+400), and 2500 (1600+900); crossed with three different decision rules:

k = 2, 3, and 4 (i.e., nine simulation settings in total). The following three tables

correspond to the three tables in the main text, summarizing across all the nine

settings. In general the classical approach tended to produce a larger E(Y ) than the

MOST approach in small effect size, small sample size conditions; and the MOST

approach tended to produce a larger E(Y ) than the classical approach in medium

or better effect size conditions, even with small sample sizes (N = 600). The MOST

approach tended to produce larger E(Y ) than the classical approach for larger k.

In the conditions in which the four largest main effects were retained, the MOST

approach consistently produced the larger E(Y ), even in the small effect size, small

sample size (N = 600) condition. Details can be seen in the following tables.
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Table 4.4: Whether the Classical (C) or the MOST (M) approach produced the largest value of
E(Y ) under a variety of simulation conditions (This is a summary across 9 simulation
settings of the entries that correspond to the Table 1 in the main text).

k
Sample Size Effect Size k = 2 k = 3 k = 4

600 Small C C M
Medium C M M
Large M M M

1200 Small C C M
Medium M M M
Large M M M

2500 Small C M M
Medium M M M
Large M M M

Table 4.5: Whether the Classical (C) or the MOST (M) approach produced a higher E(Y ) value
in more data sets than its counterpart under a variety of simulation conditions (This is
a summary across 9 simulation settings of the entries that correspond to the Table 2 in
the main text).

k
Sample Size Effect Size k = 2 k = 3 k = 4

600 Small C C M
Medium C M M
Large M M M

1200 Small C C M
Medium M M M
Large M M M

2500 Small C M M
Medium M M M
Large M M M
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Table 4.6: Whether the Classical (C) or the MOST (M) approach showed more accuracy in com-
ponent selection under a variety of simulation conditions (This is a summary across 9
simulation settings of the entries that correspond to the Table 3 in the main text).

k
Dimension Sample Size Effect Size k = 2 k = 3 k = 4

Identifying the correct 600 Small C M M
combination of components Medium M M M
and levels more frequently Large M M M

1200 Small M M M
Medium M M M
Large M M M

2500 Small M M M
Medium M M M
Large M M M

Identifying all the 600 Small C C C
active components Medium C C M
more frequently Large C M M

1200 Small C C C
Medium C C M
Large M M M

2500 Small C C C
Medium M M M
Large M M M

Identifying all the 600 Small M M M
inactive components Medium M M M

more frequently Large M M M
1200 Small M M M

Medium M M M
Large M M M

2500 Small M M M
Medium M M M
Large M M M



CHAPTER V

Inference for Non-regular Parameters in Optimal Dynamic
Treatment Regimes

This chapter provides a detailed treatment of the problem of non-regularity in the

context of optimal dynamic treatment regimes. In the estimation of the optimal dy-

namic treatment regime from longitudinal data, the treatment effect parameters at

any stage prior to the last can be non-regular under certain distributions of the data.

This results in biased estimates and invalid confidence intervals for the treatment ef-

fect parameters. In this chapter, we discuss both the problem of non-regularity, and

available estimation methods. We provide an extensive simulation study to compare

the estimators in terms of their ability to lead to valid confidence intervals under

a variety of non-regular scenarios. Analysis of the smoking cessation trial data is

provided as an illustration.

5.1 Introduction

Many diseases such as mental illnesses, HIV infection, and substance abuse are

clinically treated in multiple stages, adapting the treatment type and dosage to the

ongoing measures of an individual patient’s response, adherence, burden, side effects,

and preference. Dynamic treatment regimes represent one way to operationalize this

96
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sequential decision making. A dynamic treatment regime (DTR) is a sequence of

decision rules, one per stage. Each decision rule takes a patient’s treatment and

covariate history as input, and outputs a recommended treatment. The main mo-

tivations for considering sequences of treatments are high variability across patients

in response to any one type of treatment, likely relapse, presence or emergence of

co-morbidities, time-varying side effect severity, and reduction of costs and burden

when intensive treatment is unnecessary [24].

A DTR is said to be optimal if it optimizes the mean outcome at the end of the

final stage of treatment. Data for estimating the optimal DTR can come from either

an observational longitudinal study or a sequential multiple assignment randomized

trial (SMART) [49, 50, 32, 57]. In these designs, each patient is followed through

stages of treatment and at each stage the patient is randomized to one of the possible

treatment options. Experimental designs similar to SMART have been implemented

in the treatments of schizophrenia [81], depression [78], and cancer [93, 99].

Estimating the optimal DTR is a problem of sequential, multi-stage decision mak-

ing. Murphy [56] developed a semiparametric method for estimating the optimal

DTR, an efficient version of which was provided by Robins [71]. A good discussion

of the relationship between these two methods can be found in Moodie et al. [55].

Other methods for estimating optimal DTRs in the literature include likelihood-

based methods, both frequentist and Bayesian, developed by Thall et al. [93, 94, 95],

and the semiparametric methods of Lunceford et al. [51], and Wahed and Tsiatis

[99, 100].

Robins [71] considered the problem of inference for the parameters of the optimal

DTR. As discussed by Robins, the treatment effect parameters at any stage prior

to the last can be non-regular under certain longitudinal distributions of the data
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which he called exceptional laws. By non-regularity, we mean that the asymptotic

distribution of the estimator of the treatment effect parameter does not converge

uniformly over the parameter space (see below for further details). This phenomenon

of non-regularity causes bias in estimation, and leads to poor frequentist properties

of the confidence intervals. Recently Moodie and Richardson [54] provided a method

called Zeroing Instead of Plugging In (ZIPI) for correcting the bias in the estimation

of the optimal DTRs resulting under exceptional laws.

The main goals of this chapter are to illustrate the problem of non-regularity, and

to compare available estimation methods that attempt to address this problem. In

section 5.2, we discuss the problem of non-regularity in detail. Section 5.3 provides a

description of different methods that address the problem. We provide an extensive

simulation study in section 5.4 to compare the estimators in terms of their ability to

lead to valid confidence intervals using bootstrap. This is followed by an analysis of

a data set from a longitudinal smoking cessation trial in section 5.5; the purpose is

to demonstrate the applicability of the estimation methods in a real-life non-regular

scenario. Finally an overall discussion is provided in section 5.6. Throughout this

chapter, we assume that the data come from SMART designs. The main reason for

this is to separate the issue of non-regularity from causal inference issues. However

the problem of non-regularity also arises when observational data are used [71, 54];

and the estimators proposed in section 5.3 should be applicable to observational data

as well. Technical details are presented in the appendices at the end of the chapter.
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5.2 Estimation and Inference via Q-learning

5.2.1 Notation and Data Structure

For simplicity, we focus on studies with two stages. Longitudinal data on a single

patient are given by the trajectory (O1, A1, O2, A2, O3), where Oj (j = 1, 2) denotes

the covariates measured prior to treatment at the beginning of the j-th stage, O3 is

the observation at the end of stage 2, and Aj (j = 1, 2) is the treatment assigned at

the j-th stage subsequent to observing Oj. The data set consists of a random sample

of n patients. Define the history at each stage as: H1 = O1, H2 = (O1, A1, O2). We

consider a SMART design in which there are two possible treatments at each stage,

Aj ∈ {−1, 1}; here we assume P [Aj = −1|Hj] = P [Aj = 1|Hj] = 1
2
. The study

can have either a single primary outcome Y observed at the end of stage 2, or two

outcomes Y1, Y2 observed at the two stages. Note that the case of a single outcome

Y observed at the end can be viewed as a case with Y1 ≡ 0 and Y2 = Y . We assume

Y1 = f1(O1, A1, O2) and Y2 = f2(O1, A1, O2, A2, O3), with known functions f1, f2. A

two-stage DTR consists of two decision rules, say (d1, d2), with dj(Hj) ∈ Aj, where

Aj is the set of possible treatments at the j-th stage.

One simple method to construct (d1, d2) is Q-learning [101, 90, 58]. Q-learning,

like Robins’ g-estimation of optimal structural nested mean models (hereafter simply

referred to as Robins’ method), suffers from non-regularity – the common reason

being an underlying non-smooth maximization operation. Here we will illustrate the

problem due to non-regularity using Q-learning, since it can be viewed as a gener-

alization of the least squares regression to multistage decision problems, and hence

simpler to explain than Robins’ semiparametric efficient method. In Lemma V.1

below, we provide conditions under which Q-learning is equivalent to an inefficient

version of Robins’ method.
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5.2.2 Q-learning with Linear Models

First let us define the Q-functions [90, 58] for the two stages as follows:

Q2(H2, A2) = E
[
Y2|H2, A2

]
,

Q1(H1, A1) = E
[
Y1 + max

a2

Q2(H2, a2)|H1, A1

]
.

If the two Q-functions were known, the optimal DTR (d1, d2), using backwards in-

duction (as in dynamic programming) argument, would be

dj(hj) = arg max
aj

Qj(hj, aj), j = 1, 2.(5.1)

In practice, the true Q-functions are not known and hence must be estimated from

the data. Consider a linear model for the Q-functions. Let the stage-j (j = 1, 2)

Q-function be modeled as

Qj(Hj, Aj; βj, ψj) = βT
j Hj0 + (ψT

j Hj1)Aj,(5.2)

where Hj0 and Hj1 are two (possibly different) summaries of the history Hj, with

Hj0 denoting the “main effect of history” and Hj1 denoting the part of history that

interacts with treatment (Hj0 and Hj1 include the intercept term). The Q-learning

algorithm is:

1. Stage-2 regression: (β̂2, ψ̂2) = arg minβ2,ψ2

1
n

∑n
i=1

(
Y2i−Q2(H2i, A2i; β2, ψ2)

)2

.

2. Stage-2 optimal rule: d̂2(h2) = arg maxa2 Q2(h2, a2; β̂2, ψ̂2).

3. Stage-1 pseudo-outcome: Ŷ1i = Y1i + maxa2 Q2(H2i, a2; β̂2, ψ̂2), i = 1, . . . , n.

4. Stage-1 regression: (β̂1, ψ̂1) = arg minβ1,ψ1

1
n

∑n
i=1

(
Ŷ1i−Q1(H1i, A1i; β1, ψ1)

)2

.

5. Stage-1 optimal rule: d̂1(h1) = arg maxa1 Q1(h1, a1; β̂1, ψ̂1).
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The estimated optimal DTR using Q-learning is given by (d̂1, d̂2).

The following lemma gives a set of sufficient conditions under which Q-learning is

equivalent to an inefficient version of Robins’ method.

Lemma V.1. Consider linear models for the Q-functions as in (5.2). Assume that:

(i) the parameters in Q1 and Q2 are distinct;

(ii) Aj has zero conditional mean given the history Hj, j = 1, 2; and

(iii) the covariates used in the model for Q1 are nested within the covariates used in

the model for Q2, i.e., (HT
10, H

T
11A1) ⊂ HT

20.

Then Q-learning is algebraically equivalent to an inefficient version of Robins’ method.

The proof is given in Appendix A.

