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CHAPTER 1

Introduction

The processor industry has recently undergone a rapid and dramatic shift from

uniprocessor systems to chip multiprocessor (CMP) systems, where multiple compute

cores reside on a single silicon die. Intel’s latest notebook/desktop processor, the

Core i7, has four cores on a chip [27], while their latest Xeon server processors, the

7400 series, have up to six cores on a single die [28]. Similarly, AMD has gone the

multicore trajectory with six cores announced for the Phenom on the desktop, and

six cores currently in the latest Opteron server offering [2, 3]. Sun’s UltraSPARC T2

processor, known as the Niagara 2, is aimed at the server market and has eight cores

on a single chip [59]. This, when as late as 2005, the desktop domain was universally

uniprocessor, with each silicon chip having only a single core on it. Not only has the

industry rapidly moved to a multicore paradigm, but there is ample evidence that the

number of cores on each chip will continue to increase, as major vendors continually

announce plans for chips with more and more cores.

On these CMPs, there are a number of resources that, for flexibility and/or cost

reasons, are not replicated for each core. These resources are thus shared between all

cores on the platform. This situation naturally leads to potential resource contention

issues, and the problem is exacerbated when the number of cores on a chip increases.

One of the primary resources vulnerable to contention issues is the on-chip cache. In
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a uniprocessor system, the stream of memory accesses going from the CPU to the

cache comes from a single application at a time, while in a CMP system the accesses

are finely multiplexed between the simultaneously running threads, which may not be

cooperative. The fundamental issue is one of destructive interference, where oblivious

and disparate threads may disrupt the cache usage of the other threads sharing the

cache.

This dissertation specifically examines the effects of contention for the shared on-

chip cache resource in large-scale chip multiprocessors. As CMPs continue to scale,

the potential for problems in resource allocation only increases. Additionally, as

multi-core offerings increasingly become multi-threaded, as Sun’s Niagara and Intel’s

Nehalem processors are, the issue of cache contention becomes even more dramatic

when considering hardware threads, and not just cores.

Alongside contention issues, it is unclear how best to measure performance for a

cache shared by large numbers of threads. Given that the resource is shared, there

is a tension between overall good and the welfare of individuals. In this dissertation

I present an analysis of ways to measure performance in a CMP system, present an

analytical process based on machine learning techniques to examine the nature of

sharing problems, and introduce a highly scalable mechanism for managing a shared

cache to mitigate highly destructive sharing situations. This mechanism is also easily

extensible to providing differentiated quality of service in shared caches.

1.1 Why CMPs?

In the continual march towards higher performance computers, there have been

two overarching methods for extracting improvement: higher clock speeds (i.e., work-

ing faster) and greater parallelism (i.e., doing more at once). Combining these two

methods has yielded the spectacular rise in computing performance in the last sev-
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eral decades. Historically, achieving greater parallelism has meant finding ways to

extract what is called instruction level parallelism (ILP) from running applications,

i.e., finding instructions from the same instruction stream to execute simultaneously.

Designers have squeezed out more and more ILP over the years using techniques like

out-of-order execution, having large instruction windows, using branch predictors,

and superscalar execution in order to find more instructions to have in flight at the

same time.

However, this two-pronged approach has become problematic in recent years due

to thermal issues. Each time a transistor switches, it uses energy, resulting in power

usage as shown by Equation 1.1, where P is power, C is the capacitance discharged

at every transistor, V is the supply voltage used to power the transistor, and f is the

operating frequency:

P ∝ CV 2f (1.1)

At the same time, maximum operating frequency is roughly linear in V:

f ∝ V (1.2)

Thus, increasing frequency of operation causes roughly cubic increases in power.

We have reached the point where further increases in power are infeasible, and as

Mudge tells us, reducing power consumption should be a “first class” design constraint

in computer architecture [44].

At the same time, extracting ILP is rapidly coming to a point of diminishing

returns, for several reasons. First, the low-hanging fruit is has been picked, and it

is becoming more and more difficult to eke out smaller and smaller increases in ILP.

