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CHAPTER I 

 

INTRODUCTION 

 

Fear is an evolutionarily preserved emotion to help organisms avoid threats in the 

future and to improve chances of survival (LeDoux, 1996; Mineka and Ohman, 2002).  It 

activates defensive behaviors such as escape, immobility, and aggression within a split-

second, which is critical in environments where disasters are life threatening and occur 

without warning (Fanselow and Lester, 1988).  However, failure to suppress fear may 

lead to certain severe anxiety disorders, such as panic, obsessive-compulsive, phobia, and 

post-traumatic stress disorders (PTSD) (Bouton et al., 2001; Rothbaum and Davis, 2003).  

In a given year, about 40 million (18%) American adults are affected by these common 

psychiatric disorders (Kessler et al., 2005).  An example quoted in a booklet published by 

National Institute of Mental Health (NIMH) about anxiety disorders, illustrated a person 

with a specific phobia of flying.   

“I’m scared to death of flying, and I never do it anymore.  I used to start dreading 
a plane trip a month before I was due to leave.  It was an awful feeling when that airplane 
door closed and I felt trapped.  My heart would pound, and I would sweat bullets.  When 
the airplane would start to ascend, it just reinforced the feeling that I couldn’t get out.  
When I think about flying, I picture myself losing control, freaking out, and climbing the 
walls, but of course I never did that.  I’m afraid of crashing or hitting turbulence.  It’s just 
that feeling of being trapped.  Whenever I’ve thought about changing jobs, I’ve had to 
think, ‘Would I be under pressure to fly?’  These days I only go places where I can drive 
or take a train.  My friends always point out that I couldn’t get off a train traveling at high 
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speeds either, so why don’t trains bother me?  I just tell them it isn’t a rational fear.” 
(NIMH, 2007) 

 
As illustrated above, most adults with phobias realize that their fears are 

irrational.  However, they still find that facing, or even just the thought of facing, the 

situation will bring severe anxiety.  Specific phobias are defined as “excessive or 

unreasonable fears of circumscribed objects or situations, which are avoided or endured 

with dread.” (Craske, 1999)  Not like commonly occurring fears, phobias can be 

profound enough to interfere with normal life functions; thus, psychotherapy is usually 

pursued.  Among the treatments of anxiety disorders, exposure-based behavioral therapy 

has been extensively used for specific phobias (Craske, 1999).  Individuals with specific 

phobias are guided to the objects or situations that are feared, through pictures or tapes, 

computer-generated virtual realities, or face-to-face conversation (Rothbaum et al., 2000; 

Gros and Antony, 2006; Rothbaum et al., 2006).  Supported and accompanied by 

therapists in face of the feared situations and sometimes in combination with 

pharmacological treatments, exposure-based behavioral therapy has been proven 

effective to suppress irrational fears on phobias (Davis et al., 2006; Gros and Antony, 

2006; Hofmann et al., 2006).   

It is not surprising, then, that understanding the psychological and neurobiological 

mechanisms of normal and pathological fear learning, expression, and more importantly, 

fear suppression, has long attracted interest in basic research.  While some stimuli, such 

as height and snakes, provoke innate fear (Mineka and Ohman, 2002), it is believed that 

learning through Pavlovian conditioning helps shape the development of fear to certain 

initially neutral objects and situations that may signal threat or danger (Mineka, 1979).  
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Thus, by using Pavlovian fear conditioning in rats as the animal model, the current 

dissertation examines the behavioral and neural mechanisms of extinction to recent fear.   

 

Pavlovian Fear Conditioning and Extinction 

 

Pavlovian fear conditioning is one of the most frequently used behavioral 

paradigms to study the neurobiology of fear learning and memory (LeDoux, 2000).  It has 

been used in a variety of species, such as marine slugs (Carew et al., 1981; Walters et al., 

1981), fish (Xu and Davis, 1992; Eisenberg and Dudai, 2004), rabbits (Pascoe and Kapp, 

1985; Sebastiani et al., 1994; Poremba and Gabriel, 1997; McEchron et al., 2000), rats 

(LeDoux, 2000; Maren, 2001a; Pare et al., 2004), and humans (LaBar et al., 1998; Milad 

et al., 2005; Phelps and LeDoux, 2005; Delgado et al., 2008).  In this form of learning, 

organisms associate a neutral conditioned stimulus (CS), such as a tone or a light, with an 

aversive unconditioned stimulus (US), such as a mild electric shock.  Unconditioned 

stimuli are biologically relevant stimuli capable of evoking innate unconditioned 

responses (UR), such as vocalization.  After a few pairings, CS presentations alone elicit 

a variety of conditioned responses (CR), including freezing (Blanchard and Blanchard, 

1972; Fanselow, 1980; Fendt and Fanselow, 1999), potentiated startle (Davis, 1989; 

Davis et al., 2003), ultrasonic vocalization (Choi and Brown, 2003; Lindquist et al., 

2004), elevated heart rate or arterial blood pressure (Romanski and LeDoux, 1992a, b; 

Antoniadis and McDonald, 1999), and heightened stress hormone release (Sullivan et al., 

2004).  Fear conditioning is a robust and enduring form of learning: fear is readily 



 4 

acquired after as few as one single CS-US pairing (Blanchard and Blanchard, 1972; 

Davis, 1989; Maren, 2001b), and lasts more than a year after training (Gale et al., 2004).   

The stimuli used in fear conditioning paradigms vary considerably.  Conditioned 

stimuli could be discrete as tones (Maren, 2001a), lights (Davis et al., 1993), colored 

shapes (Phelps et al., 2004), or the context in which conditioning occurs (Maren and Holt, 

2000).  Unconditioned stimuli also vary according to the species under study, including 

footshock in rats (Maren, 2001a), eyelid shock in rabbits (Kapp et al., 1979), and wrist 

shock in humans (Phelps et al., 2004).  In the current experiments, discrete tones served 

as CSs and mild footshocks as USs in all experiments in rats.  The CR of interest is 

freezing, defined as the absence of all motor activity except that required for breathing.  

Before conditioning, when rats were first placed into the chambers, they showed little to 

no freezing but rather tended to engage in exploratory behavior.  During conditioning, 

delivery of tone-shock pairings typically resulted in activity bursts and vocalization (UR) 

followed by freezing (CR), which gradually reached an asymptote with repeated 

conditioning trials.  After conditioning, fear acquired was assessed by freezing to tones in 

the absence of the footshocks.   

From a clinical perspective, what is of more importance is not how fear is 

generated, by how it is inhibited.  After rats acquire conditioned fear, repeated 

presentations of the CS alone result in a decrement of fear, a process called extinction 

(Pavlov, 1927).  Extinction learning is not as rapid or as stable as the original fear 

learning.  It usually requires a greater number of training trials to reduce fear.  It is 

generally agreed that extinction is not an “unlearning” of the CS-US association, but a 

“new learning” of an inhibitory CS-‘No US’ memory.  This notion is supported by 
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numerous studies showing that extinguished fear can be recovered, suggesting the 

original CS-US memory is not lost during extinction (Pavlov, 1927; Bouton, 2004; 

Bouton et al., 2006).  Extinguished CRs “spontaneously recover their full strength after a 

longer or shorter period of time …”, as first described by Pavlov (1927).  Extinguished 

CRs can be reinstated by the delivery of a US in the context in which extinction was 

taken place (Rescorla and Heth, 1975; Bouton et al., 2006).  Finally, extinguished CRs 

renewed when the CSs are simply presented outside the extinction context (Corcoran and 

Maren, 2001; Bouton, 2004; Corcoran and Maren, 2004).   

As stated above, extinction is not the erasure of the CS-US acquired during 

conditioning, but a result in the formation of new inhibitory memory of CS-‘No US’ 

acquired during extinction.  As a result, extinction training renders the meaning of the CS 

ambiguous: it predicts the US during conditioning, but not during extinction (Bouton and 

Ricker, 1994).  Argued by Bouton and his colleagues, such ambiguity is gated by 

extinction context to decide which association is retrieved (Bouton, 2002; Bouton et al., 

2006).  Context can be the physical context in which conditioning and extinction 

occurred, interoceptive context of the organism such as its emotional state, presence of 

drugs, hunger, etc., or temporal context (retention interval between extinction and 

retrieval) that is gradually changing and affecting the perception of the organism on the 

overall environment (Bouton et al., 2006).  Context here refers to any cues present in the 

environment, including multimodal sensory stimuli, the relationship among these stimuli, 

etc., around the subjects under study.  Extinction memory retrieval of CS-‘No US’ is 

context dependent because it is the second thing learned about the CS (Swartzentruber 

and Bouton, 1992).  As in Bouton’s (2002) words, “the learning and memory system 
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encodes the second thing learned about a stimulus as a conditional, context-specific 

exception to the rule.”  Thus, extinction context acts as a negative occasion-setter, in 

which the presence of the overall context itself predicts that its target (CS, in this 

situation) leads to ‘No US’ retrieval.   

 

Neurobiology of Fear Conditioning and Extinction 

 

The amygdala, a brain structure located in the temporal lobe, is the critical locus 

for the acquisition, storage, and expression of fear memories (LeDoux, 2000; Davis and 

Whalen, 2001; Maren and Quirk, 2004; Pare et al., 2004; Sigurdsson et al., 2007).  With 

regard to fear conditioning, there are three main nuclei of interests: the basolateral 

complex (BLA), the central nucleus (CeA), and the intercalated cells (ITC) that lie in 

between the BLA and CeA (LeDoux, 2000; Maren, 2001a; Pare et al., 2004).   

The BLA, composed of the lateral (LA), basolateral (BL), and basomedial (BM) 

nuclei, is the sensory interface of the amygdala (LeDoux et al., 1990).  Auditory CS and 

footshock US information converge here.  It receives auditory information from the 

medial geniculate nucleus of the thalamus (Clugnet and LeDoux, 1990; Clugnet et al., 

1990; Romanski and LeDoux, 1992a) and auditory cortex (Romanski and LeDoux, 

1992a; Li et al., 1996; Doyere et al., 2003).  Information about the footshock is conveyed 

through the posterior intralaminar nucleus of the thalamus and the insular cortex (Shi and 

Davis, 1999; Brunzell and Kim, 2001; Lanuza et al., 2004).  The BLA not only receives 

both CS and US information, it is also a site for associative plasticity.  Single neurons in 

the LA respond to both auditory CS and footshock US stimulations (Romanski et al., 

1993), and fear conditioning induces long-term potentiation (LTP) in the LA (McKernan 
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and Shinnick-Gallagher, 1997; Rogan et al., 1997).  The BLA lesions or pharmacological 

inactivation blocks fear acquisition (LeDoux et al., 1990; Sananes and Davis, 1992; 

Fanselow and Kim, 1994; Campeau and Davis, 1995; Maren et al., 1996a; Maren et al., 

1996b; Goosens et al., 2000; Schafe et al., 2000; Goosens and Maren, 2001, 2003) and 

fear expression (Sananes and Davis, 1992; Maren et al., 1996a; Maren et al., 1996b; 

Fendt, 2001; Lee et al., 2001), suggesting its critical role in fear conditioning.  Single-unit 

studies also reveal that neurons in the LA encode fear memories (Quirk et al., 1995; 

Quirk et al., 1997; Maren, 2000; Pare and Collins, 2000; Repa et al., 2001; Goosens et al., 

2003).   

The CeA, composed of the medial (CeAm) and lateral (CeAl) divisions, is the 

motor interface of the amygdala.  Neurons in CeAm project to hypothalamic and 

brainstem areas that are in control of many fear CRs, such as freezing (periacqueductal 

gray), fear potentiated startle (nucleus reticularis pontis caudalis), glucocorticoid release 

(paraventricular nucleus of the hypothalamus and bed nucleus of the stria terminalis), 

increased respiration (parabrachial nucleus), and increase heart rate and blood pressure 

(lateral hypothalamus) (LeDoux, 2000; Pitkanen, 2000; Maren, 2001a).  Stimulation of 

the CeA evokes fear (Kapp et al., 1982; Iwata et al., 1987) and Lesions of the CeA 

abolish numerous CRs, including freezing (Iwata et al., 1986; Goosens and Maren, 2001).  

The CeA is suggested as the final common output structure of CRs (LeDoux et al., 1988), 

as lesions downstream to the CeA only result in specific, but not the overall, impairment 

in CR expression.   

The ITC cells are GABAergic interneurons lie in between the BLA and the CeA.  

They gate the transmission between these two nuclei.  In some cases, stimulating the 

BLA activates the ITC cells and results in feed-forward inhibition of the CeA (Royer et 



 8 

al., 1999).  In other cases, however, activated ITC cells project onto a second group of 

ITC cells, which results in disinhibition of the CeA (Pare et al., 2003; Pare et al., 2004). 

Within the amygdala, there are several pathways transferring sensory information from 

the BLA to the motor output of the CeA.  Fear expression could be driven through the 

CeAm by direct excitation via LA-BL-CeAm (Smith and Pare, 1994; Pare et al., 1995) 

and LA-CeAl-CeAm (Smith and Pare, 1994; Jolkkonen and Pitkanen, 1998), or indirect 

disinhibition via LA-ITC-CeAm as stated above (Figure 1.1).   

It has been suggested that CS-US association acquired during fear conditioning 

resides within the amygdala, and that the extinction memory may require the recruitment 

of another inhibitory brain structure (Davis and Myers, 2002).  One candidate is the 

medial prefrontal cortex (mPFC), which is involved in the inhibition of inappropriate 

behaviors.  The mPFC has been implicated in the reduction of fear responses: rats with 

the mPFC lesions, specifically the infralimbic (IL) region, require more training to 

extinguish fear responses (Morgan et al., 1993; Morrow et al., 1999).  The IL receives 

direct excitatory projections from the BL (Conde et al., 1995; Herry et al., 2008), which 

has been proposed to mediate the plasticity required for extinction memory formation.  It 

sends projections back to the amygdala targeting mainly the BLA (ventromedial LA and 

rostral BL) and a subset of the ITC neurons (McDonald et al., 1996), supporting its 

potential role of suppressing the CeAm output through the inhibitory ITC cells (Figure 

1.2A) (Royer et al., 1999; Pare et al., 2004; Likhtik et al., 2008).  Indeed, lesions of the 

IL (Quirk et al., 2000; but see Gewirtz et al., 1997; Garcia et al., 2006), and 

pharmacologically inactivating the IL immediately before (Santini et al., 2004; Sierra-

Mercado et al., 2006; Burgos-Robles et al., 2007) or after (Hugues et al., 2004; Hugues et 

al., 2006; Burgos-Robles et al., 2007; Quirk and Mueller, 2008) extinction leads to 

impaired extinction retrieval subsequently.  Moreover, physiological correlates, such as 
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increased evoked responses to CSs, increased short latency bursts, and learning related 

LTP, have been observed in the IL neurons after extinction training (Herry and Garcia, 

2002; Milad and Quirk, 2002; Burgos-Robles et al., 2007; Hugues and Garcia, 2007).   

 

Erasure of Fear? 

 

Behaviorally, fear memory spontaneously recovers with the passage of time 

(Pavlov, 1927), reinstates following unsignaled US in the relevant context (Bouton et al., 

2006), and renews when tested outside the extinction context (Corcoran and Maren, 

2004).  Neurobiologically, extinction recruits an inhibitory circuit including the mPFC 

(Maren and Quirk, 2004; Pare et al., 2004).  All the arguments suggest that extinction is a 

new learning, not unlearning, process.  Then, is erasure of the fear memory possible?   

Consolidation of fear memory requires time.  It is considered a process in which 

protein synthesis independent and labile short-term memory is transformed into stable 

long-term memory resistant to further manipulation (Schafe et al., 2001).  The LTP 

induction within the BLA is considered the cellular mechanisms of fear acquisition and 

consolidation (Fanselow and LeDoux, 1999; Maren, 1999; Blair et al., 2001; Sigurdsson 

et al., 2007).  Calcium influx through glutamate N-methyl-D-aspartate (NMDA) 

receptors and L-type voltage-gated calcium channels (L-VGCCs) (Bauer et al., 2002) are 

important for some forms of the LTP induction, which initiate the downstream cascades 

of intracellular events, such as gene expression and protein synthesis (Maren, 1999; Blair 

et al., 2001; Schafe et al., 2001; Sigurdsson et al., 2007).  This process has a time-limited 

role that happens at late or immediately after fear acquisition.   
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In most experiments examining extinction, CS alone trials are usually given 24 

hours after fear conditioning.  At this time, fear memory is fully consolidated, the CS-US 

association is well established, and moreover, suppression of fear engages the inhibitory 

neural circuitry.  As stated above that consolidation of fear memory requires time within 

a limited temporal frame after fear acquisition, during which the memory trace is labile 

and subject to be disrupted, then it raises the question of whether giving CS alone trials 

shortly after conditioning “reverses” the learning process and breaks the CS-US 

association, which leads to the erasure of the fear memory?  Myers et al. (2006) tested 

this idea using fear potentiated startle as the measurement, and found supportive evidence 

that fear memory can indeed be erased when CS alone trials were given shortly after 

conditioning.  On the other hand, McNally and Westbrook (2006) demonstrated that 

using freezing as the index, short conditioning to retention test intervals, compared to 

long ones, generated more fear during test.  Thus, the timing of extinction on long-term 

fear suppression remains controversial.   

 

Specific Aims and Hypotheses 

 

To test the hypothesis that CS alone trials given at different time intervals after 

conditioning initiates different fear suppression mechanisms, “new learning” at longer 

intervals (Figure 1.2A) and “unlearning” at shorter intervals (Figure 1.2B), in Chapter II 

we gave immediate (10 min) and delayed (24 hr) extinction trials after fear was acquired.  

In contrast to our hypothesis, immediate extinction did not erase the fear memory.  

Immediate extinction administered minutes after aversive experience generated acute fear 
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suppression, but unlike delayed extinction, such suppression was not maintained when 

tested the next day.  Moreover, our results suggested that the level of fear before 

extinction intervention interfered with the efficacy of extinction: high onset fear due to 

recent aversive experience led to poor long-term fear suppression.   

The results in Chapter II suggested that immediate extinction after conditioning 

did not erase the fear memory, but in fact failed to suppress the long-term fear.  We thus 

hypothesize that immediate extinction failed to result in a long-term extinction memory.  

To test this hypothesis, in Chapter III we explored the possible mechanisms underlying 

this deficit by assessing the suppression of fear to a CS immediately after extinction 

training and the context-specificity of fear after both immediate and delayed extinction 

training.  Our results indicated that immediate extinction produced a short-lived and 

context-independent suppression of conditional freezing.  Taken together the results of 

Chapter II and Chapter III, these results suggested that first, fear was not unlearned under 

immediate extinction due to high onset fear, and second, fear suppression under 

immediate extinction may be due to a short-term, context-independent habituation 

process, rather than extinction per se.   

Based on the behavioral results stated above, we hypothesize that immediate 

extinction failed to generate the long-term fear suppression because the inhibitory neural 

circuitry, specifically the IL, was not engaged.  However, the effects of IL lesions on the 

retention of extinction memory are inconsistent.  In Chapter IV, we first examined 

experimental parameters that might influence the effects of IL lesions on the retention of 

extinction.  Our results revealed that that contextual fear present before extinction 

influences the effects of IL lesions.  Moreover, different strains of rats exhibit different 
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levels of contextual fear, resulting in strain differences in the influence of IL lesions on 

extinction.     

To further explore the possibility that immediate extinction failure is related to 

prefrontal cortical dysfunction, in Chapter V, single-units were simultaneously recorded 

from neurons in the IL and the prelimbic (PrL) divisions of the mPFC during immediate 

and delayed extinction sessions after auditory fear conditioning.  Our results revealed that 

conditioning and extinction did not alter the spontaneous firing rate of either the IL or the 

PrL neurons.  However, delayed, but not immediate, extinction produced an increase in 

both spontaneous and trial-related bursts in the IL.  These results suggested that the IL 

function is dampened under immediate extinction.  We then test the hypothesis that 

deficits in immediate extinction could be overcome by driving IL activity during 

extinction.  Our results showed that such deficits were rescued with microinfusions of 

either a GABA receptor antagonist or an NMDA receptor partial agonist into the IL.  

These data reveal that engaging the infralimbic cortex during extinction is necessary for 

long-term fear suppression.   