5.2.3 The Inference Problem

With (5.2) as the model for Q-functions, the optimal DTR is given by

dj(Hj) = arg max
aj

(ψT
j Hj1)aj = sign(ψT

j Hj1), j = 1, 2,(5.3)

where sign(x) = 1 if x > 0, and −1 otherwise. Note that the term βT
j Hj0 on the

right side of (5.2) does not feature in the optimal DTR. Thus for estimating optimal

DTRs, the ψj’s are the parameters of interest, while βj’s are nuisance parameters.

We want to perform inference (e.g., construct confidence intervals) on ψj’s.

Conducting inference on ψj’s is important for the following reasons. First, if the

confidence intervals (or hypothesis tests) for ψj reveal that there is evidence that

some components of the parameter vector ψj are not clinically different from zero,
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then the investigator may choose not to collect the corresponding components of the

history vector Hj1 while making decisions using the optimal DTR. This reduces the

cost of data collection in a future implementation of the optimal DTR. Thus in the

present context, confidence intervals (or hypothesis tests) can be viewed as a tool for

doing variable selection. Second, it is important to know when there is insufficient

support in the data to recommend one treatment over another, since in such cases

treatment can be chosen according to other considerations like cost, familiarity, bur-

den, preference etc. Third, as discussed by Robins [71], confidence intervals for ψj

can lead to confidence intervals for dj. In the following, we discuss the problem of

non-regularity in inference.

5.2.4 Non-regularity in Inference

Note that the stage-1 pseudo-outcome (in the Q-learning algorithm) is

Ŷ1i = Y1i + max
a2

Q2(H2i, a2; β̂2, ψ̂2) = Y1i + β̂T
2 H20,i + |ψ̂T

2 H21,i|,(5.4)

which is a non-smooth (e.g., non-differentiable at ψ̂T
2 H21,i = 0) function of ψ̂2, be-

cause of the maximization operation. Since ψ̂1 is a function of Ŷ1i, i = 1, . . . , n, it

is in turn a non-smooth function of ψ̂2. As a consequence, the asymptotic distribu-

tion of
√

n(ψ̂1 − ψ1) does not converge uniformly [71] over the parameter space of

ψ = (ψ1, ψ2). More specifically, the asymptotic distribution of
√

n(ψ̂1−ψ1) is normal

if ψ2 is such that P [H2 : ψT
2 H21 = 0] = 0, but is non-normal if P [H2 : ψT

2 H21 = 0] > 0.

This change in the asymptotic distribution happens abruptly. The (vector) parame-

ter ψ1 is called a non-regular parameter and the estimator ψ̂1 is called a non-regular

estimator; see [5] for the precise definition of non-regularity. Because of this non-

regularity, given the noise level present in small samples, the estimator ψ̂1 oscillates
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between the two asymptotic distributions across samples. As a result, usual Wald

type confidence intervals perform poorly [71, 54].

The issue of non-regularity can be better understood with a toy example discussed

by Robins [71] (here is a slightly modified version). Consider the problem of esti-

mating |µ| based on n i.i.d. observations X1, . . . , Xn from N(µ, 1). Note that |X̄n|

is the maximum likelihood estimator of |µ|, where X̄n is the sample average. It can

be shown that the asymptotic distribution of
√

n(|X̄n| − |µ|) for µ = 0 is different

from that for µ 6= 0. Thus |X̄n| is a non-regular estimator of |µ|. Also, for µ = 0,

limn→∞ E[
√

n(|X̄n| − |µ|)] =
√

2
π
. Robins referred to this quantity as the asymptotic

bias of the estimator |X̄n|. This asymptotic bias is one symptom of the underlying

non-regularity, as discussed by Moodie and Richardson [54].

In many situations where the asymptotic distribution of an estimator is unavail-

able, bootstrap is used as an alternative approach to conduct inference. But the

success of bootstrap also hinges on the underlying smoothness of the estimator.

When an estimator is non-smooth, the ordinary (n out of n) bootstrap procedure

produces an inconsistent bootstrap estimator [84]. Inconsistency of bootstrap in the

above simple normal theory example has been discussed by Andrews [2]. As shown

by Shao [84], an alternative resampling procedure called “m out of n bootstrap”

is consistent in such non-smooth scenarios. One concern regarding the use of this

procedure is the slower rate of convergence than
√

n even in a regular setting (e.g.,

when P [H2 : ψT
2 H21 = 0] = 0). Moreover, a data-adaptive choice of the tuning

parameter m in the present context of DTRs is not obvious; see however [6] and [43]

for data-adaptive choice of m in other contexts.

The above concerns regarding non-regularity led us to investigate possible reg-

ularizations of the estimation procedure, and then use bootstrap for inference. In
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the simulation study to follow, we will investigate the behavior of different types of

bootstrap confidence intervals for the parameters ψj of the optimal DTR in both

regular and non-regular settings.

5.3 Different Regularized Estimators

In this section, we will present two competing estimators to address the non-

regularity problem described above. Limited theoretical results are available at this

point, and consequently it is not clear which estimator is better. In this chapter, we

will study their relative merits and demerits in simulations.

From the discussion on non-regularity above, it is clear that ψ̂1 is a non-regular

estimator because the stage-1 pseudo-outcome Ŷ1 is a non-smooth function (e.g.,

absolute value) of ψ̂2. The estimators presented in this section “regularize” the

non-regular estimator (sometimes called the “hard-max” estimator because of the

maximum operation used in the definition) by shrinking or thresholding the effect of

the term involving the maximum, e.g., |ψ̂T
2 H21|, towards zero.

5.3.1 Hard-threshold Estimator

Recall that the pseudo-outcome Ŷ1 = Y1 + β̂T
2 H20 + |ψ̂T

2 H21| is non-differentiable

in ψ̂2 only when ψ̂T
2 H21 = 0, and so the corresponding estimator ψ̂1 is problematic

only when the true ψT
2 H21 is close to zero. The general form of the hard-threshold

pseudo-outcome is

Ŷ HT
1i = Y1i + β̂T

2 H20,i + |ψ̂T
2 H21,i| · 1{|ψ̂T

2 H21,i| > λi},(5.5)

where λi (> 0) is the threshold for the i-th subject in the sample (possibly depending

on the variability of the linear combination ψ̂T
2 H21,i for that subject). One way to



105

operationalize this is to perform a preliminary test (for each subject in the sample)

of the hypothesis H0i : ψT
2 H21,i = 0 (H21,i is considered fixed in this test), set

Ŷ HT
1i = Ŷ1i if H0i is rejected, and replace |ψ̂T

2 H21,i| with the “better guess” 0 in case

H0i is accepted. Thus the hard-threshold pseudo-outcome can be written as

Ŷ HT
1i = Y1i + β̂T

2 H20,i + |ψ̂T
2 H21,i| · 1

{ √
n|ψ̂T

2 H21,i|√
HT

21,iΣ̂2H21,i

> zα/2

}
,(5.6)

where Σ̂2 is the estimated covariance matrix of ψ̂2. The corresponding estimator

of ψ1, denoted by ψ̂HT
1 , will be referred to as the hard-threshold estimator. The

hard-threshold estimator is common in many areas like variable selection in linear

regression and wavelet shrinkage [34]. Moodie and Richardson [54] proposed this

estimator for bias correction in the context of Robins’ method, and called it Zeroing

Instead of Plugging In (ZIPI) estimator.

Note that Ŷ HT
1 is still a non-smooth function of ψ̂2 and hence ψ̂HT

1 is a non-regular

estimator of ψ1. However, the problematic term |ψ̂T
2 H21| is shrunk (thresholded) to-

wards zero, and hence one might expect that the degree of non-regularity is somewhat

reduced. Moodie and Richardson[54] showed that this estimator reduces the bias oc-

curring in Robins’ method (efficient version of Q-learning). In the simulation study

to follow, we will explore if this estimator can be used to construct valid confidence

intervals for ψ1. An important issue regarding the use of this estimator is the choice

of significance level α of the preliminary test, which is an unknown tuning param-

eter. As discussed by Moodie and Richardson[54], this is a difficult problem even

in better-understood settings where preliminary test based estimators are used; and

no widely applicable data-driven method for choosing α in this setting is currently

available.
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5.3.2 Soft-threshold or Shrinkage Estimator

The general form of the soft-threshold pseudo-outcome considered here is

Ŷ ST
1i = Y1i + β̂T

2 H20,i + |ψ̂T
2 H21,i| ·

(
1− λi

|ψ̂T
2 H21,i|2

)+

,(5.7)

where x+ = x1{x > 0} stands for the positive part of a function, and λi (> 0) is

a tuning parameter associated with the i-th subject in the sample (again possibly

depending on the variability of the linear combination ψ̂T
2 H21,i for that subject). In

the contexts of regression shrinkage [12] and wavelet shrinkage [40], the third term

in (5.7) is generally known as the nonnegative garrote estimator. As discussed by

Zou [109], the nonnegative garrote estimator is a special case of the adaptive lasso

estimator. As in the case of hard-threshold estimator, a crucial issue here is to choose

a data-driven tuning parameter λi. Below we provide a choice following a Bayesian

approach.

Like the hard-threshold pseudo-outcome, Ŷ ST
1 is also a non-smooth function of ψ̂2

and hence ψ̂ST
1 remains a non-regular estimator of ψ1. However, the problematic term

|ψ̂T
2 H21| is shrunk (or thresholded) towards zero, and hence one might expect that

the degree of non-regularity is somewhat reduced. In the simulation study to follow,

we will investigate how much improvement this estimator offers over the “hard-max”

estimator, when it comes to constructing confidence intervals. Figure 1 presents the

hard-max, the hard-threshold, and the soft-threshold pseudo-outcomes.

Choice of Tuning Parameter

A hierarchical Bayesian formulation of the problem, inspired by the work of

Figueiredo and Nowak [35] in the area of wavelet-based image processing, can be
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used in the context of the soft-threshold estimator to choose λi’s in a data-driven

way. It turns out that the estimator (5.7) with λi = 3HT
21,iΣ̂2H21,i/n, i = 1, . . . , n,

where Σ̂2/n is the estimated covariance matrix of ψ̂2, is an approximate empirical

Bayes estimator. The following lemma will be used to derive the choice of λi.

Lemma V.2. Let X be a random variable such that X|µ ∼ N(µ, σ2) with known

variance σ2. Let the prior distribution on µ be given by µ|φ2 ∼ N(0, φ2), with

Jeffrey’s noninformative hyper-prior on φ2, e.g., p(φ2) ∝ 1/φ2. Then an empirical

Bayes estimator of |µ| is given by

|̂µ|EB
= X

(
1− 3σ2

X2

)+
(

2Φ
(X

σ

√(
1− 3σ2

X2

)+)
− 1

)

+

√
2

π
σ

√(
1− 3σ2

X2

)+

exp

{
− X2

2σ2

(
1− 3σ2

X2

)+
}

,(5.8)

where Φ(·) is the standard normal distribution function.

The proof is given in Appendix B.

Clearly, |̂µ|EB
is a thresholding rule, since |̂µ|EB

= 0 for |X| <
√

3σ. Moreover,
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Figure 5.1:
Hard-threshold and Soft-threshold pseudo-outcomes compared with the Hard-max
pseudo-outcome.
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when |X
σ
| is large, the second term of (5.8) goes to zero exponentially fast, and
(

2Φ
(X

σ

√(
1− 3σ2

X2

)+)
− 1

)
≈ (2 I{X>0} − 1) = sign(X).