Second, adding more ILP-improving widgets generally means much higher power

consumption; meanwhile reducing power consumption is now an important design

consideration, as just described. Moore’s Law is still providing designers with more
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transistors at each generation, but these transistors can no longer be used primarily

to create more ILP-extracting widgets. These additional transistors can, however, be

used for extra processor cores on a die.

Putting multiple compute cores on a die has a number of effects. The first is that,

in theory, a given task T could be completed in 1/Nth the time of a single-thread

machine by merely splitting the task into N equal pieces and running it on N threads

simultaneously. The second is that given this scenario, a chip with N simultaneous

threads could reduce its operating frequency by 1/Nth, and still finish T in the same

amount of time as a single-thread machine. Recall the cubic relationship between

frequency and power consumption, and suddenly multicore is a means to get off

the trajectory of exponential relationships of power to performance. However, there

is the practical consideration that it is much easier said than done to split a task

into perfectly overlapping pieces. The amenability of a task or program to be easily

subdivided into independent chunks is called Thread Level Parallelism (TLP).

The shift to CMPs has thus taken different trajectories. For the desktop/notebook

domain, the “multi” in multicore is on a small scale. Intel’s Core line now has

four relatively powerful cores on a chip, owing to the fact that desktop applications

continue to have plentiful ILP but little TLP. In the server domain, however, TLP

is abundant but there is much less ILP available [19]. In this market, it makes

sense to have larger-scale CMPs, where many cores share a single die to maximize

throughput rather than single-thread performance. Sun’s latest Niagara is a 64-way

multi-threaded processor, while Intel’s plans for their Nehalem architecture to have

up to eight cores with two threads each, or 16 simultaneous threads. I expect this

number to increase in the coming decade, and the remainder of this dissertation

focuses on large server-scale platforms.
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1.2 Large Scale CMPs and the Cache Hierarchy

This dissertation focuses on the design and performance of the cache hierarchy for

a large-scale CMP (LCMP). The most naive and straightforward design is to have

all levels of the cache be private to their own cores; i.e., a core cannot utilize cache

space that does not belong to it. This scheme is demonstrated in Figure 1.1a in a

CMP with a two-level hierarchy.

The downfall to this approach is the lack of flexibility. If core A’s particular

sub-hierarchy is not being fully utilized due to the nature of the application running

on that core, while core B’s sub-hierarchy is being taxed to the limit, there is no

flexibility to allow for core B to use the unused space owned by core A. Even worse,

in CMP designs where a core is shut down for power savings, the cache attached to

that core is totally useless.

(a) LCMP with private caches (b) LCMP with shared caches

Figure 1.1: LCMP cache sharing - On the left is a naive cache hierarchy implementa-
tion for LCMPs. Each core has a private cache hierarchy of several levels all to itself.
On the right is a more flexible implementation, where each core has potential access
to the entire L2 cache.

Given the likelihood of this scenario, the natural next step is to consider shared

caches. If all cores can access any available cache on the platform, flexibility is

maximized and the likelihood of unused blocks is limited. However, this flexibility
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also comes at a cost in terms of access times. If the L1 cache were shared across a

platform, L1 access and hit times – vital to the performance of a platform – would

be negatively affected. Thus, a typical platform will have private caches closer to the

core, in order to preserve small sizes, close proximity, and fast access and hit times;

but have shared caches closer to memory, where these latencies are not so tightly

constrained. An example of this style of platform with a two-level cache hierarchy is

shown in Figure 1.1b. This thesis focuses on this two-level topology.

The reasons for sharing a last-level cache (LLC) do not stop here. First, different

software threads from server workloads often run the same binary but on different

data, so that instruction addresses are shared between threads. Having every instruc-

tion address be replicated across all (private) last-level caches seems intuitively waste-

ful. Having a single copy of instruction data reside on the die to be shared amongst

relevant software threads makes much more sense. Furthermore, many servers are

operated as virtual machine hosts, and different clients who may be running the same

guest operating system can also run the same operating system binary [61]. Both of

these scenarios involve read-only instruction addresses, but studies show that there is

also data sharing in a number of commercial server applications, where data is being

passed between different threads for reading as well as writing [19, 36]. By sharing a

cache, this shared data can be kept coherent without coherence traffic, which is yet

another reason for sharing.