 



 13 

 

 

 

 

 

 

 

Figure 1.1.  Neuroanatomy of Pavlovian fear conditioning circuitry.   
The sensory input interface of the basolateral amygdala complex (BLA; consisting of the 
lateral, LA; and basolateral, BL) is where the CS and US information converge and 
become associated.  The LA receives excitatory glutamatergic auditory CS information 
from the medial geniculate nucleus of the thalamus (MGN) and the auditory cortex 
(AUD).  The pathway(s) for conveying information about the aversive US to the LA is 
still under investigation, however some suggest that the posterior intralaminar nucleus of 
the thalamus (PIN) and the insular cortex (INS) are involved.  The LA neurons have 
projections to the lateral division of the central nucleus of the amygdala (CeAl), which 
then has connections with the medial division of the CeA (CeAm).  The LA neurons also 
project to the BL, which then send input to the CeAm.  The motor output interface of 
CeAm sends afferent projections to many brainstem areas that control the expression of 
fear CRs, such as the periacqueductal gray (PAG; freezing behavior), nucleus reticularis 
pontis caudalis (RPC; fear-potentiated startle), paraventricular nucleus of the 
hypothalamus (PVN) and bed nucleus of the stria terminals (BNST; glucocorticoid 
release), parabrachial nucleus (PB; increased respiration), and the lateral hypothalamus 
(LH; increases in heart rate and blood pressure).  In addition, during fear conditioning, 
neurons from the LA excite inhibitory intercalated cells (ITC), which lie in between of 
the BLA and the CeA.  These ITC cells then project onto a second population of ITC 
cells and this second population of ITC cells makes direct connections with the CeAm, 
which disinhibits the CeAm.  This figure was adapted from Swanson (2004).   
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Figure 1.2.  Models of fear suppression after extinction training.   
A. “New learning” model of giving CS alone trials at longer intervals (24 hr) after 
conditioning: CR is suppressed due to the inhibitory learning of IL projections onto ITC 
neurons, which regulates the information flow from the BLA to the CeA without erasing 
the original fear memory.  B. “Unlearning” model of giving CS alone trials at short 
intervals (10 min) after conditioning: CR is suppressed due to the break of the CS-US 
association, which erases the original fear memory.  This figure was adapted from 
Swanson (2004).   
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CHAPTER II 

 

RECENT FEAR IS RESISTANT TO EXTINCTION 

 

Traumatic events such as military combat, motor vehicle accidents, or sexual 

assault can lead to debilitating psychological disturbances, including post-traumatic stress 

disorder (PTSD) (McNally, 2003).  Although PTSD is estimated to develop in less than 

ten percent of individuals experiencing trauma in the general population (Breslau et al., 

1998), it presents at significantly higher rates in individuals exposed to extremely 

traumatic events, such as combat.  For example, rates of PTSD as high as 17 % have been 

reported in military personnel three to four months after returning from combat (Hoge et 

al., 2004).  It is not surprising then that traumatic events exact an incredible toll on 

mental health, affecting millions of people worldwide. 

Because of the staggering costs and consequences of PTSD and other anxiety 

disorders, clinical interventions to reduce the long-term consequences of psychological 

trauma are essential.  As a first line of defense against the development of mental illness 

in the aftermath of a traumatic event, it has been argued that early interventions, such as 

psychological debriefing, are critical to manage the stress response to trauma (Everly and 

Mitchell, 1999; Campfield and Hills, 2001).  In a typical debriefing session, victims of a 

traumatic event are encouraged to talk about their experience in a supportive group 
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setting and this is presumed to facilitate psychological recovery from the trauma.  

Although early intervention is intuitively reasonable, there has been considerable work 

challenging the efficacy of debriefing in curbing the development of PTSD after trauma 

(McNally et al., 2003).  Moreover, there is little work systematically examining whether 

early interventions, whatever form they take, are more effective than delayed 

interventions in reducing the incidence of psychopathology after trauma (Gray and Litz, 

2005).  Indeed, intervening too early, particularly when the intense and acute stress of the 

experience has not waned, might even exacerbate relapse of fear (Bisson et al., 1997; 

McNally et al., 2003; Rothbaum and Davis, 2003; Gray and Litz, 2005).  Nonetheless, 

recent work in rats suggests that an early intervention may produce more effective fear 

suppression than a delayed intervention (Myers et al., 2006). 

In the present study, we sought to compare the efficacy of early or delayed 

interventions in reducing fear associated with a traumatic event.  To address this 

question, we used an animal model of traumatic fear, Pavlovian fear conditioning in rats 

(Davis, 1998; LeDoux, 2000; Maren, 2001; Fanselow and Poulos, 2005).  In this form of 

associative learning, innocuous stimuli (i.e., conditional stimuli, CSs) that predict 

aversive events (i.e., unconditional stimuli, USs) come to yield fear responses 

themselves.  This type of learning may be involved in the development of pathological 

fear in patients with a variety of anxiety disorders, including post-traumatic stress 

disorder and panic disorder (Grillon et al., 1996; Bouton et al., 2001; Rau et al., 2005).  

Extinction training, in which CSs are presented without the US, suppresses conditioned 

responses (CRs) learned during fear conditioning.  Considerable evidence indicates that 

fear conditioning and extinction yield excitatory and inhibitory memories, respectively, 
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and these memories compete with each other for expression in behavior.  In most cases, 

extinction does not erase fear memory.  Nonetheless, extinction is an important 

component of exposure therapy in humans, and is emerging as a powerful model for 

understanding the mechanisms of fear suppression relevant to the treatment of anxiety 

disorders (Bouton, 1988; Myers and Davis, 2002; Rothbaum and Schwartz, 2002; Barad, 

2005; Milad et al., 2006).  Hence, this behavioral paradigm affords many advantages, 

because it allows us to precisely control both the nature of the traumatic event (i.e., 

conditioning), as well as the timing of the intervention (i.e., extinction) in a clinically 

relevant model of traumatic fear.   

 

Materials and Methods 

 

Subjects  

The subjects were 240 male Long-Evans rats (Harlan Sprague Dawley, USA) 

weighing between 250-330 g.  They were housed in individual cages with 14-h light/10-h 

dark cycle (lights on at 7:00 am), and allowed food and water ad libitum.  During the first 

five days, they were handled for 10 sec to habituate them to the experimenter.   

Apparatus  

Eight identical observation chambers (30 x 24 x 21 cm; MED-Associates, St. 

Albans, VT) were used in all experiments.  The chambers were constructed of aluminum 

and Plexiglas and were situated in sound-attenuating cabinets located in a brightly lit and 

isolated room.  The floor of each chamber consisted of 19 stainless steel rods (4 mm in 

diameter) spaced 1.5 cm apart (center-to-center).  Rods were wired to a shock source and 
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solid-state grid scrambler (MED-Associates) for the delivery of footshock US (0.5 sec; 1 

mA).  A speaker mounted outside a grating in one wall of the chamber was used for the 

delivery of acoustic CS (2 sec; 80 dB; 2 kHz).  Illumination, odor, and ambient noise 

were manipulated to create two distinct contexts for some of the experiments. 

Each conditioning chamber rested on a load-cell platform that was used to record 

chamber displacement in response to each rat's motor activity, allowing therefore 

detection of freezing behavior.  Freezing was determined during each 1-min inter-trial 

interval after the CS offset during conditioning, extinction, and the retention test, and 

during the minutes preceding the first CS presentation during extinction training.  

Behavioral Procedures 

Rats were submitted to three phases of training: fear conditioning, extinction, and 

an extinction retention test.  All of these phases were conducted in the same context in 

Experiments 1-3 and Experiment 5; in Experiment 4 fear conditioning was conducted in a 

different context than extinction and retention testing.  For fear conditioning, rats 

received one (Experiment 4) or five (Experiments 1-3, and 5) tone-footshock trials (60 s 

inter-trial interval) beginning 3 min after being placed in the chambers.  For extinction 

(EXT), rats received 45 tone-alone presentations (60 s ISI) either 15 min (IMMED) or 24 

hours (DELAY) after conditioning (again with a 3-min baseline preceding the extinction 

trials).  Rats that received immediate extinction trials were transported home 2 min after 

the last footshock and returned to the conditioning context (Experiment 1-3, 5) or a novel 

context (Experiment 4) 15 min later for extinction.  Rats in the delay condition received 

extinction training 24 hours after conditioning in the conditioning context (Experiments 

1-3, and 5) or a novel context (Experiment 4).  In Experiment 3, rats received either 45 
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(60 s or 12 s ISI) or 225 (12 s ISI) extinction trials 15 min after conditioning; time in the 

extinction context was equated among the groups.  In Experiment 5, the rats were placed 

in a novel context and were either shocked (SHOCK) or not (NO-SHOCK) 15 min before 

returning to the conditioning chamber for delayed extinction trials.  Under the no-

extinction condition (NO-EXT), rats were placed in the chamber for the same amount of 

time as the EXT rats but were not exposed to the tone CS.  Two days after conditioning, 

all rats were returned to the extinction context and exposed to five CS-alone presentations 

3-min after placement in the chambers.  Retention test freezing was averaged across the 

five CS trials and subtracted from the 3-min baseline.  All behavioral data are expressed 

as means ± standard error of the means (SEM).   

 

Results 

 

Experiment 1:  Immediate or delayed extinction after fear conditioning. 

The first experiment was aimed at comparing the efficacy of extinction training at 

two different times after fear conditioning.  We were particularly interested in whether an 

early intervention delivered minutes after fear conditioning would produce superior 

extinction relative to a standard delayed intervention (24 hours).  Rats were submitted to 

a standard fear conditioning procedure in which an auditory CS was paired with a 

noxious footshock US in a novel chamber.  After either a short (15 min) or long (24 h) 

delay, half of the animals received 45 extinction trials in which the CS was presented 

alone; the other half of the animals remained in the chambers without the presentation of 

either the CS or US (these animals served as a no-extinction control group).  Forty-eight 
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hours after conditioning, rats were tested for their fear to the CS by assessing freezing 

behavior, which is manifest as somatomotor immobility (except for breathing).  For this 

retention test, rats were once again returned to the conditioning chambers and presented 

with five auditory CSs.  

Freezing behavior during the conditioning session is shown in Figure 2.1A.  There 

were very low levels of freezing behavior before the first conditioning trial; freezing 

behavior only emerged after the first conditioning trial and steadily increased in 

frequency thereafter.  During the extinction session (Figure 2.1B), which was conducted 

in the conditioning context either 15 min (immediate) or 24 hours (delayed) after fear 

conditioning, group differences emerged.  All animals exhibited high levels of fear prior 

to the onset of extinction trials, a consequence of fear conditioned to the testing context.  

However, recently conditioned rats exhibited significantly higher levels of freezing 

behavior before the first extinction trial compared to rats in the delayed extinction groups 

[F(1, 60) = 20.7, p < 0.0001].  Once extinction training commenced, CS presentations 

yielded robust freezing behavior in both the immediate and delayed extinction groups, 

and there was an equivalent decline in freezing in both groups across the session 

[extinction x interval x block, F(8, 480) = 1.9].  Shock-induced sensitization of fear 

contributed to the elevation of fear in the immediate groups, which potentiated fear above 

and that generated by context fear alone in the delay groups.  Rats that were placed in the 

boxes 15 minutes after conditioning, but not exposed to the CS, exhibited a similar 

pattern of freezing behavior to animals in both of the extinction groups [interval x 

extinction interaction: F(1, 60) = 16.0, p < 0.0005].   
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Despite similar levels of fear reduction during the extinction session, rats 

receiving immediate or delayed extinction training differed with respect to their retention 

of the extinction memory (Figure 2.1C).  Forty-eight hours after conditioning, only rats 

that had received the delayed extinction procedure exhibited a significant reduction in 

freezing relative to non-extinguished controls when presented with the CS [interval x 

extinction: F(1, 60) = 10.6, p < 0.002; Figure 2.1D].  Hence, fear memories exhibited 

substantial spontaneous recovery (i.e., a return in conditional responding with the passage 

of time after extinction) after an early intervention, but remained inhibited in rats with a 

24 h delay between conditioning and the extinction intervention.  

 

Experiment 2:  Retention testing with a common extinction-test interval.   

The different levels of extinction in the immediate and delayed groups cannot be 

explained by the time elapsed between fear conditioning and retention testing; this 

interval was held constant in both groups.  However, the design of Experiment 1 

confounded the interval between extinction training and the retention test.  That is, 

animals in the immediate extinction group were tested 48 hours after extinction, whereas 

those in the delayed group were tested only 24 hours after extinction.  It is possible that 

the longer extinction-test interval in the immediate group allowed for more spontaneous 

recovery of fear than the shorter extinction-test interval in the delay group.  In 

Experiment 2, we examined this possibility by equating the extinction-test interval in the 

immediate and delayed extinction groups.  The experiment was identical to Experiment 1, 

except that rats in both the immediate and delayed groups were tested 48 hours after 

extinction training. 
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Behavior during the conditioning and extinction sessions was similar to that 

reported in Experiment 1 (not shown).  As shown in Figure 2.2, rats in the immediate 

extinction condition exhibited significantly weaker extinction than those animals in the 

delayed extinction condition.  Planned comparisons indicated that only rats in the delayed 

extinction condition exhibited significant extinction relative to their no-extinction 

controls [p < 0.05].  Thus, early extinction trials failed to yield long-term extinction even 

when the extinction-test interval was equated among the immediate and delayed groups. 

 

Experiment 3:  Massed or distributed extinction trials immediately after fear 

conditioning.   

Recent work suggests that massed extinction training [delivering CS alone trials 

with a short inter-stimulus interval (ISI)] produces more robust long-term extinction than 

extinction training with distributed trials (Cain et al., 2003).  In Experiment 3, we 

examined the possibility that delivering many more massed extinction trials might enable 

extinction in the immediate groups.  To this end, we replicated the immediate condition 

in Experiment 1 (45 trials with a 1-min ISI), and also examined groups receiving either 

45 or 225 massed extinction trials (12-sec ISI); the time all animals spent in the 

conditioning context was equated across the groups (i.e., animals in the short ITI groups 

were left in the boxes after their extinction trials).  Animals in all groups exhibited similar 

decrements in freezing behavior during the extinction training session (not shown).  

However, as shown in Figure 2.3, neither massing the extinction trials (45 trials; 12 sec 

ISI) nor increasing the number of extinction trials (225 trials; 12 sec ISI) yielded long-

term retention of extinction relative to the no-extinction controls.  These data reveal that 
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neither massed nor distributed (Experiment 1 and 2) extinction trials yield long-term fear 

suppression when delivered shortly after training.   

 

Experiment 4: Reducing fear before immediate extinction.   

In Experiment 1, we observed much higher levels of fear before the onset of 

extinction training among rats in the immediate condition compared to those in the 

delayed condition (see Figure 2.1B, baseline).  This is likely due to the sensitization of 

fear produced by recent shock summating with fear conditioned to the context.  It has 

recently been reported in both rats and humans that the arousal of fear prior to extinction 

training can interfere with the development of long-term extinction (Lovibond et al., 

2000; Morris et al., 2005).  We therefore investigated whether the different levels of fear 

at the outset of extinction training in the immediate and delayed groups contributed to 

their different levels of long-term extinction in these groups.  In Experiment 4, rats were 

submitted to the identical behavioral procedures as in Experiment 1, except that they 

received only a single conditioning trial (Figure 2.4A) and extinction training and testing 

were conducted outside of the conditioning context.  The goal of these manipulations was 

to reduce the level of fear before the onset of extinction training. 

As shown in Figure 2.4B (see baseline), reducing the number of conditioning 

trials and shifting the context between conditioning and extinction greatly reduced 

freezing behavior at the outset of extinction training in both immediate and delay groups.  

Importantly, reducing fear before the onset of extinction training yielded robust 

extinction, even in the immediate extinction group [Figure 2.4C; extinction, F(1,60) = 

8.9, p < 0.005; extinction x interval, F(1,60) = 0.6].  Therefore, early extinction is 
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effective in producing long-term fear suppression when fear is relatively low at the onset 

of extinction training.  In fact, extinction obtained under these conditions did not exhibit 

spontaneous recovery in a retention test conducted one week after the first retention test 

(data not shown).  This is consistent with a recent study showing that early extinction 

training produces a lasting fear suppression that does not show either spontaneous 

recovery or renewal upon a change in context (Myers et al., 2006). 

 

Experiment 5:  Arousing fear before delayed extinction. 

If the level of fear at the outset of extinction training influences the long-term 

retention of extinction, then arousing fear prior to a delayed extinction intervention 

should impair extinction memory.  To test this hypothesis, we examined whether 

arousing fear prior to a delayed extinction intervention compromises long-term 

extinction.  Rats were submitted to the same procedures as the delayed groups in 

Experiment 1, except that they were exposed to additional unsignaled footshocks in a 

novel context 15 min before the extinction session.   

Conditioning proceeded normally in all of the rats (Figure 2.5A).  As shown in 

Figure 2.5B, exposing rats to footshock 15 min prior to extinction training elevated their 

levels of fear before the onset of the extinction trials [F(1,28) = 32.6, p < 0.0001].  Rats 

that received extinction trials 15 min after unsignaled shock decreased their fear over the 

course of the extinction session and reached similar levels of freezing to rats that received 

unsignaled shock but did not receive extinction trials.  Nonetheless, rats in the EXT 

/SHOCK condition showed substantial recovery when tested 24 hr later.  As shown in 

Figure 2.5C, only rats that were not shocked prior to extinction training exhibited a 
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normal reduction in fear during the retention test [planned comparisons, p < 0.05].  

Collectively, these results indicate that the level of acute fear at the time of the extinction 

intervention determines both the nature and extent of extinction memory.  Moreover, 

these experiments indicate that the conditioning-extinction interval per se is not the 

critical factor regulating the efficacy of extinction, but that recent fear appears to mitigate 

long-term extinction memory. 

 

Discussion 

 

The major finding of the present work is that long-term extinction is minimal 

when extinction training is conducted shortly after fear conditioning in rats.  This deficit 

in long-term extinction appears to be more related to the level of fear present at the outset 

of extinction training, rather than the interval between conditioning and extinction per se.  

These results indicate that attempts to extinguish fear shortly after a traumatic experience 

may not be effective, particularly if the trauma is particularly extreme. 

Interestingly, recent work by Davis and colleagues in another fear-conditioning 

paradigm in rats (fear-potentiated acoustic startle) has revealed that the properties of 

extinction also depend on the interval in between conditioning and extinction (Myers et 

al., 2006).  In this study, short intervals between conditioning and extinction yielded a 

form of extinction that was both enduring (i.e., it did not spontaneously recover with the 

passage of time) and insensitive to context shifts that normally attenuate extinction.   

Although there was a trend for weaker extinction with their early intervention, our 

observations would appear to be at odds with the relatively robust extinction observed by 
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these investigators with early extinction.  But this disparity can be explained when one 

considers that Davis and colleagues used relatively weak footshocks during conditioning, 

which is typical in the fear-potentiated startle paradigm.  Although these investigators did 

not measure fear during the extinction session, it is reasonable to assume that their 

conditioning procedure limited fear prior to the extinction session.  And, as we observed 

in Experiment 4, an early intervention does yield extinction if the conditioning procedure 

does not arouse fear before the extinction session; early interventions only appear to fail 

when there are high levels of fear at the outset of extinction training.  It is also possible 

that the greater number of conditioning trials used by Davis and colleagues influenced 

subsequent extinction.  Together these reports reveal that both the nature and magnitude 

of long-term extinction depend on an interaction between the timing of extinction relative 

to conditioning and the level of fear present when extinction trials are delivered 

(Rothbaum and Davis, 2003).  This interaction has clinical relevance because it suggests 

that an early intervention may be optimal after mild trauma, but that a delayed 

intervention may be more suitable after a severe trauma.   

A key question from a theoretical point of view is whether the arousal of fear 

before extinction training interferes with extinction learning (i.e., learning an inhibitory 

CS-US association), the consolidation of the extinction memory, or the later retrieval of 

the extinction memory.  Because rats do reduce their level of fear to the CS during 

extinction training (independently of when extinction trials are administered relative to 

training), it is unlikely that they simply fail to encode inhibitory associations.  Therefore, 

the decrement in long-term extinction is either a failure to consolidate the extinction 

memory or a generalization decrement from extinction to testing that interferes with the 
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retrieval of the extinction memory.  The latter possibility is particularly compelling 

insofar as there is substantial evidence that the inhibitory associations acquired during 

extinction are modulated by both time and context (Bouton, 1993; Bouton et al., 2001; 

Maren and Quirk, 2004).  Indeed, some theoretical accounts of spontaneous recovery 

after extinction predict that there will be greater spontaneous recovery of conditional 

responding when the interval between conditioning and extinction is short (Spear, 1971; 

Devenport, 1998).  Consistent with this view, Rescorla has recently reported that there is 

greater spontaneous recovery to a CS that is extinguished 1-day versus 8-days after 

conditioning in an appetitive conditioning paradigm (Rescorla, 2004).  Although these 

results are consistent with what we have observed in the present experiments, it is 

unlikely that the interval between conditioning and extinction alone accounts for our 

results.  As we have shown, a critical variable, at least in our hands, is the level of fear 

present before the delivery of extinction trials.  Nonetheless, it is reasonable to suggest 

that the deficit in long-term extinction in both cases is related to a failure to retrieve the 

extinction memory during the retention test.  This possibility awaits further examination.   

