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CHAPTER ONE: 
THE RESEARCH PROBLEM 

 

Introduction 

 The ambitious vision of mathematical proficiency for all students demands skillful 

instruction that is too rarely found in American classrooms. The literature is replete with 

examples of teaching that fails to engage students in rigorous mathematical work: Teachers who 

adopt the surface features of new curricula, such as games and manipulatives, but do not use these 

materials to teach for understanding (Cohen, 1990); efforts to “make math fun” that result in art 

projects instead of mathematics (Hill et al., 2008); motivating examples and representations that 

distort the mathematics (Heaton, 1992); and problems intended to engage students in high-level 

mathematical thinking that deteriorate into lower-level and routine tasks as they are implemented 

(National Center for Education Statistics, 2003; Stein, Grover, & Henningsen, 1996; Stein, Smith, 

Henningsen, & Silver, 2000). In each of these examples, teachers seem to miss the mathematical 

point of the task or materials, or have difficulty maintaining the mathematical focus once the 

activity is in motion with students. 

 Teachers are responsible for organizing time and resources so that what students do 

actually leads to learning. Knowing “the point” of instruction helps in managing this work. Yet 

what it takes to “teach to the point”—that is, to have a clear understanding of the goals of 

instruction and to use those goals to manage the work —is not well understood. Though different 

bodies of research inform the investigation of this problem, a direct focus on this central aspect of 

teaching practice is missing from the literature. The very notion of goals, as well as what is 

entailed in identifying, understanding, and utilizing one’s goals during instruction, remains 

underconceptualized. This dissertation aims to address these issues by investigating this core 

domain of teaching.  

 Although the task of identifying goals and using them to help students learn arises in 

teaching any subject, I focus on the teaching of mathematics. My aim is to articulate the practices 

involved in identifying and using mathematical goals in mathematics teaching and to explore the 

mathematical knowledge demanded by this work. The significance of this study is framed by the 

broader problems of mathematics education and efforts to improve it. In particular, my argument 

rests on three recent developments in education research: (1) evidence that individual teachers 
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have significant effects on student learning; (2) theoretical and practical progress made in 

specifying the mathematical knowledge needed for teaching; and (3) the need to focus teacher 

education on practice. I elaborate each below. 

 
Teaching Matters for Student Learning 

 Improving mathematics education is a matter of broad national concern. The demand for 

scientific and quantitative literacy has increased, while U.S. students continue to underperform on 

national and international assessments (Gonzales et al., 2004; Lee, Grigg, & Dion, 2007; 

Organisation for Economic Cooperation and Development, 2004). The past several decades have 

seen many efforts to improve students’ mathematics achievement. For example, in 1983, the 

National Commission on Excellence in Education’s A Nation at Risk spurred the standards 

movement. Mathematics education led the way with the publication of the Curriculum and 

Evaluation Standards for School Mathematics (1989) by the National Council of Teachers of 

Mathematics (NCTM), as well as state standards and assessments, now required by No Child Left 

Behind. Adding It Up (2001), a report of the National Research Council, set ambitious goals for 

the “mathematical proficiency” of all students. In turn, these new standards and goals inspired a 

host of standards-based curricula.  

 Noteworthy is that across many of these efforts to improve student achievement, 

surprisingly little attention was paid to instruction. New standards, assessments, and curricula do 

not by themselves improve student learning. These resources must be put to effective use by 

teachers in classrooms with students (Cohen, Raudenbush, & Ball, 2003).  

 Although it is clear that teaching matters for improving student learning, how it matters 

has been more difficult to document (Hiebert & Grouws, 2007). In their review of research on the 

effects of teaching on student learning, Hiebert and Grouws (2007) identify opportunity to learn 

as one of the most important concepts linking teaching and student achievement: 

The emphasis teachers place on different learning goals and different topics, the 
expectations for learning they set, the time they allocate for particular topics, the kinds of 
tasks they pose, the kinds of questions they ask and responses they accept, the nature of 
the discussions they lead—all are part of teaching and all influence the opportunities 
students have to learn. (p. 379) 

 
In other words, teachers shape “the point” of instruction through the identification and 

prioritization of learning goals and through the design and implementation of instruction to meet 

those goals. This, in turn, shapes the mathematics available to students, which impacts their 

mathematics learning. “Opportunity to learn can be a powerful concept that, if traced carefully 

through to its implications, provides a useful guide to both explain the effects of particular kinds 
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of teaching on particular kinds of learning and improve the alignment of teaching methods with 

learning goals” (Hiebert & Grouws, 2007, p. 379). A better understanding of the work of 

identifying goals and using them to guide instruction would thus enable more nuanced study of 

the connection between teaching and student learning.  

 
Mathematical Knowledge for Teaching (MKT) as a Resource in Instruction 

 Efforts to improve student achievement in mathematics have also focused on improving 

teachers’ mathematical knowledge (Ball, Lubienski, & Mewborn, 2001). But teacher knowledge 

is no different than other resources that can be marshaled to improve instruction: knowledge 

matters for teaching to the extent that it is used in the work. 

 Although the idea that teacher knowledge impacts student learning seems obvious, 

substantial evidence of the influence of teachers’ mathematical knowledge on student 

achievement eluded researchers for many years (Fennema & Franke, 1992). Studies using proxy 

measures of teachers’ mathematical knowledge, such as mathematics courses taken or 

certification-level, did not find strong relationships between teacher knowledge and student 

achievement (National Mathematics Advisory Panel, 2007). In the 1980s, sparked in part by 

Shulman (1986) and colleagues’ introduction of pedagogical content knowledge, researchers 

reconceptualized content knowledge for teaching, emphasizing that teachers’ knowledge of 

content must be closely tied to practice. Thus, it is not just any type of mathematical knowledge 

that matters for teaching; instead, teaching requires knowledge of mathematics that is usable for 

the work (Ball & Bass, 2003; Ball et al., 2001; Ma, 1999).  

 Based on this new conceptualization of content knowledge for teaching, a growing 

number of studies began to examine teachers’ knowledge of mathematics. One line of research 

used open-ended written tests and interviews to explore teachers’ knowledge of specific topics in 

the curriculum (Ball, 1990; Graeber, Tirosh, & Glover, 1989; Simon, 1993; Tirosh & Graeber, 

1989). These studies—typically conducted with preservice elementary teachers—uncovered the 

fragmented and procedural nature of teachers’ mathematical knowledge. For example, they found 

that teachers were often more focused on memorizing rules than understanding concepts, lacked 

connections between procedural and conceptual knowledge, and did not think flexibly about 

mathematical ideas. 

 Other studies investigated how learning about students’ mathematical thinking impacts 

teachers’ mathematical knowledge, instructional practices, and student achievement (Fennema et 

al., 1996; Fennema, Franke, & Carpenter, 1993; Schifter, 1998). For example, in a four-year 

longitudinal study of 21 teachers, researchers examined the impact of changes in teachers’ 
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practices and beliefs on student achievement, finding that a teacher’s ability to use students’ 

mathematical thinking to inform instructional decisions corresponded with increased student 

achievement (Fennema et al., 1996). This research highlights that understanding students’ 

thinking about mathematics is both a component of the mathematical knowledge teachers need, as 

well as a medium for developing it.  

 Comparisons of expert and novice teachers were also used to investigate the relationship 

between teachers’ mathematical knowledge and their practice (Leinhardt, 1989; Leinhardt & 

Smith, 1985). These studies found that expert teachers’ knowledge is more hierarchically 

structured and connected than novices’ (Leinhardt & Smith, 1985). Researchers also found 

differences in teachers’ abilities to access their mathematical knowledge in flexible ways while 

teaching. For example, when explaining new mathematical content, expert teachers better 

supported students’ use of representations, used mathematical language more carefully, and chose 

better numerical examples than novice teachers (Leinhardt, 1989). Borko et al. (1992) also 

examined the use of mathematical knowledge in practice in a seminal case study of a preservice 

elementary teacher. Despite having taken two years of college mathematics courses, the teacher 

was unable to provide a conceptually based explanation in response to a student’s question about 

the standard division-of-fractions algorithm, and in fact, used a diagram that represented 

multiplication rather than division.  

 More recent work, including Liping Ma’s (1999) concept of “profound understanding of 

fundamental mathematics,” has made additional progress toward understanding the nature and 

structure of teachers’ mathematical knowledge. Using data from interviews with Chinese 

teachers, Ma describes how their mathematical knowledge is coherently organized into 

“knowledge packages,” which contain connections among and sequences of the central 

mathematical ideas, as well as key pieces of knowledge for a particular content area.  

 Ball, Bass, and colleagues have also investigated the nature and structure of the 

mathematical knowledge used in teaching by investigating practice to uncover its mathematical 

demands (Ball & Bass, 2003). This “job analysis” has revealed that elementary teaching is highly 

mathematical work; even seemingly general pedagogical tasks, such as listening to students or 

asking questions, require substantial mathematical knowledge and reasoning. In addition, these 

analyses of teaching have highlighted the centrality of mathematical practices and pointed to 

essential features of knowing mathematics for teaching, including the need for knowledge to be 

unpacked and connected. This practice-based approach has led to a conceptualization of 

mathematical knowledge for teaching (MKT)—the mathematical knowledge, skills, and habits of 

mind used to do the work of teaching (Ball, Thames, & Phelps, 2008).  
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 To test the existence of this professionally specialized knowledge and its relation to 

student achievement, large-scale measures of MKT have been developed and administered. This 

empirical work has provided evidence that there is mathematical knowledge specific to the work 

of teaching and that it can be measured (Hill, Schilling, & Ball, 2004). Furthermore, it has shown 

that MKT is linked to the mathematical quality of instruction (Blunk, 2007) and is a significant 

predictor of gains in student achievement (Hill, Rowan, & Ball, 2005).  

 Through an iterative process of theoretically and empirically based work emerged a 

framework for categorizing mathematical knowledge for teaching. The current framework for 

MKT distinguishes four domains of mathematical knowledge for teaching: (1) common content 

knowledge (CCK); (2) specialized content knowledge (SCK); (3) knowledge of content and 

students (KCS); and (4) knowledge of content and teaching (KCT) (Ball et al., 2008). The first 

two domains (CCK and SCK) are types of subject matter knowledge; although the knowledge and 

reasoning in these two domains is used in teaching, knowledge of students or knowledge of 

pedagogy is not needed. On the other hand, the last two domains (KCS and KCT) are amalgams 

of subject matter knowledge and pedagogical knowledge, and are thus types of pedagogical 

content knowledge (Shulman, 1986). In addition to these four domains, two less developed 

domains have been preliminarily proposed: horizon content knowledge and knowledge of content 

and curriculum. 

 Overall, significant theoretical and practical progress has been made in specifying the 

mathematical knowledge needed for teaching. This research has demonstrated that teachers’ 

simply knowing the mathematics they teach to their students is not enough: Teachers need 

mathematical knowledge that is tied to the specific work they do and need to hold this knowledge 

in ways that enable them to use it in practice. These studies have enabled scholars to develop a 

more refined conception of the mathematical knowledge needed for teaching, including the nature 

and structure of that knowledge. Furthermore, teachers’ knowledge of mathematics has been 

linked to both the mathematical quality of instruction and student achievement.  

 Despite this important progress, there is still much to learn about both the structure of 

MKT and how teachers’ mathematical knowledge influences student learning. Because teachers’ 

knowledge of mathematics impacts student learning through instruction, a better understanding of 

the relationship between teacher knowledge and student learning requires a better understanding 

of the relationship between mathematical knowledge for teaching and instruction.  
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Teaching Teaching to Beginners: The Need to Focus on Practice  

 Understanding the relationship between teacher knowledge and instruction also has 

important implications for the preparation and ongoing education of teachers. Teaching requires 

the integration of knowing and doing, calling for teacher education that links knowledge with its 

use (Ball & Bass, 2000; Lampert, 2005). Too often, however, teacher education courses are 

disconnected from practice (Putnam & Borko, 2000), providing little support for preservice 

teachers to use and extend their course-developed knowledge and skills in real-time teaching. 

Instead, teaching skill is left to develop independently—and unreliably—from experience.  

 The ineffectiveness of traditional approaches to teacher education has prompted a 

growing awareness of the need to focus teacher education on practice—that is, to teach preservice 

teachers to do teaching, rather than simply talk about teaching. This shift in focus places new 

demands on teacher educators, including the need to unpack and articulate the naturally complex 

and integrated work of teaching so that it can be studied, analyzed, and practiced (Ball, Sleep, 

Boerst, & Bass, 2009; Franke, Kazemi, & Battey, 2007; Grossman et al., 2009; Grossman & 

McDonald, 2008; Grossman & Shahan, 2005). This “decomposition of practice” (Grossman et 

al., 2009) requires frameworks and tools for parsing the work of teaching, as well as language for 

describing it—both of which are still sorely lacking in the field (Grossman & McDonald, 2008).  

 Despite its centrality in teaching, the work of identifying and using goals in instruction 

has yet to be unpacked in such a way that it can be adequately studied or taught to beginners. This 

is reflected in current teaching and teacher education practice. For example, it is not uncommon 

for teachers to talk about successful activities and lesson plans without reference to what goals for 

student learning were achieved, or for standards and goals to be stated in overly general terms 

(Stigler & Thompson, 2009). When learning to plan lessons, preservice teachers are routinely 

asked to “state your objectives” or “describe the goals of your lesson” with little guidance as to 

how to formulate goals or how goals might be used during instruction. Words like “goal,” 

“purpose,” and “objective” are used interchangeably and without definition,1 or are narrowly 

defined to include only student behaviors that can be directly observed. In addition, little is 

known about what preservice teachers do to identify and understand the goals of their lessons, or 

if and how they use those goals in instruction.  

                                            
1 An example of this was seen in work I participated in as part of a study group with Magdalene Lampert, 
Timothy Boerst, and others at the University of Michigan. The group conducted an informal examination of 
sample activities and templates used to support preservice teachers in planning lessons. The lack of clarity 
around the use of purposes, objectives, and goals was so prevalent that our group noted the 
interchangeability of these terms by referring to them as “POGs.” 
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 There is evidence, however, about why a focus on goals would be a strategic site for 

teacher education. First, the work of identifying and using goals in instruction is difficult for 

preservice teachers to do well, yet is something that they have inclinations toward. Thus, it 

provides opportunities for teacher educators to productively build on and scaffold something to 

which preservice teachers already try to attend. Second, because identifying and using goals 

demands subject matter knowledge, it provides opportunities for preservice teachers to both 

develop and practice content knowledge and reasoning in the context of its use in practice. And 

finally, increased skill with identifying and using goals can be a strategic way to help preservice 

teachers manage the complexity of in-the-moment instruction because much of the work can be 

done outside of classroom interactions, using as much time as needed. I discuss each of these 

reasons in more detail below. 

 Beginning teachers often struggle with developing and maintaining a focus on long-term 

goals (Borko & Livingston, 1989; Housner & Griffey, 1985; Kauffman, Johnson, Kardos, Liu, & 

Peske, 2002) and have difficulty prioritizing content (Borko & Livingston, 1989). For example, 

when not given a specified curriculum for a given subject, preservice teachers are often uncertain 

about which details to emphasize or how deeply to go into a topic (Kauffman et al., 2002). They 

also have difficulty predicting what aspects of the curriculum are likely to be difficult for students 

(Borko & Livingston, 1989) and sometimes focus on objectives that students have already 

mastered (Joyce & Harootunian, 1964).  

 Studies have also shown that preservice teachers often lack clear and coherent goals in 

their lessons. For instance, Joyce and Harootunian (1964) interviewed 39 preservice teachers 

before they taught a science lesson and found that most had unclear and vague objectives that 

often did not relate to the activities in the lesson. In particular, preservice teachers had difficulty 

matching goals, objectives, activities, and assessments. Novices’ lessons tend to be poorly 

structured and not comprehensive, with few connections between related content (Borko & 

Livingston, 1989; Leinhardt, 1989; Livingston & Borko, 1989, 1990). For example, Leinhardt 

(1989) found that novices’ lessons had “fragmented lesson structures” and an “ambiguous system 

of goals that often appear[ed] to be abandoned rather than achieved” (p. 73). 

 Promising for teacher education, however, was that novices seemed aware of these 

problems; they just did not yet have the “analytic skills to understand where failures occurred or 

when goals that were implicit in certain actions were not achieved” (Leinhardt, 1989, p. 73). 

Thus, even though they often have difficulty developing and using coherent goals (which is not 

surprising, given that the work is demanding and they are beginners), preservice teachers do 

recognize that goals are something important to attend to in teaching. Furthermore, preservice 
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teachers sometimes do use goals to inform their work—for example, when analyzing curriculum 

(Davis, 2006) or planning lessons (Borko, Livingston, McCaleb, & Mauro, 1988). Morris, 

Hiebert, and Spitzer (2009) found that, although preservice teachers did not spontaneously 

unpack learning goals in order to evaluate and revise instruction, they could identify subconcepts 

of learning goals in supportive contexts. Thus, research suggests that work on identifying and 

using goals could be a site where teacher educators could productively build on and scaffold 

preservice teachers’ inclinations, knowledge, and values (Davis, 2006; Morris et al., 2009).  

 Not only could work on goals build on what preservice teachers bring to teacher 

education, it also provides a fruitful site for both practicing and developing content knowledge for 

teaching. Identifying and using goals requires mathematical knowledge for teaching (Morris et 

al., 2009). And content knowledge, among other factors, has been found to influence preservice 

teachers’ use of curriculum, planning, and teaching (Behm & Lloyd, 2009; Borko et al., 1988; 

Kahan, Cooper, & Bethea, 2003). Thus, work on identifying and using goals could provide 

preservice teachers opportunities to simultaneously practice and develop content knowledge by 

situating their learning in practice (Ball & Cohen, 1999; Putnam & Borko, 2000). For example, 

planning and reflecting on mathematics lessons, particularly with a textbook as a guide, is a way 

to help preservice teachers focus on the particulars of the mathematics (Van Zoest & Bohl, 2002).  

 Becoming more skilled at identifying and using goals could also help preservice teachers 

manage interactive aspects of teaching. Teaching requires the simultaneous attention to and 

management of multiple aspects of instruction. “Novices attempting to solve a problem typically 

endure high cognitive load because they lack the experience and conceptual framework to make 

cognitive processing more efficient” (Feldon, 2007, p. 125). For example, during instruction, 

preservice teachers often have trouble keeping a lesson on track while simultaneously being 

responsive to students (Borko & Livingston, 1989; Livingston & Borko, 1990). Because 

identifying goals and determining ways they can be used to steer instruction can be part of 

planning, it can be done outside of the classroom, with as much time as needed, rather than in the 

intensity of in-the-moment instruction (Morris et al., 2009). Being clear about the goals of 

activities and how the activities are designed to meet those goals, therefore, might be a way to 

help reduce the “cognitive load” of interactive instruction. Furthermore, this would likely have 

face validity with preservice teachers because they see planning as a way to learn content and a 

way to solve instructional problems before they are in the classroom with students (Borko, Lalik, 

& Tomchin, 1987). 

 At a basic level, a focus on goals could help preservice teachers see teaching as goal-

driven work (Stigler & Thompson, 2009) and see content as something that needs to be attended 
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to during instruction. Mewborn (2000) found that during their field placements, preservice 

teachers first attended to classroom organization and management, then to pedagogy, and then to 

student thinking; their concern with mathematics content was minimal. Preservice teachers could 

attend simultaneously to multiple issues, but when confronted with new teaching situations, 

understandably their attention focused first on context and organization. A more explicit focus on 

the use of goals in instruction could help preservice teachers see how attending to content can be 

part of and inform the management of these other concerns. Leinhardt (1989) argues that 

“beginning teachers need to build more efficient strategies for keeping mental notes about the 

lessons that they teach—how one lesson connects with others, what the key point of a lesson is, 

what students need to experience in order to build meanings for themselves, and how long it will 

take students to do that” (p. 74). A better understanding of the content intended to be taught in a 

lesson and how the instructional activities are designed to engage students with this content could 

help preservice teachers develop such strategies.  

 As expected, preservice teachers rely heavily on textbooks as their source of ideas and 

decisions (Bush, 1986). When teaching with curriculum materials, being able to “figure out the 

point” seems particularly important, because the “matching” between the student learning goals 

and the instructional activity has been done by the curriculum designer (Smith & Ragan, 2005) 

and is rarely made explicit to the user (Ball & Cohen, 1996). Not understanding this “match” can 

lead to inadvertent unproductive changes in the activity or its implementation. A focus on 

mathematical goals and how an activity is designed to meet those goals could help preservice 

teachers more accurately evaluate the intent of textbook activities rather than rely on their beliefs 

and familiarity with instructional approach, which is often the case (Lloyd & Behm, 2005). It also 

could help teachers interpret the orientation of the curriculum materials (Ben-Peretz, 1990). 

 
Work on Identifying and Using Goals as a Strategic Site for Teacher Education 

 Together, these arguments provide the motivation for this study. My overarching 

hypothesis is that having a better understanding of the “mathematical point” of an activity and 

how the activity is designed to engage students with that point will improve the mathematical 

quality of beginning teachers’ instruction, which will, in turn, improve students’ learning of 

mathematics. A better understanding of the mathematical point of an activity helps a teacher steer 

the activity toward the intended mathematics and manage decisions during instruction. 

Furthermore, it is a particularly strategic focus for teacher education because much of the work of 

“figuring out the mathematical point” can be taught and completed outside of the classroom and 

because it provides an opportunity to both develop and practice mathematical knowledge for 
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teaching in the context of its use (Morris et al., 2009). Testing this hypothesis requires that the 

work of “figuring out the mathematical point” be taught to beginners. Their ability to “teach to 

the mathematical point” would then need to be measured in order to study its relationship to 

MKT, the mathematical quality of instruction, and student achievement. But before any of this 

work can be done, what is involved in “figuring out the mathematical point” and “using it to steer 

instruction” must first be investigated. This crucial initial step of examining, identifying, and 

naming key constituents of this work is the focus of this dissertation. 

 
Overview of Study  

 This is a study of the mathematical work of teaching. In particular, I seek to probe and 

conceptualize the work teachers do before and during a lesson to move with students through 

time toward particular mathematical ideas. To do this, I examine the practices and knowledge 

demands of identifying mathematical learning goals for students and deliberately designing and 

implementing instructional activities to move students toward those goals—that is, to be able to 

“teach to the mathematical point.”  

 In this section, I provide an overview of the study. I begin with some of the premises 

underlying this work. I then briefly describe the design of the study and present the research 

questions which frame the investigation. Next, I introduce the conceptualization of “teaching to 

the mathematical point” that emerged from my analyses and will be discussed in detail 

throughout the dissertation. I conclude with an overview of the remaining chapters in the 

dissertation.  

 
Teaching as Purposeful Work 

 Teaching is, at its heart, being responsible for getting other people to learn something. 

Doing this requires knowing what that “something” is and deliberately designing and steering 

instruction so that learners can learn it—in other words, being purposeful.  

 Hiebert and Grouws (2007) define teaching as consisting of “classroom interactions 

among teachers and students around content directed toward facilitating students’ achievement of 

learning goals” (p. 372). This conception of instruction as interactions among the teacher, 

students, and content can be represented by the “instructional triangle” (Cohen et al., 2003; 

Lampert, 2001), shown in Figure 1. Teachers interact directly with their students and directly 

with the content; they also mediate the student-content relationship. The “work of teaching” 

occurs in the dynamic relationships depicted by the arrows emerging from the teacher vertex as 

students “do the complementary work of making a relationship with the content to learn it” 
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(Lampert, 2001, p. 423). These interactions occur simultaneously and over time and are 

influenced by the contexts in which they occur. 

 

 
 

Figure 1: The instructional triangle. 

 
 The work of teaching mathematics involves deliberately designing and implementing 

instruction in order to connect students with particular mathematics. Doing this requires an 

understanding of where an instructional activity is headed mathematically and how one intends to 

“get there” with students during the activity’s enactment. This involves figuring out the 

particulars of the content to be taught as well as where that content is located in the larger 

mathematical terrain. It also involves understanding where students are with respect to that 

content and what the terrain “looks like” through the eyes of the learner. Furthermore, it requires 

understanding how the instructional activity is intended to move students toward that content and 

then, during the activity’s enactment, using these understandings to help steer the instruction. It is 

this work that teachers do before and during instruction to purposefully move with students 

through time toward particular mathematical ideas that is the focus of this dissertation.  

 
Mathematical Proficiency as the Ultimate Goal for Student Learning 

 The conceptualization of instruction as interactions between the teacher, students, and 

content does not assume a particular type of pedagogy or teaching “style,” curriculum use or non-

use. Nor does my conceptualization of “teaching to the mathematical point.” However, I do make 

assumptions about the nature of the mathematical learning goals for students that are part of “the 

mathematical point.”  

 The field has been moving toward agreement about the focus of student learning (Franke 

et al., 2007). This consensus is reflected in the notion of “mathematical proficiency” described in 

Adding it Up (National Research Council, 2001). “Mathematical proficiency” reflects what “is 

necessary for anyone to learn mathematics successfully” and consists of the following five 

“interwoven and interdependent” strands:  
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• Conceptual understanding—comprehension of mathematical concepts, 
operations, and relations; 

• Procedural fluency—skill in carrying out procedures flexibly, accurately, 
efficiently, and appropriately; 

• Strategic competence—ability to formulate, represent, and solve mathematical 
problems; 

• Adaptive reasoning—capacity for logical thought, reflection, explanation, and 
justification; and 

• Productive disposition—habitual inclination to see mathematics as sensible, 
useful, and worthwhile, coupled with a belief in diligence in one’s own efficacy. 
(National Research Council, 2001, p. 116)  

 
Throughout this dissertation, I am assuming that the ultimate goal of mathematics instruction is to 

develop the mathematical proficiency of all students.  

 
Study Design 

 This study uses empirical data—observations of and interviews from 17 preservice 

teachers’ mathematics lessons—to develop a conceptual framework about the nature of 

mathematical goals and the work of identifying and using mathematical goals in instruction. 

Although grounded in empirical data, this dissertation is primarily conceptual, using the interview 

and video data to better understand this central aspect of teaching practice. Three main research 

questions frame the work in this dissertation: 

1. What is the work of determining the mathematical goals of a lesson and using those 
goals to design instruction? 

 
2. What is the work of using mathematical goals to steer instruction during a lesson’s 

enactment? 
• What problems must be managed in doing this work? 
• What teaching moves can be used to manage these problems? 
• What are some of the issues that arise for beginning teachers when managing 

these problems?   
 

3. What is the relationship of mathematical knowledge for teaching and the work of 
determining mathematical goals and using them to design and steer instruction? 

 

The Work of “Teaching to the Mathematical Point” 

 There is no agreed-upon name in the field for the work of teaching that is the focus of this 

dissertation (i.e., the work of identifying mathematical learning goals for students and 

deliberately designing and implementing instructional activities to move students toward those 

goals). In addition to signaling the underconceptualization of these ideas in the field, the lack of 

language makes writing clearly about the ideas quite difficult. Therefore, although the language 

for and conceptualization of what I am calling “teaching to the mathematical point” emerged 
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from my analyses (and, thus, are results of the study), I introduce them here because it is useful 

(and I hope clearer) to use this language throughout the dissertation.  

 I struggled with the name “teaching to the mathematical point,” in particular whether 

“mathematical point” conveys my intended meaning. I did not use “teaching to the mathematical 

purpose” because I name “mathematical purposing” as a subcomponent of teaching to the 

mathematical point. Nor did I use “teaching to the mathematical goals” because I have tried to 

reserve “goals” (in particular “mathematical learning goals”) to refer to the end goals for student 

learning and want “mathematical point” to be broader. I am defining “mathematical point” to 

include the mathematical learning goals for an activity, as well as the connection between the 

activity and its goals. For example, the mathematical point of an example could be to provoke a 

common student error in order to develop students’ understanding of a particular concept.  

 I chose the language of “teaching to the mathematical point” to capitalize on various 

meanings of “point.”2 “Point” can refer to both a particular detail as well as the main subject, 

conveying both specificity (e.g., the point of a particular choice of numbers in an example) and a 

connection to the bigger whole (e.g., the ways in which an activity furthers ongoing, broader 

goals for students’ mathematics learning). “Point” also carries a sense of location, which for the 

mathematical point refers to location both in the mathematical terrain and on the curricular 

trajectory. I also am trying to harness the everyday, informal way people talk about “the point” of 

something. For example, asking about “the mathematical point” of an activity provides a familiar 

and accessible way to ask what an activity is intended to accomplish mathematically and how it is 

intended to do so. 

                                            
2 I draw on the following definitions for “point,” excerpted from the Oxford English Dictionary (OED) 
(2009): 

A separate or single item, article, or element in an extended whole (usually an abstract whole, as a 
course of action, a subject of thought, a treatise, a discourse, a set of ideas, etc.); an individual 
part, element, or matter; a detail, a particular. 

 
Something having position in space, time, succession, degree, order, etc.:  
• A position reached in a course or progression of any kind; a definite position in a linear scale 

(actual or notional); a step or stage in a process; an exact degree or extent of some measurable 
quality or condition; 

• A place considered in terms of spatial position; a specific location or spot. Also fig., 
sometimes with modifying word specifying the nature or purpose of the location, as starting 
point, etc.; or 

• A location along a particular route or in a particular direction. 
 
Something that is the focus of attention, consideration, or purpose: 
• The main subject or focus of a discussion, discourse, etc.; the nub or essence of a matter; the 

central or pertinent issue; or 
• An objective, aim, or purpose; the thing for which one strives or contends. 
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 There are, of course, a number of problems with the language of “teaching to the 

mathematical point.” One main concern is that “mathematical point” may seem narrower than I 

intend. Mathematics instruction inherently demands working simultaneously and over time on 

multiple mathematical goals through activities with multiple mathematical purposes. The 

mathematical point of an activity is therefore not a single, small idea as the word “point” might 

imply. I mean “point” to be a package of ideas.3 

 I define the “mathematical point” to be a connected package of mathematical goals and 

instructional purposes, with depth and weight and time. A particular idea or skill may be the point 

that is emphasized in a given moment, but always in the background are other concepts, skills, 

practices, and dispositions to which it is connected. Important in my definition is that the 

mathematical point is not simply a collection of mathematical ideas; it is conceived of and 

prioritized in relation to the particular students being taught and the activity in which it is being 

taught through. There is an implicit “of” that accompanies “teaching to the mathematical point”: 

It is the mathematical point of something instructional—for example, the mathematical point of a 

lesson, an activity, a problem, or a teacher question. That the mathematical point is of something 

instructional highlights that “knowing the mathematical point” includes an understanding of the 

mathematical learning goals as well as how the “something instructional” is intended to move 

students toward those goals. I view the work of “teaching to the mathematical point” as a subset 

of “teaching to the instructional point.” That is, the mathematical point is one of many 

instructional points a teacher has at any given time. 

  I define “teaching to the mathematical point” as comprising three interrelated and 

mutually informing types of work: 

• Articulating the mathematical point (i.e., articulating the intended mathematics and how 

the instructional activity is designed to engage students with it); 

• Orienting the instructional activity (i.e., detailing an instructional activity so it is oriented 

toward the intended mathematics); and 

• Steering the instruction (i.e., deploying teaching moves during instruction in an effort to 

keep students engaged with the intended mathematics). 

                                            
3 My use of “mathematical point” to reflect a connected bundle of ideas is similar to the way Ma (1999) 
uses “knowledge package” to reflect a set of connected mathematical ideas. However, the mathematical 
point is not the same as Ma’s knowledge package, because in addition to unpacking the mathematical 
terrain, knowing the mathematical point also includes articulating the specific mathematical ideas a 
particular instructional activity is intended to focus on, how the activity is intended to develop those ideas 
with particular students, and where the activity sits in both the mathematical terrain and curricular 
trajectory. 
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 The first two—articulating the mathematical point and orienting the instructional 

activity—are what I call “mathematical purposing.” (Thus, the work of teaching to the 

mathematical point can also be seen as having two components: mathematical purposing and 

steering the instruction.) The result of mathematical purposing is an articulation of the 

mathematical learning goals for students, an understanding of how the activity is intended to 

move students toward those goals, and a detailing of the task and likely teacher moves that 

position the activity so it is more likely to engage students with the intended mathematics. 

Steering occurs during the interactive phase of instruction as teachers implement the activity with 

students and deliberately try to keep it heading toward the mathematical point. Although steering 

happens only in the interactive phase of teaching, mathematical purposing can be part of both the 

preactive and interactive phases. Even though the work of mathematical purposing and steering 

do not correspond to the preactive and interactive phases of teaching, there is a temporal, cyclic 

relationship between the work of mathematical purposing and steering instruction: In order to 

steer instruction toward the mathematical point, the mathematical point must be known. The work 

of steering then informs the work of mathematical purposing, for example, the mathematical 

point might change or the connection between the instructional activity and the intended 

mathematics become clearer.4 The components of teaching to the mathematical point and their 

interdependent and cyclic relationship are depicted in Figure 2. 

 

                                            
4 This cyclic relationship in teaching to the mathematical point is similar to the way Simon (1995) depicts 
the evolution of hypothetical learning trajectories in his Mathematics Teaching Cycle. Simon 
conceptualizes that teachers have an original goal, which provides the initial direction for the hypothetical 
learning trajectory. The hypothetical learning trajectory is then continually modified based on the teacher’s 
assessment of students’ knowledge during instructional interactions. In his model, Simon depicts this 
process as being mediated by a number of teacher characteristics such as mathematical knowledge and 
theories of mathematics learning and teaching. I discuss this further in Chapter 2. 
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Figure 2. The work of “teaching to the mathematical point.” 

 

Contributions of Study 

 Teacher education must prepare teachers with the knowledge and skills necessary to 

achieve the bold vision of mathematical proficiency set by current K-12 standards and curricula. 

Doing so requires a better articulation of the work of teaching and a better understanding of the 

relationship between teacher knowledge and instruction. The major contribution of this study is a 

much-needed conceptualization of a central aspect of mathematics teaching practice: the work of 

articulating mathematical goals and using them to design and steer instruction—what I have 

named “teaching to the mathematical point.” The framework for “mathematical purposing” 

developed in this study will inform teacher education, as well as research on teaching and teacher 

education. In addition, the framework can be used in the design and study of curriculum 

materials, in particular, to identify ways in which these materials can be more “educative” for 

teachers (Davis & Krajcik, 2005). The results from this dissertation also contribute to furthering 

the field’s understanding of mathematical knowledge for teaching and its relationship to 

instruction. 

 
Organization of the Dissertation 

 The dissertation is organized into eight chapters. Chapter 1, the current chapter, frames 

the research problem, provides an overview of the study, and introduces the language of 

“teaching to the mathematical point.” Chapter 2 describes the theoretical perspective taken 

toward the design of instruction in this study and reviews the literature basis for the work of 
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mathematical purposing. Chapter 3 describes the data sources and methods of analysis I used. 

Chapters 4 through 7 present the results of my analyses: Chapter 4 uses two extended examples 

from the data to examine the complexity of “teaching to the mathematical point.” Chapter 5 

examines problems in steering instruction toward the mathematical point and issues that can arise 

when trying to manage them. Chapter 6 presents my conceptual framework for mathematical 

purposing, and Chapter 7 explores the mathematical knowledge demands of this work. Chapter 8 

considers the implications of the study and directions for future research. 
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CHAPTER TWO: 
FOUNDATIONS IN THE LITERATURE  

FOR THE WORK OF MATHEMATICAL PURPOSING 
 

Introduction 

 One of the central aims of this dissertation is to unpack and articulate what is involved in 

the “mathematical purposing” of instruction by developing a framework that conceptualizes and 

details this work. This chapter reviews the literature that provides the foundation for this 

framework. From this review, as well as from my observations during data collection and from 

my experiences as a teacher and teacher educator, emerged the initial categorization scheme I 

used to begin analyzing the data. Throughout my analyses, I returned to selected examples from 

the literature to test and refine my evolving framework. 

 Developing a coherent framework for mathematical purposing is challenging because 

there is not a particular moment when, or a prescribed process by which, teachers determine the 

goals of their lessons and organize their instruction to meet those goals. For example, a teacher 

might begin planning a lesson by reading the objectives listed in her teacher’s guide and then 

refine her understanding of those goals as she plans the lesson’s activities, perhaps modifying the 

textbook’s goals to better meet the perceived needs of her students. A teacher might instead first 

articulate the content he wants to teach and then create his own instructional activities, drawing 

from past experience or gathering ideas from a range of curriculum resources. Or, a teacher might 

decide she wants to use a new manipulative that she learned about in a professional development 

workshop and then figure out content that would be appropriate to teach with those materials.   

 Complicating matters further, determining the goals of a lesson does not only happen 

prior to the lesson’s enactment. During instruction, teachers respond to their students and, based 

on what does or doesn’t come up, plans change. For example, a teacher may spend time on an 

unanticipated topic that arises during discussion, adding new goals to the lesson in the course of 

instruction; or a teacher might begin a lesson with one set of goals, but then decide to completely 

change course based on students’ reactions.  

 In order to develop a framework that can incorporate the types of variation reflected 

above, I make an analytic distinction between what the work of mathematical purposing is and 

how that work “gets done.” By “the work of mathematical purposing,” or simply “mathematical 
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purposing,” I mean what is involved in articulating the mathematical point (i.e., articulating the 

intended mathematics and how the instructional activity is designed to engage students with that 

mathematics) and orienting the instruction toward the mathematical point (i.e., detailing an 

instructional activity so it is positioned toward the intended mathematics). By “how that work 

gets done,” I mean describing the ways in which mathematical purposing is accomplished, 

including the different people and tools involved in doing the work, their context and interactions, 

and the resources brought to bear. Different instantiations of the “how” can be seen in the 

scenarios above. 

 The framework for mathematical purposing I develop in this dissertation aims to describe 

the what. It is grounded, however, in a particular perspective of the how. I view mathematical 

purposing as one aspect of the larger teaching task of designing instruction and consider the 

design of instruction to be work that can be differently distributed across the teacher and various 

resources. In the following section, I elaborate this perspective on designing instruction as 

distributed work—a perspective on the how. I then turn in the remaining sections of the chapter to 

reviewing the literature for insight into the what.   

 
Designing Instruction as Distributed Work 

 In this section, I draw on theories of distributed cognition, in particular Spillane and 

colleagues’ conception of “distributed leadership” (Spillane, Halverson, & Diamond, 2004), and 

on research that views teachers’ use of curriculum as “participating with” the materials 

(Remillard, 2005) to describe a distributed perspective on designing instruction. Theories of 

distributed cognition view cognition as residing not solely in the head of an individual actor, but 

as “distributed—stretched over, not divided among—mind, body, activity, and culturally 

organized settings (which include other actors)” (Lave, 1988, p. 1). Cognitive processes are seen 

as distributed across and “in between” the members of a group, internal and external structures 

and tools, and time (Hutchins, 2000; Salomon, 1993). From a distributed perspective, the unit of 

analysis for examining “cognition in practice” is “actors in situations working with artifacts, 

rather than actors abstracted from situations and artifacts” (Spillane et al., 2004). Pea (1993) 

emphasizes the role of designed artifacts in his notion of “distributed intelligence,” which he 

considers to be manifest in activity, the resources for which are distributed across people, 

environments, and situations.  

 The idea that the design of instruction is shared by teachers and tools such as curricula is 

not new. Research on teachers’ curriculum use has long debunked the notion that the curriculum 

written in textbooks is the curriculum experienced by students. From this research emerged a 
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plethora of models describing how teachers interact with curricula, with different models 

reflecting the varying analytic foci of this literature. For example, Stein, Remillard, and Smith 

(2007) capture the temporal phases of curriculum use with the model shown in Figure 3 below. 

 

 
 

Figure 3. Temporal phases of curriculum use.  
Adapted from Stein, Remillard, and Smith (2007). 

 

 This model shows the intended curriculum as different from the written curriculum that 

appears in textbooks or other resources because teachers transform the written curriculum as they 

plan for instruction. For example, teachers read and interpret the written curriculum, selecting and 

sequencing the tasks they will use, often making modifications and additions. The curriculum is 

further transformed during instruction as teachers implement their plans with students in the 

classroom.  

 Curriculum materials have also been conceptualized as mediating the work of the teacher. 

For example, Brown (2002, 2009; Brown & Edelson, 2001, 2003) draws on sociocultural theories 

to conceptualize the relationship between teachers and curriculum materials. He argues that, as 

teachers use curriculum resources, they interact with the materials in a variety of ways, for 

example, selecting which aspects of the materials to use and interpreting the materials during 

planning and instruction. In turn, curriculum materials afford and constrain teachers’ practice, 

extending teachers’ capabilities and mediating their actions. From this perspective, a teacher’s use 

of curriculum is not seen in terms of fidelity or variation, but as a bi-directional relationship 

between teacher and tool (Brown & Edelson, 2001).  

 Brown captures this “constructive interplay” between teachers and curriculum materials 

in his Design Capacity for Enactment framework. This framework portrays the teacher-tool 

relationship as influenced by both the resources the teacher brings to the relationship—subject 

matter knowledge, pedagogical content knowledge, and goals and beliefs—and the resources 

brought by the curriculum—physical objects and representations of physical objects, 

representations of tasks, and representations of concepts. This framework views the varying ways 

in which teachers interact with curriculum as “different degrees of artifact appropriation” and 
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offers a scale that characterizes the nature of the appropriation by the teacher. The scale positions 

“offloading” (i.e., a literal use of curriculum materials) at one end of the spectrum and 

“improvising” (i.e., a teacher’s use of her or his own strategies) at the other. Although these labels 

might seem to impose a value judgment, the offloading-adapting-improvising scale is not meant 

to imply that one type of interaction is more desirable than another, nor is it meant to be a 

measure of fidelity of implementation or intent. Instead the scale provides a way to characterize 

the nature of a teacher’s interaction with a particular resource at a particular time. Thus, the 

Design Capacity for Enactment framework is descriptive, not evaluative. In a single lesson, a 

teacher may, in fact, have multiple instances of different types of interactions. Brown also 

introduces the construct pedagogical design capacity to characterize a teacher’s ability to 

“perceive and mobilize” existing resources in the crafting of instruction (Brown, 2002, 2009; 

Brown & Edelson, 2003). 

 A similar, interactive view of the relationship between teachers and curriculum materials 

underlies a number of models in the literature. Depending on the research focus, the relationship 

is depicted in different ways: Different aspects of the relationship are foregrounded; different 

contributing factors identified and elaborated. For example, Silver, Ghousseini, Charalambous, 

and Mills (2009) and Castro (2006) depict the role of curriculum in mediating a teacher’s practice 

by placing curriculum materials along the practice-arrows of the instructional triangle (Figure 1). 

Stein and Kim (2009) identify features of curriculum materials that are likely to impact teachers’ 

use (e.g., the nature of tasks and the transparency of design) and examine how these features 

interact with two key organizational resources (human and social capital).  

 Yinger and Clark (1982) propose a model to describe how teachers evaluate instructional 

activities. The model includes the goal of each step and the processes used to attain those goals 

(the processes are in parentheses): 

1. Understand/represent the written description (reading, interpreting, categorizing); 
2. Answer the questions, “What would this activity look like in practice?” (mental 

trying out); “How well would it work?” (evaluating); and “How well do I like it?” 
(evaluating); 

3. Answer the question, “How could I make this activity work?” (editing, justifying); 
and 

4. Make final judgments. (p. 21) 
 
Similarly, Sherin and Drake (2009) examine the work a teacher does inside the teacher-text 

relationship and propose the “curriculum strategy framework” to characterizes how teachers 

interact with curriculum materials. Their framework identifies three core interpretive activities in 

which teachers engage with curriculum materials—reading, evaluating, and adapting—at three 

different points in time—before, during, or after instruction.  
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 In an effort to synthesize across the various models and constructs, Remillard (2009) 

proposes a “conceptual model of teacher-curriculum interactions and relationships.” In this 

model, the teacher and curriculum materials are depicted in a mediating relationship and the types 

influences on each are shown. Curriculum resources are shaped by topics and task structure, 

embedded teacher supports, and pedagogical emphasis; teacher resources by human capital 

(including pedagogical design capacity), agency and professional status, and social capital. These 

resources are set in and further shaped by the institutional context. The products of the teacher-

text interaction are “instructional outcomes,” which include content covered, tasks, and 

pedagogical emphasis.  

 All of the above models and frameworks characterize aspects of what I am calling the 

how of designing instruction. Notice that the models themselves do not unpack what the work 

entails. For example, Sherin and Drake’s (2009) framework does not describe what teachers do 

when they “read, evaluate, or adapt” curriculum materials “before, during, or after instruction.” 

Yinger and Clark’s (1982) model does not unpack what is involved in “understanding the written 

description” in a textbook or in “making final judgments.” Nor does Remillard’s (2009) model 

describe, for example, the work of determining “pedagogical emphasis” as teachers interact with 

curriculum resources. This is not to say that the studies from which these models resulted did not 

also describe aspects of the what. My point here is that the models themselves do not unpack and 

articulate what the work entails; they aim to depict how it is accomplished.  

 My conceptualization of the how—designing instruction as distributed work—uses 

theories of distributed cognition to build on and broaden the research on teachers’ use of 

curriculum described above. In taking a distributed perspective on designing instruction, I aim to 

parallel the distributed perspective on leadership taken by Spillane and colleagues in the 

Distributed Leadership Study.5 They view leadership practice as the product of complex 

interactions among school leaders, followers, and their situation, which includes tools, routines, 

and structures. Distributed leadership serves as an analytic frame that can be used, for example, to 

understand how leadership practice is distributed in different settings and the impacts of those 

distributions (Harris & Spillane, 2008).  

 Similarly, I view the work of designing instruction—with or without curriculum 

materials—as a practice that is distributed across individuals and situations, which include 

artifacts, environments, and time. In this sense, designing instruction is an activity that is 

stretched over the teacher, the curriculum materials, state and national standards, established 

routines and lesson structures, the classroom and school community, yearly planning, grade-level 
                                            
5 The Distributed Leadership Study’s website is http://www.sesp.northwestern.edu/dls/. 
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colleagues, and the like. This is not the same as viewing the design of instruction as a distribution 

of labor; it is instead viewing the design of instruction as occurring in and as a result of the 

interactions of the “many structural elements that are brought into coordination” during the task 

(Hutchins, 1995, p. 290).  

 A few points are worth clarifying. First, unlike the work of the Distributed Leadership 

Study and the models of curriculum use described above, the focus of this dissertation is not to 

model the ways in which the design of instruction is or can be distributed, or the impacts of those 

distributions. Distributed cognitions/practices are necessarily situated (Salomon, 1993). Thus, 

“precisely how cognition is distributed must be worked out for different kinds of activity, with 

their different forms of mediation, division of labor, social rules and so on” (Cole & Engestrom, 

1993). In the case of designing instruction, depending on the situation (e.g., the nature of the 

curriculum materials and their use or non-use, the teacher’s knowledge and experience, the nature 

of classroom and school community, etc.) and the instruction being designed (e.g., a unit, lesson, 

or problem), the work is likely to be differently distributed, and models of the distribution of 

work could be made for these particular situations. My aim in this chapter (and in this 

dissertation) is simply to note that my framework for mathematical purposing takes a distributed 

perspective; I am not yet trying to identify or model that distribution or the factors that influence 

it.   

 Second, by taking a distributed perspective on designing instruction, I do not mean to 

diminish or under-value the role of the teacher or the impact of a teacher’s knowledge, 

experience, and skill. The individual still matters in theories of distributed cognition (Salomon, 

1993). This is related to Pea’s (1993) use of “distributed intelligence” rather than “distributed 

cognition”: He argues that people, not designed artifacts, “do” cognition (p. 50). This is also why 

I characterize the activity or the work of designing instruction as what is distributed. In some 

sense, then, a teacher can be thought of as “coordinating” or “orchestrating” the design of 

instruction in his or her classroom. For example, teachers make decisions, both explicit and 

implicit, about which resources to use and how to use them. Although a variety of factors mediate 

these decisions, it is the teacher who ultimately assembles the instructional components. 

Furthermore, some cognitions may not be distributable (Perkins, 1993), which implies that there 

may be some aspects of the work of designing instruction that can only be done by the teacher. 

For example, the work of designing instruction involves knowing about the particular students in 

the classroom. Although the curriculum or educational research can offer information about 

students in general (e.g., common misconceptions or likely solution methods), and this 

information may help teachers better “see” their own students, only teachers know about their 
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particular students. And, finally, even though the work of designing instruction can be 

conceptualized as distributed work, teachers do not necessarily see themselves as active agents in 

the design process (Silver et al., 2009).  

 
Why Distinguish between the “What” and the “How” of Designing Instruction? 

 Conceptualizing the design of instruction and its subtask, mathematical purposing, as 

distributed work has a number of benefits. It offers a way to articulate what work needs to be 

done to design purposeful instruction, without specifying how, when, or by whom the work is or 

should be accomplished. This implies, for example, that curriculum use or non-use is not seen as 

“bad” or “good.” Making a distinction between what the work is and how it gets done enables the 

incorporation of findings from different literatures—for example, teacher planning, curriculum 

use, and lesson study—into the same framework.  

 Viewing the design of instruction as distributed work also allows for a consistent 

framework to be used across the developmental trajectory of teaching, rather than requiring one 

for beginners and a different one for experienced teachers. What changes with experience is not 

the work that needs to be done, but the distribution of that work. This has the potential of creating 

face-validity with preservice teachers who typically do not see their cooperating teachers using 

the planning processes advocated in their teacher education courses. Distinguishing between the 

what and the how of designing instruction can help connect the process of writing lesson plans to 

the work that is being accomplished. It also supports investigation of questions about how best to 

distribute the work of designing instruction at different phases of teachers’ careers.  

 Although it is based on a distributed-design perspective, the framework for mathematical 

purposing presented in this dissertation is not an effort to describe or model the distribution of 

work. Instead, the framework aims to describe what the work of mathematical purposing is. 

However, this framework could be used in later studies to investigate other questions about 

mathematical purposing, such as how the work is distributed in particular situations or how 

teachers learn to do different elements of the work. 

 
Review of the Literature 

 In this section, I review the literature that provides the foundation for my framework for 

mathematical purposing. Selecting literature to review was complicated because there is no single 

body of research that focuses directly on the work of mathematical purposing, yet almost all of 

the countless studies of teaching or the design of instruction are potentially informing. Thus, my 

review of the literature is by no means exhaustive. Instead, I have strategically selected studies 

that seemed most informative for unpacking and articulating the work of mathematical purposing. 
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Some of this work is prescriptive, specifying what teachers or instructional designers ought to do 

when they plan for or enact instruction, whereas other studies are descriptive, aiming to portray 

what teachers actually do during different aspects of their work. Although all of the studies 

reviewed here are related to practice, only some focus on the work; others investigate teachers’ 

cognitive processes and other influences on their actions. From the latter, I try to extract aspects 

of the work of mathematical purposing. Throughout the review, I summarize the ways each line 

of research informs the development of a framework for the work of mathematical purposing. 

 
Instructional Activities and Mathematical Tasks  

 Mathematics tasks determine the mathematical learning opportunities available to 

students by shaping both the content students learn and their view of the subject matter (National 

Research Council, 2001). Doyle (1986) argues that “the curriculum exists in classrooms in the 

form of academic tasks that teachers assign for students to accomplish with subject matter” (p. 

365). Doyle conceptualizes an “academic task” as consisting of four components:  

• A goal state or end product to be achieved (e.g., answers to questions, solution to a 
problem, oral responses in a discussion);  

• A problem space or set of conditions and resources available to accomplish the task 
(e.g., notes, textbook information, models from teacher);  

• The operations involved in assembling and using resources to reach the goal state or 
generate the product (e.g., remembering answers, applying a rule, formulating one’s 
own method); and  

• The importance of the task in the overall work system of the class (e.g., a percentage 
of one’s overall or daily grade). (Doyle, 1988, p. 169)   

 
In this work, task is not synonymous with “activity,” which refers to how groups of students are 

organized for working, duration, physical space, type and number of students, the resources used, 

and the expected behavior of teachers and students (Doyle & Carter, 1984).  

 Stein and colleagues’ work on the QUASAR project focused on the nature of 

mathematics tasks, how tasks evolve during classroom instruction, and the implications for 

student learning (Stein et al., 1996; Stein et al., 2000). This extensive body of research built on 

Doyle’s conception of academic task to define “mathematical task” as “a classroom activity, the 

purpose of which is to focus students’ attention on a particular mathematical idea” (Stein et al., 

1996, p. 460). In their definition, even if there are a number of smaller problems or questions, it is 

not considered to be a new task unless the “underlying mathematical idea toward which the 

activity is oriented changes.”  

 Stein et al. (1996) conducted an extensive analysis of mathematical tasks and their 

enactment. They focused on the following features of tasks that had been identified by 

mathematics educators as “important considerations for the engagement of student thinking, 
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reasoning, and sense-making”: the number of solution strategies; the representations that could be 

used to solve the problem; and the communication requirements (i.e., the extent to which it 

demands explanations and/or justifications). A number of significant findings emerged from these 

analyses. One is that different tasks require different types of thinking. That is, the cognitive 

demand (i.e., the kinds of thinking needed to a solve task) varies with the task. Second, the 

cognitive demand of a task can change as is it set up by the teacher and then enacted with 

students. Third, the researchers found that tasks with high cognitive demands are the most 

difficult to implement well: High-level tasks often degrade into lower-level tasks during 

instruction. Finally, their studies have linked maintenance of cognitive demand with student 

learning, with the greatest gains in student achievement occurring in classrooms where high 

levels of cognitive demands were consistently maintained (Stein et al., 2000).  

 Through this work, the researchers distinguished four categories of tasks related to 

cognitive demand—memorization tasks, procedures without connections, procedures with 

connections, and doing mathematics—along with features that help differentiate between types of 

tasks. The types of tasks and their features are captured in their “Task Analysis Guide” (Stein et 

al., 2000), a tool that has proved useful in teacher education and professional development. 

Important to note is that this work is not meant to imply that all instruction should focus on 

cognitively demanding tasks (i.e., procedures with connections or doing mathematics). Stein and 

colleagues emphasize that tasks should be aligned with instructional goals: 

Since the tasks with which students become engaged in the classroom form the basis of 
their opportunities for learning mathematics, it is important to be clear about one’s goals 
for student learning. Once learning goals for students have been clearly articulated, tasks 
can be selected or created to match these goals. Being aware of the cognitive demands of 
tasks is a central consideration in this matching. For example, if a teacher wants students 
to learn how to justify or explain their solution processes, she should select a task that is 
deep and rich enough to afford such opportunities. If, on the other hand, speed and 
fluency are the primary learning objectives, other types of tasks will be needed. (Stein et 
al., 2000, p. 11) 

 
 Implications for mathematical purposing. The research on mathematical tasks informs 

the development of a framework for mathematical purposing in two main ways. First, it identifies 

some of the central features of tasks and instructional activities, on which I based my use of 

“task” and “instructional activity” in the framework. Loosely, by “tasks,” I mean the problems or 

exercises in which students are asked to engage, including the resources available, 

operations/methods to be used, and the end products to be achieved. I distinguish “task” from 
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“instructional activity,” which I use to include the task, as well as what teachers and students do 

with the task as it is enacted.6 

 Second, the considerations in the Task Analysis Guide (Stein et al., 2000, p. 16) point to 

aspects of the work of unpacking a task to determine its mathematical purpose. For example, one 

of the criteria for “doing mathematics” tasks is that they “require students to access relevant 

knowledge and experiences and make appropriate use of them in working through the task.” 

Thus, part of the work of mathematical purposing is articulating any relevant student knowledge 

and experiences and determining how they are connected to the work of the task. One of the 

criteria for “procedures with connections” tasks is that they “usually are represented in multiple 

ways.” This means that an aspect of the work of mathematical purposing is unpacking the 

multiple ways in which a procedure can be represented. 

 I now turn to examples from the instructional design literature. Although this literature 

focuses mainly on the how of designing instruction, examining the components of various models 

of the instructional design process provides insight into the work of mathematical purposing. 

 
Instructional Design 

  Smith and Ragan (2005) define instructional design as “the systematic and reflective 

process of translating principles of learning and instruction into plans for instructional materials, 

activities, information resources, and evaluation” (p. 4). In the instructional design literature, the 

term “instruction” is used broadly and applies to a range of settings, including business, military, 

government, vocational, informal adult education, as well as traditional school settings. The 

instruction is not necessarily “delivered” by a teacher in a classroom, but can refer, for example, 

to the design of online modules or individualized training programs. The scope of the instruction 

can vary as well, from large-scale programs to individual lessons. In K-12 settings, the systematic 

design work of both curriculum developers and teachers can be considered instructional design.  

 A vast number of models have been created to reflect the instructional design process. 

These models are prescriptive, detailing the authors’ take on the steps that should be implemented 

to design instruction. Despite the multitude of models, they are more similar than different 

(Andrews & Goodson, 1980; Tessmer & Wedman, 1990). The core processes included in most 

models can be described by the generic “ADDIE” process: analyze, design, develop, implement, 

                                            
6 Although I further discuss how I am using “instructional activity” in Chapter 6, for purposes of this 
dissertation, it is not necessary to make clear analytic distinctions between “task” and “instructional 
activity.” What matters for this work is that I am using “instructional activity” to include both the task (e.g., 
problem statement, given representations, worksheet, available materials, etc.) that students are engaged in,  
as well as what the students and teachers do as they engage in that task (e.g., work format, language used, 
questions asked, explanations given, solution methods used, etc.). 
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and evaluate (Gagné, Wager, Golas, & Keller, 2005; Gustafson & Branch, 2002). And within 

those processes, most models attend to the following central components: learners, objectives, 

methods, and evaluation (Morrison, Ross, & Kemp, 2007). The variation tends to be in the 

number of phases included in the model and its graphic representation (Gagné et al., 2005).  

 Because my aim in reviewing the instructional design literature is to better understand the 

work of mathematical purposing (not how it is done), I do not discuss the processes promoted by 

the various models. Instead, I look across selected models to describe and compare what they 

attend to with respect to the four central components (learners, objectives, methods, and 

evaluation). I chose models to review using a taxonomy proposed by Gustafson and Branch 

(2002), which classifies instructional design models into three categories: classroom oriented, 

product oriented, and system oriented. Classroom-oriented models are intended for individual 

classroom instruction. I examined two classroom-oriented models: the Gerlach and Ely (1980) 

model and the Reiser and Dick (1996) model. Systems-oriented models are typically used to 

develop an entire course or curriculum. I examined two systems-oriented models: one from 

Gagné et al. (2005) and the other from Smith and Ragan (2005). I did not review any product-

oriented models because these are typically used to develop short, technologically intensive 

modules that are not implemented by a teacher.  

 Learners. Each of the models I reviewed includes a step about assessing the entering 

characteristics of the learners. For instance, Smith and Ragan (2005) identify four types of learner 

characteristics that should be analyzed: cognitive (both general characteristics and specific prior 

knowledge); physiological; affective; and social. Similarly, Reiser and Dick (1996) suggest 

finding out about students’ general ability level; the skills and knowledge they bring to the 

instructional situation; and the attitudes students have toward both what is being taught and 

learning in general. Information about the entering characteristics of the learners informs the type 

and design of instructional strategies. It might impact, for example, the pacing, content, number 

and difficulty of examples and practice exercises, amount of structure, grouping, or vocabulary 

used (Smith & Ragan, 2005). Analyzing entering characteristics of the learners is different then 

identifying prerequisite knowledge or skills needed to achieve a particular learning objective, 

which is also a part of each model.  

 Objectives. Each model includes the specification of learning outcomes as a key step in 

the design process. Outcomes are usually nested from general to specific. With the exception of 

Gerlach and Ely (1980), the more general outcomes are called “goals” (usually modified, such as 

“learning goals” or “instructional goals”) and the more specific outcomes called “objectives” 

(e.g., “learning objectives,” “performance objectives,” “instructional objectives,” or “behavioral 
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objectives”). Gerlach and Ely make a deliberate choice to use only one term, “instructional 

objective,” for all sizes of learning outcomes; however, they do discuss sub-objectives or “en 

route” objectives. Thus, although the terminology is not consistent across models, the 

hierarchical, nested, and connected nature of learning outcomes of increasing specificity is seen 

in each. For example, course goals/objectives are elaborated by unit goals/objectives, which are 

elaborated by lesson goals/objectives. Even at the lesson level there are usually a number of 

smaller goals/objectives. Although understanding this relationship between general goals and 

specific objectives is important, Gagné et al. (2005) notes that the links are often missing:  

One source of complexity in defining educational goals arises form the need to translate 
goals from the very general to the increasingly specific. Many layers of such goals would 
be needed to be sure that each topic in the curriculum actually moves the learner a step 
closer to the distant goal. Probably, this mapping has never been done completely for any 
curriculum. Thus, there tend to be large gaps from general goals to the specific objectives 
for courses in the curriculum. A major problem remains—the need to define course 
objectives in the absence of an entire network of connections between the most general 
goals and the specific course objectives. (p. 57) 
 

 The instructional design models distinguish among different types of learning objectives, 

most using a taxonomy based on Gagné’s (1985) five categories of learning outcomes: 

intellectual skill, cognitive strategy, verbal information, attitude, and motor skill. Once a goal is 

specified, most of the models include a stage of decomposing a larger goal into subcomponents, 

often by analyzing the possible steps taken to complete a task and/or the perquisite knowledge 

needed at each step.  

 Each model stresses the importance of specifying goals and objectives in terms of what 

students will learn or be able to do as a result of instruction, not what the teacher or students will 

do during instruction. Although general goals can be less precise, each model specifies the 

essential components of a well-written objective. The number of components varies with the 

particular model, but all objectives include a description of: (1) the observable student behavior 

or action that will demonstrate learning; (2) the conditions under which the behavior/action is to 

occur; and (3) the standard against which the behavior/action will be evaluated. Thus, when 

writing objectives, words such as “appreciate,” “know,” and “understand” are considered 

ambiguous because it is not clear what is meant by these verbs and they cannot be directly 

observed. Instead, one must determine what it would look like (e.g., what students would be able 

to do) if they appreciated, knew, or understood.  

 Smith and Ragan (2005) acknowledge that writing specific, observable objectives has 

been the subject of controversy: 
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Many educators are opposed to writing specific statements of learning outcomes because 
they believe it leads to lower levels of learning. This inference may have developed 
because of the common practice of writing objectives that describe declarative 
knowledge that in no way represents the real goal of instruction, which is often a 
problem-solving goal. This trivialization of objectives is not the fault of the process of 
writing goals, but the expertise, creativity, and perseverance of the designer. It is more 
difficult to write good goals for high-level cognitive and affective outcomes, but not 
impossible. (p. 78) 
 

The proponents of instructional design also argue that the clarity attained from writing learning 

outcomes as specific statements of observable behaviors helps to articulate the meaning of 

broader goals and to focus instructional activities and assessments.   

 Methods and evaluation. Neither the specification of learning objectives nor the 

identification of prerequisite knowledge dictates an instructional approach or a method of 

evaluation. In fact, there are usually many different ways to obtain and assess a particular 

learning outcome. Analyzing the different instructional methods and types of assessments 

discussed in each of the instructional design approaches is beyond the scope of this dissertation. 

However, the important idea to take away from this part of the design process is the need for a 

“match” between the goals, the instructional strategy, and the method of evaluation (Smith & 

Ragan, 2005). 

 Implications for mathematical purposing. In many ways, the instructional design 

literature is far removed from a framework for mathematical purposing. Its main focus is to 

describe how to design instruction through the development of prescriptive models of and 

techniques for the design process. The instruction being designed is broadly conceived and 

attempts to apply across content areas, thus the models do not take into account the nuances of 

mathematics instruction. And, both the method of articulating objectives by decomposing a task 

into subtasks and the focus on specifying only observable objectives skew the development of 

learning goals toward procedural fluency over other strands of mathematical proficiency. 

 Despite these issues, the instructional design literature offers a number of insights into the 

work of mathematical purposing. One implication for the work of mathematical purposing is the 

importance of considering the learners—in particular, what they are bringing to instruction and 

how that influences the nature of the instructional activity. The literature also makes a useful 

distinction between the prior knowledge of the learners and the content prerequisites of the 

instructional activity. Anther important idea is that learning goals/objectives are of different types 

and grain sizes and that it is important to understand the links between broader and more specific 

goals. There also needs to be a “match” between goals, instructional activities, and assessments.   
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 As mentioned in Chapter 1, understanding this “match” has interesting implications for 

teaching with curriculum materials. Based on the instructional design literature, it can be assumed 

that curriculum developers understand the intended match between the activities and student 

learning goals. The choices developers have made, however, often remain hidden from teachers 

as they interpret and adapt the materials for use in their classroom (Ball & Cohen, 1996; Ben-

Peretz, 1990). Davis and Krajcik (2005) point to this problem in their discussion of “educative 

curriculum materials”—i.e., materials designed to promote teacher learning (in addition to 

promoting the learning of the K-12 students). They synthesize from the literature five “high-level 

guidelines” for the role curriculum materials could play in teacher learning. They also propose a 

set of design heuristics that suggest kinds of information that could be provided to teachers, how 

materials could help teachers understand the rationales behind particular decisions, and how 

teachers could use these ideas in practice. In addition to highlighting the importance of 

connecting an instructional activity to its instructional purpose, Davis and Krajcik’s guidelines 

and design heuristics point to aspects of the work of mathematical purposing—for example, 

considering how to relate units across the school year, analyzing how students typically think 

about a particular topic, and analyzing instructional representations. 

 I now turn to another line of work that focuses specifically on the design and evaluation 

of mathematics instruction: criteria and protocols for curriculum analysis and lesson planning. 

 
Criteria and Protocols for Curriculum Analysis and Lesson Planning  

 Another line of work that helps unpack the work of mathematical purposing is curriculum 

analysis and lesson planning. As with the instructional design literature, criteria and protocols for 

curriculum analysis and lesson planning are typically prescriptive7; however, descriptions of the 

work of mathematical purposing can be abstracted from the steps prescribed. I discuss three well-

known, research-based protocols below. The first is Project 2061’s criteria for curriculum 

analysis. The others are both lesson planning protocols used in teacher education: the lesson 

                                            
7 A notable exception are the non-prescriptive curriculum analysis tools presented in Ben-Peretz’s (1990) 
The Teacher-Curriculum Encounter: Freeing Teachers from the Tyranny of Texts. A main purpose of these 
tools is to help teachers interpret the intentions/orientations of curriculum materials. Some of the 
instruments simply provide methods of analysis, and teachers select the “internal” constructs to use for 
evaluation. Other instruments, including a scheme for analyzing teacher’s guides, offer “external” schemes 
that are meant to be adapted to teachers’ interests. Although the main dimensions—subject matter, learners, 
milieu, and teachers—are useful, because the teacher’s guide analysis scheme mainly includes categories 
that do not help unpack the work of mathematical purposing (e.g., “degree of teacher autonomy” and 
“consideration of teachers’ needs”), I do not discuss this analysis scheme in detail. However, I did find that 
it suggested two components of the work of mathematical purposing: understanding the nature of the 
mathematics intended to be taught and considering what the methods of inquiry imply to students about the 
nature of mathematics and what it means to engage in mathematical work. 
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planning process presented in Van de Walle’s widely used elementary mathematics methods text 

and Smith et al.’s Thinking Through a Lesson Protocol. I first list the components of each 

protocol and then discuss how this line of work informs the development of a framework for 

mathematical purposing. 

 Project 2061’s criteria for curriculum analysis. Project 2061, a long-term math and 

science program of the American Association for the Advancement of Science (AAAS), has 

developed a curriculum-materials analysis approach that uses research-based criteria to examine 

both the content and instructional design of textbooks (AAAS, 2006). The first stage in the 

analysis protocol is the identification of learning goals. Goals are taken from a variety of sources, 

including NCTM standards documents and state curriculum frameworks. The importance of 

specific learning goals is emphasized: “These goals must be explicit statements of what 

knowledge and skills students are expected to learn, and they must be precise. Vague statements 

such as ‘students should understand fractions’ are not adequate” (AAAS, 2006). The next stage in 

the process examines the alignment between learning goals and instruction using the following 

research-based criteria: 

 
Category I: Identifying a Sense of Purpose 
I.1  Conveying unit purpose 
I.2  Conveying lesson purpose 
I.3  Justifying sequence of activities 
 

Category V: Promoting Student Thinking 
about Mathematics 
V.1  Encouraging students to explain their 

reasoning 
V.2  Guiding interpretation and reasoning 
V.3  Encouraging students to think about what 

they’ve learned 
Category II: Building on Student Ideas about 
Mathematics 
II.1  Specifying prerequisite knowledge 
II.2  Alerting teacher to student ideas 
II.3  Assisting teacher in identifying ideas 
II.4  Addressing misconceptions 

Category VI: Assessing Student Progress in 
Mathematics 
VI.1  Aligning assessment 
VI.2  Assessing through applications 
VI.3  Using embedded assessment 
 

Category III: Engaging Students in 
Mathematics 
III.1  Providing variety of contexts 
III.2  Providing firsthand experiences 
 

Category VII: Enhancing the Mathematics 
Learning Environment 
VII.1  Providing teacher content support 
VII.2  Establishing a challenging classroom 
VII.3  Supporting all students 

Category IV: Developing Mathematical Ideas 
IV.1  Justifying importance of benchmark ideas 
IV.2  Introducing terms and procedures 
IV.3  Representing ideas accurately 
IV.4  Connecting benchmark ideas 
IV.5  Demonstrating/modeling procedures 
IV.6  Providing practice 
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 In mathematics, these criteria have been applied to a range of algebra and middle grades 

mathematics teacher’s guides and student texts. The ratings of various materials that resulted 

from the analyses are not pertinent to this dissertation, but the analysis process and criteria offer 

insights into the work of mathematical purposing. For example, Category I suggests that the 

sequence of activities can convey information about the instructional purpose. This implies that 

the work of mathematical purposing involves understanding how the sequence of instruction is 

intended to support and develop students’ engagement with the intended mathematics.  

 Lesson planning protocols. In their teacher education programs, preservice teachers are 

typically given formats or protocols to follow when planning lessons. The formats and protocols 

vary widely in detail and structure (Cathcart, Pothier, Vance, & Bezuk, 2000). I focus on two 

protocols that, rather than specify a particular format, attempt to detail considerations that should 

be made when planning a mathematics lesson. The first is from a widely used mathematics 

methods textbook, Elementary and Middle School Mathematics: Teaching Developmentally (Van 

de Walle, 2007), and the second is the Thinking Through a Lesson Protocol (TTLP), which was 

developed by Smith and colleagues at the University of Pittsburgh and is used with both 

preservice and inservice teachers around the United States (Hughes & Smith, 2004; Smith & Bill, 

2004). Both protocols are geared toward a specific problem-based teaching approach in which 

students are presented with a cognitively demanding task (Stein et al., 2000), are given time to 

explore the problem independently or in small groups, and then share and discuss their solutions 

as a whole class. I present each protocol below and then highlight features of the protocols that 

contribute to an understanding of the work of mathematical purposing. 