Consequently, the empirical Bayes estimator is approximated by

|̂µ|EB ≈ X
(
1− 3σ2

X2

)+

sign(X) = |X|
(
1− 3σ2

X2

)+

.(5.9)

Now for i = 1, . . . , n separately, put X = ψ̂T
2 H21,i, and µ = ψT

2 H21,i (for fixed

H21,i); and plug in σ̂2 = HT
21,iΣ̂2H21,i/n for σ2. This leads to a choice of λi in the

soft-threshold pseudo-outcome (5.7):

Ŷ ST
1i = Y1i + β̂T

2 H20,i + |ψ̂T
2 H21,i| ·

(
1− 3HT

21,iΣ̂2H21,i

n|ψ̂T
2 H21,i|2

)+

,

= Y1i + β̂T
2 H20,i + |ψ̂T

2 H21,i| ·
(

1− 3HT
21,iΣ̂2H21,i

n|ψ̂T
2 H21,i|2

)
· 1

{ √
n|ψ̂T

2 H21,i|√
HT

21,iΣ̂2H21,i

>
√

3

}
,

i = 1, . . . , n.(5.10)

The presence of the indicator function in (5.10) indicates that Ŷ ST
1i is a thresholding

rule for small values of |ψ̂T
2 H21,i|, while the term just preceding the indicator function

makes Ŷ ST
1i a shrinkage rule for moderate to large values of |ψ̂T

2 H21,i| (for which the

indicator function takes the value one). Thus the current Bayesian formulation gives

us a data-driven choice of the tuning parameters.

5.4 Simulation Study

In this section, we consider a simulation study to compare the performances of

the hard-max, the hard-threshold, and the soft-threshold estimators under different

non-regular scenarios. In this study, we vary the parameters of the generative model,

the degree of non-regularity, and the type of bootstrap confidence interval.
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Generative Model

Recall that the data consist of n patient trajectories. Each such trajectory is of

the form (O1, A1, O2, A2, O3). Without loss of generality, we assume Y1 ≡ 0 and

Y2 ≡ Y = O3. Let µY = E[Y |O1, A1, O2, A2], and ε be the associated error term.

Then Y = µY + ε, where

µY = γ1 + γ2O1 + γ3A1 + γ4O1A1 + γ5A2 + γ6O2A2 + γ7A1A2,

and ε ∼ N(0, 1). Next, we consider binary treatments randomized with probability

1/2, e.g., P [Aj = 1] = P [Aj = −1] = 1/2, j = 1, 2. Also, the binary covariates Oj’s

are generated as

P [O1 = 1] = P [O1 = −1] = 1/2,

P [O2 = 1|O1, A1] = 1− P [O2 = −1|O1, A1] = expit(δ1O1 + δ2A1),

where expit(x) = exp(x)/(1 + exp(x)). Note that γ1, . . . , γ7 and δ1, δ2 are the pa-

rameters that specify the generative model. These parameters will be varied in the

examples to follow.

Analysis Model

Q2(H2, A2) = β20 + β21O1 + β22A1 + β23O1A1 +
(
ψ20 + ψ21O2 + ψ22A1

)
A2,

Q1(H1, A1) = β10 + β11O1 +
(
ψ10 + ψ11O1

)
A1.

Two dimensions of non-regularity: p and φ

Non-regularity in stage 1 parameters arises when the optimal stage 2 treatment is

non-unique for at least some subjects in the population. With reference to the present

generative model, a setting is non-regular if the linear combination γ5+γ6O2+γ7A1 =
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Table 5.1: Distribution of the linear combination (γ5 + γ6O2 + γ7A1)
(O2, A1) cell cell probability value of the

(averaged over O1) linear combination

(1, 1) q1 ≡ 1
4

(
expit(δ1 + δ2) + expit(−δ1 + δ2)

)
f1 ≡ γ5 + γ6 + γ7

(1,−1) q2 ≡ 1
4

(
expit(δ1 − δ2) + expit(−δ1 − δ2)

)
f2 ≡ γ5 + γ6 − γ7

(−1, 1) q3 ≡ 1
4

(
expit(δ1 − δ2) + expit(−δ1 − δ2)

)
f3 ≡ γ5 − γ6 + γ7

(−1,−1) q4 ≡ 1
4

(
expit(δ1 + δ2) + expit(−δ1 + δ2)

)
f4 ≡ γ5 − γ6 − γ7

0 with positive probability. Also one might expect some non-regular behavior as

γ5 + γ6O2 + γ7A1 falls in a small neighborhood of zero (even though not exactly

zero). In the following, we consider specific examples varying the “degree of non-

regularity”, e.g., p = P [γ5 + γ6O2 + γ7A1 = 0] and the “standardized effect size”

defined as φ =
∣∣∣E[γ5 + γ6O2 + γ7A1]/

√
V ar[γ5 + γ6O2 + γ7A1]

∣∣∣. The quantities p

and φ, which depend on the distribution of the above linear combination, represent

two dimensions of the non-regularity phenomenon. Note that the linear combination

(γ5 + γ6O2 + γ7A1) can take only four possible values corresponding to the four

possible (O2, A1) cells. The cell probabilities can be easily calculated; the formulae

are provided in Table 5.1.

It follows that E[γ5 +γ6O2 +γ7A1] = q1f1 + q2f2 + q3f3 + q4f4, and E[(γ5 +γ6O2 +

γ7A1)
2] = q1f

2
1 +q2f

2
2 +q3f

2
3 +q4f

2
4 , where q1, . . . , q4 are the cell probabilities given in

Table 1. From these two, one can calculate V ar[γ5 +γ6O2 +γ7A1], and subsequently

the effect size φ.

We want to conduct inference on ψ10 and ψ11, the analysis model parameters

associated with stage 1 treatment A1. They can be expressed in terms of γ’s and δ’s,

the parameters of the generative model, as follows. It turns out that

ψ10 = γ3 + q1|f1| − q2|f2|+ q3|f3| − q4|f4|,

and ψ11 = γ4 + q′1|f1| − q′2|f2| − q′3|f3|+ q′4|f4|,
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where q′1 = q′3 = 1
4
(expit(δ1 + δ2)− expit(−δ1 + δ2)), and q′2 = q′4 = 1

4
(expit(δ1− δ2)−

expit(−δ1− δ2)). In the following, we consider specific examples for varying p and φ.

In Examples 1− 4 below, we use δ1 = δ2 = 0.5. For this choice, we get the following

values of the cell probabilities: q1 = q4 = 0.3078 and q2 = q3 = 0.1922. This choice

of the δ’s also makes q′1 = q′2 = q′3 = q′4 = .0578.

Example 1 (p = 1, φ undefined): Consider a setting where there is no treatment

effect for any subject (any history) in either stage. This is achieved by setting

γ1 = . . . = γ7 = 0, and δ1 = δ2 = 0.5. Then f1 = f2 = f3 = f4 = 0, and hence

ψ10 = ψ11 = 0, p = 1, and φ is undefined (0/0). This is a fully non-regular scenario.

Example 2 (p = 0, φ infinite): Consider a setting similar to Example 1, where there

is a very weak stage 2 treatment effect for every subject (all possible history). This

is achieved by setting γ5 = 0.01 and γj = 0,∀j 6= 5, and δ1 = δ2 = 0.5. Then

f1 = f2 = f3 = f4 = 0.01; ψ10 = ψ11 = 0, p = 0, and φ is infinite (0.01/0). This is a

regular scenario, but close to non-regularity (it is hard to detect the very weak effect

given the noise level in the data).

Example 3 (p = 1
2
, φ = 1): Consider a setting where there is no stage 2 treatment

effect for half the subjects in the population, but a reasonably large effect for the

other half of subjects. This is achieved by setting γ1 = γ2 = γ4 = γ6 = 0, γ3 = −0.5,

γ5 = γ7 = 0.5, and δ1 = δ2 = 0.5. Then f1 = f3 = 1, f2 = f4 = 0, ψ10 = ψ11 = 0,

p = 1
2

and φ = 1. This is a non-regular setting.

Example 4 (p = 0, φ = 1.0204): Consider a setting where there is a very weak stage 2
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treatment effect for half the subjects in the population, but a reasonably large effect

for the other half of subjects. This is achieved by setting γ1 = γ2 = γ4 = γ6 = 0,

γ3 = −0.5, γ5 = 0.5, γ7 = 0.49, and δ1 = δ2 = 0.5. It follows that f1 = f3 = 0.99,

f2 = f4 = 0.01, ψ10 = −0.0100, ψ11 = 0, p = 0, and φ = 1.0204. This regular

example is close to the non-regular Example 3.

Example 5 (p = 1
4
, φ = 1.4142): Consider a setting where there is no stage 2

treatment effect for one-fourth of the subjects in the population, but others have a

reasonably large effect. To achieve this, set γ1 = γ2 = γ4 = 0, γ3 = −0.5, γ5 = 1,

γ6 = γ7 = 0.5, δ1 = 1, and δ2 = 0. Then f1 = 2, f2 = f3 = 1, f4 = 0; the cell

probabilities are equal, i.e., q1 = q2 = q3 = q4 = 1
4
; and q′1 = q′2 = q′3 = q′4 = 0.1155.

Consequently, ψ10 = ψ11 = 0, p = 1
4
, and φ = 1.4142. This is a non-regular setting.

Example 6 (p = 0, φ = 0.3451): Consider a completely regular setting where there is

a reasonably large stage 2 treatment effect for every subject in the population. This

can be achieved by setting γ1 = γ2 = γ4 = 0, γ3 = −0.5, γ5 = 0.25, γ6 = γ7 = 0.5,

and δ1 = δ2 = 0.1. Then f1 = 1.25, f2 = f3 = 0.25, and f4 = −0.75; the cell

probabilities are q1 = q4 = 0.2625, q2 = q3 = 0.2375; and q′1 = q′2 = q′3 = q′4 = 0.0125.

It follows that ψ10 = −0.3688, ψ11 = 0.0187, p = 0 and φ = 0.3451.

Note that in Example 5, the effect size φ is greater than Cohen’s [21] benchmark

large effect size (=0.8). Such a high effect size can be criticized as being unrealistic,

based on the principle of clinical equipoise [38], which provides the ethical basis for

medical research involving randomization. This principle says that there must be

a honest, professional disagreement (high variability) among expert clinicians about
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the preferred treatment (and thus the standardized effect size of treatment is likely

small). Hence this example might be somewhat down-weighted for overall compar-

ison of performance. Furthermore, Example 6 violates the Hierarchical Ordering

Principle [107] in that the coefficient of the interaction term A1A2 (γ7) is larger than

the coefficient of the main effect A2 (γ5). So this example might be given lower

weight as well.

Competing Estimators

In the simulation, we will consider four estimators: the hard-max estimator (orig-

inal Q-learning), the soft-threshold estimator, and the hard-threshold estimator with

two values of the tuning parameter α, e.g., 0.2, which was empirically found to be

a good choice by Moodie and Richardson [54], and 0.08 which corresponds to the

threshold used by the soft-threshold estimator proposed in this paper (from (5.10),

the threshold used by the soft-threshold estimator is
√

3 = 1.7321; equating this

point to zα/2 and solving for α, we get α = 0.0833).