It is important to note that other models of associative learning actually predict 

that either short intervals between conditioning and extinction or high levels of 

background fear (aroused by another excitatory CS or a fearful context, for example) will 

enhance extinction (Rescorla and Wagner, 1972; Wagner, 1981).  In Wagner’s SOP 

(sometimes opponent process) model, for example, inhibitory associations between the 

CS and US are more likely to occur if CS-alone trials occur shortly after exposure to the 

US.  And in the Rescorla-Wagner model, high levels of fear before the onset of extinction 

should strongly predict footshock when the CS is presented, resulting in especially large 



 38 

decrements in associative strength to the CS when it is presented in the absence of the 

US.  There is some evidence for the latter effect in appetitive conditioning procedures 

(Rescorla, 2000), and it has recently been shown that compound presentation of 

excitatory CSs during extinction yields greater extinction than extinction of either 

element alone (Rescorla, 2006).  Therefore, it will be important to use other measures 

(e.g., summation, retardation) to determine whether CSs that undergo extinction shortly 

after conditioning under high levels of fear gain any inhibitory value, and if so, the 

retrieval processes that work against the expression of that inhibition during retention 

testing. 

From a neurobiological perspective, it is surprising that our early extinction 

manipulation did not produce more effective extinction.  Indeed, it is well known that 

memories (including fear memories) are most susceptible to disruption within an hour of 

encoding (McGaugh, 2000; Schafe et al., 2001).  Neurobiological studies (Lin et al., 

2003a; Lin et al., 2003b) have recently shown that extinction training reverses some of 

the biochemical changes that develop during conditioning in brain structures such as the 

amygdala that are essential for fear conditioning (Davis, 1998; LeDoux, 2000; Maren, 

2001; Fanselow and Poulos, 2005).  And, as already noted, delivering CS-alone trials 

shortly after fear conditioning can produce a form of extinction that appears to be more 

an erasure of fear memory than an acquisition of inhibition (Myers et al., 2006).  Thus, 

the influence of CS-alone trials on fear memory may be determined by the degree to 

which those trials either disrupt cellular consolidation of the conditioning memory or 

engage new inhibitory learning that permits extinction.  By this view, the present 

experiments suggest that high levels of fear prevent CS-alone trials delivered shortly after 
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conditioning from disrupting cellular consolidation, and it remains to be seen how these 

conditions influence the inhibitory associations learned during extinction training.  

Psychological interventions are not always effective when administered shortly 

after a traumatic event (Bisson et al., 1997; McNally et al., 2003; Rothbaum and Davis, 

2003; Gray and Litz, 2005).  The present work indicates that this may be the result of 

recent fear interfering with either the consolidation or retrieval of long-term extinction 

memories.  Of course, we have not examined the longevity of fear suppression obtained 

with delayed extinction training (we assessed behavior up to 48 hours after extinction), 

and understanding the factors that contribute to a suppression of fear lasting weeks to 

months is important when developing clinical interventions.  Likewise, in our 

experiments, interposing a twenty-four hour delay in the delivery of the intervention was 

sufficient to enable fear suppression (lasting at least 2 days).  Whether a 24 hr delay is 

always optimal is not clear, and our data suggest that this interval will critically depend 

on the duration and extent of acute stress associated with trauma.   Indeed, for people that 

experience severe trauma, this interval may extend beyond days or even weeks 

(Pennebaker, 1999).  Clearly, the modulation of extinction by concurrent levels of fear 

and stress has important implications for optimizing clinical interventions for 

psychological trauma in humans.    
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Figure 2.1.  Immediate or delayed extinction after fear conditioning.   
A. Freezing behavior on the conditioning day.  Data are 1-min averages for the period 
before (baseline, BL) and after each of five tone-shock conditioning trials.  B. Freezing 
behavior during the extinction session, which occurred either 15 min (IMMED) or 24 h 
(DELAY) after conditioning.  Control rats did not receive CS presentations during 
extinction (NO-EXT). C. Freezing behavior during the retention test 48 hours after 
conditioning. D. Baseline freezing data were averaged and subtracted from the average 
freezing across test trials to yield normalized freezing for the retention test data shown in 
C.  All data are means (± SEM).   
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Figure 2.2.  Retention testing with a common extinction-test interval.   
Freezing behavior during the retention test 48 hours after extinction; the extinction-test 
interval was equated in rats that were extinguished either 15 min (IMMED) or 24 h 
(DELAY) after conditioning; control rats did not receive CS presentations during 
extinction (NO-EXT). Data were normalized as in Figure 1D. All data are means (± 
SEM). 
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Figure 2.3. Massed or distributed extinction trials immediately after fear 
conditioning. 
Rats received 45 or 225 extinction trials 15 min after fear conditioning.  For two groups 
of rats (EXT45-12 and EXT225-12), the extinction trials were massed (12 sec ISI); the 
EXT45-60 group was treated identically to that in Experiment 1 (45 trials; 60 sec ISI).  
Total time in the extinction context was equated in all of the groups. The graph displays 
freezing behavior during the retention test 24 hours after extinction. Data were 
normalized as in Figure 1D. All data are means (± SEM). 
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Figure 2.4.  Reducing fear before immediate extinction. 
A. Freezing behavior on the conditioning day.  Data are 1-min averages for the period 
before (baseline, BL) and after a single tone-shock conditioning trials. B. Freezing 
behavior during the extinction session in a novel context, which occurred either 15 min 
(IMMED) or 24 h (DELAY) after conditioning.  Control rats were exposed to the context 
but did not receive CS presentations during extinction (NO-EXT). C. Freezing behavior 
during the retention test 48 hours after conditioning; data from the retention test were 
normalized as in Figure 1D. All data are means (± SEM). 
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Figure 2.5.  Arousing fear before delayed extinction. 
A. Freezing behavior on the conditioning day.  Data are 1-min averages for the period 
before (baseline, BL) and after each of five tone-shock conditioning trials. B. Freezing 
behavior during the extinction session.  Extinction training was conducted in the context 
in which the rats had been conditioned a day earlier.  Fifteen minutes before the 
extinction session, rats received either five unsignaled footshocks (SHOCK) in a novel 
context or exposure without shock (NO-SHOCK) in that context.  Control rats did not 
receive CS presentations during extinction (NO-EXT). C. Freezing behavior during the 
retention test 48 hours after conditioning. All data are means (± SEM). 
 



 45 

References 

 

Barad M (2005) Fear extinction in rodents: basic insight to clinical promise. Curr Opin 
Neurobiol 15:710-715. 

Bisson JI, Jenkins PL, Alexander J, Bannister C (1997) Randomised controlled trial of 
psychological debriefing for victims of acute burn trauma. Br J Psychiatry 
171:78-81. 

Bouton ME (1988) Context and ambiguity in the extinction of emotional learning: 
implications for exposure therapy. Behav Res Ther 26:137-149. 

Bouton ME (1993) Context, time, and memory retrieval in the interference paradigms of 
Pavlovian learning. Psychol Bull 114:80-99. 

Bouton ME, Mineka S, Barlow DH (2001) A modern learning theory perspective on the 
etiology of panic disorder. Psychol Rev 108:4-32. 

Breslau N, Kessler RC, Chilcoat HD, Schultz LR, Davis GC, Andreski P (1998) Trauma 
and posttraumatic stress disorder in the community: the 1996 Detroit Area Survey 
of Trauma. Arch Gen Psychiatry 55:626-632. 

Cain CK, Blouin AM, Barad M (2003) Temporally massed CS presentations generate 
more fear extinction than spaced presentations. J Exp Psychol Anim Behav 
Process 29:323-333. 

Campfield KM, Hills AM (2001) Effect of timing of critical incident stress debriefing 
(CISD) on posttraumatic symptoms. J Trauma Stress 14:327-340. 

Davis M (1998) Anatomic and physiologic substrates of emotion in an animal model. J 
Clin Neurophysiol 15:378-387. 

Devenport LD (1998) Spontaneous recovery without interference: why remembering is 
adaptive. Animal Learning and Behavior 26:172-181. 

Everly GS, Mitchell JT (1999) Critical incident stress management (CISM): A new era 
and standard of care in crisis intervention, 2nd Edition. Chevron, Ellicott City, 
MD. 

Fanselow MS, Poulos AM (2005) The neuroscience of mammalian associative learning. 
Annu Rev Psychol 56:207-234. 

Gray MJ, Litz BT (2005) Behavioral interventions for recent trauma: empirically 
informed practice guidelines. Behav Modif 29:189-215. 



 46 

Grillon C, Southwick SM, Charney DS (1996) The psychobiological basis of 
posttraumatic stress disorder. Mol Psychiatry 1:278-297. 

Hoge CW, Castro CA, Messer SC, McGurk D, Cotting DI, Koffman RL (2004) Combat 
duty in Iraq and Afghanistan, mental health problems, and barriers to care. N Engl 
J Med 351:13-22. 

LeDoux JE (2000) Emotion Circuits in the Brain. Annual Review of Neuroscience 
23:155-184. 

Lin CH, Lee CC, Gean PW (2003a) Involvement of a calcineurin cascade in amygdala 
depotentiation and quenching of fear memory. Mol Pharmacol 63:44-52. 

Lin CH, Yeh SH, Leu TH, Chang WC, Wang ST, Gean PW (2003b) Identification of 
calcineurin as a key signal in the extinction of fear memory. J Neurosci 23:1574-
1579. 

Lovibond PF, Davis NR, O'Flaherty AS (2000) Protection from extinction in human fear 
conditioning. Behav Res Ther 38:967-983. 

Maren S (2001) Neurobiology of Pavlovian fear conditioning. Annual Review of 
Neuroscience 24:897-931. 

Maren S, Quirk GJ (2004) Neuronal signalling of fear memory. Nat Rev Neurosci 5:844-
852. 

McGaugh JL (2000) Memory--a century of consolidation. Science 287:248-251. 

McNally RJ (2003) Progress and controversy in the study of posttraumatic stress 
disorder. Annu Rev Psychol 54:229-252. 

McNally RJ, Bryant RA, Ehlers A (2003) Does early psychological intervention promote 
recovery from posttraumatic stress? Psychol Sci Publ Inter 4:45-79. 

Milad MR, Rauch SL, Pitman RK, Quirk GJ (2006) Fear extinction in rats: implications 
for human brain imaging and anxiety disorders. Biol Psychol 73:61-71. 

Morris RW, Furlong TM, Westbrook RF (2005) Recent exposure to a dangerous context 
impairs extinction and reinstates lost fear reactions. J Exp Psychol Anim Behav 
Process 31:40-55. 

Myers KM, Davis M (2002) Behavioral and neural analysis of extinction. Neuron 
36:567-584. 

Myers KM, Ressler KJ, Davis M (2006) Different mechanisms of fear extinction 
dependent on length of time since fear acquisition. Learn Mem 13:216-223. 



 47 

Pennebaker JW (1999) The effects of traumatic disclosure on physical and mental health: 
the values of writing and talking about upsetting events. Int J Emerg Ment Health 
1:9-18. 

Rau V, DeCola JP, Fanselow MS (2005) Stress-induced enhancement of fear learning: an 
animal model of posttraumatic stress disorder. Neurosci Biobehav Rev 29:1207-
1223. 

Rescorla RA (2000) Extinction can be enhanced by a concurrent excitor. J Exp Psychol 
Anim Behav Process 26:251-260. 

Rescorla RA (2004) Spontaneous recovery varies inversely with the training-extinction 
interval. Learn Behav 32:401-408. 

Rescorla RA (2006) Deepened extinction from compound stimulus presentation. J Exp 
Psychol Anim Behav Process 32:135-144. 

Rescorla RA, Wagner AR (1972) A theory of Pavlovian conditioning: variations in the 
effectiveness of reinforcement and nonreinforcement. In: Classical Conditioning 
II (Black A, Prokasy WF, eds), pp 64-99. New York: Appleton-Century- Crofts. 

Rothbaum BO, Schwartz AC (2002) Exposure therapy for posttraumatic stress disorder. 
Am J Psychother 56:59-75. 

Rothbaum BO, Davis M (2003) Applying learning principles to the treatment of post-
trauma reactions. Ann N Y Acad Sci 1008:112-121. 

Schafe GE, Nader K, Blair HT, LeDoux JE (2001) Memory consolidation of Pavlovian 
fear conditioning: a cellular and molecular perspective. Trends Neurosci 24:540-
546. 

Spear NE (1971) In: Animal Memory (Honig WK, James PHR, eds), pp 45-109. New 
York: Academic. 

Wagner AR (1981) In: Information processing in animals: Memory mechanisms (Spear 
NE, Miller PR, eds), pp 5-47. Hillsdale, New Jersey: Erlbaum. 

 
 

 



 48 

 

 

 

CHAPTER III 

 

EARLY EXTINCTION AFTER FEAR CONDITIONING YIELDS A CONTEXT-

INDEPENDENT AND SHORT-TERM SUPPRESSION OF CONDITIONAL 

FREEZING IN RATS 

 

Pavlovian fear conditioning and extinction are important behavioral models for 

studying the brain mechanisms underlying the acquisition, storage, retrieval, and 

suppression of traumatic fear (LeDoux, 2000; Maren, 2001; Kim and Jung, 2005; Maren, 

2005).  In this procedure, an emotionally neutral stimulus, such as a tone, is paired with 

an aversive stimulus (US), such as an electric footshock.  After a few tone-footshock 

pairings, the previous neutral tone becomes a potent conditioned stimulus (CS) and 

acquires the ability to elicit fear responses, such as freezing (CR).  However, with 

repeated presentations of the CS-alone the previously acquired CR gradually subsides, a 

process called extinction (Davis et al., 2003; Maren and Quirk, 2004; Kim and Jung, 

2005; Myers and Davis, 2007).  The behavioral processes and the underlying neural 

mechanisms of extinction have attracted extensive attention in contemporary research of 

learning and memory (Bouton et al., 2006).  Indeed, it has been suggested that failure to 

extinguish fear may contribute to posttraumatic stress disorder (PTSD) (Bouton et al., 

2001; Rothbaum and Davis, 2003).  To avoid the possible long-term consequences and 
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costs of PTSD or other anxiety disorders, clinical interventions are essential.  While early 

interventions may manage the stress response to trauma, their efficacy has been 

challenged because the acute intense stress of the traumatic experience might actually 

exacerbate relapse of fear (McNally et al., 2003; Rothbaum and Davis, 2003; Gray and 

Litz, 2005).  Thus, it is essential to learn when these interventions generate the best long-

term extinction of fear responses.   

In a recent study, we demonstrated that delivering extinction trials shortly after 

fear conditioning yields poor long-term fear reduction (Maren and Chang, 2006; but see 

Myers et al., 2006).  We observed that conditional freezing decreased during extinction 

training, but recovered completely 24 hours later.  This was true even when we gave 225 

massed extinction trials 15 min after fear conditioning.  However, in these experiments 

the within-session decrease in fear in rats that underwent extinction was similar to that in 

rats that were not exposed to extinction trials.  Thus, it is unclear to what extent the short-

term fear suppression we observed was due to a loss of fear to the context, the auditory 

CS, or both.  It is also not clear whether fear suppression was due to extinction or, 

alternatively, another learning process such as habituation.     

To examine these issues further, in the present study we first assessed fear 

suppression to the auditory CS after immediate extinction by probing CS fear 15 minutes 

after extinction training.  In a second experiment, we examined whether short-term fear 

suppression to the CS is renewed outside the extinction context, as context-specificity is 

one of the hallmarks of extinction (Bouton, 2002; Ji and Maren, 2007).  In the third and 

fourth experiments, we examined the temporal delay necessary between conditioning and 

extinction to yield long-term suppression of fear.  In our previous work (Maren and 



 50 

Chang, 2006), all phases of training were conducted in the same context.  Therefore, fear 

to the context decreased conditional freezing to the tone, particularly when extinction 

occurred shortly after conditioning, a time at which sensitized context fear was high.  In 

an effort to isolate fear to the tone CS during extinction, we conducted extinction and test 

sessions in a context that was different from the conditioning context (i.e., an ABB 

procedure, where each letter denotes the context used for conditioning, extinction, and 

test, respectively).  Our results reveal that delivering CS-alone trials shortly after fear 

conditioning produces a short-lived and context-independent suppression of freezing.  

This fear suppression may be due to a short-term, context-independent habituation 

process, rather than extinction.  Furthermore, poor long-term extinction occurs even when 

the extinction trials were administered up to six hours after conditioning.   

 

Materials and Methods 

 

Experiment 1: Does immediate extinction training produce short-term decrements in fear 

to an auditory CS? 

Subjects and behavioral apparatus 

The subjects were 16 Male Long-Evans rats (250-330 g; Blue Spruce) obtained 

from a commercial supplier (Harlan Sprague Dawley, USA).  They were housed in 

individual cages with 14-h light/10-h dark cycle (lights on at 7:00 am), and allowed food 

and water ad libitum.  During the first 5 days, they were handled for 10 sec to habituate 

them to the experimenter.   
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Eight identical observation chambers (30 x 24 x 21 cm; MED-Associates) were used 

in all experiments.  The chambers were constructed of aluminum (side walls) and 

Plexiglas (rear wall, ceiling, and hinged front door) and were situated in sound-

attenuating cabinets located in a brightly lit and isolated room.  The floor of each chamber 

consisted of 19 stainless steel rods (4 mm in diameter) spaced 1.5 cm apart (center-to-

center).  Rods were wired to a shock source and solid-state grid scrambler (MED-

Associates) for the delivery of footshock US (0.5 sec; 1 mA).  A speaker mounted outside 

a grating in one wall of the chamber was used for the delivery of acoustic CS (2 sec; 80 

dB; 2 kHz).   

Each conditioning chamber rested on a load-cell platform that was used to record 

chamber displacement in response to each rat's motor activity and acquired on-line using 

Threshold-Activity software (MED-Associates).  The output of each chamber’s load cell 

was set to a gain that was optimized for detecting freezing behavior (somatomotor 

immobility, except that necessitated by breathing).  Load-cell amplifier output (-10 to 

+10 V) from each chamber was digitized.  Absolute values of the load-cell voltages were 

then computed and multiplied by 10 to yield a scale that ranged from 0 to 100.  For each 

chamber, load-cell voltages were digitized to 5 Hz, yielding one observation every 200 

msec.  Freezing was quantified (Maren, 1998) by computing the number of observations 

for each rat that had a value less than the freezing threshold (load-cell activity = 10).  We 

score an observation as freezing if it fell within a continuous group of at least five 

observations that were all less than the freezing threshold.  Thus, freezing was only 

scored if the rat was immobile for at least 1 sec.  Freezing was determined during each 1 

min inter-trial interval after the CS offset during conditioning, extinction, probe, and the 
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retention test, and during the minutes preceding the first CS presentation during 

extinction training.  

Two distinct contexts were used in this experiment.  For the first context (context 

A), a 15 W houselight mounted opposite the speaker was turned on, and room lights 

remained on.  The chambers were cleaned with a 1% acetic acid solution.  To provide a 

distinct odor, stainless steel pans containing a thin layer of this solution were placed 

underneath the grid floors before the rats were placed inside.  Ventilation fans in each 

chest supplied background noise (65 dB).  Rats were transported to this context in white 

plastic boxes.  For the second context (context B), all room and chamber houselights 

were turned off.  A pair of 40 W red lights provided illumination.  Additionally, the doors 

on the sound-attenuating cabinets were closed, the ventilation fans were turned off, and 

the chambers were cleaned with 1% ammonium hydroxide solution.  Also, stainless steel 

pans containing a thin layer of the same solution were placed underneath the grid floors 

before the rats were placed inside to provide a distinct odor.  Rats were transported to this 

context in black plastic boxes.   

Procedure 

Rats were submitted to four phases of training: fear conditioning, extinction, probe, 

and extinction retention test.  For fear conditioning, rats received five tone-footshock 

trials (60 s inter-trial interval) beginning 3 min after being placed in the chambers 

(context A).  Fifteen minutes later, rats received 45 tone-alone presentations for fear 

extinction (EXT, n = 8) in the other context (context B).  For no-extinction controls (NO-

EXT, n = 8), rats were placed in the chamber for the same amount of time but were not 

exposed to the tone CS.  Another 15 minutes after immediate extinction, all animals were 
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returned to extinction context and presented with one single probe CS.  Two days 

following conditioning, all rats were returned to the extinction context again and exposed 

to five CS-alone presentations.   

Data analysis 

All behavioral data are expressed as means and standard error of the means (SE) and 

analyzed by analysis of variance (ANOVA).  Post hoc comparisons in the form of 

Fisher’s PLSD tests were performed after a significant F ration.   