For these reasons, this shared last-level cache approach is used by Sun’s Niagara

2, which has a shared L2 cache across all 64 threads on the platform; as well as all

of Intel’s multicore processors in a scheme known as Smart Cache, where the L3 is

shared by all cores; and also AMD’s multicore machines in a scheme known as AMD

Balanced Smart Cache.
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1.3 Resource Allocation for a Shared Cache

As with any shared resource, there comes a risk for contention issues and/or sub-

optimal allocation. Caches as we know them today do not have explicit mechanisms

to ensure fairness amongst sharers; indeed typical caches today do not even track

which accesses are on behalf of which thread — thus all accesses from all threads are

treated equally. The thread-blind nature of caches makes it difficult to perform any

regulation of resource usage, and leaves the cache ripe for potential sharing problems.

Destructive interference occurs when threads spend their time evicting each others

blocks and waiting while bringing their own blocks back into the cache rather than

making forward progress. The lack of cooperation among threads can easily create

situations such as these, particularly in the presence of streaming workloads, which

stream their way through large numbers of accesses and fill the cache (thus evicting

others’ data) with blocks that will not be used again.

These scenarios are likely to be exacerbated and become more common as the num-

ber of threads on a platform increase, making protection mechanisms to circumvent

such issues a necessary part of shared cache design. The essential problem is that

of resource allocation—finding a way to intelligently allocate cache space amongst

different threads in order to provide good performance.

The classic approach to solving resource allocation uses marginal cost analysis [21],

which utilizes marginal gain calculations with incremental increases in resources to

determine optimal allocations. There are several flavors of marginal cost analysis

algorithms, depending on domain specifics such as whether the marginal gain function

is convex or concave, whether the resource being allocated is continuous or integer,

etc. However, all of these algorithms are compute intensive and assume a high level

of abstraction when performing these calculations.

There have been a number of attempts [60, 57, 48], however, to translate these

algorithms into cache management heuristics, where the general structure of the so-

7



lution follows a “assign, monitor/enforce, and adjust” format. Execution is divided

into epochs, where re-allocations occur in between epochs, which cannot be too short

in order to capture the full effect of the last re-allocation, but must be short enough

to be nimble and capture changes in application behavior. Convergence to a solution

would be tricky enough for four or eight threads, but convergence with hundreds of

agents will be very difficult if not impossible under current design constraints. I will

discuss these approaches in further detail in Chapter 2.

The distinct nature of the particulars of a cache resource allocation make the

problem inappropriate for marginal cost analysis. There are few points to keep in

mind for the shared cache resource allocation problem:

1. There is a distinct latency between the time cache space is given or taken

away and the time to know whether that change has the desired effect. The

implication is that changes in allocation cannot be made too rapidly because

the effects of each change must be known before making the next change.

2. The nature of an application’s memory access stream may change over time.

The implication here is that not only would convergence to an optimal allocation

take a long time due to the latency mentioned above, but the goal may itself

be a moving target due to the transient nature of application behavior.

3. Hit times to a cache (i.e., the amount of time it takes for a requested block that

resides in the cache to be returned to the CPU), are a vitally important per-

formance characteristic and cannot be sacrificed. In other words, the allocation

decision mechanism must not affect hit times — any computation or calculation

must not be on the critical path.

4. The cache is a highly optimized piece of hardware on a chip; ideally whatever

mechanism is proposed would incur minimal changes to cache design.
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5. In the domain of LCMPs, any mechanism would need to scale well. Many mech-

anisms that would have reasonable complexity in the small-scale can quickly

become untenable in the large.

Based on this characterization of the problem, it is evident that marginal cost

analysis is an overly complex approach to large-scale cache allocation problems.