 Van de Walle (2007, p. 62) presents nine steps for planning a lesson, organized into three 

main categories: 

Content and Task Decisions Teaching Actions Completed Plan 
1. Determine the 

mathematics. 
2. Think about what your 

students bring to the 
mathematics. 

3. Design or select a task. 
4. Predict students’ 

approaches to a solution. 

5. Articulate student 
responsibilities. 

6. Plan the BEFORE 
activities. 

7. Plan the DURING hints 
and extensions. 

8. Plan the AFTER 
discussions. 

9. Write out the plan. 
• Mathematical goals 
• Tasks and expectations 
• BEFORE activities 
• DURING hints/extensions 
• AFTER format 
• Assessment notes 

 

 “Before,” during,” and “after” reflect the three phases of the ascribed problem-based 

teaching approach (i.e., set up and launch the problem, monitor students’ independent work, and 

orchestrate a whole-class discussion of the problem). Van de Walle notes that the first four steps 

are the most crucial, as “decisions made here will define the content and the task that your 
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students will work on” (p. 61). The tasks used in a lesson can be created by the teacher or selected 

from a textbook. In addition to the general lesson planning steps above, Van de Walle offers an 

“activity evaluation and selection guide” to help teachers analyze textbook tasks: 

Step 1: How is the Activity Done? 
• Actually do the activity. Try to get “inside” the task or activity to see how it is 

done and what thinking might go on. 
• How would children do the activity or solve the problem? 

o What materials are needed? 
o What is written down or recorded? 
o What misconceptions may emerge? 

 
Step 2: What is the Purpose of the Activity? 

• What mathematical ideas will the activity develop? 
o Are the ideas concepts or procedural skills? 
o Will there be connections to other related ideas? 

 
Step 3: Will the Activity Accomplish Its Purpose? 

• What is problematic about the activity? Is the problematic aspect related to the 
mathematics you identified in the purpose? 

• What must children reflect on or think about to complete the activity? 
• Is it possible to complete the activity without much reflective thought? If so, can 

it be modified so that students will be required to think about the mathematics? 
 
Step 4: What Must You Do? 

• What will you need to do in the before portion of your lesson? 
o How will you activate students’ prior knowledge? 
o What will the students be expected to produce? 

• What difficulties might you anticipate seeing in the during portion of your 
lesson? 

• What will you want to focus on in the after portion of your lesson? (Van de 
Walle, 2007, p. 52) 

  
 The Thinking Through a Lesson Protocol (TTLP) shares a number of features with the 

Van de Walle approach. It is designed to move teachers “beyond the structural components of a 

typical lesson plan and provides the opportunity to focus on specific ways in which the teacher 

can advance students’ mathematical thinking during a lesson” (Hughes, 2006, pp. 65-66). The 

protocol provides a series of questions for teachers to consider as they plan to implement a high-

level mathematics task with their students: 

Part 1:  Selecting and Setting up a Mathematical Task 
• What are your mathematical goals for the lesson (i.e., what is it that you want 

students to know and understand about mathematics as a result of this lesson)?  
• In what ways does the task build on students’ previous knowledge? What 

definitions, concepts, or ideas do students need to know in order to begin to work 
on the task? What questions will you ask to help students access their prior 
knowledge? 

• What are all the ways the task can be solved? 
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o Which of these methods do you think your students will use?  
o What misconceptions might students have? 
o What errors might students make? 

• What are your expectations for students as they work on and complete this task? 
o What resources or tools will students have to use in their work? 
o How will the students work—independently, in small groups, or in 

pairs—to explore this task? How long will they work individually or in 
small groups/pairs? Will students be partnered in a specific way? If so in 
what way? 

o How will students record and report their work? 
• How will you introduce students to the activity so as not to reduce the demands 

of the task? What will you hear that lets you know students understand the task? 
 

Part 2:  Supporting Students’ Exploration of the Task  
• As students are working independently or in small groups: 

o What questions will you ask to focus their thinking?  
o What will you see or hear that lets you know how students are thinking about 

the mathematical ideas?  
o What questions will you ask to assess students’ understanding of key 

mathematical ideas, problem solving strategies, or the representations? 
o What questions will you ask to advance students’ understanding of the 

mathematical ideas? 
o What questions will you ask to encourage students to share their thinking 

with others or to assess their understanding of their peer’s ideas?  
• How will you ensure that students remain engaged in the task?  

o What will you do if a student does not know how to begin to solve the task?  
o What will you do if a student finishes the task almost immediately and 

becomes bored or disruptive? 
o What will you do if students focus on non-mathematical aspects of the 

activity (e.g., spend most of their time making a beautiful poster of their 
work)? 

 
Part 3:  Sharing and Discussing the Task  

• How will you orchestrate the class discussion so that you accomplish your 
mathematical goals? Specifically: 

o Which solution paths do you want to have shared during the class 
discussion? In what order will the solutions be presented? Why?  

o In what ways will the order in which solutions are presented help develop 
students’ understanding of the mathematical ideas that are the focus of your 
lesson? 

o What specific questions will you ask so that students will: 
 make sense of the mathematical ideas that you want them to learn? 
 expand on, debate, and question the solutions being shared? 
 make connections between the different strategies that are presented? 
 look for patterns? 
 begin to form generalizations? 

• What will you see or hear that lets you know that students in the class understand the 
mathematical ideas that you intended for them to learn? 

• What will you do tomorrow that will build on this lesson? 
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 Implications for mathematical purposing. These protocols help identify a number of 

practices to include in a framework for mathematical purposing. Although the two lesson 

planning protocols are focused on a particular approach to teaching mathematics, many of the 

considerations and practices apply to lessons of any type. Like the instructional design literature, 

there are steps in all three related to identifying goals or purposes, although in the lesson planning 

protocols there is less attention to having goals of different grain sizes and types. All three stress 

the importance of aligning enactment with goals, and the lesson planning protocols identify 

moves teachers can make during a lesson to keep it “on track” (e.g., planning questions that get 

students to focus on key ideas). Each has steps that involve attending to student thinking (e.g., 

likely solution strategies, possible misconceptions), their prior knowledge, and the prerequisite 

knowledge for the task. 

 The lesson planning protocols include steps that help teachers get “inside” the task (e.g., 

solving the problem themselves). However, it is not always clear from the protocol why teachers 

are doing these steps or how they are supposed to use the resulting information in their planning 

or instruction. Furthermore, the relationship among the steps is masked by the linear nature of the 

protocols, and therefore, the protocols do not capitalize on the fact that, in practice, all of the 

steps are interdependent and mutually informing. For example, determining all the different 

methods that can be used to solve a task or sequencing solution methods for discussion can help 

determine the mathematical goals of the task. Instead, these protocols simply contain a step that 

directs teachers to identify the goals, but offer no suggestions for how to figure out what those 

goals should be. 

 The instructional design literature and lesson planning protocols offer models for what 

instructional designers and teachers ought to do when they design instruction. Next, I turn to 

literature aimed at finding out what classroom teachers actually do when they plan. 

 
Research on Teacher Planning 

 Empirical studies of teacher planning began in the 1970s. These studies were typically 

descriptive, seeking to document teachers’ planning practices using observations, surveys, 

interviews, think-alouds, analyses of their written plans, stimulated recall, and ethnography 

(Clark & Peterson, 1986). The studies found a variety of types of teacher planning, mostly 

corresponding to different grain sizes of instruction. For example, Yinger (1980) describes five 

levels of planning in which teachers engage: yearly planning, term planning, unit planning, 

weekly planning, and daily planning. Like the nested nature of classroom instruction (e.g., lessons 

in weeks in units in years), the different types of planning are not done in isolation, but are nested 
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and interact with each other (Clark & Peterson, 1986). Early research on planning was usually 

conducted in isolation from other aspects of teaching practice, but later was included in other 

studies, such as those about knowledge transformation or in expert-novice comparisons8 (Clark & 

Dunn, 1991).  

 This early research focused mainly on the planning practices of experienced teachers; 

however, there was typically no attempt to evaluate the practice of these teachers (e.g., whether 

their planning practices led to higher-quality instruction or student learning). Instead, many of 

these descriptive studies seemed aimed at disproving the popular linear model of planning most 

often associated with Tyler (1949). This rational, objectives-based model depicts lesson planning 

as a four-step process: (1) specifying behavioral objectives; (2) choosing appropriate learning 

activities; (3) organizing and sequencing the chosen activities; and (4) selecting evaluation 

procedures.9   

 Studies of teachers’ planning practices overwhelmingly found that experienced teachers 

do not follow this linear model—both the steps teachers take and the order in which they 

complete the steps are different. Many studies found that objectives are seldom the starting point 

for teachers during lesson planning; in fact, many experienced teachers do not even write down 

objectives because they feel the instructional purpose is inherent in the activity itself (Borko & 

Niles, 1987; McCutcheon, 1980, 1981). Instead, teachers typically begin by identifying the 

subject matter content and an activity to be used, and then consider aspects such as materials, 

goals, objectives, and assessments (Borko & Niles, 1987; Clark & Peterson, 1986; Clark & 

Yinger, 1979; Peterson, Marx, & Clark, 1978; Yinger, 1980). Furthermore, teachers’ planning is 

rarely linear, and alternative models based on empirical studies reflect the cyclic nature of the 

planning process (Clark & Yinger, 1979; Yinger, 1980). As mentioned above, although these 

models focus on the how of designing instruction, information about the what of mathematical 

purposing can be seen in the components of the models. I describe the components of a few key 

models below.   

 Yinger (1979, 1980) observed an elementary teacher for five months in an effort to study 

planning as it “occurs naturally in the classroom.” He characterized two central aspects of the 

teacher’s planning: planning for instructional activities and the use of instructional routines. 

When planning instructional activities, the teacher made decisions with respect to seven features: 

location (i.e., the physical spot in the classroom); structure and sequence; duration; participants; 

acceptable student behavior; teacher’s instructional moves; and content and materials. Over time, 

                                            
8 I do not review such studies here, but some are included in later sections of this chapter. 
9 This linear model is also reflected in many of the models of instructional design. 
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many of the decisions for particular activities became routinized through four types of routines: 

activity routines, instructional routines, management routines, and executive planning routines. 

The use of routines simplified the teacher’s planning work; often planning boiled down to the 

selection and sequencing of various routines. Decisions about content and materials, however, 

were aspects of activity planning that did not become routinized (Yinger, 1979).   

 Shavelson’s (1983) model characterizes teacher’s plans as “scripts” for carrying out the 

interactive part of teaching and identifies the “task” as the basic instructional unit of planning. 

Shavelson synthesized from the literature six elements of a task that teachers plan: (1) the subject 

matter to be taught; (2) the materials students will work with; (3) the activity (i.e., what the 

teacher and students will do in the lesson, including sequencing, pacing, and timing); (4) the 

teacher’s goals, or general aims for the task; (5) the students’ abilities, needs, and interests; and 

(6) the social-cultural context, which includes the classroom community and how students will be 

grouped during the lesson (p. 402). Like Yinger, Shavelson includes a time dimension in his 

conception of planning. One time-related issue is the nested nature of planning (e.g., yearly, unit, 

etc.). Another is that planning decisions made early in the year impact the rest of the year’s 

instruction—for example, once beginning-of-the-year, long-term decisions have been made, 

lesson planning often involves organizing tasks within this framework. 

 May (1986) proposed a “practical planning model” to reflect how experienced teachers 

plan. Her model places instructional activities and their flow at the heart of planning, influenced 

by the simultaneous consideration of various elements such as content, perceived student needs, 

perceived student interests, and curriculum resources. Her model does not depict planning as a 

step-by-step process. Instead it is descriptive, showing different types of considerations without 

proposing an order for their completion.  

 Studies of teacher planning repeatedly found that teachers’ written plans do not reflect 

the thinking that occurs during their preactive work and that not all of teacher’s planning occurs 

during structured planning times (Clark & Peterson, 1986). To find out more about teachers’ 

“unstated plans,” Morine-Dershimer (1978) interviewed teachers at the beginning of the school 

day about that day’s reading lesson. Although the teachers rarely mentioned student ability, 

specific learning objectives, teaching strategies, or seating arrangement in their initial general 

response about their plans for the day, they did have ready responses when probed about these 

specifics. This implies that teachers do think about these aspects of instruction, even if they are 

not included in their stated plans. 

 Zahorik (1970) investigated the impact of planning on teachers’ sensitivity to students 

during instruction. He found significant differences between the six teachers who were given a 
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structured lesson plan two-weeks in advance and the six who were told immediately before the 

lesson what they were supposed to teach. The teachers who planned their lessons were less 

sensitive to students during their lessons. For example, they asked fewer open-ended questions 

and more frequently tried to shape student responses to reflect their own views. These findings—

though only exploratory—have important (potentially negative) implications for the work of 

mathematical purposing because they could suggest that “increased mathematical purposing” 

could make teachers less responsive to students. However, Zahorik offers a more promising (and 

practical) suggestion in light of his results: that teachers continue to identify goals for student 

learning, but also plan to be responsive and sensitive to students’ contributions: 

Retain the goals-experiences-evaluation type of planning or use any other type of 
planning that has pupil learning as a basis, but add to it a plan that focuses directly on 
teacher behaviors. That is, along with the typical plan, which can be described as a plan 
for pupil learning, develop a teaching plan that identifies types and patterns of teacher 
behaviors to be used during the lesson. In relation to teacher behavior that is sensitive to 
pupils, the teacher would identify a group of behaviors such as reflecting pupils’ remarks, 
and deciding when and in what order to use them. The teacher would make teaching 
behavior that is sensitive to pupils and many other teaching behaviors conscious, 
purposeful, controlled actions. In short, this suggestion is to broaden the scope of 
planning to include specific teacher behaviors. (pp. 150-151) 
 

 Experience has been found to play a major role in shaping the nature of teachers’ 

planning. Borko and Niles (1987) considered the research on planning in relation to Feiman-

Nemser’s (1983) developmental model of teaching by asking experienced teachers how their 

planning practices had changed since they began teaching. The teachers responded that they now 

had a better understanding of the curriculum and needs of individual students and thus were better 

able to plan for individual students and groups. In addition, the teachers reported an improvement 

in their ability to teach to long-range goals. When asked what they tell student teachers about 

planning, the teachers identified “knowing what you are going to teach, the entering knowledge 

of those you are going to teach, and where you are headed” as the three most important variables 

in the planning process (Borko & Niles, 1987, p. 180). 

 Interestingly, the complicated work of planning with curriculum materials was not 

recognized in this early planning literature. Researchers thought that there was nothing to study 

about teacher planning for subjects that rely heavily on textbook materials because “planning is 

largely eliminated by the publishers and authors of these systems” (Clark & Yinger, 1979, p. 5). 

For example, Yinger (1979) argued that during textbook teaching, because a teacher relies on the 

curriculum materials to specify the sequence, duration, and structure of the lesson, “textbook 

teaching could virtually eliminate the need for preactive planning in some classrooms” (p. 168). 
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As the research on curriculum use described at the beginning of this chapter has shown, this is 

clearly not the case. 

 Implications for mathematical purposing. The research on teacher planning, unlike the 

literature on instructional design and protocols for lesson planning, is primarily descriptive rather 

than prescriptive. One of the main findings of this research is the rejection of the linear planning 

model as a reflection of how teachers plan in practice10—although, what teachers do do when 

they plan remains underspecified. The research on teacher planning does, however, point to a 

number of important considerations and factors to include in a framework for the work of 

mathematical purposing. For example, the literature identifies central features of instructional 

activities that need to be considered (e.g., Yinger’s (1979, 1980): location; structure and 

sequence; duration; participants; acceptable student behavior; teacher’s instructional moves; and 

content and materials).11  

 The planning literature also suggests that the work of mathematical purposing includes a 

time dimension. As discussed in the instructional design section, the nested nature of instruction 

implies that goals are similarly nested and, therefore, are of different grain sizes and need to be 

considered over time. In addition, instruction itself occurs over time and builds on past 

experiences. Thus, once classroom routines have been established, they do not need to be re-

planned and, in fact, can be thought of as “doing” some of the design work. Thus, established 

classroom routines and long-term planning can be viewed as resources over which the design of 

instruction is distributed, which further elaborates the distributed perspective on the design of 

instruction. However, what is not discussed in this literature, and seems important for 

mathematical purposing, is a consideration of if and how established routines support or conflict 

with the intended mathematical point. 

 Another central finding from this research is that, in addition to identifying goals for 

student learning, it is also critical to plan specific teacher moves that support the desired type of 

instruction. Although Zahorik (1970) focused on planning to be responsive to students, for 

mathematical purposing, this can be translated into the need to detail specific teacher moves that 

help students engage with the intended mathematical ideas and practices. In fact, examples of 

these types of moves were seen in the lesson planning protocols discussed above. For example, 

Smith et al.’s (2004) Thinking Through a Lesson Protocol directs teachers to plan “specific 

questions” to ask “so that students will: make sense of the mathematical ideas that you want them 

                                            
10 In fact, it is not what instructional designers do in practice either (Tessmer & Wedman, 1990). 
11 These features resonate with Doyle’s (1986, 1998; Doyle & Carter, 1984) components of tasks and 
activities discussed earlier. 
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to learn; expand on, debate, and question the solutions being shared; make connections between 

the different strategies that are presented; look for patterns; and begin to form generalizations.” 

Important for mathematical purposing is that the types of moves specified would depend on the 

mathematics to be taught. That is, different sorts of teacher moves orient students toward different 

mathematical work. 

 Next, I review the literuatre on lesson study, a type of professional development based on 

carefully designing, implementing, and revising lessons. The discussions in which teachers 

engage and the plans they develop through this process point to key components of the work of 

mathematical purposing. 

 
Lesson Study  

 “Lesson study” is a Japanese form of professional development and school improvement 

in which teachers collaboratively plan, implement, reflect on, and revise a lesson (Fernandez, 

2002; Fernandez & Yoshida, 2004; Lewis, 2002; Stigler & Hiebert, 1999). Throughout the 

process, there is an “unrelenting focus on student learning” (Stigler & Hiebert, 1999). Specific 

student learning goals are explicitly stated and used in both the design of the lesson and its 

evaluation. A broad goal or theme is selected (e.g., to develop a love of learning), along with 

specific, often more content-focused, goals for the particular lesson. Lewis (2002) identifies four 

levels of goals that teachers simultaneously attend to during lesson study:  

• Goals specific to the lesson; 
• Goals specific to the unit; 
• Broad goals of the subject area; and 
• Long-term goals for student development. (p. 61) 

 
Lewis also provides a list of questions to guide planning during lesson study. These questions 

point to components of the work of mathematical purposing: 

1. What do students currently understand about this topic? 
2. What do we want them to understand at the end of the lesson? 
3. What is the “drama,” or sequence of questions and experiences that will propel 

students from their initial understanding to the desired understanding? 
4. How will students respond to the questions and activities in the lesson? What 

problems and misconceptions will arise? How will the teacher use these ideas and 
misconceptions to advance the lesson? 

5. What will make this lesson motivating and meaningful to students? 
6. What evidence about student learning, motivation, and behavior should be gathered 

in order to discuss the lesson and our larger research them?  What data collection 
forms are needed to do this? (p. 64)  

 
 Fernandez and Yoshida (2004) and Lewis (2002) both provide examples of lesson plans 

from Japanese lesson studies. Although the formats differ, the components included are similar: 
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The lesson plans contain detailed information about the unit in which the lesson is situated, 

including a description of the unit’s mathematical terrain and main instructional activities. Plans 

list unit goals that articulate the ideas students will understand, skills and procedures students will 

be able to do, and/or attitudes and dispositions students will exhibit from engagement in the unit’s 

activities. Plans also describe the particular students in the class, both in general and with respect 

to the mathematics of the unit. These descriptions include what students already have learned and 

can do, how they typically solve the types of problems in the unit or lesson, what difficulties they 

have, and their attitudes toward math. The sequence of lessons for the unit is outlined; each 

lesson’s goals and activities explained. 

 Descriptions of the unit are followed by details about the particular lesson under study. 

The specific goals for the lesson are stated. Lesson goals are narrower than unit goals, but like 

unit goals, can range in content, from concepts to be learned to dispositions to be fostered. For 

example, the lesson goals for a first-grade mathematics lesson were organized into four types: 

1. Interest • Attitude:  
(How well do the students) attempt to progress in calculating subtraction while 
using concrete objects. (How well do the students) attempt to present their ideas. 

2. Way of Thinking: 
Ability to solve problems by using previously learned concepts and/or the idea of 
breaking numbers into tens. 

3. Expression • Processing of Concepts:  
Be able to do the calculation of “12 - 7.” 

4. Knowledge • Skills:  
Understand the meaning and method of the calculation of “12 - 7.” (Fernandez & 
Yoshida, 2004, p. 78)  

  
 The lesson’s goals are followed by an elaborate plan for the lesson’s progression. The 

instructional activities and steps to implement them are listed, often with exact wording for the 

tasks and questions to be posed by the teacher. Possible student responses to tasks and questions 

are anticipated, along with possible teacher responses. There are notes for the teacher providing 

information such as the purpose of particular parts of the lesson, what to watch for as students 

work, things to point out or remind students of, what a particular task or question is designed to 

bring up, and what order to have students discuss solutions. Also included is how each part of the 

lesson will be assessed. These evaluation questions are often mapped back to the goals of the 

lesson.  

 The plans include explicit comments about the thinking behind the design of both the 

lesson and unit. These comments reflect the detailed discussions in which teachers engage as they 

plan the lesson. Discussions focus on issues such as: why the problems and the particular 

numbers were selected (based on both mathematical and student-focused considerations); and 



 43 

what manipulatives should be provided, including what mathematics each highlights, what 

solution methods are afforded, what residue is left, as well as managerial things like pieces not 

getting lost, ease of use, and number available. Teachers consider how students will be 

encouraged to discuss their work; whether students should work individually or in groups; and 

how to conclude the lesson. They discuss how to use the board space. All of their decisions relate 

to the lesson’s goals. Although many decisions are reflected in the lesson plan, even with the 

extent of the elaboration, the written plan cannot reflect all of the detailed design work in which 

teachers engage while planning the lesson. And, interestingly, routine activities (like bowing at 

the opening of the lesson) were not discussed or included in the plan (Fernandez & Yoshida, 

2004). 

 When asked why they developed such a detailed plan, the first-grade teachers in 

Fernandez and Yoshida’s (2004) study heralded the benefits of anticipating student solutions and 

how to respond to them: “Anticipations prepare the teacher for understanding student responses 

and solutions that occur in the classroom and equip the teacher with appropriate reactions to 

these….Providing this detail in the lesson plan prepares the teacher to make use of student 

responses to lead the class to the desired outcome in terms of their thinking and understanding” 

(p. 46). 

 Implications for mathematical purposing. The explicit attention to learning goals in the 

lesson study process make this literature a particularly fruitful site for unpacking aspects of the 

work of mathematical purposing, and the discussion above identifies many practices and 

considerations to include in the framework. For example, the lesson study literature unpacks 

different types of learning goals to attend to (e.g., ideas, procedures and skills, attitudes and 

dispositions). These different types of learning goals resonate with the goal of mathematical 

proficiency and show that all of the strands of mathematical proficiency can be worked toward 

even in a single lesson. Lesson study also attends to student motivation. But unlike many 

motivation-inspired attempts to “make math fun” that essentially remove the mathematics from 

the activity (Heaton, 1992; Hill et al., 2008), lesson study ties student motivation directly to the 

mathematical learning goals. 

 Lesson study also helps unpack what it means to attend to nested goals of different grain 

sizes, which the literature reviewed in the sections above also suggested is an important 

component of the work of mathematical purposing. Even in the plan for an individual lesson, 

there is explicit attention to the broader unit goals, as well as to the sequence of lessons and the 

location of the particular lesson in the unit. This points to another important feature: that the 

lesson (as well as the sequence of lessons) has a “drama.” In lesson study, specific attention is 
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paid to how the lesson engages and progresses students from where they enter the lesson to where 

it is hoped they will be at its conclusion. There is also a plan for how student responses will be 

used to advance the lesson—not just advance students toward the learning goals, but also to 

advance the lesson’s story. 

 In addition to attending to broader goals and their progression, in lesson study, each detail 

of the lesson has a specific purpose. For example, rationales are provided that explain what a 

particular problem or question is intended to bring up or what mathematics is intended to be 

highlighted by a representation. This suggests the importance of detailing instruction (e.g., 

specifying the exact wording of tasks and questions; the numbers used in problems and examples; 

how ideas will be recorded on the board; etc.) and identifying how these details are designed to 

engage students with the intended mathematics as components of mathematical purposing. 

 The last line of research I review is studies of instruction. This literature analyzes and 

unpacks various aspects of the work of teaching, sometimes from the teacher’s perspective and 

sometimes from the researcher’s. Both types of analytic accounts of practice offer important 

insights into the work of mathematical purposing. 

 
Studies of Instruction  

 Once I began reading studies of instruction through the lens of articulating the 

mathematical point and orienting the instruction, I could “see” the work of mathematical 

purposing in almost every study. Reviewing all studies of instruction is beyond the scope of this 

dissertation; therefore, I focus on selected research that either specifically aims to unpack the 

work of mathematics teaching or that has an explicit focus on goals. I begin with the work of 

three scholars (Magdalene Lampert, Deborah Ball, and Ruth Heaton) who have studied their own 

practice to unpack both the work of mathematics teaching and its knowledge demands. I then turn 

to studies of instruction (in general) that also unpack aspects of the work of teaching. These 

studies include comparisons of expert and novice practice and research on instructional decision-

making. Lastly, I review some of the few studies of instruction I found that focus directly on 

goals (Simon’s hypothetical learning trajectories, Mary Kennedy’s Inside Teaching, and 

Schoenfeld’s Teacher Model Group). As before, after reviewing this collection of research, I step 

back to discuss the implications for developing a framework for mathematical purposing.  

 Lampert’s problems of practice. Lampert (1986, 1990, 1992, 2001) examines her own 

practice in order to unpack and articulate the work of teaching. Her work contains detailed 

analyses of the mathematics she was trying to teach her fifth-grade students, the teaching moves 

she made, and the rationales for her actions. Two aspects of her research are particularly 
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foundational for the work of mathematical purposing: (1) her characterization of “problems” of 

practice; and (2) her articulation of the work of preparing for a lesson, in particular, her 

unpacking of the mathematical terrain. 

 In her seminal book, Teaching Problems and the Problems of Teaching, Lampert (2001) 

analyzes a year of her own fifth-grade teaching to unpack and analyze the “problems” that 

teachers routinely encounter in their work: 

To study teaching practice as it is enacted in school classrooms we need an approach to 
analysis that can focus on the many levels in action at once, integrating the investigation 
of the problems of practice that a teacher needs to work on in a particular moment with 
the investigation of problems of practice that are addressed in teaching a lesson or a unit 
or a year. The study of practical problems a teacher works on to teach each individual 
student can not be separate from the study of the practical problems of teaching different 
kinds of groups or teaching the class as a whole, as all of these elements of the work 
occur simultaneously in the public space of the classroom. The problems are all tackled at 
once, by the same person. The work aimed toward accomplishing any single goal of 
teaching needs to be examined in concert with examining concurrent work, perhaps 
aimed toward other goals, even toward conflicting goals across the temporal, social, and 
intellectual problem space in which practice occurs. (pp. 2-3) 

 
That teaching involves the simultaneous management of multiple problems across time and space 

is a theme throughout Lampert’s work. Lampert (1985) argues that competing purposes and 

concerns can sometimes result in “unsolvable problems.” She casts this part of the work of 

teaching as being a “dilemma manager” because, even though there is no “right” answer, a 

teacher must respond in practice to construct solutions to the dilemma faced.  

 Three of the problem domains Lampert analyzes in Teaching Problems and the Problems 

of Teaching are particularly informative for describing the work of mathematical purposing: 

teaching while preparing for a lesson, teaching to deliberately connect content across lessons, and 

teaching to cover the curriculum. Although a typical lesson in Lampert’s classroom was 

structured around a single, teacher-created mathematics problem, Lampert argues that the work 

she describes needs to be done by teachers whether or not they are using curriculum materials: 

“Even with the availability of such resources, one must prepare to use a particular activity with a 

particular class by investigating the intellectual content of the work entailed in such a way as to 

be able to support the relationship between that content and a specific group of students” (p. 118). 

 In her description of the work of preparing for a lesson, Lampert notes that “teaching a 

lesson begins with figuring out where to set the particular students one is teaching down in the 

terrain of the subject to be taught and studied” (p. 188). Thus, to determine where to begin a 

lesson, she needed to “characterize the subject matter to be taught” and “characterize the students 

to be taught.” Lampert intentionally uses “characterize” to reflect “an active, constructive kind of 
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cognition, and to indicate the practitioner’s responsibility for the unique content of the 

characterization” (p. 118). She also notes that this characterization is both tentative and revisable. 

 Characterizing the students involves thinking about the class as a whole and about 

particular students in relationship to the mathematics to be taught. To do this work, Lampert 

anticipated the various strategies students might use to solve the day’s problem, as well as where 

they might get stuck or distracted. She also looked at what methods and procedures particular 

students had been using in prior work and considered students’ dispositions toward mathematics. 

 To characterize the mathematics, Lampert mapped the mathematical terrain that she 

expected would be covered in a problem context. Conducting a detailed analysis of the 

mathematical terrain is seen throughout Lampert’s research. For example, Lampert (1986) 

unpacks what it means to know multi-digit multiplication by analyzing four types of knowledge 

of multi-digit multiplication and the connections among these types of knowledge: intuitive 

knowledge (e.g., invented algorithms); computational knowledge (e.g., being able to competently 

execute standard procedures); concrete knowledge (e.g., knowing how to manipulate objects to 

get an answer); and principled conceptual knowledge (e.g., place value, commutativity and 

associativity of addition). Lampert (1992) analyzes the standard long division algorithm to 

unpack its mathematical content. This analysis includes explaining why the algorithm works and 

identifying the underlying concepts that justify each step; analyzing what big mathematical ideas 

it is connected to; and comparing it to other standard procedures for multi-digit arithmetic to 

identify similarities (e.g., all involve decomposing the numbers to operate on them) and 

differences (e.g., long division begins on the left rather than the right). 

 Lampert (2001) displays the mathematical terrain of a problem context as a visual “map,” 

with nodes representing what students would be learning to do (e.g., adding, multiplying, 

dividing, decomposing and recomposing to work with large numbers, choosing units, judging 

relative magnitude) and the concepts that support this work (e.g., relationship between addition 

and multiplication, fractions, place value), along with lines to represent the connections among 

these concepts and practices. Lampert argues that by elaborating the mathematical terrain in more 

and more detail, the curriculum can be seen as “engaging students with an organic whole rather 

than with a set of discrete topics” (p. 258). This enables both “maintaining a holistic perspective 

on big mathematical ideas” and “teaching conventional topics” (p. 262). Lampert also analyzes 

how the problem connects to the terrain and how different solution methods engage students with 

different mathematical ideas. 

 In addition to specifying big ideas, topics, concepts and procedures, practices, tools, 

language, symbols, conventions, and the connections among these as learning goals for students, 
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Lampert also wanted students to learn about the nature of mathematics and what it means to know 

and do mathematics. Lampert (1990) notes that the goal of students’ learning new ways of 

knowing mathematics changes the mathematical focus of a task (e.g., the content to be learned is 

mathematical argument rather than traditional topics or the finding of answers) and impacts the 

role of the teacher and students as they engage in those tasks.  

 These types of mathematical learning goals are not achieved in single lessons but are 

developed over time. The development of ideas over time is facilitated by what Lampert (2001) 

calls “teaching to deliberately connect content across lessons.” By making connections explicit, 

teachers help students study “substantial and productive relationships in the content” that are not 

easily addressed in a single lesson. Lampert illustrates a number of ways teachers can make 

connections across lessons, for example, by determining a strategic progression of problems from 

lesson to lesson; by choosing contexts or representations that span lessons; by building a shared 

language across lessons; and by using student work as a way to build coherence.  

 In addition to characterizing the subject matter and the students, when preparing for a 

lesson, teachers make decisions about the activities in which students will engage—that is, what 

students will do during the lesson. To do this, teachers need to figure out what responses a 

problem or task will elicit from students and specify how those responses support the teaching of 

the intended subject matter. For Lampert, once she determined the problem she would use, she 

began the work of “settling on an agenda for classwork,” in other words, figuring out the 

particular moves she planned to make and when she planned to make them. This included 

determining the precise statement of the task; sequencing the problems to be used; deciding what 

materials will be available; and making notes about mathematics she wanted to highlight.  

 Ball’s bifocal perspective. Ball (1993a, 1993b) studies her own teaching of third-grade 

mathematics to unpack the work of mathematics teaching and its knowledge demands. I focus on 

two key ideas that are emphasized throughout her work: (1) teaching requires managing the 

tensions inherent in being simultaneously respectful of, responsible for, and responsive to the 

discipline and to learners; and (2) the goals for students’ mathematics learning include developing 

both students’ understanding of specific mathematical ideas and their capacity to engage in 

mathematical work.  

 Ball (1993a) characterizes teaching as involving the “insightful consideration of both 

content and learners, consideration that is at once general and situated” (pp. 158-159). 

Considering the content involves “careful analysis of the specific content to be learned: the ideas, 

procedures, and ways of reasoning,” and considering the learners involves developing 

“understandings of students themselves and how they learn the particular content”: 
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This bifocal perspective—perceiving the mathematics through the mind of the learner 
while perceiving the mind of the learner through the mathematics—is central to the 
teacher’s role in helping students learn with understanding. (p. 159) 
 

 Ball (1993a) examines the work of constructing and using representational contexts by 

applying this bifocal lens to both the mathematics topic and the representational context. This 

involves analyzing the mathematics topic itself (e.g., its constructs, its multiple meanings, and its 

connections to other ideas), as well as what conceptual dimensions of the topic are visible in the 

representational context (e.g., which ideas are highlighted and which are obscured). It also 

involves considering how students think about the topic (e.g., their prior knowledge and specific 

experiences with both the topic and its representations, as well as with related topics, both in and 

outside of school; how their learning of other topics might support or interfere with their learning 

of the new topic), as well as the accessibility of the representational context (e.g., what might be 

unfamiliar or distracting). Getting the representational context up and running during instruction 

requires considerations about language (e.g., what language will be used and conventions for its 

use), and, when multiple representations are in play, it involves thinking about how to link them. 

Throughout her analysis, Ball emphasizes that the student learning goals for mathematics go 

beyond particular ideas, but also include “ways of seeing, interpreting, thinking, doing, and 

communicating that are special to the community of those who make and use mathematics” (p. 

158). Thus, using representations—as well as engaging in other mathematical practices—are both 

means of learning mathematics and end learning goals for students. 

 Ball (1993b) discusses three dilemmas of “developing a practice that respects the 

integrity both of mathematics as a discipline and of children as mathematical thinkers”: 

representing the content, respecting children as mathematical thinkers, and creating and using 

community (p. 376). Throughout the article, Ball mentions numerous goals for student learning. 

Some goals are related to understanding specific mathematical ideas (e.g., “that -5 is, in one 

sense, more than -1 and, in another sense, less than -1” (p. 379)). But many goals focus on 

developing students’ capacity to engage in mathematical work, including: 

• engaging in mathematical practices, such as conjecturing, experimenting, and 
making arguments (p. 374); 

• learning mathematical language and ideas that are currently accepted (p. 376); 
• developing a sense of mathematical questions and activity; learning how to 

reason mathematically, including an understanding of the role of stipulation and 
definition, of representation, and of the different between illustration and proof 
(p. 376); 

• being able to use symbolic conventions and seeing mathematical symbols as 
powerful ways of communicating mathematical ideas; and 
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• seeing patterns and conjecturing about their generalizability (p. 384).12 
 
As Ball illustrates each dilemma with examples from her teaching, she demonstrates that 

designing and implementing activities that develop students’ capacities with respect to these goals 

requires unpacking what these mathematical practices look like in the context of particular 

content and thinking about how to “build bridges between what they already know and what there 

is to learn” (p. 387). 

 Heaton’s “Relearning the Dance.” In Teaching Mathematics to the New Standards: 

Relearning the Dance, Heaton (2000) describes and analyzes her efforts to change her teaching 

practice to reflect the then new mathematics standards. In contrast to Lampert and Ball, Heaton 

decided to follow the standards-based textbook adopted by her district because she expected that 

using the text would make her transition much easier. She quickly realized this was not the case. 

In fact, reading the teacher’s guide often generated more questions than it answered. For example, 

the meanings of terms—both instructional (e.g., “investigate” or “powerful insight”) and 

mathematical (e.g., “pattern” or “composition of functions”)—were often unclear; and she did not 

know how to decide which parts of a lesson to prioritize or which to skip if pressed for time.  

 Heaton found, to her surprise, that she could not simply read the teacher’s guide and be 

fully prepared to teach the day’s lesson. In order to navigate the interactive work of teaching, she 

needed to understand the mathematical purposes of both the activities in the textbook and the 

questions she asked her students. This was particularly evident during a lesson in which she asked 

students to look for patterns in a table. Uncertain of the point of the lesson, Heaton felt unable to 

move away from the script in the textbook. She lacked understanding of the mathematical terrain 

and how to use the task to move students through that terrain.  

 Heaton concluded that she needed a better understanding of “the nature of the 

mathematics to be learned, the importance of these particular mathematical ideas in the discipline, 

the place of these ideas within the K-12 curriculum, and how children make sense of these ideas” 

(p. 35). Much of this information could not be found in the teacher’s guide, and even when the 

curriculum did offer support, there was still work to do to interpret the resources provided. For 

example, the teacher’s guide presented a sample dialogue as a way to support teachers in 

understanding the mathematical content. However, the mathematical significance of the sample 

student responses was not made explicit, and Heaton misunderstood them to be responses she 

could expect from her students. 

                                            
12 I do not list everything that could be counted as a mathematical goal for student learning here. In Chapter 
3, I describe how I analyzed the work of Ball (1993a, 1993b) and Lampert (1986, 1992, 2001) to develop 
my framework for mathematical purposing. 
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 Heaton’s experiences highlight the need for teachers to understand “the connections 

between the problems and activities intended for students and the important mathematical ideas 

the problems and activities are intended to teach” (pp. 155-156). This includes understanding 

what students are supposed to notice or “get” out of an activity, and what mathematics a 

representation is meant to highlight. As Heaton found, students are not going to learn just by 

doing an activity. Because textbook tasks have been deemed worthwhile by someone else, it is 

essential for the teacher to figure out how the task is intended to move students through the 

mathematical terrain: “Part of the intellectual work of teaching becomes trying to see the 

fundamental mathematical ideas in textbook problems, activities, and representations where the 

connections to larger mathematical ideas are not necessarily explicit” (p. 150).  

 I now shift from research by scholars who have analyzed their own mathematics teaching 

to studies of instruction across subject areas written by researchers who examined classroom 

practice to articulate aspects of the work. 

 Comparisons of expert and novice teaching. Leinhardt (1989, 1993) compared the 

practices of expert and novice teachers across different strands of teaching practice. One strand 

analyzed in this work is the use of “agendas.” An agenda is a teacher’s operational plan for 

teaching a lesson. It includes the goals and subgoals for the different lesson segments, along with 

the actions that can be used to achieve those goals. Agendas are not necessarily visible in 

teachers’ lesson plans, existing instead in teachers’ mental representations of their lessons.  

 Leinhardt found important differences between the agendas of novice and expert 

teachers. Novices’ agendas tended to include objects and actions, but no goals. In contrast, expert 

agendas made clear the subject matter topic being taught in the lesson. They contained a sense of 

what is “conceptually important” in a lesson and where the lesson is situated in the broader 

continuum of lessons. Experts differentiated between lesson types (e.g., review and introduction), 

and were aware of the different components of their lessons and the goals for each. Unlike 

novices, experts simultaneously thought about their lessons along two tracks: their own action-

and-goal sequence and their students’. They anticipated possible problems students might have 

with both the instructional approach and with the content, and their agendas included tests of 

student understanding. When describing the plans for their lessons, experts began by telling what 

they had done the previous day, implying that they saw their lessons as connected. Overall, 

experts had a clear sense of where they were trying to go in their lessons, which helped them deal 

with the uncertainties of teaching: 

Experts’ agendas often provide a sense of the logical flow or, at a minimum, a clear goal. 
Making the logical flow explicit helps the teachers handle the interrupts that occur in 
normal classroom situations. If the planned action or sequence must be stopped or 
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altered, experts use the basic logic of the lesson to set new goals and substitute 
comparable moves. Lacking such a general and flexible goal structure, novices are unable 
to do this because their plans are unintentionally tied to specific actions rather than to the 
goals of the lesson. (Leinhardt, 1993, p. 24)  
 

 Another teaching strand Leinhardt (1993) analyzes is the use of routines. Leinhardt 

defines routines as “small, socially shared, scripted pieces of behavior,” such as lining-up, 

question-posing, and turn-taking (p. 16). Routines assist with management, as well as with the 

development and exchange of ideas. Experts use routines flexibly and across lesson segments, 

and a particular routine can serve multiple goals. Because routines are automatic, they can be 

“unpackable” pieces of knowledge and, in most cases, are not mentioned in teachers’ plans and 

agendas.   

 Teachers’ use of routines and agendas reduces the information-processing demands of 

instruction, freeing them to deal with other complex tasks of teaching, such as giving 

explanations. In fact, Leinhardt argues that novices’ explanations were fragmented and unfocused 

because they were less skilled at developing agendas and using routines. Novices had a difficult 

time figuring out the essential ideas and components in their explanations, and their explanations 

were not connected like those of experts. There were also differences in novices’ and experts’ 

uses of representations to support their explanations. Experts tended to think carefully before 

selecting and introducing a representation to determine whether it made salient the aspects of the 

mathematics they were intending to highlight. Doing this requires knowing what one is using the 

representation for and how students will likely engage with it. For example, experts typically used 

“something familiar to teach something new” so that students did not have to learn both the 

representation and the focal mathematics. In contrast, novices often used “something new to teach 

something new,” requiring students to learn both the representation and the content, and as a 

result, students often learned neither (Leinhardt, 1989, p. 66). 

 Borko and Livingston compared the planning, instruction, and post-lesson reflections of 

three pairs of student teachers and their cooperating teachers (Borko & Livingston, 1989; 

Livingston & Borko, 1989, 1990). Like Leinhardt, the researchers found a number of similarities 

across expert teacher practice. The expert teachers all engaged in yearly planning, unit/chapter 

planning, and lesson/section planning. The longer-range plans organized the content and general 

curricular sequence; decisions about details of instruction were made closer to the teaching of a 

particular lesson. Novices, on the other hand, engaged only in short-term planning, which 

researchers speculated was likely a reflection of their student-teaching status.   

 Echoing the findings from the earlier studies on teacher planning, the expert teachers did 

not prepare written plans for their lessons, but had mental plans that included a general sequence 
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of the lesson’s content and instructional activities. Final decisions about specifics such as pacing 

and exact examples were often determined in response to students during instruction, although 

experts often had explicit contingency plans for when things did not go as expected. Novice 

teachers also created mental plans that were flexible with respect to timing, examples, and 

problems. However, unlike the experts, novices spent much of their planning time thinking about 

how to represent the content to students. Novices often had difficulty prioritizing aspects of the 

content to be taught and anticipating student difficulty.  

 Expert teachers used their lesson agendas to guide their interactive teaching—for 

example, to make connections between students’ contributions and the lesson’s objectives. Thus, 

experts were able to keep their lessons on track, accomplishing their objectives while, at the same 

time, being responsive to students. Novices had trouble keeping the lesson on track when 

responding to student comments, particularly when student questions prompted an unplanned 

explanation or when they needed to generate an example on the spot. In contrast, expert teachers 

had routines for practices such as explanation, guided problem solving, and summarizing, as well 

as a repertoire of explanations for concepts and an awareness of common student errors and 

misconceptions. They could draw on these to maintain the balance between objectives and 

student questions, enabling them to fill in their general sketch of the lesson using student 

productions. Experts were also able to generalize across problems to highlight relationships 

among topics and provide a “big curricular picture” (Livingston & Borko, 1990, p. 380). Novices’ 

explanations, both planned and unplanned, lacked these types of connections.  

 Next I turn to the literature on teachers’ decision-making and thought processes. This 

research has focused on describing the content and cognitive processes of teacher decision-

making; the influences on teacher decisions; and the relationship between teacher decisions, 

behaviors, and student outcomes (Clark & Peterson, 1986; Shavelson & Stern, 1981). With 

respect to informing an understanding of the work of mathematical purposing, there is 

considerable overlap between this research and the research on teacher planning. However, there 

are a few additional ideas to be taken from this literature that I describe below.  

 Instructional decision-making and teachers’ thought processes.  Synthesizing across 

studies, Clark and Peterson (1986) categorized the content of teachers’ thinking during 

instruction. The largest portion of teachers’ reported thoughts were concerned with the learner, 

followed by instructional procedures; less frequent were thoughts about objectives, content, and 

materials. Clark and Peterson suggest that the lack of attention during instruction to objectives, 

content, and materials could be because decisions about these were made during planning. 

Decision-making during interactive teaching typically arises when a teaching routine is not going 
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as planned. In the cases where changes do occur, they are usually only minor adjustments, not 

major revisions (Shavelson & Stern, 1981). 

 Yinger and Clark (1982) studied factors teachers take into account and processes used 

when evaluating instructional activities. Although the processes identified are more related to 

how the work of mathematical purposing is done, the considerations suggest components of the 

work. The authors grouped the considerations according to whether they related to the students, 

teacher, or activity (p. 26): 

Students Teacher Activity 
Student involvement 
Student difficulty 
Students’ task-related ability 
Incidental learning 
Student interest 
Cognitive outcomes 
Affective outcomes 
Student enjoyment 
General student outcomes 
Individual differences 
Student choice 
Success 
Student needs 
Challenges 

Demand 
Fit with teacher’s goals 
Prerequisite instruction 
Fit with current practice 
Fit with past practice 
“Feel” 
Enthusiasm 
 

Fit of purpose and description 
Clarity (of procedures) 
Appropriateness of 
instructional strategy 
Activity type 
Internal consistency 
Age level appropriateness 
Brevity 
Variety 
Academic defensibility 
Terminology 
Uniqueness 
Sequence 
Design/flow 
Diagnostic opportunity 
Practicality 
Expansion potential 

 

 Shulman and colleagues (Wilson, Shulman, & Richert, 1987) propose a model of 

pedagogical reasoning that portrays how different forms of knowledge are used and developed in 

teaching. The model begins with comprehension, which involves developing a critical 

understanding of “a set of ideas, a piece of content, in terms of both its substantive and syntactic 

structure” (p. 119). Next is the transformation process, which is decomposed into four 

subprocesses: critical interpretation, which “involves reviewing instructional materials in light of 

one’s own understanding of the subject matter”; representing, or the consideration of different 

metaphors, analogies, illustrations, activities, examples etc. to “transform the content for 

instruction”; and lastly, adaption and tailoring, which involve adjusting the transformations in 

light of characteristics about students in general and the specific population being taught. The last 

stages in the model are instruction, evaluation, and reflection. Engaging in the process results in 

new comprehension.  

 Sherin and Drake’s “Curriculum Strategy Framework.” Sherin and Drake (2009) try to 

identify patterns of curriculum use that might be more or less effective for implementing 
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mathematics education reform. Although this is a study of how teachers use curriculum to design 

instruction, the findings suggest aspects of the work of mathematical purposing. For example, the 

authors found differences in how teachers read curriculum: some read for a general overview, 

some for details, and some for both. They also found that teachers who focused on their own 

understanding of the lesson before instruction and on students’ responses during instruction were 

better able to make changes in their lesson in response to students, which suggests that 

understanding the mathematics and why each of the parts are included in a lesson are a central 

part of mathematical purposing. 

 The last set of studies of instruction that I review focus specifically on goals: Simon’s 

hypothetical learning trajectories, Mary Kennedy’s Inside Teaching, and Schoenfeld’s Teacher 

Model Group. 

 Hypothetical learning trajectories. Simon (1995) offers the Mathematics Teaching Cycle 

as “a schematic model of the cyclical interrelationship of aspects of teacher knowledge, thinking, 

decision making, and activity” to address the inherent tension in teaching between direction and 

responsiveness to students (p. 135). The model emerged from analyses of his own teaching, in 

which he observed that the goals for and design of his lessons were based on two factors: his 

mathematical understanding and his hypotheses about students’ knowledge. Simon deliberately 

uses “hypotheses” because, before a lesson, a teacher does not have direct knowledge of students’ 

understandings, but has to infer them. Simon’s notion of a teacher hypothesizing about student 

learning is similar to Lampert’s (2001) use of “characterize.” The idea of coordinating attention 

to these two factors builds on Ball (1993a).  

 One component of Simon’s cycle is the construction of a “hypothetical learning 

trajectory” or “the teacher’s prediction as to the path by which learning might proceed” (p. 135). 

A hypothetical learning trajectory has three components: (1) the learning goal; (2) the learning 

activities that students will engage in; and (3) the hypothetical learning process of the students 

(i.e., predictions about the evolution of students’ thinking and understanding in the context of the 

learning activities). In this model, the learning goal points to the direction of the trajectory, and 

the activities and hypothetical learning process are interrelated and mutually informing. The 

hypothetical learning trajectory is continually modified throughout the teaching cycle as a result 

of the teacher’s assessment of student learning. 

 Kennedy’s “Inside Teaching.”  In her book, Inside Teaching, Kennedy (2005) reports on 

a study in which she and her research team observed and interviewed teachers to investigate what 

teachers actually do in the classroom and how they think about their practice. Each of the 45 

participating teachers was observed teaching one lesson. The lessons spanned elementary grade 
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levels and subject areas. After watching a video of their lesson, teachers were interviewed about 

their understandings of selected teaching episodes and about their rationales for their actions. 

 During the interviews, teachers described a wide range of intentions for their practices. 

Kennedy deliberately uses “intentions” rather than “goals” because only some of the rationales 

mentioned by teachers were things they wanted to accomplish; fears, aspirations, obligations, and 

personal needs also drove their actions. Teachers’ intentions were categorized into the following 

six “areas of concern”:  

• Defining learning outcomes; 
• Fostering student learning; 
• Maintaining lesson momentum; 
• Fostering student willingness to participate; 
• Establishing the classroom as a community; and 
• Attending to [teachers’] personal needs. 

  
Teachers typically mentioned more than one intention for a particular practice, and in many cases, 

their intentions were competing or even contradictory. Kennedy found that teachers construct 

their practice by “weighing the momentary importance” of their intentions; lesson momentum 

usually trumped other concerns.  

 Kennedy’s analysis focused on three central tasks of teaching: (1) developing the day’s 

agenda; (2) managing conversations about content; and (3) establishing a tranquil learning 

environment. The practice of developing the day’s agenda was most informative for articulating 

the work of mathematical purposing, so I focus on that here.  

 Kennedy identifies three subtasks of developing the day’s agenda. The first is 

establishing learning outcomes. Kennedy found that teachers get ideas about learning outcomes 

from a variety of sources including curriculum guidelines, textbooks, and student assessments. 

Those guidelines are then interpreted and translated by teachers based on their own prior ideas. 

Kennedy points out the difference between content coverage and learning outcomes: “Even when 

content coverage is held constant, teachers may formulate very different learning outcomes for 

that content” (p. 44). That is, even though two teachers might be teaching the same topic, what 

they think is important for students to learn about that topic can be very different. 

 The second and third subtasks—portraying content to students and constructing learning 

activities for students—involve making decisions about how to present and engage students in the 

content. This includes decisions about the method of portrayal (e.g., telling students about it vs. 

engaging them in a puzzle), the nature of the content (e.g., procedural vs. conceptual), and what 

students will actually do to interact with that content. Kennedy found that when teachers used 
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complicated portrayals and activities, it was often confusing or it distracted teachers and students 

from the content:  

An important substantive idea is harder to keep track of when activities involve multiple 
props, and it is easy for teachers, as well as students, to forget where they are and where 
they are going. Instead of enriching the content in the lesson, these activities can distort 
it. (p. 140) 

 
Another issue Kennedy observed was that teachers sometimes walked students through the steps 

in various activities without ever directly addressing the content. 

 Teachers had multiple intentions when developing their agendas. For the subtask of 

establishing learning outcomes, the majority of teachers’ intentions had to do with content; 

however, all six areas of concern influenced their decisions. For the other two subtasks, non-

content related areas of concern, in particular theories about how students learn, became more 

prevalent.  

 Teacher Model Group.  The Teacher Model Group at the University of California at 

Berkeley has been developing a comprehensive model of teaching that represents teachers’ 

actions and decisions as representations of their knowledge, goals, and beliefs (Aguirre & Speer, 

2000; Schoenfeld, 2000; Schoenfeld, Minstrell, & Van Zee, 2000; Zimmerlin & Nelson, 2000). 

The beliefs, goals, and knowledge are attributed to the teacher by the researchers based on 

observations and interviews. Thus, the beliefs, goals, and/or knowledge may not be explicitly 

held by the teacher and, in some cases, may even contradict those expressed by the teacher. The 

work of the Teacher Model Group provides insight into the connection between actions and 

goals, and, for developing a framework for mathematical purposing, the categories and types of 

goals that drive teachers’ actions are particularly informative. 

 Their model parses teaching into nested action sequences of various grain sizes, with 

each action sequence corresponding to at least one goal. Goals are defined broadly as “things you 

want to accomplish,” and range in size and scope:  

Goals occur at different grain sizes: “overarching” goals for students over the course of 
weeks, months, or the year; unit goals; lesson goals; goals for particular parts of a lesson, 
and “local” goals for particular interactions with students. Goals may be 
epistemologically oriented (“I want students to understand and experience 
physics/mathematics as a sense-making discipline”); they may be content-oriented 
(“students should know the three measures of central tendency and their properties”); 
they may be socially oriented, at various levels of grain size (“I want the class to function 
as a community of inquiry,” or “I want this student to feel rewarded for having ventured a 
question”). Goals may be pre-determined (e.g., as part of a lesson image) or they may be 
emergent (e.g., when the class seems restless, or an interesting issue arises in dialogue 
with the students). And, of course, multiple goals can be (and usually are) operative at the 
same time. (Schoenfeld, 2000, p. 250)  
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 Zimmerlin and Nelson (2000) analyze an algebra lesson taught by a student teacher, 

comparing his lesson image with the model of the enacted lesson. The student teacher had a 

detailed lesson image that was not reflected in his written lesson plan. His lesson image included 

nested “action plans” or images of the activities he planned to do, how he thought they would go, 

and how he thought students were likely to respond to each part. He had three types of goals 

associated with his action plans; not all goals had equal priority: 

1. Overarching goals that span across multiple lessons, or even the year, for 
example:  
• Help students see where algebraic notations and procedures come from, and 

why algebraic rules are true 
• Develop a classroom atmosphere in which students contribute to classroom 

activities (pp. 268-269) 
2. Major content and social goals associated with the entire teaching segment: 

• To extend the idea of subtracting exponents, particularly to the idea of zero 
exponents 

• To engage students in discussion of the problems (p. 271) 
3. Local goals that elaborate the major content and social goals associated with each 

“chunk of the lesson”: 
• Build student confidence 
• Confirm procedure and notation 
• Establish variant of the problem 
• Build student understanding of zero exponents (p. 273) 

 
Some aspects of the lesson were left flexible and unplanned, supporting Zimmerlin and Nelson’s 

contention that “teachers plan down to the level of detail at which they feel they can comfortably 

manage improvisationally using established interactional skills and routines” (p. 267). 

 For the most part, the lesson played out as the teacher expected. Action plans were 

implemented, with the details of the actions filled in with routines. Some parts of the lesson, of 

course, did not match the teacher’s lesson image. There were two main causes for differences 

between the lesson’s plan and its enactment. The first was when something took longer than 

anticipated. In this case, the teacher adjusted based on the priority of his goals. The second type 

of change was due to unexpected student responses. In this situation, the teacher experienced a 

“goal shift” and developed a new action plan based on the emergent goal of “dealing with student 

confusion.”  

 Schoenfeld, Minstrell, and Van Zee (2000) analyze a “non-traditional” physics lesson 

taught by an expert teacher. The article focuses mainly on the use of the model to capture the 

lesson’s enactment; however, the parsing of the lesson and the types of goals attributed to the 

teacher’s actions inform thinking about the work of mathematical purposing. All actions 

correspond to one or more high-priority goals that are in effect for an entire segment, as well as 

goal(s) specific to the particular action. For example, in one “interactive elicitation” segment of 
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the lesson, the authors identify two types of goals that were driving the instruction: goals of 

content coverage, or a list of topics that the teacher wanted to be sure to cover; and goals of 

completeness, or how thoroughly the teacher wanted each topic to be discussed.  

 Implications for mathematical purposing. The above studies of instruction suggest a 

number of core categories for the work of mathematical purposing, as well as unpack many of the 

details of that work. I summarize some of the key ideas below. 

 Chapter 1 characterized mathematics teaching—by definition—as purposeful work. 

Studies of instruction elaborate this and highlight that mathematics teaching, in fact, requires 

attention to multiple purposes, both mathematical and non-mathematical, which are often in 

conflict. These purposes may be explicitly or implicitly held by teachers and, as Kennedy pointed 

out with her use of “intentions,” are not always things teachers want to accomplish, but instead 

might be things teachers are trying to avoid or feel obligated to do.  

 Of course, the intention of avoiding something could be reframed as the goal of wanting 

that something not to happen; an obligation can similarly be reframed as the goal of wanting to 

meet that obligation. However, that is not my point. Instead, I use this to illustrate the lack of 

common language for goals/purposes/intentions. Not only is there no shared terminology, but the 

same term gets used in different ways. For example, “goals” are used to denote both the rationales 

for teacher actions and the aims of student learning (which can of course be reframed as teacher 

intentions/purposes). Although the multiplicity of meaning creates challenges for articulating the 

work of mathematical purposing (and precipitates my invention of language in this dissertation), 

it seems that what is important to take from this issue is not an over-concern about what term is 

being used. The important idea is that specifying goals/intentions for both student learning and 

teacher actions is part of the work of mathematical purposing. And, importantly for teaching to 

the mathematical point, student learning goals and purposes for teacher actions should be linked. 

 Studies of instruction also help unpack the nature and content of student learning goals. 

Many of the ideas in this research resonate with the literature discussed earlier in this chapter: 

Student learning goals are nested and revisable, often emerging and evolving during instruction; 

they are of different types (e.g., epistemologically oriented, content oriented, practices oriented, 

etc.) and of different grain sizes. This literature helps expand the notion of different grain sizes. 

One grain size is related to the grain size of the mathematics (e.g., a goal of learning about a big 

mathematical idea or developing ways of reasoning vs. learning a particular mathematical fact). A 

second type of grain size relates to what it is a goal “of” (e.g., a goal for the year vs. a goal of a 

particular interaction). These types of grain sizes may be correlated—for example, perhaps year-
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long goals are more likely to be about big ideas. However, this is not always the case. The goal of 

a particular interaction, for instance, could be about a big idea as well.  

 Studies of instruction highlight that engaging in mathematical practices and developing 

ways of reasoning mathematically are both means for and end goals for student learning. This 

literature also shows that mathematics instruction requires teaching topics and making explicit 

connections to big ideas—whether lessons are structured to teach with problems or teach by 

topics just makes this work look different. For example, because Lampert was teaching with 

problems, her lessons were structured around big ideas. Thus, to show she was covering the 

conventional school topics she had to locate these topics within her problem contexts. On the 

other hand, a teacher who is teaching with a curriculum that is organized in a topic-by-topic 

approach might have to do extra work to make connections across topics and to bigger 

mathematical ideas.  

 These studies suggest that mathematical purposing involves understanding the nature of 

the mathematics being taught through an instructional activity and how that mathematics sits in 

the larger mathematical terrain. Situating the notion of a hypothetical learning trajectory in the 

mathematical terrain underlies the “location” meaning of mathematical point mentioned in 

Chapter 1: the mathematical point of an activity includes its starting point (where students are 

mathematically); the anticipated path through the terrain (how the activity is intended to engage 

students with the intended mathematics); the relationship of the path to other mathematical ideas 

in the terrain; and the intended end point. 

 In addition, these studies show that, because the mathematics is being characterized for 

learning, mathematical purposing also involves having a pedagogical view on the mathematical 

terrain that considers the mathematics from the perspective of the learner. Considering the terrain 

from the perspective of the students can help with the prioritization of leaning goals, which can 

inform instructional decisions such as what might be emphasized or skipped. The prioritization of 

particular learning goals is also reflected by the fact that mathematical purposes/goals often have 

both a content and a pedagogical aspect. This could be seen, for example, in the goals listed by 

Zimmerlin and Nelson (e.g., confirm procedure and notation, establish variant of the problem, or 

build student understanding of zero exponents). This literature also suggests that mathematical 

purposing includes knowing about learners in general in relation to the mathematics being 

worked on, as well as about the particular students being taught. Considering what the specific 

students are bringing to the activity highlights the special role of the teacher in this distributed 

work.  
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 Echoing some of the research discussed earlier in this chapter, these studies suggest a 

number of features of instructional activities that need to be planned in detail (e.g., wording of 

tasks, sequence of problems, materials available, etc.) and show the importance of planning these 

details in relation to both the mathematics and the students. For example, as seen in Ball’s and 

Leinhart’s work, in the mathematical purposing of a representation, it is important to consider 

both the mathematics the representation is intended to highlight and how accessible the 

representation is to students. The work of the teacher in establishing and using representations 

can be similarly applied to other details of the activity. In addition, these studies emphasize the 

need to understand the connection of the activity to and its intended, logical flow through both the 

mathematical terrain and the curriculum, as well as the need to develop contingency plans for 

steering the lesson back on track. Like the research on teacher planning, these studies also 

demonstrate the role of routines in teaching. This has implications for mathematical purposing—

for example, the need to consider if a routine helps steer instruction toward the mathematical 

point. 

 One last key idea suggested by these studies is that, during instruction, a particular 

teaching move is often used to achieve multiple goals. This has obvious implications for steering 

instruction toward the mathematical point, but also has implications for mathematical purposing. 

For example, work of mathematical purposing done in the service of learning about students or in 

the detailing of an activity can also help develop an understanding of the mathematical terrain and 

how the activity is intended to move students through it. Lampert, for instance, noted that 

anticipating student responses helped her understand the mathematics students would have 

opportunities to engage with and helped her learn more about her students in relation to that 

content. Similarly, planning the details of an explanation or unpacking the features of a 

representation, as Leinhardt discussed, could help unpack the mathematical terrain and identify 

what students are bringing to the work.  

 
Summary: Foundations for a Conceptual Framework  

for the Work of Mathematical Purposing 
 

 This dissertation investigates a central task of mathematics teaching: articulating the 

“mathematical point” and using it to design and steer instruction. One of the results of this 

investigation is a conceptualization of “teaching to the mathematical point,” which includes the 

development of a framework for the work of “mathematical purposing.” This framework aims to 

describe what is involved in articulating the mathematics intended to be taught through an 

instructional activity, understanding how that instructional activity is intended to engage students 
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with that mathematics, and orienting the activity so that it is more likely to do so. In this chapter, I 

reviewed the literature that provided the foundation for the development of that framework.  

  No single body of research underlies the work of mathematical purposing. Thus, one of 

the challenges of examining the literature to extract components of the framework was 

coordinating across the various types of studies. Some of the relevant literature is prescriptive, 

offering models for instructional design or lesson planning. These models tend to be either too 

general (e.g., aiming to apply to all types of instruction or to reflect planning for any subject area) 

or only focus on a particular type of teaching (e.g., problem-based teaching). The work in these 

models is often displayed as a series of considerations or actions, the purpose of which (i.e., how 

the results of doing a particular step are supposed to be used to design instruction) may or may 

not be apparent. Most of the models have a step that involves identifying the mathematical goals, 

but because this is listed as a separate step (often the initial one), the models do not make explicit 

how completing the other steps (e.g., solving the problem in multiple ways, anticipating student 

errors, etc.) actually helps with identifying and understanding the mathematical goals. In addition, 

the use of the mathematical goals to inform the other steps in the protocol is not usually 

emphasized. In other lines of research, such as studies of instruction, these tasks of teaching are 

often integrated. However, because this research typically focuses on some other aspect of 

teaching, the work of mathematical purposing can be hard to extract from the complex practice 

portrayed. 

 Throughout this review, I identified teaching practices and considerations related to the 

work of mathematical purposing. In most cases, though, the level of detail needed to fully 

articulate the work remained underspecified. Furthermore, the teaching practices described in the 

literature were not always tied to their use. For example, a teacher might examine how new 

vocabulary is used in each part of the lesson (a teaching practice discussed in Sherin and Drake 

(2009)) to help her better understand the mathematical terrain, to specify her mathematical 

learning goals, to consider the language demands placed on students in each part of the lesson, or 

to specify the language she will use when launching the task. Articulating the work of 

mathematical purposing requires more than listing practices. Attention must also be paid to the 

purposes for which the practices might be enacted. Moving beyond a list of practices requires a 

conceptual framework that articulates both particular teaching moves and the purposes they serve.  

 Reviewing the literature provided a useful first step in developing the framework. The 

literature suggested three broad, interdependent categories for the work of mathematical 
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purposing: characterizing the mathematics to be taught,13 characterizing the students to be taught 

with respect to the intended mathematics, and characterizing the instructional activity: 

• Characterizing the mathematics to be taught: This involves indentifying 

mathematical learning goals of different types and grain sizes and situating those in 

the mathematical terrain. These types and grain sizes are related to the nested nature 

of instruction, the nature of the intended mathematics (e.g., big vs. specific ideas; 

different strands of mathematical proficiency; developing concepts, skills, 

mathematical practices, and connections among them), and the pedagogical activity 

of which it is the point (e.g., problem, representation, specific teacher question). The 

mathematical terrain needs to be unpacked and analyzed through both a disciplinary 

and a pedagogical perspective.  

• Characterizing the students to be taught with respect to the intended mathematics: 

This involves considering what students bring to the activity, what they are likely to 

do as they engage with the mathematics, and how these influence the activity’s 

design and implementation. This includes knowing about learners in general (e.g., 

likely methods, difficulties, misconceptions, errors, etc.) and about the prior 

knowledge and experiences of the particular students being taught. 

• Characterizing the instructional activity: This involves unpacking and planning the 

details of the activity (the components of the task and what students and teachers will 

do as they engage in that task) in relation to both the mathematics and the students. It 

also involves determining the sequence of activity and how that relates to the 

progression of mathematical ideas.  

 The heart of mathematical purposing is ensuring that there is a “match” between the 

intended mathematics and the instructional activity so that the particular students being taught can 

make progress toward the specified mathematical learning goals. The categories above, though 

helpful, are far from a framework that adequately conceptualizes and articulates this work. In the 

next chapter, I explain how I turned to the data collected in this study to look for additional 

categories, to develop a more productive conceptual organization, and to further decompose the 

work. 

 

 

 

                                            
13 I adapted these “characterizing” phrases from Lampert (2001).  
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CHAPTER THREE: 
METHODS OF DATA COLLECTION AND ANALYSIS 

 
Introduction 

 This dissertation is a study of the mathematical work of teaching and the relationship 

between mathematical knowledge for teaching and instruction. It aims to unpack and articulate 

the practices and knowledge demands of the work of teaching to the mathematical point—in 

particular, of mathematical purposing. To do this, I analyzed data from mathematics lessons 

taught by 17 preservice elementary teachers. This chapter describes these data and the methods of 

analysis used.  

 I begin by explaining the rationale for the study’s design, in particular, why I focused on 

single lessons taught by preservice elementary teachers and why I selected participants based on 

their scores on a survey of mathematical knowledge for teaching. Next, I describe the two phases 

of data collection and the various instruments used. I then turn to the methods of data analysis, 

organized according to my research questions. I conclude the chapter with a discussion of the 

limitations of the study.  

 
Rationale for Study Design 

 Although grounded in empirical data, this dissertation is primarily conceptual. The 

purpose of the study is to further the field’s understanding of the work of teaching mathematics 

and the nature of the mathematical knowledge that teaching entails. Thus, it is a study of 

teaching, not teachers. Even though I analyzed data from lessons taught by particular teachers, I 

am not trying to make claims about what teachers know or can do in the classroom, or whether 

they had a mathematical point or taught to it. I am not even trying to make these sorts of claims 

about the particular preservice teachers in my study. The sample is not representative, and the 

data reflect only one instance of each preservice teacher’s practice.  

 In addition, although I selected the sample based on MKT scores, I am also not trying to 

make claims such as “teachers with low MKT do not attend to their goals during instruction” or 

“teachers with high MKT can determine the mathematical point of a textbook lesson.” Instead, I 

selected participants with a range of MKT scores because subject matter knowledge has been 

shown to influence teachers’ interpretation and use of curriculum and their teaching practice 
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(Ben-Peretz, 1990; Blunk, 2007; Borko et al., 1992; Borko et al., 1988; Hill et al., 2008; Kahan et 

al., 2003). I therefore thought differences in MKT would make different aspects of the work of 

teaching visible. Finally, this dissertation is not a study of fidelity of curriculum implementation. 

I am investigating what is involved in teaching to the mathematical point of an instructional 

activity, not how closely a textbook is followed during instruction. 

 In order to study classroom practice to describe the practices and knowledge demands of 

teaching to the mathematical point, I had to make choices about the type of data to collect—most 

importantly, I had to select a sample and a grain size of practice to analyze. Below I explain my 

choice of preservice teaching as the site for this study and why I decided to collect data related to 

one lesson per teacher.  

 
Why Use Preservice Teaching as the Site for this Study? 

 Berliner (1988, 2004) describes five stages of skill development in teaching: (1) novice; 

(2) advanced beginner; (3) competent teacher; (4) proficient teacher; and (5) expert teacher. It 

would have been possible to investigate the work of teaching to the mathematical point by 

studying the practice of teachers at any of these stages. I chose to study novice practice because I 

hypothesized that it would make visible aspects of the work of teaching that would not be as 

readily seen at the other stages.  