 

Experiment 2: Does immediate extinction training produce a context-specific suppression 

of conditional fear?  

Subjects and behavior apparatus 

The subjects were 64 adult male Long-Evans rats (250-330 g) obtained and 

housed as described in Experiment 1.  The conditioning chambers described in 

Experiment 1 comprised the behavior apparatus.   

Three distinct contexts were used in this experiment.  The first two were the same as 

described in Experiment 1.  For the third context (Context C), the room lights were on 

and the houselights and fans were off.  Rubber and black plastic sheets were placed above 

the rods.  The chambers were cleaned with a 70% ethanol solution.  To provide a distinct 

odor, stainless steel pans containing a thin layer of this solution were placed underneath 

the grid floors before the rats were placed inside.  Rats were transported to this context in 

white plastic boxes with beddings on the floor.   

Procedure 
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Rats were submitted to three phases of training: fear conditioning, extinction, and 

retrieval testing (ABC renewal testing).  For fear conditioning, rats received five tone-

footshock trials in context A.  Fifteen minutes (IMMED) or 24 hours (DELAY) after 

conditioning, rats were presented with 45 tones either in context B or context C for fear 

extinction.  Another fifteen minutes after extinction, all rats were presented with 5 tones 

in context B for renewal testing.  The day before conditioning, the animals were exposed 

to the non-extinction context in order to familiarize them with each test context.  The 

actual contexts for extinction and testing were counterbalanced across groups, yielding a 

total of four groups in a 2 x 2 (extinction time x test context) design.  The four groups 

were IMMED/SAME, IMMED/DIFF, DELAY/SAME, and DELAY/DIFF, with 16 rats 

per group.  The labels SAME and DIFF referred to whether the CS was tested in a same 

context as the extinction context (SAME) or in a different context from the extinction 

context (DIFF).   

Data analysis 

The average percentage of freezing during two-trial during early extinction (first 

twotrials), late extinction (last two trials), and early renewal (first two trials) were used 

for the data analyses, as described in Experiment 1.  In order to test the renewal effect, 

rats failed to show extinction at late extinction trials, that is, the freezing level remained 

the same or even higher than early trials, were excluded for further analyses.  It leads to 

the number of animals in each group as following:  IMMED/SAME = 11, IMMED/DIFF 

= 13, DELAY/SAME =12, and DELAY/DIFF = 12. 
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Experiment 3: How much time must elapse after conditioning for extinction training to 

yield long-term fear suppression? 

Subjects and behavior apparatus 

The subjects were 64 adult male Long-Evans rats (250-330 g) obtained and 

housed as described in Experiment 1.  The conditioning chambers described in 

Experiment 1 comprised the behavior apparatus.   

Procedure 

Rats were submitted to three phases of training: fear conditioning, extinction, and 

extinction retention test.  For fear conditioning, rats received five tone-footshock trials in 

context A.  Fifteen minutes (15min), one hour (1hr), six hours (6hr), or 24 hours (24hr) 

later, rats received 45 tone-alone presentations for fear extinction (EXT, n = 8 per 

condition) in the other context (context B).  For no-extinction controls (NO-EXT, n = 8 

per condition), rats were placed in the chamber for the same amount of time but were not 

exposed to the tone CS.  Two days following conditioning, all rats were returned to the 

extinction context again and exposed to 45 CS-alone presentations.   

Data analysis 

Data analyses were performed as described in Experiment 1.  

 

Experiment 4: Is the immediate extinction deficit due to longer extinction-retention test 

interval? 

Subjects and behavior apparatus 
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The subjects were 32 adult male Long-Evans rats (250-330 g) obtained and 

housed as described in Experiment 1.  The conditioning chambers described in 

Experiment 1 comprised the behavior apparatus.   

Procedure 

Rats were submitted to three phases of training: fear conditioning, extinction, and 

extinction retention test.  For fear conditioning, rats received five tone-footshock trials in 

context A.  Fifteen minutes (IMMED) or 24 hours (DELAY) later, rats received 45 tone-

alone presentations for fear extinction (EXT, n = 8 per condition) in the other context 

(context B).  For no-extinction controls (NO-EXT, n = 8 per condition), rats were placed 

in the chamber for the same amount of time but were not exposed to the tone CS.  Two 

days following extinction, all rats were returned to the extinction context again and 

exposed to 45 CS-alone presentations.   

Data analysis 

Data analyses were performed as described in Experiment 1.  Four animals were 

excluded from the final analyses because they failed to show evidence of successful 

conditioning (n = 3), or failed to show evidence of extinction (n = 1); these animals 

exhibited levels of freezing that were more than two standard deviations above or below 

their group means.  Thus, the number of animals in each group as following:  

IMMED/EXT = 7, IMMED/No-EXT = 8, DELAY/EXT =7, and DELAY/No-EXT = 6.   

 

Results 
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Experiment 1: Does immediate extinction training produce short-term decrements in fear 

to an auditory CS? 

Previous work from our laboratory has revealed similar decrements in freezing 

during extinction training in animals exposed to either the CS or the context alone (Maren 

and Chang, 2006).  The present experiment aimed to assess whether decrements in fear in 

rats receiving CS extinction trials involved a loss of fear to the CS itself, as opposed to a 

loss of context fear.   

Rats were submitted to a standard fear conditioning procedure in which an 

auditory CS was paired with a noxious footshock US in a novel chamber.  After a 15-

minute delay, rats were placed in another novel context where half of the animals 

received 45 extinction trials in which the CS was presented alone (EXT) while the other 

half of the animals remained in the chambers without the presentation of either the CS or 

US (NO-EXT); these rats served as the non-extinguished control group.  Fifteen minutes 

after extinction, both groups were returned to the extinction context and a single CS was 

presented to assess freezing to the CS shortly after immediate extinction and to avoid 

possible extinction in the EXT group due to CS presentations.  Forty-eight hours after 

extinction, rats were tested for their fear to the CS again by returning them to the 

extinction context and presenting five auditory CSs.   

Freezing behavior during the conditioning session is shown in Figure 3.1A.  

Freezing levels were very low before the first conditioning trial, and then increased in 

frequency thereafter.  There was an equivalent increase in freezing across trials in both 

groups [extinction × trials, F(6,84) < 1].  Freezing behavior during the extinction session 

is shown in Figure 3.1B.  As reported in our previous study (Maren and Chang, 2006), 
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recently conditioned rats exhibited high levels of freezing before the first extinction trial 

[EXT = 64.4 ± 11.1, NO-EXT = 73.3 ± 8.9; F(1,14) < 1], probably due to shock-induced 

sensitization of fear.  This was evident even though rats experienced a context shift in 

between conditioning and extinction.  Freezing behavior in both groups showed an 

equivalent decline in freezing across the sessions [extinction × block, F(9,126) = 1.05].   

Despite the similar reduction in freezing in the EXT and NO-EXT groups, rats 

that had received CS-alone extinction trials showed significantly greater short-term 

suppression of fear to the CS in the probe trial (Figure 3.1C).  Before the CS onset, EXT 

and NO-EXT groups showed equivalent and low freezing levels [EXT = 19.1 ± 9.8, NO-

EXT = 8.5 ± 3.4; F(1,14) = 1.005, p = 0.33].  Relative to NO-EXT rats, freezing levels 

were significantly lower in the EXT group compared to non-extinguished controls when 

presented with a single CS fifteen minutes after extinction. [F(1,14) = 7.81, p < 0.02].  

However, fear in the EXT animals exhibited substantial spontaneous recovery when 

tested 24 hours after extinction; there was no significant difference between the baseline 

freezing before tone onset [EXT = 15.5 ± 8.2, NO-EXT = 13.9 ± 8.0; F(1,14) <1], or 

between the groups in the long-term retention test [F(1,14) = 3.17, p = 0.09; Figure 

3.1D].  Thus, immediate extinction generated a significant, but short-lived, suppression of 

conditional fear.   

 

Experiment 2: Does immediate extinction training produce a context-specific suppression 

of conditional fear? 

A hallmark of extinction is its context specificity; extinguished fear returns or 

“renews” when the CS is presented outside the extinction context (Bouton, 2002; Ji and 
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Maren, 2007).  In the previous experiment, we examined the efficacy of short-term 

extinction by giving a probe right after immediate extinction trials.  Our results showed 

that there was a short-lived suppression of freezing to the CS shortly after extinction.  In 

the present experiment, we further examine whether this short-lived suppression in 

freezing exhibits context specificity.  Rats were conditioned to five tone-shock trials in a 

novel context.  Fifteen minutes (IMMED) or 24 hours (DELAY) after conditioning, they 

received 45 extinction trials in another context.  To access the context dependence of the 

short-term fear suppression, five tones were presented either inside (SAME) or outside 

(DIFF) the extinction context fifteen minutes after extinction training.  

Behavior during the conditioning session was similar to that reported in 

Experiment 1 (data not shown).  Freezing behavior in the IMMED and DELAY groups 

during early extinction, late extinction, and retrieval testing is shown in Figure 3.2.  

Freezing levels were high at the beginning of extinction (Early Ext) and decreased 

significantly at later trials (Late Ext) in both groups.  However, when tested 15 minutes 

after extinction, freezing levels in IMMED group remained low regardless of test context 

(Figure 3.2A, Test), while freezing in the DELAY group was significantly higher outside 

than inside the extinction context (Figure 3.2B, Test).  There was no significant 

interaction between test period and renewal context in the IMMED group [F(2,44) <1], 

while the interaction reached significance in the DELAY group [F(2,44) = 4.01, p < 

0.03].  Thus, early extinction yields a context-independent suppression of freezing when 

tested shortly after extinction.   

 



 60 

Experiment 3: How much time must elapse after conditioning for extinction training to 

yield long-term fear suppression? 

In the previous two experiments, we demonstrated that immediate extinction soon 

after conditioning generates a short-lived and context-independent suppression of fear.  In 

the present experiment, we further examined the relationship of the timing of extinction 

relative to conditioning by giving extinction trials at different delays after conditioning.  

Rats were trained with five tone-footshock pairings in one context.  They next received 

45 extinction trials 15 min, 1 hr, 6 hr, or 24 hr later in a different context, and control 

groups at each time point received no extinction training.  All rats were tested to 45 tone-

alone presentation 48 hours after conditioning.   

Behavior during the conditioning and extinction sessions was similar to that 

reported in Experiments 1 and 2 (data not shown).  Freezing behavior during the entire 

retention session is shown in Figure 3.3.  There was no significant difference in freezing 

levels for non-extinguished controls at different delays [p = 0.06], so they were collapsed 

into a single NO-EXT group (n = 32).  During baseline, there was no significant 

difference in freezing for 15min, 1hr, 6hr, and 24hr [p > 0.05], while NO-EXT was 

significantly lower than 15min and 1hr groups [ps < 0.05].  During the first five tones, 

only animals receiving extinction trials 24 hours after conditioning demonstrated 

significant long-term extinction of fear memory: there was no difference in freezing 

levels of NO-EXT, 15min, 1hr, and 6hr groups, and the freezing level of the 24hr group 

was significantly lower than any of the other groups [ps < 0.04].  Interestingly, animals in 

the 15min, 1hr, and 6hr groups demonstrated savings of extinction training, that is, their 

freezing levels in these groups declined faster compared to the NO-EXT controls, while 
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the 24hr group remained low across whole session.  There was a significant main effect 

of delay [F(4,59) = 5.77, p = 0.0005] and a significant interaction in delay and  block 

[F(36,531) = 4.57, p < 0.0001].  Thus, administering extinction trial up to six hours after 

conditioning failed to extinguish long-term fear response, but all groups exhibited savings 

during subsequent extinction.     

 

Experiment 4: Is the immediate extinction deficit due to a longer extinction-retention test 

interval? 

In the previous experiment, we demonstrated that giving extinction trials up to six 

hours after conditioning failed to extinguish long-term fear response.  However, animals 

receiving extinction trials up to six hours after conditioning were tested 48 hrs after 

extinction, while animals in the 24hr group were tested 24 hrs after extinction.  It is 

possible that the 24hr group showed less freezing during the retention test because of the 

more limited opportunity for spontaneous recovery after extinction compared to the other 

groups.  Thus, in this experiment, we equated the extinction-retention test interval for 

both immediate (15min) and delayed (24hr) groups: all animals were tested 48 hrs after 

extinction training.   

Behavior during the conditioning and extinction sessions was similar to that 

reported in Experiments 1, 2, and 3 (data not shown).  Figure 3.4 shows the average 

freezing during the first five trials of the retention test.  There was a significant 

interaction between delay and extinction [F(1,24) = 4.34, p < 0.05].  Planned 

comparisons indicated that only rats in the delayed extinction condition exhibited 

significant extinction relative to their no-extinction controls [p < 0.05].  Thus, the greater 
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recovery of fear after an immediate extinction procedure in Experiment 3 was not due to 

the longer extinction-test interval used in that experiment.  This confirms our previous 

report that immediate extinction produces only a short-term fear suppression that rapidly 

recovers within 24 hours after extinction (Maren and Chang, 2006).   

 

Discussion 

 

 In the present study, we examined the properties of short-term fear suppression 

after immediate extinction and the time course between conditioning and the delivery of 

CS-alone trials required for long-term fear suppression.  Our major finding is that 

delivering CS-alone trials soon after fear conditioning generates a short-lived and 

context-independent suppression of fear.  Long-term extinction was minimal when CS-

alone trials were administered shortly after conditioning (15 min), and this effect 

persisted up to six hours after fear conditioning.  These results further support the view 

that early intervention shortly after a traumatic experience may not be effective in 

producing long-term fear suppression.   

A critical question that emerges from these experiments is what psychological 

process underlies the temporary and context-independent suppression of conditional 

freezing to an auditory CS when extinction trials are administered soon after 

conditioning.  One possibility is that short-term habituation, rather than extinction, 

accounts for the response loss we have observed during the presentation of CS-alone 

trials shortly after fear conditioning.  Consistent with this possibility, short-term 

habituation often exhibits spontaneous recovery over 24-hour retention intervals 
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(Thompson and Spencer, 1966; McSweeney and Swindell, 2002).  Unlike long-term 

extinction, short-term habituation is typically not context-dependent (Bouton, 2004).  

That is, extinction is associated with a loss of responding that is specific to the extinction 

context, while habituation is associated with a loss of responding in any test context.  In 

the present experiments, we observed that exposure to CS-alone trials shortly after fear 

conditioning resulted in a context-independent loss of fear, while delayed extinction 

induced a long-lived and context-dependent suppression in fear response.  This suggests 

that different processes mediate fear under these conditions: the former mediated by 

habituation and the latter by extinction.   

According to this view, extinction learning itself may have been impaired when 

extinction training was conducted soon after conditioning.  According to Wagner’s SOP 

model (Wagner, 1981), for example, a CS presented during extinction training will excite 

conditional responding when it activates a representation of the US in the A2 state.  

Subsequent presentations of the CS will promote inhibitory (extinction) learning when 

CS activity in A1 coincides with US activity in A2.  As we have seen, however, 

conditional fear is in the IMMED condition is substantial prior to the delivery of the first 

CS-alone extinction trial.  Hence, it is possible that elements of both the CS and US are 

primed in A2 (perhaps by contextual stimuli common to the conditioning context or the 

recent delivery of CSs and USs during conditioning).  This arrangement would retard 

inhibitory (or excitatory) learning between the CS and US.  Short-term reductions in 

conditional responding as the CS might then result from additional self-generated 

priming of the CS to the A2 state.  After a delay, we would posit that fewer CS and US 
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elements are represented in the A2 state, and conditions therefore favor coincident 

activation of the CS to A1 and US to A2 that promotes extinction.      

Interestingly, we found that the fear suppression generated by delayed CS-alone 

trials was context-specific within 15 minutes of the end of the extinction session.  To our 

knowledge, this is the first report of fear renewal within minutes of the end of extinction 

training.  Indeed, most experiments have examined renewal effects at least 24 hours after 

the end of extinction (Bouton et al., 2006).   Insofar as time (both intertrial interval 

effects, and the passage of time between extinction and retention) has been posited to 

regulate memory retrieval after extinction (Morris et al., 2005; Bouton and Garcia-

Gutierrez, 2006), these results indicate that a shift in environmental context that occurs 

within the temporal context of extinction session is sufficient to yield robust renewal of 

fear.  Indeed, both short- and long-term extinction memories exhibit context-dependence 

as long as extinction commences at least 24 hours after conditioning.   

The neurobiological basis for the long-term extinction of fear has received 

considerable attention in recent years (Bouton et al., 2006; Quirk et al., 2006; Ji and 

Maren, 2007; Quirk and Mueller, 2008).  Interactions among the hippocampus, the 

medial prefrontal cortex (mPFC), and the amygdala are thought to play a role in limiting 

the expression of fear responses.  For example, there is growing evidence that the mPFC 

is positioned to reduce amygdala output by exciting inhibitory interneurons in the 

intercalated nuclei (Quirk et al., 2000; Milad and Quirk, 2002; Pare et al., 2004; Santini et 

al., 2004).  Moreover, the hippocampus may modulate this circuitry to gate when and 

where extinction is expressed (Thierry et al., 2000; Hobin et al., 2003; Sotres-Bayon et 

al., 2004), a feature that is critical for the contextual regulation of fear (Hobin et al., 
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2003; Maren, 2005).  With regard to the present experiments, it is not clear whether this 

circuit is also engaged by the delivery of CS-alone trials shortly after fear conditioning.  

One possibility is that neuronal activity in the LA is suppressed during the extinction 

session without actually engaging the inhibitory circuits stated above.  Indeed, amygdala 

activity in response to novel stimuli, including acoustic tones, is known to rapidly 

habituate (LaBar et al., 1998; Herry et al., 2007), and this habituated neuronal response 

might reduce the behavioral expression of fear under some conditions (Kamprath and 

Wotjak, 2004).  Interestingly, the cellular mechanisms within the amygdala for early and 

late extinction may be different (Herry et al., 2006). 

Another issue we explored in the present experiments is the amount of time that 

must elapse between conditioning and the delivery of CS-alone trials to promote long-

term extinction.  Our results revealed that even up to 6 hours after conditioning the 

delivery of extinction trials produced a minimal long-term suppression of conditional 

freezing the following day.  Although we were not able to obtain reliable extinction when 

CS-alone trials were delivered within 6 hours of conditioning, it should be noted that in 

both rats (Quirk et al., 2000; Milad and Quirk, 2002; Myers et al., 2006) and humans 

(Phelps et al., 2004; Kalisch et al., 2006; Milad et al., 2007) long-term extinction has 

been reported within an hour of fear conditioning.  However, in these studies, relatively 

weak unconditioned stimuli were used, and the level of fear aroused during conditioning 

may be critical in determining the sensitivity of the fear memory to early extinction.  

Indeed, we found that reducing the number of conditioning trials enabled extinction 

shortly after conditioning (Maren and Chang, 2006).    
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Despite showing deficits in long-term extinction, all of the groups that underwent 

extinction in the third experiment exhibited faster response loss upon subsequent 

extinction training relative to rats extinguished for the first time.  This indicates that there 

was savings for the original extinction training, even though it was not evident in the 

degree of fear suppression at the outset of the retention test.  This pattern of savings is 

also observed during the expression of long-term habituation, which is typically manifest 

as a more rapid rate of habituation relative to naïve controls (Carew et al., 1972).  Hence, 

more rapid fear loss during the second exposure to CS-alone trials is consistent with the 

possibility that a habituation, rather than an extinction, process mediates response loss 

after early extinction (Thompson and Spencer, 1966).  An alternative explanation of the 

savings we observed is that the extinction learning under immediate extinction was 

impaired but not totally abolished, which led to a faster fear loss during retention test.   

In our previous work, we argued that arousal as a result of returning to the context 

of recent trauma (shock in this case) or associative fear of the context may have led to the 

failure of long-term fear suppression in the immediate extinction rats (Maren and Chang, 

2006).  In these experiments, all of the behavioral sessions were conducted in the same 

context (i.e., AAA, where each letter denotes conditioning, extinction, and retention test, 

respectively), and contextual fear may have contributed to the failure to extinguish recent 

fear.  However, in the present experiments, we extinguished the animals outside the 

conditioning context (ABB design) in an attempt to minimize the influence of context 

fear on extinction.  Even under these conditions recent shock sensitized fear in the novel 

context, resulting in high baseline freezing levels before the onset of the extinction trials.  

Although we cannot entirely rule out the contribution of context fear to early extinction 
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impairments, it seems more likely that they are due to the recent sensitization of fear, 

rather than associative fear to the context per se. 