Different Bootstrap CIs

We consider three types of bootstrap CIs, e.g., percentile, hybrid, and double

(percentile) bootstrap CIs. Let θ̂ be an estimator of θ and θ̂∗ be its bootstrap version.

Then the 100(1 − α)% percentile bootstrap (PB) CI is given by
(
θ̂∗(α

2
), θ̂

∗
(1−α

2
)

)
, and

the 100(1−α)% hybrid bootstrap (HB) CI is given by
(
2θ̂− θ̂∗(1−α

2
), 2θ̂− θ̂∗(α

2
)

)
, where

θ̂∗γ is the 100γ-th percentile of the bootstrap distribution. The double bootstrap (DB)

CI is calculated as follows:

1. Draw B1 first-stage bootstrap samples from the original data. For each first-

stage bootstrap sample, calculate the bootstrap version of the estimator θ̂∗b,
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b = 1, . . . , B1.

2. Conditional on each first-stage bootstrap sample, draw B2 second-stage (nested)

bootstrap samples and calculate the double bootstrap versions of the estimator,

e.g., θ̂∗∗bm, b = 1, . . . , B1, m = 1, . . . , B2.

3. For b = 1, . . . , B1, calculate u∗b = 1
B2

∑B2

m=1 1{θ̂∗∗bm ≤ θ̂}, where θ̂ is the esti-

mator based on the original data.

4. The double bootstrap CI is given by
(
θ̂∗q̂(α

2
), θ̂

∗
q̂(1−α

2
)

)
, where q̂(γ) = u∗(γ), the

100γ-th percentile of the distribution of u∗b, b = 1, . . . , B1.

See [31] and [63] for details about double bootstrap CIs. One disadvantage of these

CIs is that they are computationally very intensive.

We use B = 1000 bootstrap iterations to calculate the percentile and the hybrid

bootstrap CIs. However, the double bootstrap CIs are based on B1 = 500 first-stage

and B2 = 100 second-stage bootstrap iterations (due to the increased computational

burden). The results in Tables 5.2− 5.3 are based on N = 1000 Monte Carlo itera-

tions.

5.4.1 Results

The simulation study compares the competing estimators on a variety of settings

represented by Examples 1−6. We considered estimation and inference for both ψ10

and ψ11. However in the present examples, the effect of non-regularity turned out to

be more pronounced for the parameter ψ10 (main effect of A1) than ψ11 (interaction

of A1 with O1). Hence we included results on ψ10 only in Tables 5.2 and 5.3. Also

in the following discussion, we will focus on ψ10.
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In Example 1 (top part of Table 5.2), where stage 2 effects for all possible histories

are zero (i.e., the stage 2 optimal treatment is non-unique for every subject in the

population), we see that there is no bias associated with the hard-max estimator;

and the mean squared error (MSE) is essentially the same as the variance. However

the percentile bootstrap CI (both 95% and 90%) has over-coverage (note that over-

coverage translates to lower power of the corresponding hypothesis test), and the

hybrid bootstrap CI (95%) has under-coverage compared to the nominal level. We

have also studied the Wald type CIs for this setting (not included in this paper) and

observed over-coverage; the problem with Wald type CIs in such non-regular settings

is well-known [71, 54]. This suggests that the asymptotic distribution of the hard-

max estimator has a lighter tail than a comparable normal distribution. However,

the double bootstrap CIs have correct coverage. Note that both versions of the hard-

threshold estimator fail to rectify the coverage rate, even though neither suffer from

bias. However, the soft-threshold estimator offers correct coverage for both types of

bootstrap CIs. Moreover, it gives the lowest MSE among the four estimators. Note

that the soft-threshold estimator is also non-smooth (non-regular), and consequently

the bootstrap distribution is inconsistent for the true asymptotic distribution of this

estimator. But in this setting, it reduces the degree of non-regularity just enough so

that the bootstrap CIs do not show the problem with coverage.

Even though Example 2 (middle part of Table 5.2) is a regular setting (p = 0), it

is very close to Example 1 and hence affected by non-regularity. Results are similar

to those in Example 1. Thus the presence of very small effects causes problems with

coverage even in regular settings.

Example 3 (bottom part of Table 5.2) is a setting where the stage 2 optimal treat-

ment is non-unique for half the subjects in the population (p = 1
2
) and is unique for
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the remaining half, but the overall standardized stage 2 effect size φ (= 1) is quite

large. Here the hard-max estimator is biased, and hence both the percentile and

the hybrid bootstrap CIs under-cover the true value. However the double bootstrap

CI gives correct coverage rate. Both versions of the hard-threshold estimator reduce

bias and one of them (corresponding to α = 0.08) gives correct coverage, while the

other also offers substantial improvement of the coverage rate. This is consistent

with the findings of [54]. The soft-threshold estimator also reduces bias, gives the

lowest MSE among the four estimators, and provides correct coverage with the hy-

brid bootstrap method but not with the percentile method (even though it offers

substantial improvement). Thus in this example, the hard-threshold estimator with

α = 0.08 emerges as the winner, with the soft-threshold estimator at the second

place. However, note that the value 0.08 of the tuning parameter α is not arbitrary –

it corresponds to the threshold used by the soft-threshold estimator. If constructing

Table 5.2: Summary statistics and coverage rates of 95% and 90% nominal percentile (PB), hybrid
(HB), and double (DB) bootstrap CIs for ψ10 using the hard-max (HM), the hard-
threshold with α = 0.08 (HT0.08) and α = 0.2 (HT0.20), and the soft-threshold (ST)
estimators. A “*” indicates significantly different coverage rate than the nominal rate,
using a test of proportion (Type I error rate = 0.05).

Summary Statistics Coverage of 95% CI Coverage of 90% CI
Estimator Bias Var MSE PB HB DB PB HB DB

Example 1: p = 1 and φ undefined (ψ10 = ψ11 = 0)
HM 0.0003 0.0045 0.0045 96.8* 93.5* 93.6 92.9* 88.2 88.8
HT0.08 0.0017 0.0044 0.0044 97.0* 95.0 – 93.7* 90.3 –
HT0.20 0.0002 0.0050 0.0050 97.4* 92.8* – 94.2* 86.9* –
ST 0.0009 0.0036 0.0036 95.3 96.1 – 91.1 91.4 –

Example 2: p = 0 and φ infinite (ψ10 = ψ11 = 0)
HM 0.0003 0.0045 0.0045 96.7* 93.4* 93.6 92.4* 88.2 89.0
HT0.08 0.0010 0.0044 0.0044 97.1* 95.3 – 94.0* 90.5 –
HT0.20 0.0003 0.0050 0.0050 97.3* 93.5* – 94.3* 87.1* –
ST 0.0008 0.0036 0.0036 95.4 95.9 – 90.8 91.5 –

Example 3: p = 1
2 and φ = 1 (ψ10 = ψ11 = 0)

HM -0.0401 0.0059 0.0075 88.4* 92.7* 94.8 81.2* 86.1* 89.0
HT0.08 -0.0083 0.0058 0.0059 94.3 94.3 – 88.5 89.0 –
HT0.20 -0.0179 0.0062 0.0065 93.5* 93.5* – 87.0* 88.1* –
ST -0.0185 0.0055 0.0058 93.4* 94.9 – 87.1* 89.4 –
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confidence intervals is the main goal (so biased estimation is less of an issue), double

bootstrap CI along with the hard-max estimator can also be used in this setting,

although it is computationally more expensive.

Example 4 (top part of Table 5.3) is a regular setting, very similar to the non-

regular setting in Example 3. Results are quite similar to those in Example 3. This

is consistent with our previous observation (Example 2) that the presence of very

small effects causes problems with coverage even in regular settings.

In example 5 (middle part of Table 5.3), the stage 2 optimal treatment is non-

unique for one-fourth of the subjects in the population (p = 1
4
) and the standardized

effect size φ is very large (=1.4142). Again, the hard-max estimator is biased, and

has low coverage of the CIs (except for double bootstrap). The hard-threshold and

the soft-threshold estimators offer improvement in terms of bias as well as coverage.

The soft-threshold estimator emerges as the best (lowest MSE and correct coverage

rate) in this example.

Example 6 (bottom part of Table 5.3) is a regular setting (p = 0, with no extremely

tiny stage 2 effect as in Examples 2 and 4), with the standardized effect size 0.3451.

The reason for investigating this setting is to check if the regularized estimators (hard

and soft threshold) perform poorly in settings where there is no need to regularize. As

expected, the hard-max estimator performs well here. The soft-threshold estimator

introduces some bias when there is none in the hard-max estimator and increases

MSE; but still manages to provide correct coverage for the percentile bootstrap

method. The hard-threshold estimators also give correct coverage for percentile CIs.

To summarize, the hard-max estimator is problematic in non-regular scenarios,

except when used with the computationally intensive double bootstrap method for

constructing confidence intervals. The hard-threshold estimator, if properly tuned,
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addresses the problem of bias but not the problem of light tail. The soft-threshold

estimator seems to address both problems to a large extent. In the simulation, the

soft-threshold estimator consistently produced the lowest MSE among the competing

methods across all the non-regular scenarios. Also in all the non-regular settings, ei-

ther the soft-threshold estimator or the hard-threshold estimator with α = 0.08 (this

α corresponds to the threshold used by the soft-threshold estimator) emerged as the

winner in terms of providing correct coverage rate of the bootstrap CIs. Even though

the soft-threshold estimator incurs some bias in regular settings, it manages to pro-

vide reasonable coverage rate for small to moderate standardized effect sizes (we

have studied up to around 0.35). Across all the scenarios considered here (Examples

1− 6), the soft-threshold estimator emerged as more robust than the hard-threshold

estimator to the degree of regularity of the underlying data distribution, probably

because of its “soft” nature (the soft-threshold estimator is continuous everywhere

Table 5.3: Summary statistics and coverage rates of 95% and 90% nominal percentile (PB), hybrid
(HB), and double (DB) bootstrap CIs for ψ10 using hard-max (HM), hard-threshold
with α = 0.08 (HT0.08) and α = 0.2 (HT0.20), and soft-threshold (ST) estimators. A
“*” indicates significantly different coverage rate than the nominal rate, using a test of
proportion (Type I error rate = 0.05).

Summary Statistics Coverage of 95% CI Coverage of 90% CI
Estimator Bias Var MSE PB HB DB PB HB DB

Example 4: p = 0 and φ = 1.0204 (ψ10 = −0.01, ψ11 = 0)
HM -0.0353 0.0059 0.0072 89.6* 93.1* 94.4 82.9* 86.6* 90.2
HT0.08 -0.0037 0.0058 0.0058 94.6 94.1 – 88.9 89.0 –
HT0.20 -0.0130 0.0062 0.0064 93.9 92.8* – 87.9* 87.9* –
ST -0.0138 0.0055 0.0057 94.1 95.0 – 87.4* 89.7 –

Example 5: p = 1
4 and φ = 1.4142 (ψ10 = ψ11 = 0)

HM -0.0209 0.0069 0.0074 92.7* 93.1* 94.2 87.8* 89.0 88.4
HT0.08 -0.0059 0.0070 0.0071 93.9 93.2* – 89.5 88.2 –
HT0.20 -0.0101 0.0072 0.0073 93.3* 93.0* – 89.3 88.0* –
ST -0.0065 0.0069 0.0069 93.8 94.6 – 89.7 89.0 –

Example 6: p = 0 and φ = 0.3451 (ψ10 = −0.3688, ψ11 = 0.0187)
HM 0.0009 0.0067 0.0067 95.0 93.8 95.0 89.2 87.4* 88.2
HT0.08 0.0003 0.0081 0.0081 95.1 88.5* – 90.1 82.9* –
HT0.20 0.0011 0.0074 0.0074 94.8 91.2* – 89.7 86.4* –
ST 0.0052 0.0074 0.0074 94.8 91.7* – 89.4 85.3* –
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even though it has two points of non-differentiability, whereas the hard-threshold

estimator has two points of discontinuity – see Figure 5.1). Furthermore, note that

overall the hybrid bootstrap CIs performed slightly better than the percentile boot-

strap CIs in this simulation study. Hence the hybrid bootstrap CIs will be used in

the data analysis to follow.