 Most studies of experienced teachers do not help to articulate the work of determining 

and using goals. Experienced teachers do much of their lesson planning mentally, often in 

informal settings and at random moments in the day—such as in the shower or when driving to 

school (McCutcheon, 1980, 1981). Minimal information is then recorded in the form of written 

plans or notes (Clark & Yinger, 1979; McCutcheon, 1980). The goals of experienced teachers are 

often implicit, intertwined in their instructional activities and routines (Borko & Niles, 1987; 

Clark & Peterson, 1986). While teaching, experienced teachers make instructional decisions 

quickly, often without conscious thought or the consideration of alternatives (Clark & Peterson, 

1986; Jackson, 1968). 

 These findings are not surprising given the literature on expertise. Experienced teachers, 

like experts in other fields, enact much of their practice automatically, and are often unable to 

articulate—or might not even notice—the routines and scripts being implemented (Berliner, 

1986, 1987). If instruction is going well, experienced teachers are unlikely to be consciously 

deliberate about their actions:   

Experts do things that usually work, and thus, when things are proceeding without a 
hitch, experts are not solving problems or making decisions in the usual sense of those 
terms. They go with the flow, as it is sometimes described. When anomalies occur, when 
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things do not work out as planned, or when something atypical is noted, deliberate 
analytic processes are brought to bear on the situation. But when things are going 
smoothly, experts rarely appear to be reflective about their performance. (Berliner, 2004, 
p. 206)  

  
In fact, Berliner (1987) further suggests that an understanding of the complexity of their 

automatic routines might actually be unavailable to the consciousness of many experienced 

practitioners. Thus, with my aims of unpacking and articulating the work of identifying and using 

mathematical goals in instruction, it did not seem fruitful to study the practice of experienced 

teachers who might not be able to articulate how they determined the goals of their lessons and if 

and how they were using these goals to make decisions during instruction. Furthermore, the 

literature already contains analytic accounts of expert practice (e.g., the practice of Lampert 

(1990, 2001) and Ball (1993a, 1993b), and the analyses of expert teaching by Leinhardt (1989, 

1993)) that could be examined in light of my research questions. 

 Nonetheless, preservice teaching might seem a peculiar site for this study because 

novices are likely to have difficulty teaching to the mathematical point. But it is this difficulty 

that, in fact, makes preservice teaching an ideal site for this investigation. The “bumps and 

bruises” of novice practice make visible aspects of the work of teaching and the use of 

mathematical knowledge in that work that might “go unnoticed in the smoother practice of more 

experienced teachers” (Heaton, 2000, p. 16). Because novices do not have as many established 

instructional routines as experienced teachers, when they do use their mathematical goals to 

design or manage instruction, it is more likely deliberate and thus more readily accessible in an 

interview. Instances when preservice teachers have difficulty teaching to the mathematical 

point—for example, not understanding the mathematical point of an activity or making 

instructional moves that conflict with their expressed mathematical point—help identify problems 

that must be managed when doing this work. In other words, “the neophyte’s stumble becomes 

the scholar’s window” (Shulman, 1987, p. 4). 

 An additional reason for studying preservice teaching is that it provides information 

useful for the improvement of teacher education. Even though this dissertation does not make 

claims about particular preservice teachers, their knowledge, or their practice, the data did surface 

interesting ideas and questions about preservice teachers’ knowledge and instruction. The data 

also enabled detailed descriptions of preservice teachers’ planning and instructional practices. 

Such descriptions of preservice teaching, though not necessarily generalizable, are valuable 

because they raise attention to important phenomena (Schoenfeld, 2007). Descriptions such as 

these can help teacher educators learn more about the knowledge and skill preservice teachers 

bring to student teaching and the issues they confront when trying to manage the problems of 
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practice. In addition, these types of observations point to productive directions for the design of 

interventions and future research in teacher education. 

 
Why Observe One Lesson per Teacher? 

 The mathematics lesson was chosen as the unit of analysis for this study for a number of 

reasons, both theoretical and practical. The lesson exhibits all of the complex interactions that 

influence teaching, yet is a small enough unit to enable detailed analysis of the relationships being 

studied (Hiebert, Morris, & Glass, 2003; Kennedy, 2005). Furthermore, when studying teaching 

structured by a textbook such as Everyday Mathematics, the lesson forms a natural unit of 

observation: Each lesson in the text typically corresponds to one day’s mathematics instruction. 

Although Everyday Mathematics lessons are organized into units (which could also create a 

natural unit of analysis), because it is a spiral curriculum and even individual lessons touch on 

multiple topics, it is unclear how much teachers (and preservice teachers in particular) consider 

connections across lessons when using Everyday Mathematics. And, finally, because my 

observations occurred early in the student teaching semester, many preservice teachers were not 

teaching math daily and, thus, were only focused on individual lessons in their planning and 

instruction. As I discuss below, I did ask questions in the interview about if and how the lesson 

related to goals for the unit and school year, and, if they were teaching the next day, whether and 

how the observed lesson would impact their next lesson.  

 Even with the lesson as the unit of analysis, decisions still had to be made about how 

many teachers and how many lessons per teacher to observe. Constrained by what would be a 

reasonable size for a dissertation study, the more lessons I observed per teacher, the fewer 

teachers I could include. I considered the following options: one lesson per teacher; three to four 

consecutive lessons per teacher; three to four lessons per teacher, spread over the student teaching 

semester; or two sets of three to four consecutive lessons, spread over the student teaching 

semester. Because I am not trying to make claims about the practices of individual teachers, nor 

am I studying change or improvement over time, I did not need the observed lesson to be 

representative and, therefore, did not need to have multiple lessons per teacher. And, because I 

am studying teaching, I thought that having as many different teachers as possible would better 

capture the variety of issues that can arise in teaching to the mathematical point.  

 
Data Collection 

 Data collection occurred in two phases. In the first phase, participating preservice 

teachers completed a survey measuring mathematical knowledge for teaching. A subset of 

preservice teachers from phase one were then selected, based on their MKT scores, for the second 
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phase of the study. The second phase of data collection began with interviews about their 

mathematics and teaching backgrounds, as well as their typical lesson planning practices. Each 

preservice teacher was then observed teaching one mathematics lesson and was interviewed, that 

same day, both before and after teaching. Recordings were made of all interviews (audio) and 

lessons (video), and all recordings transcribed. Any curriculum materials and written lesson plans 

were collected. In this section, I provide details about each phase of the data collection process. 

 
Teacher Education Context 

 The participants in this study were undergraduates in their final year of an elementary 

teacher education program at a large public university in the midwestern United States. Students 

typically enter this four-semester teacher education program in their junior year, after completing 

subject matter prerequisites. During the first three semesters of the program, their education 

coursework includes foundation classes (e.g., educational psychology); subject matter methods 

courses in literacy, science, social studies, and mathematics; and a field component (six hours per 

week of classroom-based fieldwork and an accompanying seminar led by their field instructor).  

 The fourth semester is the student teaching semester. Preservice teachers are in one 

classroom full time, with most continuing in the classroom in which they completed their third-

semester fieldwork. During student teaching, preservice teachers work closely with their 

cooperating teacher and a university-based field instructor. Their experiences and responsibilities 

vary widely; for example, at the time of my study, some preservice teachers were already 

responsible for daily mathematics instruction while others taught mathematics lessons only 

occasionally. By the end of the student-teaching semester, there is typically a short period (e.g., 

two weeks) in which they “take over” all instruction for the classroom. 

 
Phase One of Data Collection: MKT Survey 

 Recruiting. All preservice teachers in the third semester of the program in Fall 2007 

(n=50) were recruited to participate in the study. I announced the study during their field 

seminars and invited anyone who was interested to participate in phase one. I sent a follow-up 

email that evening with additional details and requested an RVSP so that I could order an 

appropriate amount of food (a light dinner was provided), but said that they could still participate 

even if they had not responded. I also sent a reminder message the week of the survey’s 

administration. 

 I administered the MKT survey during two evening sessions (November 13 and 14, 

2007). Thirty preservice teachers participated: twelve in first session and eighteen in the second. 

Each participant received $20 for completing the survey.  
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 Selecting the instrument. The Learning Mathematics for Teaching (LMT) project 

develops survey instruments for measuring mathematical knowledge for teaching. The surveys 

contain multiple-choice questions reflecting common mathematics problems encountered in 

elementary school classrooms—for instance, evaluating students’ mathematical claims, 

examining unusual solution methods, and determining how to best represent material or generate 

examples. The measures have been validated with multiple methods, including cognitive 

interviews and links to the mathematical quality of instruction and to student achievement (Blunk, 

2007; Blunk & Schilling, 2005; Hill et al., 2005; Hill et al., 2004).  

 The form I administered14 is composed of three scales: number and operations; geometry; 

and patterns, functions, and algebra. There are 26 number and operations items; 19 geometry 

items; and 16 patterns, functions, and algebra items. The form has a reliability of 0.83 (using a 

two-parameter IRT model) and 0.79 (using a one-parameter IRT model) (Hill, 2007). Preservice 

teachers had as much time as needed to complete the survey. I did not keep track of the time 

spent, but everyone finished within an hour. 

 Scoring the survey. Without viewing the responses, I scanned the completed surveys and 

stored the electronic copies as back up. I then gave the questionnaires to a research assistant for 

anonymization. She randomly assigned each participant an identification number from 1 to 30 

and then removed the preservice teacher’s name from each survey, replacing it with the 

corresponding identification number. I scored the anonymized surveys and used the LMT 

conversion tables to determine each participant’s IRT score (i.e., the estimate of each 

participant’s ability) for each scale. I averaged the three IRT scores to create an average MKT 

score.15  

 To select the participants for the second phase of the study, I sorted the average IRT 

scores in descending order and divided the sorted list into fifths (Table 1). The top six scores 

became the high-score group, the middle six became the middle-score group, and the bottom six 

scores became the low-score group. I also identified three alternates in each score group. I then 

gave the aforementioned research assistant a list of the identification numbers of the six people in 

each score group. She matched numbers with names and returned to me an alphabetical list of the 

18 people selected for phase two (i.e., the six names in each of the high-, medium-, and low-score 

groups). This selection method ensured that I had six participants in each score group, yet I did 
                                            
14 I consulted with LMT Principal Investigator Heather Hill about which of the many LMT forms to use in 
my study. I followed her suggestion to administer one of the 2004 elementary forms. 
15 I consulted with LMT analysts Geoffrey Phelps and Merrie Blunk about how to interpret and combine 
the IRT scores from each scale to select high, middle, and low scores across the three scales. They 
suggested that I average the three IRT scores for each scale.  
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not know who was in which group. Therefore, my data collection and initial analyses were not 

influenced by survey scores.  

 
Table 1. 
MKT Survey Results 
 

 
Number & 
Operations Geometry 

Patterns, Functions 
& Algebra  

ID 
Number IRT Score IRT Score IRT Score Average 

IRT Score 
High-Score Group 

21 2.5152 2.2535 1.09 1.9529 
3 1.3852 2.2535 1.78 1.8062 

30 1.9105 1.1352 1.78 1.6086 
6 1.3852 1.6552 1.78 1.6068 
8 1.3852 1.6552 1.78 1.6068 

13 1.6397 1.1352 1.09 1.2883 
2 1.1443 1.1352 1.09 1.1232HA1 

11 1.3852 1.1352 0.796 1.1055HA2 

26 1.3852 1.1352 0.796 1.1055HA3 

27 0.9147 0.2978 1.415 0.8758 
9 0.2771 1.1352 1.09 0.8341 
1 1.6397 -0.2914 1.09 0.8128MA2 

Middle-Score Group 
22 1.3852 0.7957 0.021 0.7340 
19 1.3852 -0.2914 1.09 0.7279 
29 1.1443 0.5279 0.267 0.6464 
20 0.2771 0.7957 0.796 0.6229 
25 0.6946 0.0897 0.796 0.5268 
23 0.4825 0.5279 0.524 0.5115 
18 0.6946 0.7957 0.021 0.5038MA1 

16 0.6946 0.5279 0.267 0.4965MA3 

15 0.4825 -0.1049 -0.218 0.0532 
24 0.4825 -0.1049 -0.218 0.0532LA3 

5 0.2771 -0.4737 0.021 -0.0585LA2 

10 -0.5006 -0.4737 0.267 -0.2358LA1 

Low-Score Group 
4 -0.1185 -0.4737 -0.923 -0.5051 

14 -0.3107 -0.8378 -0.453 -0.5338 
28 -0.1185 -0.6548 -0.923 -0.5654 
17 -1.2542 -0.4737 -0.218 -0.6486 
7 -1.8406 -0.1049 -0.923 -0.9562 

12 -1.0648 -1.2217 -0.923 -1.0698 
HA1, HA2, HA3: High-score group alternate 1, 2, 3 
MA1, MA2, MA3: Middle-score group alternate 1, 2, 3 
LA1, LA2, LA3: Low-score group alternate 1, 2, 3  
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Phase Two of Data Collection: Lesson Interviews and Observations 

 Sample size. I contacted the preservice teachers who were selected from phase one, and 

all 18 agreed to participate in the second part of the study. In early January 2008, one of the 

preservice teachers had to drop out of the study because her cooperating teacher did not want the 

classroom to be video recorded. I contacted this person’s first alternate but did not get a response, 

so I contacted the second alternate who agreed to participate. In February, a different preservice 

teacher (who at the time had already completed a background interview and had scheduled a 

lesson observation for February 7) canceled her observation with the expressed intention of 

rescheduling in March. However, despite numerous attempts, I was unable to schedule another 

observation. Thus, my final sample is 17 lessons. 

 Background interviews. Background interviews were conducted at preservice teachers’ 

convenience between December 4, 2007 and February 2, 2008. All preservice teachers 

participated in a background interview before teaching their lesson, although the time between the 

background interview and lesson observation varied. Because I had only briefly met participating 

preservice teachers prior to this study (i.e., when I announced the study in their seminar and when 

they took the survey), the central purpose of the background interview was to establish rapport 

with each teacher before conducting the lesson observation and interviews. 

 The 45-minute background interview began with general questions about preservice 

teachers’ experiences with and beliefs about mathematics and mathematics teaching. The second 

half of the interview asked about their lesson planning practices. The questions about lesson 

planning were included because planning is a time during which teachers think about the goals of 

their lessons. The complete protocol is found in Appendix A. 

 Pre-lesson interviews. Lesson interviews and observations took place between January 

10, 2008 and February 7, 2008. The observations were scheduled at preservice teachers’ 

convenience; the only stipulation was that the lesson not be part of a formal observation or course 

requirement. The pre- and post-lesson interviews were conducted on the same day as the 

observation at a time that fit the preservice teacher’s schedule (e.g., before school, during a prep 

period, or while eating lunch). Unfortunately, time constraints due to the realities of life in 

schools sometimes necessitated moving quickly through or even skipping parts of the interviews. 

 The semi-structured pre-lesson interview often occurred immediately before the lesson 

was taught. Interviews ranged from 20 to 48 minutes, with an average length of approximately 40 

minutes. The interview had four parts. It began with questions about their goals for the lesson. I 

probed the meaning of any goals stated and then, if not mentioned, asked about goals related to 

mathematical practices and whether the lesson connected to any broader unit or school-year 
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goals. I also asked how they decided on their goals and whether they thought their goals were the 

same as the goals of the textbook. I concluded the first part of the interview by asking about the 

level of understanding they expected for their students with respect to these goals. 

 During the second part of the interview, I asked preservice teachers to walk me through 

their plan for the lesson. As they described each activity, I asked questions to probe their 

mathematical knowledge for teaching. In these probes, I focused on their understanding and 

choice of: definitions and use of language; explanations; representations; and examples/exercises. 

In most cases, I had read a copy of the textbook lesson in advance and had prepared specific 

questions related to each of these categories.16 After they finished describing each activity or 

lesson segment, I asked about the main point of the activity. For each activity I also asked 

whether and why they thought it might be difficult for students and, when appropriate for the 

activity, inquired about anticipated student answers, solution methods, misconceptions, and 

errors. I concluded the discussion of each lesson segment by asking whether there was anything 

in the activity about which they were worried or unsure. 

 After the walk-through, the third part of the interview returned to global questions about 

the lesson’s main mathematical point/s and what they were most confident and unsure about. The 

fourth and final part of the pre-lesson interview covered how preservice teachers prepared for the 

lesson. However, if time was running short, the planning questions were saved for the post-lesson 

interview. The complete pre-lesson interview protocol can be found in Appendix B. 

 Lesson observations. Table 2 shows the preservice teacher’s name,17 grade level, and 

main mathematics topic for each of the 17 lessons. Fifteen of the lessons were based (in varying 

degrees) on lessons from the Everyday Mathematics curriculum. Two lessons (Andrea’s and 

Mia’s) were not textbook-based.18  

 

                                            
16 There were a few instances where the lesson being taught was different than the one they had originally 
told me or where no textbook was used. In these cases, I had not read the curriculum materials in advance 
of the interview. 
17 All preservice teachers’ names are pseudonyms. There was no method for pseudonym selection other 
than I wanted each pseudonym to begin with a different letter so I could use first initials as a notational 
shortcut. 
18 Both Andrea’s and Mia’s cooperating teachers did not regularly use a textbook to teach mathematics. 
Andrea used a modified version of an Everyday Mathematics “Math Message” as a warm-up problem in 
her lesson; however, the majority of the lesson was spent on practice problems she created. Mia designed 
the activities in her lesson based on resource materials provided by her cooperating teacher. 
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Table 2:  
Phase-Two Participants: Grade Level and Lesson Topic 
 

Teacher Grade 
level Lesson domain Lesson topic 

Hannah 1 Number and operations Equivalent names for numbers 

Irene 1 Number and operations Addition and subtraction fact families 

Sydney 1 Number and operations Comparison problems 

Beth 2 Data Graphing 

Courtney 2 Number and operations Comparison number stories 

Rachel 2 Number and operations Introduction to fractions 

Erica 3 Number and operations Using parentheses 

Larkin 3 Geometry Symmetry 

Mia 3 Data Graphing 

Nicole 3 Number and operations Place value (tenths and hundredths) 

Tiffany 3 Number and operations Place value (large numbers) 

Gillian 4 Measurement Metric measures of length (conversion) 

Keri 4 Number and operations Review of fraction concepts 

Paige 4 Number and operations Representing, adding, and subtracting 
fractions 

Andrea 5 Number and operations Division (4-digit by 2-digit numbers) 

Jordan 5 Number and operations Review of integer addition and 
subtraction 

Zach 5 Number and operations Adding and subtracting simple fractions 

 

 I recorded each lesson using a digital video camera. The camera was stationary, but I 

tried to situate the tripod at the back or side of the room, where I could be out of the way, yet still 

clearly capture the board as well as the preservice teacher’s movement throughout the room. 

Preservice teachers wore a high-quality wireless microphone that could, in most cases, also 

capture the students’ talk. I also make a backup digital audio recording, which I used to confirm 

inaudible student utterances when needed. 

 As I recorded the lesson, I made brief observational notes in an effort to identify two 

types of episodes: (1) episodes that could provide insight into the preservice teacher’s MKT (e.g., 

when explaining a mathematical concept, using a mathematical representation, defining or using 
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mathematical terms, selecting or sequencing problems, or interpreting a student comment); and 

(2) episodes in which the teacher did not seem to act in accordance with her or his stated goals 

(e.g., choosing an example that did not align with the expressed mathematical point, or not taking 

up a student comment that was directly related to one of the lesson’s mathematical goals). These 

“goal shifts” have been found to be useful sites for investigating teacher decision-making 

(Aguirre & Speer, 2000). The collection of episodes became candidates for viewing in the post-

lesson interview. 

 I had one major technical malfunction that resulted in only the last 20 minutes of Erica’s 

lesson being video recorded.19 In this case, I modified the post-lesson interview: Instead of 

following the usual protocol, we walked through the lesson and recreated what had happened.  

 Post-lesson interviews. After each lesson, I conducted a post-lesson interview (Appendix 

C). Interviews typically began 10 to 20 minutes after the lesson ended; however, some were 

conducted later in the school day or after school. During this time, I quickly downloaded the 

video to my computer, burned a copy of the video onto a DVD, and selected the episodes I 

wanted to watch and/or discuss during the interview. Post-lesson interviews ranged from 18 to 65 

minutes, with an average length of 50 minutes. 

 The interview began by asking preservice teachers to share their reactions to the lesson. I 

followed up with some general questions, including whether they thought they had accomplished 

their goals and what they thought students had learned. In most cases, we then watched two or 

three short video episodes from the lesson. I instructed preservice teachers to interrupt the video 

at any point to explain what they were thinking or why they made particular decisions. I 

frequently stopped the video to ask questions as well. The interview concluded with overarching 

questions about their lesson goals. At the end of the post-lesson interview, preservice teachers 

received $80 and a copy of their lesson video on DVD. 

 Written materials. I collected any curriculum materials used, as well as any teacher-made 

student worksheets, overheads, etc. that were not part of the curriculum materials. I also made a 

copy of the preservice teacher’s lesson plan, if one was made. Their written plans ranged from 

handwritten notes jotted directly on the teacher’s guide to typed plans in more traditional lesson 

plan formats. 

 Analytic memos. My data collection schedule was quite intense, but when possible, I 

wrote informal post-observation memos. In each memo, I recorded emerging ideas related to my 

research questions, as well as noted anything that stood out to me about the lesson. I was able to 

write memos after 11 of the lessons. 
                                            
19 I did make a backup audio recording of the lesson, which was transcribed. 
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Data Analysis 

 This section details how I analyzed the data to investigate each of my research questions. 

As stated in Chapter 1, my research questions are as follows: 

1. What is the work of determining the mathematical goals of a lesson and using those 
goals to design instruction? 

 
2. What is the work of using mathematical goals to steer instruction during a lesson’s 

enactment? 
• What problems must be managed in doing this work? 
• What teaching moves can be used to manage these problems? 
• What are some of the issues that arise for beginning teachers when managing 

these problems?   
 

3. What is the relationship of mathematical knowledge for teaching and the work of 
determining mathematical goals and using them to design and steer instruction? 

 
Investigating Research Question #1: Developing a Framework for Mathematical Purposing 

 My first question focuses on unpacking the work of determining the mathematical goals 

of a lesson and using those goals to design instruction—what I am now calling mathematical 

purposing.20 I investigated this research question through an iterative analysis of the literature and 

the data to develop a conceptual framework that decomposes the work. I began by identifying 

general themes about what was involved in determining mathematical goals and using those goals 

to design instruction. These ideas were based on my reading of the literature (as summarized at 

the end of Chapter 2), my own teaching and teacher education experience, and my observations 

and analytic memos made during data collection (Ryan & Bernard, 2000). I organized these ideas 

into preliminary categories of what, at the time, I was calling “components of the work of lesson 

design for mathematics instruction.” 

 Coding the data. My first stage of data analysis was to listen to all of pre-lesson 

interview audio recordings and watch all of the lesson videos. This served two purposes. One 

purpose was to “clean” the transcripts. I had received a grant to have the lessons and pre- and 

post-lesson interviews roughly transcribed, but still needed to review and polish each transcript 

                                            
20 Throughout my discussion of the data analysis process, I use the terms “mathematical purposing” and 
“teaching to the mathematical point” even though this language was a result of the analyses. When I began 
analyzing the data, I had sense of the construct I was investigating, but did not have the language to identify 
it or know exactly what the work entailed (determining these was part of the aim of the study). In my early 
stages of analysis, I referred to the evolving construct as “the work of X” until I ultimately settled on the 
language of “mathematical purposing” and “teaching to the mathematical point.” Rather than use “X” or 
cumbersome phrases like “the work of identifying mathematical learning goals for students and deliberately 
designing and implementing instructional activities to move students toward those goals” in this chapter, I 
use the language that emerged from the analysis, even though it does not reflect the chronology of the 
work. 
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for use in my analysis. The second purpose was to engage in an initial coding of the data in order 

to revise and further develop my preliminary categorization scheme. I looked for any examples of 

practices that preservice teachers engaged in that seemed related to identifying and using goals 

(e.g., types of mathematical goals, details of the instructional activity that were planned to help 

further those goals, teaching moves that seemed intended to steer the activity toward those goals, 

etc.). I also looked for non-examples (e.g., when the lesson seemed to get “off track,” 

misunderstanding a key mathematical idea, etc.) and identified—from the literature, my own 

experience, or from ideas that the preservice teacher brought up in the post-lesson interview—

work that might have helped prevent these issues. 

 Through this process, I reorganized and added categories and subcategories, in particular, 

to accommodate teaching moves or responses to interview questions that did not fit in one of the 

categories. In addition, I frequently renamed the categories and subcategories as I gathered more 

examples and became clearer over time about the work of teaching being described in each. From 

this initial pass through the data, I developed a set of categories and subcategories that I felt 

captured the main components of the work, that by this time, I had named “mathematical 

purposing.” I also had an extensive list of example practices (codes) for each subcategory.21

 The next stage of my analysis had two goals: (1) to ensure that my categories sufficiently 

captured the data and (2) to further decompose the work of mathematical purposing through a 

more detailed unpacking of the “insides” of each category. I did this through a process of 

“focused coding” on a subset of the data: 

Focused coding means using the most significant and/or frequent earlier codes to sift 
through large amounts of data. One goal is to determine the adequacy of those codes. 
Focused coding requires decisions about what initial codes make the most analytic sense 
to categorize your data incisively and completely. (Charmaz, 2006, p. 58)  
 

  To develop a procedure for coding (e.g., which aspects of the data to code, whether to 

code on the computer or on hard copies of the transcript, etc.), I experimented with data from two 

lessons: Jordan’s and Sydney’s. I selected these lessons because I thought they were different in 

ways that would help ensure that my coding procedure would apply across all of my data. For 

example, Jordan’s lesson only loosely relied on a textbook, whereas Sydney’s was closely 

textbook-based. In addition, I thought Jordan’s lesson was one of the strongest examples of 

mathematical purposing in the data set, and Sydney’s one of the weakest. Based on this, I guessed 

                                            
21 I do not include the categorization schemes in this chapter because I discuss the categories and their 
components in detail in Chapters 5 and 6. 
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that Jordan had high MKT and Sydney low MKT.22 I describe the coding procedure I developed 

below. 

 First, I analyzed the pre-lesson interview transcript. I formatted the transcript into a table 

with each row corresponding to a turn of talk by the teacher or myself and each column 

corresponding to the first level of subcategory in the coding scheme. Then I analyzed the 

interview turn by turn, identifying examples of work in each category and making notes about 

how the example related to the work of mathematical purposing (e.g., labeling the more general 

practice it exemplified). After coding the entire interview, I went back through the table, column 

by column, and tried to sort each example I had identified into my categorization scheme. If an 

example did not fit, I revised or reorganized the subcategories to accommodate it.  

 Next I coded the lesson transcript. To my surprise, I found it difficult to use some of the 

categories of the coding scheme to structure my analysis of the lesson transcript.23 In the 

interview, the preservice teacher and I were explicitly discussing the mathematical point of the 

lesson, so the categories and subcategories applied directly. This was not the case during the 

lesson. Identifying the work of mathematical purposing from the lesson required abstracting from 

the moves I saw the teacher make (or not make) during the lesson back to the work of 

mathematical purposing based on my understanding of what the preservice teacher’s 

mathematical point was at the time. Therefore, I used a slightly different process to code the 

lessons.  

 As I watched the lesson video and analyzed each turn in the transcript, I made notes in 

response to the following questions: (1) What is the teacher doing (or could she be doing) at this 

moment to steer students toward her mathematical learning goals?; and (2) What does this 

moment have to do with the mathematical point of the lesson? I also wrote descriptive notes to 

aid with navigation (e.g., work format, which problem was being discussed, what the teacher 

wrote on the board, etc.). In addition, I recorded any ideas I had related to MKT.24 Next, I 

analyzed the post-lesson interview to look for additional ideas and insight related to the two 

lesson-analysis questions. I then returned to the notes I had made on the lesson transcript, and 

                                            
22 During my first pass through the data, I predicted the MKT-score group of each preservice teacher based 
on their lesson and interviews. I correctly predicted 12 out of the 17 score groups. I was only off by one 
level for 4 of the 5 incorrectly guessed scores (e.g., I predicted medium, but the preservice teacher was in 
the low-score group.). There was one teacher that I predicted was in the low-score group, who surprisingly 
was in the high-score group. 
23 In retrospect, I now see that this difficulty was the first sign of the analytic distinction I would eventually 
make between mathematical purposing and steering the instruction. As I describe in the section below on 
the evolution of the framework, I had originally included codes related to steering in the orienting category.  
24 Coding for MKT was not systematic at this point. I just made notes about anything that struck me as 
related to MKT as I was I was watching the video. 



 77 

went, column by column, through a process similar to the one used for the pre-lesson interview of 

fitting the example moves into the categorization scheme.  

 After I developed a coding procedure, I needed to select a subset of lessons on which to 

continue the focused coding. Because I thought variation of MKT would make different aspects 

of the work of mathematical purposing visible (and this was the basis for the original sample 

selection), it seemed important that the subset also have variation in MKT scores. At this point, 

however, I still did not know the scores of the teachers. Therefore, I gave the identification 

numbers of the three highest- and three lowest-scoring preservice teachers to the research 

assistant who had anonymized the data and she returned an alphabetized list of their names 

(Andrea, Beth, Irene, Larkin, Mia, and Paige). This ensured that my subsample had a range of 

MKT scores, yet I did not know which teacher had which score.25  

 I then utilized the process I had developed with Jordan’s and Sydney’s data on the data 

from these six lessons. Over time, my categorization scheme became increasingly stable—that is, 

I made fewer and fewer new categories, subcategories, and codes. By the time I coded the last of 

the data in the subsample, I was no longer adding categories and subcategories. This final coding 

scheme is what was ultimately organized into my framework for mathematical purposing and the 

problems in steering instruction, which I describe in detail in Chapters 6 and 5, respectively. 

 The last stage in the coding process was to code the remaining lessons.26 To code the pre-

lesson interviews and lessons, I made coding templates in Excel, again with the main categories 

and first level of subcategories as the columns and turns of the transcript as the rows. When a turn 

or sequence of turns related to a subcategory, I noted it in the corresponding cell. Because my 

framework aims to describe the work of mathematical purposing, not to evaluate how well it is 

done, I did not distinguish between “good” or “bad” examples when coding the pre-lesson 

interview. However, when coding the lesson, I did indicate whether or not a particular teaching 

move or sequence of interactions seemed “mathematically purposeful.” I used this information to 

identify the issues that arise when trying to manage problems in steering instruction toward its 

mathematical point. This is related to my second research question and is discussed in more detail 

below.  

 Although I watched the entire lesson, at this stage of analysis, I coded only the parts of 

the lesson that were in whole group (i.e., I did not code when students were working 

independently). I did this for two main reasons. First, when I coded the subsample, I did not seem 

                                            
25 However, based on their lessons and interviews, I was able to correctly predict which preservice teachers 
were in the high-score group and which were in the low-score group for all six preservice teachers in the 
subsample. 
26 I did not code Erica’s lesson in this manner because I did not have a video of the entire lesson. 
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to be identifying any new types of work in the interactions with individual students that I had not 

already picked up the whole-group segments. Second, because I did not ask specifically about 

independent work time in the pre-lesson interview, nor did I typically ask about these interactions 

in the post-lesson interview (because I could not hear what was being said while I was recording, 

and therefore did not identify them as episodes to watch together), I did not know the teacher’s 

mathematical point of interactions with individual students, which made them difficult to 

interpret. I also did not code the post-lesson interview turn by turn; however, I did use the post-

lesson interview to inform my analysis of the lesson, in particular, to help me understand the 

reasons behind the moves made during instruction. 

 Evolving organization and representation of framework. Through my analysis of the 

data, what had started as a single-paged document of initial categories and subcategories grew 

into a 28-page description of the work of mathematical purposing, hierarchically organized into 

categories and subcategories with brief references to specific examples from the data. Needless to 

say, using these detailed lists to code the data proved challenging. Not only was the document 

itself unwieldy, I could not keep track of what work belonged in which category. Furthermore, if 

I—the person who developed it—found it unmanageable, how could I expect it to be useful to 

other researchers, teacher educators, or teachers?  

 The process of reorganizing my lists of categories into a conceptually structured 

framework occurred over many months, both during and after coding. It involved pages of 

rejected sketches and countless conversations. Here I recount the three most significant events in 

the framework’s evolution. 

 One significant change had to do with the structure of mathematical purposing. At the 

time in the analysis when I decided to name the construct I was studying “mathematical 

purposing,” I conceived of it as having three main (interdependent) categories of work 

(articulating, orienting, and detailing) instead of two (articulating and orienting). During 

subsequent analyses, I found that I was making the most progress unpacking the work of 

articulating and orienting, but was not getting clear about what belonged in the detailing category. 

I had a list of aspects of instruction that needed to be detailed, but the nature and quality of the 

detailing for mathematical purposing was captured in the orienting category. Thus, everything 

that I had listed in the detailing category was also reflected in the orienting category. I eventually 

realized that the detailing category was redundant and removed it. 

 A second major change related to my overall conceptualization of (what I eventually 

named) teaching to the mathematical point. While I was coding, I noticed that there were two 

types of items that I had been including in the orienting category. The first type was specific 



 79 

teaching moves related to detailing the instructional activity so that it focused instruction on the 

mathematical point (e.g., selecting numbers from desired cases, using representations that 

highlighted the intended mathematics, designing strategic questions, etc.). The second type was 

work of teaching that could be accomplished with any number of moves (e.g., making key ideas 

explicit, maintaining the mathematical storyline, etc.); in some ways, the second type could be 

thought of as reasons for doing the first type of move. I eventually distinguished between 

orienting the instructional activity (included as part of mathematical purposing) and steering the 

instruction, and recognized the second type as problems that must be managed in steering 

instruction to the mathematical point.27  

 However, even though I separated this second type of code (i.e., problems in steering 

instruction toward the mathematical point) from my framework for mathematical purposing, there 

is an important relationship between the work of mathematical purposing and the problems in 

steering instruction toward the mathematical point. At a basic level, managing the problems in 

steering instruction toward the mathematical point requires an articulation of the mathematical 

point, which is part of the work of mathematical purposing. But more than that, in practice, the 

work of mathematical purposing is intended to help manage the problems in steering instruction. 

That is, articulating the mathematical point and orienting the instructional activity are 

conceptualized as work that helps position instruction so that it is more likely to engage students 

with the intended mathematics—thus, in a way, “doing” some of the work of steering.  

 This relationship between the work of mathematical purposing and steering the 

instruction was reflected in my analysis of the data, but in some cases from the other direction. 

For example, as described above, when analyzing the lesson videos, I asked: What is the teacher 

doing (or could she be doing) at this moment to steer students toward her mathematical learning 

goals? Working backwards from the answers to this question helped identify aspects of the work 

of mathematical purposing. For instance, if a poorly worded question seemed to steer the lesson 

away from the mathematical point because it inadvertently engaged students in unintended 

mathematical work, a corresponding part of the work of mathematical purposing that could help 

manage this problem would be to design strategic questions and prompts that focus students on 

the intended mathematics. This type of analysis is an example of how the “bumps and bruises” of 

beginning teaching made visible aspects of the work. 

                                            
27 While I was coding, I had simply pulled this second type of out of the framework and placed them in 
their own unnamed category. (In my notes and coding templates, I informally referred to them “emerging 
themes” or “things you are trying to do when mathematically purposing.”) After I made the mathematical 
purposing and steering the instruction distinction, Deborah Ball suggested using the notion of problems that 
must be managed. 



 80 

 A third major change had to do with my representation of the work of articulating the 

mathematical point. I had noticed parallels across the subcategories in the articulating section, 

which made me think that I might be able to represent the work in a matrix instead of linearly. In 

addition to highlighting the conceptual connections across categories, a matrix representation 

helps make the work of articulating the mathematical point easier to track on, because in a matrix 

you can “see” more of it at one time. The “parallels” I noticed were that the analytic work in each 

subcategory was being applied to both the mathematical terrain and to the instructional activity. 

Thus, I reconceptualized the work of articulating the mathematical point as applying three 

different analytic lenses to the mathematical terrain and to the instructional activity, and the 

matrix representation that will be presented in Chapter 6 fell into place. 

 
Investigating Research Question #2: Problems in Steering Instruction toward the 
Mathematical Point 
 My second research question asks: What is the work of using mathematical goals to steer 

instruction during a lesson’s enactment? In investigating this question, I hoped to unpack some of 

the problems that must be managed in doing this work and identify examples of teaching moves 

that can be used to manage these problems. In addition, I aimed to describe beginners engaging in 

this work and some of the issues they encounter. 

 As described above, the problems in steering instruction toward the mathematical point 

that emerged in my analysis began as codes in the orienting category. However, as the framework 

evolved and I became clearer about the analytic distinctions I was making, these codes were 

pulled out of mathematical purposing into their own category. In Chapter 5, I present and discuss 

these codes using detailed examples from the data. 

 I coded for these problems in the pre-lesson interviews and lessons using the processes 

described above. In my analyses, I found that the problems were overlapping: Each problem 

could be managed with a variety of teaching moves, and in many cases, a particular move could 

be interpreted as addressing multiple problems. In addition to marking instances in which the 

preservice teacher could be interpreted as managing one of these problems, when applicable, I 

noted whether the move seemed to steering the instruction toward the mathematical point or if it 

seemed to be moving things off track. After I had coded all of the data, I compiled the “off track” 

instances. Looking across these, I identified patterns, which eventually became the issues that 

arise when trying to manage the problems in steering instruction toward the mathematical point 

that I discuss in Chapter 5.  
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Investigating Research Question #3: Exploring the Relationship of MKT and Mathematical 
Purposing 
 
 My third research question asks: What is the relationship of mathematical knowledge for 

teaching and the work of determining mathematical goals and using them to design and steer 

instruction? I focused my investigation on the relationship between MKT and mathematical 

purposing. 

 To explore the relationship between mathematical knowledge for teaching and the work 

of mathematical purposing, I applied the MKT categorization scheme developed by Ball et al. 

(2008) to the framework I had developed for mathematical purposing. As described in Chapter 1, 

Ball and colleagues currently distinguish six domains of MKT: (1) common content knowledge; 

(2) specialized content knowledge; (3) knowledge of content and students; and (4) knowledge of 

content and teaching; along with two preliminary categories: (5) horizon content knowledge; and 

(6) knowledge of content and curriculum. For each component of my framework, I asked which 

domain of MKT would be drawn upon to do that aspect the work. The result is a mapping of the 

domains of MKT onto the framework for mathematical purposing (described in Chapter 7). 

 To illustrate this mapping in practice, I examined a case from the data. Because “bumps 

and bruises” make the mathematical knowledge demands visible (Heaton, 2000), at this point in 

my analysis, I revealed the preservice teachers’ MKT scores in order to select a lesson from the 

low-score group. Table 3 shows the MKT scores and score groups of the 17 preservice teachers 

who participated in phase two of the study. 
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Table 3. 
MKT Scores of Phase-Two Participants 
 

 
Number & 
Operations Geometry 

Patterns, 
Functions & 

Algebra  

Name IRT Score IRT Score IRT Score Average 
IRT Score 

High-Score Group 
Andrea 2.5152 2.2535 1.09 1.9529 
Larkin 1.3852 2.2535 1.78 1.8062 
Irene 1.9105 1.1352 1.78 1.6086 

Nicole 1.3852 1.6552 1.78 1.6068 
Rachel 1.3852 1.6552 1.78 1.6068 
Jordan 1.6397 1.1352 1.09 1.2883 

Middle-Score Group 
Courtney 1.3852 0.7957 0.021 0.7340 
Hannah 1.3852 -0.2914 1.09 0.7279 
Gillian 1.1443 0.5279 0.267 0.6464 

Keri 0.2771 0.7957 0.796 0.6229 
Zach 0.6946 0.0897 0.796 0.5268 

Tiffany 0.4825 0.5279 0.524 0.5115 
Low-Score Group 

Erica 0.2771 -0.4737 0.021 -0.0585LA2 

Beth -0.3107 -0.8378 -0.453 -0.5338 
Paige -0.1185 -0.6548 -0.923 -0.5654 
Mia -1.8406 -0.1049 -0.923 -0.9562 

Sydney -1.0648 -1.2217 -0.923 -1.0698 
LA2: Low-score group alternate 2 
 

 Out of the five lessons in the low-score group, I chose to focus on the case of Paige for a 

number of reasons. First, Paige’s lesson was on representing, adding, and subtracting fractions, 

which is a central topic in elementary school. Second, in her interviews, Paige expressed having a 

hard time understanding both the mathematics and the connections of the activity to the 

mathematics, which I thought might make the knowledge demands of the work more visible. 

Lastly, Paige’s case seemed to offer more insight into the knowledge demands of mathematical 

purposing than the other lessons in the low-score group. Erica was a second alternate and her 

score was not as low as some of the other scores. Furthermore, Erica’s lesson had the technical 

difficulty and I did not have a full video. Both Beth’s and Mia’s lessons focused on graphing, 

which is not a central topic in the elementary curriculum. In addition, Mia’s lesson was very short 

and not from a textbook, and Beth’s lesson had a non-mathematical component (food groups). 

Although Sydney’s lesson provides much insight into the work, her interviews do not provide 
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additional information because she often did not try to analyze the mathematics or the activity to 

make choices about what to teach, but just included the aspects of the lesson she happened to 

notice. 

 To analyze Paige’s case, I adapted the practice-based approach developed by Ball et al. 

(Ball & Bass, 2003; Ball et al., 2008). Instead of analyzing the school curriculum or student 

thinking to gain insight into the mathematical knowledge demands of teaching, this approach 

studies classroom practice, asking: 

• What mathematical knowledge is entailed by the work of teaching mathematics? 

• Where and how is mathematical knowledge used in teaching mathematics?  How is 

mathematical knowledge intertwined with other knowledge and sensibilities in the 

course of that work? (Ball & Bass, 2003, p. 5) 

 In this approach, teaching is portrayed as a kind of “mathematical problem solving.” 

Analyzing practice has been found to uncover ways that teachers know and use mathematical 

knowledge in their work that can remain hidden when using other approaches to articulating the 

subject matter knowledge needed for teaching. Furthermore, asking about the mathematical 

knowledge entailed in the work of teaching “places the emphasis on the use of knowledge in and 

for teaching rather than on teachers themselves” (Ball et al., 2008, p. 394).  

 I used this practice-based approach and the domain-mapping described above to illustrate 

the knowledge demands of mathematical purposing. In particular, I analyzed the interview and 

lesson transcripts, as well as the curriculum materials, with my framework to identify the aspects 

of mathematical purposing in which Paige did and did not engage and the domains of MKT on 

which she seemed to draw or not draw. 

 
Limitations of Study 

 This study has a number of limitations. First, it is important to acknowledge that I have 

conceptualized the problem space based on the context of mathematics education in the United 

States. Thus, the work of teaching to the mathematical point and the problems that must be 

managed to do so might be different in other countries. But even within the U.S. context, my 

conceptualization and unpacking of the work of teaching to the mathematical point is limited by 

the data I used. Although the sample was varied in important ways (e.g., grade level, MKT, 

lesson topic), there were a number of similarities across the sample that likely influenced my 

characterization of the work and knowledge demands of mathematical purposing, as well as the 

problems in steering instruction toward the mathematical point that I identified. For example, all 

of the preservice teachers were students in the same teacher education program and almost all of 



 84 

their lessons were based on Everyday Mathematics. I did not gather data about the children in 

their classrooms, so I do not know whether their classrooms were ethnically or socioeconomically 

diverse. Thus, my framework is likely missing aspects of the work of mathematical purposing or 

problems in steering instruction that were not visible in the settings I observed. Furthermore, 

there are likely important aspects of teaching to the mathematical point that occur across lessons 

that I did not attend to in my single-lesson data set. Thus, there may be differences in the work of 

teaching to the mathematical point in contexts other than those I studied, such as secondary 

mathematics teaching or even elementary mathematics teaching using a more problem-centered 

curriculum. However, it is important to note that, because my framework was developed through 

an iterative analysis of the data and the literature, it does not reflect only the contexts in the data. 

 Another set of limitations emerges from my methods of analysis. Research like this is 

necessarily interpretive. Although I have experience studying teaching practice to unpack the 

work of teaching and its mathematical knowledge demands, my findings reflect only what I was 

able to “see” in the data. Whether the distinctions being made prove useful or the “right” things 

are captured in the framework will ultimately be determined by whether and how the ideas can be 

taken up and used in future research and teacher education. 

 This points to a third set of limitations resulting from the goals of the study itself. In 

Chapter 1, I made arguments about the significance of this study that were based on improving 

students’ mathematics learning and teacher education. This dissertation is just a tiny step with 

respect to these aims. All of the disclaimers made at the beginning of this chapter about what this 

study is not trying to do (i.e., that I am not making claims about preservice teachers’ knowledge 

or practices, and I am not making claims about whether they had a mathematical point or taught 

to it) are in fact the very work that needs to be done. This study does not take up questions such 

as: How can preservice teachers learn to teach to the mathematical point? Does mathematical 

purposing help preservice teachers steer instruction toward their mathematical point? Are 

teachers with stronger MKT more skilled at mathematical purposing? Does skill in mathematical 

purposing improve the mathematical quality of instruction and lead to increased student 

learning? These important questions remain unanswered.  

 The next four chapters present the results of my analyses. Across these chapters, I unpack 

and articulate aspects of the work of teaching to the mathematical point and explore the 

mathematical knowledge demands of this work. I begin in Chapter 4 with a close look at 

instruction, using detailed examples from two lessons in the data to explore the work of teaching 

to the mathematical point and to illustrate its complexity. In Chapter 5, I use the data to illustrate 

problems that must be managed in steering instruction, and, as I discuss each problem, I identify 



 85 

issues that can arise for beginners as they engage in this work. These examples from the data help 

lay the foundation for the framework for mathematical purposing presented in Chapter 6. Chapter 

7 examines the MKT demands of mathematical purposing and illustrates these demands with a 

case from the data. 
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CHAPTER FOUR: 
THE COMPLEXITY OF TEACHING TO THE MATHEMATICAL POINT 

 

Introduction 

 As described in Chapter 1, I am conceptualizing “teaching to the mathematical point” as 

three interrelated and mutually informing types of work: articulating the mathematical point; 

orienting the instructional activity; and steering the instruction toward the mathematical point.  

The first two—articulating the mathematical point and orienting the instruction—comprise the 

work of mathematical purposing. Mathematical purposing results in an articulation of the 

mathematical learning goals for students and how the activity is intended to move students toward 

those goals, as well as a detailing of the task and possible teacher moves that positions the activity 

so it is more likely to engage students with the intended mathematics. Steering the instruction 

toward the mathematical point is work done during an activity’s enactment to try to keep it 

headed in the intended mathematical direction.  

 There is a cyclic relationship between mathematical purposing and steering the 

instruction toward the mathematical point. Steering toward the mathematical point, of course, 

requires knowing the mathematical point toward which the instruction is being steered; and 

articulating the mathematical point is part of mathematical purposing. But more than that, the 

work of mathematical purposing is intended to help steer instruction toward the mathematical 

point. That is, articulating the mathematical point and orienting the instruction toward it can help 

manage problems in steering instruction. The work of steering then impacts the work of 

mathematical purposing, informing both the articulation of the mathematical point and the 

orienting of the activity. This cycle of work occurs simultaneously at a number of different grain 

sizes over time. For example, one can consider the mathematical point of an instructional activity 

as well as the mathematical point of using a particular problem, or even the mathematical point of 

a particular number in a particular problem. Thus, the work of teaching to the mathematical point 

involves simultaneous attention to nested mathematical points due to the nested nature of 

instruction.  

 Furthermore, as discussed in Chapter 1, the mathematical point of any instructional 

element (i.e., activity, problem, example) is not a single mathematical idea, nor even a set of only 

mathematical ideas. The mathematical point is a bundled package of ideas: a collection of 
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mathematical learning goals of varying grain sizes, prioritized with depth and weight and time, 

that are conceived of with respect to the particular students being taught and explicitly connected 

to the instructional activities being used. 

 In this chapter, I use two extended examples from the data to explore the work of 

teaching to the mathematical point. My aim for using these examples is twofold. First, situating 

the work of teaching to the mathematical point in the context of the lesson highlights the 

complexity of the work, in particular, the multiple considerations at varying grain sizes that must 

be simultaneously managed over time and the ways in which different aspects of the work 

interact with and inform each other. Second, the two lessons are intended to set up the more 

analytic and abstract decomposition of the work of teaching to the mathematical point presented 

in Chapters 5 and 6. Consequently, examples from the lessons described in this chapter are 

reflected in and sometimes explicitly referenced throughout the next two chapters.  

 To make more visible the aspects of the work of teaching to the mathematical point being 

illustrated by the lessons in this chapter, I provide an elaborated diagram of the work of teaching 

to the mathematical point (Figure 4). Because the components of this diagram will be further 

unpacked and discussed in detail in Chapters 5 and 6, I only highlight here some of the key 

features of the work of teaching to the mathematical point that the diagram is trying to reflect. 
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Figure 4. Elaboration of the work of teaching to the mathematical point. 
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 I conceptualize the work of articulating the mathematical point as an interactive analysis 

of both the mathematical terrain and the instructional activity from three different lenses 

(represented by the matrix in Figure 4). The mathematics lens unpacks what there is to learn 

about the mathematics and how that mathematics is made available for study in the instructional 

activity. The learners lens considers the mathematical terrain from the perspective of the learner 

and analyzes the accessibility of the mathematics in the instructional activity. The focusing lens 

simultaneously zooms in and out to specify the mathematical learning goals of various grain sizes 

and their location in and connections within and across both the mathematical terrain and 

instructional activity. The work of orienting the instructional activity involves specifying the 

details of the activity and preparing specific teacher moves in order to focus students on the 

intended mathematics. There is no order assumed in the work of mathematical purposing; the 

various components interact with and inform one another. The details of the work of 

mathematical purposing will be presented and further unpacked in Chapter 6, but the lessons 

described in this chapter reflect many aspects of the work of articulating the mathematical point 

of an instructional activity, as well as ways in which an activity can be oriented to focus students 

on the intended mathematical work.   

 One important aspect of the work of mathematical purposing that is not reflected in the 

diagram, but was discussed in Chapter 2, is that it is based on a conceptualization of the design of 

instruction as distributed work. Thus, the framework for mathematical purposing developed in 

this study is not a list of things that any individual teacher is supposed to do for every 

instructional activity. Instead, it reflects the work that is involved in the mathematical purposing 

of instruction. Depending on the context, this work will be differently distributed across the 

teacher and various resources, such as curriculum materials, grade level standards, year or unit 

planning, and established instructional routines. But because the examples in this chapter are 

taken from the data, they, in fact, reflect the distribution of work in a particular situation. My aim 

is to abstract from these specific examples a general description of the work, not to analyze who 

or what is doing the work in a particular case. Nonetheless, regardless of the distribution, the 

teacher does have a special role in the work, as it is the teacher who coordinates the design of 

instruction in her or his classroom. Furthermore, in order to teach to the mathematical point, a 

teacher has to “have a handle” on what the mathematical point is and how the instructional 

activity is intended to engage students with it. However, the ways in which a teacher “gets a 

handle” on the mathematical point and the difficulty of doing so depends on the particular 

context, the distribution of work, and the resources brought to bear. 
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 Figure 4 also lists some of the teaching problems28 that must be managed in steering 

instruction toward the mathematical point. Although listed separately, the problems are 

overlapping and occur simultaneously in instruction. Furthermore, the management of a particular 

problem is not associated with a specific set of teaching practices. In Chapter 5, I examine each 

problem using examples from across the range of lessons in the data to begin to unpack the work 

of steering instruction and to identify strategies that can help manage each problem, as well as 

issues that can arise when trying to do so. A number of the strategies discussed in Chapter 5 are 

illustrated by the two lessons described in this chapter. 

 

The Work of Teaching to the Mathematical Point: 
Two Examples from the Data 

  
 This section provides detailed images of instruction by two beginning teachers. As 

described above, I use these two examples to explore the complexity of teaching to the 

mathematical point and to begin to unpack the work of trying to purposefully engage students 

with particular mathematical ideas. I intersperse the descriptions of the lessons with excerpts from 

the interviews, as well as my own commentary. I deliberately use strong examples of beginning 

teachers’ work in this arena to illustrate strategies that can be used to manage problems in 

steering instruction toward the mathematical point (Chapter 5) and to foreshadow components of 

my framework for mathematical purposing (Chapter 6). 

 The first example is Jordan’s fifth-grade lesson on adding and subtracting integers. Her 

lesson is loosely textbook based: the problems in the homework and worksheet come from 

Everyday Mathematics, but the main whole-group work is a review designed by Jordan to meet 

her articulated learning goals for students. The second example is Courtney’s second-grade lesson 

on comparison number stories that more closely follows the lesson in the Everyday Mathematics 

teacher’s guide. Courtney analyzed the representations and problems used in the lesson to 

articulate her mathematical goals and to determine which aspects of the lesson to implement with 

her students. In addition to having articulated their mathematical points, both teachers tried to 

orient their activities to engage students in the intended mathematics and to steer instruction 

toward their goals.  

 Before beginning, I want to make a comment about the teaching described here and in the 

following chapters. In addition to unpacking the complexity of teaching to the mathematical 

point, these examples are intended to provide images of the range of beginning teaching practice 

and to recognize and appreciate the difficult and complicated task of student teaching. All of the 
                                            
28 I am using Lampert’s (2001) notion of “teaching problems” as described in Chapter 2. 
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teachers in the study are in their first full-time month in the classroom. What they are already able 

to do so early in their careers and the risks they are willing to take—including sharing their 

practice with me—is important to acknowledge. 

 
Jordan’s Lesson on Adding and Subtracting Integers 

 “Five, four, three, two, one.” Jordan counts backwards to get the attention of her fifth-

grade students. As desks close and chatter subsides, she announces, “You need to have your Basic 

Math out and a checking pen.” Students ready themselves for the daily routine of correcting last 

night’s homework. This morning there are two assignments to check: a “Basic Math” and a 

“Study Link.” Basic Math is a mixed computation review that students complete as part of their 

homework on Mondays and Wednesdays; “Study Link” is Everyday Mathematics’ name for 

homework.29 This Study Link is from the previous math lesson and focuses on integer addition 

and subtraction, which is the topic of today’s lesson.  

 Jordan’s class is nearing the end of Unit 7 from Everyday Mathematics. The unit begins 

with work on exponential notation and order of operations; introduces negative numbers using a 

variety of models including number lines, counters, and debt; and concludes with addition and 

subtraction of integers. Today’s lesson is a review of their work so far. At the beginning of the 

pre-lesson interview, Jordan described her goals for the lesson: 

I think for the students, just for them to be able to recognize when you can actually add 
and when you can actually subtract, because they’re still a little hazy on that.…When it’s 
like a positive and a negative then you can subtract and when it’s a negative and a 
negative you can add. And then we’ve been working on them just being able to give 
examples of like the different scenarios when it would happen, so if it’s like plus a 
negative, what example could you give, like temperature change or money in an account. 
They actually have team points up on the board and they can get positive and negative 
points and they’ve been doing that all year. So they’re really good with that if you set it 
up, like your team has five points and three negative points, what’s your balance? 
They’re really good at that but then not so good at being able to connect it to the actual 
number sentence. So that’s kind of the main goal for this is to get them to be able to set it 
up and recognize what operation they need to use. (J-Pre, T8-10)30 

 
 Jordan’s response illustrates that teaching to the mathematical point involves 

simultaneously attending to multiple mathematical goals of various types and grain sizes. For 

                                            
29 At earlier grade levels, it is called a “Home Link.” According to the Everyday Mathematics teacher’s 
guide: “Each lesson has a Home/Study Link. Home/Study Links include extensions of lessons and ongoing 
review problems. They show families what students are doing in mathematics.” 
30 I use the following notation to reference the interviews: (preservice teacher’s initial – data source, 
location in transcript). Each preservice teacher’s pseudonym begins with a different letter of the alphabet. 
For the data-source identification, “Pre” refers to the pre-lesson interview and “Post” to the post-lesson 
interview. The location either reflects turn numbers in a Word format of the transcript (e.g., T8-10) or rows 
(also corresponding to turns in the interview) in an Excel coding table (e.g., R8-10). 
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example, Jordan wanted students to develop both procedural fluency and conceptual 

understanding of integer addition and subtraction, and to be able to make connections across 

representations. Her goals were more than just a list of topics; they were layered with details 

about what there is to be learned about the focal topic and geared toward her particular students. 

For example, she had unpacked some of what is involved in attaining procedural fluency with 

integer addition and subtraction (e.g., recognizing what operation to use) and had a sense of her 

students’ current thinking and experiences with respect to these ideas (e.g., what related ideas 

they had been working on, what they already seemed to understand, and what they still needed to 

work on). 

 When the class is ready, Jordan begins reciting the answers to the Basic Math 

problems—“Number one: one-half. Two: two-fifths…”—continuing through number eighteen 

without comment or discussion. At number nineteen, a word problem, she varies her pattern, first 

reading the problem statement and then asking a student to share both his answer and the 

operation used. Jordan continues through the remainder of the worksheet, reading answers to the 

straight computation problems and eliciting students’ answers to the word problems. Correcting 

the 44 Basic Math problems takes approximately six minutes.  

 Jordan asks a student in each group to collect the Basic Math sheets and, as she sets up 

the overhead projector at the front of the room, directs the class to get out their Study Links. Her 

plan for correcting today’s Study Link veers from her usual routine. For the other lessons in this 

unit, she collected and looked through students’ Study Links before teaching the lesson, using the 

students’ work to inform her instruction. Today, because she suspected students would have made 

some errors, she decided to discuss the answers as a whole class. She thought that correcting their 

papers would provide a form of self-assessment and encourage students to ask questions during 

the lesson. Jordan calls on a student to explain the first problem:  

Jordan All right. Number one [-25 + (-16) = ____]. Todd, what did you get? 
Todd Negative forty-one. 
Jordan Say it again. 
Todd Negative forty-one.  
Jordan [Writes “-41” on a projected copy of the Study Link.] Seth, do you agree?  
Seth Yep. 
Jordan How did you do it?  
Seth I did negative twenty-five plus negative sixteen, so that would mean, say you 

have in your points, your money, you have negative twenty-five dollars, you 
owe it to your mom. 

Jordan Okay. 
Seth And then you borrow sixteen to go buy a new Wii game. It adds up, another, 

adds up more money, so it would equal negative forty-one. 
Jordan Good. I like your example. So you’re forty-one dollars in debt to your mom. 

All right, number two [0 - (-43) = ____], Kelly what did you get? 
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Kelly For number two? 
Jordan Yep. 
Kelly I had forty-three. 
Jordan Positive forty-three?  
Kelly Yeah. 
Jordan And how did you get that one? 
Kelly Well, I knew that if there was two, um, like, negative signs… 
Jordan Rusty, close your desk. 
Kelly …it equals to a plus sign. 
Jordan Okay. So right here, these two negative signs means I can add?  
Kelly Yeah. 
Jordan All right. Does anyone disagree?  

  
 From the outset, because the Study Link related to her mathematical point, Jordan 

handled its correction differently than the Basic Math. She recorded the answers to the problems 

on the overhead and used redundant language to emphasize particular ideas—for example, saying 

the unnecessary “positive” in front of forty-three—moves she did not make when correcting 

Basic Math. Although much of the discussion was still at a procedural level, Jordan took more 

time discussing the Study Link problems, asking students for both answers and explanations. She 

repeated students’ answers to connect them back to the representation that was being used (“So 

you’re forty-one dollars in debt to your mom.”) and to emphasize key ideas (“So right here, these 

two negative signs means I add?”). She spent almost four and half minutes on the first four 

problems. All of these were moves that helped her engage students with the mathematical point of 

her lesson. 

 When planning her lesson, Jordan had not selected which Study Link problems she would 

discuss in detail. However, she had identified two (overlapping) “cases” of problems that she 

thought her students were finding more difficult and therefore wanted to focus on in her lesson (J-

Pre, T38). One case was subtracting a negative number, which was recently introduced and thus 

still unclear to some students. The second case was any problem with two negative signs, not 

necessarily adjacent. Jordan had indentified this case as significant for her learners because, in a 

previous lesson, a number of students argued that -4 - 4 equals zero because there were two 

negatives. Jordan had noticed that her cooperating teacher had been telling students that “two 

negatives make a positive,” and she was worried that students were misapplying the rule (J-Post, 

T184). Like her cooperating teacher, Jordan wanted students to learn to quickly calculate answers 

to these types of problems and to extract rules for adding and subtracting integers from their 

observations across problems. However, she also wanted students to use representations to model 

the problems because she thought that using representations both demonstrated and supported 

their understanding of the calculations (J-Post, T9). 
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 Thus, from past lessons, Jordan was worried that simply relying on the two-negatives-

make-a-positive rule was causing students to add whenever they saw any two negatives in a 

problem. Addressing this misconception was one of her explicit mathematical points, and she 

used the next two Study Link problems to raise the issue: 

Jordan  Cole, what did you get for number three? [-4 - (-4)] 
Cole I got zero. 
Jordan  Zero. Ali, do you agree? 
Ali Mm-hmm. 
Jordan  How do you do that one? 
Ali Because, um, because two negatives equals a positive. 
 

Jordan uses Ali’s response to address the anticipated two-negatives-make-a-positive 

misconception by asking which two negatives invoke the rule: 

Jordan  So these, which two negatives? This one?  
Ali Yeah, and that one. 
Jordan  Which two negatives am I looking at?  
Ali Negative four and negative four. 
Jordan  Okay. So I can just change that into a positive? Celia, what do you think?  
Celia [Inaudible] 
Jordan  So I can take this negative right here [pointing to the first -4] and then this, 

one of these [pointing to -(-4)] and make it a positive? Which two do I need 
to have? Go ahead. 

Celia You need two, well…you need, you have two negatives next to each other, 
so you can make that into a positive. 

Jordan  So next to each other. But this one out front… 
Celia Right. 
Jordan  Doesn’t matter, right? So you’ve got to have minus and then you got to have 

a negative to make it a plus. Rusty, can you give me an example for that one? 
Negative four minus negative four? 

Rusty Well, I was just going to say what Celia said. 
Jordan  Okay. Can somebody give me an example for that one? It’s tricky. Emily? 

Say it nice and loud. 
Emily Let’s say you had negative four points.  
Jordan  Okay. 
Emily And then, um, and then, let’s just say, instead of adding points, we erased the 

negative points. 
Jordan  Okay. 
Emily And then we, and then you guys erased those four negative points.  
Jordan  Right. 
Emily And then that would make zero negative points. 
Jordan  Could you guys hear what she said over here? So she said, let’s say your 

team, let’s say team two had negative four points and then I took away those 
negative four points, so I erase them, what would your balance be?  

Students Zero. 
Jordan  Zero.  
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 In the discussion of this problem, Jordan restated student comments and used strategic 

questions to emphasize and open up what she considered to be key ideas. For example, she asked 

which two negatives were “change[d] into a positive,” and then pushed on it further by bringing 

up a misconception she had hoped to discuss. She continued to use these types of moves to 

purposely “dwell” on key ideas in her discussion of Study Link problem four: 

Jordan All right, number four [-4 - 4]. Who had number four? Aaron, what did you 
get? 

Aaron I got negative eight. 
Jordan  Negative eight.  
 

Aaron did not make the error that Jordan had hoped to discuss, so Jordan brought up the incorrect 

answer herself: 

Jordan Why isn’t it zero? Matt? 
Matt Well because like, to get, to get like the addition sign, you have to have like, 

if it was like negative four and then you had like negative four minus 
negative four and if you had two subtraction signs, then it would be adding. 

Jordan  Oh, okay. 
Matt But it’s not, it’s just two [inaudible]. 
Jordan  Can you give me an example for that one? 
Matt Not really. 
Jordan  Can someone give me an example? Negative four minus four? Jack? 
Jack Okay. It’s kind of easy. Um, say I have a bank account and I’m negative four 

in the account.  
Jordan  Okay. 
Jack If I spent another four dollars that I really didn’t have, it would make my 

account four dollars worse. 
Jordan  Perfect. 
Jack So I would have negative eight dollars.  

 
 Jordan moved through the remaining Study Link problems more quickly. Although there 

were a few times when she asked for explanations, for the most part, she just called on students to 

give the answers. In correcting the Study Link, Jordan faced a decision routinely encountered in 

mathematics teaching: determining which problems to discuss. One of the issues Jordan wanted 

to address in her lesson was the difficulty students were having with problems that involved 

subtracting a negative. Both 0 - (-43) and -4 - (-4) provided students with an opportunity to 

engage with this type of problem. But they were not the only options; two other problems on the 

Study Link could have served this purpose as well. However, -4 - (-4) had other distinguishing 

mathematical features that perhaps made it more strategic at this stage in the lesson. For instance, 

the two problems Jordan discussed used similar numbers (i.e., 4 and -4). Furthermore, -4 - (-4) 

was also the only problem that had three negative signs, thus making available the opportunity to 

press students about which two negatives “became” the positive. This type of mathematical 
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analysis of the mathematics made available by different numerical examples and selecting the 

numbers that are most likely to engage students with the intended mathematics is part of the work 

of mathematical purposing. 

  After problems are selected, teachers make many decisions during discussions that 

impact whether and how students engage with the intended mathematics—for example, what to 

accept as an explanation, what to press on, and whether to ask for multiple solutions. Jordan 

handled the two subtracting-a-negative problems differently. With -4 - (-4) she pressed for an 

example, whereas with 0 - (-43) she accepted an explanation that relied only on the rule. These 

types of decisions involve weighing multiple—and sometimes conflicting—mathematical 

purposes, as well as non-mathematical purposes. Complicating matters further, these purposes 

must be considered over time. Purposeful decisions reflect what is intended for later in the 

lesson—that is, they keep the mathematical storyline of the lesson in mind. For example, because 

Jordan planned to discuss additional problems after she finished correcting the Study Link, she 

might not have felt the need to spend as much time or raise particular issues at the beginning of 

the lesson. 

 Once the Study Links were corrected and collected, Jordan began the review portion of 

the lesson. Like her cooperating teacher, Jordan usually follows Everyday Mathematics, but the 

lesson that was slotted for this day introduced a slide rule to add and subtract integers, and she 

and her cooperating teacher decided it would be best not to bring in a new representation at this 

stage in their work. Instead, Jordan planned to review some of the integer-related concepts the 

class had been working on and then have students complete a worksheet that she had designed 

using Math Journal31 pages from the next two lessons in the textbook. During the pre-lesson 

interview, Jordan described her purpose for the review: 

 [For students to] recall what we did yesterday. And then it gives me a chance if there are 
misconceptions to kind of address it right there as a group before they start on this. So 
just kind of get them started, make sure everyone’s on the same page before they start 
working. (J-Pre, T85)  

 
She also described the main mathematical point of this part of the lesson: 

Probably just being able to explain like how the operations work with negative numbers 
and being able to verbalize that and explain it to the class. Because a lot, some of the kids 
can do it correctly and they just see the minus minus and change it to a plus, but I think 
being able to give an example or put it into words is helpful. (J-Pre, T87) 

 
  After taking some general comments from students about what they had learned so far 

about positive and negative numbers, Jordan shifts the discussion toward comparison:  

                                            
31 The “Math Journal” is the student workbook in Everyday Mathematics. 
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Jordan What about when we, I know this has been on some of your Study Links, 
Seth, how do we know what number’s bigger? If we have two numbers and 
you have to write a greater than or less than sign, how do you know which 
one is bigger?  

Seth Um, well, say you’re doing like, um…  
Jordan Do you want me to give you an example? 
Seth Yeah. 
Jordan So if I have like negative ten and negative eleven [writes -10 and -11 on the 

board], which one’s bigger? 
Seth Um, usually you want to um, say if it’s a negative, you want to go to the 

lowest number, like if it’s negative seven against negative eleven, you want 
to go with the negative seven because it’s closer to zero. 

Jordan So the number that’s closer to zero is…? 
Seth Bigger. 
Jordan Bigger. Good.  

 
 Jordan had planned to ask students about comparing integers, as indicated by the question 

“how do we know >, <?” jotted on her lesson plan (Figure 5): 

 
Figure 5. Excerpt from Jordan’s lesson plan. 

 
However, she had not planned to provide specific numbers for students to compare. In the post-

lesson interview, Jordan reflected on her choice of -10 and -11: 

I didn’t really have that planned out but I just figured that they were, I thought that it 
might be kind of confusing because they’re close and because you think of eleven as 
being obviously bigger than ten, like you know that it’s bigger and…I didn’t want to pick 
like a positive and a negative number, or I didn’t want to pick anything that was too close 
to zero because I think that they’re pretty secure in that. But the negative ten and negative 
eleven I thought might be a little bit more difficult than the examples we had done earlier. 
And I really was hoping that Seth would be able to explain it, but I saw that he was kind 
of like, he didn’t really know how to put it into words, so I had to give him an example to 
help him out. (J-Post, T74-76) 
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Jordan’s selection process, which happened quickly and in the moment, distinguished 

mathematical features of different number choices, including their proximity to zero and to each 

other and whether they should be both negative, both positive, or one of each sign. In this 

analysis, Jordan both identified the different numerical cases and compared the mathematics 

made available for study by each. This type of case analysis is mathematical in nature, yet also 

takes into account what the example is intended to teach.  

 This episode also points to another aspect of teaching to the mathematical point: the 

choice of language and managing the inherent tension between the precision of mathematical 

language and the use of mathematical language in teaching (Sleep, 2007). Seth’s explanation that 

the number closer to zero is greater is not true in general. However, Seth’s comment (“say if it’s a 

negative”) could be interpreted as restricting the domain to negatives numbers, in which case, it is 

true that the number closer to zero is greater. During the interview, when asked if it is always true 

that the number closer to zero is bigger, Jordan replied, “Well, with negative numbers. Right.” I 

did not ask her whether this was something she noticed at the time (our discussion focused on her 

interpretation of Seth’s explanation), so I do not know if she considered issues of mathematical 

language in the moment. Perhaps she did not notice the imprecision, or perhaps she did notice it 

but thought it was clear from the context that the two numbers were negative or did not think this 

imprecise statement would be incorrectly overgeneralized by her students and therefore did not 

want to interrupt the flow of the lesson to take time to correct it. Whatever the reason, the episode 

highlights that, in teaching to the mathematical point, how to respond to students’ use of 

mathematically imprecise language is informed by its impact on students’ engagement with the 

intended mathematics, its interference with the furthering of other purposes, and by the teacher’s 

ability to notice the imprecision, which is informed by MKT. 