Early psychological interventions after a traumatic event are not always effective 

(Bisson et al., 1997; Rothbaum and Davis, 2003; Gray and Litz, 2005).  The present work 

indicates that CS-alone exposure soon after conditioning yields a short-term habituation 

rather than a long-term extinction of the fear response.  These results suggest that delayed 

interventions may be more effective in reducing pathological fear.  Understanding the 

factors that contribute to the long-term suppression in fear memory is the next important 

step in developing optimal clinical interventions for psychological trauma in humans.   
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Figure 3.1.  Probe CS after immediate extinction. 
A. Percentage of freezing behavior during conditioning.  Data are 1-min averages for the 
periods before (baseline, BL) and after each of five tone-shock conditioning trials.  B. 
Percentage of freezing behavior during the extinction session, which occurred 15 min 
after conditioning.  Control rats did not receive CS presentations during extinction (NO-
EXT).  C. Percentage of freezing behavior during the probe CS 15 min after extinction.  
Baseline freezing data were averaged and subtracted from the freezing level during probe 
CS to yield normalized freezing.  D. Normalized average percentage of freezing across 
test trials during retention test 48 hours after conditioning.  All data are means ± SEM.   
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Figure 3.2.  Renewal of fear response immediately after immediate or delayed 
extinction. 
Shown are averaged two-trial block percentage of freezing levels during early extinction, 
late extinction, and early renewal in immediate (A) and delayed (B) extinction conditions. 
All data are means ± SEM.   
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Figure 3.3.  Percentage of freezing levels during retention test after different delay 
between conditioning and extinction sessions.   
All data are means ± SEM. 
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Figure 3.4.  Percentage of freezing levels during retention test with equated 
extinction-retention test intervals.   
All data are mean ± SEM.   
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CHAPTER IV 

 

CONTEXTUAL FEAR REGULATES THE EFFECT OF INFRALIMBIC 

CORTEX LESIONS ON FEAR EXTINCTION IN RATS 

 

Extinction is a form of new learning in which presentation of a conditioned 

stimulus (CS) in the absence of the US reduces conditional responding to that CS 

(Pavlov, 1927; Bouton, 2002, 2004; Bouton et al., 2006).  Considerable interest has 

emerged in the neurobiological mechanisms of extinction, insofar as impairments in 

extinction may contribute to a variety of anxiety disorders, including post-traumatic stress 

disorder (PTSD) (Bouton et al., 2001; Rothbaum and Davis, 2003).  One brain structure 

that has been implicated in the extinction of learned fear is the medial prefrontal cortex 

(mPFC), specifically the infralimbic cortex (IL) (Quirk et al., 2006; Quirk and Mueller, 

2008).  Robust projections from IL to inhibitory interneurons located in the intercalated 

nuclei (ITC) of the amygdala (McDonald et al., 1996) make it perfectly positioned for 

regulating amygdala output after extinction learning (Likhtik et al., 2008).   

In support of this possibility, several studies indicate that IL manipulations 

influence the extinction of fear.  For example, intra-IL infusions of protein synthesis 

inhibitors (Santini et al., 2004), NMDA receptor antagonists (Burgos-Robles et al., 2007; 

Laurent and Westbrook, 2008), or sodium channel blockers (Sierra-Mercado et al., 2006), 
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prior to extinction leads to poor retrieval of extinction memory the following day without 

affecting acquisition of extinction per se.  Intra-IL infusions of NMDA receptor 

antagonists (Burgos-Robles et al., 2007; Sotres-Bayon et al., 2009) or MAPK inhibitors 

(Hugues et al., 2004; Hugues et al., 2006) immediately after extinction also leads to 

impaired extinction retrieval, suggesting that consolidation of extinction memory 

involves post-training molecular cascades in IL.  Physiological correlates of extinction 

have been observed in IL (Herry and Garcia, 2002; Milad and Quirk, 2002; Burgos-

Robles et al., 2007; Hugues and Garcia, 2007) and electrical stimulation of IL enhances 

extinction (Milad and Quirk, 2002; Milad et al., 2004).   Moreover, inhibitory 

interneurons in the amygdala that receive input from the IL are involved in the expression 

of extinction (Likhtik et al., 2008). 

Despite mounting evidence for a role for IL in fear extinction, studies examining 

the effect of IL lesions on extinction have yielded inconsistent results.  Although several 

studies have found impaired retention of extinction with IL lesions (Morgan et al., 1993; 

Quirk et al., 2000; Lebron et al., 2004), other studies have not (Gewirtz et al., 1997; 

Farinelli et al., 2006; Garcia et al., 2006).  One factor that could account for this 

discrepancy is the size of the mPFC lesions.  Studies employing focal IL lesions have 

typically found impairments in extinction retrieval (Quirk et al., 2000; Lebron et al., 

2004), while larger lesions in mPFC including IL and prelimbic cortex (PrL) tend not to 

affect extinction (Gewirtz et al., 1997; Morgan et al., 2003; Farinelli et al., 2006; Garcia 

et al., 2006).  Because IL and PrL have opposite influences on the expression of learned 

fear (Vidal-Gonzalez et al., 2006; Corcoran and Quirk, 2007), larger lesions including IL 

and PrL may produce different results than IL lesions alone.  In addition, the majority of 
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the studies that found effects of IL lesions on extinction used albino rats as subjects 

(Morgan et al., 1993; Quirk et al., 2000; Morgan et al., 2003; Lebron et al., 2004; 

Farinelli et al., 2006).   

A recent study from our laboratory failed to find effects of IL lesions on the 

extinction of conditioned freezing to an auditory CS (Garcia et al., 2006).  This failure to 

observe an influence of IL lesions on extinction may have been due to the large size of 

the lesions (which included PrL) or the use of hooded (i.e., Long-Evans) rats.  To address 

this possibility, the present experiments compared the effects of focal IL lesions on the 

extinction of conditioned freezing to an auditory CS in Sprague-Dawley (SD) and Long-

Evans (LE) rats.         

 

Materials and Methods 

 

Experiment 1: Do strain differences influence the effects of IL lesions on fear extinction? 

Subjects 

Two strains of rats were used in this experiment: 48 male Long-Evans (LE) rats 

(250-330 g; Blue Spruce) from a commercial supplier (Harlan Sprague Dawley, USA) 

and 48 male Sprague-Dawley (SD) rats (250-330 g) from another commercial supplier 

(Hilltop, USA).  They were housed in individual cages with 14-h light/10-h dark cycle 

(lights on at 7:00 am), and allowed food and water ad libitum.  During the first five days, 

they were handled for 10 sec to habituate them to the experimenter.  All experiments 

were carried out in accordance with guidelines approved by the University of Michigan 

University Committee on Use and Care of Animals. 
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Surgery 

Rats received pre-conditioning bilateral infralimbic cortex lesions (IL; AP: +2.8 

mm; ML: ±0.5 mm; DV: -5.2 mm relative to bregma) or sham surgeries for control 

groups (SH-E and SH-NE; extinction and no-extinction, respectively).  In both cases, rats 

were anesthetized with sodium pentobarbital (Nembutal, 65 mg/kg, ip), treated with 

atropine (0.04 mg/kg, i.p.) and placed in a stereotaxic frame for electrolytic lesions with 

stainless-steel electrodes insulated with epoxylite except for 0.3 mm at the tip.  Lesions 

were made with anodal, constant direct current (0.3 mA, 5 sec), and the incision was 

closed with stainless-steel wound clips.  The rats were allowed to recover for 7 days. 

Behavioral apparatus 

Eight identical observation chambers (30 x 24 x 21 cm; MED-Associates) were 

used in all experiments.  The chambers were constructed of aluminum (side walls) and 

Plexiglas (rear wall, ceiling, and hinged front door) and were situated in sound-

attenuating cabinets located in a brightly lit and isolated room.  The floor of each chamber 

consisted of 19 stainless steel rods (4 mm in diameter) spaced 1.5 cm apart (center-to-

center).  Rods were wired to a shock source and solid-state grid scrambler (MED-

Associates) for the delivery of footshock US.  A speaker mounted outside a grating in one 

wall of the chamber was used for the delivery of acoustic CS.   

Each conditioning chamber rested on a load-cell platform that was used to record 

chamber displacement in response to each rat's motor activity and acquired on-line using 

Threshold-Activity software (MED-Associates).  The output of each chamber’s load cell 

was set to a gain that was optimized for detecting freezing behavior (somatomotor 

immobility, except that necessitated by breathing).  Load-cell amplifier output (-10 to 
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+10 V) from each chamber was digitized.  Absolute values of the load-cell voltages were 

then computed and multiplied by 10 to yield a scale that ranged from 0 to 100.  For each 

chamber, load-cell voltages were digitized to 5 Hz, yielding one observation every 200 

msec.  Freezing was quantified by computing the number of observations for each rat that 

had a value less than the freezing threshold (load-cell activity = 10). We score an 

observation as freezing if it fell within a continuous group of at least five observations 

that were all less than the freezing threshold.  Thus, freezing was only scored if the rat 

was immobile for at least 1 sec (Maren, 1998). 

Two distinct contexts were used in Experiment 1 and 2.  For the first context 

(context A), a 15 W houselight mounted opposite the speaker was turned on, and room 

lights remained on.  The chambers were cleaned with a 1% acetic acid solution.  To 

provide a distinct odor, stainless steel pans containing a thin layer of this solution were 

placed underneath the grid floors before the rats were placed inside.  Ventilation fans in 

each chest supplied background noise (65 dB).  Rats were transported to this context in 

white plastic boxes.  For the second context (context B), all room and chamber 

houselights were turned off.  A pair of 40 W red lights provided illumination.  

Additionally, the doors on the sound-attenuating cabinets were closed, the ventilation 

fans were turned off, and the chambers were cleaned with 1% ammonium hydroxide 

solution.  Also, stainless steel pans containing a thin layer of the same solution were 

placed underneath the grid floors before the rats were placed inside to provide a distinct 

odor.  Rats were transported to this context in black plastic boxes.   

Procedure 
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Rats were submitted to three phases of training: fear conditioning, extinction, and 

extinction retention test.  In each phase, trials began 3 min after being placed in the 

chambers.  All phases were conducted in context A.  There were 16 animals in each 

group for each strain (IL, SH-E, and SH-NE; LE and SD).   

On Day 1, rats received five conditioning trials consisted of tones (30 sec, 80 dB, 4k 

Hz) that coterminated with footshocks (1 mA, 0.5 sec) (variable ITI ranging from 90-150 

sec, with an average = 120 sec).  On Day 2, rats received 20 tone-alone presentations for 

fear extinction (IL and SH-E).  For no-extinction controls (SH-NE), rats were placed in 

the chamber for the same amount of time but were not exposed to the tone CS.  On Day 

3, all rats were exposed to another 20 CS-alone presentations for retention test.   

Freezing was determined during each 30 sec tone period during conditioning, 

extinction, and retention test.  Baseline freezing to context was assessed during the 

minutes preceding the first CS presentation.   

Histology  

Histological verification of lesion location was performed after behavioral testing.  

Rats were perfused across the heart with 0.9% saline followed by a 10% formalin 

solution.  After extraction from the skull, brains were post-fixed in 10% formalin solution 

for two days, at which time the solution was replaced with a 10% formalin and 30% 

sucrose solution until sectioning.  Sections (45 µm thick) were cut on a cryostat (-20°C), 

and wet mounted on glass microscope slides with 70% ethanol.  After drying, sections 

stained with 0.25% thionin for visualization of lesions. 

Data analysis 
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All behavioral data are expressed as means and standard error of the means (SE) and 

analyzed by analysis of variance (ANOVA).  Post hoc comparisons in the form of 

Fisher’s PLSD tests were performed after a significant F ration.   

 

Experiment 2: Do LE rats with IL lesions show impaired retrieval of extinction memory 

with a context shift after conditioning?   

Subjects 

The subjects were 58 adult male Long-Evans rats (250-330 g) obtained and 

housed as described in Experiment 1.  

Surgery and behavioral apparatus 

Surgery and behavioral apparatus were identical to those described in Experiment 

1.   

Procedure 

All procedures were identical to those described in Experiment 1, except that after 

conditioning (context A), rats were extinguished and tested in another context (context 

B).  There were 20 rats in IL, and 19 rats each in SH-E and SH-NE controls.   

Histology and data analysis 

Histology and data analyses were performed as described in Experiment 1.   

 

Results 

 

Experiment 1: Do strain differences influence the effects of IL lesions on fear extinction?   
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In this experiment, we examined the influence of focal electrolytic IL lesions on 

the extinction of conditioned freezing to an auditory CS in SD and LE rats.  We used a 

conditioning and extinction procedure that has previously been shown to be sensitive to 

IL lesions in SD rats (Quirk et al., 2000; Lebron et al., 2004).  As in previous studies, 

lesions of the IL were made prior to fear behavioral training.   

Histology 

A representative IL lesion is depicted in Figure 4.1.  Only rats with focal bilateral 

IL lesions were included in the final data analyses.  Animals were included if their lesion 

produced substantial IL damage in at least two of three coronal sections (+3.2 mm, +2.8 

mm, and +2.15 mm relative to bregma).  For the LE strain, three rats in the IL group were 

excluded with one combined into SH-E group for no lesion at all.  This yielded the 

following group sizes: IL (n = 13), SH-E (n = 17), and SH-NE (n = 16).  For the SD 

strain, two rats in the IL group were excluded and three rats died during surgery.  This 

yielded the following group sizes: IL (n = 14), SH-E (n = 14), and SH-NE (n = 15). 

Behavior 

Freezing behavior during the tone CS across all behavioral phases is shown in 

Figure 4.2, with SD and LE strains in the upper and lower panels, respectively.  Freezing 

behavior was low before the first conditioning trial (Figure 4.2A1 and 4.2B1), and then 

increased in magnitude thereafter.  There was a significant main effect of strain [F(1,83) 

= 15.1, p = 0.0002], a significant main effect of trial block [F(2,166) = 623.9, p < 

0.0001], and a significant interaction between strain and trial block [F(2,166) = 17.5, p < 

0.0001].  Planned comparison revealed that between strains, there was a significant 
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difference in freezing behavior only on the last trial block [F(1,87) = 36.3, p < 0.0001], 

suggesting that at the end of conditioning, SD rats spent more time freezing than LE rats.   

Despite the fact that SD rats acquired higher levels of freezing at the end of 

conditioning, LE rats showed significantly higher freezing to the conditioning context 

before the first CS trial during extinction (Figure 4.2A2 and 4.2B2; BL periods).  There 

was a significant main effect of strain [F(1,83) = 18.8, p < 0.0001].  Moreover, the effects 

of IL lesions across different trial blocks differed in the two strains (Figure 2A2 and 2B2; 

tone CS periods).  There was a significant main effect of strain [F(1, 83) = 8.7, p = 

0.0042], a significant main effect of group [F(2,83) = 23.6, p < 0.0001], a significant two-

way interaction between group and trial blocks [F(18, 747) = 5.0, p < 0.0001], and a 

significant three-way interaction among strain, group, and trial blocks [F(18, 747) = 3.3, 

p < 0.0001].  Post hoc analyses revealed that LE rats showed higher freezing than SD rats 

[p < 0.05].  Moreover, rats with IL lesions showed the highest level of freezing and SH-

NE the lowest; SH-E rats exhibits intermediate level of freezing [all ps < 0.05].  Planned 

comparison revealed that at the end of extinction, all groups in both strains showed 

equivalent and low freezing levels [F(5,83) = 1.5, p = 0.2], demonstrating good within-

session extinction in IL and SH-E animals in both strains.   

Freezing behavior during the first 12 CSs of the test session is shown in Figure 

4.2A3 and 4.2B3.  Similar to the extinction session, LE rats showed significantly higher 

freezing to the context than SD rats before the first test trial.  There was a significant 

main effect of strain [F(1,83) = 10.2, p = 0.002] (Figure 4.2A3 and 4.2B3; BL periods).  

Also similar to the extinction session, the effects of IL lesions across different trial blocks 

differed in the two strains (Figure 4.2A3 and 4.2B3; tone CS periods).  There was a 
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significant main effect of strain [F(1, 83) = 7.0, p = 0.01], a significant main effect of 

group [F(2,83) = 46.0, p < 0.0001], a significant two-way interaction between group and 

trial blocks [F(22, 913) = 5.5, p < 0.0001], and a significant three-way interaction among 

strain, group, and trial blocks [F(22, 913) = 2.8, p < 0.0001].  Planned comparison 

revealed that during the first tone CS trial, there was a significant difference in freezing 

behavior across all groups [F(5,83) = 5.5, p = 0.0002].  There was a strain difference in 

spontaneous recovery with control LE rats showing more spontaneous recovery than SD 

rats [p < 0.05], suggesting that LE rats are more resistant to extinction than SD rats.  

Moreover, the effects of IL lesions also differed between the two strains during the first 

tone CS trial.  For SD rats, IL and SH-NE rats showed equivalent freezing levels [p = 

0.15] that were significantly higher than SH-E animals [both ps < 0.05], suggesting failed 

retrieval of extinction memory in IL rats during early test trials.  For LE rats, there was 

no significant difference in freezing levels among all groups [all ps > 0.05].   

The effect of IL lesions on the recall of extinction in SD rats was transient.  

Planned comparison revealed that during the second tone CS trial, there was a significant 

difference in freezing behavior across all groups [F(5,83) = 11.5, p < 0.0001].  However, 

for both the SD and LE rats, IL and SH-E animals showed equivalent and significantly 

lower freezing than their SH-NE controls, respectively [all ps < 0.05].  For SD rats, there 

were no longer differences in freezing levels among the groups by the 11th trial [all ps > 

0.05], while for LE rats, IL and SH-E animals showed equivalent and significantly lower 

freezing than SH-NE [both ps < 0.05] until the last trial in test session.  Thus, IL lesions 

only impaired the retrieval of extinction memory in SD rats, and this impairment was 

most pronounced in the earliest trials of the extinction session.   
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Experiment 2: Do LE rats with IL lesions show impaired retrieval of extinction memory 

with a context shift after conditioning?   

 In Experiment 1, we show that focal IL lesions impair extinction retrieval in SD, 

but not LE rats.  Interestingly, LE rats exhibited much higher levels of contextual fear 

prior to the onset of extinction training, and this may have impaired both extinction 

learning and IL function (Correll et al., 2005; Izquierdo et al., 2006; Maren and Chang, 

2006; Akirav and Maroun, 2007).  We therefore hypothesized that the effect of IL lesions 

on extinction recall may be influenced by the degree of contextual fear at the outset of 

extinction training.  If so, reducing contextual fear in LE rats prior to extinction might 

facilitate extinction in control rats and unmask an effect of IL lesions.  To test this 

hypothesis, we repeated the same procedures in Experiment 1 in LE rats, but conducted 

extinction in a different context from conditioning in an effort to reduce contextual fear 

before extinction. 

Histology 

The criteria are the same as described in Experiment 1.  On the basis of the 

histological results, 5 of 20 IL rats were excluded.  This yielded the following group 

sizes: IL (n = 15), SH-E (n = 19), and SH-NE (n = 19).  

Behavior 

Freezing behavior during the conditioning session is shown in Figure 4.3.  

Freezing behavior was low before the first conditioning trial (Figure 4.3A), and then 

increased in magnitude thereafter.  There was an equivalent increase in freezing across 

trials in all groups [group × trial, F(4,100) < 1].   
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 Freezing behavior during the extinction session is shown in Figure 4.3B.  

Baseline freezing levels before tone onset were equivalent among groups [F(2,50) < 1].  

The context shift between conditioning and extinction significantly lowered freezing 

levels before CS onset in LE rats relative to Experiment 1.  We compared the pre-

extinction freezing levels in Experiment 1 and 2 and found a significant main effect of 

group [F(2,133) = 10.4, p < 0.0001] in the ANOVA.  An additional analysis revealed that 

contextual freezing in LE rats in Experiment 2 (with a context shift) was similar to that in 

SD rats in Experiment 1 [p = 0.63] and was significantly lower than that in LE rats [both 

ps < 0.05].   

During the extinction session in Experiment 2, there was a significant main effect 

of group [F(2,50) = 15.4, p < 0.0001], a significant main effect of trial block [F(10,500) = 

18.3, p < 0.0001], and a significant  interaction between group and trial block [F(20,500) 

= 3.2, p < 0.0001].  Freezing behavior was equivalent between rats in the IL and SH-E 

groups [p = 0.15], which were both significantly higher than SH-NE rats [both ps < 0.05].  

At the end of extinction, IL and SH-E rats showed equivalent [p = 0.33] but significantly 

higher freezing levels than SH-NE animals [both ps < 0.05].   