5.5 Analysis of the Smoking Cessation Data

To demonstrate the occurrence of non-regularity and the use of the soft-threshold

method in a real application, here we present the analysis (two versions) of a data set

from a randomized, two-stage, longitudinal, internet-based smoking cessation study

described in chapter II. The stage 1 of this study (Project Quit) was conducted to

find an optimal multicomponent behavioral intervention to help adult smokers quit

smoking; and the stage 2 (Forever Free) was a follow-on study to help those (among

the participants of Project Quit) who already quit stay quit, and help those who

failed at the previous stage with a second chance. Details of the study design and

primary analysis of the stage 1 data can be found in [88]; see also chapter II. In

section 5.5.1 we present a complete-case analysis with the primary outcome of the

study, e.g. quit status. However it is well-known that such an analysis can lead to

biased estimates (so called non-response bias). To address this, we present a refined

analysis using multiple imputation (MI) in section 5.5.2. See Appendix C for a brief

review of the MI technique.
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5.5.1 Complete-case Analysis

At stage 1, although there were five two-level treatment factors, only two, e.g.,

source (of online behavioral counseling message) and story (of a hypothetical char-

acter who succeeded in quitting smoking) were significant in the analysis reported in

[88]. For simplicity, we considered only these two treatment factors at stage 1 of our

present analysis, which gave a total of 4 treatment combinations at stage 1 corre-

sponding to the 2× 2 design. The treatment factor source was varied at two levels,

e.g., high vs. low personalized, coded 1 and −1; also the factor story was varied at

two levels, e.g., high vs. low tailoring depth (degree to which the character in the

story was tailored to the individual subject’s baseline characteristics), coded 1 and

−1. We considered only a few baseline variables at this stage, e.g. QuitOverallMotiv

(motivation to quit on a 1-10 scale), QuitOverallSE (self-efficacy on a 1-10 scale)

and Education (binary, ≤ high school vs. > high school, coded −1/1). At stage

2, originally there were 4 different treatment groups and a control group; however

the 4 treatment groups were combined together for the present analysis because of

very little difference between them. This resulted in only two choices of treatment at

stage 2; this treatment variable was called FFArm, coded −1/1 (1=treatment, −1 =

control).

There were two outcomes at the two stages of this study. The stage 1 outcome was

binary quit status called PQ6Quitstatus (1=quit, 0=not quit) at 6 month from the

date of randomization. The stage 2 outcome was binary quit status FF6Quitstatus

at 6 months from the date of stage 2 randomization (i.e., 12 months from the date

of stage 1 randomization).

An example DTR can have the following form: “At stage 1, if a subject’s baseline

self-efficacy is greater than a threshold value (say 7, on a 1-10 scale), then provide the



121

highly-personalized level of the treatment component source, and if the subject is

willing to continue treatment, then at stage 2 provide treatment if s/he continues to

be a smoker at the end of stage 1”. Of course characteristics other than self-efficacy

or a combination of more than one subject characteristics can be used to specify a

DTR. To find the optimal DTR, we applied both the hard-max and the soft-threshold

estimators within the Q-learning framework. This involved: (1) a stage 2 regression

(n = 281) of FF6Quitstatus using the model:

FF6Quitstatus = β20 + β21 QuitOverallMotiv + β22 source + β23 QuitOverallSE

+ β24 story + β25 Education + β26 PQ6Quitstatus

+ β27 source ∗QuitOverallSE + β28 story ∗ Education

+
(
ψ20 + ψ21 PQ6Quitstatus

)
∗ FFArm + ε2;

(2) finding both the hard-max pseudo-outcome (Ŷ1) and the soft-threshold pseudo-

outcome (Ŷ ST
1 ) for the stage 1 regression:

Ŷ1 = PQ6Quitstatus + β̂20 + β̂21 QuitOverallMotiv + β̂22 source

+ β̂23 QuitOverallSE + β̂24 story + β̂25 Education + β̂26 PQ6Quitstatus

+ β̂27 source ∗QuitOverallSE + β̂28 story ∗ Education

+
∣∣∣ψ̂20 + ψ̂21 PQ6Quitstatus

∣∣∣;

Ŷ ST
1 = PQ6Quitstatus + β̂20 + β̂21 QuitOverallMotiv + β̂22 source

+ β̂23 QuitOverallSE + β̂24 story + β̂25 Education + β̂26 PQ6Quitstatus

+ β̂27 source ∗QuitOverallSE + β̂28 story ∗ Education

+
∣∣∣ψ̂20 + ψ̂21 PQ6Quitstatus

∣∣∣ ·
(

1− 3Var(ψ̂20 + ψ̂21 PQ6Quitstatus)

|ψ̂20 + ψ̂21 PQ6Quitstatus|2

)+

;

and (3) for each of the two pseudo-outcomes, a stage 1 regression (n = 1401) of the
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pseudo-outcome using a model of the form:

Ŷ1 or Ŷ ST
1 = β10 + β11 QuitOverallMotiv + β12 QuitOverallSE + β13 Education

+
(
ψ

(1)
10 + ψ

(1)
11 QuitOverallSE

)
∗ source

+
(
ψ

(2)
10 + ψ

(2)
11 Education

)
∗ story + ε1.

Note that the sample sizes at the two stages differ because only 281 subjects were

willing to continue treatment into stage 2 (as allowed by the study protocol). Our

stage 2 analysis was a usual regression analysis. No significant treatment effect was

found at this stage, indicating the likely existence of non-regularity. At stage 1,

for either estimator, 95% confidence intervals were constructed by hybrid bootstrap

using 1000 bootstrap replications. The stage 1 analysis summary is presented in

Table 5.4. In this case, the hard-max and the soft-threshold estimators produced

similar results.

Table 5.4: Regression coefficients and 95% hybrid bootstrap confidence intervals at stage 1, using
both the hard-max and the soft-threshold estimators.

Hard-max Soft-threshold
Variable Coefficient 95% CI Coefficient 95% CI
QuitOverallMotiv 0.04 (-0.00, 0.08) 0.04 (0.00, 0.08)
QuitOverallSE 0.03 (0.00, 0.06) 0.03 (0.00, 0.06)
Education -0.01 (-0.07, 0.06) -0.01 (-0.07, 0.06)
source -0.15 (-0.35, 0.06) -0.15 (-0.35, 0.06)
source*QuitOverallSE 0.03 (0.00, 0.06) 0.03 (0.00, 0.06)
story 0.05 (-0.01, 0.11) 0.05 (-0.01, 0.11)
story*Education -0.07 (-0.13, -0.01) -0.07 (-0.13, -0.01)

The conclusions from the present data analysis can be summarized as follows.

We did not find any significant stage 2 treatment effect. So this analysis suggests

that the stage 2 behavioral intervention need not be adapted to the smoker’s indi-

vidual characteristics, interventions previously received, or stage 1 outcome. More

interesting results are found at stage 1. It is found that subjects with higher level

of motivation or self-efficacy are more likely to quit. The highly personalized level
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Figure 5.2:
Interaction plots: (a) source by self-efficacy (left panel), (b) story by education (right
panel), along with confidence intervals for predicted stage 1 pseudo-outcome.

of source is more effective for subjects with a higher self-efficacy (≥ 7), and deeply

tailored level of story is more effective for subjects with lower education (≤ high

school); these two conclusions can be drawn from the interaction plots (with confi-

dence intervals) presented in figure 5.2. Thus this analysis suggests that to maximize

each individual’s chance of quitting over the two stages, the web-based smoking ces-

sation intervention should be designed in future such that: (1) smokers with high

self-efficacy (≥ 7) are assigned to highly personalized level of source, and (2) smok-

ers with lower education are assigned to deeply tailored level of story.

5.5.2 Analysis using Multiple Imputation

As mentioned in chapter II, the study started with 1848 subjects (Project Quit),

out of which 479 consented to move to stage 2 (Forever Free). Among these, there

were 1401 complete cases at stage 1 and 281 complete cases in stage 2, and were

included in the complete-case analysis presented above. The completely observed

variables (X) in the study were: HMO (binary), gender (binary), age (continuous),
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QuitCigsPerDay (baseline number of cigarettes smoked per day, continuous), and

the five stage-1 treatment components, e.g., source (personalization of source),

outcome.depth (tailoring depth of outcome expectations), story (tailoring depth

of success stories), efficacy.depth (tailoring depth of efficacy expectations), and

exposure – each with 2 levels. The remaining variables (Y) along with their miss-

ingness rates are listed below.

Table 5.5: Baseline Variables subject to Missingness
Variables Number of Rate of

Missing Values Missingness (%)
QuitOverallMotiv (motivation, 1-10, continuous) 5 0.27
QuitOverallSE (self-efficacy, 1-10, continuous) 4 0.21
Education (binary, high school vs. college) 7 0.38
RaceWhite (binary, 1 if the subject is White) 10 0.54
RaceBlack (binary, 1 if the subject is Black) 10 0.54

The variables RaceWhite and RaceBlack are two dummy variables constructed

from the original three-level variable Race. The rates of missingness are very small

in the baseline variables. Below we list the missingness rates of the stage-1 variables.

Table 5.6: Stage-1 (collected at 6 months) Variables subject to Missingness
Variables Number of Rate of

Missing Values Missingness (%)
PQ6Quitstatus (binary, 1= quitter, 0=smoker) 436 23.59
PQ6MonthsNS (months not smoked, 0-6) 699 37.82
PQ6OverallSat (overall satisfaction, 1-10) 439 23.76
PQ6NumOfAttempts (number of quit attempts) 656 35.50
PQ6OverallMotiv (motivation, 1-10) 440 23.81
PQ6OverallSE (self-efficacy, 1-10) 442 23.92

Next we discuss our strategy to model different variables for the purpose of

multiple imputation. The variables PQ6OverallMotiv (and QuitOverallMotiv),

PQ6OverallSE (and QuitOverallSE) and PQ6OverallSat are all left-skewed and

vary in the range 1 − 10; for convenience of modeling we binarize them (cutting

off at the respective means leading to two levels, high vs. low). The corresponding
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binarized variables go by the same name as the original variable, except for the suffix

Bin. Histograms of the remaining stage-1 variables are presented below.

Figure 5.3: Histograms of PQ6Quitstatus, PQ6MonthsNS, and PQ6NumOfAttempts.