 After the -10 > -11 exchange, Jordan took the discussion in a different direction, eliciting 

from students some of the ways they have been representing integers. Students gave a variety of 

examples, most of them ones that Jordan had noted on her lesson plan (Figure 5). However, no 

one mentioned the number line—one of the representations Jordan wanted to be sure to discuss—

so she brought it up herself. Throughout this segment of the lesson, Jordan did not deeply probe 

students’ examples nor did she write anything on the board. Her point was to elicit ideas for use 

later in lesson (J-Post, T96), a move that required determining and keeping track of the lesson’s 

mathematical storyline. 

 After eliciting representations and before introducing the worksheet, Jordan had planned 

to ask students to “do together” and “think of examples for” the following problems:  

5 + (-7) 
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(-11) + 4 
8 - (-4). 

 
She designed these examples so that “the negative or the subtraction sign was in a different place 

or set up differently” (J-Pre, T83). She intentionally included different “cases” to help her assess 

whether students were comfortable across the range of problem types and to reserve all of the 

worksheet exercises for independent work. Jordan wrote the first problem, 5 + (-7), on the board 

and called on Missy to give the answer and a corresponding example: 

Missy Wouldn’t that be like five minus seven? 
Jordan Okay. So what would I get?  
Missy Um, negative two. 
Jordan Right. And can you think of an example that goes along with that?  
Missy No. 
Jordan You can use team points32 if you want. 
Missy Okay. 
Jordan You’ve got to say it, though. So say it, in like a story, a number story. 
Missy Team two had five points, they lost seven, so now they have negative two.  
Jordan So if they lost seven that would kind of be subtraction, but this is addition, so 

another way to think of it is they have five points and they have seven 
negative points, right? And then you’re adding up their total points.  

 
 In the post-lesson interview, Jordan provided a mathematical analysis of the team-points 

context, explaining that the class’ team-points system models integer addition, not subtraction: 

Instead of reprimanding teams by erasing positive points, negative points are added, and then 

positive and negative points are reconciled to find the balance. Jordan thought Missy’s example 

more closely corresponded to 5 - 7 (instead of the given problem, 5 + (-7)). It also did not reflect 

how Jordan wanted the class to think about team points. Jordan wanted students to combine 

positive and negative points to get the total instead of taking points away. Because Jordan wanted 

students to understand the distinction between adding -7 and subtracting 7, she thought it was 

important for the class to hear language that described the addition of a negative number. 

Furthermore, Jordan had planned to use the examples, team points in particular, later in the lesson 

when she was helping students with the worksheet, and therefore wanted to make sure that this 

example was both available and correct during the review (J-Pre, T75-77)—another example of 

Jordan’s awareness of the lesson’s mathematical storyline. Jordan decided to make the distinction 

herself, rather than press on Missy further, because she didn’t want to upset Missy and also 

wanted to acknowledge Missy’s connection to 5 - 7 (J-Post, T127-135).  

                                            
32 “Team points” refers to the reward system used in Jordan’s classroom. Teams (i.e., table groups) are 
rewarded for positive behavior by placing a tally in the “+” column. When a team loses points, a tally is 
recorded in the “-” column. The system is designed to model integer addition. Thus, a team’s current point 
balance is determined by adding the number of positive tallies to the number of negative tallies.  
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 Jordan went over the second problem, (-11) + 4, fairly quickly and then posed the third 

and final problem, 8 - (-4), which involved subtracting a negative and was thus one of the 

problem types on which Jordan wanted to focus. Although this was not the first problem of this 

type to be discussed in the lesson, it is one of the more challenging of its kind to model. For 

example, when a chip or counter model is used to subtract integers, the first number is 

represented with the corresponding number of positive or negative counters and then the second 

number is taken away from this initial quantity. To determine the answer, the remaining positive 

and negative counters are reconciled. For example, to model -5 - (-2), the -5 is represented by five 

negative counters and then two negative counters are taken away, leaving three negative counters, 

which correspond to the answer of -3. In the case of -5 - (-2), there were enough negative 

counters at the outset to take away two negatives. However, when the first number is greater than 

the negative number being subtracted, a challenge arises because, after modeling the initial 

quantity, there are not enough negative counters to take away. Jordan’s third review problem is an 

example of this case. To model 8 - (-4), the 8 is represented with eight positive counters, but then 

there are not any negative counters to take away.  

 That this third problem was one of the types Jordan most wanted to focus on in her lesson 

was reflected in both the time spent and the quality of the discussion: 

Jordan All right, last but not least, what if I have two negatives? Dave?  
Dave Um, right here, there’s two negatives and that’s not possible, so instead of 

doing minus… 
Jordan Well it’s possible, but it’s just, we want to think about it a different way. 
Dave Instead of um subtracting you would switch the subtraction sign to an 

addition sign. 
Jordan Okay. 
Dave So, then it’s pretty simple, eight plus four equals twelve.  
Jordan And can you give me an example that goes along with that?  
Dave Um… 
Jordan The minus minus are hard to think of a story. Who can think of a minus 

minus story, minus a negative number. Sean, what do you think? 
Sean If you had eight, like, points… 
Jordan Okay. 
Sean Or something. 
Jordan Eight points. 
Sean And you minus negative four points 
Jordan Okay. 
Sean You’d really be giving you points because you didn’t have any negative. 
Jordan Yeah. 
Sean So…  
Jordan So remember yesterday, we had a problem with like the counters where we 

needed a balance of eight, but we needed four negative ones too. So how 
would I draw that? I can’t just draw eight positives because then I don’t have 
any negatives to take away.  
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 Represents 8 on the board by drawing eight positive counters: 

 

 
  
 So what do I need to do? So if I want to take away four negatives, I don’t 

have any negatives. What do I need to do? Blane, what do I need to do? 
Blane You have four negatives and you need, wouldn’t you just add all, um… 
Jordan You’re getting there. 
Blane Wouldn’t you just add all of them? 
Jordan So I have eight and I want to take away four negatives, but I don’t have any 

negatives, so what do I need to add? 
Blane The negatives. 
Jordan So I just put four negatives? 
Blane You have to add the positives. 
  
 Jordan draws four negatives under the positives: 

 

 
 
Jordan Can I do that? 
Corey  No. 
Jordan Corey? 
Corey No, don’t you like put a, with every negative you put in a positive also and 

then you just cross off the negatives. 
Jordan Yeah, I need to bring in four more positives so that my balance stays eight. 

Right?  
 
 Draws four more positive counters under the negative counters (note that the 

balance is 8, the original quantity): 
 

 
 

 So what’s my balance right now? If that was my bank account and each one, 
each plus was a dollar and each minus was negative a dollar, what’s my 
balance? Emily? 

Emily Eight. 
Jordan Eight, but I have four negatives that I can take away now, right? So I’m 

going to take away these four.  
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 Crosses out the four negatives: 
  

 
 
 So I did eight and then I took away four negatives, so took away four 

negatives. And what’s my balance now? 
Emily Twelve. 
  

 Jordan spends more time on this third problem than on any of the other examples in her 

review. She presses students for more complete explanations and, after eliciting the answer and a 

team-points example, she leads the class in modeling the problem on the board with positive and 

negative counters. Throughout this explanation, Jordan demonstrates a number of strategies that 

help emphasize the key ideas and keep the focus on the mathematical meaning of the 

representation, for example, asking students about the common error of not maintaining the 

original balance and mapping each step in the modeling back to the problem. 

 After discussing the three review problems, Jordan shifts the class to the next activity: a 

39-problem worksheet of mixed practice with positive and negative numbers. When designing the 

worksheet, Jordan specified the details of the task and the structure of the activity to orient 

students toward the intended mathematics: She intentionally mixed operations because, in the 

previous two lessons, addition and subtraction had been separated, and she thought it was 

important for students to be able to determine how to solve these problems when they were mixed 

(J-Post, T21). She also decided to make the worksheet on a separate sheet of paper (rather than 

have students jump around to the corresponding pages in their Everyday Mathematics 

workbooks), so that students would stay together on the intended problems and not be tempted to 

work on different tasks.  

 Jordan introduces the worksheet to the class, pointing out the different types of problems 

they will be working on. Some of the problems involve a calculator, and Jordan quickly reviews 

how to use this tool. Familiarizing students with a tool before they begin working is a move that 

can increase time spent on the intended mathematics because it avoids time wasted with 

procedural questions later in the lesson. Students work independently for the next 15 minutes. 

Jordan circulates—answering questions, helping students who are having difficulties, and asking 

students to explain how they got their answers or to give an example that represents a given 

problem. As the end of the math period approaches, many students have not yet finished the 

worksheet. To make sure everyone is prepared to discuss the integer addition and subtraction 
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problems, Jordan gives students more time, but focuses them on the portion of the worksheet they 

will be discussing: “Make sure you have at least the top part done before you go on to the 

calculator part so we can go over that in a couple of minutes.” This moved focused students on 

the part of the worksheet she cared about most—the problems that were most connected to her 

learning goals for this lesson (J-Post, T53). After a few minutes, Jordan reconvenes students in 

whole group, outlines the remainder of the class period, and dives into a brief discussion of three 

problems from the worksheet.  

 Jordan had not identified the particular problems for discussion in advance of teaching 

the lesson, but had planned to select some she noticed students were having trouble with when 

completing the exercises. Then, if there was still time, she planned to read through the rest of the 

answers so students could check their work; otherwise, she would collect their papers and correct 

them herself. Because she extended the independent work time, there was only time to discuss a 

few problems. After the discussion, Jordan posed one last task: an “exit slip” that asked students 

to write their own addition or subtraction problem with at least one negative number in it and to 

provide an example or picture that corresponds to the equation. Even though the lesson took 

longer than she had anticipated and she was feeling pressed for time, Jordan still decided to 

assign the exit slip. She explained this decision in the post-lesson interview:  

I still wanted to see what they would do for that one and then it gives them a chance to 
kind of go back to the things we were talking about in the beginning of the lesson. Since 
this is all computation, it kind of pulls it back in the big picture and let’s them kind of 
summarize what they’ve learned, I guess. So I thought it kind of pulled everything back 
together. (J-Post, T57)  

 
 Overall, Jordan’s lesson illustrates a number of aspects of teaching to the mathematical 

point. She had clearly articulated mathematical learning goals for her students and knew how the 

details of the activities were intended to engage students with particular mathematical ideas. The 

mathematical point of her activities emerged from analyses of the complexity of the mathematics 

from the learners’ perspective, as well as what her particular students were bringing to the work. 

She also analyzed the mathematics made available by the details of the instructional activity, for 

example, by the numerical examples and representations used. She had a determined a coherent 

mathematical storyline for her lesson, which she used to make sure that she had reviewed the 

ideas that students would be using later in the lesson and to build on students’ prior mathematical 

work. She oriented the various activities toward her mathematical point through the allocation of 

time and the strategic selection of problems and examples. She also demonstrated a number of 

strategies for managing problems in steering instruction. For example, she engaged students with 

the intended mathematics by raising errors and methods that students did not bring up, and she 
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emphasized key ideas through the use of redundant language and “dwelling” on particular cases 

of problems.  

 I now turn to the second example from the data: Courtney’s second-grade lesson on 

comparison number stories. As with Jordan’s lesson, Courtney’s lesson is intended to illustrate 

the complexity of teaching to the mathematical point and the interaction between the different 

aspects of the work, as well as provide specific examples of the work of mathematical purposing 

and strategies for managing the problems in steering instruction toward the mathematical point. 

 
Courtney’s Lesson on Comparison Number Stories 

  Courtney stands in the middle of the large classroom, a copy of the spiral-bound 

Everyday Mathematics teacher’s guide in her arms. Her second-grade students sit at their desks, 

which are clustered in groups of five around the room. Each student already has out an individual 

whiteboard and marker. Courtney quickly surveys the room to see if the class is ready to begin 

the morning’s mathematics lesson. As usual, the lesson opens with Mental Math. In Everyday 

Mathematics, the Mental Math activity usually reviews skills students have previously worked on 

and is not necessarily connected to the lesson’s main activity. Today’s problems (Figure 6) are 

designed to provide practice with strategies for efficiently adding multiple addends,33 a topic the 

class had discussed last week. 

  

 
 

Figure 6. The Mental Math problems from Courtney’s lesson. 
Adapted from Grade 2 Everyday Mathematics Teacher’s Lesson Guide 

 (Bell et al., 2007b, p. 384). 

                                            
33 Strategies that Courtney’s class had discussed include “making a 10” (i.e., first adding the two numbers 
that sum to 10 and then adding 10 to the third number (e.g., 3+9+7 3+7=109+10=19)); “making a 20 
[or 30]” (similar to making a 10, but starting with two addends than sum to 20 [or 30]); and “making a 
double” (e.g., 5+8+3  5+3=8  8+8=16). 
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 Before posing the first problem, Courtney introduces the activity by making explicit 

connections to the class’ prior work and reviewing the purpose of the addition strategies (i.e., to 

make the problems easier). She then asks students to share some of the strategies they remember 

using: 

Courtney If you can remember way back to Thursday, Ian, we were talking about those 
problems that have three different numbers that we need to add together, 
right? We were adding three numbers at a time so we had to think carefully 
about which order was the easiest to do that in. Raise your hand if you 
remember one way that we were adding them. We were trying to do certain 
things when we put them in order. What made those problems easier? 
Kelsey? 

Kelsey We did from the highest number to the lowest number. 
Courtney Okay. So sometimes it was easier if you started with the bigger numbers and 

then added the smaller numbers on at the end. Nate, did you have a different 
way? 

Nate [Inaudible] 
Courtney No? Do you remember sometimes we can make a, make a what? We try to 

add up until we can make a, Catherine?  
Catherine A number that ends in zero. 
Courtney Make a number that ends in zero. If we could make a ten, or a twenty with 

two of the numbers, [student sneezes] bless you, then adding on that third 
number was easier, right? So when I read these problems and you write them 
down, see if you can find the easiest order to add them in. Here’s the first 
one, are we ready? Three plus nine plus seven. Write down the problem so 
you can look at it. Three plus nine plus seven. And when you get your 
answer just keep your whiteboard down. You don’t need to raise your hands 
or anything yet, just keep your whiteboard down. 

 
 This brief episode depicts one of the main strategies Courtney uses to steer instruction 

toward her mathematical point: restating a student’s answer and then connecting it back to the 

question, topic, or problem being discussed. For example, in the episode above, each time a 

student shared a strategy, Courtney not only repeated the strategy but also made a comment about 

how it made the addition easier—a move that directed attention toward the bigger mathematical 

idea with which she wanted students to engage. Connecting a response back to the original 

question is a teaching move that can help keep the work “on point” by maintaining attention to 

meaning. In addition, repeating students’ responses is a way to emphasize and spend more time 

on key mathematical ideas.34  

 Another steering move Courtney used in the above episode was to provide a 

mathematical framing that oriented students toward the intended mathematics. In her launch of 
                                            
34 In this episode, Courtney was the one who did the restating and connecting. A teacher could also support 
students to do this work. In either case, the intended mathematics is highlighted.  
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the Mental Math activity, she did more than simply ask students to solve the problem; she 

directed them to “find the easiest order to add them in.” This move may have been prompted by 

the suggestion in the teacher’s guide to “encourage children to look for combinations that will 

make the addition easier” (Figure 6); however, even if this suggestion did spur her framing, the 

teacher’s guide does not specify what to say to students to do this encouraging. For example, 

Courtney reviewed some of the strategies before posing the problems—yet another type of 

orienting move that increased the likelihood that students would understand what it means to 

“make the addition easier.”  

 Courtney began with the first problem from the teacher’s guide, an easy one as indicated 

by the single dot. Although she felt comfortable creating problems, she usually used those 

provided in the teacher’s guide because she thought they tended to be “pretty good examples.” 

Furthermore, she felt like the textbook had already done some of the work for her, for example, in 

this lesson, ensuring that the problems were oriented toward the intended strategies (C-Pre, R58). 

Interesting, however, is that although the teacher’s guide suggests problems that are appropriate 

for use with the intended strategies, it does not explicitly state which strategy each problem is 

designed to elicit. Nor does it provide rationales for the problems’ sequencing and difficulty-

ratings or for the ordering of the numbers in a particular example. For instance, it is unlikely 

coincidental that in the first problem the 3 and the 7 (i.e., the ten to be “made”) are non-adjacent, 

or that the smallest number, 3, comes before the 9 and the 7. The textbook’s arrangement makes 

adding the numbers in their given order maximally inefficient, preventing students from 

accidentally deploying one of the intended strategies by simply adding across. As is often the 

case, the general purpose of the activity is provided in the teacher’s guide, but to determine the 

mathematical point of a particular example, the teacher still has to do a mathematical analysis of 

the activity and the examples provided.  

 As students solve the first Mental Math problem, Courtney copies it onto the large 

whiteboard at the front of the classroom, the numbers arranged horizontally. She then quickly 

circulates around the room, looking over students’ shoulders to gauge their progress. When 

everyone has an answer, she asks students to show their whiteboards. After checking the raised 

boards for the correct answer, she engages the class in a brief discussion of the strategies used: 

Courtney Now, one thing that I notice, one thing that I notice is that a lot of you wrote 
it just like I wrote it on the board, three plus nine plus seven, and I’m 
wondering, did you really add them in that order, or did you add them in a 
different order? Raise your hand if you can tell me the order you added them 
in and why. Chuck? 

Chuck Um, I, um, did the highest to lowest and, well, first I did nine plus seven, 
which equals sixteen, and then sixteen plus three equals nineteen. 
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Courtney Okay, so Chuck did nine plus seven plus three, and I think that’s because he 
knows nine plus seven in his head was what? 

Chuck Sixteen. 
Courtney Sixteen. And then it’s easy to just add on three—seventeen, eighteen, 

nineteen, right? Who did it a different way? Raise your hand. Omar, what 
order did you add them in? 

Omar Well, I did it the same as Chuck, but I did it like, I did it because it was 
higher numbers. 

Courtney Okay, so the same reason kind of too, right? You wanted to get the higher 
number and then only count up three more. Catherine, did you do it a 
different way? 

Catherine I added, I got seven and added three and that equaled ten, and then I just 
added nine. 

Courtney So Catherine did seven plus three plus nine because she made a ten, right? 
Raise your hand if you did it the same as Catherine. Seven plus three, or 
three plus seven, first so you could make a ten. Only a few of you, huh. Well 
maybe that will be a good idea for this next problem. See if you can make a 
ten or a twenty.  

 
 In this episode, as before, Courtney framed the discussion so that it was oriented toward 

the mathematical point—reviewing and practicing strategies for adding multiple addends. Her 

prompt (“raise your hand if you can tell me the order you added them in and why”) made it clear 

that the focus of the discussion was on the order in which the numbers were added. Her 

comments after students shared their strategies also kept mathematical meaning in the 

foreground. For example, after Chuck described how he found the sum, Courtney restated his 

strategy, pointed out what made the strategy easy (“he knows nine plus seven in his head…and 

then it’s easy to just add on three—seventeen, eighteen, nineteen”), and named the more general 

strategy it exemplified (“you wanted to get the higher number and then only count up three 

more”).  

 Even though Mental Math was a routine part of each of her lessons, Courtney tried to be 

responsive to students (C-Pre, R59); in a sense, she planned to be flexible. In this lesson, 

Courtney did in fact change her plans in response to students. She had anticipated that the first 

problem would be a simple review of the “making a ten” strategy and was therefore surprised 

when students used different strategies (C-Post, T12). Because she wanted students to practice 

making a ten or twenty, the rest of the Mental Math problems she posed (14 + 8 + 6 and 21 + 5 + 

9) were amenable to that strategy. In addition to selecting problems that matched her 

mathematical point, her framing of the second problem (“Well maybe that will be a good idea for 

this next problem. See if you can make a ten or a twenty.”) oriented students toward the strategy 

she wanted them to use.   
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 After the third Mental Math problem, Courtney asks students to put their whiteboards 

away and move to the carpet area in the front corner of the classroom. She designs these types of 

transitions into her lessons as a management strategy so that students have a chance to move 

around during the long math period. As students trickle to the rug, Courtney gathers her supplies 

and sits in a chair next to a whiteboard easel, teacher’s guide in her lap. She instructs the class: “I 

want everyone to read this problem as I write it, but don’t say anything. Read it and see if you 

know how to solve.” The class watches as she writes the Math Message on the whiteboard: 

Phillip has 17 CDs. Trevor has 8 CDs. How many more CDs does Phillip have than Trevor? As 

planned, Courtney used the problem from the teacher’s guide; however, she replaced the names in 

the textbook with names of students in her class because “they get more into it that way” (C-Pre, 

R84). Writing out the entire problem took some time, but she thought it was a way to “get their 

attention” and that it might be helpful for “some of them to be able to reread it as much as they 

wanted” (C-Post, T24).  

 Here and at almost any point in her lesson, Courtney was simultaneously managing 

mathematical purposes, as well as non-mathematical purposes such as fostering student 

engagement. In some cases, non-mathematical purposes may have no impact on teaching to the 

mathematical point. For example, Courtney’s use of student names in the problem was intended 

to foster student engagement, but it did not impact the mathematics available in the problem. 

However, if the use of student names had caused a distraction (e.g., Phillip teasing Trevor about 

having more CDs), then it could have reduced the time spent on mathematical work. Thus, at 

times, different purposes may be conflict. For instance, Courtney’s move to write out the problem 

as a way of gaining students’ attention may have reduced time spent on the intended mathematics. 

In fact, if the purpose was solely for students to have a written reference, she could have prepared 

a chart with the problem already written on it. Another possible conflict of purpose is Courtney’s 

frequent management strategy of interspersing students’ names to get their attention while she is 

talking (e.g., as seen with Tori and then Nate in the following episode), which may hinder 

students’ ability to understand the mathematical ideas being conveyed.  

 After the choral reading of the Math Message, Courtney repeats the problem one more 

time and then, before having students find the answer, asks them what the problem is asking: 

Courtney Before you give me the answer, I want you to raise your hand if you can tell 
me, what is this problem asking? What are they trying find here? Don’t give 
me a number but tell me. Think about it. Phillip has seventeen CDs. Trevor 
has eight. How many more does Phillip have than Trevor? What are we 
trying to find, Nate? 

Nate Like how, how, more like, like, count up to seventeen and find how much. 
Courtney Count up to seventeen from what?  
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Nate Eight. 
Courtney From eight. So we’re trying to figure out? 
Nate How much is between seventeen and eight. 
Courtney Ha, listen to this. Nate hit it right on the head. Listen to this. Nate said, we’re 

trying to find out how much more seventeen is than eight. Isn’t that what you 
said Nate? 

Nate Yep. 
Courtney How much is between seventeen and eight. That’s what he said. And listen to 

this, we’re going to talk about these kinds of problems all day so, Tori, I 
want you to make sure that you understand, we’re trying to figure out how 
much bigger, Nate, how much bigger seventeen is than eight.  

 
 Asking students what the problem is asking is one of Courtney’s routine teaching moves, 

one she thinks is particularly important when working on number stories because she wants 

students not only to be able to solve the problem, but also to understand what they are trying to 

find and what their answer means in the context of the story (C-Post, T165). Courtney’s launch of 

the Math Message demonstrates a number of moves that helped steer the activity toward this 

mathematical point. Discussing what the problem meant slowed down the pace of the lesson and 

made explicit what the problem is asking—beyond a simple restatement of the question. Courtney 

emphasized some of the key mathematical ideas she was trying to develop in her lesson by using 

the language of comparison (“how many more” and “how much is between”) as she built on 

Nate’s response. Another way she helped infuse meaning into the lesson was by repeatedly 

framing both the problem and the day’s work (e.g., “I want you to make sure that you understand 

we’re trying to figure out how much bigger”), which also helped convey the mathematical 

storyline to the students. 

 After the discussion of what the problem is asking, Courtney elicits the answer to the 

problem and asks students for the “full answer.” She then once again summarizes the meaning of 

comparison number stories:  

Courtney Roman, say that again. Here’s our full answer. 
Roman Phillip has nine more CDs than Trevor. 
Courtney Phillip has nine more CDs than Trevor, and that would be our answer. Boys 

and girls, these are called comparison number stories. We’re going to talk 
about all different kinds of comparison number stories, and the reason why 
they call them comparisons is because we’re comparing one number to 
another and we’re figuring out the difference between those numbers, or how 
much bigger one is than the other one.  

 
Courtney introduces the new diagram students will be using to represent these types of problems: 

Courtney So, we have a brand new diagram we’re going to use. Remember those 
change diagrams and the part-and-total diagrams? Now we’re talking about 
these comparison number story diagrams. So look at this for a minute. 
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Everyone look up here. You’re going to need to know how to use these, 
Mira. This is a comparison number story diagram. 

  
As she talks, Courtney erases the problem and pulls from under her chair a large copy of the 

diagram, laminated on bright yellow paper, which she hangs on the whiteboard with magnets 

(Figure 7). 

 
Figure 7. Courtney’s poster of a comparison number story diagram. 

 
 This “comparison number story diagram” is an example of one of the many diagrams 

used in Everyday Mathematics to model word problems. Courtney’s class had worked with other 

diagrams throughout the school year, but this one was new. As Courtney described in the pre-

lesson interview, learning to use the diagram to understand and solve comparison number stories 

was the main focus of her lesson: 

My biggest goal is to get them to see how to use that [the diagram] and how it relates to 
the number stories and hopefully be able to use those on their own by the end of 
this.…Also just to be able to think about what a comparison number story is.…So to 
know that we’re comparing these two quantities, and that will be a new word for them 
too, and trying to find the difference between the smaller one and the bigger one. And 
since every problem’s a little different, that’s kind of hard to grasp, too, to be able to pull 
that out of every single problem. (C-Pre, R9-13) 
 

Courtney’s mathematical learning goals were of varying types and grain sizes. She had learning 

goals related to developing conceptual understanding, to understanding new vocabulary, and to 

using and making connections across representations. Courtney did not consider these goals in the 

abstract, but conceived of them with respect to her particular students and what would be new or 

difficult for them. All of these are key components of the work of articulating the mathematical 

point of an instructional activity, and thus part of the work of mathematical purposing. 

 Courtney continues her introduction of the comparison diagram by using it to represent 

the Math Message problem the class just solved. She begins with the unit box, something that is 

familiar to students from their work with other diagrams: 
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Courtney This is a comparison number story diagram. Up here, [points to the box at the 
top of the diagram labeled “unit”], you’ve seen this before. What’s it called? 

Students Unit/unit box. 
Courtney The unit box. So for this problem, what would our unit be? Raise your hand. 

What would the unit be for the problem we just did, Blair? 
Blair CDs. 
Courtney Okay, so we’re talking about, I get to write right on this and I’ll be able to 

erase it. [Writes “CDs” in the unit box.] We’re talking about CDs.  
 
Next, Courtney introduces the new vocabulary and explains how the size of the diagram’s boxes 

corresponds to the size of the numbers in the problem:  

Courtney And now, let me read you these words. [Points to the labels of the other 
boxes as she reads them.] This is a quantity, Ian. This is a quantity. And this 
is a difference. Now these are set up in a very special way. Daniel, can you 
see it? 

Daniel No. 
Courtney Scooch over that way so you can really see it. These are set up in a special 

way that help us understand what the problem means. So we have two 
quantities, and a quantity is how much someone has of something or how 
much we have of one of those things.  

Omar How much is seven CDs? 
Courtney Omar, do you have a question? 
Omar No. 
Courtney Okay, raise your hand if you ever think of a question, okay. Ellen, you got 

this? Griffen, I need your eyes up here. We’ve got two quantities in every 
problem, or two numbers of something, and we’re trying to find the 
difference between them. Thumbs up if you think you understand what I just 
said. Nate said it pretty well when he said we’re trying to figure out the 
difference between how many CDs Phillip had and how many CDs Trevor 
had, right? So, do you think, let’s see, we know Phillip had seventeen and 
Trevor had eight, and those were our two quantities. [Writes 17 and 8 on the 
whiteboard below the diagram.] That’s how much Phillip had and how much 
Trevor had. Those are our two quantities. Raise your hand if you think you 
know which one goes in the bigger box. Which one do you think goes in the 
bigger box? Trista, do you know? You looked like you had an idea there? 
Daniel, which one do you think goes in the bigger quantity box? 

Daniel Seventeen. 
Courtney How come? 
Daniel Because it’s bigger. 
Courtney That’s our bigger quantity and it’s going to go in the bigger box. [Writes 

“17” in the bigger quantity box.] Now see if this makes sense to you. 
Seventeen is our bigger quantity so, Daniel, what goes in this box? [Points to 
the smaller quantity box.] 

Daniel Eight. 
Courtney Eight is the smaller quantity. [Writes “8” in the smaller quantity box.] And 

we’re trying to find the difference. [Writes “?” in the difference box.] 
 

 This episode demonstrates a number of ways in which Courtney steered instruction 

toward her mathematical point. She used language that was intentionally redundant to maintain a 
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focus on meaning and to emphasize key ideas. For instance, she overused the new vocabulary 

words (“quantity” and “difference”) and repeatedly said both a term and its definition (e.g., 

“we’ve got two quantities in every problem, or two numbers of something”). She narrated what 

the class was trying to do, referring to both the parts of the diagram and the context of the CDs, a 

move that could help generalize the use and meaning of the diagram beyond the particular 

problem.  

 This deliberate use of language continued as Courtney drew a picture to further explain 

what it means to compare numbers to find the difference:  

Courtney Now hold on a second, I want you to see this.…Seventeen. [Counts as she 
makes seventeen small lines below the diagram.] One, two, three, four, five, 
six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, 
seventeen. Just made it. That’s how many CDs Phillip has. [Student makes an 
inaudible comment about not grouping the tallies by fives.] I’m not doing 
tallies I’m just doing little marks. And Trevor has [draws eight marks 
directly below the seventeen] one two three, four, [students join in the 
counting] five, six, seven, eight. Eight CDs. We’re trying to find how many 
more CDs, Ian, Phillip has than Trevor. So, Chuck, can you point to my 
picture here and show me where that number is, how many more Phillip has 
than Trevor. This is tricky. 

Chuck Um, right here. [Points to the nine unmatched lines.] 
Courtney Do you agree? All of these will show us [draws a curly bracket to denote the 

nine marks Chuck pointed to and labels the set with a question mark, shown 
in Figure 8.], going to put this [points to the question mark] here [writes “?” 
in the difference box] because that what’s we’re trying to find, how many 
more seventeen is than eight.  

 
 

 
 

Figure 8. Courtney’s use of multiple representations for comparison number stories. 
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 In the above episode, Courtney introduced another representation for comparison 

problems. She decided to draw a picture so that students “could see these [8 of the 17] are 

matched and then we’re looking for how many aren’t matched” (C-Post, T183). She intentionally 

lined up the marks to match the depiction in the diagram (i.e., bigger quantity on top; smaller 

quantity below on the left; difference below on the right). Introducing another representation 

enabled her to dwell on and unpack a key idea—all moves that helped steer the activity toward 

her mathematical point.  

 As her explanation continues, Courtney makes explicit the connections between the 

picture and the diagram, referring back to the problem context and pointing to corresponding 

parts as she talks: 

Courtney Do you see how this [points to the picture] kind up lines up with this [points 
to the diagram]? Here’s our big quantity, our number of CDs that Phillip has. 
Ian, do you need to move? I need your eyes up here. Here’s our big quantity 
up, at the top. Here’s our smaller quantity, or how many Trevor had. And 
we’re trying to find the difference. So, you can imagine, Ellen and Griffen, 
on this diagram, Blair, this number [points to the smaller quantity box] plus 
this number [points to the difference box] will always what? Raise your hand. 
This number, the small quantity, plus the difference will always equal what, 
Catherine? 

Catherine The, um, bigger. 
Courtney The bigger quantity. Raise your hand if you have a question about that 

because it’s so important. And if you all get that, we’re going to have an easy 
time with math today. Does anyone have a question about that? 

Student Nope. 
Courtney Okay, I’m going to say it one more time. The smaller quantity plus the 

difference between the two numbers will always equal the bigger quantity. 
You can see how this big box [points to the box containing the smaller 
quantity and the difference boxes] is the same as this big box [points to the 
bigger quantity box].  

Students Oh. 
Courtney This [points to the smaller quantity box] plus this [points to the difference 

box] will equal this [points to the bigger quantity box]. So what was our 
difference? Raise your hand if you remember. Phillip?  

Phillip Nine. 
Courtney Nine. So does eight plus nine equal seventeen? 
Students Yes. 
Courtney So we got it. So the answer was Phillip has nine more CDs than Trevor, 

right? 
Students Oh, I get it. 

  
 This episode provides additional examples of how language can be used to teach to the 

mathematical point. Once again, Courtney repeated key ideas and vocabulary. She used questions 

to focus students on the intended mathematics, for example, when she asked “Can you point to 

my picture here and show me where that number is, how many more Phillip has than Trevor?” 
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rather than posing a more general question that might spark tangential comments, such as “What 

do you notice about the picture?”  Furthermore, her explanations were not “flat.” She used 

phrases such as “raise your hand if you have a question about that because it’s so important” to 

signal the main point to students.  

 Although Courtney did elicit responses from students, in this episode and throughout her 

lesson, Courtney was usually the one who gave explanations and made correspondences across 

representations. This raises questions about who is doing the mathematical work in the lesson: 

When teaching to the mathematical point, the goal is for students to engage with the intended 

mathematics, not for the teacher to do all of the thinking.  

 Courtney’s lesson suggests an another tension in the work of teaching to the 

mathematical point: Not only can mathematical purposes sometimes conflict with non-

mathematical purposes, equally valid mathematical purposes can also be in conflict. For example, 

the goal of having students hear a clear and complete explanation can conflict with the goal of 

having students do the explaining. Or, when trying to manage the problem of students doing the 

intended mathematics, teachers also have to consider whether a representation, problem wording, 

or worksheet format that is designed to support students’ engagement might inadvertently be 

doing some of the intended mathematics for them. For example, one of Courtney’s goals was for 

students to understand the meaning of comparison. The textbook’s diagram could be seen as 

supporting this understanding, but it might also be enabling students to simply fill in boxes 

without understanding the very relationships the diagram’s geometry is intended to convey.  

 Making correspondences between the problem context, the diagram, and the picture, as 

well as explaining how the geometry of the diagram conveys the concept of comparison, required 

Courtney to have an understanding of the mathematics made available for study by each 

representation and of the relationships among them—a key part of mathematical purposing. Some 

of these ideas were discussed in the teacher’s guide. In addition to providing suggestions in the 

lesson narrative about how to introduce the diagram, the teacher’s guide included a margin note 

with a completed comparison diagram for the Math Message and a corresponding picture of 

matched-up circles (Figure 9), along with the following note: “Point out that the quantity box on 

the top is as long as the quantity and difference boxes on the bottom. This often provides a good 

visual for children” (Bell et al., 2007b, p. 385). 
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Figure 9. The margin note on comparison diagrams.  

Adapted from Grade 2 Everyday Mathematics Teacher’s Lesson Guide  
(Bell et al., 2007b, p. 385). 

  

 Of course, information in a teacher’s guide does not automatically transfer into an 

enacted lesson. A teacher would need to closely read and understand the lesson narrative; notice, 

read, and understand the margin note; evaluate the mathematical importance of the information; 

determine if it relates to her learning goals for the lesson; decide whether it is something she 

wants to bring up with students; and then if so, figure out how to best convey it to her particular 

class. Courtney’s understanding of these ideas35 was evidenced in the pre-lesson interview, for 

example, in her description of what she found useful about the diagram: 

I like that it’s the bigger quantity on top in the bigger box and then the two lines 
underneath the box and the line should add up to the bigger one, and then you can see on 
the diagram that they’re just as big as the bigger one when you add them up. So I like that 
about it…because it’s a visual. It shows them visually the kind of math we’re doing. So 
these, the smaller quantity plus the difference, is the same as the larger quantity. And also 
the two quantity boxes, it’s not just like we’re going to pull the two numbers out of the 
problems and write them in two quantity boxes, we have to figure out which one’s bigger 
and so then we’ll be able to write that in the top box and see that it’s the bigger quantity, 
because of the size of the box. And also it just kind of goes along with the drawing or the 
picture that I would draw for these problems in my head, which is right above there 
[referring to the matched-circles picture in the margin note], where you have the longer 
quantity or the bigger quantity and the smaller quantity and you’re looking to match them 
up. (C-Pre, R96-100) 

                                            
35 I do not know whether Courtney read this part of the lesson narrative and/or margin note, and if she did, 
whether she would have done (or been able to do) this mathematical analysis without having read it. For the 
purposes of my study, this does not matter. I am using this example to show that the mathematical analysis 
of the representations used in an activity is part of the work of mathematical purposing, not to make claims 
about Courtney’s understanding of the textbook or about whether she would have been able to do the 
mathematical analysis without it. 



 116 

 
 Mathematical purposing also involves analyzing how variations in representations impact 

the mathematics made available for study. For example, the yellow poster Courtney used was one 

that her cooperating teacher had made in a previous year and was different than the diagram in 

the current version of the textbook (Figure 9). Most noticeably, the poster included a unit box and 

used a box, rather than a line, to denote the difference. Courtney knew the diagrams did not 

match; in fact, she thought using a line to denote the difference highlighted that it was not the 

same type of mathematical object as a quantity (C-Post, T127). Courtney noted that if she were to 

redo poster, she would match the textbook. However, she did not think the discrepancies 

warranted a new poster or explicitly pointing out the variation to students.36 She thought the 

correlation between the two versions would be easy for students to see on their own. Furthermore, 

she was not sure what she would have said without overly complicating matters (C-Post, T131).  

 Courtney also introduced the representations in a different order than the textbook: 

Courtney explained the diagram before drawing the matching picture. Like the selection of 

problems, the sequencing of representations and solution methods can orient and help steer 

instruction toward the mathematical point. Thus, specifying a sequence that is likely to focus 

students on the intended mathematics is part of the work of mathematical purposing. Depending 

on one’s learning goals or the mathematical point of a particular representation or method, 

different sequences may be more or less productive. For example, although one of the main 

points of Courtney’s lesson was for students to represent comparison stories with number models 

(e.g., 17 - 8 = 9 or 8 + 9 = 17) and this was the next step in the teacher’s guide, Courtney 

deliberately did not ask students to generate number models that represented the Math Message. 

She planned to introduce this piece in the discussion of the next problem because thought it might 

be “beating it to death if [she] kept going and making them do more” with the CDs problem (C-

Post, T203).  

 After the Math Message discussion, Courtney read a new problem aloud, again 

incorporating the names of her students: Avery scored 14 points. Ross scored 8 points. How many 

more points did Avery score than Ross? In the pre-lesson interview, Courtney explained why she 

used the numbers provided in the textbook: “They just don’t seem too tricky to me. It doesn’t 

seem like that will get in the way of the meaning of the problem” (C-Pre, R86, 148). Thus, 

Courtney felt that the numbers in the textbook’s problems oriented students toward the 

mathematics with which she intended to engage them. In particular, she wanted to focus on 

                                            
36 Another option would have been to use an overhead transparency of the diagram, as suggested in the 
teacher’s guide, but we did not discuss this alternative in the interview. 
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understanding comparison, not on how to calculate answers, which might have become the focus 

if “trickier” numbers were used. She also thought it was important for students to work with 

different contexts, and she felt the context was sufficiently varied in the given examples. 

 After reading the problem, Courtney elicits from students where to record each quantity 

and the question mark on the diagram. She then calls on Omar to give the difference and asks him 

for a number model that reflects how he found his answer: 

Courtney Okay, now, here’s the tricky part. We need to write the number model for 
that. So, Omar, think about the math you did in your head there. Avery 
scored fourteen points, Mira. Ross scored eight points. How many more 
points did Avery score than Ross? What math problem do you think you 
were doing? 

Omar Eight plus six. 
Courtney Eight plus what number equals? 
Omar Six. 
Courtney Eight plus? 
Omar Oh, fourteen. 
Courtney What number equaled fourteen. [Records 8 + ? = 14.] That’s what he was 

trying to find. So Omar’s strategy, watch up here, Chase, watch up here. This 
is one of your choices for all these problems. Ross, Mira, watch up here. 
Omar said, eight plus what equals fourteen, so [points to the corresponding 
boxes on the diagram] my small quantity plus what equals my bigger 
quantity. And that’s what his number model looked like. Did anyone do it a 
different way? Think about it. Did you do eight plus what equals fourteen? 
Did anyone do it a different way?  

 
Courtney called on some other students, but their strategies were also modeled by 8 + ? = 14, 

perhaps because students were unclear about what “a different way” meant in this context or 

perhaps this was the only method students used. Although Courtney was not planning to require 

students to use a particular type of number model in their later work, because one of her learning 

goals was for students to begin to understand comparison in relation to subtraction, Courtney 

thought it was important for a subtraction model to come out in this discussion. Therefore, she 

deployed a “contingency plan” in the form of a targeted question to elicit a subtraction number 

model: 

Courtney Look at this, we’re thinking about the small quantity plus what equals 
fourteen. But how could we use subtraction for a problem like this? That’s 
what I’m looking for. How could we use subtraction with this diagram? 
Hmm, any new hands? Phillip, how could we use subtraction for a 
comparison problem? 

Phillip You could start at fourteen and count down to eight. 
Courtney Count down eight or count down to eight?  
Phillip [inaudible] 
Courtney We could start at fourteen and take away a certain number until we get to 

eight. [Records 14 - ? = 8.]   Is that what you’re saying? Okay. Any other 
ways we could use subtraction? Omar? 
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 Although Courtney thought it was important that students see at least one subtraction 

model, it did not matter to her whether all four number models (i.e., two addition and two 

subtraction) were elicited. In fact, in her analysis of the mathematics made available by the 

instructional activity, Courtney criticized the suggestion in the teacher’s guide to write out and 

label all four number models. She thought students would then simply rely on their knowledge of 

fact families rather than map their solution method to the appropriate number model and, as a 

result, students would be engaging in different mathematical work than she intended (C-Pre, 

R168). 

 After discussing the subtraction models, Courtney posed the third and final problem the 

class discussed at the rug: A radio costs $47. A watch costs $20. How much more does the radio 

cost? The selection of problems and examples plays a central role in orienting and steering 

instruction toward the mathematical point. During the lesson, Courtney decided to skip one of the 

problems in the teacher’s guide because she thought its numbers were too simple, and its context 

(points) had already been used. She also wanted to use an example involving money because she 

thought money was a difficult unit for her students (C-Post, T42-44). She also skipped the 

following problem: A radio costs $47. A calculator costs $12 less than the radio. How much does 

the calculator cost? This problem was the only example in the teacher’s guide in which 

something other than the difference was unknown.  

 In the post-lesson interview, Courtney explained that she omitted this problem not 

because the smaller quantity was unknown, but because she had decided not to do another 

example and she knew that students would not be completing that type of problem in their Math 

Journal that day. Of the lesson’s seven Math Journal problems, only problems number 5 and 7 

had the smaller quantity as the unknown. Because the math period was shorter on Mondays (the 

day of the lesson), Courtney had planned for students to complete only the first four problems in 

their Math Journal. They would finish the remaining problems the next day. I asked whether she 

thought that students’ seeing only problems with the difference unknown impacted her ability to 

assess their understanding of the mathematics in the lesson: 

No, because I think that I can sense, I think it’s more important for them to master the 
skill today of, or to practice the skill today of, plugging the numbers into the diagrams, 
seeing what the diagram means, being able to write a number model. I think that, that’s 
what we worked on today, so they all got that part, which was important. So tomorrow, if 
they don’t get problems when we already have the difference, then I can be more sure 
that that’s the confusing part, but they do, at least they know those fundamental things 
that we talked about the day before about the diagram and writing a number model before 
you get the answer.…If they get, they get what we did today. And I think that they all did 
and we can say that. So tomorrow, if they struggle, at least I know that they understand 
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the diagram…because I can know that the part that’s confusing is the fact that we don’t 
have one of the quantities. I know that they get it in this way, and if these are hard, I 
know what’s different about them. Here [today’s problems] there are so many new things 
that they’re doing, it’s a whole new kind of problem. Here [tomorrow’s problems] it’s, 
we’re changing one thing about it, so it’s almost like if this is much harder than this was I 
know why. (C-Post, T78-84) 

 
 Courtney’s comments suggest a number of issues related to teaching to the mathematical 

point. One is that the mathematical point extends beyond a single lesson. Thus, the work of 

teaching to the mathematical point needs to take into account the relationship to past and future 

instruction. Another issue is the role of different types of examples. As seen in Jordan’s lesson, 

different “cases” of problems serve different mathematical purposes. Similarly, in Courtney’s 

lesson, varying what is unknown in the problem generates different cases of comparison 

problems. What Courtney’s lesson raises is the role of cases in developing and assessing student 

understanding. If students do not experience the entire range of cases, then it can be difficult to 

say whether they understand a mathematical idea or are just rotely going through the motions 

without attending to meaning. Teaching to the mathematical point does not mean that teachers 

need to expose students to examples from all cases in every lesson. In fact, Courtney had 

reasonable arguments for why she chose to introduce one case at a time. Instead, this example 

highlights that analyzing cases and their coverage of the mathematical territory in order to 

strategically select examples is an important component of mathematical purposing. 

 After the discussion of the third example, Courtney transitions students back to their 

desks to work on their Math Journal. As students get settled, Courtney erases the yellow diagram 

and moves it to the large whiteboard at the front of the room. When students are seated with their 

workbooks open, Courtney reads the first problem aloud and asks students to fill in the diagram 

on their own, explicitly stating that they will be “talk[ing] about what you put where and why.” 

She circulates as students work and when everyone is ready, asks a student to explain how he 

filled in the diagram. Once the diagram is filled in, Courtney directs students to find a number 

model, making explicit what the number model represents and what it should include: “So, let’s 

do a number model now. They might be different from your neighbor. We’re trying to figure out 

what math problem you’re doing in your head to get the difference. There should be a question 

mark in your number model too.”  

 Courtney moves around the room, looking over students’ shoulders and prompting them 

when she notices they have made a mistake or are stuck. After about two minutes, she reconvenes 

in whole group to share number models. Once again, she tries to keep a focus on meaning by 

connecting students’ number models to the completed diagram: 
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Courtney Oh, we have a lot of number models ready to share. Omar, read us your 
number model.  

Omar Twenty-seven minus ten equals blank. 
Courtney [Writes 27 - 10 = ? on the whiteboard.] Equals blank. Twenty-seven minus 

ten, let’s check this. Twenty-seven is our bigger quantity. Ten is our smaller 
quantity. If we have twenty-seven take away ten, how many will we have 
left? Thumbs up if you think Omar’s number model works. 

 
She then maps the number model back to the problem: 

 
Courtney If we, Barb had twenty-seven points and Cindy had ten, if we take ten away 

from twenty-seven, will we have the difference between those two numbers? 
Students Yes. 
Courtney Griffen thinks so. Raise your hand if you had a different number model. I 

think a lot of people had a different one. Ian, what was your number model? 
Ian Ten plus what equals twenty-seven.  
Courtney Ten plus what equals twenty-seven. [Writes: 10 + ? = 27.] Raise your hand 

if your number model looked like Ian’s. Did anyone have the same as Ian? 
Mason did, Phillip did, Trista did. Okay, so let’s look at Ian’s. Ten plus what 
equals twenty-seven. Now that really makes sense to me because I know that 
on this diagram, this, eyes up here please, Nate and Kelsey and Griffen, this 
quantity plus this difference need to equal this big quantity. And that’s easy 
for me to remember because these two boxes put together are the same size 
as this box. I know that this plus this needs to equal this. Any other number 
models?  

 
No one offers another model, so Courtney asks for the difference and then maps it back to the 

problem. She then has students fill in the diagram for the second problem on their own. After 

students complete the diagram, Courtney elicits number models and answers as before. Students 

then solve Math Journal problems three and four independently. Courtney and her cooperating 

teacher circulate and check students’ answers until it is time for the students’ next activity of the 

day.  

 Courtney’s lesson demonstrates many aspects of the work of teaching to the 

mathematical point. To help articulate her mathematical point, Courtney analyzed the various 

problems and representations in the lesson for the mathematics they made available and the 

relationships among them. She oriented the activity toward the intended mathematics through the 

selection of problems and sequencing of representations throughout the lesson. During 

instruction, she steered the activity toward her mathematical point in a number of ways. She 

provided a mathematical framing for the various activities and narrated the mathematics being 

worked on throughout the lesson. She was explicit about the meaning of new vocabulary and 

intentionally overused those terms. She helped keep a focus on meaning by restating students’ 

answers and then connecting them back to the question, topic, or problem being discussed.  
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 Both Courtney’s and Jordan’s lessons offer a glimpse inside the work of teaching to the 

mathematical point. The detailed descriptions and extended excerpts illustrate ways that both of 

these beginning teachers had mathematically purposed their instructional activities and tried to 

steer those activities toward their mathematical points. In the next two chapters, I provide a more 

analytic description of what is involved in the work of teaching to the mathematical point. 

Chapter 5 uses examples from the data to illustrate the problems in steering instruction toward the 

mathematical point that emerged in my analyses and the issues that can arise when trying to 

manage these problems. The discussion of these problems helps unpack both the work of steering 

instruction and the work of mathematical purposing. In Chapter 6, I stand back from the data to 

present the conceptual framework for mathematical purposing that resulted from my analyses. 
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CHAPTER FIVE: 
PROBLEMS IN STEERING INSTRUCTION TOWARD  

THE MATHEMATICAL POINT 
  

Introduction 

 In this chapter, I use examples from the data to explore problems in steering instruction 

toward the mathematical point. I focus on problems in steering instruction before presenting my 

framework for mathematical purposing because steering is, in a sense, the “front line” of teaching 

to the mathematical point. It has a more direct influence on whether and how students engage 

with the intended mathematics. Mathematical purposing, of course, influences students’ 

engagement with the intended mathematics. However, mathematical purposing “goes through” 

steering to impact students: The work of articulating the mathematical point and orienting the 

instructional activity toward the intended mathematics better positions a teacher to steer the 

activity during instruction. In other words, the purpose of mathematical purposing is to help 

manage problems in steering instruction. Thus, an examination of problems in steering instruction 

toward its mathematical point and of issues that can arise when trying to manage these problems 

lays the foundation for and helps illustrate components of the framework for mathematical 

purposing presented in the next chapter.  

 From my analyses, I identified the following problems that must be managed in steering 

instruction toward the mathematical point:37  

• Attending to and managing multiple purposes; 

• Spending instructional time on mathematical work; 

• Spending instructional time on the intended mathematics; 

• Making sure students are doing the mathematical work; 

• Developing and maintaining a mathematical storyline;  

• Opening up and emphasizing key mathematical ideas; and 

• Keeping a focus on meaning. 

Throughout the descriptions of Jordan’s and Courtney’s lessons in the previous chapter, I tried to 

highlight examples of these problems and ways in which I thought the teachers were trying to 

                                            
37 As described in Chapter 3, these problems were identified when coding the data, in particular, the lesson 
videos.  
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manage them. Situating this discussion in the context of a lesson was intended to demonstrate the 

complexity of teaching to the mathematical point, in particular, how the problems must be 

simultaneously attended to and managed during instruction. I now focus on each problem 

independently using examples from across the set of lessons in my study. Taking the problems 

out of the context of a particular lesson allows them to be unpacked in more detail; looking across 

a range of beginning practice illuminates a wider variety of strategies for managing each problem 

and a broader collection of issues that can arise when trying to do so. Even though I focus on each 

problem independently, it is important to remember that the problems are overlapping and occur 

simultaneously in instruction, and that the management of a particular problem is not associated 

with a specific set of teaching practices. In fact, at any time, there are a variety of teaching moves 

that could be used to address each one. Similarly, a particular teaching move could be used to 

manage multiple problems.  

 For each problem, I provide a general description of its relationship to teaching to the 

mathematical point and discuss strategies for and issues that can arise when trying to manage it. I 

illustrate by referring back to examples from Jordan’s and Courtney’s lessons, as well as to other 

lessons in the data.38 Because some of these examples are used to show what is difficult about 

managing a problem, I sometimes describe an aspect of a lesson that did not go well—for 

example, an episode that was unclear or unfocused. The purpose of such an example is not to 

make claims that a preservice teacher’s entire lesson was unclear or unfocused, or that a particular 

teacher was unable to teach to the mathematical point. Here and throughout the dissertation, I use 

examples from the data to illustrate what is involved in the work, not to make claims about the 

people doing that work. Moreover, a particular teacher’s practice and management of these 

problems most likely varies within and across lessons. Therefore, it would not even be accurate to 

make those sorts of broad claims about an individual teacher.  

 Another comment to make at the outset is that some of the issues that arise with respect 

to the different problems might be attributable to the nature of the curriculum or to the details of 

an activity that were taken directly from a textbook. For example, issues related to the problem of 

developing and maintaining a mathematical storyline might be more evident in a spiral 

curriculum such as Everyday Mathematics. Because the aim of this dissertation is to unpack the 

work of teaching to the mathematical point, I am not trying to make claims about or even consider 

the causes of particular issues at this time. For the purposes here, the distinction is not important; 

however, in considering the implications for practice, the role of the curriculum materials, as well 

                                            
38 It may be helpful to refer back to Table 2 (Chapter 3), which lists each preservice teacher’s name, grade 
level, and lesson topic. 
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as the influence of other factors such as teacher knowledge, in helping (or not helping) to manage 

the problems is of tremendous importance. 

 In addition to illustrating problems in steering instruction toward the mathematical point, 

the episodes discussed in this chapter simultaneously illustrate aspects of the work of 

mathematical purposing that will be discussed in the next chapter. Although I have 

conceptualized the work of steering instruction and mathematical purposing as distinct types of 

teaching work, it is not possible to analyze problems in steering instruction toward the 

mathematical point without articulating what the mathematical point is and how the activity is 

oriented toward it. Thus, in describing the episodes from preservice teachers’ lessons, I rely on 

excerpts from the interviews and my own analysis to describe the mathematical point and how the 

activity was set up (or not set up) to engage students with it.  

 Furthermore, as described in Chapter 3, many aspects of my framework for mathematical 

purposing emerged in response to problems in steering instruction toward the mathematical point. 

For example, as will be discussed below, one of the issues that can arise in trying to manage the 

problem of spending instructional time on the intended mathematics is the non-strategic selection 

of numbers in problems. There were many instances in the data where the numbers used in a 

problem resulted in students engaging with different mathematical ideas than the preservice 

teacher intended. As a way to help manage this problem, the work of mathematical purposing 

therefore includes unpacking the mathematics made available by different numerical examples 

(i.e., a component of articulating the mathematical point) and selecting cases that are most related 

to the intended mathematics (i.e., a component of orienting the instruction). In other words, some 

aspects of the work of mathematical purposing were conceptualized by working backwards from 

the strategies and issues identified in the data and being discussed in this chapter. Thus, for each 

problem in steering instruction toward the mathematical point, there is corresponding work of 

mathematical purposing. In this way, the examples in this chapter are intended to illustrate both 

problems in steering instruction toward the mathematical point and the work of mathematical 

purposing that will be examined in the next chapter. 

 I begin now with the first problem that emerged in my analysis: attending to and 

managing multiple purposes. 

 
Attending to and Managing Multiple Purposes 

 That teachers have to attend to and manage multiple purposes during instruction is 

certainly not a new observation. A recurrent theme in the literature and one seen throughout the 

data is that these multiple purposes are often in conflict. Managing multiple purposes and the 
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resulting dilemmas is, in fact, one of the reasons that teaching is so complex (Lampert, 1985). I 

identify two components of the problem of attending to and managing multiple purposes: 

attending to multiple mathematical learning goals and managing mathematical and non-

mathematical purposes. I discuss each below. 

 
Attending to Multiple Mathematical Learning Goals 

 The multiplicity of mathematical learning goals in a single lesson stems from a variety of 

factors. As discussed in Chapter 1, the ultimate goal of mathematics instruction is to develop 

students’ mathematical proficiency. Mathematical proficiency, by definition, is multi-faceted and 

requires concurrent attention to the development of its five strands39 (National Research Council, 

2001). In instruction, this translates into simultaneously working toward different types of 

learning goals related to the different strands.  

 Another reason lessons have multiple mathematical goals is that students’ opportunities 

to learn are nested and occur over time—for example, problems are situated in activities, which 

are situated in lessons, which are situated in units, which are situated in school years. Teachers 

have different mathematical learning goals for problems, activities, units, and school years, which 

are correspondingly nested, and thus, during instruction, concurrently at play. Similarly, 

mathematical learning goals themselves occur at different grain sizes. For example, in a single 

lesson related to fractions, a teacher might be trying to help students learn a specific fact (e.g., 

that 
  

€ 

1
2

 is greater than 
  

€ 

1
3

), understand more general concepts about fractions (e.g., the need for 

equal parts and the importance of attending to the whole), and develop the ability to use 

representations to explain their solutions.  

 Clearly articulating and understanding the connections between mathematical learning 

goals of different types and grain sizes is an important aspect of teaching to the mathematical 

point. Articulating overarching mathematical learning goals broadens the mathematical terrain of 

a lesson and makes more visible connections across a lesson’s activities, problems, examples, and 

exercises. Attending to overarching goals can provide ways to work on all of the strands of 

mathematical proficiency in a given lesson. Articulating smaller, more specific goals for 

particular examples or activities both unpacks the mathematical terrain and clarifies which part of 

the terrain is intended to be traveled through with students at a particular time. Articulating 

learning goals of different types and grain sizes, their connection, and how an activity is intended 

                                            
39 Recall from Chapter 1 that the five interwoven strands of mathematical proficiency are: conceptual 
understanding, procedural fluency, strategic competence, adaptive reasoning, and productive disposition. 
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to move students toward these goals is the work of mathematical purposing and will be further 

unpacked in the next chapter. 

 Having a clear articulation of these different types and grain sizes of mathematical 

learning goals helps teachers better understand what they are steering their lessons toward. Many 

instructional decisions—such as which solutions to discuss, how to respond to a student’s 

comment, or what activity to skip if running late—can be informed by identifying the courses of 

action that best support the mathematical learning goals. For example, in Jordan’s lesson, when 

the end of the independent work time was approaching, she directed students to focus on the 

problems that were most related to the intended mathematics rather than on the other sections of 

the worksheet.  

 Of course, clearly articulating mathematical learning goals does not ensure that the 

learning goals will be attained. However, being aware that to develop mathematical proficiency 

the “point” of a lesson includes a complex web of mathematical learning goals of varying types 

and grain sizes and understanding the ways in which the mathematical point can be used to 

inform instructional decisions are important first steps.  

 
Managing Mathematical and Non-Mathematical Purposes  

 Even with attention to the multidimensionality of the mathematical point, not all 

instructional decisions will be—or should be—decided for mathematical reasons. However, as 

discussed in the literature (e.g., Kennedy, 2005; Lampert, 1985, 2001) and seen in the data, 

decisions made to achieve non-mathematical purposes, such as maintaining lesson momentum or 

encouraging participation of a normally quiet student who is raising his hand, can impact whether 

a lesson stays on its intended mathematical course. One way teachers can manage the problem of 

having non-mathematical purposes while trying to teach to the mathematical point is, when 

making decisions for non-mathematical purposes, to ask if a decision impacts their mathematical 

point. This again seems rather simplistic (and of course is not always possible in the moment) and 

does not mean that a teacher would then decide to abandon a non-mathematical purpose in favor 

of the mathematical point. Rather, explicitly asking about the impact of non-mathematical 

decisions on the mathematical point can help a teacher manage this problem by providing more 

information to weigh.  

 In my analyses, I observed a few ways that decisions made for non-mathematical 

purposes can impact a lesson’s progress toward its mathematical point. One possibility is that a 

decision made for non-mathematical purposes has no impact on the mathematics. For example, 

Courtney’s changing the names in the textbook’s problems to the names of her students—a move 
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made to foster student engagement—did not impact the mathematics available to be worked on in 

those problems.  

 There were many other cases, though, where decisions made for non-mathematical 

purposes did impact the mathematics available in the lesson. For example, in Mia’s third-grade 

lesson on reading and interpreting bar graphs, she followed her classroom’s usual routine of 

students’ completing their work on individual whiteboards, while she displayed the graph and 

accompanying questions on the overhead projector. Students did not have individual copies of the 

worksheet at their desks and, as a result, had a hard time answering the questions because they 

could not determine the heights of the bars from afar. To manage this problem, Mia read and 

recorded the height of each bar on the projected copy. This move did not take away from her 

main mathematical point of students’ using this information to answer questions about the graph; 

however, it did take away the opportunity to also use the activity to provide students with practice 

reading the values of the bars. This is not to say that it was a bad decision to use the whiteboards 

for this lesson or that she should not have read the graphs for the class. In fact, the impact on the 

mathematics seems fairly minor because the lesson could still progress toward her main 

mathematical point. And, Mia may have known that her students were already able to read bar 

graphs and, therefore, her reading the graphs for them was not taking away needed opportunities 

to practice that skill.  

 There are many times, however, when decisions made for non-mathematical purposes 

have more critical consequences for the mathematical point. I observed a number of these 

examples in my analyses. Echoing the findings in Kennedy’s (2005) study, teachers in my study 

frequently made moves to motivate students or get them “into” an activity. As seen with the 

above example from Courtney’s lesson, these decisions do not necessarily conflict with teaching 

to the mathematical point. In fact, decisions made to increase student engagement can enhance 

the mathematics being worked on in a lesson. For example, two of Mia’s non-mathematical 

purposes were to increase student engagement in her lesson and to gain access to her students’ 

thinking. To accomplish these, she routinely asked students to explain how they got their 

answers. Thus, Mia did not ask for explanations because she had learning to give mathematical 

explanations as an explicit goal for student learning. However, because she asked for 

explanations to further her non-mathematical purposes, her students were given opportunities to 

develop this aspect of mathematical proficiency.40  

                                            
40 Davis (2006) observed a similar issue in science instruction: In science lessons, preservice teachers often 
have their students answer questions and design investigations to foster students’ interest, not because 
engaging in scientific practices is the learning goal. 
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 In other cases, decisions made to foster student engagement distorted or distracted from 

the mathematical point. For example, Hannah taught a first-grade lesson on equivalence, in which 

students placed different combinations of seven unifix cubes41 on each side of a pan balance and 

the resulting equations (e.g., 1 + 1 + 1 + 1 + 1 + 1 + 1 = 7, or 5 + 1 + 1 = 7) were recorded to 

demonstrate that there were many ways to name the number 7. In her launch of the activity, 

Hannah tried to pique her first graders’ interest: “Watch me. I have two magical sticks of unifix 

cubes. Do you know why they’re magical?…Because they are equivalent.” Throughout the 

activity, Hannah repeatedly referred to the “magical balance” or commented that it was “like 

magic” that the two sets of cubes were equal. When asked about the use of magic in the post-

lesson interview, Hannah replied: “They think it’s awesome. [Magic is] just a word to throw in. 

Yeah, it’s just to keep their engagement, really. There’s nothing magical about it” (H-Post, T77-

80). Whether Hannah’s talk about magic impacted students’ ultimate understanding of 

equivalence is not known. However, it seems that a mathematical, rather than magical, framing 

would have better supported the development of mathematical proficiency.  

 I also observed situations in which efforts to manage mathematical and non-mathematical 

purposes degraded the mathematical learning goals. For example, in Nicole’s introductory lesson 

on place value with decimals, her non-mathematical purpose of reducing students’ anxiety led to 

a reduction in both the quality and quantity of mathematics in her lesson. The textbook’s stated 

objective was “to understand tenths and hundredths; and to exchange between tenths and 

hundredths” (Bell et al., 2004a, p. 332). In the pre-lesson interview, Nicole explained that she 

thought this lesson was “developmentally inappropriate” for her third-grade students and stated 

the following as her goals: 

Just getting them feeling a little more comfortable with knowing parts of a whole…If 
they walk away still not understanding this is the tenths place, this is the hundredths 
place, but knowing, okay, it’s less than one, I’d be happy. (N-Pre, R21) 

 
 Nicole’s teaching reflected her worries about the lesson’s difficulty. Each time she taught 

the lesson (three small groups rotated through the activity), she repeatedly told students “not to 

stress.” Although the lesson was designed to develop students’ understanding of the relationship 

between tenths and hundredths, Nicole focused most of the instruction on telling students the 

names of the places (i.e., tenths, hundredths, and thousandths) and pointing out that when naming 

                                            
41 Unifix cubes are colorful interlocking cubes that link in one direction. They can be snapped together to 
form long “sticks” or “trains.” These manipulatives are often used in elementary school to work on 
concepts related to counting and sorting, number and operations, and patterns. 
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decimals it was acceptable to say “and.”42 Her non-mathematical goal of not “stressing” her 

students spurred her decision not to introduce how to read decimals in her lesson. For example, 

instead of reading .68 as “sixty-eight hundredths,” she used the language of “sixty-eight out of 

one hundred.” She explained this decision in the post-lesson interview: 

With the third group, we talked about kind of how you would read that, like the twenty-
seven hundredths or thirty-three hundredths. But with the other groups I thought that 
would just be kind of too much, like, they were kind of at a breaking point like, “I’m over 
it.”  So I didn’t want to push them and be like, “And we read this a special way.”…[It’s] 
not really important how we read it yet, let’s just understand that they’re there and they 
have value, as opposed to well, how do we read it. Because I think they just would have 
been like, “What?” (N-Post, T40-44) 
 

This shift in learning goals is reflected throughout her post-lesson interview in her descriptions of 

what she was trying to accomplish in her lesson: 

I mean, I wanted them to walk away with the…understanding that this is the tenths, this 
is the hundredths, just that idea of those places have names and they’re not the same as 
the places over here on this side of the decimal…Because I was actually, just ran into a 
colleague in the copy room as I was making copies and I was talking about how it went, 
and I don’t think any of them really have the understanding that, okay, well, ten 
hundredths make one tenth. But that wasn’t really one of my goals. I don’t need them to 
have that understanding yet. I just needed them to have the understanding that there are 
these places after the decimal that have value and have meaning, they’re not part of a 
whole, yet, but they’re still there. Just really understanding that [those places] exist. That 
they’re there. They’re not fake. They’re real. We see them when we use money and other 
things, so they’re really there. (N-Post, R16-22) 

 
 Nicole explained that she did not explicitly use her goals to make decisions in her lesson, 

but did adjust her goals based what she thought students “could handle” (N-Post, T176-178). As a 

result, the mathematical point of Nicole’s lesson was reduced to knowing that decimals exist, 

telling students the names of the places, and noting that it is acceptable to say “and.” Thus, her 

goal of “not stressing students out” resulted in impoverished mathematical goals and an 

essentially decimal-free lesson. This relates back to the earlier discussion of managing multiple 

mathematical learning goals. Because the overarching goal is the ongoing development of 

students’ mathematical proficiency, implicit in teaching to the mathematical point is that the 

mathematical point is worthwhile.  

 Table 4 summarizes the above discussion of the problem of attending to and managing 

multiple purposes. A similar summary table will be included after the discussion of each problem. 

 

                                            
42 This refers to the fact that “and” is not used when naming large whole numbers (e.g., 237 is read as “two 
hundred thirty-seven” not “two hundred and thirty-seven”); however, “and” is part of decimal names (e.g., 
2.86 is read “two and eighty-six hundredths”). 
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Table 4. 
Summary of the Problem of Attending to and Managing Multiple Purposes 

Managing multiple mathematical learning goals 
• Simultaneously working on mathematical learning goals of different types and grain 

sizes: 
o Learning goals related to each of the strands of mathematical proficiency 
o Learning goals that are nested and developed over time 
o Learning goals of different grain sizes 

 
Managing mathematical and non-mathematical purposes 

• Considering whether a decision made for non-mathematical purposes:  
o Has no impact on the mathematical point 
o Supports or further promotes teaching to the mathematical point  
o Distorts or distracts from the intended mathematics 

 
 
 

Spending Instructional Time on Mathematical Work 

 The second problem—spending instructional time on mathematical work—is in many 

ways another obvious part of steering instruction toward the mathematical point: To learn math, 

students need to spend time on math. Yet, it is worth explicitly naming as a problem to manage 

when teaching to the mathematical point because the literature is filled with examples of 

mathematics instruction that is not spent on mathematics (Hill et al., 2008; Kennedy, 2005; Stein 

et al., 2000). Furthermore, many things compete for time in teaching. Therefore the problem of 

making sure time is spent adequately and well on the mathematical point is especially important. 

This problem focuses on spending time on mathematical work instead of non-mathematical work. 

The next problem takes the idea of spending time on mathematics one step further to consider, 

when time is spent on mathematical work, whether it is focused on the intended (rather than 

unintended) mathematics.  

 Lessons necessarily involve some non-mathematical work. Activities such as distributing 

materials, getting out supplies, cutting out or coloring manipulatives, or transitioning between 

lesson segments occur in almost every lesson. One way to steer instruction toward the 

mathematical point is to reduce the amount of time spent on such necessary but non-mathematical 

elements. For instance, Courtney and Jordan, like most of the teachers in my study, organized 

their materials in advance so they could be easily accessed during the lesson and tried to 

transition quickly between the lesson’s activities. 

 As described in the literature and echoed in the data, when students are cutting or 

coloring during a lesson, there is a particular danger that the activity might devolve into non-
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mathematical work (Stein et al., 2000). I observed a number of moves teachers used—

successfully and unsuccessfully—to try to manage this problem. When an activity involves 

cutting out or coloring a manipulative or tool that will be used later in the lesson, one way 

teachers can reduce the amount of instructional time spent on non-mathematical work is to do 

some of the manipulative preparation for students before the lesson. For example, in Rachel’s 

second-grade lesson, students folded paper squares to explore fraction concepts. Although the 

teacher’s guide suggested that students cut their own squares out of large pieces of paper, Rachel 

decided to cut out the squares in advance, which meant students did not have to do this non-

mathematical work during the lesson. Whether to do this type of work for the students might also 

be weighed in light of (possibly conflicting) non-mathematical goals, such developing fine motor 

skills. 

 A similar move can be made during instruction. For example, in Larkin’s fifth-grade 

lesson, her students folded and cut out kites for use in an exploration of symmetry. When most 

students were ready to move on, there was still one student who had not cut out his kite. Instead 

of having the class wait, Larkin discreetly cut out his kite while transitioning students to the next 

part of the lesson. This move reduced class time spent on non-mathematical work, yet because the 

work Larkin completed for the student was non-mathematical, it did not take away his 

opportunity to engage with the intended mathematics. Imagine instead that the student had not 

finished problems in his Math Journal. In that case, if Larkin would have simply answered the 

questions for him, it would have taken away his opportunity to engage with the intended 

mathematics.  