Freezing behavior during the first 12 tones during the retention test is shown in 

Figure 4.3C.  During the pre-CS period, there was a significant main effect of group 

[F(2,50) = 6.8, p = 0.0023].  Rats with IL lesions showed significantly higher freezing 

levels than rats in the SH-E and SH-NE groups [both ps <0.05], which did not differ from 

one another [p = 0.19].   This suggests that IL lesions may have caused spontaneous 

recovery of context extinction, or alternatively elevated second-order conditioning to the 

extinction context.  After CS onset, there was a significant main effect of group [F(2,50) 
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= 5.5, p = 0.007], a significant main effect of trial [F(12,600) = 20.9, p < 0.0001], and a 

significant interaction between group and trial [F(24,600) = 6.0, p < 0.0001].  Freezing 

levels were significantly higher in SH-NE rats compared to SH-E rats [p < 0.05]; rats 

with IL lesions exhibited intermediate levels of freezing that did not differ from either 

group [both ps > 0.05].  However, a post hoc analysis revealed that on the second test 

trial SH-NE and IL rats had equivalent freezing levels that were significantly higher than 

SH-E rats [both ps < 0.05].  Thus, by shifting context between conditioning and 

extinction, contextual fear before extinction was diminished and extinction in the controls 

was facilitated.  Under these conditions, LE rats with IL lesions exhibited a transient, but 

reliable, impairment in the retrieval of extinction early in the retention test.   

 

Discussion 

 

 In the present study, we examined the effects of focal IL lesions on the retrieval 

of extinction memory in SD and LE rats.  Our results reveal that IL lesions impair the 

retrieval of extinction memory in SD, but not LE rats, when conditioning and extinction 

occur in the same context.  When LE rats were conditioned and extinguished in different 

contexts, IL lesions yielded a modest impairment in the retrieval of extinction memory.  

Higher levels of pre-extinction fear and weaker long-term extinction in LE rats, both of 

which were mitigated by a shift in context, appeared to be responsible for the failure to 

detect an IL lesion effect in the first case.  We suggest that high levels of fear at the outset 

of extinction training may interfere with IL function and yield a transient and IL-
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independent fear suppression, similar to that observed when extinction training is 

conducted soon after fear conditioning (Maren and Chang, 2006).   

An interesting outcome of the present study was that identical conditioning 

procedures produced different levels of contextual fear in LE and SD rats.  Compared to 

SD rats, LE rats exhibited significantly greater levels of contextual fear at the outset of 

the extinction session, and this appeared to produce a less durable extinction.  An 

interaction between contextual fear and extinction has also been observed when 

extinction training occurs soon after fear conditioning or when reminder shocks elevate 

fear prior to a delayed extinction session (Maren and Chang, 2006).  When contextual 

fear at the outset of extinction training was equated in LE and SD rats, IL lesions 

produced similar deficits in extinction in both strains.  This suggests that strain per se, is 

not likely a factor in observing deficits in extinction after IL lesions.  Hence, failures to 

observe extinction deficits in previous studies with albino rats and weak conditioning 

protocols are probably due to the size of large mPFC lesions including both IL and PrL 

(Gewirtz et al., 1997; Morgan et al., 2003; Farinelli et al., 2006; Garcia et al., 2006).  

As we have suggested, the failure to detect an effect of IL lesions in LE rats in 

Experiment 1 may have been related to the high degree of spontaneous recovery of fear 

in the control rats.  The impairment in long-term extinction by elevated fear at the outset 

of extinction training may be related to impaired prefrontal cortical function.  A 

considerable body of work indicates that the IL is involved in extinction learning (Pare et 

al., 2004; Maren, 2005; Bouton et al., 2006; Quirk and Mueller, 2008).  There is also 

considerable evidence that acute or chronic stressors disrupt prefrontal cortical function.  

For example, an acute stressor causes dendritic retraction in IL and impairs fear 
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extinction (Izquierdo et al., 2006).  Stress-related impairments in PFC function may 

influence extinction by influencing PFC-amygdala interactions (Correll et al., 2005).  In 

the present study, extinction in LE rats and its sensitivity to IL lesions were related to the 

level of fear present at the beginning of the extinction session.  We propose that high 

levels of fear compromise IL function, and additionally, that any extinction obtained 

under these conditions is independent of the IL.  One structure that might compensate for 

the PFC is the hippocampus, which has direct projections to the amygdala (Maren and 

Fanselow, 1995) and is involved in the acquisition of extinction under some conditions 

(Corcoran et al., 2005).  Of course, stress impairs hippocampal function as well (McEwen 

and Sapolsky, 1995; Kim and Yoon, 1998; Akirav and Richter-Levin, 1999), so further 

work is required to understand the how stress influences extinction circuits beyond the 

hippocampus and PFC.   

In conclusion, we have demonstrated that contextual fear before extinction 

training regulates the effects of IL lesions on long-term extinction retrieval.  As 

contextual fear is influenced by strain, the salience of contextual stimuli, and the CS-US 

contingency, it is likely to be an important factor that contributes to the efficacy of 

extinction and the engagement of the IL in this process.  This may be especially critical 

for clinical studies as the results suggest the stress level aroused during exposure therapy 

may interfere the efficacy of the long-term extinction in patients.   
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Figure 4.1.  Schematic illustration of a representative bilateral IL lesion.   
This figure was adapted from Swanson (2004).  
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Figure 4.2.  Conditional freezing during conditioning, extinction, and retention 
testing for Sprague-Dawley (A) and Long-Evans (B) rats.   
SH-NE rats did not receive CS presentations during extinction.  All data are percentage 
of freezing behavior during tone periods and baseline.  All data are means ± SEM.   
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Figure 4.3.  Conditional freezing during conditioning, extinction, and retention 
testing.  
All labels the same as in Figure 4.2.  All data are means ± SEM. 
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CHAPTER V 

 

PREFRONTAL CORTICAL RESCUE OF FEAR EXTINCTION 

 

Failure to extinguish fear memory is a core feature of several anxiety disorders, 

including panic disorder, specific phobia, and post-traumatic stress disorder (Rasmusson 

and Charney, 1997; Rosen and Schulkin, 1998; Myers and Davis, 2002; Wessa and Flor, 

2007; Muigg et al., 2008).  In rats, extinction has been studied extensively using 

Pavlovian fear conditioning procedures (LeDoux, 2000; Pare et al., 2004; Maren, 2005).  

That is, after a conditioned stimulus (CS) has been paired with an aversive unconditioned 

stimulus (US), repeated presentations of the CS alone leads to a loss of conditioned fear.  

This loss of fear is labile, recovering with the passage of time and with changes in 

context (Pavlov, 1927; Bouton et al., 2006; Myers and Davis, 2007).  Hence, extinction 

procedures do not erase fear memory, but yield a new safety memory that inhibits fear 

under certain conditions.   

In recent years, considerable progress has been made in understanding the neural 

circuitry underlying fear extinction (LeDoux, 2000; Maren and Quirk, 2004; Pare et al., 

2004).  Indeed, the acquisition and expression of extinction memories involves a 

distributed neural circuit that includes the amygdala, medial prefrontal cortex (mPFC), 

and hippocampus.  Specifically, the basolateral complex of the amygdala is required for 



 98 

the acquisition of extinction memory (Falls et al., 1992; Lu et al., 2001; Lin et al., 2003; 

Quirk and Mueller, 2008), the mPFC is involved in the consolidation and expression of 

long-term extinction memory (Quirk et al., 2000; Milad and Quirk, 2002; Santini et al., 

2004; Burgos-Robles et al., 2007; Quirk and Mueller, 2008) and the hippocampus 

regulates the context-dependent retrieval of extinction memories (Corcoran and Maren, 

2001, 2004; Bouton et al., 2006; Hobin et al., 2006).   

Although considerable progress has been made in understanding the behavioral 

and neurobiological mechanisms underlying extinction in experimental models (Bouton 

et al., 2006; Garakani et al., 2006; Myers and Davis, 2007), less progress has been made 

in understanding the nature and causes of extinction impairments that are believed to 

contribute to psychopathology in humans.  Interestingly, we have found that a recently 

acquired fear is especially difficult to extinguish (Maren and Chang, 2006; Chang and 

Maren, 2009).  In addition, delayed extinction (which is normally effective) is disrupted 

by delivering footshock shortly before the extinction session (Maren and Chang, 2006).  

Other investigators have also reported that extinction is impaired by stress (Akirav and 

Maroun, 2007) and is difficult to obtain in anxious inbred mouse strains (Muigg et al., 

2008).  Interestingly, acute stress causes dendritic retraction in the mPFC (Izquierdo et 

al., 2006) and chronic stress has been shown to influence mPFC control over amygdala 

excitability (Correll et al., 2005).   

Collectively, these data suggest that stress-related impairments in mPFC function 

may contribute to the immediate extinction deficit.  To test this hypothesis, we 

characterized neural activity in the infralimbic (IL) and prelimbic (PrL) divisions of the 

mPFC during immediate and delayed extinction using electrophysiological recordings in 
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vivo.  Specifically, we assessed local field potentials, spontaneous spike firing, and CS-

evoked activity in each region during the acquisition and expression of extinction.  We 

find that successful extinction is associated with development of neuronal bursting in the 

infralimbic cortex, and that pharmacologically driving infralimbic cortex rescues the 

impairments in extinction observed soon after fear conditioning.   

 

Materials and Methods 

 

Experiment 1: Neural activity in the medial prefrontal cortex during immediate or 

delayed extinction 

Subjects 

The subjects were 8 Male Long-Evans rats (>400 g; Blue Spruce) obtained from a 

commercial supplier (Harlan Sprague Dawley, USA).  They were housed in individual 

cages with 14-h light/10-h dark cycle (lights on at 7:00 am), and allowed food and water 

ad libitum.  During the first 5 days, they were handled for 10 sec to habituate them to the 

experimenter.  All experiments were carried out in accordance with guidelines approved 

by the University of Michigan University Committee on Use and Care of Animals.   

Electrophysiology 

Each rat was implanted a chronic headstage with 18 individually drivable tetrodes 

aimed at different target areas: the medial prefrontal cortex (infralimbic and prelimbic 

cortex) and the amygdala (lateral, basolateral, and central nucleus).  Skull screws were 

placed in contact with several cortical regions to record EEG signal (above left 
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hippocampus), as a reference to LFP/EEG signal (1 mm posterior to lambda), or as 

ground (posterior lateral skull ridge).  Additional screws were implanted as anchors.   

Data acquisition was performed using a 96 channel amplifier system (Boston 

University Electronics Design Facility) and acquired on-line using DataWave software 

(DataWave Technologies, Longmont, CO).  EEG and LFP signals were amplified with 

gain of 5000, filtered at 1–600 Hz, and digitized at 12.5 KHz.  Single unit spikes were 

amplified with gain of 10000, filtered at 300 Hz to 6 kHz, and digitized at 31.25 kHz.  

Tetrodes were progressively lowered into target area across several days based on 

estimated distances from atlas, and stopped moving at least three days prior to the starting 

of behavioral procedures, which was ten days after surgery.  Data were continuously 

acquired across the behavior procedures and stored for further analyses.   

Single units with signal-to-noise ratio above 2 were detected off-line using 

Datawave software, and then manually discriminated and clustered in Offline Sorter 

software (Plexon Inc., Dallas, TX).  Data were then imported to NeuroExplorer software 

(NEX Technologies, Littleton, MA) for analyses of firing rate, inter-spike intervals, peri-

event time histogram, bursting, and power spectrum.   

Behavioral apparatus 

One standard rodent conditioning chamber (30 x 24 x 21 cm; MED-Associates; as 

described in experiment 2) was modified to accommodate electrophysiological recording.  

It rested on a load-cell platform that was used to record chamber displacement in 

response to each rat’s motor activity.  The load cell amplifier output was digitized at 5Hz 

and acquired on-line using DataWave software (DataWave Technologies, Longmont, 

CO).   
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Two distinct contexts were used in this experiment.  For the first context (context 

A), a 15 W houselight mounted opposite the speaker was turned on, and room lights 

remained on.  The chamber was cleaned with a 1% acetic acid solution.  To provide a 

distinct odor, a stainless steel pan containing a thin layer of this solution was placed 

underneath the grid floors before the rat was placed inside.  The ventilation fan in chest 

supplied background noise (65 dB).  For the second context (context B), the room lights 

were turned dim and the chamber houselight was turned off.  Additionally, the door on 

the sound-attenuating cabinet was closed, the ventilation fan was turned off, and the 

chamber was cleaned with 1% ammonium hydroxide solution.  Also, a stainless steel pan 

containing a thin layer of the same solution was placed underneath the grid floors before 

the rat was placed inside to provide a distinct odor.   

Behavioral procedures  

Rats were submitted to four phases of training: baseline tone exposure, fear 

conditioning, extinction, and extinction retention test.  Conditioning trials began 3 min, 

while all others began 10 min, after being placed in the chamber.  EEG, LFPs, and unit 

activities were acquired during baseline exposure, extinction, and test.   

On Day 1, rats received 10 tone-alone (2 sec, 80 dB, 10kHz) presentations for 

baseline tone exposure (BL, context A).  Depending on group, rats received five 

conditioning trials consisted of tones that coterminated with footshocks (1 mA, 0.5 sec) 

(60 sec inter-trial interval (ITI)) either 10 min after baseline exposure on Day 1 (DELAY, 

n = 4) or 10 min before extinction (IMMED, n = 4) on Day 2 in another context (context 

B).  On Day 2, all rats received 50 tone-alone presentations for fear extinction (EXT, 
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context A).  On Day 3, all rats were returned to the extinction context (context A) again 

and exposed to another 50 CS-alone presentations for retention test (TEST).   

Freezing was determined during each 60 sec ITI after the CS offset during baseline 

exposure, conditioning, extinction, and retention test, and during the minutes preceding 

the first CS presentation for pre-tone freezing to context.   

Histology  

At the end of experiments, current (20 µA, 20 s) was passed through electrode tips 

to create small marker lesions.  Rats were then perfused through the heart with 0.9% 

saline followed by a 10% formalin solution.  After extraction from the skull, brains were 

post-fixed in 10% formalin solution for two days, at which time the solution was replaced 

with a 10% formalin and 30% sucrose solution until sectioning.  Sections (45 µm thick) 

were cut on a cryostat (-20°C), and wet mounted on glass microscope slides with 70% 

ethanol.  After drying, sections stained with 0.25% thionin for visualization of lesions.   

Data analysis 

All behavioral data are expressed as means and standard error of the means (SE) and 

analyzed by analysis of variance (ANOVA) in 10-trial blocks during BL, early/late EXT 

(first and last 10), and TEST (first 10) unless specified otherwise.  Post hoc comparisons 

in the form of Fisher’s PLSD tests were performed after a significant F ration.  

Tone-evoked response for each unit was summed across 10 CS trials in different 

behavioral phases and post-CS activity was normalized to the 2 sec pre-CS baseline 

(200ms bins) to generate standard scores (Z-scores) during 2 sec tone period.  A burst 

was defined as three or more consecutive spikes with an interval of less than 30 ms 

between the first two spikes and less than 50 ms in subsequent spikes.   
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Experiment 2: Disinhibiting IL with picrotoxin rescues immediate extinction deficits 

Subjects 

The subjects were 36 adult male Long-Evans rats (250-330 g) obtained and 

housed as described in Experiment 1.   

Surgery  

Rats received pre-conditioning implants with a single 26 gauge stainless-steel 

guide cannulae (Plastic One, Roanoke, VA).  All rats were anesthetized with sodium 

pentobarbital (Nembutal, 65 mg/kg, ip), treated with atropine (0.04 mg/kg, i.p.) and 

placed in a stereotaxic frame.  Stereotaxic coordinates were: AP +2.8 mm, ML +1.0 mm, 

DV -4.1 mm relative to bregma, with an 11° angle toward the midline in the coronal 

plane.  Rats were allowed to recover for 7 days.   

Behavioral apparatus 

Eight identical observation chambers (30 x 24 x 21 cm; MED-Associates) were 

used in all experiments.  The chambers were constructed of aluminum (side walls) and 

Plexiglas (rear wall, ceiling, and hinged front door) and were situated in sound-

attenuating cabinets located in a brightly lit and isolated room.  The floor of each chamber 

consisted of 19 stainless steel rods (4 mm in diameter) spaced 1.5 cm apart (center-to-

center).  Rods were wired to a shock source and solid-state grid scrambler (MED-

Associates) for the delivery of footshock US.  A speaker mounted outside a grating in one 

wall of the chamber was used for the delivery of acoustic CS.   

Each conditioning chamber rested on a load-cell platform that was used to record 

chamber displacement in response to each rat's motor activity and acquired on-line using 
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Threshold-Activity software (MED-Associates).  The output of each chamber’s load cell 

was set to a gain that was optimized for detecting freezing behavior (somatomotor 

immobility, except that necessitated by breathing).  Load-cell amplifier output (-10 to 

+10 V) from each chamber was digitized.  Absolute values of the load-cell voltages were 

then computed and multiplied by 10 to yield a scale that ranged from 0 to 100.  For each 

chamber, load-cell voltages were digitized to 5 Hz, yielding one observation every 200 

msec.  Freezing was quantified by computing the number of observations for each rat that 

had a value less than the freezing threshold (load-cell activity = 10). We score an 

observation as freezing if it fell within a continuous group of at least five observations 

that were all less than the freezing threshold.  Thus, freezing was only scored if the rat 

was immobile for at least 1 sec.   

Two contexts as described in Experiment 1 were used in this study.   

Behavioral procedure 

Rats were submitted to three phases of training: fear conditioning, extinction, and 

extinction retention test.  In each phase, trials began 3 min after being placed in the 

chambers.   

On Day 1, rats received five conditioning trials consisted of tones (2 sec, 80 dB, 2k 

Hz) that coterminated with footshocks (1 mA, 0.5 sec) (60 sec inter-trial interval (ITI); 

context A).  One hour afterward, rats received 45 tone-alone presentations for fear 

extinction (PIC, n = 12; SAL-E, n = 12) in the other context (context B).  For no-

extinction controls (SAL-NE, n = 12), rats were placed in the chamber for the same 

amount of time but were not exposed to the tone CS.  On Day 2, all rats were returned to 
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the extinction context (context B) again and exposed to another 45 CS-alone 

presentations for retention test.   

Freezing was determined during each 60 sec ITI after the CS offset during 

conditioning, extinction, and retention test, and during the minutes preceding the first CS 

presentation for baseline freezing to context.   

Picrotoxin infusion 

One day before conditioning, rats were acclimated to the infusion procedure by 

transporting them to the infusion room in identical white 5-gallon buckets. Their dummy 

cannulas were replaced and the infusion pumps (Harvard Apparatus) were activated. 

After 5 min, the pumps were stopped and the animals were returned to their home cages.   

One hour after conditioning, the rats were transported to the infusion room as 

described above and infused with either picrotoxin (100 ng in 0.5 µL of sterile saline at 

0.1 µL/min; Sigma, St. Louis, MO) or sterile saline (0.9%; 0.5 µl at 0.1 µL/min; SAL-E 

and SAL-NE).  After the infusion, 1 min was allowed for diffusion before the internal 

cannulas were removed.  Clean dummy cannulas were then inserted into the guide 

cannulas, and rats were immediately transported to the conditioning chambers, where 

they received extinction trials.   

Histology and data analysis 

Histology and behavioral data analyses were performed as described in 

Experiment 1.  

 

Experiment 3: Facilitating IL with D-cycloserine rescues immediate extinction deficits 

Subjects 
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The subjects were 36 adult male Long-Evans rats (250-330 g) obtained and 

housed as described in Experiment 1.  

Surgery and behavioral apparatus 

Surgery and behavioral apparatus were identical to those described in Experiment 

2.   

Behavioral procedure 

All procedures were identical to those described in Experiment 2, except that D-

cycloserine (DCS) was infused before extinction.   

DCS infusion 

Rats were acclimated to the infusion procedures as described in Experiment 2.  

One hour after conditioning, the rats were transported to the infusion room and 

infused with either DCS (10 µg in 0.5 µL of sterile saline at 0.1 µL/min; Sigma, St. Louis, 

MO) or sterile saline (0.9%; 0.5 µl at 0.1 µL/min; SAL-E and SAL-NE).  After the 

infusion, 1 min was allowed for diffusion before the internal cannulas were removed.  

Clean dummy cannulas were then inserted into the guide cannulas, and rats were 

immediately transported to the conditioning chambers, where they received extinction 

trials.   

Histology and data analysis 

Histology and behavioral data analyses were performed as described in 

Experiment 1.   
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Results 

 

Experiment 1: Neural activity in the medial prefrontal cortex during immediate or 

delayed extinction 

Fear extinction has been reported to increase the bursting of neurons in the 

infralimbic division of the medial prefrontal cortex (Burgos-Robles et al., 2007), as well 

as yielding increases in spike firing to extinguished CSs (Milad and Quirk, 2002).  In the 

present experiment, we explored the possibility that immediate extinction fails to yield 

long-term fear suppression because elevated bursting and/or CS-evoked firing do not 

emerge in the IL when extinction is conducted soon after conditioning.  To address this 

issue, we implanted multiple, drivable tetrodes in the IL and PrL division of the mPFC 

and characterized the neural correlates of immediate and delayed extinction in awake, 

behaving rats.   

