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energy flux at each position within the device. We present energy flux diagrams for 

perpendicular and parallel oriented dipoles in Fig. A.2. 

 

 

 Figure A.2 Calculated energy flux diagram for a) perpendicular and b) parallel oriented dipoles 

with respect to normalized wave vector and layer position.  
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APPENDIX B 

Boundary conditions for organic-organic heterojunction 

in electrical transport model 

 

Because of differences in energy level and material properties of the device ma-

terials, the hole and electron densities in an organic device are discontinuous at organic-

organic interfaces. For our finite-difference calculations, we define the cell domains as 

shown in Fig. B.1. The carrier densities (n, p) are defined at the center point (node) of the 

cell, and the current densities (Jn, Jp), electric field (E) and mobility ( ) are defined at the 

boundaries of the cell. The organic heterojunction is placed between the Mx and Mx+1 

nodes, adjacent to the boundary between the Mx and Mx+1 cells. The band diagram of the 

organic heterojunction is drawn in Fig. B.2. 

 

 
 

Figure B.1 Cells for the numerical calculation. Carrier densities are defined at the cell centers 

(nodes), and current densities and electric field are defined at the cell boundaries.  
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Figure B.2 Band diagram of the hole transport layer (HTL) and electron transport layer (ETL).  

 

Thermionic emission over the heterobarrier (and carrier backflow in the opposite 

direction) are used in conjunction with the drift-diffusion equation to calculate carrier 

densities on either side of the organic heterojunction. We assume that the thermionic 

emission and backflow processes are sufficiently fast that quasi-thermal equilibrium is 

valid, and write the hole current density at the heterojunction as: 

 
Jp = qv1p x0( )e EV 1 EV 2( ) / kT qv2p x0

+( )  (B.1) 

where q is the elementary charge, k is the Boltzmann constant, Ev1 and Ev2 are HOMO 

energy levels for the HTL and ETL, p(x
-
) and p(x

+
) are the hole densities at the organic 

junction on the HTL and ETL sides respectively, and T is the absolute temperature. The 

effective carrier velocity vi can be written as /noi, for i=1,2, where noi is intrinsic carrier 

density and  is the kinetic coefficient for thermionic emission, taken as AT
2
 with 

Richardson coefficient A [24].  In thermal equilibrium, the carrier density ratio at the 

interface is given by 

 
p x0( )
p x0

+( )
=
n01
n02

e EV 1 EV 2( ) / kT =
v2
v1
e EV 1 EV 2( ) / kT  (B.2) 

The drift-diffusion equation for holes, expressed as 
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p

x
=
qE

kT
p

Jp
kTμp

 (B.3) 

can be integrated from xM to the interface, to yield 

 p0 = pMe
qE1,M +1

kT
x1

+
Jp,M

qμ1pE1,M +1

1 e
qE1,M +1

kT
x1

 

 
 

 

 
  (B.4) 

Similarly, integrating from the interface to xM+1 gives 

 p0
+ = pM +1e

qE2,M +1

kT
x2

+
Jp,M

qμ2pE2,M +1

1 e
qE2,M +1

kT
x2

 

 
 

 

 
  (B.5) 

By inserting equations B.4 and B.5 into B.1, we can write Jp, Mx+1 as 

Jp,M x +1
= qμ1pE1,M x +1

pM x
e qE1 / kT( ) x1e b / kT pM x +1

n01
n02

e qE1 / kT( ) x2

n01 μ1pE1 1 e qE1 / kT( ) x1( )e E / kT +
E1μ1pn01
E2μ2pn02

1 e qE1 / kT( ) x1( )
 (B.6) 

The analogous equation for electron current density can be found in a similar way:   

Jn,M x +1
= qμ1nE1,M x +1

nM x +1

n01
n02

e qE1 / kT( ) x2e b / kT nM x
e qE1 / kT( ) x1

n01 μ1pE1
E1μ1pn01
E2μ2pn02

1 e qE1 / kT( ) x2( )e E / kT + 1 e qE1 / kT( ) x1( )
 (B.7) 

 

We use equations B.6 and B.7 as boundary conditions for hole and electron current 

density calculations at organic-organic interfaces.   
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APPENDIX C 

Measurement of external quantum efficiency  

of photovoltaic devices 

 

To investigate the spectral response of organic photovoltaic device, we built an 

experimental setup for external quantum efficiency. The external quantum efficiency of a 

photovoltaic device is defined as the total number of collected electrons (Ne) divided by 

the total number of incident photons (Nph) at a given wavelength: 