 Thus, in teaching to the mathematical point, it is important to ask if doing some or all of 

the work for students diminishes their opportunity to engage with the intended mathematics. In 

Larkin’s kite-cutting case, the answer was no. However, in Larkin’s lesson, passing out the 

materials, giving directions, and cutting took approximately six and a half minutes. Thus, even 

though Larkin found ways to reduce the non-mathematical work time, it is still important to ask 

whether and how time spent cutting out kites furthered her mathematical goals. 

 Sometimes a teacher’s effort to reduce time spent on non-mathematical work can detract 

from the mathematical point—yet another example of the problem of managing conflicting 

purposes. Although Rachel cut out the squares for her fraction lesson in advance, she had not 

organized them for distribution. When she started passing out squares, she informed students that 

they would each need six. However, she soon realized she had not cut enough, so she then told 

students they only needed five and asked them pass any extras to their neighbors. While this was 

happening, the classroom aide (unbeknownst to Rachel) had cut additional squares, which 
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resulted in reshuffling back to the original six per student. Distributing squares took two and a 

half minutes. This was instructional time not spent on mathematics that could have been reduced 

by a move such counting and grouping the pre-cut squares in advance. Perhaps it may even have 

been quicker to use the textbook’s suggestion of giving each student three sheets of paper and 

having them cut their own squares. 

 Once students had their squares, Rachel led the class through one of the lesson’s main 

activities—folding squares in halves, fourths, and eighths in multiple ways. She elicited from 

students different ways to fold and used this part of the lesson to emphasize that fractions 

required equal parts. Although much instructional time was spent folding squares, this was part of 

the mathematical work of the lesson and Rachel used it to steer students toward her mathematical 

point. Thus, it would not have served her mathematical purposes to reduce the time spent folding, 

as this was mathematical. 

 The next part of Rachel’s lesson used the folded squares to introduce naming and writing 

fractions. The textbook suggested that students color a given number of parts on one of their 

squares and then name the fraction of the square that is colored and not colored. Rachel decided 

not to have students color because she thought “it would have been chaotic if they were coloring 

in” (R-Post, T131). Instead she held up a folded square, covered some of its parts with her hand, 

and asked students to name the fraction represented by the uncovered region. Although in most 

cases students could answer her questions correctly, there were times when it was unclear to 

which part of the square she was referring. Thus, Rachel’s decision to reduce non-mathematical 

work (i.e., coloring) adversely impacted students’ engagement with the intended mathematics. 

Rachel reflected on her decision not to color in her post-lesson interview, and brainstormed 

alternative moves that might have sill reduced the time spent coloring and thus alleviated her 

fears of “chaos,” but made it easier for her to engage students with the mathematical ideas: 

It might have been a nice idea, like if they colored in one-fourth and then everybody 
looked at their own thing and tried to figure out how many were not colored and how 
many were. So maybe the next time I would have them color it. But again, when they 
were coloring in this [referring to a problem on the Math Journal], some of the kids, I 
specifically said, like, “Just lightly shade,” and some of the kids were like filling in every 
part and taking forever, and so that was my other fear, that it would just take away from 
the math if I said color this in, because some kids just get crazy.…Or maybe I should 
have colored it….Then, then I could have shown them my colored thing and they 
wouldn’t have had to color anything, but they could have looked at it more concretely. So 
that would have been a good idea. (R-Post, T131, 135-137) 

 
 In my analyses, I found that student (and teacher) confusion can also cause time to be 

spent on non-mathematical rather than mathematical work, thus steering a lesson away from its 
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mathematical point. For example, Sydney used the same names—Lou and Lisa—in the first two 

problems she posed to her first-grade students: 

Problem 1: Lou saved four cents. Lisa saved six cents. Who saved more money? How 
much more? 
 
Problem 2: Lou saved three pennies and Lisa saved six pennies. Who saved more pennies 
and by how much more? 
 

Compounded by the fact that she did not write the second problem on the board and that she read 

it incorrectly, both Sydney and her first-grade students could not keep track of how many pennies 

each person had: 

Sydney Okay, let’s try another one.…Let’s see if you guys can do this one without 
me writing it out, okay? How about this, Christine? Lisa saved three pennies. 
Shh. I’ll start with Lou again. Lou saved three pennies and Lisa saved six 
pennies. Who saved more pennies and by how much more? Think about that 
in your head for a second, okay? Lisa saved three and Lou saved six. Or, 
sorry, Lou saved three and Lisa saved six. Chloe, who saved more pennies? 

Chloe Lisa. 
Sydney Lisa. How many did Lisa save? 
Chloe Two? 
Sydney Nope. Who, you said Lisa saved more pennies, right? Okay. She saved six 

pennies and Lou had saved three pennies. Now what I wonder is if anyone 
can find out the difference of how many more pennies Lisa saved. Joel, do 
you know? 

Joel Six. 
Sydney No. That’s how many pennies she saved. Let’s write it out. So here’s Lou’s 

pennies, okay? And here’s Lisa’s pennies.  
 
Sydney displays and labels each person’s money on the whiteboard using 
large magnetic pennies: 

 
 
Sydney Amanda, are you looking up here? 
Amanda Yeah. 
Sydney Okay. Boys and girls, Lou is on the top and Lisa is on the bottom. Can 

everyone see that? Lou has three and Lisa has six. And Chloe said that, who 
saved more? 

 
Thus, in this example, confusion due to poorly worded problems and muddled language resulted 

in wasted instructional time and detracted from the mathematical point. 

 Situating a mathematics activity in a non-mathematical context can also cut into the 

amount of time spent on mathematics and make it harder to steer the lesson toward the 

mathematical point. This can happen when an elaborate context needs to be introduced, set up, 

and explained or, as in the case of Beth’s second-grade lesson, when a non-mathematical context 
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is used to gather data for the subsequent mathematical activity. Beth’s lesson was based on an 

Everyday Mathematics lesson called “Data Day: The Four Food Groups.” The teacher’s guide 

stated the following as the lesson’s objective: “To provide experiences with collecting, sorting, 

tallying, and graphing data” (Bell et al., 2007b, p. 390). The textbook’s version of the lesson 

began with a discussion about “good nutrition” followed by an introduction to the “basic food 

groups.” After this discussion, each student was to name their favorite food and then, as a class, 

assign it to the appropriate food group, recording the decision in a tally table. Once all of the 

tallies were recorded, the class was to discuss the completed table and then students were to make 

a bar graph in their Math Journals that represented the data in the table. The next activity in the 

lesson was an “ongoing learning & practice” worksheet involving comparison problems. 

 In her pre-lesson interview, Beth explained that her lesson goals focused on students’ 

being able to “talk about their graphing or the graph and setting up the graph and the data table” 

(B-Pre, T13). She expressed concern about the non-mathematical nature of the lesson, calling the 

focus on food groups “kind of random” (B-Pre, T19). Beth decided not to skip the food-group 

portion of the lesson, but, encouraged by a margin note in the textbook, made a number of 

modifications aimed at reducing the amount of time spent on non-mathematical work. For 

example, she had students work in table groups to categorize their favorite foods instead of doing 

this as a whole class. She also cut out pictures that represented the different food groups in 

advance to help students remember the types of foods that belonged in each category and to 

facilitate data collection. Her allocation of time during the lesson also reflected her mathematical 

goals. She moved quickly through the food group segment, only having a few students share 

ideas about healthy foods. She did not probe students’ food-related comments nor take up 

whether their suggestions were actually healthy.  

 Surprisingly, it was later in the lesson where Beth spent more time than anticipated on 

non-mathematical issues. Students were unsure what to do with the food group cut-outs she had 

prepared, and although she made an effort to familiarize students with the bar-graph template in 

the Math Journal, students were confused by the representation. Both she and her cooperating 

teacher spent time answering logistical questions and eventually Beth interrupted the lesson to 

explain in more detail where the bars were supposed to be drawn. Beth brought up both of these 

instances in her post-lesson interview, reflecting that it would have been preferable to spend more 

time before students began working to talk explicitly about how to use the representation and how 

she wanted them to work (B-Post, T29-39). She also noticed that the explicit discussion of how to 

use the representation enabled her to point out key ideas about working with bar graphs: 
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It had never really occurred to me but it was a good point to talk about, like how to 
organize your data if you’re, which is the discussion we had afterwards, like if you’re 
talking about bread and cereal is it going to be over the fruits and vegetables? No, it’s 
going to be over that category, so, it was a happy accident. (B-Post, T33) 
 

Thus, not only can familiarizing students with representations increase time spent on 

mathematical work by reducing later confusion, it can further students’ engagement with the 

intended mathematics by creating an opportunity to explicitly discuss key mathematical ideas. 

 As these examples show, a number of issues can arise when trying to manage the 

problem of spending time on mathematical rather than non-mathematical work. However, 

teaching to the mathematical point does not imply that non-mathematical work should always be 

minimized. For example, Courtney intentionally added time to the transitions between her 

lesson’s activities by teaching different activities in different parts of the classroom. She argued 

that spending this non-mathematical time helped her teach to the mathematical point because it 

provided students with an opportunity to move during the lesson, which enabled them to better 

focus on the mathematical work.  

 Table 5 summarizes the discussion of the problem of spending instructional time on 

mathematical work. 

 
Table 5. 
Summary of the Problem of Spending Instructional Time on Mathematical Work 

Strategies for reducing time spent on non-mathematical work: 
• Organizing teacher materials in advance 
• Transitioning quickly between lesson activities 
• Doing non-mathematical manipulative preparation for students (before or during the 

lesson) 
• Not taking up or not deeply probing students’ non-mathematical comments 

 
Issues that can arise: 

• Disorganized preparation and/or distribution of materials 
• Omitting non-mathematical work that actually helps students engage with the intended 

mathematics 
• Unnecessary and unproductive confusion due to unclear directions, poorly worded 

problems, or muddled language  
• Problems or activities situated in elaborate non-mathematical contexts that take time to 

explain and establish 
• Unfamiliarity with representations and tools leading to interruption of work and re-

explanation 
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Spending Instructional Time on the Intended Mathematics  

 Managing time in teaching is challenging. Many of the preservice teachers in my study 

expressed concerns related to the timing and pacing of their lessons, for example, commenting 

that their lessons usually ran long and/or they never got to everything in the teacher’s guide. As 

discussed above, some timing-related issues might be addressed by reducing time spent on non-

mathematical activities. However, spending more instructional time on mathematics does not 

guarantee that work will be focused on the mathematical point. Even when students are engaged 

in mathematical work, they may not be moving toward the intended mathematical learning goals 

(Hill et al., 2008; Kennedy, 2005; Stein et al., 2000). This section discusses strategies that can be 

used and issues that can arise when managing the problem of spending time on the intended 

rather than unintended mathematics. 

  Jordan and Courtney demonstrated many ways to try to manage the problem of steering 

the lesson toward the intended mathematics. One was the strategic selection of problems, 

examples, and exercises. Recall, for example, Jordan’s focus on problems with two negative signs 

in order to address her concern that students had overgeneralized the two-negatives-make-a-

positive rule, or her choice of -10 and -11 for the comparison discussion. Jordan also focused 

students on the portion of the worksheet most related to the intended mathematics when she was 

running short on time. Jordan and Courtney both had strategies for raising a mathematical idea or 

method that did not come up as expected from students. For example, Courtney used targeted 

questions to elicit a subtraction number model when it was not offered by students, and in 

Jordan’s lesson, when an anticipated error did not surface, she brought it up herself.  

 Many factors can cause an activity to shift toward unintended mathematics. One cause is 

when a reduction in cognitive demand during an activity’s set up or enactment results in students 

doing less mathematically substantial work than intended (Stein et al., 2000). There were 

numerous examples of this in the data. In many cases, the use of leading questions or overly 

supportive representations inadvertently changed the content of the mathematical work in which 

students were engaged. Both of these issues can be seen in the following example from Nicole’s 

third-grade lesson.  
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 As described above, Nicole’s lesson was designed to use base ten blocks43 to introduce 

decimals. After reviewing the names and relationships of the blocks, Nicole asked her students to 

name the value of a long if the flat were one whole. Students wrote 
  

€ 

10
100

 and 
  

€ 

1
10

 on their 

whiteboards. After a brief discussion, Nicole posed the next example, leading students to the 

answer in her launch of the problem:  

Nicole Let’s see, what if I had one long and six cubes? One long and six cubes? 
How many do I have?  

Paul Want us to do it both ways? 
Nicole Do what you can. Show me, if I have, so it’s, if I have one long, how many 

cubes are in one long? 
Students Ten. 
Nicole Ten. Plus another six cubes, how many cubes total is that? 
Students Sixteen. 
Nicole Sixteen. So if we have sixteen cubes out of one hundred, what is that going to 

look like?  
 
By rephrasing the question during her launch, Nicole shifted the problem from “What if I had one 

long and six cubes? How many do I have?” to “So if we have sixteen cubes out of one hundred, 

what is that going to look like?”  Because Nicole’s questions gave away the answer, students did 

not need to engage with fraction concepts to write 
  

€ 

16
100

. Nicole next tried to elicit writing 
  

€ 

16
100

 as 

a decimal: 

Nicole:  I’m wondering though, because you’ve been writing them all as fractions, 
I’m wondering if there is another way to write it. What’s another way that we 
could write it? Do we have any ideas? Judy? 

 
Judy suggested 100 - 16. Nicole pointed out that 100 - 16 was too big to be the same as “sixteen 

out of one hundred” and then made a second attempt to elicit a decimal representation, this time 

using money: 

Nicole This is really tricky guys, and I know it’s new, so we’re going to work on a 
different way to write it today. I want you to think about money. If this [the 
flat] is a dollar and these little cubes are pennies. 

Mike Pennies. 
Nicole How many pennies would we have? 
Students Six. 
Nicole Six pennies, so this [the rod] would be what? Ten pennies make what? 

                                            
43 Base ten blocks are manipulative materials designed to represent and teach place value concepts. A 
typical set contains four types of blocks: a 1 cm3 “little cube”; a “long” or “rod” composed of ten little 
cubes; a “flat” made up of ten longs (i.e., a ten by ten array of little cubes); and a “block” or “big cube” 
built from ten stacked flats. By assigning the blocks different values, a wide range of numbers can be 
represented. For example, if the little cube is assigned the value of 1, then a rod has a value of 10 and a flat 
equals 100; however, if the flat is assigned the value of 1—as in Nicole’s lesson—then the rod is 1/10 and 
the little cube 1/100. 



 138 

Students A dime. 
Nicole A dime. So if I have one dime and six pennies, how much money do I have? 
Paul A dime and a nickel and… 
Vicki Sixteen cents. 
Nicole Sixteen cents. Thank you, Vicki. Well, what if I had one dollar and sixteen 

cents, how would we write that? Show me on your slates, how we would 
write one dollar and sixteen cents?  

 
 Base ten blocks can be a powerful representation for place value concepts. However, here 

and throughout her lesson, Nicole relied on money to name and describe the numbers represented 

by the blocks. Thus, because students are familiar with money, they could record the value 

represented by the blocks without having to think about tenths and hundredths. Money can be 

used to engage students with decimals. However, Nicole did not prompt students to think about a 

dime as 
  

€ 

1
10

 of a dollar, a penny as 
  

€ 

1
100

 of a dollar, or 16 cents as 
  

€ 

16
100

 of a dollar. As a result, the 

cognitive demand was reduced and the mathematical work shifted away from place value and 

decimals to practice with dollars and cents.   

 In other cases, time is spent on unintended mathematics not because the cognitive 

demand is reduced, but simply because the work goes in a different direction than intended. This 

can happen when a student solves a problem using a method that draws upon different 

mathematical ideas than the intended focus of the lesson. A minor instance of this was seen in the 

Mental Math portion of Courtney’s lesson: Courtney had intended for students to practice 

“making a ten” but a student used a different, unanticipated strategy. This is not inherently 

problematic, but could become an issue when a teacher does not recognize that using a particular 

method engages students with different mathematics than the intended point.  

 Student questions can also shift the mathematical course of a lesson. This possibility 

arose during Mental Math in Rachel’s second-grade lesson. In this activity, Rachel read a number 

and students wrote down its double or half. In her launch, she offered students a suggestion for 

recording their work: 

Rachel Okay, so we’re going to practice our halving and doubling skills to get ready 
for math today. So I’m going to give you a number and ask you to double it. 
So, just write it down on your paper and then we’ll share as a class. So I’m 
going to give you the number six and write down the double. Shh, don’t tell 
me. Write it down. If you want to write six first and then like an arrow or a 
line and then draw what it doubles to, that’s a good idea. 

 
When the class reached the halving portion of the activity, one of her second graders asked an 

unanticipated question about the “halving sign”: 
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Chester Um, I have a question. How would you write the halving sign? Because, 
because if you do six minus three, you might not know the answer. It’s six 
minus the answer equals the answer.  

 
Rachel’s initial reaction was to tell Chester to use division, but she decided to try to steer him 

toward something more familiar (R-Post, T292):  

Rachel Um, you could do, it’s more of like a thing that you do in your head, or you 
could do in your head what plus what is equal to eighteen so you could think 
what plus what equals eighteen and you know your doubles facts so well that 
you should know it’s nine. Or we talked about multiplication a little bit with 
the arrays and you could think what times two is equal to eighteen. Does that 
help?  

 
But Chester pressed for division: 

Chester Mmm, I want, I’m looking for dividing. 
Rachel Dividing, or you could do eighteen divided by two equals. 
Chester Okay. 
Rachel But we’re not too familiar with divided by, so I don’t expect everyone to do 

the divided by. But if that’s something you’re comfortable with you could do 
eighteen divided by two equals nine.  

 
In the post-lesson interview, Rachel explained her response and why she added in the disclaimer 

about not being “too familiar with divided by”: 

I said that because I didn’t want some of the kids to be like, wait, what’s divided, and like 
get all confused. Also I wanted them to know like, that’s what you do, but don’t worry 
about it, you don’t have to know that, like. Because that was, I mean, I wanted to answer 
his question, so I figured I’d answer his question but let the rest of the class know they 
didn’t have to be on the same page as him. (R-Post, T300) 

 
 One can imagine any number of ways that Rachel might have responded to Chester’s 

question: She could have switched gears and used halving to launch a lesson on division, or she 

could have picked up on Chester’s observation that “six minus the answer equals the answer” to 

introduce algebraic notation. Instead, Rachel’s move of quickly acknowledging that division 

could be used to record halving and saying to the rest of the class that it was okay if they were not 

familiar with division, served to both signal to students that the connection to division was not the 

mathematical point of the Mental Math activity and keep her lesson on her intended course. 

 My intention here is not to make claims about whether Rachel responded correctly in this 

situation or whether she should have seized one of the mathematical opportunities presented. 

Teachers do intentionally change the mathematical course of their lessons—perhaps deciding to 

take up an unanticipated method or introduce a new concept in response to a student’s question. 

In these situations, students are still engaged in the intended mathematics; the intended 

mathematics has just changed. Thus, teaching to the mathematical point does not require teachers 
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to stick with their original plans at all costs. It does, however, require having a mathematical 

point and trying to steer the lesson toward it—which, in turn, necessitates an awareness of 

whether the mathematics students are working on furthers the intended mathematical learning 

goals—regardless of whether these are the original goals or ones that emerged during the lesson.  

 Another issue that can inadvertently cause time to be spent on unintended mathematics is 

the non-strategic selection of numbers in examples and exercises. This can happen when the 

numbers used lend themselves to different methods than those most related to the intended 

mathematics (Rowland, 2008; Rowland, Thwaites, & Huckstep, 2003). I observed many instances 

in which a teacher’s chosen examples did not set up the desired mathematical discussion, for 

example, in Andrea’s fifth-grade lesson on division.   

 One of the goals of Andrea’s lesson was for students to learn to use rounding to estimate 

how many times a two-digit divisor “goes in” at each step in the long division algorithm. For 

example, when using long division to divide 8760 by 18, the first step is to divide 87 (hundreds) 

by 18. Andrea wanted students to complete this step by rounding 18 to 20, estimating that 87 

divided by 20 is about 4, and therefore concluding that 87 divided by 18 must also be about 4. 

She planned to introduce rounding the divisor using the following warm-up problem: A rope 

measuring 87.6 meters long is cut into 12 equal pieces. Estimate the length of each piece. Be 

prepared to explain your estimation strategy. She selected this problem from Everyday 

Mathematics because it asked students to “estimate,” which she saw as related to her goal of 

rounding. However, during the problem’s enactment, because many students knew their multiples 

of 12, the problem did not lend itself to rounding the divisor to 10, as Andrea had hoped. Instead, 

many students solved the problem by rounding 87.6 to 84 and using the known fact 12 x 7 = 84. 

In the post-lesson interview, Andrea commented that if she were teaching the lesson again, she 

would use a divisor such as 22 so that students would be more inclined to round it to a multiple of 

10. Thus, although students were engaged in productive mathematical work during this warm-up 

activity, it did not initially steer the lesson toward the mathematics Andrea had intended. 

 Another way the choice of numbers can steer a lesson toward unintended mathematics is 

when they are generated randomly (Rowland, 2008; Rowland et al., 2003). This was seen in 

Sydney’s first-grade lesson on comparison. In the second half of her lesson, Sydney introduced 

“The Difference Game,” a partner activity in which each player draws a number card and counts 

out the corresponding number of pennies. The players then compare their pennies and the player 

with more pennies keeps the difference. The player with more pennies at the end of the game 

wins. To demonstrate the game, Sydney randomly drew two cards—3 and 0—from the deck. The 

selection of 0 as one of the numbers distracted from her mathematical point: 
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Sydney So boys and girls, if we each had a deck of cards, we would each flip the top 
card over, okay? [Draws a card from each deck she is holding.] So if 
Michelle was playing, the first card she did was a zero. And if Joel was 
playing, he got a three. So we got a zero and a three. And once you flip the 
cards over, you’re going to represent those cards in pennies. So how many 
pennies would I use to represent zero? Raise your hand if you know. Julia? 

Julia None. 
Sydney No pennies, because it’s zero. Sandra, how many pennies would I use to 

represent this card three?  
Sandra Three. 
Sydney Three pennies. So boys and girls, that’s what I want you to do. Now you 

might think this is a little funny because it’s only zero for this side, but what I 
think is a good idea, boys and girls, is you divide, pretend you have an 
imaginary line on your desk, and you divide it in half, okay? So you’d put the 
zero pennies on one side and the three pennies on the other side and that’s 
what I’m going to do up at the board, okay?  

 
Sydney arranged three magnetic pennies horizontally on the whiteboard and then walked around 

helping students set up their pennies on their desk. When everyone was ready, she explained the 

rest of the game: 

Sydney So everyone should have three pennies, that’s really all I should see, is three 
pennies and then a corner of your pennies, okay? So remember, I drew a zero 
and I drew a three. So we need to match up, um, well first we need to decide 
who had more pennies, the person who drew a zero or the person who drew a 
three? Erica, who drew more pennies? Which player, the one with the zero 
card or the one with the three card? 

Erica [inaudible] 
Sydney The person with three had a higher card, right? Does everyone agree the 

person with three had a higher card? Sandra, you agree? Okay if, so 
remember we had, [points to the pennies on the board] this is the person who 
had three and this would be the person that had zero. Is there anything to 
match up? Are there any pennies up here for us to match up? 

Students No. 
Sydney No. So what we would do is the person, if we were playing this in pairs, the 

person who drew the three, they would get to keep the difference. The 
difference in this problem is three. Marina, can you sit down please? Okay. 
So that, this, the person who had the three card would be the winner and they 
would get to keep all three pennies, because the difference in that problem 
would be three, okay? That was kind of a funny example because it was a 
zero. So let’s try it again.  

 
 The random generation of 0 was problematic for the initial example because it did not 

support students’ learning how to set up and do the matching. This is not to say that 0 would not 

have been an interesting example to discuss—for a different purpose—later in the lesson. 

However, the fact that 3 was both one of the original numbers and the difference between them 

was potentially confusing for students just learning what “difference” means. Obscuring the 

intended mathematics through numbers playing dual roles may have been an issue in one of 
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Sydney’s other examples as well (i.e., 6 and 3 pennies have a difference of 3). In general, Sydney 

did not pick her examples or activities by strategically choosing among alternatives in order to 

orient students toward the intended mathematics. Her haphazard selection process instead seemed 

based on random chance or what she happened to notice in the teacher’s guide. For example, 

when asked how she decided to have students play a game instead of complete the worksheet that 

was also included in the textbook’s lesson, she replied: 

Honestly, this is the first time I’m really looking at this worksheet, to tell you the 
truth.…I picked the game because it was the biggest thing on the page, and I usually 
follow like, you know, it’s kind of laid out one, two, three, or whatever. This is what I 
was drawn to first. (S-Pre, T93-95) 

 
 Another issue that can shift an activity toward unintended mathematical work is when it 

gets bogged down in a complicated mathematical idea or procedure that is not its focus. The 

strategic selection of numbers in problems and examples can also help manage this issue. For 

example, Courtney used small numbers in her comparison problems so that students would not 

have difficulty with the computation and thus could focus on the diagram and number models. 

She did not, for example, use numbers that required regrouping, which would have likely been 

challenging for her second-grade students.  

 An example of an activity getting mired in unintended mathematical work was seen in 

Gillian’s fourth-grade lesson on metric measurement. The class discussed the names and 

relationships among metric units of length, and students solved a few basic conversion problems, 

such as: How many centimeters are there in 3 meters? Gillian ran out of time in her lesson and 

decided to skip an activity that had students measuring objects around the room. She instead 

asked students to complete a problem in their Math Journal, which asked them to measure two 

line segments (with lengths of 9 cm and 12 cm) to the nearest centimeter. As students began 

working, she spontaneously added an extra component to their task:  

Gillian If you’re done, what we’re going to do is convert your measurement in 
centimeters, convert it to decimeters, to meters, and to millimeters. Convert 
your measurement, convert answers. You have nine centimeters; so convert it 
to how many decimeters, how many meters, how many millimeters. 

 
 Students immediately expressed confusion about how to convert nine centimeters to 

decimeters. A number of students said the answer was zero. Gillian tried to explain, but had 

trouble: 

Gillian  So, could everyone pause for a moment and have a seat. What are we doing 
here? Okay, let’s try it one more time. Could everyone please have a seat? 
I’m going to explain what I mean, okay? So for the first one, let’s say the 
answer is nine centimeters. I’m thinking, in fact, let’s just do the first one if 
you haven’t done it yet, okay? So I’m thinking, how many decimeters are in 
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nine centimeters? It’s just like our slate problems. And you might think zero, 
but zero would mean nothing and nine centimeters is not equal to nothing. 
Actually, I have centimeters and I know that one decimeter equals ten 
centimeters. So if I’m thinking okay, problem, I have less then ten, I’m 
thinking okay, how many do I have? In one whole decimeter is ten 
centimeters, that means ten out of ten centimeters equals one decimeter. But 
if I don’t have ten out of ten centimeters, then I have nine centimeters so I 
have nine out of ten centimeters, er, decimeters, because, okay. Ten out of 
ten is a whole, so ten out of ten decimeters equals one decimeter. This is a 
little bit confusing isn’t it? 

 
She then asked a student to help out. The student came up to the board and explained: “Since we 

only have nine centimeters and we need ten, ten centimeters to be one decimeter, then we have to 

write it in millimeters instead of decimeters.” Another student volunteered after that, explaining 

that the answer was .9 because it is nine out of ten. At this point it was time for the afternoon 

assembly. In closing, Gillian attempted to explain the conversion one more time and then told 

students not to worry because they would talk about it tomorrow. 

 Gillian’s decision to ask students to write their centimeter measures in decimeters, 

meters, and millimeters was certainly within the mathematical terrain of the lesson and is a task 

that could provide a rich context for mathematical work. However, this was not a task that could 

easily be completed by her students in the last two minutes of class. Gillian did not seem to 

recognize the significance for learners of switching the direction of the conversion and, because 

this was not the intended mathematical focus of her lesson, was not prepared to explain the 

calculation and thus got bogged down in confusion related to unintended mathematical work. 

 Table 6 summarizes the discussion of the problem of spending instructional time on the 

intended mathematics.  



 144 

 
Table 6. 
Summary of the Problem of Spending Instructional Time on the Intended Mathematics 
 
Strategies for steering the lesson toward the intended (rather than unintended) mathematics: 

• Strategically selecting problems for discussion 
• Strategically selecting numbers for examples and exercises  
• Focusing students on the most relevant problems 
• Cutting the least relevant work if running short on time 
• Raising key mathematical ideas that do not get brought up by students 

 
Issues that can arise: 

• Reducing the cognitive demand through leading questions or overly supportive 
representations 

• Using methods that draw upon different mathematical ideas than the planned focus of the 
lesson 

• Student question taking the lesson in an unintended direction  
• Non-strategic selection of numbers in examples or exercises: 

o Using numbers that better lend themselves to different methods 
o Using numbers that are generated randomly 
o Obscuring meaning through numbers playing dual roles 

• Getting bogged down in complicated mathematical ideas that are not the intended focus 
 
 
 

Making Sure Students are Doing the Mathematical Work  

 If instructional time is not spent on the intended mathematics, then students will certainly 

not be engaged with it. However, even if instructional time is spent on the intended mathematics, 

the students still might not be doing the majority of the work. This fourth problem—making sure 

students are doing the mathematical work—foregrounds the important idea that mathematics 

instruction is about student learning (Hiebert & Grouws, 2007): Teachers engage students in 

mathematical work so that students can learn the intended mathematics.  

 The problem of making sure students are doing the mathematical work overlaps with 

managing the problem of spending time on the intended mathematics. For example, when the 

mathematical knowledge needed to answer a teacher’s question is changed by a teacher’s asking 

easier and easier questions, the students are not doing the intended mathematical work 

(Brousseau, 1997). In the data, I indentified three strategies for managing the problem of making 

sure students are doing the mathematical work: asking questions that engage students in 

mathematical reasoning, getting students into the work without doing it for them, and distributing 

the mathematical talk. Although these strategies overlap, I discuss them separately below. I also 

describe some of the issues that arose for beginners that resulted in either the teacher or the 

details of the task “doing the work” for the students. 
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Asking Questions that Engage Students in Mathematical Reasoning  

 One issue that can arise is that the presentation of a task can do some of the mathematical 

work for the students—for example, when it is set up in such a way that students can get a correct 

answer by means other than engaging with the intended mathematics. Asking questions that 

engage students in mathematical reasoning can be a useful strategy for addressing this issue. An 

example of this strategy can be seen in Keri’s introduction of a Math Journal page during her 

fourth-grade lesson on fractions. Keri introduced the worksheet with a whole-group discussion of 

its first problem (Figure 10). 

 

 
 

Figure 10. Number line problem from Keri’s worksheet. 
Adapted from Grade 4 Everyday Mathematics Teacher’s Lesson Guide  

(Bell et al., 2007c, p. 573). 

 
 In this problem, students are to identify a fraction that corresponds to each marked 

location on the number line. Because the 
  

€ 

1
4

 was already filled in as an example, students could 

generate correct fractions for the other blanks simply by counting by fourths, rather than by 

thinking about the number of equal parts into which the unit interval is divided.44 This is exactly 

what happened when Keri asked Eliza what she thought the problem was asking: 

Eliza Figure out the next one, it’s one-fourth, count the next spaces to know… 
Keri Okay.  
Eliza And see how many fourths there are. 
Keri So how did you know it was divided up into fourths? 
Eliza Because the first problem is done for you. 
Keri Okay, so they gave you one-fourth here. What if they didn’t give you this 

number at all and they just gave you these blank spaces, how might you 
know it’s in fourths still? Victor, how would you know it’s in fourths even if 
the one-fourth, let’s say they didn’t give you the one-fourth, how might you 
know it still? 

 
 In this episode, when Eliza responded that she knew the number line was divided into 

fourths because “the first problem is done for you,” Keri asked a strategic “what if” question to 

engage students in reasoning about the fraction concepts that were the mathematical point of her 

                                            
44 Not all of the number line problems had fractions filled in, so I am not claiming that the entire worksheet 
did the mathematical work for the students. I only use this example to illustrate this issue and Keri’s use of 
questioning to address it. 
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lesson. Asking questions that require students to reason can help make sure that it is the 

students—not the task—doing the mathematical work. 

 As discussed above, another issue that can arise is that the teacher’s questions give away 

the answer, making it so students do not have to engage with the intended mathematics to answer 

correctly. Examples of leading questions doing the work for students could be seen throughout 

Irene’s first-grade lesson. The activities in her lesson used dominoes to generate addition-

subtraction fact families. For example, the 3|5 domino corresponds to the 3-5-8 fact family shown 

Figure 11: 

 

 
3 + 5 = 8 
5 + 3 = 8 
8 - 3 = 5 
8 - 5 = 3 

 
Figure 11. The addition and subtraction fact family corresponding to the 3|5 domino. 

Adapted from Grade 1 Everyday Mathematics Teacher’s Lesson Guide 
 (Bell et al., 2007a). 

  
 In her pre-lesson interview, Irene expressed multiple mathematical goals for her lesson. 

She had overarching goals of developing students’ understanding, as well as a conceptual 

learning goal for students (i.e., to understand the relationship between addition and subtraction), 

which she distinguished from the procedural goal of being able to compute answers to addition 

and subtraction facts. Irene seemed to have done a thoughtful analysis of the mathematics made 

available by the domino and had decided that the representation worked well for her purposes. 

During the lesson, however, instead of engaging students in thinking about the relationships 

between the numbers and operations, she asked questions that simply required naming the 

number of dots she was pointing to. This could be seen in the first example she posed to her class: 

Irene So I’m going to draw a domino up on the board, okay? Let’s see. [Draws a 
3|5 domino on the whiteboard.] So, let’s see here. How many dots are on this 
side? 

Students Three. 
Irene Three, okay. [Writes 3 + ] And then how many am I adding to this? 
Students Five. 
Irene Five. So how many dots do I have on my domino here? 
Students Eight. 
Irene Ryan, how many do I have? 
Ryan Eight. 
Irene Eight. [Writes 3 + 5 = 8] 
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Irene’s next question is a little less leading, at least requiring students do the mathematical work 

of generating the “turn around fact”:  

Irene  Now, do you remember doing turn around facts? 
Students Yeah. 
Irene So, how else can we write this? Tina, how else can we write this? 
Tina Five plus three equals eight. 
Irene Five plus three equals eight. Good.  

 
But the remaining facts were elicited in the same manner as the first, with Irene doing all of the 

mathematical work for the students: 

Irene Now, I want to show you something a little different today. So I need a sheet 
of paper. [Covers the three dots so only the five are showing.] So how many 
do I have here all together? 

Students Eight. 
Irene Eight. Now let’s see, if I cover three, if I take away three, how many do I 

have here?  
Students Five. 
Irene Okay, so how many did I start with? 
Students Eight. 
Irene How many do I have all here. How many do I start with here? Eight. 
Students Eight.  
Irene Minus, oh, and how many did I take away? 
Students Three. 
Irene Three. 
Students Three. 
Irene So equals, what do I have left? 
Students Five. 
Irene Five. Okay, that’s one way we can do it now. Okay, now let’s do it this over. 

So how many do I start up with up here? 
Students Three. 
Irene No, how many do I have all together as a whole? 
Students Eight. 
Irene Now, instead of taking away the three, instead of taking it away from here. 
Students Minus five equals five. 
Irene Minus five? 
Students Equals three. 
Irene So I took away five, I’m covering up five. So how many do I have left here? 
Students Three. 
Irene Three.  
 

 In this episode, even though students correctly answered Irene’s questions and the 3-5-8 

fact family was recorded on the board, students were not necessarily engaging with the intended 

mathematics. Because Irene’s questions could be answered by counting dots, students did not 

need to do the mathematical work of thinking about the relationships between the numbers and 

operations, which was the mathematical point of the activity. Of course, it is possible that 
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students were noticing these relationships themselves; however, the leading questions Irene asked 

did not help steer attention toward this mathematical point.  

  What counts as “doing the work for the students” depends on the mathematical point. 

Because Irene’s goal was for students to be able to generate fact families and to understand the 

relationship between addition and subtraction, her leading questions did the intended 

mathematical work for the students. However, what can be seen as doing the work for the 

students in one situation, can be seen as students’ engaging in the intended mathematics in 

another. For example, when Andrea posed her warm-up problem to her fifth-grade students, she 

got students into the work as follows: 

Andrea The first problem I want you to think about is this, if I have a rope that is 
eighty-seven and six-tenths long, meters long, so it’s a really long rope, and I 
want to cut it into twelve pieces, approximately how much, how long is each 
piece? So estimate how long each piece is. Do it on your paper. The rope is 
eighty-seven and six-tenths meters long. I want to estimate how long each of 
the twelve pieces is. So don’t solve eighty-seven and six-tenths divided by 
twelve, I want you to estimate. Estimate how long each one is.  

Student Do we write our answer right here? 
Andrea Mmhm. Be able to explain how you thought about it in a minute. 

Approximately how long is each piece? [Students begin working as Andrea 
continues to talk to the whole class.] 

Student Oh, wait, oh. 
Andrea So I have a rope that’s really long and I’m going to cut it into twelve pieces, 

approximately how long is each piece? I’ll give you a hint. You should round 
the numbers. Use easy numbers. Jacob, you need, did you figure it out? 

Jacob I don’t get it. Are we adding or subtracting? 
Andrea We’re dividing. We’re dividing.  
Jacob Oh, that explains a lot. 
Andrea All right, you should be writing not talking.  

 
 Andrea “gives away” that the rope problem can be solved using division, both in her 

launch (“so don’t solve eighty-seven and six-tenths divided by twelve, I want you to estimate”) 

and again in her response to the student’s question (“we’re dividing”). However, Andrea’s 

mathematical point in using this problem was to introduce rounding the divisor and estimating as 

a strategy for long division with two-digit divisors, not, for example, to discuss when division is 

an appropriate operation. As discussed earlier, the choice of numbers was not ideal for her 

purposes, nor is it clear why she used a contextualized problem (i.e., she did not use the context to 

help teach to her mathematical point). And certainly, this episode can be seen as a missed 

opportunity to simultaneously work on multiple mathematical learning goals (e.g., developing 

students’ understanding of the meaning of division). But given Andrea’s purposes, telling 

students to use division did not do the intended mathematical work for them. 
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Getting Students into the Work without Doing it for Them 

 A common teaching strategy to get students into the work is to do some examples 

together as a class. I observed many variations of “doing some examples together first.” Jordan 

conducted her review with examples other than those on the worksheet and did not discuss 

additional problems from the worksheet in whole group before students worked independently, 

thus leaving the entire worksheet for students to complete on their own. Courtney did some initial 

examples as well as the first two problems from the Math Journal in whole group. However, the 

two discussions were structured differently: On the rug, the problems were completed entirely as 

a group; back at their desks, students worked on one step of the problem independently, Courtney 

went over that step in whole group, and then students continued to the next step independently. 

Thus, students completed the steps of the problems on their own, but had fewer problems 

available to complete entirely independently.  

 Doing examples and problems with students is an important and productive strategy for 

getting students into mathematical work. The common practice of “doing some of the problems 

together” to introduce a worksheet meant for independent practice has interesting implications for 

teaching to the mathematical point. As seen in the following example from Zach’s fifth-grade 

lesson on fractions, doing some problems together can be a way to help engage students in doing 

the mathematical work and focus their attention on the intended mathematics. 

 The Math Journal page in Zach’s lesson focused on modeling addition and subtraction of 

fractions. Shaded fraction bars were given, along with one of the fractions and the operation. 

Students were to use the fraction bars to determine the other fraction that was being added or 

subtracted and then calculate the answer. The first problem on the worksheet is shown in Figure 

12. In this problem, students would first determine that the 
  

€ 

5
12

 corresponds to the top fraction 

bar. They would write 
  

€ 

4
12

 (or 
  

€ 

1
3

) in the second blank (because it corresponds to the bottom 

fraction bar) and then add to get an answer of 
  

€ 

9
12

  (or 
  

€ 

3
4

). 
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Figure 12. The first problem on Zach’s fraction worksheet. 
Adapted from Grade 5 Everyday Mathematics Teacher’s Lesson Guide  

(Bell et al., 2007c, p. 425). 
 

 
 Zach got his students into the Math Journal page by first asking a student to read the 

directions: 

Zach Can you read the directions to us, Matt?  
Matt Write the missing number, fraction for each pair of fraction sticks. Then 

write the sum and difference of the fractions. 
Zach Okay, sum and difference. That means we’re going to be doing adding and 

subtracting, so make sure you pay attention to your operation.  
 

Zach repeated “sum and difference” and then clarified that this is “adding and subtracting.” 

Making sure students understand the language being used is an important part of getting students 

into the work. Zach then led the class through the first problem: 

Zach So, for the first one, it gives us five-twelfths. Matt, which one of these 
fraction sticks gives us five-twelfths and why? 

Matt Five-twelfths. Um, the first. 
Zach How can you tell? 
Matt Because, um, it has five blue, like sticks. 
Zach So five of these sticks are colored in?  
Matt Yeah. 
Zach And how many sticks, or how many boxes are there total inside this box? 
Matt Twelve. 
Zach Twelve. All right. Now Matt, this is, might be a little bit of a tough question, 

what is this box? What does this represent? 
Matt The whole. 
Zach The whole. Very good. So this whole box equals one.  
Matt Mm-hmm. 
Zach But only five-twelfths of that box is filled. 
Matt Yeah. 
Zach So that’s our first number, five-twelfths. What about our second number 

here? What do we have? 
Matt Um, four-twelfths. 
Zach Four. [Counts the shaded rectangles.] One, two, three, four. So we have four-

twelfths here. Great. Do guys see how that works? Four-twelfths. Now, Max, 
what’s five-twelfths plus four-twelfths? 

Matt Um, do you times or plus? 
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Zach What’s our operation here? 
Matt Plus. 
Zach Plus. 
Matt Um, so five plus four is nine-twelfths, so it’s just, you just keep the twelve. 

Nine-twelfths. 
Zach Okay, why do you keep the twelve? 
Matt Because the denominator is the same so it’s already a whole. 
Zach Okay, so you’re saying the twelve just tells us how many pieces go in a 

whole. 
 

 In this episode, Zach tried to engage students (or at least one student) in doing the 

mathematical work, while explaining the directions for the Math Journal page. He asked 

questions aimed at unpacking the correspondences between the written fractions and the fractions 

bars. For example, he did not just accept the student’s answer that the 
  

€ 

5
12

 is represented by the 

first fraction stick; he pressed for an explanation and used this opportunity to emphasize the 

whole, a key fraction concept. After discussing this first problem, students completed the 

remainder of the worksheet on their own. 

 The mathematical point of doing some of the problems together to introduce a worksheet 

or activity is not always clear when the class has already completed other similar examples. For 

instance, in Hannah’s first-grade lesson, she engaged her class in two example problems at the 

board, and then when introducing a Math Journal page composed of similar problems, completed 

most of those problems in whole group as well. In some cases, the introduction can leave no 

mathematical work for students to do on their own. This issue was seen in Beth’s second-grade 

lesson, which, as described above, involved categorizing students’ favorite foods and then 

graphing the results. When Beth explained how to make a tally table from the data represented in 

the picture graph, she filled in a table at the overhead, having kids “draw tallies in the air” as she 

recorded. Once Beth had recorded the tallies on the projected table, she asked students to 

complete an identical table in their Math Journal, which then became an exercise in copying off 

the overhead. 

 
Distributing the Mathematical Talk  

 The distribution of mathematical talk in a lesson also has implications for who is doing the 

mathematical work. This does not mean that students should always talk more and teachers talk 

less. Rather, when teaching to the mathematical point, the distribution of talk should be informed 

by the intended mathematics. For example, in Jordan’s lesson, when the student gave an example 

for 5 + (-7) that actually corresponded to 5 - 7, Jordan decided to clarify the distinction herself 
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because she thought it was important that students heard a clear example for modeling the addition 

of a negative number. 

 However, because learning to reason mathematically is a component of mathematical 

proficiency, making mathematical arguments, giving mathematical explanations, making 

connections, and using mathematical language is part of the content of mathematics instruction. 

Therefore, if teachers are the only ones doing the explaining or making connections, as was often 

the case in the data, then students are not the ones engaging in that mathematical work. For 

example, Courtney explained and represented mathematical ideas and made connections across 

multiple representations, all moves that, I argue, helped engage students with the main content of 

the lesson. However, it did not engage students in practicing giving explanations. Greater sharing 

of the mathematical talk, and the kinds of mathematical talk, in her lesson could have been a way 

to attend to and manage these multiple mathematical goals. 

 Table 7 summarizes the above the discussion of the problem of making sure students are 

doing the mathematical work. 

 
Table 7. 
Summary of the Problem of Making Sure Students are Doing the Mathematical Work 
 
Important: What counts as “doing the work for students” depends on the mathematical point. 
 
Strategies for making sure students are doing the mathematical work: 

• Asking questions that engage students in mathematical reasoning 
• Getting students into the work without doing it for them 
• Distributing the mathematical talk and the kinds of mathematical talk 
 

Issues that can arise: 
• Doing the mathematical work for the students through leading questions, a task structure 

that gives away the answer, or overly supportive representations 
•  “Doing some together first” reducing the amount of work students are left to do on their 

own 
• Not having a clear point in doing more examples together 
• Doing all of the mathematical work in the activity’s introduction so that all students are 

left with is copying the answer 
• Students not engaging in mathematical practices 
 

 

Developing and Maintaining a Mathematical Storyline  

 A fourth problem in steering instruction toward the mathematical point is developing and 

maintaining a mathematical storyline. Mathematics lessons need to be coherent (Fernandez, 

Yoshida, & Stigler, 1992; Leinhardt, 1989). One way to develop coherence is to design and 

maintain a “mathematical storyline”—a deliberate progression of the mathematical ideas. This 
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involves making connections across mathematical work, both within a lesson (e.g., between 

activities and between parts of an activity) and across lessons. In the data, there were examples of 

instruction where a storyline was developed and conveyed to students, yet the mathematics 

involved was superficial. Thus, implicit in this problem is that mathematical storyline being 

developed is worth maintaining.  

 
Developing a Within-Lesson Mathematical Storyline  

 One way to think about a within-lesson storyline is that it creates a coherent structure 

with a clear beginning, middle, and end (Mathematics Methods Planning Group, 2005). Both 

Jordan and Courtney had determined coherent mathematical storylines for their lessons, which 

helped them steer their lessons toward their mathematical points. For instance, because Jordan 

knew where her lesson was headed mathematically, she was able to review ideas that students 

would need in their later work. She also concluded her lesson with an exit slip that was designed 

to “pull everything back together” and allowed students to “summarize what they’ve learned.” 

 One issue that can arise when developing a mathematical storyline is that it can be 

difficult to identify mathematical connections across the activities in a lesson. Furthermore, even 

if mathematical connections are identified, the activities then need to be sequenced and 

implemented in ways that highlight the coherence of the mathematics. Both issues were seen in 

Larkin’s fifth-grade lesson on symmetry. 

 Larkin’s lesson engaged students in a number of different activities. First, the class 

discussed the previous day’s homework, which involved measuring angles. Larkin then described 

the homework students would complete that night on symmetry—the topic the lesson was 

intended to introduce. Next, each student folded and cut out a symmetrical kite. Larkin elicited 

their observations about the kite and their initial ideas about symmetry. There were a number of 

pre-made points on one side of the kite, which students reflected over the kite’s line of symmetry 

using a mirror. After marking the points, students measured the distance between the line of 

symmetry and selected points to conclude that corresponding points were equidistant from the 

line of symmetry. The students then completed and discussed a Math Journal page in which they 

drew the missing half of symmetrical shapes. At the end of the lesson, Larkin revisited the 

homework and introduced the Math Boxes.45 If students finished their Math Boxes, they could 

design their own symmetrical kite. 

                                            
45 “Math Boxes” is the name of the mixed-review worksheet included in most Everyday Mathematics 
lessons. 
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 Not only was the order of the activities confusing (e.g., introducing the new homework 

before the lesson and then going back to it at the end), Larkin did not make many mathematical 

connections across the activities. We discussed the sequence of activities and their connections in 

the post-lesson interview: 

Larkin I don’t think they [the activities] were necessarily sequential. I just sort of 
think that they are different activities that are around the same concept, but 
I don’t think it was like you had to do the first one to understand the second 
one, or that you even really had to do it in that order. You could have 
started with the shape and measured some points from a line. And I don’t 
know, I kind of was surprised that like the first thing was making that kite. 
I didn’t really like that. 

Interviewer How come? 
Larkin I think when you have them do something, like they didn’t really know 

why there were doing it at first, and I felt like, okay, we’re going to talk 
about this, but for now, just fold it in half and cut along here and then trace 
these points, like I kind of just wanted to do a lesson about symmetry first. 

Interviewer Did you consider like saying anything about symmetry in front, like before 
doing that? 

Larkin Well, we said a little, and I just, I mean I knew that they [the students] 
would come along with it, and it would come together, so I just didn’t want 
to totally redo the lesson. I mean, it wasn’t, I didn’t think it was bad, I just 
didn’t get why they [Everyday Mathematics] started with that. So, I mean, 
we did talk about it a little bit first. 

Interviewer So you feel like it gets repetitive if you would have said more stuff first 
and then done it… 

Larkin Yeah. I sort of felt like I had already given away some of the stuff they 
were going to do later, but they kind of needed it to make any sense out of 
the kite thing, so I just felt that was kind of backwards. (L-Post, T189-195) 

 
 Certainly, all of the activities in Larkin’s lesson were related to symmetry. However, a 

coherent mathematical storyline that helps steer students toward the mathematical point requires 

more than topical connections. For example, when students were discussing the missing-parts-of-

symmetrical-shapes worksheet, Larkin could have asked students to explain why their answers 

were correct. This would have created an opportunity for students to use the properties of 

symmetry (in particular, the equal-distance property they had investigated with the kite) to justify 

the placement of their reflected points. In fact, the missing-parts problems were on grid paper, so 

distance could have been easily measured by counting dots or spaces from the line of symmetry.  

 Teaching to the mathematical point does not require everything in a lesson to be 

connected. For example, as seen in Larkin’s lesson, as well as in both Courtney’s and Jordan’s, 

there are often routines, such as correcting homework or practicing Mental Math, that may not 

relate to the main body of the lesson. There are also cases when it is a stretch to make 
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mathematical connections across all of the activities included in a textbook. This issue was seen 

in Rachel’s second-grade lesson on fractions.  

 Rachel’s lesson began with Mental Math. As mentioned above, the problems focused on 

doubling and halving, which Rachel did not connect to the later fraction work (although halving 

numbers could have been connected to the next activity, which was folding squares in half). 

However, after the fraction work, the teacher’s guide included an additional Math Journal page 

(under the heading “Ongoing Learning & Practice”), which asked students to “find all possible 

combinations of three pairs of pants and three shirts.” In this case, developing mathematical 

coherence across all of the textbook’s activities would have been difficult, as there is not an 

obvious mathematical storyline connecting the “outfits” page to the earlier work on fractions. 

Finding all the ways to fold a square into eighths could have been connected to finding all of the 

possible pants-shirts combinations; however, this is not a mathematical storyline that would have 

helped Rachel teach to her mathematical point, which was introducing fraction concepts. Thus, 

teaching to the mathematical point does not mean that a mathematical storyline should be 

developed for the sake of having a storyline. The storyline should be developed in service of 

better engaging students with the intended mathematics. 

 In the pre-lesson interview, Rachel complained about the lesson’s lack of coherence: 

And then they’re going to do this [the outfits worksheet], which I still don’t really 
understand how it goes very much with the lesson, and I think it’s just going to be a 
disaster. It talks about how a boy has three different colored shirts and three different 
colored pants. How many outfits can he wear? And I just feel like them organizing it 
is going to be a disaster, so I’m going to give them a suggestion to start with like one 
color shirt and match it up with all the different types of pants, and then move on to a 
different colored shirt. Because they want you to set it up where you go like, all red, 
and then blue, yellow, orange. (R-Pre, R91) 

 
Rachel’s above comments reveal another issue that can arise from incoherent lessons: Because 

the outfits worksheet was not connected to the mathematical point of her lesson and Rachel did 

not think her students would know how to complete it, she planned to give them a hint—one that 

would significantly reduce the cognitive demand of the activity. I asked why she decided not to 

skip the Math Journal page. She explained that even though she thought it did not “fit,” she felt 

obligated to complete it because her cooperating teacher always had students complete all of the 

pages in the book (R-Pre, T94-99). As a result, her point for this activity became “just to get it 

done.” 

 Clearly, one option would have been to omit the outfits worksheet from the lesson. 

However, there are reasons (besides feeling pressure to complete all of the Math Journal pages) 

that a teacher might choose to keep it in the lesson despite its disconnect from the mathematical 
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storyline—for example, to use as an assessment or to lay the foundation for future work. In such 

case, the mathematical storyline of the lesson might be better maintained by concluding the 

fractions work before introducing the unrelated activity. Rachel did not do this. Instead, she 

introduced both Math Journal pages at the same time, which resulted in students working on a 

range of mathematical topics for the reminder of the lesson without a clear conclusion to the 

fraction work.  

 
Developing an Across-Lesson Mathematical Storyline 

 Because mathematical proficiency develops over time, the mathematical point necessarily 

extends beyond an individual lesson. So too does the mathematical storyline. Across-lesson 

mathematical storylines were evident in both Jordan’s and Courtney’s lessons. For example, 

Jordan selected problems for her review based on her observations of students’ misconceptions in 

prior lessons. She also made connections to students’ prior knowledge and experiences, for 

example, through her use of the class’ team-point system to represent integers. Courtney saw her 

lesson on comparison number stories as part of her students’ year-long subtraction-learning 

trajectory.  

 However, many preservice teachers in my study did not have well developed 

mathematical storylines across their lessons. Perhaps this is because they were novices or, as 

student teachers, they only felt responsible for the lesson they were teaching that day. The spiral 

nature of Everyday Mathematics was also often cited as a reason they did not look for or find 

connections across lessons. Because mathematical coherence and progression across lessons is 

central to teaching to the mathematical point, even when connections across lessons are less 

obvious, it is important to look for ways that the lesson and its activities fit with the others in the 

unit. That is, part of teaching to the mathematical point involves asking: What mathematical 

storyline could make the day-to-day instruction mathematically coherent?  

 Beth was very concerned about the within-lesson storyline for her food-group graphing 

lesson. She tried to design a coherent transition from the healthy-foods discussion to graphing and 

even skipped the textbook’s Mental Math activity because she thought “it’d be too confusing to 

go from a math problem to talking about food and then back to math again” (B-Pre, T201). Beth 

did not, however, try to develop an across-lesson storyline. At first glance, Beth’s food-group 

graphing lesson might seem disconnected from the other lessons in the Everyday Mathematics 

unit, which are about subtraction. When asked in the pre-lesson interview if her lesson related to 

any unit goals, she mentioned that the Math Journal pages on comparison problems—which she 

planned to skip—were related to the other lessons in the unit, but that the food-group graphing 
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activity was not. From her interview, she did not seem to have sought ways that the graphing 

activity could have been connected. For example, one way to connect the graphing work to the 

rest of the unit would be to ask comparison questions about the graph (e.g., How many more 

students’ favorite foods were in the dairy group than the bread group?). Another mathematical 

storyline that can almost always be developed across lessons is work on mathematical practices. 

 Developing an across-lesson mathematical storyline can support students’ engagement 

with the intended mathematics by making more visible connections to and ways to build upon 

students’ prior knowledge and experiences. One issue that can interfere with the development of 

an across-lesson storyline is not understanding how topics are connected—both mathematically 

and in the trajectory of students’ learning. For example, Nicole’s disconnected view of the 

mathematics in her lesson prevented her from building on what students already knew as a way to 

engage them with the intended mathematics. Nicole did not capitalize on the connection between 

fractions and decimals to create the storyline for her lesson. Instead, she treated fractions and 

decimals as separate topics and developed a storyline using money. And, as described above, this 

storyline resulted in students not engaging with much decimal content. 

 
Progressing the Mathematical Storyline  

 A “story” implies not only coherence, but also a plot—something “happens.” Similarly, a 

mathematical storyline progresses students’ mathematical proficiency. This might involve 

learning something new, as in Courtney’s lesson, or it might mean solidifying or deepening 

understanding of previously worked on ideas, as in Jordan’s. In each case, one move used to 

progress the mathematics was to select problems and examples that they thought would be 

challenging for their students. 

 In my analyses, one issue that arose in relation to progressing the mathematical storyline 

was when activities or examples in a lesson seemed redundant. This often happened when 

discussing problems as a whole class before students worked independently. There were cases in 

the data when the point of doing a problem together was unclear, as the additional example did 

not seem to raise anything new. A similar issue arose when teachers “went over” problems 

students had already completed. As with any of a lesson’s activities, to steer it toward the 

intended mathematics, it helps to know how the activity is designed to progress the mathematical 

storyline. This seems particularly important when the mathematical work involved is not new. In 

these cases, it can be helpful to think about shifting the mathematical point of the activity to 

developing mathematical reasoning and practices—for example, by raising the level of 

expectation for students’ use of mathematical language, pressing on students for more complete 
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explanations, or asking students to make connections across different mathematical ideas and 

solutions. Furthermore, developing a mathematical storyline can help manage the problem of 

timing and pacing. Asking “how does this activity progress the storyline?” or “what new 

mathematical points can be made with this activity?” can help teachers make decisions about 

what can be skipped or gone over more quickly. These kinds of questions can also help teachers 

develop strategic questions that help steer the work toward the intended mathematics.  

 The most pronounced version of storyline non-progression occurs when an entire lesson 

neither teaches students anything new nor develops more sophisticated understanding or skill. For 

example, Beth thought completing the tally chart and bar graph would be “pretty straightforward” 

for her students because it was something that they had done before. She expected a “high level” 

of mastery in the lesson and thought all of her students would “get it.” She decided not to 

introduce the word “axis” because she did not know if it had been taught before and did not think 

the focus of the lesson was to “get into that kind of language” (B-Pre, T51). Of course, there is 

nothing inherently wrong with providing additional practice or review to maintain students’ 

current level of understanding or skill. However, because the ultimate goal is developing 

mathematical proficiency over time, it seems that at least part of every lesson should aim to help 

students make some mathematical progress.  

  
Conveying the Mathematical Storyline to Students  

 Fernandez, Yoshida, and Stigler (1992) present findings from preliminary studies 

showing that “coherent lessons lead to more coherent representations [for students], which in turn 

lead to greater learning” (p. 363). One way to help students develop more coherent 

representations is to make the mathematical storyline explicit. This does not mean simply 

announcing the main topic at the beginning of a lesson or writing “today’s objective” on the 

board. Making the structure of a lesson visible involves deploying moves throughout a lesson that 

frame the mathematical work, summarize where the class has been, and narrate where things are 

headed.  

 One of the main issues that can arise when there is no mathematical framing or narration 

is the feeling that students are being “dragged” through the steps of an activity. In these instances, 

students may appear to be doing mathematics, but are not engaging with the intended 

mathematical point. Examples of this can be seen throughout Irene’s first-grade lesson on using 

dominos to generate addition-subtraction fact families. As discussed above, although Irene had 

articulated conceptual learning goals for her students and seemed to have done a thoughtful 

analysis of the mathematics made available by the domino, during the lesson, Irene had a difficult 
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time engaging students in doing the work. These difficulties seemed related to the fact that she 

did not clearly convey the mathematical storyline to students, as seen in her introduction to the 

lesson: 

Irene We’ll be working with dominos today. Do you remember, do you remember 
dominos? I know we’ve been using a lot of dominos in our lessons. So I’m 
going to draw a domino up on the board, okay? Let’s see. [Draws a 3|5 
domino on the whiteboard.] So, let’s see here. How many, what’s the 
number, what’s the, let’s see, how many dots are on this side? 

 
Although she did tell students they would be using dominos, there was no mention of the 

mathematics on which they would be working. Furthermore, her initial question did not provide 

students with a mathematical reason for counting the number of dots on one side of the domino. 

The teacher’s guide suggested the following sequence of questions to launch the activity: 

• What four number models go with this domino? 

• What two number models show how to find the total number of dots? 

• What two subtraction number models can you make up that use 3, 5, and 8? (Bell et 

al., 2007a, p. 550) 

While not ideal, these questions at least hint at the mathematical point of the activity. Another 

alternative would have been to ask a more open-ended question (e.g., Can anyone think of a 

number model that shows the relationship between the dots on this domino?) and then have 

targeted questions prepared, like those in the teacher’s guide, in case students do not understand 

the open-ended question or it does not elicit all four facts. Instead, Irene asked fill-in-the-blank 

questions that simply engaged students in naming the number of dots to which she was pointing.  

 After going through the 3|5 domino, Irene immediately began the next example. There 

was no summary, nor an explanation of why they were writing number sentences. After the 

second example (a 4|6 domino), Irene tried to introduce the idea of fact families by eliciting 

patterns from students: 

Irene  Okay now. I want you to take a look at this. This, this one and this one. 
[Pointing to the two sets of fact families.] So this problem and this problem, 
so what, do you notice a pattern? Owen, do you notice a pattern here? Look 
at the numbers that we used. What pattern do you notice? 

 
Students started naming random “patterns” they noticed across the problems (e.g., that the 

numbers counted by twos), a common response to an unclear request for patterns (Heaton, 2000). 

Throughout her lesson, Irene continued to have difficulty asking focused questions that framed 

the work and helped convey the mathematical point to students. Instead her questions were at the 

extremes: general questions that elicited tangential responses (e.g., do you notice any patterns?) 
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or leading questions that dragged them through the work. In either case, the mathematical 

storyline is not visible to students.  

 Table 8 summarizes the above discussion of the problem of developing and maintaining a 

mathematical storyline. 

 
Table 8. 
Summary of the Problem of Developing and Maintaining a Mathematical Storyline 

Strategies for developing and maintaining a mathematical storyline: 
• Developing a coherent within-lesson storyline (e.g., having a beginning, middle, and end) 

by making mathematical connections across a lesson’s activities 
• Developing an across-lesson mathematical storyline by looking for mathematical 

coherence across students’ prior and future work  
• Progressing the mathematical storyline by engaging with new ideas/practices or engaging 

with ideas/practices in new (more challenging) ways 
• Conveying the mathematical storyline to students by framing, narrating, and summarizing 

the mathematical work 
 
Issues that can arise: 

• Difficulty identifying mathematical connections across activities in a lesson 
• Not sequencing activities within the lesson in ways that promote connections or the 

progression of mathematical ideas 
• Not summarizing or closing mathematical work before moving onto a different activity 

that is focused on a new topic 
• Not looking for broader ideas that connect lessons across the unit 
• Not understanding how mathematical ideas are connected (both mathematically and in 

the curricular trajectory) resulting in missed opportunities to build on students’ prior 
knowledge 

• Engaging students in mathematically redundant activities  
• Not teaching any new mathematics in the lesson 
• Lack of mathematical framing and narration: 

o Too general questions that elicit tangents 
o Too narrow questions that result in “dragging” students through the mathematics 
 

 
 

Opening Up and Emphasizing Key Mathematical Ideas 

 Another problem in steering instruction toward the mathematical point is trying to 

deliberately open up and emphasize key mathematical ideas (e.g., concepts, terms and notation, 

explanations) during instruction. Hiebert and Grouws (2007) identify attending explicitly to 

concepts as a key feature of teaching that promotes conceptual development. Opening up and 

emphasizing key mathematical ideas, of course, requires an understanding and articulation of 

what the key ideas are, which is a component of mathematical purposing. Once key ideas are 

identified, there are many teaching moves that can help open up and emphasize them during 

instruction. In my analyses, I identified three main types of strategies: intentional redundancy, 
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being explicit, and “dwelling” in strategic places. I describe these strategies and some of the 

issues that can arise below. 

 
Intentional Redundancy 

  “Intentional redundancy” is the deliberate repetition or unnecessary use of mathematical 

language—e.g., vocabulary, definitions, explanations—to emphasize key ideas (Sleep, 2007). 

One type of redundancy is using unnecessary language to emphasize a mathematical point, for 

example, Jordan’s referring to 43 as “positive forty-three” to emphasize the number’s sign. Also 

seen throughout the data was the deliberate overuse of new mathematical vocabulary. For 

instance, Courtney repeated “quantity” and “difference” throughout her introduction of the 

comparison diagram. Another type of intentional redundancy is saying a mathematical term 

immediately followed by its definition, seen for instance in Courtney’s “two quantities in every 

problem, or two numbers of something.”  

 A major problem that can arise with respect to intentional redundancy is when the 

language that is repeated is mathematically imprecise or in some way problematic. For example, 

in Mia’s lesson, she emphasized repeatedly that “‘how many more’…always, always means 

subtraction.” A more common issue is that it can be difficult to maintain repetitive language use 

throughout an entire lesson. One reason is that it is unnatural (Ball, 2007) to say the same words 

over and over. It also takes more time to say the “full mathematical name” and, therefore, is much 

easier and quicker to take shortcuts with language, an issue I return to in the next section. In 

addition, intentional redundancy can be difficult to manage when there are multiple key ideas a 

teacher wants to emphasize. This issue was seen in Rachel’s second-grade fraction lesson. 

 Rachel had identified a number of key terms and ideas she wanted to emphasize 

throughout her lesson (e.g., half, fourths, eighths, equal parts, whole, numerator, and 

denominator), and during the lesson, Rachel’s talk was filled with fraction language. For 

example, in the introduction to the folding squares activity, Rachel mentioned both “half” and 

“two equal parts” (as shown in bold):  

Rachel Okay, so will everybody please put your papers in the corner of your desk, 
except grab one sheet. And I’m going to ask you to fold it in half, so that 
there’s two equal parts. And think about it, there’s different ways, maybe 
you want to fold it one way, maybe your friend next to you wants to fold it a 
different way, but we’re going to talk about both the ways.  

 
As students folded their first square and Rachel circulated, she continued to repeat this language: 

Rachel Ryan, did you fold yours in half?  
Ryan He folded it the same way. 
Rachel Just in half so that there’s two equal parts.  



 162 

 
She then quickly reconvened in whole group and asked students to share their methods of folding, 

using both “half” and “two equal parts” throughout the discussion: 

Rachel Okay, someone with a raised hand, will you share with the class the way you 
folded it in half? Natalie. 

Natalie I folded it into a triangle. 
Rachel Into a triangle. Open up the whole piece. Raise your hand without making a 

comment if you folded yours that way. Okay, so are those two equal parts? 
Students Yeah. 
Rachel Okay. Someone with a raised hand, did you fold it a different way, Victor? 
Victor I folded it the hotdog way. 
Rachel So did I. Hold it up. Is that two equal parts? 
Students Yeah. 
Rachel Raise your hand if you folded it this way. Okay, now everybody please use 

your pencil and draw a line down your fold. It doesn’t matter if you have the 
fold like a triangle like Natalie’s or like a hotdog like Victor’s. You have two 
equal parts.  

 
Learning that halves are two equal parts was one of the main mathematical points of Rachel’s 

activity. Her redundant language can be seen as a way that she helped steer students’ attention 

toward these ideas.  

 Rachel’s overuse of “equal parts” at the start of the lesson can be contrasted with her use 

of language as the lesson progressed. Later in the lesson, Rachel rarely used “equal” when 

discussing “parts.” For example, in her introduction of how to label halves and fourths, although 

she repeatedly defined the “number on the bottom” as “the number of parts we have” and the 

“number on the top” as “the number of parts that we’re talking about,” and repeatedly said the 

fraction names, she did not even once mention that the parts need to be equal: 

Rachel So when we’re talking about our one-half, the number two on the bottom is 
representing the number of parts we have, and the number one on the top is 
representing the number of parts that we’re talking about. [Holds up a 
square that had been folded in half.] So if we’re talking about just half of 
this, we’re only talking about one of these pieces, so it’s one-half. So 
everybody, um, on your half pieces of paper, write one-half and one-half… 
[Students label their squares.]…Okay, so now, if we’re dealing with the 
piece that you have four pieces of, what do you think we would call one of 
those sections? Celine? 

Celine One-fourth. 
Rachel One-fourth. And this is how we would write one-fourth. [Writes ¼ on the 

overhead.] Because the number four on the bottom is how many total pieces 
we have, and the number one on the top is how many pieces we’re talking 
about.…[Holds up a square that had been folded in fourths.] Okay, so one 
of these pieces is called one-fourth, like this. Everyone can see this? What if 
I covered up this one piece and we were talking about these three pieces here. 
What would you call that fraction? Lisa? 

Lisa One-third. 
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Rachel One-third, that’s a good guess, but how many total pieces do we still have 
in this whole? Everyone can shout out how many total pieces.  

Students Four. 
Rachel And how many pieces are we talking about? 
Students Three/One-third. 
Rachel How many pieces, just the number? 
Students Three. 
Rachel How many are showing? Three. Okay, so remember what I said, the number 

on the bottom is how many total pieces. So how many total pieces? Say it 
louder, who said that? 

Students Four. 
Rachel Four. Okay, so there’s four total pieces. [Writes a four in the denominator.] 

And the number on top is the number of pieces we’re talking about. So 
how many pieces are we talking about when I cover up this, Tyler? 

Tyler Three. 
Rachel Three. So what do we write above the four? 
Tyler Three-fourths. 
Rachel Three. So when I go like this [covers up one of the fourths of her folded 

square], we’re talking about three-fourths. Because, I’m going to review it 
one more time, because the total number of pieces is four. So the number, 
the total number of pieces always goes on the bottom. And we’re talking 
about three pieces, so we put the three on the top. 
 

Thus, when Rachel switched to emphasizing the definition of numerator and denominator, she 

lost track of one of the other key concepts—that the parts need to be equal. This episode shows 

the complexity of using intentionally redundant language to emphasize and open up key 

mathematical ideas when there are a number of important ideas. 

 
Being Explicit and “Dwelling” in Strategic Places  

 Two often-overlapping strategies for managing the problem of emphasizing and opening 

up key ideas are to make mathematical ideas explicit and to “dwell” in strategic places during the 

lesson. Being explicit about key ideas can occur, for example, by pointing out the use of a focal 

skill during an explanation or by providing a definition for a new term. “Dwelling” occurs when 

the instruction lingers on a key idea, for example, by giving or asking for more detailed 

explanations, revoicing a student’s comment or asking another student to revoice, or asking 

multiple students versions of the same question.  