From the histograms above, we see that:

1. PQ6MonthsNS cannot be modeled by a normal distribution; a better modeling

strategy would be to use 6 dummy variables to represent it, each of which will

be approximated by a normal and then rounded off.

2. PQ6NumOfAttempts is right-skewed; a square-root transformation may be better

(see below).

Next, let us look at the stage-2 variables. Among the 479 subjects who moved to

stage 2 (Forever Free), the stage-2 treatment, FFArm (2 levels) is completely observed.

Below we list the missingness rates (out of 479 subjects) of the stage-2 variables.

Clearly, the rates of missingness are pretty high at stage 2. As in stage 1, we

binarize the variable denoting the level of satisfaction with the smoking cessation
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Figure 5.4: Histograms of PQ6NumOfAttempts and its square-root.

Table 5.7: Stage-2 (collected at 12 months) Variables subject to Missingness
Variables Number of Rate of

Missing Values Missingness (%)
FF6Quitstatus (binary, 1= quitter, 0=smoker) 195 40.71
FF6MonthsNS (months not smoked, 0-6) 264 55.11
FF6OverallSat (overall satisfaction, 1-10) 205 42.80
FF6NumOfAttempts (number of quit attempts) 263 54.91

program (FF6OverallSat). Let us look at the histograms of the remaining stage-2

variables. From the histograms, we see that:

1. FF6MonthsNS clearly cannot be modeled by a normal distribution. As in stage

1, the first alternative strategy would be to use 6 dummy variables to represent

the original variable, and approximate each dummy variable by a normal dis-

tribution and then round off. However, note that the frequency corresponding

to some of the levels (e.g. 3, 4, 5) are really small, making the success prob-

abilities of the corresponding dummies very small – a situation where normal

approximation fails to do a good job [4]. To address this issue, the variable is
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Figure 5.5: Histograms of FF6Quitstatus, FF6MonthsNS, and FF6NumOfAttempts.

re-coded with only three levels, 0, 1, and 2: it takes the value 0 if the original

FF6MonthsNS is 0, takes the value 1 if 0<FF6MonthsNS<=3, and takes the value

2 if 3<FF6MonthsNS<=6. For consistency among the stages, the corresponding

stage-1 variable, PQ6MonthsNS is also re-coded accordingly.

2. FF6NumOfAttempts is right-skewed; a square-root transformation may be some-

what better although not completely satisfactory (see below).

Next let us examine the histograms of the newly constructed outcome variables

(trinary version of PQ6MonthsNS and FF6MonthsNS).

Since PQ6MonthsNS is sort of symmetric and unimodal (and of course ordinal),

instead of breaking it into two dummies, it is directly modeled by a normal distribu-

tion and then rounded off. On the other hand, FF6MonthsNS is modeled using two

dummies, using a normal approximation for each.

We used multiple imputation under a multivariate normal model (see Appendix

C). The MCMC procedure for MI converged nicely with the default non-informative



128

Figure 5.6: Histograms of FF6NumOfAttempts and its square-root.

priors. A burn-in period of 1000 iterations was used in the MCMC procedure. The

following graph provides a global check of convergence of the MCMC – the auto-

correlation function of the “worst cosine function” as described by Schafer [80]. Even

Figure 5.7: Histograms of PQ6MonthsNS and FF6MonthsNS (trinary).
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though in most cases the convergence of the above global criterion ensures conver-

gence of the individual parameters, there is no theoretical guarantee (and there exist

counterexamples). None-the-less, it is a good starting point to assess the convergence

of the MCMC procedure.

Figure 5.8: Auto-correlation function of the worst cosine function.

Next we present some checks for the individual parameters of interest, e.g. the re-

gression parameters associated with the variables PQ6MonthsNS, FF6MonthsNSDummy1

and FF6MonthsNSDummy2, since these will be considered as the primary outcome vari-

ables in the data analysis to follow.

Next we present the actual analysis of the multiply imputed data set. The point

estimates (regression coefficients in the Q-learning analysis) reported here are av-

erages of the corresponding coefficients over 10 imputed data sets. Measures of

confidence are provided by bootstrap CIs. We use 500 bootstrap samples, and 10

imputations within each bootstrap sample. Within a given bootstrap sample, the

regression coefficients in the model for Q-functions are created by averaging over 10

imputed datasets. Finally, the quantiles of these bootstrapped coefficients (each one
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Figure 5.9: Auto-correlation functions of the regression parameters associated with the stage-1 out-
come (PQ6MonthsNS).

Figure 5.10: Auto-correlation functions of the regression parameters associated with the first
dummy variable corresponding to the stage-2 outcome (FF6MonthsNSDummy1).
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Figure 5.11: Auto-correlation functions of the regression parameters associated with the second
dummy variable corresponding to the stage-2 outcome (FF6MonthsNSDummy2).

is an average over 10 imputations) are used to create the hybrid bootstrap CIs.

Here we use a very parsimonious analysis model, with story as the only stage-1

treatment variable, Education as the only stage-1 covariate, and PQ6Quitstatus as

the only stage-2 covariate. The outcome variables are PQ6MonthsNS (stage 1) and

FF6MonthsNS (stage 2), both taking values 0, 1, 2. The stage-2 regression model

(n = 479) is given by:

FF6MonthsNS ∼ story + Education + PQ6Quitstatus +

story ∗ Education + FFArm + PQ6Quitstatus ∗ FFArm

Based on the estimated coefficients of the stage-2 regression, both the hard-max and

the soft-threshold pseudo-outcomes are constructed (as in section 5.5.1). Then the

stage-1 regression model (n = 1848) is given by:

Pseudooutcome ∼ story + Education + story ∗ Education
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No significant stage-2 treatment effect was found (consistent with the complete case

analysis), indicating the likely existence of non-regularity. Results of the stage-1

regression analysis is presented below.

Table 5.8: Regression coefficients and 95% hybrid bootstrap confidence intervals at stage 1, using
both the hard-max and the soft-threshold estimators, and using multiple imputation.

Hard-max Soft-threshold
Variable Coefficient 95% CI Coefficient 95% CI
Education 0.011 (-0.180, 0.199) 0.012 (-0.178, 0.200)
story 0.072 (-0.074, 0.195) 0.070 (-0.076, 0.192)
story*Education -0.112 (-0.240, -0.004)* -0.111 (-0.237 -0.002)*

Next we present the lengths of the bootstrap CIs for the two competing methods

of estimation; the soft-threshold method looks marginally better.

Table 5.9: Length of Bootstrap CIs.
Variable Hard-max Soft-threshold
Education 0.379 0.378
story 0.269 0.268
story:Education 0.236 0.235

In Table 5.8, a negative interaction between story and Education is detected.

This is one of the interactions anticipated a priori by the study investigators; see [88].

This finding is also consistent with the complete case analysis in section 5.5.1. This

negative interaction is interpretable – it says that highly individually tailored level of

story (success story of a hypothetical smoker) is significantly more effective within

smokers with low education (high school graduate or less, but no college education).

This finding allows one to individually tailor the smoking cessation intervention.

5.6 Discussion

In this chapter, we have illustrated the problem of non-regularity that arises in the

context of DTRs in the estimation of the optimal current treatment rule, when the
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optimal treatments at subsequent stages are non-unique for at least some proportion

of subjects in the population. We have illustrated the phenomenon using Q-learning

as the estimation procedure, which is a simpler yet inefficient version of Robins’

method; however the problem of non-regularity arises in Robins’ method as well

[71, 54].

For some underlying data-generating models (e.g., Examples 3, 4, 5 in the simula-

tion study), this non-regularity induces bias in the point estimates of the parameters

of the optimal DTRs, which in turn causes under-coverage of the bootstrap confi-

dence intervals. In contrast, in case of Examples 1 and 2, this non-regularity causes

lightness of tail of the asymptotic distribution but no bias, as seen from the over-

coverage of the percentile bootstrap CIs (equivalently conservative tests leading to

lower power). The coexistence of these two not-so-well-related issues (they work in

opposite directions, e.g., bias tends to make the CIs under-cover, whereas lightness of

tail tends to make the CIs over-cover) makes this problem a unique and challenging

one.

In the simulation study to compare the competing estimators of the optimal DTR,

we considered estimation of ψ10, which involve linear combinations of |f1|, |f2|, |f3|,

and |f4| (terms like |µ|). Under the non-regular scenarios, some or all (depending

on the degree of non-regularity p) of the fi’s are zero; and hence a phenomenon

similar to the one described above in the toy example happens for each |fi| for which

fi = 0. Each such term has its associated bias, and each has its own lightness of tail,

with bias being the dominant property. In some non-regular scenarios (Example 1),

the bias associated with the individual |fi|’s (in the expression for ψ10) cancel each

other out (note the opposite signs in front of |fi|’s), and hence the lightness of tail is

revealed, resulting in a percentile bootstrap CI that over-covers. In other non-regular
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examples, however, bias is not canceled out, and hence dominates the property of

the hard-max estimator. Hence under-coverage of the bootstrap CIs is observed.

Non-regularity is an issue in the estimation of the optimal DTRs because it arises

when there is no treatment effect at subsequent stages (equivalently, there is no

unique optimal treatment at subsequent stages). Unfortunately often there is no

or very weak treatment effect in the settings we are interested in (e.g., random-

ized trials on mental illness or substance abuse). Thus we want our estimator to

enjoy good statistical properties (e.g., less bias, lower risk or MSE, correct cover-

age rate of CIs, good power to detect “local” alternatives, etc.) when the optimal

treatment at subsequent stages is non-unique. In case of the hard-max estimator,

unfortunately the point of non-differentiability coincides with the parameter value

such that ψT
2 H21 = 0 (non-unique optimal treatment at the subsequent stage), which

causes non-regularity (bias, higher MSE, low power). But the soft-threshold estima-

tor (also, hard-threshold estimator), in some sense, redistributes the non-regularity

from this “null point” to two different points symmetrically placed on either side of

the “null point” (see Figure 5.1). This is one reason why the soft-threshold (also,

hard-threshold) estimator works well in non-regular settings.

We have shown that using bootstrap confidence intervals along with the soft-

threshold (also, hard-threshold in some cases) estimator reduces the degree of non-

regularity, and gives correct coverage rate. Also, the double bootstrap method can

be used along with the original hard-max estimator to address the non-regularity.

But this method is highly computationally intensive and may be difficult to use in

practice. An alternative method to construct CIs for ψ’s in non-regular settings is

the score method due to Robins [71]. We have not investigated this in our simulation

study.
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One can consider an alternative Bayesian approach to formulate an estimator simi-

lar to the soft-threshold estimator as follows. Let the data distribution ψ̂T
2 H21 | ψT

2 H21 ∼

N(ψT
2 H21, σ

2) with known σ2, and the prior distribution of ψT
2 H21 be a mixture of

a point mass at 0 and N(0, 1), with mixing parameter p (0 < p < 1). Then the

posterior distribution of ψT
2 H21 is a mixture distribution given by

fpost(ψ
T
2 H21) = ŵ · 1{ψT

2 H21 = 0}+ (1− ŵ) ·N
( ψ̂T

2 H21

1 + σ2
,

σ2

1 + σ2

)
,

where ŵ =

{
1 +

1− p

p

√
σ2

1 + σ2
exp

{ (ψ̂T
2 H21)

2

2σ2(1 + σ2)

}}−1

.