Histology 

Unit recording sites in IL and PrL are illustrated in Figure 5.1.  The total number 

of neurons recorded in each area and behavioral session is summarized in Table 5.1.  All 

units were treated as independent neurons across each of the behavioral sessions.   

Behavior 

All behavioral sessions are shown in Figure 5.2.  Freezing behavior was low 

during the baseline (BL) recording session prior to fear conditioning.  Once extinction 

(EXT) trials commenced, all animals exhibited equivalent and high levels of conditioned 

freezing early in the EXT session.  Extinction training reduced the levels of conditional 

freezing during the EXT session in both the IMMED and DELAY rats.  However, this 
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loss of fear was only maintained 24 hours later among rats in the DELAY condition; fear 

in rats in the IMMED condition recovered to pre-extinction levels during the retention 

test (TEST) as previously reported (Maren and Chang, 2006; Chang and Maren, 2009).  

There was a significant main effect of group [F(1,6) = 15.1, p < 0.01], a significant main 

effect of behavioral phase [F(3,18) = 25.9, p < 0.0001], and a significant  interaction 

between group and behavioral phase [F(3,18) = 3.8, p < 0.05].  Post hoc comparisons 

revealed that freezing behavior between the two groups were equivalent during BL and 

early/late EXT sessions [all ps > 0.05].  During the TEST session, freezing levels of rats 

in the IMMED condition were significantly higher than those in the DELAY condition [p 

< 0.05].   

We previously reported that freezing is elevated prior to the onset of EXT in 

IMMED relative to DELAY rats (Maren and Chang, 2006).  We also observed this 

pattern of behavior in the present experiment (Figure 5.3A).  Compared to DELAY rats, 

IMMED rats exhibited high levels of freezing prior to the onset of the first EXT trial 

[F(1,6) = 10.5, p = 0.02].  As we have previously suggested, elevated pre-EXT freezing 

in the IMMED rats may result from sensitization of fear by recent footshock. 

Electrophysiology 

Local field potentials.  Prior to the onset of EXT training, rats in the IMMED 

condition exhibited a sensitized fear response that may have interfered with the 

development of long-term extinction.  It is possible that the different behavioral states of 

rats in the IMMED and DELAY conditions are related to different levels of prefrontal 

cortical arousal.  Neocortical arousal is cholinergically mediated and is characterized by 

suppression of delta waves (1-4 Hz) (Jasper and Tessier, 1971; Buzsaki et al., 1988; Kapp 
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et al., 1994).  Indeed, amygdala stimulation can suppress neocortical delta activity 

through its projections to cholinergic neurons of the nucleus basalis (Price and Amaral, 

1981; Grove, 1988; Kapp et al., 1994).  Therefore, we hypothesized that sensitized fear in 

the IMMED rats, presumably a result of amygdala hyperactivity, would be accompanied 

by a suppression of delta activity in the medial prefrontal cortex.   

Averaged power spectra recorded from the IL during the EXT session for animals 

in each experimental group are shown in Figure 5.3B; average power in the delta range 

(1-4 Hz) is shown in the inset.  Supporting our hypothesis, delta activity was suppressed 

in IMMED rats compared to DELAY controls before the first EXT trial was delivered 

(pre EXT).  Delta activity was equally suppressed in both groups during early EXT, but 

recovered only in DELAY animals during late EXT.  There was a significant main effect 

of behavioral phase on delta power [F(2,10) = 19.0, p = 0.0004] and a significant 

interaction between group and behavioral phase [F(2,10) = 4.0, p = 0.05].  Post hoc 

comparisons revealed that delta power was significantly lower in IMMED rats during pre 

and late EXT [both ps < 0.05], with no significant difference during the early EXT [p > 

0.05].  Thus, IMMED and DELAY rats were behaviorally and physiologically in 

different states before extinction training: IMMED rats were more aroused compared to 

their DELAY controls.   

Spontaneous and trial-related spike bursting.  Previous studies have shown that 

spike bursting in the IL is a neural correlate of effective extinction in rats (Burgos-Robles 

et al., 2007; Mueller et al., 2008).  We therefore hypothesized that bursting in IL neurons 

may be reduced in rats receiving immediate extinction trials.  To address this issue, we 
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examine single-unit discharges in the medial prefrontal cortex (IL and PrL) during 

immediate and delayed extinction. 

As shown in Table 5.1, we recorded ~ 40 units in the IL (mean = 41, range from 

28 to 47) and ~ 50 units in the PrL (mean = 55, range from 43 to 70) across three 

behavioral sessions.  Waveform analysis (Bartho et al., 2004) suggested that all of the 

neurons we recorded were primarily projections neurons with wide half peak and peak-

valley durations (mean = 164.5 ± 1.0 µs and 453.9 ± 3.2 µs, respectively; under our filter 

settings).  Two neurons recorded in the PrL with narrow durations (half peak < 120 µs, 

peak-valley < 200 µs), presumably interneurons, were excluded from further analyses.  

All neurons displayed low spontaneous firing rates (< 3 Hz), which is characteristic of 

projection neurons (Pare and Gaudreau, 1996; Collins and Pare, 1999; Bartho et al., 

2004; Berke et al., 2004).   

As a first step in characterizing the pattern of spike firing in the prefrontal cortex, 

we constructed inter-spike interval (ISI) histograms for each behavioral phase.  This ISI 

analysis allowed us to examine whether extinction changes the frequency of short-latency 

spike events that would be expected if there were an increase in burst-mode firing.  

Indeed, we found significant differences in the frequency of events with inter-spike 

intervals less than 30 ms and therefore focused our analysis on these events.  The 

percentage of both short inter-spike interval (ISI) events (< 30 ms) and spontaneous firing 

rates during different behavioral phases in IL and PrL are shown in Figure 5.4.  For IL, 

there were no significant differences in the percentage of short ISI events between the 

groups during the BL session [F(1,62) = 2.0, p = 0.16].  However, differences between 

the IMMED and DELAY groups were evident during the EXT session and were reflected 
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in fewer short ISI events in IMMED compared to DELAY rats.  Interestingly, both 

IMMED and DELAY rats exhibited an increase in short ISI events over the course of the 

EXT session, and this pattern was maintained during the TEST session 24 hours later.  

These observations were confirmed by a significant main effect of group [F(1,84) = 7.3, p 

= 0.008] and a main effect of early/late EXT [F(1,84) = 9.0, p = 0.0036], but no 

significant interaction between group and early/late EXT [F(1,84) < 1].  During the TEST 

session, there was a main effect of group [F(1,82) = 6.6, p = 0.01].  Unlike the short ISI 

events in IL, the spontaneous firing rates of IL neurons in each group were equivalent 

across all behavioral phases [all ps > 0.05].  Thus, the difference in the percentage of 

short ISI events during the EXT and TEST session was not due to an overall increase in 

spike firing, but the change in firing patterns, in the IMMED group.  In contrast to the IL, 

there were no differences in either short ISI events or spontaneous firing between the 

IMMED and DELAY groups in any behavioral phase in the PrL [all ps > 0.05].   

The previous analyses indicate that effective extinction in DELAY rats is 

associated with an increase in short ISI events in the IL, and this effect was impaired in 

IMMED rats.  This suggests that IMMED extinction does not engage burst-mode firing in 

the IL.  To examine this issue further, we characterized IL bursting using a slightly 

modified criterion as previously described, that is, the occurrence of three or more 

consecutive spikes with an ISI of less than 30 ms (instead of 25 ms, in order to keep it 

consistent with the short ISI event analysis stated above) between the first two spikes and 

less than 50 ms for subsequent spikes (Shi and Zhang, 2003; Burgos-Robles et al., 2007).  

For this analysis, we examined the frequency of bursts during both the CS period and the 

1-min ITI following the CS in each behavioral phase.  As shown in Figure 5.5, IL 
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bursting varied as a function of the behavioral session primarily among rats in the 

DELAY group.  During the BL session, bursting was similar in IMMED and DELAY 

rats.  Differences in bursts started to emerge during early EXT session: whereas the IL 

bursts frequency in DELAY rats increased from the BL to the EXT session, it marginally 

decreased in rats in the IMMED condition.  Moreover, although both IMMED and 

DELAY rats showed elevated bursts during the 2-s period, such increase was sustained 

only in DELAY rats over the 1-min ITI.  During the TEST session, differences in the 

IMMED and DELAY rats were maintained.  Interestingly, IMMED rats began to show 

an increase in bursting relative to the extinction session; this mirrored the increase in 

bursting experienced by the DELAY rats on their first effective extinction session.  As 

the divergent IL bursts mode emerged early during EXT (Figure 5.4A1 and 5.5B1) and 

sustained during TEST (Figure 5.4A1 and 5.5C), it suggested that elevated IL bursts may 

be essential for the acquisition of extinction and the long-term fear suppression. 

Tone-evoked spike firing.  Studies have shown that IL, but not PrL, neurons 

exhibit increases in transient evoked firing rate to extinguished CSs when fear is 

suppressed after extinction (Milad and Quirk, 2002; Maren and Quirk, 2004).  Moreover, 

electrical microstimulation of IL that mimics CS-evoked spike firing suppresses freezing 

in rats have not been extinguished (Milad and Quirk, 2002; Milad et al., 2004).  We thus 

hypothesized that impaired extinction in the IMMED rats might be reflected by a failure 

of IL neurons to increment their firing to an extinguished CS. 

To examine this issue, we characterized CS-evoked single-unit in both IL and PrL 

neurons during each behavioral phase.  Figure 5.6 illustrates the normalized CS-evoked 

response during the 200 ms period after CS onset averaged across all the neurons 
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recorded in the IL and PrL.  On average, the magnitude of the CS-evoked response in 

both the IL and PrL was low.  In fact, of all the units recorded, only 13 out of 245 

neurons in the IL and 13 out of 327 neurons in the PrL would have met our standard 

criterion (z > 3 within any 50-ms bin within 200 ms of CS onset) for tone responsivity 

that we have used in earlier reports (Maren, 2000; Goosens et al., 2003; Hobin et al., 

2003).  As shown in Figure 5.6, IL neurons from both IMMED and DELAY rats 

exhibited an increases in CS-evoked spike firing in the EXT session relative to the BL, 

and this pattern was sustained during the TEST session [F(2, 229) = 3.1, p < 0.05].  There 

was no interaction between group and behavioral phase [F(2, 229) = 1.3, p = 0.26 ].  Post 

hoc comparisons revealed that CS-evoked responses were significantly higher in the EXT 

and TEST sessions compared to the BL in both the IMMED and DELAY rats [both ps < 

0.05].  In contrast, there was no influence of behavioral training on CS-evoked firing in 

the PrL [F(2,321) < 1].   

These results are not consistent with earlier reports indicating an increase in CS-

evoked spike firing in IL after extinction (Milad and Quirk, 2002; Maren and Quirk, 

2004).  To examine this issue further, we conducted another analysis focusing on only 

those IL neurons that exhibited an increase in CS-evoked spike firing (z > 0 within 200 

ms of CS onset) during any behavioral session.  Average peri-event time histograms of 

spike firing in these neurons are shown in Figure 5.7.  During the BL session, there was 

no significant difference in CS-evoked spike firing among the groups [F(1,9) < 1].  

During the EXT session, both IMMED and DELAY rats showed increased CS-evoked 

firing, which subsided only in DELAY group during the course of the EXT session.  

There was no significant difference in CS-evoked firing among the groups [F(1,28) < 1], 
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but there was a main effect of early/late during the session [F(1,28) = 6.9, p = 0.01].  

Planned comparisons revealed that CS-evoked firing reliably decreased only in the 

DELAY group [F(1,11) = 6.1, p = 0.03].  During the TEST session, this difference was 

maintained and CS-evoked firing was significantly higher in the IMMED group [F(1,29) 

=4.5, p = 0.04].  Thus, animals in the DELAY group that successfully extinguished fear 

exhibited lower levels of CS-evoked firing than animals in the IMMED group that did not 

exhibit extinction.  Indeed, CS-evoked spike firing in the IL appeared to correlate more 

strongly with the expression of fear than extinction.  In contrast to the IL, PrL neurons 

exhibited CS-evoked firing in all behavioral sessions, but no significant difference 

between groups in any phases [all ps > 0.05; Figure 5.8].  

 

Experiment 2: Picrotoxin infusion into the IL rescues the immediate extinction deficit  

The results from Experiment 1 suggest that the immediate extinction deficit may 

be caused by abnormal physiological activity of IL neurons, at least with regard to the 

pattern of spike bursts.  Reducing GABAA receptor-mediated inhibition greatly enhances 

neocortical activity and produces synchronized bursting (Connors, 1984; Chagnac-Amitai 

and Connors, 1989; Metherate and Cruikshank, 1999).  We therefore examined whether 

increasing IL activity by antagonizing IL GABAA receptors would rescue the immediate 

extinction deficit.   

Histology 

On the basis of the histological results, four of 36 rats were excluded. This yielded 

the following group sizes: PIC (n = 10), SAL-E (n = 10), and SAL-NE (n = 12).  IL 

cannula placements for rats included in the data analyses are depicted in Figure 5.9A.   
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Behavior 

Freezing behavior during the conditioning session is shown in Figure 5.9B.  

Freezing behavior was very low before the first conditioning trial, and then increased in 

frequency thereafter.  There was an equivalent increase in freezing across trials in all 

groups [group × trial, F(10,145) < 1].   

Freezing behavior during the extinction session is shown in Figure 5.9C.  There 

was a significant main effect of group [F(2,29) = 9.8, p = 0.0006], a significant main 

effect of trial block [F(9,261) = 6.7, p < 0.0001], and a significant  interaction between 

group and trial block [F(18,261) = 11.9, p < 0.0001].  Interestingly, picrotoxin infusions 

into the IL completely eliminated the expression of freezing during the extinction session.  

Post hoc comparisons revealed that freezing levels in SAL-E rats were significantly 

higher than those in both SAL-NE and PIC rats [both ps < 0.05], with no significant 

difference between the latter groups [p > 0.05].  At the end of extinction, however, there 

was no difference in freezing among the groups [F(2,29) < 1], demonstrating within-

session extinction in SAL-E animals.   

Freezing behavior during the retention test is shown in Figure 5.9D.  There was a 

significant main effect of group [F(2,29) = 4.8, p = 0.02], a significant main effect of trial 

block [F(9,261) = 23.4, p < 0.0001], and a significant  interaction between group and trial 

block [F(18,261) = 2.3, p = 0.0024].  Post hoc comparisons revealed that freezing levels 

in PIC rats were significantly lower than SAL-NE [p < 0.05], while there was no 

significant difference in freezing levels between SAL-E and SAL-NE [p > 0.05].  Hence, 
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immediate extinction failed to produce long-term fear suppression, but this deficit was 

overcome by intra-IL picrotoxin infusions prior to the extinction session.   

 

Experiment 3: Facilitating IL with D-cycloserine rescues the immediate extinction deficit 

Extinction learning depends on NMDA receptor-mediated plasticity (Falls et al., 

1992; Santini et al., 2001; Walker et al., 2002).  Blocking NMDA receptors in IL during 

delayed extinction impaired long-term recall (Burgos-Robles et al., 2007; Sotres-Bayon 

et al., 2009). We therefore assessed whether facilitating IL NMDA receptors with D-

cycloserine (DCS), a partial agonist of the NMDA receptor, would rescue the immediate 

extinction deficit.   

Histology 

Two of 36 rats were excluded due to failed shock delivery during conditioning. 

This yielded the following group sizes: DCS (n = 12), SAL-E (n = 10), and SAL-NE (n = 

12).  IL cannula placements for rats included in the data analyses are depicted in Figure 

5.10A.   

Behavior 

Freezing behavior during the conditioning session is shown in Figure 5.10B.  

Freezing behavior was very low before the first conditioning trial, and then increased in 

frequency thereafter.  There was an equivalent increase in freezing across trials in all 

groups [group × trial, F(10,155) < 1].   

Freezing behavior during the extinction session is shown in Figure 5.10C.  There 

was a significant main effect of group [F(2,31) = 6.5, p = 0.0044], a significant main 

effect of trial block [F(9,279) = 19.6, p < 0.0001], and a significant  interaction between 
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group and trial block [F(18,279) = 4.0, p < 0.0001].  Post hoc comparisons revealed that 

freezing levels of SAL-NE were significantly lower than both SAL-E and DCS [both ps 

< 0.05], with no significant difference between the later two [p > 0.05].  At the end of 

extinction, however, there was no difference in freezing levels among all groups [F(2,31) 

< 1], demonstrating within-session extinction in DCS and SAL-E animals.   

Freezing behavior during the retention test is shown in Figure 5.10D.  There was a 

significant main effect of group [F(2,31) = 4.8, p = 0.02], a significant main effect of trial 

block [F(9,279) = 23.0, p < 0.0001], and a significant interaction between group and trial 

block [F(18,279) = 2.4, p = 0.0017].  Post hoc comparisons revealed that freezing levels 

in DCS-treated rats were significantly lower than SAL-NE and SAL-E [both ps < 0.05], 

while there was no significant difference in freezing levels between the latter two groups 

[p > 0.05].  As in Experiment 2, immediate extinction did not produce long-term fear 

suppression, but IL infusions of DCS overcame this deficit and produced a significant 

facilitation of extinction.   

 

Discussion 

 

In the present study, we used electrophysiological recordings and drug 

microinfusions in the medial prefrontal cortex to examine neural correlates of the 

immediate extinction deficit in rats.  Our results reveal that immediate extinction trials 

fail to engage the medial prefrontal cortex in the same manner as delayed extinction 

trials.  That is, immediate extinction was not associated with neuronal bursting in the IL 

and CS-evoked activity in the IL remained elevated throughout both extinction and 
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retention testing.  This dysregulation of neuronal firing in rats undergoing immediate 

extinction may have been related to levels of neocortical arousal insofar as delta wave 

activity was reduced in the medial prefrontal cortex of rats undergoing immediate 

extinction.  Pharmacological manipulations of IL with either picrotoxin or D-cycloserine 

prior to the extinction session rescued the immediate extinction deficit.  These data 

suggest that the immediate extinction deficit is caused by compromised IL function 

shortly after fear conditioning.  

In previous studies, extinction was reported to increase the bursting of neurons in 

the IL after extinction training was complete (Burgos-Robles et al., 2007; Mueller et al., 

2008).  Together with the sensitivity of extinction to post-training pharmacological 

manipulations of IL (Sotres-Bayon et al., 2009), these data have been argued to support a 

role for IL bursting in the consolidation of extinction memories (Santini et al., 2004; 

Burgos-Robles et al., 2007; Mueller et al., 2008).  Consistent with the view, we observed 

that IL bursting emerged during the extinction session in rats in both the immediate and 

delayed extinction conditions.  This suggests that the acquisition of extinction engages IL 

bursting, and that this bursting persists during the post-extinction period to presumably 

foster the consolidation of extinction.  Although it is not entirely clear how IL bursting 

fosters the acquisition and consolidation of extinction memory, it may foster local 

synaptic plasticity in the IL (Buzsaki et al., 2002; Burgos-Robles et al., 2007), which 

might play a role in integrating of hippocampal and amygdala inputs (Garcia et al., 1999; 

Herry and Garcia, 2002; Barrett et al., 2003; Corcoran et al., 2005; Bouton et al., 2006; 

Herry et al., 2008).  IL bursting might also drive activity among inhibitory intercalated 
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cells in the amygdala that are involved in the inhibition of fear (Lisman, 1997; Pare et al., 

2004).   

In addition to reduced IL bursting in rats undergoing immediate extinction, we 

found that CS-evoked activity in the IL was elevated early during extinction training and 

did not dissipate during the course of the extinction session in rats undergoing immediate 

extinction.  Interestingly, CS-evoked activity in rats undergoing delayed extinction 

dissipated during the extinction session and remained low during the retention test.  This 

result was unexpected insofar as an earlier report found that CS-evoked responses in the 

IL were minimal before extinction training, and increased in magnitude after extinction. 

(Milad and Quirk, 2002; Maren and Quirk, 2004).  Indeed, the pattern of CS-evoked 

firing that we have observed in the present study is more consistent with the firing 

properties of a subpopulation of tone-responsive neurons recently described in the PrL 

(Burgos-Robles et al., 2009).  We also observed sustained CS-evoked responses in the 

PrL (Figure 5.8), but their response was not related to extinction.  The reasons for these 

disparities are not clear, but it suggests that CS-evoked activity in IL neurons may reflect 

both the acquisition of conditional fear, as well as its extinction.  In either case, however, 

the present data suggest that neuronal activity in the IL is dysregulated in rats that fail to 

extinguish fear relative to those that extinguish normally. 