 In my analyses, there were many instances when teachers did not dwell on or make 

explicit a mathematical idea they had identified as central. In Larkin’s lesson, this occurred 

because she thought many of the mathematical ideas seemed obvious, and “dwelling” therefore 

felt redundant and unnecessary. In the post-lesson interview, Larkin explained why she did not 

ask students for explanations during her lesson on symmetry: 
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There’s some kids that, they’re just waiting to go on and if I went to ask them to like 
explain or tell me something about it, they might have gotten upset…Yeah, like, I just, 
with time and with trying to get some people caught up, I just didn’t. And sometimes I do 
feel like I’m being really redundant, like, okay, so where’s the line of symmetry? Why is 
that the line, blah, blah, blah…Well, duh, it’s the dotted line…I knew they were going to 
know, especially when there was only one. Like it’s the one dotted line that you use to 
draw the other half. (L-Post, T203-209) 

  
In cases such as Larkin’s, a more detailed unpacking of the mathematical terrain, a clearer 

articulation of what there is to learn about the key ideas, and a better understanding of how 

learners conceive of these ideas—all aspects of mathematical purposing—might make more 

visible what there is to emphasize or open up, and therefore make dwelling on key ideas seem 

useful rather than redundant. 

 Another issue observed in my analyses was that, when a teacher tried to be explicit or 

dwell to emphasize a key idea, what was said or done was in some way mathematically 

problematic. For example, the language used may have been imprecise or unclear and therefore 

did not serve to steer the instruction toward the mathematical point. For example, in her lesson on 

fractions, Keri dwelled on the meaning of “the whole,” but her language and examples were 

problematic: 

Keri Um, one thing I wanted to add is that when you’re talking about fractions, 
it’s really important to think about the whole. So what is the whole unit that 
I’m measuring? Pizza, I had one slice of pizza. That means that the whole is 
going to be what? 

Student Eight slices. 
Keri Eight slices or the whole piece of pizza. If I had, um, let’s say I’m working 

with some geometric numbers, oh I’m sorry, geometric figures, and I have 
half of a hexagon, well what is the whole that we’re measuring? Yeah? 

Student The hexagon. 
Keri The hexagon is the whole. So this concept of what is the whole, what is the 

whole thing we’re measuring, is important.  
 
 In this episode, Keri tried to emphasize the importance of attending to the whole, a key 

fraction concept. She dwelled on the idea by explicitly naming it as important (“when you’re 

talking about fractions, it’s really important to think about the whole”), giving two examples 

(pizzas and hexagons), and then concluding by restating its importance (“this concept of what is 

the whole, what is the whole thing we’re measuring, is important”). However, her language and 

examples were confusing throughout. For instance, in responding to the student’s answer with 

“eight slices or the whole piece of pizza” she accepts that the whole in her pizza example is eight 

slices, even though she did not say that one slice was one-eighth of a pizza. Her effort to clarify 

this by saying “the whole piece of pizza” is also mathematically problematic because she seems 
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to be using “whole” in the everyday sense rather than with its technical meaning in the context of 

fractions. Thus, it sounds like she is just talking about the original slice. 

 Another issue I observed was dwelling with language that was not geared toward the 

learners. This issue arose repeatedly in Gillian’s fourth-grade lesson on metric conversion. She 

spoke of “conversion factors” and “doing things to both sides,” almost as if she was talking 

herself through her own solution methods, not giving explanations to her students. This can be 

seen in the following discussion of the number of millimeters in one meter:  

Gillian And then, what do we think, how many millimeters are there in this, in one 
meter? And how would we figure that out? Let’s think for a moment. Diane? 

Diane One hundred times ten. 
Gillian You would do, what would you do? A hundred times ten? And why would 

you do a hundred times ten? 
Diane Because there are a hundred centimeters in a meter.  
Gillian Right. 
Diane And there are ten millimeters in a centimeter. 
Gillian Right, exactly. So, what Diane said was, to figure out how many millimeters 

in this whole long meter stick, I know there’s a hundred centimeters equals 
one meter and that one centimeter equals ten millimeters. [Writes on board: 
100 cm = 1 m and then below that 1 cm = 10 mm.]  So, to get from 
millimeters all the way to meter, I would have, for each one centimeter over 
here, I have ten millimeters. So that’s why I know, so really first, we’re 
converting from the centimeters to the millimeters, I think, okay, I need to 
multiply by ten to get from one centimeter to ten millimeters [writes a x10 
arrow], so then, here, one, well, that’s how many, there’s ten millimeters in a 
centimeter, right, so the number value is multiplied by ten. So then here, a 
hundred centimeters in one meter, if I want to figure out how many 
millimeters it is, then I would also do one hundred times ten equals one 
thousand millimeters in a meter. [Writes 100 x 10 = 1000. Figure 13 shows 
what was displayed on the board at the end of her explanation.] 

 
 

 
 

Figure 13. Gillian’s explanation for the number of millimeters in a meter. 

 
 This episode shows an example of a teacher dwelling on an important idea. The student 

had already given a correct answer, but Gillian spent additional time on the problem, trying to 

give a more detailed explanation and making a record on the board. Although some parts of 



 166 

Gillian’s explanation seemed within reach of her fourth-grade students (e.g., “for each one 

centimeter over here, I have ten millimeters”), much of her reasoning did not. For example, she 

did not explain why the fact that you “multiply by ten to get from one centimeter to ten 

millimeters” means you would “also do one hundred times ten.” Thus, although a teacher 

“thinking aloud” and making records on the board can be useful strategies for emphasizing and 

opening up key mathematical ideas, in order to engage students with those ideas, the language 

and reasoning needs to be accessible to the learners. 

 Being explicit about or dwelling on key ideas to steer a lesson toward its mathematical 

point does not occur only through teacher talk. Teachers can also ask questions or elicit 

explanations from students as a way to open up or emphasize important ideas. However, as seen 

in previous examples, asking questions that are targeted enough to steer students toward the 

intended mathematics, yet not so narrow as to drag them through the work, can be difficult. In the 

following episode, Tiffany used interactions with students to dwell on a key idea about place 

value: 

Tiffany So we know that each place value is ten times greater than that to the right, 
which is why we’re allowed to keep adding those extra zeros. Remember 
when we did those multiplying, those large numbers where you just, let’s say 
a hundred times three thousand, you do one times a three and that’s why 
we’re allowed to add on those zeros on the end? Okay? That’s why. Because 
of the relationship, because we have something called a base ten number 
system. And that is why in our, different places have different number 
systems. We work with a base ten number system, and because our place 
values are ten times that of the number to its right…So, so, let’s just recap. 
What is the relationship between these two numbers? [Pointing to the 
4,000,000 and 40,000,000 that were written on the projected place value 
table.] Aaron? 

Aaron Um, they all… 
Tiffany Use the number in your answer. Use the numbers. 
Aaron They’re both, like, in the millions column? 
Tiffany Okay, good, I hadn’t thought of that. You’re right. Use the numbers in your 

explanation in the relation of those two. Kylie, how are they related? Think 
about our discussion that we just had between how place values are related. 
Who sees where I’m going with this? Jeff? 

Jeff Um, I think they’re like the same because, um. 
Tiffany Are they the same number? 
Jeff No, but. 
Tiffany No. 
Jeff Um, they’re kind of the same because, like, but, like but, kind of the zero 

difference, but they’re like the same. 
Tiffany So what does that mean? 
Jeff Like it’s um, ten, um, it gets ten times less. 
Tiffany What’s ten times less? 
Jeff Four million is ten times less than the forty. 
Tiffany Forty? 
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Jeff Million. 
Tiffany Correct. That’s what I’m looking for. This number, four million, is ten times 

less than forty million. And Jeff knew that because the forty million had one 
more place value with the zero filled in. 

 
 In this episode, Tiffany used a combination of teacher and student talk to dwell on a 

central idea about place value. First, she offered a recap of the key idea that each place is ten 

times the value of the place to its right. She continued to dwell on this idea by asking students 

about the relationship between two numbers that differed by one place. She began with a general 

question (“What is the relationship between these two numbers?”), but had trouble prompting her 

third-grade students to explicate the intended mathematics—in particular, that four million is ten 

times less than forty million. She managed this problem by using gradually more focused 

questions. Finally, she concluded the segment by restating the key idea. 

 Table 9 summarizes the above discussion of the problem of opening up and emphasizing 

key mathematical ideas. 

 
Table 9. 
Summary of the Problem of Opening Up and Emphasizing Key Mathematical Ideas 
 
Strategies for opening up and emphasizing key mathematical ideas: 

• Intentional redundancy 
o Purposefully saying unnecessary mathematical language 
o Deliberately overusing new vocabulary 
o Saying a mathematical term immediately followed by its definition 

• Being explicit and “dwelling” in strategic places 
o Pointing out the use of a focal concept or skill 
o Providing definitions 
o Spending more time on key ideas (e.g., by revoicing, giving more detailed 

explanations, “thinking aloud,” asking multiple students versions of the same 
question, making records, etc.) 

o Using a combination of teacher and student talk  
 
Issues that can arise: 

• Repeating imprecise or unclear language 
• Can be difficult and feel unnatural to maintain repetitive language and use “full 

mathematical names” 
• Losing track of some of the key ideas and omitting them from repetitive language 
• Thinking ideas are obvious and therefore not explaining or spending time on them 
• Giving imprecise or confusing explanations 
• Using language that is not geared toward the learner 
• Making confusing records of mathematical work 
• Difficulty eliciting key ideas from students 
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Keeping a Focus on Meaning 

 Keeping a focus on meaning is the last problem that I discuss in this chapter. Because the 

ultimate goal for student learning is the development of mathematical proficiency, which 

intertwines conceptual understanding and reasoning with procedural fluency, mathematics 

instruction needs to help students attend to mathematical meaning (Hiebert & Grouws, 2007; 

National Research Council, 2001). Many of the moves that are useful for emphasizing key ideas 

and for developing and maintaining the mathematical storyline are also useful for keeping a focus 

on meaning. For example, being explicit about and dwelling on key mathematical ideas, and 

framing and narrating the mathematical work, can also help focus on meaning. In addition to the 

meaning-focusing moves discussed in other sections, I also observed other strategies that can help 

manage this problem: using meaning-focused language, explicitly connecting the activity to the 

intended mathematics, and deploying representations in ways that highlight intended meaning. I 

discuss these strategies and some of the issues that can arise below. 

 
Using Meaning-Focused Language 

 Teachers can deliberately use mathematical language to help keep an activity infused 

with mathematical meaning. One type of meaning-focused language is saying “full names”—that 

is, not taking shortcuts with language when naming mathematical objects or definitions. For 

example, Courtney repeatedly used full names when referring to the components of the 

comparison diagram (e.g., “bigger quantity box”), rather than shorter phrases such as “the big 

box,” “the bigger one,” “that box,” or simply pointing. In addition to keeping a focus on meaning, 

using full names can simultaneously help manage the problem of emphasizing and opening up 

these key ideas.  

 When the mathematical point of a lesson is to develop procedural fluency, using 

meaning-focused language can be a way to keep concepts in the background, thus enabling 

simultaneous work on multiple strands of mathematical proficiency. For example, the 

mathematical point of Andrea’s fifth-grade lesson was to develop procedural fluency with the 

long division algorithm. Although her lesson was not focused on decimals, she still read 87.6 as 

“eighty-seven and six-tenths” rather than “eighty-seven point six,” language that makes more 

visible the decimal’s underlying place value structure and its connection to fractions. She did not, 

however, use place value language when describing the steps in the division algorithm. Even 

though developing conceptual understanding was not her intent, using meaning-focused language 

to describe the steps of the procedure could have been a way to maintain some connection to the 

underlying foundational concepts, even when it was not the main mathematical point.  
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 In my analyses, I observed many missed opportunities to use meaning-focused language 

to engage students with the intended mathematics, and in some cases, not using meaning-focused 

language interfered with steering an activity toward its mathematical point. For example, in her 

third-grade lesson on decimals, Nicole rarely read fractions and decimals using the language of 

“tenths” and “hundredths” (e.g., she read 
  

€ 

16
100

 and .16 as “sixteen out of a hundred” rather than as 

“sixteen-hundredths”). In fact, with one of the small groups, there was not a single instance of 

reading a fraction or decimal using place value language in the entire 20-minute lesson. This was 

particularly problematic because place value with decimals was the lesson’s focal topic (contrast 

this with Andrea’s lesson on division that happened to have decimals in it). However, as 

described in her post-lesson interview, Nicole intentionally used the “out of” language both to be 

consistent with her cooperating teacher and because she thought it supported students’ 

understanding of the part-whole relationship:  

I was trying to mostly stay consistent with what they’ve been learning with my CT 
[cooperating teacher], with especially with like the parts of a whole. So if this is one 
whole, this is only sixteen parts of it. So it’s sixteen out of the one hundred total. And just 
understanding that it’s not a full one yet, and I think that gets tricky because they’re used 
to base ten blocks being the cube is one, like one whole, and then ten, and then the flat is 
one hundred. And so making that shift that, okay, this flat is now one, and this is only 
part of it, so just really just kind of stressing that language. (N-Post, T38) 
 

Thus, she was intentionally not using meaning-focused language to further her (impoverished) 

goals of having kids learn that decimals exist. 

 Another issue that can arise when managing the problem of keeping a focus on meaning 

is using language that distorts or detracts from the mathematical point. For example, in her 

second-grade graphing lesson, Beth repeatedly characterized the activity as “changing our 

information from our table to our graph.” While such statements may not have interfered with 

student learning, it is not true that the data changed; they were just represented differently.  

 When students use mathematically imprecise language, the problem of keeping a focus 

on meaning becomes even more complicated to manage. One strategy I observed is briefly 

correcting the student without taking up the imprecision. For example, when a student in Jordan’s 

class was explaining how to calculate 8 - (-4) and said “there’s two negatives and that’s not 

possible,” Jordan quickly interrupted him with the comment, “Well it’s possible, but it’s just, we 

want to think about it a different way,” and the student continued his explanation. In this case, 

Jordan did not dwell, but she did not allow the student’s mathematically imprecise statement to 

stand untroubled. During the discussion of comparing -10 and -11, however, Jordan did not 

correct a student’s imprecise statement that the number closer to zero was the bigger number. 
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Making decisions about how to handle students’ use of mathematically imprecise language is part 

of managing the problem of keeping a focus on meaning and can be informed by the impact of 

the language on students’ engagement with the mathematical point. 

 
Explicitly Connecting the Activity to the Intended Mathematics  

 Another strategy for managing the problem of keeping a focus on meaning is to explicitly 

connect students’ activity back to the mathematics they are intended to be learning from engaging 

in that work. For example, a teacher can make explicit the connection between student responses 

and the problem being solved. Courtney made this type of move throughout her discussion of the 

comparison diagram. For instance, when a student correctly answered “eight” for the number that 

went in the smaller quantity box, she connected this back to what the problem was asking: “Eight 

is the smaller quantity. And we’re trying to find the difference.” Making connections back to the 

problem narrates the mathematical work and thus also helps manage the problem of conveying 

the mathematical storyline to students. In Courtney’s example, the teacher did the connecting. 

However, teachers can also support students in making these connection themselves, for example, 

with a follow-up question that asks students how their response connects back to the problem 

being solved.  

 One issue that can arise when these types of connections are not made is that the 

mathematical reasons for doing an activity are unclear. This could be seen in Sydney’s first-

grade lesson on comparison problems in which students matched pennies to find the difference 

between two numbers. In her introduction of the matching strategy, Sydney directed students to 

match pennies, but offered few explicit connections between the activity of matching Lou’s four 

pennies with Lisa’s six pennies and the intended mathematics:  

Sydney So we said that Lou saved four cents, is that right? [Displays four magnetic 
pennies horizontally on the board.] Am I remembering it correctly? 

Students Yeah. 
Sydney Jill, did I remember it correctly? 
Jill Yeah. 
Sydney Okay. And how many cents did we say that Lisa saved? 
Jill Six. 
Sydney Six, okay. So I’m going to put out six. Is everyone being quiet and looking 

up here, please? Great. [Places six pennies directly below the other four.] 
Okay so I’m going to match them up.  

Student Ten cents. 
Sydney It’s really loud in here boys and girls. Okay, so I put Lou’s pennies up here. I 

don’t know where the best place to stand is. I put Lou’s pennies up here. He 
had four cents. And Lisa had six cents, right? Does everyone agree with what 
I did? Edward, did I do it right? 

Edward Yeah. 
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Sydney Okay. So I’m going to match them up. [Counts as she slides the matched 
pennies off to the side] Two, two, two, two. What am I left with? Michelle, 
how many pennies am I left with? 

Michelle Two. 
Sydney Two. The pennies that I didn’t pair together [points to the two unmatched 

pennies] these pennies, that represents how many more Lisa had than Lou, 
because Lisa we said had more pennies, right? 

Students Yeah. 
Sydney Okay, does anybody know what these pennies are called? It’s a word that 

starts with a D. I don’t know if you’ve heard it before.  
Student Dime. 
Sydney No. Does anyone know? Shana, do you know? 
Shana Dollar. 
Sydney Nope. Okay, I was thinking that you might not know. These two pennies are 

called the difference. The difference. They’re the result of what’s left over 
when we matched up the pennies, okay? You guys want to try another one?  

 
 Although there was some explicit talk about what the class was trying to find out by 

matching pennies (“these pennies, that represents how many more Lisa had than Lou”), no 

explanation was given for why matching could be used to determine how much more one number 

was than another. Instead of focusing on the meaning of matching and its connection to 

comparison, Sydney announced that matching gave the answer and defined “difference” in terms 

of matching (“These two pennies are called the difference. The difference. They’re the result of 

what’s left over when we matched up the pennies, okay?”), not in terms of the amount between 

the original two numbers. 

 
Deploying Representations and Making Records in Ways that Highlight Meaning  

 Written records and representations can also be used to manage the problem of keeping a 

focus on meaning. This can be seen, for example, in the strategic use of the blackboard in lesson 

study (Fernandez & Yoshida, 2004). Courtney’s lesson provided many examples of deploying 

representations in ways that highlight meaning. She used a picture to explain the meaning of 

comparison and to demonstrate how comparison was visible in the geometry of the diagram. She 

arranged the marks in ways that kept a focus on the mathematical meaning, intentionally 

matching the arrangement of the marks to the layout of the comparison diagram to better illustrate 

the relationship between the two representations. And to help students attend to this, she 

explicitly pointed out how the marks corresponded to the diagram.   

 One basic issue that can arise when using records and representations to focus on 

meaning is that students have difficulty seeing or reading what is being displayed. This happened 

in Mia’s third-grade lesson on graphing. Mia wanted to emphasize the importance of reading the 

labels on a graph, so she designed an activity in which students were to compare two bar graphs 
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that had identical shapes but different labels. However, because she used the overhead projector, 

she was unable to display the graphs simultaneously, which made it difficult for students to 

compare the graphs and thus detracted from her mathematical point. 

 Another issue that can occur is when what is recorded inadvertently obscures or confuses 

the idea it was intended to emphasize. For example, in her third-grade lesson on decimals, Nicole 

tried to emphasize the names of the places by recording them on the whiteboard. She labeled the 

tens place with a “T” and then, because she wanted to emphasize the –th sound in “tenths,” she 

labeled the tenths column with a “Th,” as seen in Figure 14: 

 

 
Figure 14. Nicole’s labeling of the tens and tenths places. 

 
We discussed her labels in the post-lesson interview:  

Interviewer And how did you decide what to record, like the T or the Th? 
Nicole They’re used to T for ten, and then I wanted to stress the –th part of it, so 

Th. 
Interviewer And were, had that been something, you had done that in another group, I 

think, you did that in the group before? 
Nicole I just kind of made it up on the, made it up as I went. 
Interviewer And what do you think about that? 
Nicole I’m thinking I probably could have used something better than Th. 
Interviewer Like what would have you used that was better? 
Nicole I don’t know what I could’ve, there’s got to be something that would be 

better because Th they think thousands because that’s generally how we 
record the thousands place. So I probably could have found a better way. I 
hope that doesn’t confuse them later, to be like, “Well, it was Th, that’s 
what we call thousands.” 

Interviewer So you were trying to emphasize the –th part of it, but now you’re seeing 
that it maybe can… 

Nicole Now that it could potentially be problematic for some of them. (N-Post, 
T115-124) 

 
In this example, Nicole’s use of recording to emphasize the –th sound may have, in fact, confused 

students’ learning of the names of the places. Thus, when making records to emphasize a 

particular idea, it is important to consider the potential impact of the recording on its conveyance 

of mathematical meaning. 

 Another issue that arises is inherent in using representations: Students might attend to 

mathematically irrelevant features of the representation (Nolder, 1991; Sierpinska, 1994), which 

can detract from students’ engagement with the intended mathematics. One way teachers can help 
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manage the problem of keeping a focus on the intended meaning is by being explicit about what 

students are supposed to attend to (and not attend to) in a particular representation. For example, 

when Courtney was drawing little lines to model comparison, one of her students made a 

comment about how she did not use a slash to make a group of five tallies. Courtney 

acknowledged this potential confusion by clarifying, “I’m not doing tallies I’m just doing little 

marks.” Whether this cleared up the issue and steered the student toward the intended 

mathematical focus of the marks is unknown, and it could be argued that in this in case, it might 

have been clearer to use another type of diagram (such as small dots). But in either case, this 

example illustrates the importance of not assuming that students are attending to the intended 

mathematical meaning. 

 A related issue that can arise when using representations to focus on meaning is that the 

referent is unclear to students. Unclear referents create the potential for confusion and obfuscation 

of intended meaning (Back, 2000; Rowland, 1999; Sierpinska, 1994). For instance, as described 

above, in Rachel’s fraction lesson, when she was asking students to name fractions of a folded 

square, it was often unclear to which portion of the square she was referring because she decided 

not to spend time coloring. Similarly, in Irene’s lesson on fact families, she covered a side of the 

domino and then asked students what was taken away, hiding the number to which she was 

referring.  

 Table 10 summarizes the above discussion of the problem of keeping a focus on 

meaning. 
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Table 10. 
Summary of the Problem of Keeping a Focus on Meaning 
 
Strategies for keeping a focus on meaning: 

• Using meaning-focused language 
o Saying “full names” 
o Using conceptual language (even when the focus is on procedures)  

• Explicitly connecting the activity to the intended mathematics 
o Connecting the answer back to what the problem is asking 

• Deploying representations in ways that highlight intended meaning 
o Being explicit about which features of a representation students are supposed to 

attend to (and not attend to)  
o Displaying representations in ways that make correspondences more visible 
o Making correspondences between representations explicit 

In addition, many strategies that are useful for emphasizing and opening up key 
mathematical ideas and for developing and maintaining a mathematical storyline also 
can help keep a focus on meaning (e.g., being explicit and “dwelling” in strategic places; 
framing, narrating, and summarizing the mathematical work; etc.) 

 
Issues that can arise: 

• Not capitalizing on opportunities to use meaning-focused language 
• Using language that distorts or detracts from the mathematical point 
• Not noticing students’ use of mathematically imprecise language  
• Mathematical reasons for engaging in an activity are unclear 
• Deploying representations and records that students cannot see 
• What is recorded distorts, obscures, or confuses the intended mathematics 
• Students attending to irrelevant features of representations 
• Unclear referents when deploying representations 

 
 

 

Toward a Framework for Mathematical Purposing 

 This chapter used the data to explore problems in steering instruction toward the 

mathematical point. I identified strategies that can help manage these problems, as well as issues 

that can arise when trying to do so. Although these problems must be managed during interactive 

instruction, an activity can be positioned in ways that make it easier to steer toward its 

mathematical point, thus increasing the likelihood of engaging students with the intended 

mathematics. This is the work of mathematical purposing. Mathematical purposing is intended to 

help manage problems in steering instruction toward the mathematical point. Thus, the problems 

discussed above help lay the foundation for the framework for mathematical purposing described 

in the next chapter. 
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CHAPTER SIX: 
A FRAMEWORK FOR THE WORK OF MATHEMATICAL PURPOSING 

 

Introduction 

 As mentioned throughout the dissertation, two of my overarching assumptions are that 

the ultimate goal of mathematics instruction is to develop students’ mathematical proficiency 

over time and that purposeful mathematics instruction aims to move with students toward 

specified mathematical learning goals. Through the analysis in this study, I have conceptualized 

“teaching to the mathematical point” as being composed of three different types of work: 

articulating the mathematical point; orienting the instructional activity; and steering the 

instruction toward the mathematical point. In Chapter 4, I provided two detailed examples of 

preservice teachers teaching to the mathematical point. Through my commentary and the excerpts 

from their interviews, I tried to highlight ways in which these teachers had articulated their 

mathematical points and the strategies they used to orient and steer the instruction to engage 

students with the intended mathematics. In Chapter 5, I identified some problems in steering 

instruction toward the mathematical point, various strategies that can be used to help manage 

these problems, and some of the issues that arise for beginners when doing this work. In this 

chapter, I focus on the precursor to the work of steering instruction toward the mathematical 

point: determining the mathematical learning goals and their connection to the instructional 

activity, and setting up the instructional activity so that it is more likely to move students toward 

those goals—what I am calling “mathematical purposing.”  

 The aim of this chapter is to explain the components of what ended up being a rather 

elaborate framework for the work of mathematical purposing. The chapter begins with a 

description of the general structure of the framework. I then walk through each of its sections to 

further decompose the work. After presenting the entire framework, I step back and discuss some 

of its significant features, potential uses, and limitations.   

 As described in Chapter 3, the categories in the framework, as well as their components 

and subcomponents emerged from the conceptual analytic work of this study. The framework is 

the final version of the “codes” that emerged from my review of the literature and were 

elaborated, organized, and refined through my analysis of the data. Unlike the previous two 

chapters, which were grounded in examples from the data, my discussion of the framework in this 



 176 

chapter is more abstract. I do this for two reasons. First, because the framework was developed 

through an iterative analysis of the literature and the data, the literature review in Chapter 2 and 

the examples from the data in Chapters 4 and 5 foreshadow the components of the framework. 

Thus, the components of the framework have, in a sense, been pre-illustrated in these other 

chapters. Second, it is useful to have the framework represented completely and in a generalized 

form for use in future research and to develop tools for teacher education. 

 

Architecture of Framework 

 The framework presented in this chapter aims to articulate the work of mathematical 

purposing a given instructional activity to teach a given focal mathematics topic. As discussed in 

Chapter 2, I consider mathematical purposing to be a component of the work of designing 

instruction and base this framework on a distributed perspective of the design of instruction. This 

framework is only an effort to describe what the work of mathematical purposing entails, not how 

(who/what does it, in what order, etc.) it is done in particular situations. Thus, in saying that the 

instructional activity and focal topic are both given, I am not specifying how they are given. For 

example, the activity and/or topic may have been created and selected by the teacher, the 

curriculum, the district, or some combination of sources.  

 By “instructional activity,” I mean a mathematics task (as described in Chapter 2) and 

what the teacher and students do as they engage in that mathematics task during instruction. The 

reason I focus on an instructional activity rather than on a lesson is because, in some cases, 

lessons are composed of multiple instructional activities that may or may not relate to the same 

focal topic, or in other cases, an instructional activity might stretch across multiple lessons. What 

I am calling a “focal topic” is not a large domain (e.g., geometry, number, or algebra), but more 

of a “lesson-sized” topic.46 For example, in Jordan’s lesson (described in Chapter 4), I would 

consider the focal topic to be adding and subtracting integers. Courtney’s lesson had two focal 

topics, one for each of the main instructional activities: addition strategies for the Mental Math 

activity, and comparison problems for the rest of the lesson. A given instructional activity could 

have more than one focal topic.  

 Although I try to provide some notion of what I mean by instructional activity and focal 

topic, my intent here is not to spur debates about the boundaries of an instructional activity or 

what to call its focal topic. I am not using these terms in an analytically strict sense. The reason I 

say that the activity and focal topic are given is that, in most cases, a particular activity can be 

                                            
46 The “focal topic” could be a traditional school mathematics topic or it could be part of a “conceptual 
field” as Lampert (2001) describes in Chapter 7 of Teaching Problems and the Problems of Teaching. 



 177 

used to teach a variety of topics, and a particular topic can be taught through many different 

activities (Ben-Peretz, 1990). Mathematical purposing is not about creating instructional activities 

or about examining all of the possible uses for a problem or activity; it is about specifying both 

the intended mathematics and the details of an activity so that there is a match between them. I 

say that the instructional activity and focal topic are given in order to assume that some general 

focus for the activity has already been determined. Therefore, precise definitions of instructional 

activity and focal topic are not important for my framework.  

 Mathematical purposing has two main components: articulating the mathematical point 

and orienting the instructional activity. One way to characterize the difference between the two is 

that the former is focused on analysis and the latter on setting up enactment. Articulating the 

mathematical point is analytic work. It involves unpacking and analyzing both the mathematical 

terrain and the instructional activity to develop a nuanced understanding of the mathematics 

intended to be taught through the activity. Orienting the instructional activity maps out details of 

the intended enactment in ways that better position the activity toward the mathematics to be 

taught.  

 A key feature of my framework is that these two types of work are mutually informing 

and often occur simultaneously. For example, as the mathematics of the activity is analyzed, 

decisions might be made about which examples or representations to use. And making decisions 

about the details of the activity can help unpack the connection between the activity and the 

mathematical terrain. Furthermore, because they are interdependent, there is no specified order 

for doing the work. This is reflected in the basic architecture of the framework shown in Figure 

15 below.  

 

Articulating the 
Mathematical  

Point 

 
 
 

 

Orienting the 
Instructional  

Activity 

 

Figure 15: The basic structure of mathematical purposing. 

  

 In the next two sections, I unpack the work of articulating the mathematical point and 

orienting the instructional activity. My intention is to provide a more detailed decomposition of 

the work of mathematical purposing. However, I am not implying that teachers do the detailed 
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design work depicted in the framework for every activity they teach. Because the design of 

instruction is distributed, it is likely that much of the work is stretched across the curriculum, state 

and district standards, unit or yearly planning, established classroom routines, etc. Furthermore, 

the work will be differently distributed in different contexts. After detailing the insides of the 

framework, I summarize with an elaborated version of Figure 15 that incorporates the main ideas 

of from each component of the work.47  

 
Articulating the Mathematical Point 

 The work of articulating the mathematical point results in a detailed description of the 

mathematics students are intended to learn from engaging in the instructional activity and how the 

activity is intended to engage students with that mathematics. This description emerges from an 

analysis of the focal topic and a close examination of how the details of the instructional activity 

and what the particular students are bringing to it shape the opportunities to learn. The work of 

articulating the mathematical point of an instructional activity is not only about specifying 

particular topic-focused mathematical goals for student learning (i.e., proximal learning goals). 

Because the ultimate goal is the development of mathematical proficiency, mathematics 

instruction needs to simultaneously have an eye on ongoing, larger grain-sized goals for student 

learning. Thus, the mathematical point includes both proximal and more distal mathematical 

learning goals, which—as seen in the literature and discussed in Chapters 4 and 5—are nested 

and of different grain sizes. Furthermore, articulating the mathematical point involves more than 

simply listing these different types of goals. It also requires understanding the connections 

between the details of the activity, the specific topic goals, and the ongoing development of 

mathematical proficiency; prioritizing the mathematical goals for a given activity; and having a 

sense of where the activity sits in the overall trajectory of students’ mathematics learning.  

 Because articulating the mathematical point means understanding the relationship 

between the mathematics and the activity, it requires an in-depth analysis of both the 

mathematical terrain and the instructional activity. My framework accomplishes this detailed 

analysis by applying three different analytic lenses to both the mathematical terrain and the 

instructional activity. The first analytic lens is the mathematics. Applying a “mathematics lens” to 

the mathematical terrain and the instructional activity results in an unpacking of the mathematical 

terrain around the focal topic and an analysis of which aspects of the terrain could be worked on 

through the instructional activity. The second analytic lens is the learners. Applying a “learners 

                                            
47 The elaborated version of Figure 15 mentioned here was introduced at the beginning of Chapter 4 (i.e., 
the mathematical purposing component of Figure 4). 
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lens” to the mathematical terrain results in a characterization of how students think about the 

focal topic. Applying a learners lens to the instructional activity analyzes the accessibility of the 

activity for the particular students. The third analytic lens provides the focusing. The “focusing 

lens” simultaneously zooms in and zooms out48 on the mathematical terrain and the instructional 

activity to specify which of the many mathematical possibilities—both ongoing goals and 

particular aspects of the mathematical terrain—will be the main foci of instruction and how the 

activity is intended to support their development.  

 In summary, I conceive of the work of articulating the mathematical point as conducting 

a trifocal analysis—with the lenses of mathematics, learners, and focusing—on both the 

mathematical terrain and the instructional activity. The work of articulating the mathematical 

point can be represented using a 3 x 2 matrix, as shown in Figure 16. 

 

 Mathematical terrain Instructional activity 

A. Mathematics lens A.1 A.2 

B. Learners lens B.1 B.2 

C. Focusing lens 
 

C.1 
 

 
C.2 

 
 

Figure 16. Articulating the mathematical point:  
A trifocal analysis of the mathematical terrain and the instructional activity. 

 
 Next, I describe the work involved in applying each of these analytic lenses. To facilitate 

this discussion, I assigned letters to the lenses (i.e., rows) and corresponding labels to the cells in 

Figure 16. However, like the overall architecture of the framework, there is not an order in which 

the analyses occur. Furthermore, the analysis in one cell informs the others, both within and 

across rows. The depiction of this work in a matrix, unfortunately, does not reflect this 

interaction. 

                                            
48 In using the notion of both zooming out and zooming in when applying a focusing lens, I am drawing on 
the “photographic metaphor” used by Lampert (2001), in particular, that zooming in and out occur 
simultaneously. Therefore, the narrow is always embedded in the bigger context:  

To do the work of teaching, the teacher in the classroom also needs to do something akin to 
zooming in and zooming out, acting simultaneously in both “the big picture,” across time and 
relationships, and in the moment-by-moment interactions with individual students.…These actions 
must be, at the same time, both narrowly convergent and widely panoramic, and everything in 
between. And, they must often converge on more than one focal point. (p. 430) 
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Applying a Mathematics Lens to the Mathematical Terrain and the Instructional Activity 

 The first analytic lens I discuss is the mathematics lens (Row A). This analytic lens is 

intended to open up and examine the mathematical learning possibilities of the instructional 

activity.49 Although I call it a “mathematics lens,” the analysis is not mathematical in a strictly 

disciplinary sense; it is a mathematics lens with an eye toward teaching. Thus, although it does 

not yet consider the mathematical terrain from the perspective of the learner, it does analyze the 

mathematics of the terrain and activity in ways that matter for instruction. 

 Applying a mathematics lens to the mathematical terrain unpacks the focal topic and 

related mathematical ideas to determine what could be taught about the focal topic—from 

specific facts to broad foundational ideas. Applying a mathematics lens to the instructional 

activity analyzes what aspects of the unpacked mathematical terrain could be worked on and in 

what ways through the activity. The interaction of these analyses results in an articulation of the 

range of mathematics that could be taught through the particular activity.  

 As mentioned above, just as the analyses of the terrain and the activity are unordered and 

interdependent, the other two analytic lenses—learners and focusing—as well as the work of 

orienting the instructional activity, shape the mathematics-lens analysis of the terrain and the 

activity. For example, once a particular mathematical idea has been zoomed in on as something 

that is intended to be worked on in the activity or the numbers for an example have been selected, 

the degree to which the terrain and activity need to be unpacked is narrowed. Thus, analyzing the 

mathematical terrain and the instructional activity with a mathematics lens does not imply that all 

of the mathematical possibilities are mapped out—this would be both unrealistic and undesirable 

for every instructional activity. The analysis is informed and directed by the other aspects of the 

work of mathematical purposing.  

 I now describe each of the mathematics-lens analyses: a mathematics lens on the 

mathematical terrain (cell A.1) and a mathematics lens on the instructional activity (cell A.2).  

 Cell A.1: A mathematics lens on the mathematical terrain. The work of mathematical 

purposing located in this cell analyzes the mathematical terrain, asking: What is there to learn 

about the given focal topic? This analysis helps articulate what could be the mathematical 

learning goals for students. Although the aim of this analysis is to unpack the mathematics related 

to the given focal topic, it does not require unpacking the entire mathematical terrain or detailing 

                                            
49 Other research has discussed ideas related to unpacking and examining the mathematical learning 
possibilities of an instructional activity. For example, Li, Knudsen, and Empson (2005) discuss the 
“possible curriculum—the range of valid mathematical goals that can be addressed through the same 
material, and different routes teachers and students could move along to fulfill the goals.”  
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every possible aspect of what there is to learn about a topic. As mentioned above, not only would 

this be unrealistic, but what is unpacked through this analysis of the terrain is informed and 

bounded by the analysis of the instructional activity and the other aspects of mathematical 

purposing. 

 I identified six components of the work of applying a mathematics lens to the 

mathematical terrain (each is in relation to the given focal topic):  

• Identifying core ideas and the connections among them; 

• Identifying core practices, skills, and sensibilities;  

• Identifying what there is to learn and understand about mathematical language; 

• Analyzing multiple representations of or multiple procedures for the focal topic; 

• Describing and explaining underlying concepts, principles, representations, and 

procedures; and 

• Distinguishing cases and directions that can be learned.  

I elaborate each below and then summarize the work of applying a mathematics lens to the 

mathematical terrain in Table 12. 

 Identifying core ideas and their connections refers to both key ideas “inside” the focal 

topic (e.g., the main quantities and objects related to the focal topic, their attributes, and how they 

can be acted upon) and related “outside” ideas (e.g., the concepts, ideas, principles, and properties 

that underlie the focal topic; the concepts for which the focal topic is foundational; and cross-

topic “big ideas”). In addition to naming these core ideas, unpacking the terrain involves 

understanding how they are connected and build upon each other. 

 Identifying core practices, skills, and sensibilities involves identifying the central skills, 

types of reasoning, and procedures related to the focal topic. It also involves articulating the types 

of problems that are typically solved or modeled, and the representations and tools that are 

typically used. And, finally, it involves identifying the important dispositions, sensibilities, and 

aesthetics related to the focal topic. 

 Identifying what there is to learn and understand about mathematical language focuses on 

unpacking the vocabulary and notation related to the focal topic. This includes identifying key 

mathematical terms and articulating their precise definitions; as well as identifying key symbols, 

their relevant systems of notation, and connections between symbols and their referents. It also 

involves being able to describe when and how mathematical language is used in relation to the 

focal topic. 

 Analyzing multiple representations of or multiple procedures for the focal topic involves 

identifying, describing, and explaining the different ways core concepts can be represented (e.g., 
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models, problems, equations, contexts, etc.) and identifying, describing, and explaining the 

different procedures related to the focal topic. In addition, it involves evaluating and comparing 

the various representations and procedures for their breadth or expandability (e.g., usefulness 

across the terrain), generality (e.g., numbers for which it works), and efficiency; as well as being 

able to map the correspondences among them.  

 Describing and explaining underlying concepts, principles, representations, and 

procedures involves identifying what there is to explain or describe, and then being able to 

describe and explain it in multiple ways. Detailing a description involves articulating what it is 

and how it is done (e.g., the steps involved in a procedure, how to use a representation, etc.), 

whereas detailing an explanation provides meaning (e.g., the underlying mathematical structure, 

what concepts a procedure is an instantiation of, what big ideas it is connected to or relies on, 

what is the mathematical reason for each step, etc.). Because the detailing is for teaching, part of 

the work is figuring out what are the key steps and/or ideas that need to be touched on in any 

description or explanation of the concept or procedure. In addition, the analysis involves 

articulating the conditions under which the concept/procedure/representation is 

used/true/holds/applies; generating examples/contexts of when it is used/applied; and articulating 

why a particular model or procedure would be used. Finally, it involves identifying the logical 

implications and consequences of the concept, principle, procedure, or representation. 

 Distinguishing cases and directions that can be learned involves articulating and 

analyzing the features of a problem or ways of engaging with a concept that matter for 

instruction. For example, this includes distinguishing and analyzing the different  “directions” 

that can be taken in demonstrating a concept or executing a skill (e.g., for the skill of identifying 

fractions some different directions are: given a picture, write the fraction that is represented; 

given the fraction, draw a picture; etc.); distinguishing the features in a problem that might impact 

the learning of a procedure (e.g., for learning long division: the number of digits in divisor; the 

number of digits in the dividend; whether there is a zero in the quotient; whether the divisor 

and/or dividend has a decimal; whether there is a remainder; etc.); or distinguishing the “cases” of 

numbers that can be used in a problem (e.g., when comparing integers x and y, x ≠ y : (a) x, y < 0; 

(b) x, y > 0; (c) x > 0, y < 0,  |x| > |y|;      (d) x > 0, y < 0,  |x| < |y|; (e) x > 0, y = 0;  (f) x < 0, y = 0;  

and (g) x = -y ).  

 Cell A.2: A mathematics lens on the instructional activity. The work of mathematical 

purposing located in this cell applies a mathematics lens to the instructional activity to examine 

what about the focal topic and the related mathematical terrain could be taught using the given 
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activity. In other words, it asks: What mathematics (related to the focal topic) could this activity 

make available for study? 

 Of course, not everything about a topic can be worked on in one activity, and not every 

activity is equally suited for teaching particular concepts, skills, or practices. The analyses in this 

cell help match an activity with the mathematics to be taught by examining whether and how the 

details of the activity (e.g., the representations, numbers, language, etc.) make different aspects of 

the focal topic available for study. The analyses also consider how the activity can be used to 

further all of the strands of mathematical proficiency, as well as any broader, ongoing 

mathematical learning goals. As with all other aspects of the framework, no direction is implied. 

That is, the mathematics of a topic does not need to be unpacked (i.e., cell A.1) before the activity 

is analyzed. Instead, the analyses are meant to be mutually informing. For example, examining 

the details of an activity to determine what can be taught from it is a way to unpack the 

mathematical terrain.  

 I identified three types of analyses involved in applying a mathematics lens to the 

instructional activity: 

• Locating opportunities to work on aspects of the mathematical terrain; 

• Examining the mathematics made available by and across the details of the activity; 

and 

• Identifying mathematical prerequisites of the instructional activity. 

  The first type of analysis examines the activity to locate opportunities to work on aspects 

of the mathematical terrain and to develop each of the strands of mathematical proficiency. This 

involves identifying opportunities in the activity to engage students with different aspects of the 

focal topic; to elicit and connect across multiple solutions and representations; to work on 

overarching mathematical goals; to work on mathematical practices; and to keep “background” 

strands of mathematical proficiency “in the air.” For example, if the focal topic is something 

procedural, part of analyzing the activity with a mathematics lens is considering how the activity 

could be simultaneously used to develop conceptual understanding, adaptive reasoning, etc.  

 The second type of work in this cell—examining the mathematics made available by and 

across the details of the activity—analyzes the details of the instructional activity. In my analyses 

of the literature and the data, the following details emerged as important for teaching to the 

mathematical point: representations, manipulatives, tools, and contexts; procedures and solution 

methods (including those anticipated to be generated by students); numbers and figures used in 

problems, examples, and exercises; explanations and examples; language (including technical 

vocabulary and symbolic notation, wording of task/explanations, etc.); what counts as an answer; 
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and the structure of the activity (including work format and location; expected duration of task 

and its components; materials available; how the task is presented to students; etc.). To 

understand how an activity could be used to engage students with the focal topic, each detail is 

examined to unpack the mathematics it makes available for study. This mathematical analysis 

considers what aspects of the focal topic can be taught through the activity (e.g., what 

mathematical ideas the activity “makes” students confront; what ideas it highlights; and what 

ideas could be pulled out during its enactment), as well as what ideas are obscured or cannot be as 

easily worked on in the activity. Applying a mathematics lens to the details of the instructional 

activity is similar to the critical interpretation stage of the model for pedagogical reasoning 

described in Wilson et al. (1987). Examples of questions that can be asked to support the analysis 

of the details of the instructional activity with a mathematics lens can be found in Table 11 below. 
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Table 11.  
Example Questions to Guide Analysis of the Details of the Instructional Activity with a 
Mathematics Lens: What Mathematics is Made Available for Study? 
 
Representations, manipulatives, tools, contexts 
• Does/could its use support understanding of key concepts? Which ones? How? 
• Does/could it help give meaning to a procedure? How? 
• Does/could its use reveal/draw attention to the underlying structure/meaning/properties; or foreshadow important 

mathematical ideas? If so, which ones? 
• Does/could its use help reinforce connections between it and what it is representing?  
• What numbers numbers/problems/concepts is/can it be used with? Which cases/directions are/can be worked on?  
• Are all of the quantities being operated/acted upon visible? What interpretation of the operation/action is shown? 

Where is the answer? 
• How is the mathematics available impacted by whether it is explained during or after its construction? 
• Does it distort the math in any way?  
• Does its use make mathematics available for study that wouldn’t be available without it? 
• Does it create opportunities to address/raise likely misconceptions, errors, or other difficulties? 
• What mathematical thinking is being done by it instead of students? 
 
Procedures and/or solution methods (including those anticipated to be generated by students) 
• What numbers and/or types of problems is/can this procedure/method be used with? 
• If students used this procedure/method, would they be engaging with the focal topic? If so, with what aspects? 
• Does/could its use reveal/draw attention to underlying concepts/structure/meaning/properties? If so, which ones and 

how? Which are obscured? 
• Is it a case of or foundational for other mathematical ideas? 
 
Numbers and/or figures used in problems, examples, and exercises 
• Do the numbers/figures necessitate/encourage the mathematical idea/skill being taught?  
• Where in the terrain do the numbers lead? Might the numbers/figures bring you into unwanted mathematical territory?  
• Do they create opportunities to address/raise likely misconceptions, errors, or other difficulties? 
• If numbers/figures are being generated randomly or by students, might something unwanted come up, or something 

wanted not come up? 
 
Explanations and examples 
• What is being explained or illustrated? What is not being explained and why?  
• Does it include all of the key steps/concepts that need to be included? 
• Does it support understanding of key concepts? Which ones? How? 
• Does it reveal/draw attention to the underlying structure/meaning/properties; or foreshadow important mathematical 

ideas? Which ones? How? 
• Is the explanation/example mathematically accurate? Does it distort the math in any way? 
• Does it create opportunities to address/raise likely misconceptions, errors, or other difficulties? 
 
Language (including technical vocabulary and symbolic notation, wording of task/explanations, etc.) 
• Is the language mathematically precise? 
• Does the language used convey meaning/connections?  What meanings/connections are hidden through language?  
• Does the wording “give away” what students are supposed to do? 
• Is there casual or intended-to-be-helpful language that distorts or obscures the mathematics? 
 
What counts as an answer 
• How does what students are being asked to do relate to the focal topic (e.g., does it draw on skills, concepts, etc.)? 

What kinds of reasoning does it engage them in? 
• Does what students are being asked to do engage them in mathematical practices (e.g., provide explanations, use 

representations, etc.)? 
• If students are giving an explanation, what are the key concepts that must be mentioned? 
• Is it possible to get a correct answer without engaging with the intended mathematics? 
 
Structure of the activity 
• Does the work format impact the mathematics? 
• Which problems are students left to do on their own and what mathematical work does that leave them?  
• How does the use of any established routines impact the mathematics being worked on? 
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 In addition to analyzing each detail, applying a mathematics lens to the instructional 

activity involves looking across the details to: compare and distinguish among them (e.g., which 

example makes a particular mathematical idea more or less salient); examine whether and how 

slight variations change the mathematics made available; consider the mathematics made 

available by the whole collection (e.g., which directions/cases are included, coverage of terrain, 

sequence, variety, etc.); and analyze what mathematics can be learned from making connections 

across the details.  

 The third type of mathematics-lens analysis of the instructional activity is identifying its 

mathematical prerequisites. This includes indentifying any ideas, concepts, definitions, 

procedures, tools, or directions and cases that need to be understood or familiar in order to engage 

in the activity toward various mathematical goals. Some prerequisites may be independent of the 

mathematics the activity is being used to teach. But other prerequisites might depend on the 

mathematical focus of the activity and thus shape the mathematics available for study. Note that 

this is not yet an analysis of whether or not the particular students have the prerequisite 

knowledge and skills. That is an important consideration, but is part of analyzing the terrain with 

a learners lens. 

 Summary. The work of mathematical purposing described in this section (Row A of 

Figure 16) uses a mathematics lens to analyze the mathematical terrain and the instructional 

activity. As described above, these analyses are interdependent and overlapping, and their 

interaction results in an articulation of the range of mathematics that could be taught through the 

particular activity. The main components of the analyses are summarized in Table 12 below. 
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Table 12. 
Applying a Mathematics Lens to the Mathematical Terrain and the Instructional Activity 

Mathematical terrain Instructional activity 
Identifying core ideas and the connections 
among them 
• Quantities and objects, their attributes, and how 

they can be acted upon  
• Underlying concepts, ideas, principles, and 

properties 
• Concepts for which the topic is foundational 
• Important relationships within the topic/terrain  
• Cross-topic/terrain “big ideas” 
Identifying core practices, skills, and 
sensibilities  
• Central skills, mathematical practices, ways of 

reasoning, and procedures related to topic 
• Types of problems to solve or model; situations to 

analyze; representations & tools to use  
• Important dispositions, sensibilities, aesthetics 
Identifying what there is to learn and 
understand about mathematical language  
• Key terms and precise definition/s  
• Key symbols and relevant systems of notation; 

symbol rules; connections between symbols and 
meaningful referents 

• When and how language/symbols/notation system 
is used  

Analyzing multiple representations or multiple 
procedures  
• Different ways core concepts can be represented 

(models, problems, equation, contexts, etc.) 
• Different procedures that can be used 
• Describe/explain each representation or procedure  
• Evaluate and compare features of the 

representations or procedures  
Describing and explaining the underlying 
concepts, principles, representations, and 
procedures 
• Identifying what there is to explain or describe 

about a concept or procedure  
• Detailing the description, explanation, and/or 

justification  
• Articulating alternative descriptions and 

explanations  
• Articulating conditions under which it applies 
• Generating examples/contexts of when it is 

used/applied   
• Articulating why a particular model or procedure 

would be used  
• Identifying logical implications and consequences 
Distinguishing cases and directions that can be 
learned  
• Describing different “directions” that can be taken 

in demonstrating a concept or executing a skill 
• Identifying the features in a problem that might 

impact learning the topic   
• Distinguishing all of the different “cases” and how 

they are the same, yet different 
 

Locating opportunities to work on aspects of 
the mathematical terrain 
• Identifying opportunities to work on the different 

aspects of the mathematical terrain around the 
focal topic 

• Identifying opportunities for eliciting and 
connecting across multiple solutions / 
representations 

• Identifying opportunities to work on overarching 
mathematical goals 

• Identifying opportunities to work on mathematical 
practices / process standards 

• Identifying opportunities to keep “background” 
strands of mathematical proficiency present  

 
Examining the mathematics made available by 
and across the details 
Analyzing the details to unpack the mathematics 
available to be worked on through activity (e.g., what is 
highlighted, obscured, etc.): 
• Representations, manipulatives, tools, contexts 
• Procedures and/or solution methods (including 

those anticipated to be generated by students) 
• Numbers and/or figures used in problems, 

examples, and exercises 
• Explanations and examples   
• Language (including technical vocabulary and 

symbolic notation, wording of task/explanations, 
etc.) 

• What counts as an answer 
• Structure of the activity 
 
Looking across the details: 
• Comparing and distinguishing among different 

details in the activity  
• Examining if/how slight variations change the 

mathematics made available 
• Considering the mathematics of the collection  
• Analyzing what mathematics can be learned from 

making connections across representations, 
solutions, problems 

 
Identifying mathematical prerequisites of the 
instructional activity 
• Identifying ideas, concepts, definitions, 

procedures, tools, or directions and cases that are 
needed to engage in activity, use a representation, 
etc. for a particular mathematical purpose 
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Applying a Learners Lens to the Mathematical Terrain and the Instructional Activity 

 In this section, I describe another component of articulating the mathematical point: 

applying a learners lens to both the mathematical terrain and the instructional activity (Row B of 

Figure 16). I use the term “learners lens” to denote a lens that takes the perspective of the 

learner—both of general learners of the intended mathematics and of the particular students being 

taught. Applying a learners lens to the mathematical terrain examines the mathematical 

complexity of the topic for learning it, analyzes how learners typically think about the focal topic, 

and characterizes the mathematics the particular students are bringing to the activity. Applying a 

learners lens to the instructional activity analyzes ways in which the instructional activity could 

be used to connect with the mathematics students are bringing to the activity and examines the 

details of the activity to evaluate the accessibility of the mathematics. As before, although these 

analyses are interdependent and overlapping, I describe them separately below.  

 Cell B.1: A learners lens on the mathematical terrain. The work of mathematical 

purposing in this cell aims to unpack what the mathematical terrain looks like, not from the 

perspective of the discipline, but from the perspective of someone who is first learning the 

concepts, practices, and skills related to the focal topic. Whereas a mathematics lens provides a 

detailed road map of the mathematical terrain, pointing out what there is to learn about a topic 

with the connections between ideas and their “distances” informed by the discipline, a learners 

lens provides a “topographical map” of the mathematical terrain, “annotated by a guide for an 

expedition with novices”: 

These maps include less territory but magnify the particular features of the landscape for 
those who intend to explore it. Topographical maps indicate the difficulty or ease of 
particular routes by the rise in elevation and potential obstacles ahead. The guide’s 
annotations might include routes that help inexperienced hikers learn to ford a 
treacherous river and suggestions for worthwhile sidetrips for panoramic views or 
spectacular wildflowers. (Grossman, 1991, p. 211)50 
 

Grossman also points out that the annotated map is only useful for a particular terrain—there is 

no generic topographic map. Thus, the learners lens creates a view of the mathematical terrain 

from the perspective of particular students learning particular content. Applying a learners lens is 

similar to Dewey’s (1910/1997) notion of psychologizing the subject matter and to Ball’s (1993a) 

bifocal perspective. 

                                            
50 I am appropriating Grossman’s analogy for my purposes here. Grossman (1991) uses the map analogy to 
distinguish subject matter knowledge and pedagogical content knowledge. Although applying the lenses 
certainly demands subject matter knowledge and pedagogical content knowledge, the mathematics and 
learners lenses do not map solely onto a single knowledge domain. I discuss this in Chapter 7. 
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 Because it is an analysis of the mathematical terrain, this cell is not about anticipating 

what students will do as they engage in the activity; however, anticipating student responses, of 

course, informs and influences the analysis. I have identified three main types of learners-focused 

analyses of the mathematical terrain: 

• Analyzing the complexity of the mathematics for learning; 

• Analyzing how learners typically think about the focal topic; and 

• Characterizing the mathematics the particular students are bringing to the activity. 

I describe each in more detail below and provide a summary at the end of the section (Table 14). 

 Analyzing the complexity of the mathematics for learning involves examining 

relationships to other mathematical topics that might support or interfere with learning—for 

example, the similarities and differences in a concept or procedure due to a change in number 

domain; different uses of a term or concept across mathematical contexts; what could be 

misinterpreted or misapplied from what students have previously learned; and whether the new 

content will impact or confuse students’ understanding of the content they have already been 

learning.51 It also involves analyzing the ways in which meaning is masked by compression, and 

indentifying what could be overgeneralized. Lastly, it involves examining the differences in 

mathematical complexity of different cases and directions—for instance, whether one direction of 

a representation is more mathematically complicated to explain than another; or whether a 

particular case of numbers complicates the use of a procedure. 

 A second aspect of applying a learners lens to the mathematical terrain is analyzing how 

learners typically think about the focal topic. This includes describing the general difficulties and 

typical approaches that learners have related to the topic, such as what tends to be easily 

understood or intuitive for learners; common solution methods; common misconceptions or 

common errors related to topic; what the hardest part is about learning or understanding the topic; 

and the relative difficulty of particular cases and directions. Another aspect of applying a learners 

lens to the mathematical terrain is analyzing the connections and “cognitive distance” between 

ideas for the learner across the terrain. By this, I mean analyzing not how ideas are related in the 

discipline, but how mathematical ideas are related and how “far apart” they seem to learners. For 

example, there are ideas that are mathematically equivalent (e.g., multiplying by ½ and dividing 

by 2) and therefore seen as closely connected by people who already know the content, but these 

same ideas might seem completely different and unrelated to learners. Thus, although the 

mathematical distance is close, the cognitive distance is far for those learners. 

                                            
51 Hiebert (1992) has a nice example of this type of analysis for the topic of decimal fractions. 
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 The third type of analysis included in applying a learners lens to the mathematical terrain 

is characterizing the mathematics the particular students are bringing to the activity. This involves 

indentifying students’ prior knowledge and experiences relevant to the topic. For example: What 

do they already know and can do? What have students already studied or experienced about the 

topic: this year, in prior grades, in other subjects? What has the class been working on lately with 

respect to the terrain, and how has it been going? In addition to indentifying the connected prior 

knowledge, this analysis also involves evaluating students’ current level of understanding of the 

focal topic, including identifying aspects of the focal topic that most students seem to understand; 

what they are having trouble with and the fragility of their understandings; particular types of 

problems or cases that are hard; and common errors or misconceptions that students have been 

demonstrating. Finally, the analysis includes considering the mathematical prerequisites of the 

activity with respect to the particular students to be taught and articulating what will be new for 

students about the focal topic or the way it is being worked on. 

 Cell B.2: A learners lens on the instructional activity: Applying a learners lens to the 

instructional activity analyzes the opportunities to learn the intended mathematics through the 

instructional activity from the perspective of these students. It involves two main types of 

analyses: 

• Locating potential opportunities to connect with and confront what students are 

bringing to the activity; and  

• Examining the accessibility of the mathematics within and across the details of the 

instructional activity. 

These two analyses parallel the mathematics-lens analysis of the instructional activity described 

above (cell A.2). The first—locating potential opportunities to connect with and confront what 

students are bringing to the activity—involves finding opportunities in the activity to build on 

students’ prior knowledge and experiences and to address common difficulties or misconceptions. 

 The second—examining the accessibility of the mathematics within and across the 

details—involves looking closely at the same details discussed in the mathematics-lens analysis, 

but the overarching focus of the analysis is on the accessibility of the details for learners (e.g., 

familiarity, difficulty, etc.). Examples of questions that can be asked to support this analysis are 

shown in Table 13 below. The questions parallel the analysis of the details of the instructional 

activity using a mathematics lens discussed above (Table 11). Appendix D combines Table 11 

and Table 13 to highlight the complementary analyses.  
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Table 13. 
Example Questions to Guide Analysis of the Details of the Instructional Activity with a Learners 
Lens: How Accessible is the Mathematics? 

Representations, manipulatives, tools, contexts 
• Are all students familiar with how to use it? Is it used differently than students might have used in the past? If 

so, how does that impact understanding? 
• Does the way it is used to explain concepts/procedures build on what students already know and can do? 
• Does the accompanying notation or language facilitate its use (e.g., support understanding, remembering, etc.)?  
• Do everyday uses (if any) support or interfere with its mathematical use?  
• Does it make assumptions about students’ experiences or background that might interfere with understanding? 
• What might be difficult or tricky about using it? Is one of the directions more complex than another? 
• What mathematical elements might be confusing or distracting? 
• Are there non-mathematical elements that could be potentially confusing or distracting? 
• How intricate is it to use/teach/get into play? Does the number of steps involved or the complexity of teaching 

it detract focus from learning the intended mathematics? What residue is left from its use?  
• How prone to errors is it? 
• What mathematical ideas could be incorrectly overgeneralized from it? 
 
Procedures and/or solution methods (including those anticipated to be generated by students) 
• What might be difficult about using the procedure/method? Are there numbers or cases for which it is more 

mathematically complex? 
• How is it similar or different to what students have done before? Do these similarities/differences support or 

interfere with understanding/use? 
• How does any accompanying notation or language facilitate its use? 
• How intricate is it to use/teach/get into play? Does the number of steps involved or the complexity of teaching 

it detract focus from learning the intended mathematics?  
• How likely would students be able to devise the procedure/method on their own? 
 
Numbers and/or figures used in problems, examples, and exercises 
• How “friendly” or familiar are the numbers to students? 
• Is there anything that might be masked or left implicit by the familiarity of the numbers?  
• How do the numbers/figures impact the difficulty? 
• Are any of the cases more complex than another? 
• How visible to students is the idea in the example? 
• Does the same number serve multiple roles, and might that make things less visible, cause unnecessary 

confusion, or hinder explanation?  
• What mathematical ideas can be incorrectly overgeneralized from numbers/figure? 
 
Explanations and examples 
• Will the explanation/example be understood by students? 
• Is the way that the necessary key steps/concepts are explained accessible to these students? Does it build on 

what they already know and can do? 
• What might be difficult or tricky about using it? 
• What mathematical ideas can be incorrectly overgeneralized from the explanation/example? 
• What might be confusing or distracting? Are there non-mathematical elements that could be potentially 

distracting? 
• How intricate is it to use/teach/get into play? Does the number of steps involved or the complexity of teaching 

it detract focus from learning the intended mathematics? 
• Does the accompanying notation or language facilitate its use? 
 
Language (including technical vocabulary and symbolic notation, wording of task/explanations, etc.) 
• Are students familiar with any terms and symbols? 
• Does compression mask meaning? Is this likely to cause difficulty for students? 
• Are there potential conflicts or confusions with the everyday use of language? Or with how language or 

symbols have been used in previous topics? 
• Will students understand the wording of the task? 
 



 192 

What counts as an answer 
• Will what students are likely to do engage them with the intended mathematics? 
• Will students understand what counts as “different”? 
 
Structure of the activity 
• Are students familiar with the structure of the activity? 
• What might be confusing or distracting? Are there non-mathematical elements that could be potentially 

distracting? 
 
 

 In addition to analyzing each detail independently, a learners lens on the instructional 

activity also looks across the details to consider the impact on the accessibility of the 

mathematics—for example, examining their relative difficultly and error-proneness; 

distinguishing difficulty of cases; considering their progression and order; considering what 

mathematical ideas could be incorrectly overgeneralized because certain cases aren’t included; 

and considering the marginal benefit/cost of students’ learning another method or representation. 

 Summary. The work of mathematical purposing described in this section (Row B of 

Figure 16) uses a learners lens to analyze the mathematical terrain and the instructional activity. 

The main components of this analysis are summarized below in Table 14. 
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Table 14. 
Applying a Learners Lens to the Mathematical Terrain and the Instructional Activity 
 

Mathematical terrain Instructional activity 
Analyzing the complexity of the mathematics 
for learning 
• Examining relationships to other mathematical 

topics that might support or interfere with learning  
• Identifying the ways in which meaning is masked 

(e.g., by compression, language, or surface 
features) or ideas could be overgeneralized 

• Analyzing the differences in mathematical 
complexity of different cases and directions 

 
Analyzing how learners typically think about 
the focal topic 
• Describing the general difficulties that learners 

have related to the topic 
• Describing learners’ typical ways of thinking 

about and/or approaches to the topic 
• Analyzing the connections and “cognitive 

distance” for the learner across the terrain 
 
Characterizing the mathematics the particular 
students are bringing to the activity 
• Indentifying students’ prior knowledge and 

experiences relevant to the topic/activity 
• Evaluating their current level of understanding of 

the focal topic 
• Considering prerequisite mathematics with respect 

to these students. 
• Identifying what will be new for students about the 

focal topic/s and/or the way it is being worked on  
 

Locating potential opportunities to connect 
with and confront what students are bringing 
to the activity 
• Identifying opportunities to connect to prior 

knowledge and experiences 
• Identifying opportunities to address common 

misconceptions 
• Identifying opportunities to bring up things that are 

difficult 
 
Examining the accessibility of the mathematics 
within and across the details  
Analyzing the accessibility of the details: 
• Representations, manipulatives, tools, contexts 
• Procedures and/or solution methods (including 

those anticipated to be generated by students) 
• Numbers and/or figures used in problems, 

examples, and exercises 
• Explanations and examples   
• Language (including technical vocabulary and 

symbolic notation, wording of task/explanations, 
etc.) 

• What counts as an answer 
• Structure of the activity 
 
Looking across the details: 
• Examining their relative difficultly  
• Considering their progression/order 
• Considering what could be overgeneralized 

because cases are not included 
• Analyzing marginal cost/benefit of introducing 

another method or representation  
 

 
 
Applying a Focusing Lens to the Mathematical Terrain and the Instructional Activity 

 This section discusses the work of applying a focusing lens to the mathematical terrain 

and the instructional activity (Row C of Figure 16). I named this lens “focusing” for two reasons. 

First, I wanted to pick up on the following meaning of focus: “to draw to a focus; to cause to 

converge to or as to a focus” (OED, 2009). This meaning helps distinguish the focusing lens from 

the mathematics and learners lenses. Whereas the other two lenses unpack the mathematics and 

examine the learning opportunities available in the instructional activity, the focusing lens hones 

in to specify the intended mathematics (i.e., the particular mathematics it is hoped that students 

will learn) and the purpose of the details of the activity. 

 However, this is not to imply that the intended mathematics is narrowly defined. Hence 

my second reason for using “focusing.” Another meaning of focus is “to adjust the focus of (the 

eye, a lens, etc.)” (OED, 2009). This definition captures the need to articulate the intended 
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mathematics at different grain sizes. Focusing on the mathematical terrain involves 

simultaneously zooming in and out on the mathematical terrain to determine the mathematical 

learning goals at various grain sizes and to understand how they are nested and connected. 

Focusing on the instructional activity involves simultaneously zooming in and out on the 

instructional activity to determine the point of the particular details of the activity (e.g., the 

representations or numbers used), as well as how the activity relates to broader learning goals and 

can be used to develop all of the strands of mathematical proficiency.  

 As with the other lenses, I describe separately what is involved in applying a focusing 

lens to the mathematical terrain and to the instructional activity. In each case, I further separate 

(a) zooming out and (b) zooming in. 

 Cell C.1(a): Zooming out on the mathematical terrain. Zooming out on the 

mathematical terrain uses a wide lens to determine the bigger mathematical learning goals toward 

which the activity is intended to help students make progress. There are two main parts of this 

analysis:  

• Specifying the more distal mathematical learning goals to be deliberately worked 

toward through the activity; and 

• Sketching the intended curricular trajectory through the mathematical terrain. 

 The first—specifying distal mathematical learning goals to be deliberately worked toward 

through the activity—involves articulating the bigger grain-sized goals that are intended to be 

developed in the activity (even if just in the background). Bigger grain-sized goals include 

ongoing foundational goals and unit goals. The work of articulating these goals might not be done 

while planning daily lessons (again, this framework is not about how the work gets done), but it is 

important that even at the level of a particular activity the big picture of students’ mathematical 

development is kept in mind. This is especially important for learning goals related to the 

development of mathematical practices or understanding the nature of mathematics. For example, 

when an activity is focused on teaching a particular concept or skill, it can be easy to forget about 

ongoing goals like developing students’ capacity to make reasoned arguments, understanding the 

nature of mathematical work, or developing a productive disposition toward math.  

 The second part of zooming out on the mathematical terrain is sketching the intended 

curricular trajectory through the mathematical terrain. This includes identifying the main 

concepts, skills, vocabulary, representations, types of problems, cases, etc. that students will learn 

related to the focal topic. Important here is that all of the strands of mathematical proficiency are 

reflected in the trajectory. In addition to naming the specific content, specifying the curricular 

trajectory also involves describing connections among the content, the order in which it will be 
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developed, and what will be assessed, as well as what students already have or will be learning 

about the topic at different grade levels. This is not a detailed description (hence the use of 

“sketching”), but more like knowing the major landmarks in the terrain and the order in which 

students are going to work on them. Again, the curricular trajectory is not likely analyzed anew 

with each activity, but including it in the framework emphasizes that teaching to the mathematical 

point requires knowing where the intended mathematics is located in the bigger trajectory of 

student learning.  

 Cell C.1(b): Zooming in on the mathematical terrain. The other side of the focusing 

lens zooms in on the mathematical terrain to pinpoint the particulars of the mathematics intended 

to be taught through the activity. This involves two types of analyses: 

• Specifying the particular aspects of the mathematical terrain students are intended to 

learn from engaging in the activity; and 

• Describing the nature of learning expected. 

 The first type of analysis—specifying the particular aspects of the mathematical terrain 

students are intended to learn from engaging in the activity—articulates which of the ideas, skills, 

representations, language, and types of reasoning related to the focal topic are intended to be 

taught through the activity. The aim of this analysis is to not only specify which of these are 

intended to be developed, but also to articulate exactly what about them is going to be developed. 

This analysis also clarifies which things are end learning goals and which are means to engage 

students with other mathematical ideas (e.g., using a representation to understand a key concept). 

In these cases, zooming in involves specifying how the representation or explanation is intended 

to support learning this concept. To illustrate, Table 15 provides examples of questions that could 

be used to help articulate the particulars about the intended mathematics.  
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Table 15.  
Zooming In on the Intended Mathematics 

Core ideas and connections 
• Which underlying foundational concepts, ideas, principles, and/or properties are students to develop an 

understanding of in this activity? What, in particular, about each will students learn? In relation to which 
numbers, quantities, objects, actions, etc.?  

• How are students supposed to think about the concept?  
• What kinds of reasoning (e.g., explanation, description, etc.) are students to do with these ideas? And in what 

direction? (e.g., Do students need to be able to generate explanations, understand them, apply them, etc.)? 
How do the kinds of reasoning support their understanding of the intended key ideas? 

• Do students need to understand any connections among ideas (e.g., relationships between/within concepts; 
distinctions between/within concepts; links between the concrete and abstract, etc.)? 

 
Procedures and skills 

• With what numbers or objects are students to be able use the procedure or skill in this activity? 
• What kinds of reasoning will students be expected to do (e.g., explanation, description, etc.) related to the 

procedure or skill? Do students need to explain why in addition to how?  
• Is the focus on meaning and/or fluency/memorization? If it’s on meaning, meaning of what? 
• Is learning the procedure or skill an end learning goal and/or is it a means for teaching something else (e.g., Is 

a procedure being used to teach a concept, about the underlying mathematical structure, about the nature of 
mathematical reasoning, etc.?) How is the procedure/skill intended to support students’ understanding of 
this? 

 
Representations, solution methods, and tools  

• With what numbers or objects do students need to be able to use the representation, method, or tool in this 
activity?  

• What kinds of reasoning do students need to do with these ideas? How do the kinds of reasoning support their 
understanding of the intended key ideas? 

• Is learning to use the representation, method, or tool an end learning goal, and/or is the main reason for its 
use to support the learning of some other idea or skill? How is the representation/method/tool intended to 
support their understanding of this? 

• Will there be a focus on multiple representations or methods? If so: Does each student need to know how to 
use multiple methods? Are the multiple methods being used to raise some other concept, relationship, or 
practice? Do students need to understand how the different representations/solutions map onto each other? 

 
Mathematical language (including symbols) and conventions 

• What terms and notation are students expected to learn and use in the activity?  
• Is learning to use this language an end learning goal, and/or is the main reason for its use to support the 

learning of some other idea or skill? How is the use of language intended to support students’ understanding 
of the intended ideas/skills? 