One can use the median of this posterior distribution in place of ψ̂T
2 H21 in the ex-

pression for Ŷ1. Thus the Bayes estimator becomes

Ŷ Bayes
1 = β̂T

2 H20 + median of fpost(ψ
T
2 H21).

For using this, one has to replace σ2 by σ̂2 = HT
21Σ̂2H21/n, and p by either some

empirical estimate or a fixed value (e.g., 1
2
). Johnstone and Silverman [46] suggest

using the mixture of a point mass and a heavy-tailed distribution (e.g., double-

exponential) in place of the above mixture prior. This is a formulation that we want

to investigate in future. Also, fully Bayesian approaches to handle the problem of

estimating DTRs demand serious attention; we will consider this in future.

In this chapter, we have focused on randomized trials only to separate the issue of

non-regularity from causal inference issues. However the problem of non-regularity

also arises when observational data are used [71, 54]; and the hard-threshold and the

soft-threshold estimators should be applicable in those settings as well. Also, here

we have focussed on only two stages for clarity. However, it should be understood

that Q-learning can be used for studies with more than two stages as well. In case of

many stages, one can think of a scenario where some parameters are shared across
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stages, in which case a simultaneous version of Q-learning (as opposed to the recursive

version discussed in this chapter) would be more appropriate. Unfortunately non-

regularity does not go away if a simultaneous estimation procedure is used; see [54]

for a discussion on this with reference to Robins’ method. However, unlike the case

of recursive estimation, it is not well understood at this point whether the threshold

estimators (hard or soft) can reduce the non-regularity in simultaneous estimation.

Moodie and Richardson [54] gave a simulated non-regular example showing that

hard-threshold or ZIPI estimator is not always better than simultaneous estimator of

Robins. We did not investigate this issue here, but we recognize this as an important

avenue of future research.

To conclude, we think in the estimation of optimal DTRs, appropriately tuned

hard-threshold estimator and the soft-threshold estimator should be seriously con-

sidered as improved versions of Q-learning (and Robins’ method of estimation).

5.7 Appendix A: Proof of Lemma V.1

Proof. Define the advantage at stage j as

µj(Hj, Aj) = Qj(Hj, Aj)−max
aj

Qj(Hj, aj), j = 1, 2.

Note that µj(Hj, Aj) represents the expected difference in outcome when using Aj

instead of the optimal treatment at stage j, for subjects with treatment and covariate

history Hj who receive the optimal DTR at stages subsequent to j. According to

Robins [71, p. 201], this is simply the blip function with arg maxaj
Qj(Hj, aj) as the

reference treatment. Below we will establish the connection between Q-learning and

Robins’ method using the advantage function; one can derive the connection using

other blip functions (other choices of reference treatment) following similar steps.
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When Q-functions are modeled as in (5.2), the advantages become

µj(Hj, Aj; ψj) = ψT
j Hj1Aj − |ψT

j Hj1|, j = 1, 2.(5.11)

Since by condition (i), no parameters are shared across stages, we will proceed stage

by stage, starting with stage 2, doing recursive (rather than simultaneous) estimation.

The notation Pn will be used below to denote the empirical average over a sample

of size n. Also, define m1(H1) = E[Q1(H1, A1)|H1] and m2(H2) = E[Q2(H2, A2)|H2].

Stage 2:

At stage 2, Q-learning is a usual least squares regression problem. Thus the estimat-

ing equations are given by

Pn

[



H20

H21A2


 (Y2 −HT

20β2 −HT
21A2ψ2)

]
= 0.(5.12)

From (5.12), it follows that

β̂2 = (Pn(H20H
T
20))

−1
[
Pn(H20Y2)− Pn(H20H

T
21A2)ψ̂2

]
(5.13)

where ψ̂2 is the estimate of ψ2 satisfying (5.12). Thus ψ̂2 satisfies the estimating

equation

Pn

[
(H21A2)(Y2 −HT

20β̂2 −HT
21A2ψ̂2)

]
= 0.

On the other hand, the stage 2 estimating equation for Robins’ method [71, p. 211]

is given by

Pn

[(
H21A2 − E[H21A2|H2]

)(
Y2 − µ2(H2, A2; ψ2)− E[Y2 − µ2(H2, A2; ψ2)|H2]

)]
= 0,

(5.14)
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where V ar
(
Y2−µ2(H2, A2; ψ2)−E[Y2−µ2(H2, A2; ψ2)|H2]

∣∣∣H2, A2

)
is omitted (This is

one of the reasons why Q-learning is an inefficient version). Note that E[H21A2|H2] =

0, by condition (ii) of the lemma. From (5.11), µ2(H2, A2; ψ2) = ψT
2 H21A2−|ψT

2 H21|.

Then E[µ2(H2, A2; ψ2)|H2] = −|ψT
2 H21|, again by condition (ii). Also,

E[Y2|H2] = E
[
E[Y2|H2, A2]|H2

]
= E[Q2(H2, A2)|H2] = m2(H2).

Therefore, Y2−µ2(H2, A2; ψ2)−E[Y2−µ2(H2, A2; ψ2)|H2] = Y2−m2(H2)−HT
21A2ψ2.

Thus, ψ̂2 in Robins’ method solves the following reduced version of (5.14):

Pn

[(
H21A2

)(
Y2 −m2(H2)−HT

21A2ψ̂2)

]
= 0,

for any choice of m2(H2) (with the conditional variance omitted). In particular,

for m2(H2) = HT
20β̂2, where β̂2 is given by (5.13), this estimating equation exactly

matches with that of Q-learning.

Stage 1:

For Q-learning, the stage 1 pseudo-outcome is

Ŷ1 = Y1 + max
a2

Q2(H2, A2) = Y1 + HT
20β̂2 + |ψ̂T

2 H21|,

and so the estimating equations are given by

Pn

[



H10

H11A1




(
Y1 + HT

20β̂2 + |ψ̂T
2 H21| −HT

10β1 −HT
11A1ψ1

)]
= 0.(5.15)

Now from (5.12),

Pn

[
H20

(
Y2 −HT

20β̂2 −HT
21A2ψ̂2

)]
= 0.(5.16)
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Since by condition (iii) of the lemma, (HT
10, H

T
11A1) ⊂ HT

20, it follows that

Pn

[



H10

H11A1




(
Y2 −HT

20β̂2 −HT
21A2ψ̂2

)]
= 0,

or, Pn

[



H10

H11A1


 (HT

20β̂2)
]

= Pn

[



H10

H11A1


 (Y2 −HT

21A2ψ̂2)
]
.(5.17)

Using (5.17) in (5.15), we get

Pn

[



H10

H11A1




(
Y1 + Y2 −HT

21A2ψ̂2 + |ψ̂T
2 H21| −HT

10β1 −HT
11A1ψ1

)]
= 0.

(5.18)

Solving for β1 gives,

β̂1 = (Pn(H10H
T
10))

−1
[
Pn

(
H10(Y1 + Y2 −HT

21A2ψ̂2 + |ψ̂T
2 H21|)

)
− Pn(H10H

T
11A1)ψ̂1

]
.

(5.19)

Thus ψ̂1 satisfies

Pn

[
(H11A1)

(
Y1 + Y2 −HT

21A2ψ̂2 + |ψ̂T
2 H21| −HT

10β̂1 −HT
11A1ψ̂1

)]
= 0.

On the other hand for Robins’ method, the stage 1 pseudo-outcome (e.g. [71, p. 208];

see also [54]) is Ỹ1 = Y1 + Y2 − µ2(H2, A2), and so the stage 1 estimating equation

[71, p. 211] is given by

Pn

[(
H11A1 − E[H11A1|H1]

)(
Ỹ1 − µ1(H1, A1; ψ1)− E[Ỹ1 − µ1(H1, A1; ψ1)|H1]

)]
= 0,

(5.20)

where again the conditional variance

V ar
(
Ỹ1 − µ1(H1, A1; ψ1)− E[Ỹ1 − µ1(H1, A1; ψ1)|H1]

∣∣∣H1, A1

)
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is omitted. Note that E[H11A1|H1] = 0, by condition (ii) of the lemma. From (5.11),

µ1(H1, A1; ψ1) = ψT
1 H11A1−|ψT

1 H11|. Then E[µ1(H1, A1; ψ1)|H1] = −|ψT
1 H11|, again

by condition (ii). Also,

E[Ỹ1|H1] = E[Y1 + Y2 − µ2(H2, A2)|H1]

= E[Y2 −Q2(H2, A2) + Y1 + max
a2

Q2(H2, a2)|H1]

= E
[
E[Y −Q2(H2, A2)|H2, A2]

∣∣∣H1

]
+ E[Y1 + max

a2

Q2(H2, a2)|H1]

= 0 + E
[
E[Y1 + max

a2

Q2(H2, a2)|H1, A1]
∣∣∣H1

]

= E[Q1(H1, A1)|H1]

= m1(H1).

Finally, plug in Y1 + Y2 − µ2(H2, A2; ψ̂2) for Ỹ1. Thus, ψ̂1 in Robins’ method solves

the following reduced version of (5.20):

Pn

[(
H11A1

)(
Y1 + Y2 −HT

21A2ψ̂2 + |ψ̂T
2 H21| −m1(H1)−HT

11A1ψ̂1

)]
= 0.

for any choice of m1(H1) (again omitting the conditional variance). In particular,

for m1(H1) = HT
10β̂1, where β̂1 is given by (5.19), this estimating equation exactly

matches with that of Q-learning.

In summary, the Q-learning algorithm as presented here is inefficient because: (a)

it sets the conditional variances to be constant over (Hj, Aj), and (b) uses Hj1Aj in-

stead of the “efficient choice” of the term Seff,j (that attains semiparametric variance

bound) in Robins’ estimating equation (see [71, p. 212]; more details in [70]).

5.8 Appendix B: Proof of Lemma V.2

Proof. To estimate the hyper-parameter φ2, first integrate out µ to get the marginal

likelihood X|φ2 ∼ N(0, φ2 + σ2). The corresponding Jeffrey’s prior on the vari-
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ance parameter is p(φ2) ∝ 1/(φ2 + σ2). Based on this formulation, the posterior

distribution of φ2 is given by

p(φ2|X) ∝ (φ2 + σ2)−3/2 exp
{
− X2

2(φ2 + σ2)

}
.

Hence the posterior mode of φ2 is

φ̂2 = arg max
φ2≥0

p(φ2|X) =

(
X2

3
− σ2

)+

.(5.21)

Given φ2 = φ̂2, now we will consider the data likelihood X|µ ∼ N(µ, σ2) along with

the prior µ|φ2 ∼ N(0, φ2) to derive an empirical Bayes estimator for |µ|. It is easy

to show that the posterior distribution of µ given φ = φ̂ is

µ|X, φ̂ ∼ N

(
Xφ̂2

φ̂2 + σ2
,

σ2φ̂2

φ̂2 + σ2

)
.(5.22)

Now under the squared error loss, the Bayes estimator of |µ| is Eµ|X(|µ|) which can

be calculated using (5.22). If Y ∼ N(θ, τ 2), then E|Y | is given by:

E|Y | = θ
(
2Φ(θ/τ)− 1

)
+

√
2

π
τ e−θ2/2τ2

.(5.23)

In the present problem,

Y = µ|X, θ =
Xφ̂2

φ̂2 + σ2
, τ 2 =

σ2φ̂2

φ̂2 + σ2
.