  (C.1) 

The number of collected electrons can be calculated from the measured photo-

current, and the number of incident photons can be calculated from the measured light 

power. The system we use to measure device current is illustrated in Fig. C.1. A 

monochromic light source is realized using a monochromator (Cornerstone 74004) and 

halogen lamp. The full width half maximum is adjusted to be less than 5 nm by 

controlling the slit size of the monochromator. To enhance the signal-to-noise ratio of the 

measured photocurrent, we use a mechanical chopper and lock-in amplifier. The chopper 

modulates the incident light at a frequency of 89 Hz, the transimpedance amplifier 

(Femto DLPCA-200) amplifies the photocurrent and converts it to a voltage signal, and 

the lock-in amplifier measures the component of the photocurrent signal at 89 Hz. A 

computer running Labview is used to automatically sweep the monochromator over a 
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range of wavelengths and detect the resulting range of voltage signals produced by the 

lock-in amplifier.  

 

 

 

Figure C.1 Experimental setup used to measure the external quantum efficiency of photovoltaic 

devices.  

 

From this measurement, the number of collected electrons for incident light at a 

given wavelength (Ne( )) can be calculated by 

  

(C.2) 

where q is the elementary charge (1.602  10
-19

 Coulombs), I is the device photocurrent, 

V is the measured voltage, and MTA and MD,LA are the amplification factors of the 

transimpedance amplifier and lock-in amplifier. The incident power to the photovoltaic 

device is separately measured using a reference silicon photodetector (Newport 818SL) 

and power meter in conjunction with a chopper and lock-in amplifier. From this 

measurement, we can calculate the number of incident photons at a given wavelength 

(Nph( )): 
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  (C.3) 

where Iph( ) is the intensity of incoming light at wavelength , h is Planck’s constant, c is 

the speed of light, Pph is the light power, AD is the illuminated area on the photodetector, 

R is the responsivity of detector, MPM,LA is the amplification of lock-in amplifier, and LPM 

is the set value for the range of power meter. Using equations C.3 and C.4, we have the 

external quantum efficiency: 

  (C.4) 

 

 

Figure C.2 Measured Ne( ) and Nph( ) for a prototypical device, and calculated external quantum 

efficiency.  

 

In Fig. C.2, we plot the measured Ne( ) and Nph( ) for a device consisting of 

ITO / CuPc (20 nm) / C60 (40 nm) / BCP (7 nm) / Ag (40 nm). The obtained external 
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quantum efficiency is also presented in Fig. C.2, clearly showing the absorption spectra 

of CuPc and C60. 
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Appendix D 

Chemical vapor deposition of parylene 

 

Parylene is a useful material not only for electrical insulation (due to its high 

electrical resistivity), but also for chemical passivation (due to its very limited reactivity). 

Chemical vapor deposition of parylene, shown in Fig. D.1, can yield coatings that are 

conformal, uniform in thickness, and pinhole free. [23] The process is solvent-free and is 

composed of three steps: 1) A parylene dimer is sublimated to a vapor, 2) Further heating 

pyrolyzes the material to form monomers, and 3) Monomers are deposited and 

polymerize on the substrate, which is maintained at room temperature. 

 

 

Figure D.1 Chemical vapor deposition system for parylene (Lahann lab, University of Michigan). 
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The system is composed of an argon source, glass tube, heater, deposition 

chamber, temperature controller, and vacuum pump. The glass tube and chamber are 

maintained at a pressure of 0.12 Torr, and the flow rate of argon is adjusted to several 

liters per second, discharging residual gas through a cold trap. The heater is controlled to 

maintain 650 ºC, the temperature for parylene pyrolysis. The sample plate continuously 

rotates for uniform deposition, and water circulation inside the sample plate cools the 

sample to room temperature (15 ºC) for monomer vapor condensation. For our 

depositions, we changed the lateral position of the source boat to tune the deposition rate 

to approximately 1-2 Å/s, and monitored the deposited thickness using the quartz crystal.  

A layer of parylene deposited on the tip of an atomic force microscopy cantilever 

is shown in Fig. D.2. Although the film thickness is less than 1 m, the material is 

deposited conformally and uniformly on the surface, without any pinholes. 

  

 

Figure D.2 Parylene layer deposited conformally on the tip of an AFM cantilever. The tip has 

afterwards been milled with a focused ion beam, demonstrating the uniform parylene layer 

thickness.  
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