• Do students need to be able to use the language themselves? What are the expectations of this use (e.g., being 
able to define? being able to use, but not define? recognizing instances of it, etc.?)? 

• What are the expectations for precision?  
 

Engagement in mathematical practices and discourse 
• What kinds of reasoning are students expected to do in the activity? (e.g., Will students describe their 

solutions? Do students need to be able to generate explanations? evaluate others’ explanations?) 
• What are the key concepts that need to be included in an explanation? What is the level of detail, precision, 

etc. expected? 
• Is engaging in this practice/reasoning the end learning goal, and/or is the main reason for its use to support 

the learning of some other idea or skill?  
o If the practice/reasoning is to support learning some other idea or skill, what type of explanation 

best supports that understanding? 
o If the practice/reasoning is an end goal, are students just to engage in the practices or also learn 

about the practices? 
• What do students need to learn about the nature of solutions? 
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 Even if the particulars of the intended mathematics are specified, this does not yet reflect 

the level of understanding expected or prioritize these goals for learning. This is the second aspect 

of zooming in on the mathematical terrain: describing the nature of student learning expected. 

Describing the nature of student learning expected includes determining the expected level of 

understanding in this activity (e.g., how “far” students are to move in this activity with respect to 

the intended mathematics), as well as the ultimate depth of treatment. It also includes prioritizing 

the intended mathematics for this activity. Prioritizing includes evaluating the importance of the 

intended mathematics (e.g., what is significant with respect to the discipline; weighing the 

(relative) mathematical significance of ideas, skills, etc.; determining the degree of usefulness to 

future mathematics learning, etc.). Prioritizing also includes determining the “weight” of 

particular mathematical ideas for this activity (e.g., which concepts, representations, or methods 

will be emphasized; which ideas are important for all students to understand and which are fine to 

have mixed progress; which ideas or skills students are supposed to have “mastered” by the end 

of the activity; which ideas are of less concern for this activity because either they are not 

foundational or students will have additional opportunities to work on them; etc.). Finally, 

analyzing the nature of the learning expected includes identifying the “mathematical boundary” 

of the activity (i.e., related mathematics that could arise during the activity, that may or may not 

be taken up) and deciding how these elements will be handled (e.g., which ideas will not 

intentionally be brought up, but would be taken up if they arise; which ideas will be tabled if they 

arise; which ideas will be mentioned in passing, but it does not matter if all students pick up on 

them; which ideas will be pressed on or extended to if students are having an easy time with the 

mathematics originally intended; etc.). 

 Cell C.2(a): Zooming out on the instructional activity.  In this cell, the focusing lens 

turns to the instructional activity, zooming out to see the big picture and zooming in on the 

details. Zooming out on the instructional activity involves two types of analyses: 

• Articulating how the activity is intended to further the broader mathematical learning 

goals; and 

• Determining the mathematical storyline within and across the lesson.  

 The first—articulating how the activity is intended to further the broader mathematical 

learning goals—connects the focusing of the terrain to the activity. Zooming out on the 

mathematical terrain specifies what the more distal goals are; zooming out on the instructional 

activity indentifies how those goals are intended to be furthered through the activity, making 

visible the match between the activity and the broader mathematical learning goals. 
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 The second aspect of zooming out on the instructional activity is determining the 

mathematical storyline within and across the lesson in which the activity is being taught. As 

discussed in Chapter 5, coherence matters for student learning. One way to develop coherence is 

to look for ways to make explicit connections within and across the activities. There are a number 

of different types of mathematical connections that can be made: connections within the same 

lesson (e.g., between activities and homework; across types of problems; across procedures and 

methods); connections to other lessons and topics in the unit; and connections to “real life” and/or 

other subjects. In addition to noting the connections, this analysis also examines the similarities 

and differences with respect to the treatment of the mathematics. It also involves considering how 

the mathematical ideas progress through the lesson and across related activities. 

 Cell C.2(b): Zooming in on the instructional activity. Just as zooming out on the 

instructional activity makes visible the connections between the activity and the broader 

mathematical learning goals, zooming in on the instructional activity makes visible the 

connections between the details of the activity and the particular mathematics they are intended to 

develop. This is done through two related analyses: 

• Determining the instructional intent of the activity and/or its details; and 

• Specifying the main mathematical point/s of each detail of the instructional activity.  

 Determining the instructional intent of the activity and its details uses what is known 

about learners and their intended mathematical trajectory to articulate the general pedagogical 

purpose of the activity and its details. For example, an activity might be intended to help students 

review a particular idea; to explain or clarify a procedure; to introduce, explore, or expose 

students to a new topic; to deepen or assess students’ understanding; or to provoke a common 

misconception. This analysis informs and is informed by the determination of the nature of the 

learning expected that is part of zooming in on the mathematical terrain. A related, second type of 

analysis is specifying the main mathematical point/s of the details, for example, by identifying 

what general idea an example is intended to illustrate or how the problem is supposed to further 

students’ learning of a particular aspect of the terrain. This analysis connects the details of the 

activity to the zoomed-in-on mathematical terrain and is informed by the examinations of the 

details of the instructional activity from the mathematics and learners lenses (Table 11 and Table 

13). 

 Summary. The work of mathematical purposing described in this section (Row C of 

Figure 16) uses a focusing lens to analyze the mathematical terrain and the instructional activity. 

This lens is different than the other two analytic lenses, which are intended to unpack and 

examine the instructional possibilities of the terrain and activity. Focusing on the mathematical 
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terrain and the instructional activity identifies the mathematical priorities for the activity and 

connects the particulars of the activity to the particulars of the intended mathematics by 

specifying what mathematics it is intended to develop and how it is intended to do so. The main 

components of the focusing lens are summarized in Table 16. 

 
Table 16. 
Applying a Focusing Lens to the Mathematical Terrain and the Instructional Activity 
 

Mathematical terrain Instructional activity 
Zooming out: 
Specifying the more distal learning goals to be 
deliberately worked toward through the 
activity 
• Articulating ongoing foundational mathematical 

learning goals to be worked on in this activity 
• Specifying unit learning goals 
 
Sketching the intended curricular trajectory 
through the mathematical terrain  
• Identifying the main mathematics content for all 

strands of mathematical proficiency (knowledge 
& skills; representations, tools, contexts; types of 
problems; etc.) 

• Describing the connections that will be 
emphasized across this content 

• Describing the intended order it will be taught in 
• Knowing what is going to be assessed  
• Having a general sense of the curricular trajectory 

through this terrain in earlier/later grades 
 

Zooming out: 
Articulating how the activity is intended to 
further the broader mathematical learning 
goals  
• Identifying how the activity is intended to 

contribute to developing each strand of 
mathematical proficiency 

• Identifying how the activity is intended to further 
students’ progress on the intended curricular 
trajectory for the focal topic 

• Identifying how this activity is intended to further 
students’ development of the ongoing foundational 
learning goals  

 
Determining the mathematical storyline within 
and across the lesson 
• Making connections to other activities (including 

homework) in the same lesson  
• Making connections to other lessons and topics in 

the unit 
• Making connections to “real life” and other 

subjects 
• Considering the storyline’s progression 
 

Zooming in: 
Specifying the particular aspects of the 
mathematical terrain students are intend to 
learn/develop in this activity  
• Core ideas and connections 
• Procedures and skills 
• Representations, solution methods, and tools  
• Mathematical language (including symbols) and 

conventions 
• Engagement in mathematical practices, reasoning, 

and discourse 
 
Describing the nature of learning expected 
• Determining the (ultimate) depth of treatment of  

the intended mathematics 
• Determining the expected level of understanding 

in this activity  
• Prioritizing the learning of the intended 

mathematics for this activity  
• Identifying the “mathematical boundary” of the 

activity   
 

Zooming in: 
Determining the instructional intent of the 
activity and/or its details 
• To review/practice/reinforce 
• To explain/clarify/make something explicit 
• To introduce 
• To explore 
• To expose 
• To assess  
• To deepen understanding 
• To familiarize 
• To provoke  
 
 
Specifying the main mathematical point/s of 
each detail of the instructional activity  
• Identifying what more general idea it is going to 

serve as an instance of 
• Identifying how it is intended to further students’ 

learning of a particular aspect of the terrain  
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 In sum, the work of articulating the mathematical point, described above, results in a 

detailed understanding of the intended mathematics and how the activity is intended to engage 

students with that mathematics. I now turn to the other main component of mathematical 

purposing (see Figure 15): orienting the instructional activity.  

  
Orienting the Instructional Activity  

 Whereas articulating the mathematical point is analytic work, the work of orienting the 

instructional activity focuses on enactment. Though enactment focused, orienting the instruction 

is not yet about implementing the activity with students. Instead, the work of orienting aims to set 

up or position an activity so that when it is implemented, it is more likely to head toward its 

mathematical point. As discussed previously, I distinguish orienting (i.e., specifying the details of 

an activity so that it is positioned toward the intended mathematics) from steering (i.e., the in-the-

moment, interactive work of navigating the activity’s enactment toward the intended 

mathematics). That being said, the distinction between orienting and steering can sometimes be 

tricky to maintain because orienting often involves specifying teacher moves that are intended to 

occur in the enactment phase. Furthermore, when orienting is done during instruction, a particular 

move can be seen as simultaneously orienting and steering.  

 Although I use the language of “orienting instruction toward the intended mathematics,” 

this is not meant to imply that the first step in mathematical purposing is to articulate the intended 

mathematics and the second to orient instruction toward it. As with all aspects of my framework, 

the direction in which the work occurs (the how) is not specified. It is possible, for example, to 

first detail an activity’s enactment and then analyze what mathematics the activity seems best 

oriented toward.  

 My framework decomposes orienting the instructional activity into three interdependent 

types of work: 

• Specifying the details of the task and the structure of the activity to focus students on 

the intended mathematics; 

• Preparing specific teacher moves that focus students on the intended mathematics; 

and 

• Planning how to use anticipated student responses to further students’ engagement 

with the intended mathematics. 

I describe each in detail below. At the conclusion of the section, I summarize the work of 

orienting the instruction in Table 17. 
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Specifying the Details of the Activity to Focus Students on the Intended Mathematics 

 Chapters 4 and 5 showed that both the details of the task (e.g., numbers used in examples, 

wording of problems, representations presented, etc.) and the structure of the activity (e.g., work 

format, materials available, etc.) shape the mathematics with which students engage during an 

activity. The first type of orienting work is to specify the details of the task itself and the activity 

structure so that when the task is enacted, it is more likely to result in students engaging with the 

intended mathematics. I identify six orienting moves related to the specifying the details of the 

task and the activity structure: 

• Selecting examples, problems, and exercises most related to the intended 

mathematics; 

• Selecting numbers and/or figures from desired cases; 

• Choosing representations, manipulatives, contexts, and tools that highlight the 

mathematical ideas to be made salient; 

• Matching the wording of the task and what counts as an answer to the intended 

mathematical work; 

• Choosing an activity structure that helps students focus on the intended mathematics; 

and 

• Allocating time within and across activities to focus on the intended math. 

 The first three—selecting examples, problems, and exercises most related to the intended 

mathematics; selecting numbers and/or figures from desired cases; and choosing representations, 

manipulatives, contexts, and tools that highlight the mathematical ideas to be made salient—have 

much in common. Each involves trying to encourage students’ engagement with the intended 

mathematical ideas and to prevent bogging down the activity in unintended mathematical work. 

Encouraging engagement with the intended mathematics involves specifying examples, 

representations, numbers, etc. in order to direct students’ attention and work toward the intended 

mathematics. In addition, it involves sequencing and prioritizing these details, as well as ensuring 

that the selected examples, numbers, representations, etc. cover the intended mathematical 

territory. In addition, it involves specifying details that orient away from unintended mathematics, 

for example, by avoiding or modifying examples, numbers, representations, etc. that have 

distracting features or are likely to surface unwanted difficulties. Specific moves include using 

the least complex numbers that still provide access to the intended mathematics in order to avoid 

unwanted computational difficulty, or asking students to use a tool that will help them avoid 

making distracting errors.  
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 The fourth orienting move in this category—matching the wording of the task and what 

counts as an answer to the intended mathematical work—has two parts. The first is specifying 

what will be accepted as an answer and/or solution to the task so that, when students give an 

acceptable answer, they have most likely engaged with the intended mathematics.52 Orienting 

what counts as an answer to the intended mathematics might involve making small adjustments to 

the task’s wording or directions—for example, adding the word “explain” in the written form of 

the task if part of the goal is for students to develop explanations; adding sub-questions to help 

make particular concepts or problem-solving steps more explicit; or instructing students to use a 

particular method (e.g., draw a picture) or representation (e.g., use a number line to solve) if the 

goal is for students to develop their understanding of or skill with a particular concept, procedure, 

or representation. A second, related part of this orienting move is making sure the intended 

mathematical work is not being done for students though the presentation of the task, perhaps by 

leading questions or a representation that can be mindlessly manipulated.  

 Another orienting move in this category is choosing an activity structure that helps focus 

students on the intended mathematics. For example, if one of the learning goals of the activity is 

for students to develop their skills with mathematical explanation, then a partner format might be 

selected so that students have to explain their solutions to another person. Or, if the focus of an 

activity is not on computation, then calculators might be made available so that incorrect 

calculations do not obscure the mathematics the task is meant to make visible. However, if this 

same task were intended to provide students with computation practice, then calculators would 

likely not be provided. 

 A last orienting move in this category is allocating time in relation to the intended 

mathematics. One way to increase the likelihood that students engage with the intended 

mathematics is to distribute the time spent in a lesson so that (if things go according to plan) more 

time will be spent on activities or parts of activities that best engage students with the intended 

mathematical ideas. 

 
Preparing Specific Teacher Moves that Focus Students on the Intended Mathematics 

 The second category of orienting work is preparing specific moves for the teacher to use 

during the activity’s enactment that are designed to focus students on the intended mathematics. I 

have indentified the following practices as part of this category: 

• Designing strategic questions and prompts; 

                                            
52 By “acceptable answer” I do not mean “correct answer.” I mean that students acceptably engaged in the 
task—for example, they tried to solve the problem, answer the question, complete all of the exercises, etc.  
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• Determining what, when, and how to make something explicit; 

• Determining when and how to give, ask for, and press on explanations; 

• Planning to “dwell” in strategic places; 

• Identifying ways of using mathematical language to focus on the intended 

mathematics; 

• Determining how to deploy representations and/or make records in ways that help 

students engage with the intended mathematics; and 

• Deciding what mathematical ideas need to surface during the activity’s enactment 

and making contingency plans to raise them in case they do not otherwise come up. 

 The moves themselves are nothing out of the ordinary, nor are they unique to this 

framework; teachers routinely plan questions and explanations, and choose problems for 

discussion. What is important here is that when these moves are used to orient an activity toward 

the mathematical point, they are designed with the specific intent of strategically focusing 

students on the intended mathematics. There is also some overlap in the list. For example, 

questions can be used to dwell or to make something explicit, or can be included as part of a 

contingency plan. I do not consider this problematic, but it does highlight once again the need to 

keep purpose in mind: When designing teacher moves to orient instruction, it is important to 

detail both the move and the intent of that move. 

 As mentioned earlier, in many cases, the moves identified here are strategies for 

managing the problems discussed in Chapter 5. For example, because moves such as dwelling 

and intentional redundancy can be used to emphasize key ideas and thus help focus students on 

the intended mathematics, or using meaning-focused language can help keep attention on 

meaning, one way to make it more likely that instruction will focus students on the intended 

mathematics is to plan to make these types of moves at strategic moments in the activity’s 

enactment. Planning specifically how and when to make these types of moves can orient 

instruction toward the intended mathematics, helping to avoid the issues that can arise when 

trying to steer instruction toward its mathematical point. For instance, detailing what will be said 

in an explanation can help prevent the use of imprecise mathematical language; scripting targeted 

questions that focus on the main mathematical idea can help prevent asking questions that are 

either too general or too specific. I discuss each of the moves in more detail below. 

 The first move—designing strategic questions and prompts to orient instruction—

requires determining both the purpose of the question and scripting the actual question or prompt. 

The purpose of the question reflects how it is intended to be used to steer instruction. There are a 

number of ways questions can be used to steer instruction, for example: to frame mathematical 
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work; to emphasize and/or probe core mathematical ideas; to launch a task without doing the 

mathematical work for the students; to focus student attention on a key idea during a discussion; 

to intentionally raise a mathematical issue or make a mathematical observation (rather than 

“hoping” something will come up); to make the steps of a problem explicit; or to connect student 

responses back to what they are trying to solve. And there are different ways questions can be 

designed. One strategy for question design is to script a single question or prompt targeted at the 

intended mathematics. Another strategy is to develop a “question package” that elicits some of 

the key mathematical ideas related to a particular problem type. For example, a question package 

around a fraction representation could be: What’s the whole? How many equal parts are there? 

How many of the equal parts are shaded in? What part of the fraction indicates the number of 

equal parts that we are referring to? How do you read that fraction? A question package such as 

this could be used to highlight important ideas about fractions (e.g., attending to the whole, the 

need for equal parts); make correspondences across representations (e.g., between symbols and 

pictures); or model for students the components of a complete explanation. Question packages 

can also be developed to scaffold students’ presentations of their solution methods (e.g., What is 

your answer?; What did you do to get it?; What does ____ mean in the context of the problem?; 

etc.) Another question-design strategy is to develop “cases” of questions, similar to the 

distinguishing of cases of numbers discussed earlier. For example, in an primary-grade activity 

focused on interpreting bar graphs, different cases of question might be: most/least; compare two 

categories; combine categories; total. Developing cases of questions is a useful strategy for 

orienting instruction because the cases are general and thus one set of question-cases applies to a 

whole class of activities, which is easier to remember than many different sets of specific 

questions, yet it provides some structure (e.g., compare with planning to “ask students a variety of 

questions about the graph”).  

 The next orienting move is determining what, when, and how to make something explicit. 

At any point during instruction, there are many things about the mathematics that can be made 

explicit, for example: a mathematical idea (e.g., an instantiation of a concept; steps in a 

procedure; why a method works; how to use notation); connections to students’ prior 

knowledge/experiences (e.g., what is similar and different about what they are learning now to 

what they have learned before); connections between what they are doing and what mathematics 

they are working on (e.g., connections between a student response and concept; pointing out 

when a student is using a new skill); and correspondences and connections (e.g., between 

symbols and representations; between problems). Although all of these can be made be explicit, it 

is certainly not desirable to be explicit about everything. First, too much explicitness would 
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unnecessarily bog down instruction. Second, what is useful to be made explicit depends on the 

students and the intended mathematics. And third, there can be a tension between being explicit 

as a way to focus students’ attention on the intended mathematics and doing the mathematical 

work for students. In addition to detailing what to make explicit, part of the orienting move is 

determining when and how to make it explicit—for example, by the teacher narrating or asking a 

targeted question, perhaps after an idea is brought up by a student or before the class begins the 

activity. Furthermore, the degree of explicitness can also vary (e.g., simply pointing out in 

passing versus explaining with meaning). This too, of course, depends on the intended 

mathematics and on what the particular students will likely be able to understand. 

 The next orienting move in this category—determining when and how to give, ask for, 

and press on mathematical explanations—involves matching what is explained and the nature of 

that explanation to the intended mathematics. This includes determining (based on the 

mathematical point of the activity) when and why it might be strategic for the teacher to give an 

explanation, when it would be useful to ask students to explain, or when a combination of the two 

seems appropriate. In addition, it involves figuring out which aspects of the mathematics need 

explanation. Like explicitness, not everything warrants a detailed explanation. Depending on the 

intended mathematics or the students being taught, for example, it could be useful to focus only 

on the “tricky” part of an explanation. Or, explanations could be used to orient an activity toward 

multiple strands of mathematical proficiency. For example, if an activity involves review 

problems designed mainly to help students practice a previously learned skill, then pushing 

students for more complete explanations could be a way to also work on conceptual 

understanding or reasoning. In addition, it is important to determine the degree of detail and 

precision desired—for example, when and why it is important to elicit a mathematically complete 

explanation from the student, when a sketchy explanation would suffice, and when it would be 

preferable for the teacher to fill in an incomplete argument.  

 Planning to “dwell” in strategic places is the next orienting move in this category. This 

move overlaps with those described above. There are many reasons to dwell during an activity, 

for example: to emphasize, unpack, or practice a core idea; or to spend time on an aspect of the 

mathematics that is likely to be difficult for or confusing to students. And, as shown in Chapters 4 

and 5 and discussed above, there are also many ways to dwell, for example, by the teacher 

repeating explanations or asking multiple students to explain the same idea; by asking “why” 

about some parts of a procedure and not others; by writing things out on the board; or by bringing 

up an error not made by students. Again, there is not time to dwell on all aspects of the intended 

mathematics. In fact, this would be counterproductive, as part of the power of dwelling lies in the 
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fact that more time is being spent on a particular aspect of the mathematics relative to others. 

Because dwelling is being used to orient instruction toward the intended mathematics, as with all 

of the moves discussed here, the intended math should guide decisions about when and on what 

to dwell. For example, it would not likely be strategic to plan to dwell on ideas that students have 

already mastered or on a peripheral idea. 

 The next orienting move is identifying ways of using mathematical language to focus on 

the intended mathematics. As shown in Chapters 4 and 5, there are a number of ways teachers can 

use language to help steer instruction toward the mathematical point, for example: intentionally 

using consistent language in explanations; intentionally repeating key terms; and using meaning-

focused language. This orienting move details such language use—both the purpose of the move 

and how to implement it. 

 The next move on the list—determining how to deploy representations and/or make 

records in ways that help students engage with the intended mathematics—involves moves such 

as: selecting media to use so that all of the relevant mathematical information can be seen and 

connections across them can be made; planning what to record and why (e.g., showing steps in a 

procedure so that a confusing residue isn’t left, or making “think-in-your-head steps” visible); and 

deciding what will be written and why when launching problems (e.g., writing out the question 

along with the key information so students can keep track of what they are trying to find). 

Planning the deployment of representations also involves making decisions about who is going to 

do the deploying, and if it will be students, considering additional factors such as how to support 

them, and what degree of precision and clarity is needed.  

 The last orienting move in this category is deciding which mathematical ideas must 

surface during the activity’s enactment and making contingency plans to raise them in case they 

do not otherwise come up. This move involves first identifying the main points, concepts, and/or 

methods that are imperative to have surface and then developing a way to get these on the table if 

they are not elicited from students. There are many strategies that can be invoked in a 

contingency plan, for example, using targeted questions to refocus students’ work; asking 

students to try a particular method; or demonstrating the unelicited method. This orienting move 

can be in tension with the aim of not doing the mathematical work for the students. Therefore, it 

is also important to consider when it might be better to wait for an idea to come from students 

rather than have the teacher bring it up. 
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Planning How to Use Anticipated Student Responses to Further Students’ Engagement with 
the Intended Mathematics 
 
 The moves in this final orienting category are particularly challenging to design and 

implement because they involve specifying moves in response to what students might do as they 

engage in an activity. Despite this challenge, it is worth including this category of orienting 

moves in the framework for a number of reasons. First, some student responses are predictable. It 

may not be possible to predict which student or students will give a particular response or how 

the response will be worded, but in many cases, it can be confidently said that a particular 

response will be given by some student in the classroom. Second, planning responses to likely 

student productions can help teachers manage very complicated in-the-moment work. 

Responding to students during instruction requires eliciting student thinking, hearing (or seeing) 

the mathematics in their talk (or written work), assessing how it relates to their engagement in the 

intended mathematics, determining an appropriate response, and then giving that response in the 

intended manner—all while simultaneously engaging the whole class and trying to manage 

multiple other purposes. Designing some general types of responses in advance can help navigate 

this complex instructional space and keep the activity more on-track during instruction 

(Fernandez & Yoshida, 2004). However, planning responses to students could cause 

mathematical purposing to conflict with being responsive to students (Zahorik, 1970). Therefore, 

it is important that the planned moves are designed with responsiveness in mind and are not 

forged ahead with at all costs.  

 I have identified the following four orienting moves in this category: 

• Determining how to strategically discuss solutions or “go over” problems in ways 

that focus on the intended mathematics; 

• Planning which aspects of student responses to take up; 

• Determining how to handle likely errors; and 

• Determining how to scaffold and/or help students if they get stuck. 

 The first move in this category—determining how to strategically discuss solutions or 

“go over” problems in ways that focus on the intended mathematics—involves selecting and 

ordering for discussion problems or solution methods that are most related to the intended 

mathematics, as well as determining the intended nature of the discussion. The importance of 

planning for a discussion of student solutions to a complex problem is seen in the literature 

(Chapin, O'Connor, & Anderson, 2003; Smith & Bill, 2004; Smith, Hughes, Engle, & Stein, 

2009). For example, Smith et al.’s Thinking Through A Lesson Protocol asks teachers to think 

about how their orchestration of a class discussion will accomplish their goals, in particular, how 
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the solution paths selected for discussion and their order will “help develop students’ 

understanding of the mathematical ideas that are the focus of [the] lesson” (Smith & Bill, 2004). 

Similar types of thinking (e.g., strategically selecting and ordering the exercises to discuss) can 

orient the “going over” of a worksheet that students have completed. One strategy is to select, in 

advance, a subset of problems that is most focused on the intended mathematical ideas. Because 

students will have already completed the problems on their own, an important aspect of the 

selection process is to consider what learning opportunities are made available to students by 

going over the problems—for example, reinforcing key concepts, making connections across 

solution methods, or giving complete explanations. In addition, it is important to plan the nature 

of the discussion, calibrating the nature of explanation required to the mathematical point. 

 The next orienting move in this category is planning which aspects of student responses 

to try to take up. This can involve planning in advance how to handle particular responses or 

generating more general guidelines to use during the activity. For example, a teacher might plan 

to revoice the parts of student responses that use key vocabulary. Or, a teacher might plan to 

probe student methods that highlight an important aspect of the intended mathematics, and to 

acknowledge but not probe student solution methods that are likely to take the activity into the 

mathematical boundary. To help hear students’ ideas during the lesson, a teacher might also 

determine where in the activity will require listening especially carefully to students in order to 

know exactly how or where to steer. Careful listening around key mathematical ideas can help 

teachers identify kernels of the intended mathematics in student talk or avoid getting bogged 

down in unintended mathematical work. 

 The next move—determining how to handle likely errors—is closely related to planning 

which aspects of student responses to take up. However, it is worth listing separately because 

teachers often handle errors differently than other student responses (Ball, 1997). As with any 

orienting move, when using the handling of errors to orient an instructional activity, decisions are 

made in order to further students’ engagement with the intended mathematics. For example, a 

teacher might plan to simply correct computational errors that are unrelated to the intended 

mathematics, but take up and discuss errors that reflect a possible misconception of an idea 

central to the intended mathematics. However, like all instructional decisions, determining how to 

handle errors is influenced by a number of factors, including who the student is and his or her 

relationship to the teacher and to other students. 

 The final orienting move in this category is determining how to scaffold students and/or 

help students who are stuck. This move is related to the problem discussed in Chapter 5 of 

ensuring that it is the students who are engaged in the intended mathematics. It is very common 
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for teachers to inadvertently reduce the cognitive demand of a task in their efforts to help students 

when they are having difficulties (Stein et al., 2000). One strategy that can be helpful here is to 

plan hints or strategic questions that point students in a productive direction, but do not do the 

work for them.  

 The orienting moves are summarized in Table 17 below. 
 
Table 17. 
Orienting the Instructional Activity 
 

Specifying the details of the task/s and the structure of the activity to focus students on the 
intended mathematics 

• Selecting examples, problems, and exercises most related to the intended mathematics 
• Choosing representations, manipulatives, contexts, and tools that highlight the mathematical 

ideas to be made salient 
• Selecting numbers and/or figures from desired cases 
• Matching the wording of the task and what counts as an answer to the intended mathematical 

work 
• Choosing an activity structure that helps students focus on the intended mathematics 
• Allocating time within and across activities to focus on the intended math 

 
Preparing specific teacher moves that focus students on the intended mathematics 

• Designing strategic questions and prompts 
• Determining what, when, and how to make something explicit 
• Determining when and how to give, ask for, and press on explanations 
• Planning to “dwell” in strategic places 
• Identifying ways of using mathematical language to focus on the intended mathematics 
• Determining how to deploy representations and/or make records in ways that help students 

engage with the intended mathematics 
• Deciding what mathematical ideas need to surface during the activity’s enactment and making 

contingency plans to raise them in case they do not otherwise come up 
 

Planning how to use anticipated student responses to further students’ engagement with the 
intended mathematics 

• Determining how to strategically discuss solutions or “go over” problems in ways that focus 
on the intended mathematics 

• Planning which aspects of student responses to take up 
• Determining how to handle likely errors 
• Determining how to scaffold and/or help students if they get stuck 
 

 

Putting It All Together: A More Detailed Picture of Mathematical Purposing 

 I have conceptualized mathematical purposing as the interaction of two main types of 

work: articulating the mathematical point and orienting the instructional activity. Articulating the 

mathematical point is analytic work, which involves applying a mathematics, a learners, and a 

focusing lens to both the mathematical terrain and the instructional activity. Through this trifocal 

analysis, the mathematical terrain is unpacked and mathematical goals for student learning—both 

distal and proximal—are specified; the instructional activity is examined and the mathematical 
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point of its details determined; and the connection between the activity and the terrain made 

explicit. Orienting the instructional activity is more enactment focused, specifying the details of 

instruction so that the activity is better positioned toward the intended mathematics. Articulating 

the mathematical point and orienting the instructional activity are interdependent and mutually 

informing and, together, result in a deep and nuanced understanding of the mathematical learning 

goals of a given activity, an understanding of how the activity is intended to engage students with 

that mathematics, and a detailing of the activity that matches its design to the intended 

mathematical point.  

 The framework presented in this chapter begins to decompose what is involved in doing 

the work of mathematical purposing. The main categories of work included in the framework are 

summarized in Figure 17. Figure 17 elaborates the basic architecture described at the beginning 

of the chapter (Figure 15). 
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Figure 17. The main components of the work of mathematical purposing. 
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Discussion of Framework 

 Before turning to the relationship of MKT and the work of mathematical purposing in the 

next chapter, I step back to make some general comments about the framework. I first recap some 

of its significant features and briefly describe some potential contributions and uses.53 I then 

discuss the limitations of this work. 

 
Significant Features  

 One of the significant features of this framework is that, by taking a distributed 

perspective toward the design of instruction, it accommodates the range of lesson-design 

processes. For example, the framework applies when teachers create their own instructional 

activities as well as when teachers closely follow a textbook lesson. As a result, the framework 

does not privilege the classic direction depicted in the liner model of planning (i.e., (1) specifying 

behavioral objectives; (2) choosing appropriate learning activities; (3) organizing and sequencing 

the chosen activities; and (4) selecting evaluation procedures). Instead, the framework names the 

work without specifying an order in which it must occur or by whom (or what) it should be done. 

This means that it is “legal” for a teacher to first select an activity from a textbook and then 

analyze the activity to articulate the intended mathematics. In fact, this was the direction that was 

often taken by experienced teachers in the planning literature, which means the framework can be 

mapped onto what many teachers do in practice. 

 Another significant feature of the framework is its explicit attention at the activity level to 

all of the strands of mathematical proficiency and to the development of mathematical practices. 

That mathematical learning goals are nested and of different grain sizes was a major theme in the 

literature. As described in Chapter 5, attending to goals of different types and grain sizes can be 

challenging. Most teachers in my study specified topic-related mathematical learning goals and 

did not explicitly mention goals such as developing students’ skills with explanations or using 

representations, even if they may have engaged students with these in their lesson. The 

framework’s explicit attention to broader, ongoing mathematical goals at the activity level aims to 

bring these important ongoing goals to the foreground and to encourage the development of all 

strands of mathematical proficiency in every activity. 

 This points to another significant feature: The framework is mathematics focused, yet not 

topic specific. Mathematics standards documents are typically organized by content domain (e.g., 

number and operations, geometry, algebra, etc.), with perhaps some standards that cut across 

                                            
53 In Chapter 8, I explore potential uses of the framework in more detail, in particular, as a tool that helps 
mediate connections between research, practice, and problems in mathematics education scholarship (Silver 
& Herbst, 2007).  
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topics (e.g., NCTM’s (2000) Process Standards). Similarly, analyses of students’ mathematical 

thinking and of the mathematical terrain in the research literature (e.g., Leinhardt, Putnam, & 

Hattrup, 1992; Lester, 2007) also tend to focus on specific topics. At the other end of the 

spectrum is the instructional design literature. The instructional design frameworks for 

articulating student learning goals are not topic specific (they are not even mathematics specific) 

and are often organized by type-of-learning hierarchies (e.g., Bloom’s (1956) taxonomy or 

Gagné’s (2005) domains of learning). Because these hierarchies are not mathematics specific, it 

can be difficult to extract a focus on mathematical meaning. In many cases, student learning 

objectives are identified through a “learning-task analysis” or an “information processing 

analysis,” which involves working backwards from the end task (e.g., being able to subtract 

multi-digit whole numbers) to name the essential or supporting prerequisite tasks (Gagné et al., 

2005). Although this method is intended to be applicable to developing concepts, dispositions, 

and practices, learning outcomes not focused on skills are more difficult to specify and can 

become proceduralized in the process (Smith & Ragan, 2005).  

 Although the overall architecture of my framework may be applicable to the teaching of 

different subjects, its insides are clearly focused on mathematics. However, it is not a pure 

content analysis: The content is unpacked and analyzed in order to teach it to learners. This is 

reflected, for example, in the inclusion of “distinguishing cases and directions that can be 

learned” as part of the work of applying a mathematics lens to the mathematical terrain. Naming 

this as part of the work of applying a mathematics lens to the mathematical terrain signals that the 

mathematical analysis of the terrain is not strictly from a disciplinary perspective, but is an 

analysis of the mathematics for teaching. The framework also reflects ways of knowing and 

working on mathematics that the mathematics education literature has identified as important. 

 And, unlike standards documents or the instructional-design hierarchies, the central idea 

that is highlighted through my framework’s architecture is the connection between the 

instructional activity and the mathematics it is intended to teach. For example, the details of the 

task are bundled with their specific purposes that link them to specified mathematical learning 

goals. This is true for teacher moves as well; teacher moves are tied to their mathematical point. 

Highlighting this connection might be useful for those beginners who are so concerned about 

what they are going do and say when teaching that explicit attention to student learning slips into 

the background. 

 The framework also takes a slightly different cut on the work of teaching. A typical 

division in teacher education is between preactive and interactive phases (Jackson, 1968); or 

between planning, enactment, and reflection. My framework offers the following (non-
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comprehensive) divisions of the work of teaching: mathematical purposing (which is further 

divided into articulating the mathematical point and orienting the instructional activity) and 

steering the instruction toward the mathematical point. Steering coincides with the 

interactive/enactment phase of teaching; but mathematical purposing could happen at any time. 

Within mathematical purposing, the division is between analysis and setting up for enactment. 

Thus, the distinctions in my framework reflect different types of work, not different times when it 

happens. However, because much of the work of mathematical purposing can be done during the 

preactive phase of teaching, it may be a strategic site for teacher education. 

 As discussed in Chapter 1, another way to slice the work of teaching is to parse it into 

instructional routines and practices such as leading a discussion, going over homework, or posing 

a problem (Ball et al., 2009; Franke & Chan, 2007; Franke et al., 2007; Grossman, Hammerness, 

& McDonald, in press; Kazemi, Lampert, & Ghousseini, 2007; Lampert & Graziani, 2009; Smith 

et al., 2009). Such “discrete general practices” can be contrasted with “cross-cutting practices” 

such as eliciting student thinking, giving students feedback, and cultivating norms (Teacher 

Education Initiative, 2009). Cross-cutting practices do not occur in only a particular instructional 

format. Teaching to the mathematical point is an example of a cross-cutting practice, as is 

mathematical purposing. However, mathematical purposing can be productively worked on as 

part of a discrete general practice: planning a lesson. 

 
Potential Contributions and Uses  

 The major contribution of the framework is the conceptualization of a central aspect of 

mathematics teaching practice: identifying the mathematical goals of an activity and orienting 

instruction toward those goals. It is not the idea that teaching should have instructional goals or 

that there should be a match between an activity and the intended mathematics that is the 

contribution of the framework. These are not new ideas; they are essentially the definition of 

teaching. In many cases, however, the work of determining the mathematical goals of an activity 

and how the activity is designed to move students toward those goals is left implicit. Thus, what 

this framework does is bring the work of mathematical purposing into the foreground. The overall 

conceptualization of the work of mathematical purposing (Figure 17) may, in fact, be applicable 

to the “content purposing” of instruction in other subject areas. For example, instead of applying 

a mathematics lens to the mathematical terrain and the instructional activity, the lens and terrain 

would reflect the respective content area. 

 In addition to providing an overall conceptualization of mathematical purposing, the 

framework begins to further parse what is involved in doing this work. Such decompositions of 
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practice are critical for both teacher education and future research (Grossman & McDonald, 

2008). The framework for mathematical purposing presented here also provides much needed 

language for teaching practice. Even if the language used in the framework does not live beyond 

this dissertation, it has helped identify aspects of teaching practice that warrant naming and 

further research. Just as mathematical terms and symbols compress mathematics concepts into 

objects that can more easily be manipulated and operated upon, naming the work of mathematical 

purposing compresses a set of important ideas and practices into an object that can be more easily 

studied. 

 The types of decompositions of practice found in this framework are also needed to teach 

beginners to do the work of teaching. In addition to articulating practices that beginning teachers 

need to learn to do, the framework can be used as a lens for studying or reflecting on teaching. It 

could be used to develop teachers’ skill at interpreting curriculum materials and for seeing 

“curriculum potential” (Ben-Peretz, 1990). The framework could also inform the design of 

educative curriculum materials (Davis & Krajcik, 2005) by providing additional insight into the 

type of supports curriculum designers might include to help teachers engage in mathematical 

purposing.  

 
Limitations 

 One major limitation is the framework’s manageability. The decomposition of practice is, 

by definition, detailed and intricate. However, extensive detailing can interfere with usefulness 

for and usability in practice (Ball et al., 2009). As I parsed each section of the framework, it 

became long lists of things to do and consider, and it is unclear how useful that format is for 

teacher education or research. In addition, despite the length of the lists, the framework is still not 

exhaustive. Thus, part of the challenge of this kind of work is determining the strategic aspects to 

unpack and the right grain size of detail so that it is meaningful and can be acted upon in practice, 

yet does not become an unwieldy laundry list of things to remember. To help mediate this issue, I 

tried to make visible an overarching architecture for the framework (Figure 17), in hopes that 

some coherency would support understanding and remembering the details. Whether this helps 

remains to be seen. And, even if it helps, the architecture has its own limitations. For example, the 

matrix representation does not depict the interactions across cells that are central to the 

conceptualization. 

 Another limitation is that, although the framework aims to describe the work of 

mathematical purposing through decomposition, it does not attempt to characterize the quality of 

that work. That is, it does not describe how one would know if mathematical purposing is being 
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done well. For example, simply doing everything in the framework is not enough: the 

mathematical terrain and the activity can be unpacked with different degrees of sophistication and 

understanding; specified learning goals can be more or less central; connections across activities 

can be differently compelling; and orienting questions can be more or less strategically designed. 

Certainly, an articulation of the work is an important first step, but there is much more to be to 

done to describe what it means to do this work well. Being able to describe the quality of 

mathematical purposing has implications for future research that might, for example, try to 

measure mathematical purposing to study whether there is a relationship between mathematical 

purposing and other aspects of mathematics teaching and learning, such as student achievement 

or the mathematical quality of instruction.  

 Another limitation arises from my adoption of a distributed perspective on the design of 

instruction. While this perspective does enable the development of a framework for describing 

what the work is separate from how that work gets done, in practice the how is important. The 

work of mathematical purposing will be differently distributed in different teaching contexts. But 

as mentioned in Chapter 2, the individual matters in theories of distributed cognition (Salomon, 

1993), and, in any context, the teacher is ultimately responsible for coordinating the available 

resources and for steering the instruction toward the mathematical point. Thus, regardless of the 

distribution of work, to steer instruction toward the mathematical point, the teacher must have 

some understanding of the mathematical point. The specific aspects of the work that have to be 

done by the teacher to develop that understanding and the knowledge required will reflect of the 

distribution of work in the particular context. Furthermore, I hypothesize that there are likely 

some aspects of mathematical purposing that, no matter what the context, have to be done by the 

teacher and not distributed to other resources. Although important to the questions at hand, these 

issues are beyond the scope of the present study.   

 A final limitation is the applicability of the framework beyond this study. Although a 

product of iterative analyses of the literature and the data, it is likely that I missed key aspects of 

the work and that the framework is too narrow. As mentioned in Chapter 3, it might too heavily 

reflect Everyday Mathematics or the teacher education program in which the preservice teachers 

participated. For example, maybe the lack of explicit attention to mathematical practices as 

learning goals was a reflection of the spiral curriculum (or teachers’ perceptions of it as 

disconnected), or perhaps the teacher education program did not emphasize teaching toward goals 

of a larger grain size. In other words, although the work of mathematical purposing will certainly 

be differently distributed in different teaching contexts (i.e., the how), there may be also be 

components of the work (i.e., the what) that vary across contexts. Studying teaching in different 
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contexts could make these aspects of the work visible and further develop the framework 

presented here. 

 In the next chapter, I turn to the relationship between mathematical knowledge for 

teaching (MKT) and mathematical purposing. To explore this relationship, I apply the domains of 

MKT (Ball et al., 2008) to the framework for mathematical purposing described above. I then 

present a case from the data to further illustrate the knowledge demands of mathematical 

purposing. 
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CHAPTER SEVEN: 
THE RELATIONSHIP BETWEEN MATHEMATICAL KNOWLEDGE FOR 

TEACHING AND THE WORK OF MATHEMATICAL PURPOSING 
  

Introduction 

 This chapter explores the relationship between mathematical knowledge for teaching 

(MKT) and the work of mathematical purposing. The analysis presented here provides two types 

of insight. First, it illustrates the ways in which MKT is drawn upon in the work of mathematical 

purposing and the different types of knowledge each component of the framework entails. 

Second, the analysis contributes to the development of the theory of MKT by further elaborating 

the structure and content of MKT and illustrating the use of MKT in practice. I begin by 

describing in more detail the domains of mathematical knowledge for teaching proposed by Ball 

et al. (2008). I next map the domains onto the framework for mathematical purposing by 

analyzing which domains of MKT each aspect of the work draws upon. I then illustrate the MKT 

demands of mathematical purposing with a case from the data. 

 
Domains of Mathematical Knowledge for Teaching 

 As described in Chapter 1, the current framework for MKT distinguishes six domains of 

mathematical knowledge for teaching (Ball et al., 2008). Four of the domains have been 

empirically tested and are better conceptualized: common content knowledge (CCK); specialized 

content knowledge (SCK); knowledge of content and students (KCS); and knowledge of content 

and teaching (KCT). Two provisional domains are at earlier stages of conceptualization: horizon 

content knowledge (HCK) and knowledge of content and curriculum (KCC). CCK, SCK, and 

HCK are types of subject matter knowledge (requiring no knowledge of students or pedagogy); 

whereas KCS, KCT, and KCC are amalgams of subject matter knowledge and pedagogical 

knowledge and are thus types of pedagogical content knowledge (Shulman, 1986). I describe 

each domain in more detail below. 

 Common content knowledge (CCK) captures mathematical knowledge that is used in the 

work of teaching in ways that are in common with how mathematics is used in other professions. 

This category includes, for example, being able to do arithmetic, identify geometric shapes, and 

solve algebraic equations. It is knowledge that teachers use, but is not specific to the work of 

teaching.  
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 Specialized content knowledge (SCK) is content knowledge that is tailored for the 

specialized uses of mathematics that come up in the work of teaching, and is thus not commonly 

used in those ways by most other professions or occupations. Examples in this category include 

explaining why common arithmetic procedures work, representing mathematical concepts in 

multiple ways, and analyzing nonstandard solution methods.   

 Horizon content knowledge (HCK) is “a kind of elementary perspective on advanced 

knowledge” (Ball & Bass, 2009). It includes understanding which ideas being taught now are 

foundational for later topics, considering whether the way an idea is currently portrayed will 

maintain its mathematical integrity as more sophisticated mathematical ideas are introduced, and 

recognizing how a current topic is an instantiation of something that was taught before or will be 

taught later. 

 Knowledge of content and students (KCS) is content knowledge intertwined with 

knowledge of how students think about, know, or learn the particular content. It is used in tasks of 

teaching that involve attending to both the specific content and something particular about 

learners. Examples include identifying common student misconceptions and determining a 

problem’s difficulty relative to a particular stage in students’ mathematical development.    

 Knowledge of content and teaching (KCT) is content knowledge intertwined with 

knowledge of how to teach particular content. It is used for tasks of teaching that involve 

attending to both the specific content and specific methods of teaching it to others. This category 

includes knowing how to choose and sequence examples and how to guide student discussions 

toward accurate mathematical ideas.  

 Knowledge of content and curriculum (KCC) is provisionally classified as a form of 

pedagogical content knowledge; however, Ball et al. do not offer much by way of definition for 

the types of knowledge and reasoning the domain includes. They instead defer to Shulman and 

colleagues’ work, in particular, Grossman (1990).  

 In Shulman and colleagues’ early conceptualizations of forms of teacher knowledge, 

knowledge of curriculum was often separated from pedagogical content knowledge (Shulman, 

1986, 1987; Wilson et al., 1987). Shulman (1986) defines “curricular knowledge” as an 

understanding of the “curricular alternatives available for instruction” (p. 10). In addition to 

knowledge of the range of programs and materials for teaching a subject, Shulman includes 

“lateral curriculum knowledge” and “vertical curriculum knowledge,” which are, respectively, 

familiarity with content taught simultaneously in other subject areas and with topics in the same 

subject taught at earlier and later grade levels. Grossman and Richert (1988) also include 

“awareness of the prerequisite knowledge for studying particular content” as part of curricular 
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knowledge. In later publications, curricular knowledge was included as part of pedagogical 

content knowledge (Grossman, 1990, 1991; Grossman & Richert, 1988).  

 Grossman (1990, 1991) identifies four components of pedagogical content knowledge: 

conceptions of the purposes for teaching particular subject areas; knowledge and beliefs regarding 

student understanding; curricular knowledge; and knowledge of instructional strategies and 

representations for teaching particular topics. Comparing Grossman’s components with the 

domains of MKT, “knowledge and beliefs regarding student understanding” would be part of 

knowledge of content and students (KCS) and “knowledge of instructional strategies and 

representations for teaching particular topics” part of knowledge of content and teaching (KCT). 

Grossman’s “curricular knowledge” reflects Shulman’s description above, and “conceptions of 

the purposes for teaching a particular subject” includes “teachers’ beliefs about what is most 

important for students to know, understand, and appreciate about specific content, and their 

understanding of the interrelationship of topics within a subject” (Grossman, 1991, p. 209). Thus, 

it seems that both of these components—conceptions of the purposes for teaching particular 

subject areas and curricular knowledge—would be considered part of Ball et al.’s knowledge of 

content and curriculum (KCC). 

 The domains of MKT and their relationship to Shulman et al.’s subject matter knowledge 

and pedagogical content knowledge are shown in Figure 18.  

 

 

 
 

Figure 18. Domains of mathematical knowledge for teaching.  
Adapted from Ball et al. (2008). 
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MKT Demands of Mathematical Purposing 

 As described in Chapter 3, the approach to studying mathematical knowledge for 

teaching utilized by Ball and colleagues first studies the work of mathematics teaching and then 

analyzes the mathematical knowledge demands of that work (Ball & Bass, 2003; Ball et al., 

2008). Therefore, to use this same practice-based approach to investigate the mathematical 

knowledge demands of identifying mathematical goals and using them to design instruction, I 

began by identifying the work of what I came to call “mathematical purposing.” I then analyzed 

the knowledge or kinds of reasoning entailed in that work. In this case, the analysis of the work 

yielded the framework discussed in Chapter 6.  

 To analyze the mathematical knowledge entailed by the work of mathematical purposing, 

I analyzed this framework using the MKT domains described above. To do this, I mapped each 

component of the framework to the domain of MKT upon which it most heavily draws. Of 

course, because the components of the mathematical purposing framework are interdependent, 

each domain of MKT can be seen as being utilized in every aspect of the work. However, this 

amounts to saying that the work of mathematical purposing draws upon all of the domains of 

MKT, which is true, but not particularly useful. Therefore, for purposes of analysis, I considered 

each component, and the decomposed practices within each component, separately. Figure 19 

shows the results of this analysis. I discuss these findings in more detail below. 

 

 

 

 



 222 

 

 
 

Figure 19. Domains of MKT drawn upon in the work of mathematical purposing. 

 
MKT Demands of Applying a Mathematics Lens  

 Applying a mathematics lens to the mathematical terrain and to the instructional activity 

does not require knowledge of students or pedagogy. Therefore, applying a mathematics lens 

draws upon knowledge in the subject-matter-knowledge half of Figure 18. A closer analysis of 

the components of mathematical purposing shows that specialized content knowledge (SCK) is 

the prominent domain in use. When applying a mathematics lens to the mathematical terrain, 

much of the work involves identifying and explaining core concepts, procedures, and 

representations—all work that relies heavily on SCK. Because a mathematics lens is being 

applied to the mathematical terrain in the service of mathematical purposing, the work goes 

beyond simply recognizing ideas that are related to a topic (which might draw only on common 

content knowledge).  
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 A few aspects of the work of applying a mathematics lens to the mathematical terrain 

also seem to draw upon common content knowledge (CCK) and horizon content knowledge 

(HCK). CCK might be all that is used to describe the steps of procedures, how to use a 

representation or tool, and recognize or generate situations when a particular skill or procedure 

would be used. HCK might be needed (along with SCK) to recognize concepts for which a topic 

is foundational and to unpack the relationship to big mathematical ideas.  

 Similar arguments can be made about the predominant use of specialized content 

knowledge in the work of applying a mathematics lens to the instructional activity. Looking for 

potential opportunities to work on different aspects of the terrain in the instructional activity 

draws upon SCK to do the mathematical analysis of unpacking the activity to match it to various 

mathematical options. The detailed analysis of the mathematics made available in representations, 

procedures, explanations, and examples also draws upon SCK because it is not yet analyzing how 

students will most likely interpret them or reasoning about which would be the best fit for a 

particular instructional purpose. Instead, the mathematics-lens analysis of the details of the 

instructional activity examines aspects such as the coverage of the terrain by a set of exercises, 

which mathematical ideas are most visible in a particular representation, the precision of the 

mathematical language in an explanation, whether the use of a procedure draws attention to its 

underlying concepts, or to what parts of the terrain the numbers in a problem might lead. 

Applying a mathematics lens opens up the mathematical options (i.e., what could be worked on) 

and evaluates the mathematical features of these options. There are also a few types of analyses 

for which horizon content knowledge might also be drawn upon when analyzing the details of an 

instructional activity with a mathematics lens: analyzing precision and distortion, and analyzing 

whether a particular detail foreshadows upcoming ideas. 

 
MKT Demands of Applying a Learners Lens 

 Applying a learners lens to the mathematical terrain and to the instructional activity, by 

definition, requires knowing about students and knowing about content. Thus, it is not surprising 

that knowledge of content and students (KCS) is one of the domains of MKT most drawn upon in 

the learners-lens analysis. Knowledge of students’ common misconceptions, typical solutions 

methods, and likely difficulties are all part of KCS and are needed when unpacking the terrain 

and the instructional activity from the perspective of the learner. In fact, I originally thought KCS 

would be the only domain utilized in the learners-lens analysis. However, mapping the MKT 

domains onto the mathematical purposing framework revealed that specialized content 

knowledge also plays an important role in developing a learners perspective on both the 
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mathematical terrain and the instructional activity. In particular, SCK is drawn upon when 

analyzing the complexity of the mathematics for learning—for example, examining how other 

mathematical topics might interfere with or support learning about the focal topic. Analyzing the 

similarities and differences across mathematical contexts does not require knowledge of students; 

knowing which of these differences actually impact student learning is what requires KCS. A 

similar use of SCK to unpack what could matter from the learners’ perspective along with KCS to 

determine which of those things do matter can also be seen in the analysis of the details of the 

instructional activity. 

 
MKT Demands of Applying a Focusing Lens  

 Applying a focusing lens involves zooming out on the mathematical terrain to specify 

bigger grain-sized learning goals and to sketch the intended curricular trajectory and zooming out 

on the instructional activity to match those goals to the activity and to determine the lesson’s 

mathematical storyline. Zooming in, applying a focusing lens specifies the learning goals related 

to particular aspects of the focal topic and determines the mathematical point of the activity’s 

details. Doing these analyses requires knowledge of what is taught at particular grade levels, as 

well as the ability to construct and prioritize coherent learning goals of appropriate size and 

importance in light of the unpacking of the mathematical terrain and instructional activity through 

the mathematics and learners lenses. Applying a focusing lens thus draws upon vertical curricular 

knowledge (Shulman, 1986) and conceptions of the purposes for teaching particular subject areas 

(Grossman, 1988, 1990). I therefore have categorized the work of applying a focusing lens to the 

mathematical terrain and instructional activity as demanding knowledge of content and 

curriculum (KCC). I did find two examples of work that draw upon SCK and possibly HCK: 

Prioritizing the intended mathematics involves articulating mathematical significance (with 

respect to the discipline), which only demands subject matter knowledge (not pedagogical content 

knowledge). 

 
MKT Demands of Orienting the Instructional Activity  

 Finally, the work of orienting the instructional activity toward the intended mathematics 

draws primarily upon knowledge of content and teaching (KCT). Strategically selecting 

examples, developing strategic questions, determining when to press on student explanations, and 

selecting student responses to take up all involve the design of teaching moves to match specific 

instructional purposes. Doing this requires knowing about teaching and knowing about the 

content. 
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Contributions to the Developing Theory of MKT 

 As discussed above, analyzing the framework for mathematical purposing in light of the 

domains of MKT provides insight into the types of mathematical knowledge and reasoning 

required to do this work. At the same time, this analysis contributes to better understanding 

mathematical knowledge for teaching by proposing elaborations of some of the domains and 

suggesting ideas about how MKT might be developed in practice. I discuss some of the 

contributions to the ongoing development of the practice-based theory of MKT below. 

 
Identifying KCT and KCC  

 One of the contributions of this analysis is an elaboration of the domains of knowledge of 

content and teaching and knowledge of content and curriculum. With respect to knowledge of 

content and teaching, the three main categories of work in orienting the instructional activity—

specifying the details of the task and structure of activity to focus students on the intended 

mathematics; preparing specific teacher moves that focus students on the intended mathematics; 

and planning how to use anticipated student responses to further students’ engagement with the 

intended mathematics—are already reflected in Ball et al.’s work. However, the more detailed 

unpacking of these categories provided in the framework for mathematical purposing suggests 

more specific ways that KCT is used in practice.  

 Knowledge of content and curriculum, on the other hand, is underspecified in Ball et al.’s 

work. Thus, analyzing the MKT demands of mathematical purposing contributes to the 

development of the theory of MKT by identifying possible components of KCC. Building on 

Shulman’s and Grossman’s work, my analysis suggests the following as types of knowledge, 

reasoning, and dispositions included in the domain of KCC: 

• Knowledge of foundational mathematical learning goals (including knowledge of the 

strands of mathematical proficiency) and the instantiation of those goals at particular 

grade levels; and the ability to determine how they can be worked toward in 

particular activities; 

• Knowledge of productive curricular trajectories through the mathematical terrain for 

different topics [including the main content taught (e.g., concepts, skills, procedures; 

representations and tools; types of problems); connections across this content; the 

typical order in which it is taught; what is assessed; etc.]—detailed for the grade 

being taught, more general for grades above and below; 

• The ability to develop a coherent mathematical storyline across instructional 

activities and lessons; 
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• The ability to specify coherent mathematical learning goals of different types and 

grain sizes appropriate for a particular instructional activity and to understand how 

the details of the instructional activity are intended to move students toward those 

goals; 

• The ability to prioritize mathematical learning goals and determine the appropriate 

depth of treatment and expected level of understanding for a given instructional 

activity;  

• The ability to identify the “mathematical boundary” of an instructional activity; and  

• The disposition that the ultimate goal of mathematics instruction is to develop 

mathematical proficiency in all students and that mathematics instruction should aim 

to deliberately move students toward specified mathematical learning goals.  

 
Using SCK to Develop a Learners’ Perspective  

 The analysis of the MKT demands of mathematical purposing also has implications for 

how mathematical knowledge for teaching might be developed in practice. One of the interesting 

results of this analysis is that applying a learners lens to the mathematical terrain and the 

instructional activity does not depend only on knowledge of content and students; some aspects of 

the work draw more heavily on specialized content knowledge. This means that it is possible to 

begin to develop an understanding of the learners’ perspective of the mathematical terrain and the 

instructional activity without having extensive knowledge of students’ mathematical thinking. In 

fact, engaging in these types of analyses is likely to help develop knowledge of content and 

students, suggesting a way that subject matter knowledge might be “transformed” into 

pedagogical content knowledge (Wilson et al., 1987). 

 In the next section, I illustrate the knowledge demands of mathematical purposing using a 

case from the data. 

 
A Case of Knowing and Using Mathematics in Mathematical Purposing:  

What is the Mathematical Point of the Clock? 
 

 Paige taught a fourth-grade lesson on representing, adding, and subtracting fractions on a 

clock face. She had a difficult time teaching the lesson, as evidenced by her self-reflection in the 

interviews and by the mathematical issues that arose during instruction. At the heart of the 

difficulties seemed to be a mismatch between her instructional activities and her goals for student 

learning—that is, she was unclear about her mathematical point, in particular, the mathematical 

point of the clock. 
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 I begin by describing Paige’s lesson. Throughout this description, I make some comments 

about the mathematics made available by different problems and representations; however, I do 

not discuss Paige’s purposes or analyze the quality of the instruction. This analysis occurs in the 

subsequent section where I use the framework for mathematical purposing to analyze Paige’s 

articulation of the mathematical point of the clock.  

 
Description of Paige’s Fourth-Grade Lesson on Clock Fractions 

 Paige begins her mathematics lesson with her classroom’s usual warm-up routine: a Math 

Message followed by Mental Math problems. She selected both the Math Message problem (How 

many minutes are in a half an hour, a fourth of an hour, and a third of an hour?) and the Mental 

Math problems (“fraction of” problems—e.g., 
  

€ 

1
2

 of 12; 
  

€ 

1
6

 of 12; 
  

€ 

1
4

 of 60) to ready her fourth-

grade students for the main work of the day, which involves using a clock face to represent, add, 

and subtract fractions. Paige makes this connection across the lesson’s activities explicit to her 

students as she transitions from Mental Math to the first clock activity: 

Paige  All right you guys, let’s start something. We’re going to be working with 
fractions on the clock today. Okay, and if you were thinking about it, the 
numbers that I asked you [during Mental Math], I asked you numbers with 
twelve in the denominator and sixty in the denominator. Why do you think I 
did that? Why’d I do that? Lyle, do you know? 

Lyle Because when the big hand is on the twelve that means an hour has passed 
and that’s sixty minutes. 

Paige Okay, so Lyle said that we’re looking at the clock and if the, the hand’s on 
the twelve or an hour has passed or the clock is broken off into twelve parts, 
right? And then the little parts in between, okay. And he said that there’s 
sixty minutes in an hour. Okay, so we’re thinking in time here. And that’s 
why we did those fractions because we’re going to be working with time 
today. 

 
 Paige’s lesson is based on the fifth lesson in a 13-lesson unit on fractions from the second 

edition of Everyday Mathematics. The textbook’s stated objectives for the lesson, entitled Clock 

Fractions, are “to model fractions on a clock face; and to use a clock face to help add and subtract 

fractions” (Bell et al., 2004b, p. 535). In addition, three “main objectives” are listed in the front 

matter of the unit: (1) to provide reminders, review, and practice of fraction ideas introduced 

earlier; (2) to develop good understanding of equivalent fractions; and (3) to provide informal 

activities related to chance and probability (p. 498). Also listed in the front matter are “learning 

goals” for the unit, two of which are specifically associated with the clock fractions lesson. The 

first—add and subtract fractions—is a “beginning goal,” and the second—identify fractional parts 

of regions—is a “secure goal” (p. 500). 
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 The first of the textbook’s clock fractions activities is called Representing Fractions on a 

Clock Face. The teacher’s guide suggests displaying shaded sectors of a clock face (Figure 20) on 

the overhead and asking students to write the corresponding fractions on their slates. The given 

examples include both unit fractions (
  

€ 

1
2

,
  

€ 

1
3

,
  

€ 

1
4

, and 
  

€ 

1
6

) and non-unit fractions (
  

€ 

2
3

,
  

€ 

5
6

, and 
  

€ 

5
12

), 

with the expressed direction to the teacher to “include examples of sectors that do not begin at 

12:00” (p. 536). 

 
Figure 20. Blank clock face for clock fractions. 

Adapted from Grade 4 Everyday Mathematics Teacher’s Lesson Guide  
(Bell et al., 2004b). 

 

 Based on a suggestion from her cooperating teacher, Paige modifies the activity. Instead 

of displaying shaded sectors and asking students to name the fraction, Paige distributes small 

manipulative clocks to pairs of students and asks them to display various fractions using the 

moveable hands, beginning with 
  

€ 

1
2

. Students hold up their clocks, Paige checks their answers, 

and then asks them to show 
  

€ 

1
2

 a different way. She projects blank clock faces (Figure 20) on the 

SMART Board and records their answers.  

 The next fraction Paige poses is 
  

€ 

1
4

, which she again asks students to show in two ways. 

She checks students’ displayed clocks and then records the answer on the board, first connecting 

the fraction to minutes: 

Paige So one-fourth on the clock, how many minutes is that? 
Students Fifteen. 
Paige Fifteen minutes, okay. So we had a hand here and can go like this. [Draws 

hands at 12 and 3.54] How many spaces are in between? Or, how many, yeah, 
how many spaces?  

Students Three. 

                                            
54 Although the hours on the clock faces are not numbered, for ease of description, I indicate the position of 
the hands or partitions by the number of the hour they point to. 
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Paige Three. Does everybody see that? Okay. So there’s three spaces in between 
here to the three. And when I asked if you could show other ways I saw some 
people had, let’s just erase this, so some people had their answers here 
[erases, and redraws hands at 3 and 6] or they’d have this one gone and your 
answers, oops, would be here [erases, and draws hands at 6 and 9]. So your 
answer, your hands could actually be anywhere as long as there are like, let’s 
say, two dots in between. So it could have been here to here [erases, and 
draws hands at 1 and 4], right? Is that still one-fourth of your clock?  

Students Yeah. 
Paige How many minutes are in between here? How many minutes are in between? 
Students Three/Fifteen. 
Paige Fifteen minutes, right? Because each spot is worth five. So five, ten, fifteen 

minutes. 
  
 On the surface, the textbook’s version and Paige’s modification seem similar, as both 

activities have students representing fractions with clocks. But there are important differences 

that impact the mathematics made available by each. One difference is that the two activities go 

in different “directions”: In the textbook activity, the shaded sector is given, and students identify 

the fraction it represents; in Paige’s version, the fraction is given, and students represent it on the 

clock. Both directions are needed for the upcoming work on addition and subtraction; however, 

identifying the shaded region is more mathematically complex than representing a given fraction. 

Representing a given fraction requires partitioning the clock face into the denominator-number of 

equal parts and then indicating the numerator-number of those parts. In contrast, identifying the 

fraction that represents a given shaded sector requires determining a way to partition the clock 

into equal parts so that some subset of those parts measures the shaded sector. This is easier when 

the entire clock face can be partitioned into equal pieces that are each the size of the shaded sector 

(e.g., when the shaded sector is 
  

€ 

1
2

,
  

€ 

1
3

,
  

€ 

1
4

, 
  

€ 

1
6

, or 
  

€ 

1
12

), but is more difficult when the shaded sector 

does not partition the clock face, and thus smaller-sized pieces have to be used (e.g., when the 

shaded sector is 
  

€ 

7
12

 or 
  

€ 

5
6

). This complexity is perhaps why the textbook chose to focus on this 

direction in the activity.  

 Second, there are mathematical differences between how fractions can be represented 

with a drawn clock face and a small clock with moveable hands. The small clock has only two 

hands, which means they can be positioned to divide the face into two regions. Thus, for fractions 

other than 
  

€ 

1
2

, it is not possible to show all of the equal parts into which the whole is divided. For 

example, when representing 
  

€ 

1
4

, the hands can be placed at, say, 12 and 3, but it is not possible to 

depict the whole as partitioned into four equal pieces. Furthermore, once the hands are positioned, 
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it is not clear which of the two sectors corresponds to the given fraction. A drawing, on the other 

hand, can be partitioned into as many sectors as desired and can use shading to identify the sector 

that corresponds to the fraction being discussed. This issue of which region corresponds to the 

given fraction arose in the discussion of 
  

€ 

2
3

, the last fraction Paige asked students to represent: 

 After students hold up their clocks to display
  

€ 

2
3

, Paige asks a student to record her answer 

on the board: 

Paige Could somebody come up here and show me where two-thirds is on our 
clock? Krista, you want to come up and show?  

 
Krista draws hands at 12 and 4. 

 
Paige Okay, and if you’re going to shade something, what part would you shade?  
Krista Um, this part right there [draws a squiggly line in the smaller sector].  
Paige And how much is that worth? 
Krista Well, like in times or? 
Paige No, in fractions.  
Krista Mmm, two-thirds? 
Paige Is that part worth two-thirds? 
Krista No? 
Paige No. What part is worth two-thirds? 
Krista This part? [Points to the larger sector.] 
Paige Exactly, the bigger part, right? So this part right here, okay, you can have a 

seat, thanks. This part right here [points to the smaller sector] this would be 
one-third, right? And let’s say we draw our mark over [draws another hand, 
pointing to the 8, so that the clock face is now partitioned into three equal 
sectors], we just broke our clock into three thirds, right? So here’s one third, 
two third, three third, so we could either shade in this part right here [as 
talks, points to different pairings of the sectors], or we could shade in this 
part, or this part right here, okay? So how many minutes is two-thirds? How 
many minutes is two-thirds? So let’s say we got rid of this [erases the hand 
pointing to the 4 and shades in the two-thirds of the clock from 12 to 8], how 
many minutes is this piece right here? Monica? 

Monica Forty. 
Paige Forty minutes. So two-thirds on the clock is forty minutes. 
 

 After this example, Paige has students work independently on a page in their Math 

Journal. The worksheet has problems in both directions—identifying the fraction that is shaded 

and shading the clock face to represent the given fraction. Before having students work 

independently, Paige displays a projected copy of the worksheet and completes the first two 

problems in whole group. Students complete the next three problems on their own while Paige 

circulates, answering questions. As students finish, Paige tells them to move onto the bottom half 

of the worksheet where they shade clock faces to represent given fractions. After about 12 
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minutes, Paige reconvenes the class to discuss the problems they just completed. Of the three 

problems discussed, identifying 
  

€ 

5
12

 (Figure 21) is the most difficult. 

 
Figure 21. Five-twelfths on the clock face. 

 

Paige calls on Emma to share her answer: 

Paige Emma, did you have this answer? What did you have? 
Emma Five-sixths. 
Paige Five-sixths? Okay, how did you get five-sixths? Could you break, could you 

break this clock into six different parts? Okay, if we broke the clock into six 
different parts it would look like this. [Partitions the clock face into sixths.] 
One, two, three, four: 

  

 
 
 Six parts. Now would five parts out of the six be shaded? No. Okay. But we 

can break the clock into twelve parts, right? [Divides each sixth in half to 
make twelfths.] One, two, three: 

 

 
 
 Okay? Then how many parts are shaded? Five. So then our answer would be 

five-twelfths, okay? Does everybody have five-twelfths? 
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 The class does not discuss the rest of the Math Journal page. Instead, Paige asks students 

to turn to the next page so that she can introduce adding fractions on a clock. She begins by 

reviewing the example problem at the top of the page (Figure 22).  

 
Figure 22. Adding fractions on a clock face. 

 

Paige Our example says one-third plus one-sixth equals twelve [sic]. What color is 
the one-third? What represents the one-third on here? I’ll give you a second 
to look. What color represents the one-third? Lily? 

Lily Um, the dark blue. 
Paige The dark blue, okay. So this part right here is the one-third. So then this 

leaves this [points to the light blue] to be the one-sixth, okay? Does 
everybody see that?  

Student Mm-hmm. 
Paige Okay, great. So in here [points to the given equation] it says one-third plus 

one-sixth equals one-half. Okay so they added [points to each region] one-
third plus a sixth and they got the one-half. Do we see how that works? But 
let’s try the math. Okay, we’ve been working on adding fractions, right? 
That’s what we did yesterday. Who can, who can come up and show me 
what one-third plus one-sixth is if we’re doing math, if we’re showing math. 
Kevin, why don’t you come up and show. If you think you can write small. 
Maybe write underneath. And maybe tell what you have to do.  

Kevin Okay, we’re trying to get this [the 3 in the denominator of 1/3] to be a six.  
Paige Right, so. 
Kevin And then so you would times two. [Multiplies the numerator and 

denominator of 1/3 each by 2 to get 2/6, recording the steps throughout his 
description (see Figure 23)] 

Paige Great. 
Kevin And then, then it would be two-sixths. 
Paige Okay. 
Kevin And one-sixth… 
Paige Okay, so you add the… 
Kevin And it would just be three-sixths. 
Paige Okay. 
Kevin Which is the same as one-half.  
Paige Perfect. Would you all have been able to, is that how you would do it? 
Students Yeah. 
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Paige Yeah? So we know because we’re super smart and we know this about 
adding and subtracting fractions, we know that our bottom numbers have to 
be the same. So Kevin did a really nice job of showing what he would do to 
the one-third. You times it by two, times by two, the top and the bottom. And 
then you get two times one is two, two times three is six. You don’t have to 
do anything to one-sixth because it already has six on the bottom. And then 
he just added straight across, right? And you don’t do anything to the bottom. 
Good. 

 

 
Figure 23. Kevin’s “doing the math” for the problem 

  

€ 

1
3

+
1
6

. 

 
 
 Paige completes one more problem together in a similar manner. This problem gives the 

two shaded regions and students write the number model. After the class identifies the 

corresponding number model, Paige calls up another student to “do the math” at the board. She 

then has students work independently on the four remaining fraction addition problems. After 

about eight minutes, Paige brings the class back together to discuss their work. She starts with 

problem two (Figure 24).  