What might account for dysregulated mPFC activity in rats undergoing immediate 

extinction?  We have previously suggested that the stress engendered by a recent 

traumatic event might yield the immediate extinction deficit.  Indeed, the present data 

indicate that rats in the immediate extinction condition are behaviorally and 

physiologically more aroused than those in the delay condition.  This stress-induced 
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arousal appears to compromise the function of mPFC circuits involved in extinction 

learning.  Indeed, several studies have found that stress impairs IL function and impairs 

extinction (Izquierdo et al., 2006; Maroun, 2006; Akirav and Maroun, 2007; Muigg et al., 

2008).  Stress-induced impairments in IL function may be related to hyperactivity of 

amygdala circuits that project to the mPFC (Maroun and Richter-Levin, 2003).  Hence, 

the neural circuits involved in the generation and suppression of fear may antagonize one 

another, with the subcortical expression of fear responses dominating the acute response 

to trauma and the emergence of cortical fear suppression appearing only after the acute 

stressor has subsided. 

Interestingly, the cortical dysregulation associated with recent fear could be 

overcome pharmacologically.  We found that the immediate extinction deficit could be 

attenuated by infusing either a GABA antagonist (picrotoxin) or an NMDA receptor 

agonist (D-cycloserine) into the IL.  Picrotoxin releases IL from local inhibition and 

increases bursting (Connors, 1984; Chagnac-Amitai and Connors, 1989; Metherate and 

Cruikshank, 1999), while D-cycloserine may augment synaptic potentiation in IL 

(Burgos-Robles et al., 2007; Sotres-Bayon et al., 2009).  The facilitation of extinction 

learning by intra-IL DCS infusions is particularly exciting insofar as DCS has been used 

successfully as an adjunct to exposure-based therapies (Ressler et al., 2004; Hofmann et 

al., 2006). 

There is considerable debate in the clinical literature about the appropriate timing 

of therapeutic interventions for psychological trauma (Bisson et al., 1997; Everly and 

Mitchell, 1999; Campfield and Hills, 2001; McNally et al., 2003; Rothbaum and Davis, 

2003; Gray and Litz, 2005).  Recent work in animal models suggests that early 
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interventions may not yield long-term fear suppression (Maren and Chang, 2006; 

Norrholm et al., 2008; Schiller et al., 2008; Woods and Bouton, 2008; Chang and Maren, 

2009).  We now show that the function of neural circuits involved in encoding extinction 

memory is impaired shortly after an acute trauma, and that this impairment can be 

reversed by pharmacologically activating the medial prefrontal cortex during extinction 

training.  This suggests strategies for increasing the efficacy of early interventions for 

trauma and increasing the likelihood of long-term fear suppression.
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Table 5.1.  Number of neurons recorded in each behavior session. 
 

 Behavior session 
Group Brain structure BL EXT TEST 

IL 28 43 47 DELAY PrL 52 57 70 
IL 36 44 47 IMMED PrL 43 50 55 
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Figure 5.1.  Anatomical placement of tetrodes.   
(A) Coronal sections representing all of the tetrode placements included in the data 
analysis.  (B) Serial sections from one DELAY animal showing tetrodes in both the IL 
and PrL; these placements are shown as filled gray circles in (A).  This figure was 
adapted from Swanson (2004) 
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Figure 5.2.  Immediate extinction fails to generate long-term fear suppression.     
Freezing levels were significantly higher in IMMED rats compared to their DELAY 
controls during the retention test (p < 0.05).     
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Figure 5.3.  Rats in the immediate extinction condition were behaviorally and 
physiologically aroused before extinction training.   
(A) Pre-extinction freezing levels were significantly higher in IMMED compared to 
DELAY rats.  (B) Averaged power spectrum of IL during the extinction session (pre-
extinction, early extinction, or late extinction), with delta frequencies (1-4 Hz) in the 
inset.  Delta power was significantly suppressed during the pre-extinction period (p < 
0.05).   
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Figure 5.4.  Immediate extinction reduces IL bursting.   
(A1) Short ISI events were significantly less frequent in IMMED compared to their 
DELAY control during the extinction (EXT) and test (TEST) sessions (both ps < 0.05).  
Extinction training also increased the number of short ISI events in both the IMMED and 
DELAY conditions.  (B1) There was no significant difference between groups in 
spontaneous firing rates across different behavioral phases (all ps > 0.05).  (A2, B2) 
There was no significant difference between groups in PrL for short ISI events or 
spontaneous firing rates across different behavioral phases (all ps > 0.05).   
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Figure 5.5.  Trial-related IL bursting.   
IL bursting was greater in rats in the DELAY compared to the IMMED extinction 
conditions, and this difference was sustained across the entire ITI period.  Events were 
smoothed with a moving average of 3 sec.   
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Figure 5.6.  Averaged short-latency CS-evoked neuronal responses in the IL during 
behavioral training.   
(A) Normalized CS-evoked response in IL neurons were averaged during the 200ms 
period after CS onset.  CS-evoked responses were significantly higher during early EXT 
and TEST compared to BL (both ps < 0.05) in IMMED and DELAY rats.  (B) 
Normalized tone-evoked onset response in PrL neurons.  No significant changes across 
different behavioral phases (p > 0.05).   
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Figure 5.7.  Peri-event time histograms illustrating CS-evoked activity in the IL 
during behavioral training. 
The number of neurons contributing to each average (Z > 0 within 200 ms) are indicated 
in the panels.  (A1, B1) There was no difference between the IMMED and DELAY 
groups in firing to tones during BL (p > 0.05) and early EXT (A2, B2).  During the 
extinction session (A2, B2), only DELAY rats decreased their firing to the CS (p < 0.05).  
(A3, B3) Firing to tones was significantly higher in IMMED than their DELAY controls 
during TEST (p < 0.05).   
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Figure 5.8.  Peri-event time histograms illustrating CS-evoked activity in the PrL 
during behavioral training. 
The number of neurons contributing to each average (Z > 0 within 200 ms) are indicated 
in the panels.  There were no differences between groups in firing to tones in any 
behavioral sessions (all ps > 0.05). 
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Figure 5.9.  Intra-IL picrotoxin infusions rescue the immediate extinction deficit.   
(A) Cannula placements of all animals included in data analysis.  (B) All animals 
equivalently acquired fear at the end of conditioning (p > 0.05).  (C) Picrotoxin infusion 
blocked fear expression during EXT.  (D) Picrotoxin infused animals showed faster drop 
in freezing levels compared to both SAL-E and SAL-NE controls.  This figure was 
adapted from Swanson (2004) 
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Figure 5.10. Intra-IL D-cycloserine infusions rescue the immediate extinction deficit.   
(A) Cannulae placements of all animals included in data analysis. (B) All animals 
equivalently acquired fear at the end of conditioning (p > 0.05). (C) DCS infusion 
animals retained normal freezing behavior during EXT. (D) DCS infused animals showed 
faster drop in freezing levels compared to both SAL-E and SAL-NE controls.  This figure 
was adapted from Swanson (2004) 
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CHAPTER VI 

 

CONCLUSION 

 

Summary of Findings 

 

In the current thesis, we tested the hypothesis that CS-alone trials given at 

different time intervals after conditioning initiates different fear suppression mechanisms:  

“new learning” at longer intervals and “unlearning” at shorter intervals.  Contrary to our 

hypothesis, fear was not unlearned under immediate extinction.  This deficit was related 

to high levels of sensitized fear at the onset of extinction in recently shocked rats 

(Chapter II).  Although immediate extinction failed to produce long-term fear 

suppression, it did produce a short-term suppression that exhibited properties of context-

independent habituation, rather than extinction (Chapter III).  We next demonstrated that 

the immediate extinction deficit was due to dysfunction of the infralimbic division of the 

medial prefrontal cortex (IL) (Chapter IV and V), and was rescued by pharmacological 

manipulations that facilitate neuronal activity and synaptic plasticity in the IL (Chapter 

V).  Taken together, these results suggest that the IL is important for the acquisition of 

long-term extinction, and that recent fear suppresses IL function leading to an immediate 

extinction deficit.   
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Erasure of Fear… Impossible?     

 

In a recent study, Myers and colleagues (2006) demonstrated that fear memory 

could be erased when CS-alone trials were presented immediately after conditioning in 

rats.  This phenomenon has also been reported in humans (Norrholm et al., 2008).  These 

results suggest that early extinction erases fear memory (“unlearning”), whereas delayed 

extinction results in a new inhibitory memory that transiently suppressed fear (“new 

learning”). However, we have found that not only does early extinction fail to erase fear 

memory, but rather it fails to yield extinction at all.  Several other laboratories have 

confirmed this outcome and have also found that immediate extinction produces a less 

durable fear suppression than delayed extinction (Alvarez et al., 2007; Schiller et al., 

2008; Woods and Bouton, 2008; Chang and Maren, 2009).  This has been demonstrated 

in rats using freezing (Maren and Chang, 2006; Schiller et al., 2008; Chang and Maren, 

2009) or conditioned emotional response (CER) (Woods and Bouton, 2008) as indices of 

fear, and in humans using the skin-conductance response (Schiller et al., 2008) or 

acoustic startle (Alvarez et al., 2007) as the measurement of fear.  There are still other 

reports that demonstrate that immediate extinction produces long-term extinction, but 

shows normal renewal, reinstatement, or spontaneous recovery (Quirk, 2002; Phelps et 

al., 2004; LaBar and Phelps, 2005; Kalisch et al., 2006; Dirikx et al., 2007); these studies 

were not designed to parametrically compare the timing of extinction on its efficacy.  

These studies indicate that immediate extinction procedures do not erase fear memory, 

and in some cases, fail to produce extinction at all.   
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Along with other reports showing impaired long-term fear suppression under 

immediate extinction, the Myers et al. (2006) and the Norrholm et al. (2008) studies are 

relatively unique, and the reason for their uniqueness remains unclear at this point.  One 

potential explanation is that the measure of fear in these studies, fear-potentiated startle, 

is sensitive to erasure behaviorally and neurobiologically (but see Alvarez et al., 2007).  

The other possibility, as suggested in Chapter II, is that “new learning” or “unlearning” 

under immediate extinction is related to the level of fear acquired during conditioning, as 

well as the state of the animal during extinction (Maren and Chang, 2006).  The latter 

hypothesis requires further investigation.     

The resistance of fear to immediate extinction is interesting in the light of a vast 

body of evidence that memory is labile for hours after it is acquired (Maren, 1999; Schafe 

et al., 2001; Sigurdsson et al., 2007).  The sensitivity of newly acquired memories to 

disruption may involve reversal of learning-related changes in the physiology of neural 

circuits.  For example, low-frequency stimulation is capable of depotentiating synapses 

that have undergone long-term potentiation (LTP), which is considered a cellular 

mechanism of fear acquisition and consolidation (Zhou and Poo, 2004).  Moreover, 

depotentiation is more readily induced at short intervals following LTP induction (Staubli 

and Chun, 1996), suggesting that “unlearning” is plausible, at least physiologically.  

Indeed, depotentiation can be induced in the amygdala in vitro (Lin et al., 2003a; Lin et 

al., 2005), and its induction shares some key features with fear extinction in behaving rats 

measured by fear potentiated-startle: both can be blocked by NMDAR and L-VGCC 

channel antagonists (Lin et al., 2003c; Lin et al., 2003b) and both are sensitive to 

manipulations targeting downstream intracellular events (Lin et al., 2003a; Lin et al., 
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2003c; Lin et al., 2003b; Cannich et al., 2004; Lin et al., 2005).  Taken together, the 

literature favors the conclusion that fear memory is not erased under immediate 

extinction.  However, whether fear memory might be erased under some conditions 

remains an open question.   

 

Stress, is it the Key?   

 

The behavioral results in Chapter II and III suggest that immediate extinction not 

only fails to erase fear memories, but also fails to suppress fear memory at all.  This has 

led to the question of why these animals fail to extinguish fear memory.  We hypothesize 

that immediate extinction fails to induce long-term fear suppression because it does not 

engage the neural circuitry required to learn a new inhibitory memory.   

We focused our analysis on the medial prefrontal cortex, which has been 

implicated in extinction learning.  After extinction, appropriate fear expression requires 

the interaction between the IL and the amygdala, which is also regulated by context 

presumably via a hippocampal-dependent mechanism (Bouton et al., 2006; Quirk and 

Mueller, 2008).  Under stress, the function of the IL is dampened and results in impaired 

extinction (Akirav et al., 2006; Izquierdo et al., 2006; Maroun, 2006; Muigg et al., 2008), 

while the function of the amygdala is facilitated and results in enhanced fear (Southwick 

et al., 1999; Maroun and Richter-Levin, 2003; Rodriguez Manzanares et al., 2005).  

Moreover, post-conditioning consolidation of fear memory is enhanced by stress 

hormones (Corodimas et al., 1994; Zorawski and Killcross, 2002; Hui et al., 2004; 

McGaugh, 2004; Rodrigues et al., 2009).  Because stressful experiences are important 
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events to learn, stress could act to facilitate defensive behavior that under threat, higher-

order behaviors mediated by medial prefrontal cortex (mPFC) are shut down to allow 

automatic subcortical control of fear mediated by the amygdala to be preserved (Maroun 

and Richter-Levin, 2003; Maren, 2007; Arnsten, 2009).   

As demonstrated earlier, rats were behaviorally (Chapter II and V) and 

physiologically (Chapter V) aroused when extinction trials were delivered shortly after 

fear conditioning.  This behavioral and neural state may facilitate subcortical 

maintenance of the fear memory at the expense of the higher-order control of IL 

inhibitory circuits (Maroun and Richter-Levin, 2003; Arnsten, 2009).  Although we did 

not directly measure the levels of the stress hormones, sensitized fear shortly after fear 

conditioning and consequent increases in freezing behavior suggest that the output from 

the medial division of the central nucleus of the amygdala (CeAm) is increased.  This 

would presumably be accompanied with increased glucocorticoid release through the 

paraventricular nucleus (PVN) and bed nucleus of the stria terminalis (BNST), and may 

therefore enhance the consolidation of the fear memory.  Thus, the levels of circulating 

glucocorticoids may play an important role in determining the efficacy of extinction 

procedures.  

However, in a recent study, Woods and colleagues (2008) argued that the level of 

fear during extinction is not responsible for the immediate extinction deficit.  They used 

CER to index fear and reported higher levels of conditional suppression during delayed 

rather than immediate extinction.  This suggests that fear was greater in the delay, 

compared to immediate rats.  However, it is worth noticing that in the CER paradigm, the 

animals were food-deprived and were motivated to press bars for food.  The fact that 
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under immediate extinction, the bar-pressing behavior was less suppressed, suggests that 

mPFC mediated suppression of inappropriate behavior is compromised (Dalley et al., 

2004). Thus, these results support the notion that under immediate extinction, the animals 

fail to engage the inhibitory circuit of the mPFC.   

 

Fear in the Circuit 

 

Pharmacological enhancement of medial prefrontal activity during immediate 

extinction results in better long-term recall of extinction when tested 24 hr afterward 

(Chapter V).  However, neither manipulation totally restored the immediate extinction 

deficit: intra-IL infusion of picrotoxin and D-cycloserine showed equivalent and high 

levels of freezing during early test trials.  It is worth noting that under our manipulation, 

the overall state of the animal was not changed.  Thus, even if the inhibitory circuit of the 

IL was manually engaged, the subcortical maintenance of the fear memory within the 

amygdala may still be preferred under the influence of stress hormone.  It is also possible 

that simply engaging the IL was not enough.  The firing timing and pattern of the IL 

neurons could be critical (Milad and Quirk, 2002; Burgos-Robles et al., 2007).  Of 

course, the IL is not the only brain structure involved in establishing extinction memory, 

so the incomplete rescue we obtained may reflect compensation by other brain structures 

involved in extinction (Bouton et al., 2006; Quirk and Mueller, 2008).  One of the targets 

where extinction is taken place is the amygdala itself (Davis et al., 2003).  Fear extinction 

is impaired by blocking NMDA receptors function (Falls et al., 1992) and inhibiting 

GABAA receptor insertion (Lin et al., 2009) in the amygdala, suggesting the local 
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plasticity is critical.  The new learning model summarized in Figure 1.2A suggests that 

the IL regulates information flow from the basolateral amygdala (BLA) to the CeA 

without erasing the original fear memory trace.  However, there is evidence that 

modulation could happen upstream of the CeA within the BLA.  Indeed, the lateral 

amygdala (LA) firing to the auditory CSs decreased over the course of extinction (Quirk 

et al., 1995; Repa et al., 2001), and is modulated by context in a hippocampus-dependent 

manner (Hobin et al., 2003; Maren and Hobin, 2007).  Electrical stimulation of the 

hippocampus induces synaptic plasticity in the amygdala (Maren and Fanselow, 1995), 

suggesting a plausible direct interaction between the hippocampus and the amygdala.  

The IL could also potentially contribute to the modulation within the BLA by its 

projections here (McDonald et al., 1996).   

Taken together, here we propose the idea that appropriate fear expression and 

suppression at the right time and right place after extinction requires coordinated function 

among the IL, the hippocampus, and the amygdala at the circuit level (Figure 6.1).  

Moreover, the proper function of each area is modulated by endocrine and hormone 

systems by the overall state of the animal.  Dysfunction of any structures involved could 

potentially lead to unwanted pathological fear.   

 

Future Directions 

 

In the current study, we presented the results that delayed extinction is more 

efficacious in suppressing long-term fear than immediate extinction.  The immediate 

extinction deficit is due, at least partially, to the failure to engage the inhibitory extinction 
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circuit of the IL.  However, there are questions not clear at this point and await further 

investigation.   

One argument we raised in this study is that stress is one key factor in deciding 

the direction of new learning or unlearning under immediate extinction.  This argument 

requires parametric analyses on the relationship of the amount of fear acquired during 

conditioning and its impact on long-term fear extinction.  Moreover, it also raises the 

question: if stress is well-controlled under immediate extinction, are we able to initiate 

the unlearning process of the fear memory, and/or engaging the inhibitory extinction 

circuit of the IL?  In a recent study (Rodriguez-Romaguera et al., 2009), the authors 

showed that suppressing the effect of stress hormones by blocking the noradrenergic β-

receptor with systemic administration of its antagonist, propranolol, lowered within-

session fear without long-term effects on extinction recall.  However, they used the 

delayed extinction design, and the null effect in long-term fear could be a result of a floor 

effect of the already low fear during test in the control group.  Two other recent studies 

suggested that fear memory could be erased during reconsolidation either behaviorally 

(Monfils et al., 2009), or with propranolol (Kindt et al., 2009), after a consolidated long-

term memory was reactivated and became labile again.  It would be interesting to see the 

effect of propranolol on immediate extinction when the acute fear is well controlled and 

the memory trace is labile.   

In this study, we characterized only the medial prefrontal cortex, leaving all other 

potential structures within the extinction circuit, including the amygdala and the 

hippocampus, unexplored.  Local synaptic plasticity within the sensory interface of the 

amygdala, specifically the BLA, is especially of interest.  The hippocampus (Canteras 
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and Swanson, 1992; Maren and Fanselow, 1995) and the IL (McDonald et al., 1996) both 

directly project onto the BLA.  There is evidence showing extinction-related changes in 

LA neuronal activity (Quirk et al., 1995; Repa et al., 2001; Hobin et al., 2003; Maren and 

Hobin, 2007), which may require the feedback (Quirk et al., 1995) and feed-forward (Li 

et al., 1996; Woodson et al., 2000) interaction between projection neurons and local 

interneurons and modulated by the hippocampus (Maren and Hobin, 2007).  Thus, under 

immediate and delayed extinction, how BLA local plasticity is modulated by local 

interneurons and/or direct hippocampal and IL inputs awaits further investigation.  There 

is also mounting evidence showing coordinated interactions among different brain 

structures during different learning paradigms (Bauer et al., 2007; Paz et al., 2008; 

Popescu et al., 2009).  However, how different structures within the extinction circuit 

communicate to one another is unclear.    

In conclusion, studying the function of each brain area within the extinction 

circuits, their interactions, and how they are modulated by different states of the animal, 

will extend our knowledge from pre-clinical animal research to future clinical treatment 

in pathological fear (Miller and McEwen, 2006).   
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Figure 6.1. Revised models of fear suppression after delayed and immediate 
extinction training.   
A. Fear is suppressed after delayed extinction.  Despite the inhibitory extinction circuit of 
the IL, there are evidences showing that extinction also happens locally within the BLA, 
modulated by contextual information from the hippocampus (HIPP).  The role of the 
projections from the IL to the BLA in extinction modulation remains unclear.  B. 
Immediate extinction failed to suppress long-term fear.  The IL was not engaged.  What 
happened within the local circuit of the amygdala requires further investigation. This 
figure was adapted from Swanson (2004). 
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