Hence,
θ

τ
=

X

σ

√
φ̂2

φ̂2 + σ2
,

θ2

2τ 2
=

X2

2σ2

( φ̂2

φ̂2 + σ2

)
.

From (5.21), we get

φ̂2

φ̂2 + σ2
=

(X2 − 3σ2)+

X2
=

(
1− 3σ2

X2

)+

,

θ = X
(
1− 3σ2

X2

)+

, τ 2 = σ2
(
1− 3σ2

X2

)+

,

θ

τ
=

X

σ

√(
1− 3σ2

X2

)+

,
θ2

2τ 2
=

X2

2σ2

(
1− 3σ2

X2

)+

.
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Thus an empirical Bayes estimator of |µ| is given by

|̂µ|EB
= X

(
1− 3σ2

X2

)+
(

2Φ
(X

σ

√(
1− 3σ2

X2

)+)
− 1

)

+

√
2

π
σ

√(
1− 3σ2

X2

)+

exp

{
− X2

2σ2

(
1− 3σ2

X2

)+
}

.(5.24)

5.9 Appendix C: A Very Brief Review of Multiple Imputation

Multiple imputation (MI) [75] is a simulation-based Bayesian approach to handle

missing data. The basic idea is to solve an incomplete-data problem by repeat-

edly, say m(> 1) times, solving a corresponding complete-data problem, and finally

combining (averaging) them. The different imputations are conceived as indepen-

dent draws from a posterior predictive distribution for the missing data, given the

observed data. The variation among the m imputations reflect the uncertainty in

predicting the missing values from the observed ones. A single imputation cannot

capture this uncertainty; this is why MI is generally considered a better missing data

technique than single imputation.

Generally speaking, MI operates by assuming a model for the complete multivari-

ate data and also assuming certain priors for the parameters of the multivariate data

model. It is found that even though one assumes parametric models, the procedure

is considerably robust to mis-specification of the complete data model, particularly

if the “rate of missingness” is not very high. This is, at least partly, due to the fact

that the mis-specification, if any, applies only to the missing part of the data, and

not to the entire data (as in the EM algorithm). While analyzing data, one can

use an analysis model that is quite different from the imputation model. Thus, the

mis-specifications of the imputation model do not necessarily carry over to the data
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analysis model. The MI procedure is often implemented via Markov Chain Monte

Carlo (MCMC) techniques. However the MI procedure is still not very demanding

computationally, since only a few (say, 5−10) imputations are usually good enough.

See [79] for further discussion.

To make the above discussion more precise, let us introduce some notation. Let

the complete data Y be partitioned into an observed part (Yobs) and a missing part

(Ymis), e.g., Y = (Yobs, Ymis). Let R denote the indicator of response (or equivalently,

missingness). Let θ denote the parameters of the data model and ξ denote the

parameters governing the missingness mechanism (e.g., the distribution of R). In

this set-up, ignorability of the missingness mechanism means the following:

1. The data are missing at random (MAR), i.e., P (R|Yobs, Ymis, ξ) = P (R|Yobs, ξ);

2. The parameters θ and ξ are a priori independent.

We will assume ignorability throughout. As mentioned earlier, an imputation is a

random draw from the posterior predictive distribution for the missing data, given

the observed data:

(5.25) P (Ymis|Yobs) =

∫
P (Ymis|Yobs, θ)P (θ|Yobs)dθ

Note that the above is an intractable integral over θ; moreover P (θ|Yobs) itself is an

intractable integral over Ymis. However it is relatively straightforward to sample from

θ|(Yobs, Ymis) and Ymis|(Yobs, θ). Thus to overcome the intractability of (5.25), one

uses an MCMC sampling scheme to generate a draw from Ymis|Yobs. The procedure

is known as data augmentation [92], which is a close variant of Gibbs sampling. The

algorithm follows:

1. Start with an initial guess for θ, say θ(0)
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2. At the (t + 1)-th iteration, t = 0, 1, 2, . . .,

Y
(t+1)
mis ∼ Ymis|Yobs, θ

(t),

θ(t+1) ∼ θ|Yobs, Y
(t+1)
mis .

3. After a large number of iterations (e.g. the burn-in period), Ymis drawn this

way can be taken as a draw from the true target distribution P (Ymis|Yobs).

Note that the successive draws from the Markov chain will be correlated. To over-

come this, the successive imputations should be far apart in the chain. See [79] for

further details.

Imputations under a Multivariate Normal Model

Often imputations are done assuming a multivariate normal distribution for the

complete data Y , e.g., Np(µ, Σ) (thus θ = (µ, Σ) in this case), where p is the dimen-

sion of Y . The conjugate prior for this family is normal for µ and inverted-Wishart

for Σ (together called the normal inverted-Wishart prior). It is given by

µ|Σ ∼ Np(µ0, τ
−1Σ),

Σ ∼ W−1(m, Λ),

for fixed hyper-parameters µ0 ∈ Rp, τ > 0, m ≥ p, and Λ > 0. However when no

strong prior information is available about θ, it is customary to use the improper

prior

(5.26) π(θ) ∝ |Σ|−( p+1
2

),

which is the limiting form of the normal inverted-Wishart prior as τ →∞, m → −1

and Λ−1 → 0. Note that µ does not appear on the right side of (5.26); the prior
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distribution of µ is assumed to be uniform over the p-dimensional real space. Under

this improper prior, the complete-data posterior becomes

µ|Σ, Y ∼ Np(Ȳ , n−1Σ),

Σ|Y ∼ W−1(n− 1, (nS)−1),

where S is the sample sums of squares and cross-products matrix. See [79] for further

details.

Conditional Modeling

When some of the variables in a data set are completely observed, a better impu-

tation strategy is to use them simply as covariates (denoted by X, say) and assume

a multivariate model for the remaining variables that are subject to missingness,

say Y conditionally on X. By following this strategy, one relaxes the assumption

of normality for the completely observed covariates, thus lowering the risk of model

mis-specification. This means that the data model becomes yi|xi ∼ N(βT xi, Σ), with

the noninformative improper prior for β and inverted-Wishart prior for Σ. Here i

denotes a certain row in the data set (i = 1, . . . , n). This modeling strategy is al-

lowed by the R package NORM Version 3, developed by Schafer [80].

Normal Modeling for Non-normal Data

Sometimes multiple imputations are conducted assuming a joint normal distribu-

tion for the data, even when there are some binary, categorical or ordinal variables

in the data set [79]. In such cases, imputed values of binary or ordinal variables are

rounded or classified after imputation to get a sensible imputed data set. Using a

normal model for a categorical variable needs special consideration; one reasonable
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strategy is to first convert the categorical variable into several binary variables, use

a normal approximation for each of them, and then round off the value to make it

binary (after imputation). Robustness of such model mis-specifications was studied

by Bernaards et al. [4].

Our smoking cessation data set contains binary, categorical and ordinal variables

along with continuous variables. None-the-less we used the multivariate normal

modeling because of its conceptual simplicity, ready availability of software and its

allowance of conditional modeling. We used some ad hoc but sensible strategies

[79, 80, 4] to make post-imputation adjustments (rounding, classification etc.).



CHAPTER VI

Future Work and Conclusion

This dissertation explores two research projects, e.g. the problem of designing

multicomponent intervention trials, and the problem of non-regularity in the dy-

namic treatment regime framework. Each of these projects investigated in the pre-

vious chapters has its own direction; each raise new and challenging questions and

opens up possibilities for further research. In the following we briefly discuss some

of these problems that we plan to explore in greater depth in future.

6.1 Follow up Studies for Multicomponent Interventions

In Chapter III, we discussed the usefulness of FFDs in screening trials for de-

veloping multicomponent interventions. However, screening study is only the first

phase of the MOST framework. Depending on the aliasing pattern of the screening

design used, one often needs to conduct follow-up or refining studies to resolve any

remaining research questions regarding the various components and their interactions

(e.g. to de-alias significant aliased interactions) after the completion of the screening

study. In Chapters III and IV, we provided some examples of follow-up studies.

However some principled approach needs to be developed in this area. For example,

some Bayesian approach, where one puts suitable priors on the effects of various
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components and interactions, might be useful for designing follow-up studies. Such

an approach can be found in [52]. Further strategies for conducting follow-up studies

can be found in [107]. Also, in case there is at least one component with more than

two levels (e.g. a continuous component), dose-response experiments where subjects

are randomized to ethical doses should be used to find the optimal dose of these com-

ponents. The existing literature on response surface experiments [10, 61] may prove

useful for finding designs applicable to the multicomponent intervention setting. We

would like to explore these areas to develop efficient follow-up study designs in future.

6.2 Soft-threshold Estimator for More than Two Treatments per Stage

In Chapter V, we discussed the soft-threshold estimator in the context of Q-

learning. However, we assumed only two treatment options per stage all along. A

natural question that arises here is how to generalize this estimator in the setting of

more than two treatments per stage. We do not have a direct answer at this point.

Recall that the problem of non-regularity occurs due to a non-smooth maximum

operation, e.g. maxa Q2(H2, a). When the Q-functions are linear (as in this disserta-

tion), maximization over a binary a gives rise to a piecewise linear function with only

one hinge or point of non-differentiability (see Chapter V for details). When there

are more than two treatments per stage, i.e., when a takes more than two values,

maxa Q2(H2, a) will be a piecewise linear function with possibly more than one point

of non-differentiability.

Now in case of two treatments per stage, the soft-threshold estimator works by

thresholding this piecewise linear function around its point of non-differentiability.

To extend this idea to the multi-treatment case, one would like to somehow threshold
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the function maxa Q2(H2, a) around each of its points of non-differentiability. Note,

however, that it is not even clear what thresholding means in such a scenario. Even

when thresholding has some meaning, it is not clear how to choose the multiple tun-

ing parameters, one for each point of non-differentiability. If one takes recourse to a

Bayesian approach, some suitable multivariate prior needs to chosen. This, clearly, is

a non-trivial problem; some serious thought is needed. We would like to investigate

this in future.

6.3 Consistent Bootstrap Procedure for Non-regular Settings

It is well-known [84, 2] that the usual bootstrap procedure is inconsistent for

non-regular (non-differentiable) settings. Note that even though the threshold esti-

mators (both hard and soft) empirically seemed to perform better than the original

hard-max estimator (see Chapter V), both the hard-threshold and the soft-threshold

estimators are non-regular (as is the original hard-max estimator). Hence the valid-

ity of usual bootstrap CIs for threshold estimators is not theoretically justified. A

nice theoretical project would be to develop a consistent bootstrap procedure, e.g.

some “adaptive” version of the usual bootstrap, to use in conjunction with the soft-

threshold estimator. We would like to explore this in future.

6.4 Concluding Remarks

This dissertation investigated two broad problems with practical relevance to clin-

ical trials and medical statistics. “Evidence-based” treatments (treatment sequences)

are of great interest in the behavioral sciences and in medicine; our research is an

ongoing endeavor to address that interest. In particular, the area of dynamic treat-
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ment regimes is very young and exciting; and there are many interesting problems

in this area, some of which we want to address in near future.
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