 

Figure 24. Problem two: 
  

€ 

1
6

+
3
4

 . 

 
Paige All right you guys, let’s talk about number two. Let’s talk about number two. 

What fraction is our dark part? What fraction is our dark part? Evan? 
Evan One-sixth. 
Paige One-sixth. Okay, is everybody paying attention up here? [Labels the dark 

sector as 1/6.] Okay, one-sixth. Because we have two parts out of twelve. 
Two parts out of twelve equals one-sixth. Because two goes into twelve six 
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times, two goes into two one time, so it reduces to one-sixth. [Records 2/12 = 
1/6.] Okay, how about our light blue part? What fraction is that?...Monica? 

Monica Um, nine-twelfths. 
Paige Nine-twelfths, okay. [Records 9/12.] So we have nine-twelfths and what does 

that break down into? Evan?  
Evan Three-fourths. 
Paige Three-fourths. [Records 9/12 =3/4.] Okay, because we know that three goes 

into three, or three goes into nine three times. Three goes into twelve four 
times, okay? And if we’re just looking at our twelfths, though, which we can 
do, that’s just fine. What’s two-twelfths plus nine-twelfths? Two-twelfths 
plus nine-twelfths? Lyle? 

Lyle Eleven-twelfths.  
Paige Okay, eleven-twelfths. [Records 11/12.]  So if we just look at our twelfths 

that’s fine, or we could do one-six plus three-fourths and we know we need 
to change our numbers so that twelve’s on the bottom, um, and then, so nine 
plus two equals eleven. 

 
 The remaining problems provide the addition expression and students have to shade the 

corresponding regions on the clock face and find the sum. Paige asks a student to come to the 

board and show how she shaded the clock. At this point, Paige has been teaching for over an hour 

and is running late, so instead of finishing the addition problems, she decides to introduce 

subtraction. But because she is almost out of time, she does not explain the convert-to-minutes 

method that she had planned to introduce, and students do not have time to complete any 

subtraction problems independently. Instead, Paige reviews the example and completes the first 

two problems in whole group, showing students how to shade the clock face to model subtraction 

and also “doing the math” to find the answer. She then concludes the lesson: 

Paige So do you guys understand how that works? Yeah? And if you want to check 
to make sure, because I know you guys know how to do your addition and 
subtraction of fractions, you can do your math first and then figure out your 
clock. Because you’re not always going to have a clock on you, right? Yeah, 
I mean you might be wearing a watch, but I don’t think you’re going to sit 
there and really try to figure it out on your wrist, right? That might be a little 
hard. So it’s good to know the math behind it and figure out what it means.  

 

Paige’s Articulation of her Mathematical Point for the Clock Activities 

 The above section provides a glimpse into Paige’s lesson. Before discussing the 

difficulties she had, it is important to note that there are many aspects of the lesson that went well. 

For example, Paige chose problems that provided students with opportunities to engage with 

fraction ideas, such as having students represent 
  

€ 

1
6

 and 
  

€ 

2
12

 so that she could discuss equivalent 

fractions; students came up to the board to describe their work; she transitioned smoothly 

between the numerous activities in her lesson; and she coordinated the use of the manipulative 
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clocks, Math Journal pages, and the SMART board. Mathematically, however, the lesson had a 

number of problems. For example, Paige’s explanations and language were, for the most part, 

unclear and confusing, which was not surprising given her difficulty explaining the procedures 

and concepts during the interviews. For example, in the pre-lesson interview I asked how she had 

explained “changing” fractions in a previous lesson (in her response she uses the example 
  

€ 

1
3

+
1
6

): 

I just said that when we’re adding fractions or subtracting fractions they need to be of 
equal parts. So a third of something you, as it is, as a third, it doesn’t, it’s just hard, or it 
doesn’t make sense to add it to a sixth, but it makes sense to have, like, a set of sixths, or 
whatever, added to another set of sixths, so. And I just said that you just have to have the 
bottom numbers equal. It’s just how the math works. Because then it’s the, I guess, then 
it’s part of the same whole. It’s not like, a third would be part of a different whole than, 
you know, a sixth, which might not be the right explanation, but. And then I just tell them 
that whatever you do to the bottom you have to do to the top, too….Like if you multiply 
the bottom by two, or three, or four, whatever, you have to do the same thing to the top, 
because you’re increasing that fraction by that much, so, but it stays the same fraction. 
(P-Pre, T126-128) 

 
 In fact, Paige was aware of the difficulties she had understanding and explaining the 

concepts she was teaching. For example, in the post-lesson interview when asked why 

multiplying the “top and bottom by the same thing” generates an equivalent fraction, she replied: 

“I honestly don’t know, and that’s why I’m glad the kids don’t ask why. And it’s something that I 

need to figure out and I probably should know better” (P-Post, T237). She also said that she did 

not “feel very well” about her lesson when asked for her general thoughts at the beginning of the 

post-lesson interview: 

I just don’t think, well, I just don’t think, I think I’m kind of a little scattered. Like, I went 
down their sheets and like through like what the book was, but it just doesn’t, I don’t 
know, I don’t know whether just I don’t like the book, and that’s why I have a problem 
with it. I mean, I haven’t seen anything else, but I just, I don’t know. I’m afraid that 
they’re not getting the fractions, and I think maybe just for me because, like I said before, 
I’m very much just the math person, like the strict, just okay, here’s our equation, let’s 
solve it and move on. And just, I think all the other stuff just seems to be getting in the 
way of teaching that. ‘Cause I think they get lost in are we learning about time and the 
clock, or are we learning about fractions? (P-Post, T21) 
 

She elaborated what she meant by being “scattered”: 
 

I just felt, you know, because when you start something, you introduce it to them and 
then you give time for them to work on it, and then you’re all over the place in the room, 
and kids are, you know, moving on to different parts, and then you have to try and get 
back to where you were, but the kids are now working on parts on the far and don’t want 
to talk about it, so then I’m trying to move forward with the lesson and like get to another 
part, but I may not think that they still get the one part, and it’s just like, so, so much back 
and forth. Okay, here, I’m going to show you this, like let’s do one together, let’s you 
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guys try some, let’s try and get back, let’s keep moving on, like back and forth, and I just 
don’t, I don’t know whether I lost the like whole point of the lesson. (P-Post, T25) 
 

I pressed on this issue further: 
 

Interviewer And so what do you think the whole point of the lesson was? 
Paige I don’t even know anymore. 
Interviewer Well what was your point? 
Paige I don’t even know. I guess, just I, with, just showing fractions or adding 

fractions because that, and I think that’s what like, I guess, I would want 
them to be able to do, is add and subtract fractions because I, maybe that’s 
just because the part, the lesson before, was adding and subtracting 
fractions, but, I don’t, I don’t know. 

Interviewer What makes you say that you feel like you lost the point? 
Paige Because I just feel like I was, so just, I just seemed, like I said, all over the 

place, or just, like I wasn’t being clear enough, or I don’t know, I think I 
maybe wasn’t even thinking at all and that’s why I just, I don’t know. 
(Post, T26-31) 

 
 It would be easy to attribute the mathematical problems in Paige’s lesson solely to her 

inability to explain the procedures she was teaching. But mathematical purposing and the 

knowledge demands of this work provide another lens for gaining insight into the difficulties she 

had. Paige’s comment that she felt like she “lost the whole point of the lesson” is particularly 

telling; however, it is not clear that Paige ever had a clear sense of the mathematical point of her 

lesson—especially of the mathematical point of the clock representation and how it connected to 

the ideas about fractions that she was trying to teach. Overall, there seemed to be a mismatch 

between her use of the clock in the various activities and her mathematical learning goals for 

students. 

 I used the framework for mathematical purposing and its MKT demands to explore this 

issue. By applying a mathematics, learners, and focusing lens (i.e., the articulating component of 

the framework for mathematical purposing (Figure 17)) to Paige’s pre-lesson interview, I created 

a portrait of Paige’s articulation of the mathematical point of the clock. From my analysis of the 

interview, I made a map of how Paige viewed the mathematical terrain and how she situated the 

clock fraction activities in it (Figure 25). Second, I analyzed this map and the pre-lesson 

interview using the framework for mathematical purposing to determine in what aspects of the 

work Paige did and did not engage and what aspects of MKT she did not seem to know or be able 

to draw upon in practice. 
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Figure 25. Paige’s trifocal view of the mathematical terrain related to the two clock fractions 

activities.55,56 

 

                                            
55Key: mathematics lens = green; learners lens = blue; focusing lens (specified learning goals) = orange; 
focusing lens (“points” of details) = red; activity = yellow/black  
56 Unfortunately, printing the map on a single page makes it difficult to read. I include it here only to 
illustrate this type of analysis and resulting product. 
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 Figure 25 shows the aspects of the mathematical terrain (related to the clock fractions 

activities) that Paige mentioned in her pre-lesson interview. The colors indicate the different 

lenses: green for mathematics, blue for learners, and orange for focusing. Thus, it is an example 

of the type of annotated map of the mathematical terrain that Grossman (1991) analogized in her 

discussion of pedagogical content knowledge that I mentioned in Chapter 6. Such a map is useful 

for a number of reasons. It reduces the long, text-heavy interview to a one-page snapshot of 

Paige’s view of the mathematical terrain and the connection to the instructional activities. The 

map also makes visible the ways in which the three lenses inform one another and how analyzing 

the terrain or the activity can serve to unpack the mathematics of a lesson.  

 As with any representation, there are also a number of things that are not depicted. For 

instance, the map does not indicate distance. That is, although the lines show connections, they do 

not convey how closely connected Paige viewed particular mathematical ideas, either for herself 

or for her learners. The map does not indicate how Paige unpacked the terrain (e.g., whether an 

aspect of the terrain was identified from thinking about fractions in the abstract or from 

examining the activities). The map also does not reflect aspects of the terrain that Paige did not 

mention or know (e.g., it does not note that Paige could not explain the procedure for generating 

equivalent fractions). Therefore, to analyze Paige’s understanding of the mathematical point of 

the clock, I compared both the map and the pre-lesson interview to the framework for 

mathematical purposing. I noted which aspects of the work Paige seemed to have done and which 

aspects she did not or was unable to do. The results of this analysis are shown in Table 18.  

 
Table 18. 
Paige’s Articulation of the Mathematical Point of the Clock in the Pre-Lesson Interview 

 Mathematical Terrain Instructional Activity 
Mathematics 
Lens 

Identified some central fraction concepts 
(attending to whole; fractions as parts of 
whole; equivalence (though used language 
of “converting”); no mention of equal parts. 
 
Described and compared representations for 
fractions (clocks and pattern blocks) and 
identified multiple methods for how to use 
them (partitioning region; converting to 
minutes; finding “fraction of”). 
 
Described different procedures for 
adding/subtracting fractions 
(combining/taking away areas (multiple 
ways); converting to minutes; standard 
algorithm); and procedure for “converting 
fractions” (multiply “top and bottom” by 
same number). 

Noted that clock makes whole visible; 
noted that clocks are already partitioned, 
but did not examine impact on the 
mathematics available.  
 
Recognized which fractions can be 
represented on a clock; distinguished 
directions of representing (identify shaded 
versus represent given; sector starting a 
different places). 
 
Could map the quantities and answer in the 
combining/taking away areas methods onto 
the clock representation, but did not 
examine whether/how it gives meaning to 
procedure; did not connect standard 
algorithms for adding/subtraction or 
generating equivalent fractions. 
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Could not explain why standard procedures 
work. 
 

Did not unpack all of the steps for both 
directions (e.g., given 2/3 shaded, how do 
you determine it is 2/3?). 
 
Did not examine the mathematics 
differently available through small clocks 
and drawn clock faces (e.g., did not relate 
this to directions; or that cannot show all of 
the partitions on the small clock that only 
has two hands). 
 
Did not examine how the different 
procedures engage students differently with 
fraction concepts; did not unpack key 
aspects of explanation. 
 
Identified being able to name the minute 
equivalents for fractions as a prerequisite 
for the convert-to-minutes method. 
 
Language imprecise and confusing; did not 
examine language for distortion. 
 

Learners 
Lens 

Knows that students are familiar with ½, 1/3, 
and ¼ ; but less familiar with other fractions. 
 
Knows that students are familiar with 
clocks, and that students know minute 
equivalents for ½ hour and ¼ hour, but will 
be less likely to think about hours in thirds. 
 
Thinks that manipulatives are good for some 
students because they help them see that 
fractions are part of something. But thinks 
that some students are better at just using 
equations. 
 
Identified some general student difficulties: 
fractions are confusing for students; 
subtraction is harder than addition. 
 
Identified current experiences and level of 
understanding (at a surface level): new unit 
for students on fractions; had talked in prior 
lesson about parts of a whole and 
“converting fractions.” Students were 
confused about this with pattern blocks57; 
found pattern blocks challenging because of 
trading.  
 
 

Evaluated accessibility of clock 
representation: whole will be more visible 
than with pattern blocks; convenient that 
clocks are already partitioned. 
 
Considered difficulty/accessibility of 
methods for adding/subtraction (thought 
converting to minutes more accessible and 
easier – “shows the worth”); thought “the 
math” (i.e., standard algorithm) would be 
difficult. 
 
Did not consider the difference in difficulty 
of the two directions for representing 
fractions on the clocks. 
 
Did not unpack how students would figure 
out what fraction a shaded region 
represented. 

                                            
57 Pattern blocks are colored shapes that can be used to teach a variety of concepts related to geometry and 
number. In the prior lessons Paige mentioned in her interviews, students used the following blocks to 
represent, add, and subtract fractions: the yellow regular hexagon, the red trapezoid (1/2 of the hexagon), 
the blue rhombus (1/3 of the hexagon); and the green equilateral triangle (1/6 of the hexagon). 
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Did not consider “cognitive distance” or 
mathematical complexity of ideas from 
perspective of learner; seemed to think ideas 
were closer and more connected for students 
than they likely are (e.g., thought students 
would figure out that a given sector was 1/3 
by doing 12 divided by 4). 
 

Focusing 
Lens 

Ongoing goals: 
• Seemed to have overarching goal of 

students’ having procedures that do not 
rely on models. 

• No mention of mathematical practices, 
reasoning, or explaining. 

• Did not look at unit goals in textbook. 
 
Trajectory (for adding and subtracting 
fractions): 
• Had a mathematical end point: learning 

the algorithm (finding common 
denominators by algorithm for 
generating equivalent fractions; 
add/subtract across numerators). 

• Did not examine or have a sense of the 
curricular trajectory to get students to 
that mathematical end point or how the 
ideas would unfold and build on each 
other; rushed the end to the beginning. 

 
Identified some learning goals for students: 
• To develop further understanding of 

fractions as parts of a whole and that 
fractions are everywhere (very 
underspecified) 

• To be able to represent fractions on a 
clock 

• To be able to “convert” fractions (e.g., 
to simplify using the equivalent 
fractions procedure) 

• To be able to add and subtract fractions 
using common denominators 

 
 

Mathematical storyline: 
• Made connections across activities in 

lesson (e.g., foreshadowed minutes 
because was planning to teach the 
convert-to-minutes procedure; 
designed math message problems to 
give practice with fractions/minutes). 

• Ordered the activities so that like work 
was adjacent in the lesson. 

• Did not look at the rest of the unit 
before teaching it. 

 
Main mathematical point of the 
representing fractions activity: 
• To “show them…the actual fractions 

on the clock” (P-Pre, T100) 
 
Main mathematical point of the 
adding/subtracting activity: 
• To “show them the addition on the 

clock” 
• To “show subtracting fractions and 

actually seeing it in front of them” 
• To “go through the conversion”  
• To “get into their brains…that the 

bottom numbers need to be the same, 
the denominators always have to be the 
same to add and subtract” (P-Pre, 
T124, 192) 

 
“Point” of some of the details of the 
activity: 
• To make things accessible 
• To focus on “the math” (i.e., the 

standard procedures without models); 
to show your work 

• To not have students be frustrated 
• To do related activities in close 

proximity in lesson  
 

Discussion: Knowledge Demands of Articulating the Mathematical Point 

 Based on the analysis described above, I identified three aspects of the work of 

articulating the mathematical point where Paige’s lack of MKT, in particular her lack of 

specialized content knowledge (SCK) and knowledge of content and curriculum (KCC), seemed 
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to play a central role in the difficulties she had in her lesson: distinguishing the mathematical and 

curricular trajectory; distinguishing means and ends; and coordinating the availability and 

accessibility of the mathematics in the details of the activity.  

 Distinguishing the mathematical and curricular trajectory. Throughout the interviews, 

Paige repeatedly complained that the textbook was trying to do too much in one lesson: 

I hate how fast it is….Not only are we looking at what fractions mean on, or like showing 
fractions on a clock, like taking a piece and showing what that means out of a whole, but 
then you’re taking that and they’re having them draw them, they’re having them label 
them, then you’re having to show addition of fractions. So that’s a whole, that’s like a 
whole lesson right there, I think, is showing the addition of fractions with this. But then 
you have to move on to subtraction of fractions. And not only are you just doing the math 
part of it, but you’re showing, you know, on the clock how to take the part and then shade 
another part of it, and like the part you have left. Like there’s just so much to explain, and 
I just feel like a day, like, or fifty minutes isn’t, I don’t know. (P-Post, T35) 
 

 It is true that Everyday Mathematics includes many different activities in each lesson, 

which can certainly make it feel like there is too much to do in one math period. However, Paige 

seemed to compound this issue because she was unable to distinguish the mathematical trajectory 

related to adding and subtracting fractions from the curricular trajectory. For example, Paige 

knew that learning to add and subtract fractions involves being able to generate equivalent 

fractions and being able to use the standard algorithm; however, she did not have an 

understanding of this trajectory from the learners’ perspective, in particular, how ideas need to be 

spaced out and developed for learning. In the pre-lesson interview, Paige described why she 

thought discussing equivalent fractions was important to include in her lesson: 

Because they’re not always going to have a clock in front of them and they’re not going 
to always be able to see that, hey, like, you know, this and this. It doesn’t make sense to 
just show one-third plus one-sixth equals one-half, without showing your work. At least 
that’s how I was always taught math, like, you need to have your work down. So, I mean, 
for everything that we pretty much do I always have them, I’ll always show them the 
work that goes along with it. Because it does, they’re not always going to have a clock or 
pattern blocks, or you know, something that is in front of them to look at. They may just 
have one-half plus one-sixth equals what? And if they don’t have something in front of 
them that shows it to them, I don’t want them to feel unprepared. Plus, I just don’t, I get 
the using examples and stuff, but I’m very much like, and I know that there’s kids in my 
class who are better with just equations or with just, you know, the straight math of it, so 
and that’s how I always was, so. I mean, you’ll probably see me, I’ll probably struggle 
explaining some of this stuff, like I am right now to you just because it just, this is easier 
than the lesson before it, but it still is just, I’d much rather just be doing the math part of 
it and saying, “All right! Here we go!” (P-Pre, T130) 
 

Wanting students to be able to add and subtract fractions without manipulatives is a legitimate 

goal. However, Paige does not seem to understand that other understandings need to be developed 

before students can get there. Lacking this aspect of KCC, Paige’s lesson goals began at the 
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mathematical end point, collapsing the entire mathematical trajectory into each lesson rather than 

developing it over time.  

 As a beginning teacher, it is not surprising that Paige does not have knowledge of the 

curricular trajectory. But she also did not seek to gather this information, for example, by reading 

the unit goals or the other lessons in the unit—in fact, she said that looking ahead “frightens” her 

(P-Post, T43). Ironically, in this case, looking ahead, or at least looking more closely at the notes 

in the teacher’s guide, might have helped her feel less pressure to teach the entire mathematical 

trajectory in a single lesson. There are notes throughout the unit and in the clock fractions lesson 

emphasizing that, in fourth grade, the goal is not to teach the standard algorithm for adding and 

subtracting fractions, but “to provide initial exposure to these kinds of problems in a concrete 

context” (Bell et al., 2004b, p. 539). The teacher’s guide also expressly states in a margin note 

that: “Equivalent fractions are addressed later in this unit. For now, simply note that a given 

sector can often have more than one fraction name, so many of these problems can have more 

than one correct answer” (p. 537). Important to note, however, is that even if she had read these 

remarks, understanding what they mean demands MKT, in particular SCK and KCC. 

 Knowledge of the curricular trajectory also could have also helped her determine the 

mathematical point of particular problems in her lesson. For example, I followed up on Paige’s 

comment that the textbook did not teach “converting fractions…but they do it all the time” (P-

Post, T35) by asking where in the lesson she thought the textbook was “converting.” She 

indicated a problem that showed 
  

€ 

3
4

 of a clock face shaded and asked students to identify the 

fraction: 

The three-fourths, a lot of them found that as nine-twelfths…So if they have nine-
twelfths, like then I’m trying to get them to say three-fourths, but they don’t know it.  
They like, they don’t know how to do it. But that’s, that’s what it has in the book. It has 
three-fourths. And if they’re looking at it another way and don’t know how to reduce, 
you’re just like, all right, so how does that work. So they haven’t learned. (P-Post, T39) 
 

 Because the teacher’s guide had 
  

€ 

3
4

 as the suggested answer, when her students instead 

answered 
  

€ 

9
12

, Paige thought they needed to “reduce.” She was frustrated by this because the 

procedure for simplifying fractions had not yet been introduced in the textbook. Paige’s response 

to this issue was to teach her students to divide the numerator and denominator by the same 

number. However, if she would have understood the curricular trajectory and known that this 

procedure was taught later, she might have been prompted to consider how students could see the 
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answer as both 
  

€ 

3
4

 and 
  

€ 

9
12

 without using this procedure. For example, by partitioning the clock 

face so that both four equal pieces and twelve equal pieces are visible (Figure 26), the same 

shaded region can be described as three out of four equal pieces or as nine out of twelve equal 

pieces. Such an analysis could have helped Paige unpack some of the foundational fractional 

concepts along the curricular trajectory rather than jumping to the end of the mathematical 

trajectory. 

 
Figure 26. Showing that three-fourths and nine-twelfths are equivalent. 

 
 Distinguishing means and ends. Paige considered representing fractions on the clock, as 

well as learning the standard procedures for generating equivalent fractions and for adding and 

subtracting fractions, to be the end learning goals for students in her lesson. This was evident in 

the description of her main point for the addition segment of her lesson: 

I think just to show them the addition on the clock and to show how the fractions, like 
how, for example…for the one on the bottom to show how the one-third plus the one-
sixth equal one-half. And then I’ll probably just, I’ll go through the conversion of one-
third to have the six on the bottoms, because that was one of the things I’m really pushing 
and trying to get into their brains is that the bottom numbers need to be the same, the 
denominators always have to be the same to add and subtract. So we’ll go through how, 
you know, the one-third will change to two-sixths, and then the two plus one equals three, 
and then the six on the bottom and how that’s one-half, and then it will be right there on 
their clock. (P-Pre, T124) 
 

 The textbook, on the other hand, does not have these same concepts and skills as end 

goals for the lesson, or even for the unit. Instead, the textbook uses representing, adding, and 

subtracting fractions on the clock as a means for working on other fraction concepts. As 

mentioned earlier, throughout the teacher’s guide are notes saying that teaching standard 

procedures for equivalent fractions and for adding and subtracting fractions is not the goal of the 

lesson. Certainly, the spiral nature of the curriculum makes this a little confusing—for example, 

even though the procedure is not taught until fifth grade, adding and subtracting fractions is listed 

as a “beginning goal” for the unit. However, the nature of the lesson’s activities suggests that 

addition and subtraction is not the end goal, but is serving as a context for work on more 
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foundational fraction concepts. That is, for the textbook, addition and subtraction on clocks is the 

means rather than the end.  

  I am not implying that Paige needed to adhere to the textbook and therefore not 

introduce the standard procedure for adding and subtracting fractions. However, if teaching the 

addition and subtraction algorithm was Paige’s main mathematical point, then her use of the 

clock representation should have supported that goal. Because Paige was unable to distinguish 

that the textbook was using both the clock and addition and subtraction as means for learning 

fraction concepts rather than as end learning goals (a distinction that requires MKT to make), 

there was a mismatch between the textbook’s activities and the mathematics she was trying to 

teach.  

 Coordinating the availability and accessibility of mathematics in the details of the 

activity. Paige made many instructional decisions based on what she thought would make the 

activities more accessible to her students rather than on what mathematics was made available for 

study. When planning her lesson, Paige did consider some aspects of the mathematics made 

available by the clock representation. In particular, she thought that using a clock made the whole 

visible, thus helping students see that fractions are “part of something” (P-Pre, T4). However, her 

main reasons for using clocks in the lesson were based on accessibility to the learner (e.g., “they 

need to have something in front of them to look at” (P-Pre, T132)). Similarly, although her 

comparison of clocks to pattern blocks (which were used in the previous lesson) noted some of 

the mathematical differences between the materials (e.g., pattern blocks require trading (P-Pre, 

T32)), her preference for clocks was based on her perceived difficulty of pattern blocks both for 

students to understand and for her to explain (P-Pre, T134), and on students’ familiarity with 

clocks: 

I hadn’t thought of using a clock before until I, you know, turned to my next lesson, and I 
said, hey, that makes a little more sense to me. Because they see clocks, like, there’s, you 
know, clocks in their houses, clocks at school, and you know, in stores or wherever. And 
I think it’s just something that I think that they’d have more access to if they’re looking at 
something than pattern blocks. (P-Pre, T136) 
 

 Throughout the interviews, Paige did notice details of the representations that impacted 

the mathematics. However, in making instructional decisions, she did not consider how these 

features impacted the mathematics made available for study. Instead, Paige made choices based 

on what she thought would be more accessible to her students. For example, she noticed that the 

clock had “built-in divisions.” She liked this feature because it was convenient for students (P-

Pre, T138), but did not consider the impact of “built-in divisions” on the mathematics made 

available for study. For instance, although having the minute and hour marks facilitates more 
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accurate drawings of fractional regions, the fact that clocks are pre-marked can mask the central 

idea that fractions require equal parts. In fact, Paige never once mentioned “equal parts” during 

any of the whole-group portions of her lesson.  

 Another mathematical issue that was not considered is that clocks can, in some sense, be 

interpreted as an area, linear, or discrete model for fractions: As an area model, the area of the 

clock face can be seen as the whole. If just considering the edge of the clock, the clock can be 

seen as a portion of the number line, for example, as the unit interval or as the interval from 0 to 

12. But unlike the number line, it is uncommon to partition the clock into a number of pieces that 

is not a factor of 60. Finally, when considering the whole to be 12 hours or 60 minutes, a clock 

functions like a discrete (or set) model in which the whole is 12 or 60 objects. This use can be 

seen in Paige’s connection between the “fraction of” problems (e.g., 
  

€ 

1
6

 of 12) and the clock. Such 

mathematical features of a representation are not inherently good or bad. In this case, depending 

on the implementation, the fact that clocks can be interpreted as different types of models could 

provide an opportunity to make connections across fraction models, or it could obscure 

distinctions and cause confusion, especially when there is an implicit (or inadvertent) shift in 

model type. In Paige’s lesson, because she did not analyze the impact of these mathematical 

features on the mathematics made available, her accessibility-based decisions did not always 

further students’ engagement in the intended mathematics. 

 Paige’s consideration of accessibility over the mathematics made available was also seen 

in the addition/subtraction activity. Paige was worried because she thought subtraction would be 

harder for students than addition, but was somewhat relieved by the method for subtraction on the 

clock that was described in the teacher’s guide: convert the shaded region to minutes, subtract the 

minutes, and then convert back to fractions. She thought this method would be easier for her to 

explain and for her students to understand (P-Pre, T168). She did not, however, consider whether 

this method engaged students in the fraction concepts she was trying to teach. Paige’s main 

mathematical point was to teach students the standard algorithm. Although converting to minutes 

can be seen as making a common denominator of 60, this is very subtle and masked by thinking 

of the whole as 60 minutes rather than as one hour. Thus, although converting to minutes might 

be a more accessible method for students, it obscures some of the key mathematical ideas Paige 

intended to teach. 

 Considering the accessibility of the details of a task for students is, of course, an 

extremely important part of mathematical purposing. However, mathematical purposing involves 

considering both the mathematics made available for study and the accessibility of that 
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mathematics to the learners. As Paige’s case shows, coordinating these to determine how the 

details of a task can best be used to teach to the mathematical point depends on MKT.   

 In sum, Paige’s case illustrates some of the mathematical knowledge demands of an 

aspect of mathematical purposing: articulating the mathematical point of a representation. Using 

the lens of mathematical purposing provides insight into the difficulties Paige had in her lesson 

beyond noting that she was unable to explain the concepts she was teaching. In addition to 

illustrating some of the MKT demands of mathematical purposing, this case also demonstrates the 

use of the framework as a tool in data analysis. I continue the discussion of possible uses of the 

framework in research and teacher education in the next chapter. 
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CHAPTER EIGHT: 
CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 

 

Summary of Dissertation 

 Even though it is fundamental to the work of teaching, what is involved in determining 

the mathematical goals of an activity and using them to design and steer instruction has not been 

well-specified in the research literature or in teacher education. A better articulation of the work 

of determining and using mathematical goals in teaching is crucial both for studying the 

relationship between instruction and student achievement and for teaching novices how to do this 

complicated work. Many different bodies of literature inform an understanding of this task of 

teaching, but unlike this dissertation, none foreground it as the central object of study.  

 In this dissertation study, I analyzed both the literature and data from preservice teachers’ 

mathematics lessons to unpack the practices and knowledge demands of determining the 

mathematical goals of an activity and using those goals to design and steer instruction. This led to 

a conceptualization of “teaching to the mathematical point” as three interrelated types of work: 

(1) articulating the mathematical point; (2) orienting the instructional activity; and (3) steering the 

instruction toward the mathematical point. I identified some of the problems teachers have to 

manage when trying to steer instruction toward its mathematical point, as well as some of the 

issues that arise for beginners. From these analyses, I developed a conceptual framework that 

parses the work of articulating the mathematical point and orienting the instructional activity—

what I have named “mathematical purposing.” In addition to decomposing this work, I explored 

the relationship of mathematical purposing to mathematical knowledge for teaching by 

identifying the MKT demands of different components of mathematical purposing. These results 

contribute to the ongoing development of the practice-based theory of MKT. 
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What is the Point of this Work?  
Potential Contributions to Research in Education  

 
 On one level, this dissertation can be seen as an application and extension of some of the 

current ideas in education research. In particular, I took up Grossman and McDonald’s (2008) call 

for the decomposition of teaching practice and the development of a language for teaching by 

applying these ideas to the work of determining and using mathematical goals in instruction. I 

also utilized Ball et al.’s (2008) practice-based theory of mathematical knowledge for teaching to 

analyze the mathematical knowledge demands of this work. This analysis resulted in hypotheses 

about the nature of knowledge of content and curriculum (KCC).   

 But what about what I consider to be the central findings of this dissertation: the 

conceptualization of teaching to the mathematical point and the framework for the work of 

mathematical purposing? Unlike other products of research that have “industry standards” for 

evaluation, evaluating this type of conceptual analytic work is not so straightforward. However, 

one way to evaluate the results of this dissertation is by examining its usefulness for and potential 

contributions to mathematics education scholarship, and perhaps even education scholarship more 

broadly.  

 Silver and Herbst (2007) characterize mathematics education scholarship as a set of 

relationships between research, practices, and problems, which they depict in a “scholarship 

triangle” (Figure 27a). The bidirectional arrows imply that each aspect of scholarship informs the 

other. For example, new practices in mathematics education can arise in response to research or 

to perceived problems; in the other direction, existing practices can pose problems or be the 

subject of research.   

 

 
a) The scholarship triangle. 

 
b) The role of theory in mathematics 

education scholarship. 
 

Figure 27. The role of theory in mediating the research, problems, and practices  
in mathematics education. Adapted from Silver and Herbst (2007). 
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 Silver and Herbst conceptualize the role of theory in mathematics education scholarship 

as mediating the interactions in the scholarship triangle (Figure 27b). They elaborate this frame 

by identifying specific ways in which theory can mediate connections between the three pairs of 

vertices in the triangle, illustrating each with examples from the literature. Because this 

dissertation is conceptual work, it has the potential to contribute to the development of “local 

theories” that “help mediate specific connections among the three vertices of the scholarship 

triangle” (Silver & Herbst, 2007, p. 60). In this section, I use Silver and Herbst’s frame to explore 

this study’s potential contributions to mathematics education scholarship. I then consider possible 

applications to education scholarship more broadly. I conclude the chapter with ideas for specific 

next steps in this line of work. 

 
Mediating Connections between Research and Problems  

 One way theory can mediate the connection between research and problems is “to 

provide ways of examining and transforming a problem that had initially been formulated through 

common sense, turning the problem into a researchable problem” (Silver & Herbst, 2007, p. 48). 

The example Silver and Herbst provide to describe this use of theory in mathematics education 

scholarship is Ball et al.’s efforts to study the relationship between teachers’ knowledge of 

mathematics and instruction. Theory enabled a reconceptualization of the nature of the 

mathematical knowledge needed in teaching, which led to the development of different kinds of 

measurement instruments to research the problem of teacher knowledge.  

 Similarly, the results of this dissertation have the potential to contribute to theory that 

could connect commonsense problems and research. The conceptualization of teaching to the 

mathematical point and, in particular, the conceptualization of its subcomponent, mathematical 

purposing, has turned the important, yet underspecified, notion that mathematics teaching 

involves determining mathematical learning goals and using them to design and implement 

instruction into an object that can be studied. Naming and defining the work of mathematical 

purposing helps mediate research on a variety of commonsensical problems, such as investigating 

the relationship between purposeful instruction and student learning in mathematics. For 

example, now that mathematical purposing is an “object,” instruments can be designed to try to 

measure it. Such measures could then be used to study its relationship to mathematical knowledge 

for teaching, the mathematical quality of instruction, and/or student achievement.  

 
Mediating Connections Between Research and Practice 

 According to Silver and Herbst, one way theory can mediate connections between 

research and practice is to help research understand practice by providing a “language of 
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description of an educational practice” (p. 56). The conceptualization of teaching to the 

mathematical point and mathematical purposing developed in this dissertation could help make 

connections between research and practice in this manner.  

 The conceptualization of teaching to the mathematical point in this dissertation and the 

resulting framework for mathematical purposing provide a different lens for viewing teaching. 

The focus of the framework is not on the mathematics task, the mathematical terrain, the student 

learning goals, or how the task is planned to be implemented; the focus is on the connection 

among these. This has a number of implications for helping research understand practice. For 

example, the framework for mathematical purposing shows that, in practice, analyzing the 

connection between the details of the task and the student learning goals could simultaneously 

unpack the mathematical terrain. In addition, the detailed description of the work of teaching 

represented in the framework makes visible aspects of practice that might be missed with other 

lenses, thus helping research have a more nuanced view of teaching. For instance, the framework 

enabled me to notice productive instincts and sensibilities in preservice teaching, even when the 

enactment seemed to steer an activity in an unproductive mathematical direction. A number of 

examples of this were seen in Chapter 5. For instance, although Nicole’s recording of “Th” for 

“tenth” in her decimal lesson was potentially confusing mathematically, her use of recording to 

emphasize a key mathematical idea can be a productive teaching move. By naming these types of 

moves, the framework helps observers of practice distinguish between the intent of a move and 

the way it is implemented. 

 Silver and Herbst note that there is a fine line between theory as a tool for understanding 

practice and theory as a prescription for practice. If the work of mathematical purposing were 

further researched and connected to improved quality of mathematics instruction, then a 

framework for mathematical purposing could ultimately reflect a prescription for practice. Such a 

framework could inform the evaluation of teaching or instructional materials. With additional 

research into the ways the work of mathematical purposing can be distributed, suggestions could 

be made about how the work is best distributed in particular contexts or inform the design of 

educative curriculum materials.  

 Another way theory can connect research and practice is through “an organization of by-

products of research that practitioners might use” (Silver & Herbst, 2007, p. 55). Silver and 

Herbst illustrate this use of theory with an example from Stein and colleagues’ work on 

mathematics tasks (Stein et al., 1996; Stein et al., 2000), in particular, their development of the 

Mathematical Tasks Framework (MTF).  The MTF theorizes about the influence of mathematics 

tasks on student learning by depicting the role of the teacher in shaping the nature of the task 
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through the stages of its implementation. Silver and Herbst explain how the MTF has been used 

to develop narrative cases for teacher education and professional development, and argue that 

“this example raises to visibility the potentially important role that tools, such as frameworks, can 

play in the work of theory mediating connections between research and practice” (p. 56). 

 The work in this dissertation could similarly be used to develop tools for practice, 

particularly for use in teacher education. For example, Hiebert and colleagues (2007) argue for 

the design of teacher education programs that prepare teachers to learn from teaching, and 

propose “analyzing teaching in terms of student learning” as one of the core practices needed for 

teachers to continue learning from their teaching once they are in the classroom. They identify 

four skills that need to be developed in order to learn to analyze teaching in terms of student 

learning, the first of which is “specifying learning goals.” The four skills would become the 

learning goals for teacher education programs. Hiebert et al. argue that the first step in realizing 

this type of teacher education program is to specify the teacher education learning goals more 

precisely, which involves “unpacking the four skills into more detailed and precise component 

skills and examining how the component skills can be developed and recomposed” (p. 59). The 

work of this dissertation could help translate Hiebert et al.’s proposal into teacher education 

practice by specifying what might be component skills of the teacher education learning goal of 

learning to specify learning goals. 

 The results of this dissertation could also lead to the development of tools that teacher 

educators could use to help preservice teachers learn to specify student learning goals or to 

develop their skills with other aspects of teaching to the mathematical point. For example, the 

framework could be used to create tools for analyzing or reflecting on practice. Such tools could 

be used in teacher education courses to study records of practice, to support preservice teachers’ 

reflection on their own teaching, or to assist field instructors when debriefing observed lessons. I 

discuss more specific ideas for teacher education tools at the end of the chapter. 

 One interesting thing to note is how language plays a role in mediating connections 

between both research and problems and research and practice. With respect to this dissertation, 

the role language plays in each is slightly different. In connecting research and problems, 

language helps compress a complicated set of ideas into an object that can be studied. In 

connecting research and practice, language opens up and names the work of teaching to enable 

more nuanced lenses for interpreting practice and the development of tools for teaching beginners 

to do the work. Thus, the language of the dissertation might be used differently and be differently 

useful across contexts. For example, although the language of “mathematical purposing” might 

provide useful shorthand for research, in teacher education it might be preferable to talk about 
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articulating the mathematical point of an instructional activity and orienting the details of the 

activity toward it. In fact, the everydayness of “mathematical point” and “orienting” is part of 

what might make this language accessible for and useful in teacher education.  

Mediating Connections Between Practice and Problems 

 Silver and Herbst propose that theory can mediate the connection between practice and 

problems by being “a proposed solution to a problem of practice” (p. 59). In this role, theory 

provides a way of understanding a problem so that a response can be developed in practice. The 

work in this dissertation could contribute to the development of proposed solutions to the problem 

of beginners learning to navigate the complexities of in-the-moment teaching. A hypothesis of 

this study is that having a deeper and more nuanced understanding of the mathematical point of 

an instructional activity and its details would help beginners manage the interactive aspects of 

mathematics instruction. This way of conceptualizing the problem of navigating in-the-moment 

teaching could lead to the development of practices that support beginners in doing this work. For 

example, one of the challenges of managing instruction is remembering the many different things 

that need to be tracked on. One idea for practice that emerges from viewing the problem through 

the lens of needing a better understanding of the mathematical point of an activity is the 

development of “bundled” teaching moves—that is, sets of teaching moves that are bundled 

together with a particular mathematical purpose. Another example is the idea of developing 

question packages, which was discussed in Chapter 6.  

 
Applications to Education Scholarship More Broadly 

 The conceptualization of teaching to the mathematical point and the framework for 

mathematical purposing developed in this study could also be extended to and then used to 

mediate education scholarship in subjects other than mathematics. For example, in history 

instruction, one could conceive of “teaching to the historical point” or “historical purposing.” 

Like mathematical purposing, “purposing” in other subjects would focus on the connection 

between the instructional activity, the content it is intended to teach, and how the details of the 

instructional activity are oriented so that it is more likely to engage students with that intended 

content. Although the overall conceptualization of “teaching to the point” seems readily 

extendable to other subject areas, further research would be needed to examine more closely the 

analogous work and to develop a framework for the work of “purposing” in other subject areas, 

as well as to identify the problems in and strategies for steering instruction. Once unpacked and 

articulated, frameworks in other subjects could be similarly used to mediate research, practice, 

and problems in education scholarship. 
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 But unlike this dissertation, these new studies would not need to start from scratch. For 

example, it seems like the basic structure of the work of articulating the mathematical point as a 

trifocal analysis of the mathematical terrain and the instructional activity would also be applicable 

to “articulating the [other subject] point,” except that the work would involve a trifocal analysis 

of the terrain in another content domain and the instructional activity using lenses of the other 

subject, learners, and focusing. In that sense, the framework developed in this study provides a 

kind of graphic organizer for decomposing the work of purposing in relation to teaching other 

subjects. Furthermore, the decomposition of work in this dissertation might help make visible 

parallel aspects of the work in other subject areas and provide language for naming this work. 

 In turn, decomposing the work of purposing in other-subject-area instruction would 

inform an understanding of mathematical purposing. First, if the framework for mathematical 

purposing was usefully extended to teaching other subjects, this would provide information about 

the robustness of the framework and evidence of its usefulness beyond this study. Second, if there 

are components of the framework that are similar across the teaching of different subject areas, 

this would be a way to help identify which components of mathematical purposing are more high-

leverage (Ball et al., 2009) for pre-service elementary teachers. In other words, overlapping 

components would help identify aspects of the work of teaching that apply across subjects, which 

can be strategic sites for elementary teacher education because of the need to prepare beginners to 

teach all subjects in a limited amount of time. 

 
The End is Really the Beginning: Next Steps in this Line of Work 

 In many ways, this dissertation is about setting the stage for future work. Conceptualizing 

teaching to the mathematical point and beginning to unpack the work of mathematical purposing 

enables these aspects of teaching to be studied. The above discussion of this study’s potential 

contributions to education scholarship points to a number of concrete next steps in this line of 

work. I briefly discuss some of these below. 

 Use the framework to analyze preservice teachers’ mathematical purposing. One next 

step would be to reanalyze the data from preservice teachers’ lessons using the framework for 

mathematical purposing. For this dissertation, the data were analyzed to develop the framework,58 

which meant that instances of preservice teachers’ practice were used to spur ideas about what 

could be the work of mathematical purposing, not to determine whether an episode was an 

example of mathematical purposing being done or being done well. In many cases, it was the 

                                            
58 The case from Paige’s lesson is an exception. In this case, I used the developed framework to analyze her 
articulation of the mathematical point of a representation. Thus, Chapter 7 shows an example of an 
application of the framework for data analysis. 
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absence of a move that was coded. Therefore, a possible next step would be to develop a way to 

use the framework to code whether a particular aspect of mathematical purposing was present and 

whether it was done in a productive way.59  

 The results of this analysis could be quantified and then examined for trends in preservice 

teacher practice. Such descriptions of preservice teaching, while not generalizable, could help 

teacher educators learn more about what preservice teachers bring to student teaching and suggest 

productive directions for future research. Preservice teachers’ mathematical purposing could also 

be compared with their MKT scores to see whether there are differences in mathematical 

purposing related to mathematical knowledge for teaching. I could analyze the mathematical 

quality of the lessons and compare this to the mathematical purposing analysis. Finally, I could 

develop a framework for coding the steering of instruction toward its mathematical point and look 

for relationships between mathematical purposing (as seen in the interviews) and steering. 

 Develop measures for knowledge of content and curriculum (KCC). Another next step 

would be to try to develop measures for KCC. These could be multiple-choice items like those on 

the survey used in this study or open-ended items, perhaps involving the examination of 

curriculum materials or the description of possible curricular trajectories for teaching a particular 

topic. Looking at the list of proposed knowledge, reasoning, and dispositions to be included in 

KCC (from Chapter 7) gives ideas about the content of items that might be developed. This list 

also signals a likely challenge of developing such measures: Although some aspects of KCC may 

be general (i.e., apply across contexts), much of the knowledge and reasoning used in teaching to 

the mathematical point involves matching intended mathematics to particular instructional 

activities to be engaged in with particular students. For example, what is taught at different grade 

levels depends on the particular district or state; what makes a good learning goal for an activity 

depends on factors such as students’ prior knowledge and the amount of time that will be allotted. 

I do think it would be possible though, with adequate framing, to develop scenarios that 

sufficiently contextualize KCC items. Developing items would be useful not only to try to 

measure teachers’ knowledge of KCC, but also to learn more about the nature of this knowledge 

and its development. For example, piloting items could provide information about whether KCC 

is distinct from other domains of MKT. Thus, item development would help clarify and refine 

hypotheses about what is included in KCC. 
                                            
59 The ideas for this type of coding scheme are based on the Learning Mathematics for Teaching (LMT) 
project’s video coding rubric for the mathematical quality of instruction (MQI). In this rubric, for each 
feature of mathematics instruction in a five-minute episode, coders determine whether the feature is 
“present” or “not present” and then evaluate whether it is “appropriate” or “inappropriate.” This enables the 
coding scheme to capture when an element is there but is mathematically problematic and to reflect when 
an element’s absence is mathematically inappropriate. 
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 Study the work of mathematical purposing and its distribution in different contexts. 

Another important next step would be to study the work of mathematical purposing in different 

contexts. This line of research would investigate two types of information: (1) whether the work 

of mathematical purposing is different in different contexts (e.g., with different curricula, experts 

instead of novices, middle or high school instead of elementary, different countries, etc.); and (2) 

how the work is differently distributed in different contexts. With respect to the first type, I 

hypothesize that, like with purposing in other subject areas, the general structure of the 

framework presented in this dissertation would be applicable across different contexts of 

mathematics instruction in the United States. Even though the lesson data were from preservice 

teaching, the framework also reflects the literature I reviewed, which includes a range of practice 

(including experts). However, it is likely that there would be new things to add to the framework 

that were not visible in the data or in the literature I reviewed.   

 With respect to the second type, even in similar contexts, the work will be differently 

distributed in each particular situation. Across more diverse contexts, I imagine that differences in 

distribution would be even more pronounced. For example, if a teacher is using a curriculum that 

provides detailed information about the mathematics and student thinking related to an 

instructional activity, the work of the teacher in the mathematical purposing of that activity 

would include interpreting the information provided and using it to analyze the details of the 

instructional activity. When that kind of background information is not provided by the 

curriculum, then the work of the teacher includes either abstracting that information from an 

analysis of the details of the activity or drawing on other resources. In either case, the work of 

mathematical purposing is the same, but the teacher’s role in that work, as well as the kinds of 

mathematical knowledge and reasoning required by the teacher, are different.  

 Understanding more about how the work of mathematical purposing is distributed in 

different contexts would provide important information for teacher education. For example, it 

could help identify aspects of the work of mathematical purposing that would be high-leverage to 

teach novices. If looking across contexts reveals that there are certain aspects of the work of 

mathematical purposing that the teacher has to do in most settings, or that the distribution of work 

for beginning teachers tends to be similar across contexts, then those more common practices and 

the requisite knowledge might be strategic foci in teacher education.  

 Design tools for teacher education. As discussed above, the framework developed in this 

dissertation could be translated into tools for teacher education. I think two types of tools would 

be particularly interesting to try to develop and experiment with at different points in preservice 

teacher education. The first would be a tool that helps preservice teachers learn to analyze 
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textbook activities to determine their (possible) mathematical point(s). For example, the details of 

the activity could be examined using questions like those in Appendix D (Table 11 and Table 13 

from Chapter 6). What would be different about this tool from similar tools already being used in 

teacher education is that there would be an expressed “teacher education point” of engaging 

preservice teachers in the textbook analysis in order to unpack the mathematical terrain and to 

focus on the connection between the activity and the intended mathematics. This focus is not 

necessarily different than other tools currently used in teacher education; however, as discussed in 

Chapter 2, lesson analysis/planning protocols often have determining the goals of an activity as a 

discrete (often initial) step in the analysis/planning process. Thus, it is not made explicit that the 

work of analyzing the lesson and detailing the plans for implementation could, in fact, inform an 

understanding of what the activity is trying to accomplish. The tool I would like to develop would 

engage in the analysis of an instructional activity in order to determine the mathematical point 

and how the activity is set up to engage students with that point. Through this analysis, preservice 

teachers would have opportunities to practice this central task of teaching and to develop MKT, in 

particular, specialized content knowledge (SCK) and knowledge of content and students (KCS). 

 A second tool I would like to develop is one that could be used with preservice teachers 

before and after they teach lessons in the field. Such a tool could build off the interview protocols 

used in this study. During data collection, I was surprised by how many preservice teachers said 

that they learned from the interviews—even though I was only asking detailed questions about 

their lessons, not offering suggestions. It seemed that for many preservice teachers the questions 

themselves signaled important things to consider, and just my asking a question put them in the 

position to do the analysis themselves. For example, as described in Chapter 7, going into her 

lesson, Paige had preferred the convert-to-minutes method for adding and subtracting fractions on 

a clock. When I pressed on this during the post-lesson interview, Paige engaged in an analysis of 

the mathematics made available for study in the convert-to-minutes method and concluded that, 

although it might be an accessible way for students to find the answer, they may not be using 

fraction concepts in the process:  

Interviewer And why did you decide to ask them how many minutes? 
Paige Because I thought that might be easier for them. When you have twenty 

minutes, if they’re looking and thinking in minutes, if they see that twenty 
minutes are shaded, like fifteen minutes—whether you’re starting from the 
bottom or the top—will leave the same amount left. I guess that’s what I 
was thinking. Because I, I mean, even for me it’s easier to think in minutes 
here, and I wish I would’ve been able to use the example of minutes, like 
they did in the book, because for me that makes so much sense. “Okay, 
well, you know, thirty minutes minus ten minutes is twenty minutes” and 
that’s how much is [inaudible]. 
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Interviewer And how do you think using the example of minutes helps them 
understand subtracting fractions? 

Paige Well, I, understand subtracting fractions? 
Interviewer Right, because isn’t that what you were trying to get at was subtracting 

fractions? So how does the minutes help you see fractions? 
Paige Well, the minutes, I guess, doesn’t with, if we’re looking strictly, if we’re 

doing minutes and fractions, maybe it doesn’t. Or if you’re thinking of 
minutes as part of sixty, in an hour. 

Interviewer Do you think that when they think of thirty minutes they’re thinking out of 
sixty? 

Paige No, I think they’re probably just thinking thirty minutes. So that might not 
be a good example, because if they’re not thinking as part of a whole, then 
it kind of defeats the purpose of fractions, which is thinking of something 
as part of a whole, so that half—that thirty minutes—would be part of your 
sixty minutes which is your whole.  

Interviewer But if they aren’t thinking as part of a whole, then they’re just thinking in 
minutes, then you’re not really working on fractions? 

Paige No. (P-Post, T252-261) 
 

 I hypothesize that talking closely about the connection of the details of an activity to the 

intended mathematics is an important site for teacher learning. Before teaching a lesson, the tool 

would engage preservice teachers in a discussion about the details of the activity, with the driving 

question being “what is the mathematical point of ___?” After the lesson, the focus of the 

discussion would be on what they were trying to do to steer the instruction toward the 

mathematical point.  

 In conclusion, this dissertation set out to investigate one of the central aspects of 

teaching: that instruction is about moving with students over time toward particular learning 

goals. Because this is so fundamental to teaching, when working on this dissertation, I often felt 

that the ideas were obvious and not new. For example, once “teaching to the mathematical point” 

became my lens for viewing the literature, the work of determining goals and using them to 

design and steer instruction could be seen in everything I read. But maybe that is the point of this 

dissertation: This study brings to the foreground a foundational aspect of teaching that is often 

taken for granted and assumed to be in the background. That teaching involves determining 

mathematical goals and using them to design and steer instruction may be obvious, but this 

dissertation shows that what is involved in doing this work is certainly not.  
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Appendix A: Background Interview 

Introduction 
 
I first want to thank you again for participating in this study.  As you know, the purpose of the 
study is to find out more about how beginning teachers think about and prepare for teaching 
textbook-based math lessons.  This part of the study has two main components: (1) is today’s 
background interview; and (2) is observing and interviewing you about one of your math lessons.  
As you know, I plan to record the interviews and your lesson.  And to show appreciation for the 
time that this requires of you, at the end of the study you will receive an honorarium of $80.   
 
Before beginning the interview, I wanted to see if you have any questions about the study or what 
you will be doing.  Is there anything else before we get started? 
 
The purpose of today’s interview is to find out about your background, in particular about your 
experiences with mathematics and teaching mathematics.  So why don’t we start with your math 
background? 
 
 
Mathematics background 
 
1.  What math classes did you take in high school?  What math classes did you take in college? 
 
2.  What was learning math like for you in elementary school?  How do you feel now about doing 

math? 
 
3.  What do you think it means to be “good” at math?  What do you think it takes for someone to 

be “good” at math? 
 
4.  What do you think is the main goal of teaching math in elementary school? 
 
 
Teaching background 
 
5.  What is your teaching major and minor? 
 
6.  What types of teaching experiences have you had other than in the teacher education program?  

Did you teach math during any of those experiences?  
 
7.  Describe the field placements you’ve had in the program.  For their current placement, ask:  
 

How would you describe your CT’s approach to teaching math? What is a typical 
math lesson like in your CT’s classroom? 
 
How would you describe the students in your class?  How do you know this 
about your students? 

 
8.  What experiences teaching math have you had in your placements?  
 
9.  How do you feel about teaching math?  What do you feel comes pretty naturally for you?  

What aspects of teaching math have you found challenging? 
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10.  What do you think makes a “good” math teacher?  What types of things do good math 

teachers do?  
 
11.  What do you think makes a “good” math lesson? 
 
 
Planning math lessons 
 
12.  What math curriculum is used in your placement? 
 
13.  Suppose your CT asks you to teach a lesson tomorrow from [math curriculum].  What would 

you do to prepare for teaching the lesson?   
 
If not mentioned, ask about: 

Do you read the stated objective?  How do you use it? 
 
How do you prepare to use the student problems in the textbook?  
 
What do you write down to use while you are teaching?  What are the types of 
things you include on your plan? (e.g., goals, scripted opening, examples to use, 
summary) 
 
What other parts of the curriculum materials do you use?  Do you look at other 
lessons in the unit? 
 
What role does your knowledge of your students play in your planning?   
Can you give an example?  How do you know that about your students? 

 
14.  Is what you do to prepare for a math lesson different when you are doing it for a teacher ed 

course or observation by your field instructor, and when you are just teaching a math lesson 
that your CT asked you to teach?  If so, how?  

 
Can you give me an example of something you’ve had to prepare for a TE course?  How 
would you have done it differently if you were just preparing to teach? 

 
 
Teaching math lessons 
 
15.  When you’re teaching a math lesson, how do you use the lesson plan that you made? 
 
16.  Do you ever veer off or change your plan?  How do you decide when to make this kind of 

change? 
 
17.  How do you decide how your math lesson went?  How do you determine what students 

learned in a lesson?  
 
18.  What have you learned about lesson planning in the program? What kind of feedback or 

support have you received from course or field instructors?  From your CT?   
 
19.  Anything else about teaching math lessons that you’d like to add? 
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Appendix B: Pre-Lesson Interview 

Introduction   
 

Thank you again for participating in this study and for letting me observe and record your lesson 
today. The purpose of this pre-lesson interview is to find out more about your plans for your 
lesson, what you hope to accomplish with your students, and what you did to prepare.  
 
I’m usually going to ask you a general question, and then some related follow-up questions. Some 
of the questions might feel a little repetitive and you definitely aren’t expected to have answers to 
all of them.  It’s just that it can be hard to remember everything you are thinking about for a 
lesson, so I want to follow-up to make sure I don’t miss anything.  
 
Do you have any questions before we begin?   

 
Lesson goals 
 
1.  Why don’t you start by telling me your goals for your lesson?  

 
For each goal mentioned, first ask for elaboration and clarification: 

e.g.,  What do you mean by _______? 
 Can you give an example of _______? 
 How do you define ______? 
 

 If they don’t mention any of the following goal-types, ask: 
 

o Do you have any mathematics content goals? 
 

o Do you have any social goals or goals related to student behavior? 
 

o You mentioned a number of goals about mathematical topics. Do you have any 
goals related to doing math? (mathematical practices) 

 
2.  How did you decide on these goals? Do you think your goals are the same or different from 

the goals stated in the textbook version of the lesson? 
 
3.  Do the goals that you’ve mentioned for this lesson relate to any goals for the unit?  In what 

ways? 
 
4.  Do the goals that you’ve mentioned relate to any goals for the school year?  In what ways? 
 
5. What kinds of understanding or skill are you expecting kids to have with the different goals 
you mentioned?   
 
  
Walking through the lesson 
 
Next I thought you could walk me through your lesson.  For each activity or lesson segment, I’m 
going to ask you the some of the same questions, so sorry if it feels a little repetitive… 
 
6.  Why don’t you start by telling me how you plan to begin your lesson? 
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As they describe each major activity/segment of the lesson: 

 
a)  Probe MKT  

 
Ask about definitions and use of mathematical terms and language:  

• How would you define ___?   Is that how you would define it with your students? 
• Why did you decide to use the language of _______? 

 
Ask for explanations of main mathematical concepts and procedures:  

• Can you explain why ____ works?   
• What would you say if a student asked why ____? 

 
Ask for explanations of representations: 

• How does that representation show ___? Why does the representation have/use 
___? 

• Why did you decide to use that representation for ______? 
• Does the representation highlight any particular mathematical ideas?  

 
Ask about examples/numbers: 

• Why did you decide to use those examples/numbers in the problem? 
• Is there a particular mathematical idea you are trying highlight with the example? 
• Did you consider using other examples/numbers? 

 
b)  What do you think the point of this activity is? Is there a specific mathematical point?   
 
 How is that point related to your mathematical goals for the lesson?   

 
c)  Do you think this part of the lesson will be difficult for your students?  Why? 

 
If say difficult: 

o What about it will be hard? 
 

o What will you do if they have that difficulty? 
 

o How will you know if they are having that difficulty? 
 

d)  If it is a problem-solving activity: 
 
Anticipated answers & solution methods:   

o How do you think your students will solve that problem?  
 

o Are there any solutions that you particularly want to highlight?  Why? 
 
Anticipated misconceptions & errors: 

o Can you think of any errors students might make when solving this problem? 
Why do you think that is a likely error?   

 
o What information would that error give you about the student’s 

understanding?  
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 e) Is there anything in this activity that you are worried or unsure about? 
 
 
Overall comments about the lesson 
 
7.  What do you think is the main mathematical point or points of the lesson? How important do 

you think that is mathematically? Why? 
 
8.  Is there any part of the lesson that you aren’t sure about?  Why are you unsure? 
 

Is there any part of the math that you are worried about or aren’t sure you understand? 
 

Is there anything you are worried will come up when you teach the lesson?  What will 
you do if that comes up? 

 
9.  Is there a part of the lesson that you feel most confident about?  Why are you confident about 

that? 
 
10.  Is there anything else you’d like to add about your thinking about this lesson? 
 
 
Planning this lesson 
 
11.  Why don’t you walk me through your planning process. What did you do first?  What did 
you do next? 
   

If not mentioned, ask about: 
 

• How did you figure out what the lesson was about mathematically? 
o Did you do the problems yourself? 
o Did you think about what your students would do with the problems? 

 
• Did you read other components of the Everyday Math curriculum? 

o other lessons in the unit, front part of unit, other EM components 
 

• Did you consult with other resource/reference materials? 
 

• Did you talk about the lesson with anyone else to help you prepare? 
o CT, field instructor, other colleagues 

 
• How did you use what you know about your students when you were planning? 

 
11. When did you start preparing for this lesson?  
 
 How much time do you think you spent planning this lesson?  
 
 How did you decide when you were ready to stop planning? 
 
 
12.  What did you write down when you were planning?  Why do you find it helpful to write that 

down?   
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13.  Is how you prepared for this lesson typical of how you prepare for your other math lessons?   

 
What was the same?  What was different?   
 
Did you do anything different or special because it was being video taped? 
 

14.  Anything else you’d like to add about your lesson planning and what you did to prepare for 
this lesson? 
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Appendix C: Post-Lesson Interview 

 

Introduction   
 

I thought we’d start by having you share your thoughts about the lesson, and I’ll ask some follow-
up questions as you talk.  After that we’ll watch a few short clips from your lesson together and 
talk about your thinking and decisions at that point in the lesson.  Does that sound okay? 
 
General reactions to lesson 

 
1.  Why don’t you start by sharing your thoughts about the lesson? 
 

Probe their comments as they talk: 
• What do you mean by ____? 
• Can you give a specific example of that from the lesson ___? 
• How do you know that students learned ___? 
• Why would you have done that differently? 

 
2.  Can you say again what you were hoping to accomplish in this lesson?  How well do you think 

you did that? 
 
3.  Did anything go differently than you had planned?  Why did you decide to make that change?  

Can you give an example?  Was there anything else that went differently?   
 
 

Student learning 
 
4.  What do you think students learned in this lesson?  How do you know? 
 
During my observation of the lesson, I identified episodes where: 

• Teacher seems to show use or not use of mathematical goals in instructional decision-
making; or where I was surprised by his/her move or response to student. 

• I want to find out more about teacher’s MKT (e.g., Did the teacher understand a student 
comment or method?  What do they think of their explanation of a mathematical idea or 
procedure?) 

 
5-9.  At one point in the lesson… [show clip from video or briefly describe episode]. 

 
For instructional decision-making episodes, ask: 

 
Can you describe what was happening at this point in the lesson? 
Why did you decide to ___?    What were you trying to accomplish? 
 
 If not mentioned, ask: 
 

• What did you think about when you decided to ___?   
• Did you consider other options? 
• How did this relate to the point of this activity or your goals for the lesson? 
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Do you think it accomplished what you had hoped?  How do you know? 
 
What would you do in that situation if you were teaching the lesson again? 
 

 
For MKT episodes, ask them to explain the mathematics in the episode.  For example:  

 
Can you describe what was happening at this point in the lesson? 
 
Can you explain the explanation/representation you gave/used ___?   
 
What do you think about [student’s] solution?  Is it mathematically valid?  Would it 
work in general? 
 
What do you think [student] meant when he/she said ____?   
 
Why did you decide to record it on the board in that way? 
 
How did this relate to the point of this activity or your goals for the lesson? 

 
 
10.  Were there any other specific parts of the lesson that you wanted to talk about, or any parts of 
the video you’d like to see? 

 
 

Mathematical goals of the lesson 
 
11. Now that you’ve taught the lesson, do you think your goals are different from your original 
goals when you planned your lesson?  In what ways? 

 
 If they don’t mention any of the following goal-types, ask about: 
 

• What about your mathematical goals? 
 

• What about social goals or goals related to student behavior? 
 

• Did you have any goals related to doing math? 
 

If they say their goals changed:  Why did your goals change during the lesson?  Were you 
aware when you were teaching that you had changed your goals?   

 
12.  Do you think you explicitly used your goals to help you make decisions while you were 
teaching?   
 

Can you think of an example when you thought about your goals during the lesson?  What 
did you decide to do as a result?   Can you think of another example of using your goals? 
 

 If not mentioned, ask: 
 

• Did you use your goals to decide how to respond to a student (e.g., who to call on, 
what to say in response to their answer)? 
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• Did you use your goals to pick examples or problems? 

 
• Did you use your goals to manage the time (e.g., decide when to move on or what 

part of the lesson to skip)? 
 

• Did you use your goals to decide how well the lesson went? 
 
13.  Anything else about your goals for this lesson? 
 
Planning for tomorrow 
 
Ask if they are teaching math tomorrow.  If so, ask the following questions. 
 
14.  Will today’s lesson impact what are you thinking about for tomorrow’s lesson? In what 

ways?  How does that relate to what happened today? 
 
15.  Does today’s lesson impact your goals for tomorrow’s lessons? 
 
16.  Anything else about today’s lesson or what you are planning for tomorrow?  
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Appendix D: Example Questions to Guide  
Analysis of the Details of the Instructional Activity 

 
Examining the Details of the Instructional Activity 

Mathematics Lens 
What mathematics is available? 

Learners Lens 
How accessible is the mathematics? 

Representations, manipulatives, tools, contexts 
• Does/could its use support understanding of key 

concepts? Which ones? How? 
• Does/could it help give meaning to a procedure? 

How? 
• Does/could its use reveal/draw attention to the 

underlying structure/meaning/properties; or 
foreshadow important mathematical ideas? If so, 
which ones? 

• Does/could its use help reinforce connections between 
it and what it is representing?  

• What numbers numbers/problems/concepts is/can it be 
used with? Which cases/directions are/can be worked 
on?  

• Are all of the quantities being operated/acted upon 
visible? What interpretation of the operation/action is 
shown? Where is the answer? 

• How is the mathematics available impacted by 
whether it is explained during or after its construction? 

• Does it distort the math in any way?  
• Does its use make mathematics available for study 

that wouldn’t be available without it? 
• Does it create opportunities to address/raise likely 

misconceptions, errors, or other difficulties? 
• What mathematical thinking is being done by it 

instead of students? 
 

• Are all students familiar with how to use it? Is it 
used differently than students might have used in 
the past? If so, how does that impact 
understanding? 

• Does the way it is used to explain 
concepts/procedures build on what students 
already know and can do? 

• Does the accompanying notation or language 
facilitate its use (e.g., support understanding, 
remembering, etc.)?  

• Do everyday uses (if any) support or interfere 
with its mathematical use?  

• Does it make assumptions about students’ 
experiences or background that might interfere 
with understanding? 

• What might be difficult or tricky about using it? Is 
one of the directions more complex than another? 

• What mathematical elements might be confusing 
or distracting? 

• Are there non-mathematical elements that could 
be potentially confusing or distracting? 

• How intricate is it to use/teach/get into play? Does 
the number of steps involved or the complexity of 
teaching it detract focus from learning the 
intended mathematics? What residue is left from 
its use?  

• How prone to errors is it? 
• What mathematical ideas could be incorrectly 

overgeneralized from it? 
 

Procedures and/or solution methods  
(including those anticipated to be generated by students) 

• What numbers and/or types of problems is/can this 
procedure/method be used with? 

• If students used this procedure/method, would they be 
engaging with the focal topic? If so, with what 
aspects? 

• Does/could its use reveal/draw attention to underlying 
concepts/structure/meaning/properties? If so, which 
ones and how? Which are obscured? 

• Is it a case of or foundational for other mathematical 
ideas? 

• What might be difficult about using the 
procedure/method? Are there numbers or cases 
for which it is more mathematically complex? 

• How is it similar or different to what students 
have done before? Do these 
similarities/differences support or interfere with 
understanding/use? 

• How does any accompanying notation or 
language facilitate its use? 

• How intricate is it to use/teach/get into play? Does 
the number of steps involved or the complexity of 
teaching it detract focus from learning the 
intended mathematics?  

• How likely would students be able to devise the 
procedure/method on their own? 
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Numbers and/or figures used in problems, examples, and exercises 
• Do the numbers/figures necessitate/encourage the 

mathematical idea/skill being taught?  
• Where in the terrain do the numbers lead? Might the 

numbers/figures bring you into unwanted 
mathematical territory?  

• Do they create opportunities to address/raise likely 
misconceptions, errors, or other difficulties? 

• If numbers/figures are being generated randomly or by 
students, might something unwanted come up, or 
something wanted not come up? 

 

• How “friendly” or familiar are the numbers to 
students? 

• Is there anything that might be masked or left 
implicit by the familiarity of the numbers?  

• How do the numbers/figures impact the 
difficulty? 

• Are any of the cases more complex than another? 
• How visible to students is the idea in the 

example? 
• Does the same number serve multiple roles, and 

might that make things less visible, cause 
unnecessary confusion, or hinder explanation?  

• What mathematical ideas can be incorrectly 
overgeneralized from numbers/figures? 

 
Explanations and examples 

• What is being explained or illustrated? What is not 
being explained and why?  

• Does it include all of the key steps/concepts that need 
to be included? 

• Does it support understanding of key concepts? Which 
ones? How? 

• Does it reveal/draw attention to the underlying 
structure/meaning/properties; or foreshadow important 
mathematical ideas? Which ones? How? 

• Is the explanation/example mathematically accurate? 
Does it distort the math in any way? 

• Does it create opportunities to address/raise likely 
misconceptions, errors, or other difficulties? 

 

• Will the explanation/example be understood by 
students? 

• Is the way that the necessary key steps/concepts 
are explained accessible to these students? Does it 
build on what they already know and can do? 

• What might be difficult or tricky about using it? 
• What mathematical ideas can be incorrectly 

overgeneralized from the explanation/example? 
• What might be confusing or distracting? Are there 

non-mathematical elements that could be 
potentially distracting? 

• How intricate is it to use/teach/get into play? Does 
the number of steps involved or the complexity of 
teaching it detract focus from learning the 
intended mathematics? 

• Does the accompanying notation or language 
facilitate its use? 

 

Language 
(including technical vocabulary and symbolic notation, wording of task/explanations, etc.) 

• Is the language mathematically precise? 
• Does the language used convey meaning/connections?  

What meanings/connections are hidden through 
language?  

• Does the wording “give away” what students are 
supposed to do? 

• Is there casual or intended-to-be-helpful language that 
distorts or obscures the mathematics? 

 

• Are students familiar with any terms and 
symbols? 

• Does compression mask meaning? Is this likely to 
cause difficulty for students? 

• Are there potential conflicts or confusions with 
the everyday use of language? Or with how 
language or symbols have been used in previous 
topics? 

• Will students understand the wording of the task? 
 

What counts as an answer 
• How does what students are being asked to do relate 

to the focal topic (e.g., does it draw on skills, 
concepts, etc.)? What kinds of reasoning does it 
engage them in? 

• Does what students are being asked to do engage them 
in mathematical practices (e.g., provide explanations, 
use representations, etc.)? 

• If students are giving an explanation, what are the key 
concepts that must be mentioned? 

• Is it possible to get a correct answer without engaging 
with the intended mathematics? 

 

• Will what students are likely to do engage them 
with the intended mathematics? 

• Will students understand what counts as 
“different”? 
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Structure of the activity 
• Does the work format impact the mathematics? 
• Which problems are students left to do on their own 

and what mathematical work does that leave them?  
• How does the use of any established routines impact 

the mathematics being worked on? 
 

• Are students familiar with the structure of the 
activity? 

• What might be confusing or distracting? Are there 
non-mathematical elements that could be 
potentially distracting? 
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