I propose another approach that is “correlatively optimal”, which, rather than

explicitly searching for optimal, exploits some characteristic that will trend towards a

good solution in the general case. I take as my inspiration the simple Least Recently

Used (LRU) replacement algorithm that dictates cache block allocation in caches to-

day. Current caches to not try to explicitly perform optimal replacement in a cache;

rather they use LRU to exploit the temporal locality properties of most programs, re-

sulting in generally good performance. Similarly, cache prefetching algorithms do not

try to explicitly perform perfect prefetching; instead they exploit some known ten-

dencies of memory access patterns and prefetch cache blocks based on that principle.

In both of these examples, the cost/benefit ratio falls strongly in favor of the simple

solution that provides generally good (though not optimal) performance, rather than

a complex solution that might provide minimal added performance benefit.

1.4 Thesis Statement

This thesis examines the interaction between cache space and system performance

in the domain of large-scale chip multiprocessors in order to inform the design of a scal-

able, feasible shared cache management mechanism that provides good performance.

This thesis demonstrates that selecting a specific definition of “good performance” for

shared caches is inherently difficult, given that there are many competing definitions

of “good” that can be quite incompatible with one another. As a result, a preferable

approach is to search for correlatively optimal characteristics that would put a floor
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on the performance of pathologically poor situations under any measure, instead of

focusing on a single particular metric of performance.

This dissertation uses offline machine learning techniques to effectively extract

salient characteristics in poor cache-sharing situations. These characteristics can be

used to predict poor performance in previously unseen environs, i.e., with application

mixes not used in training the machine learning algorithm.

This approach to building a mechanism to improve cache sharing is validated by

the success of SLAM (Scalable, Lightweight, Adaptive Management), a framework for

shared caches which can detect and mitigate pathological cache sharing situations,

designed with the information yielded from the machine learning techniques. SLAM

demonstrates the validity of using correlatively optimal characteristics to shape cache

allocation rather than a complex and explicit search for optimal; SLAM is scalable,

feasible, has light-weight implementation requirements, and good performance results.

In addition, SLAM is a natural candidate for providing differentiated quality of service

(QoS) in caches, whereby certain threads are given preferential treatment because of

higher priority.

1.5 Contributions

The contributions of this thesis include:

• an exploration of the objective function space for shared caches resulting in

meaningful insights into the selection of cache design objectives;

• demonstrating the utility of existing machine learning techniques for effective

offline analysis of the cache resource allocation problem;

• a comparison of two machine learning techniques, one effective, the other not,

for this particular problem space;
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• the presentation of a mechanism to provide scalable fairness in shared caches,

suitable for implementation even in large-scale chip multiprocessors, costing

only tens of bits per thread, and is actually feasible in present implementations;

• the presentation of two performance measurement techniques called MPAC

(Misses Per Access Counter) and RIT (Relative Insertion Tracker) for tracking

shared cache performance characteristics, which are the cornerstone of SLAM

and could be useful in other system optimization domains;

• the demonstration of the SLAM framework as a natural provider of differenti-

ated quality of service in the cache.

1.6 Organization

The remainder of this thesis is organized as follows. Chapter 2 discusses some

background and related work for the cache resource allocation problem. Chapter 3

discusses my examination of the objective function and metric space for shared caches.

Chapter 4 discusses the machine learning techniques used for the analysis in this dis-

sertation. Chapter 5 discusses the major contribution of this thesis, the SLAM frame-

work for managing shared caches. I conclude and discuss future work in Chapter 6.
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CHAPTER 2

Background

A modern computer performs its tasks by following a program written prior to

the execution of the task. To do this, a computer must access the stored program

instructions, then execute the instruction in the CPU, which may involve accessing

previously stored data. When finished, the CPU may be instructed to store results

back to memory. Thus, there can be non-trivial amounts of data movement between

the CPU and stored memory.

Unfortunately, from the earliest days of computing there has been a gap between

processor instruction execution speeds and memory speeds. In other words, memory

cannot keep up fast enough to feed the CPU with instructions nor the data required

to execute the instructions.

To address this problem, designers began using caches (small, fast buffer memories

between the CPU and memory) in order to try to hold portions of memory that will

be used in the near future [52]. The IBM System/360 Model 85 is one of the first

documented machines to utilize caching [40], and from there, caches have moved from

being external to the silicon die to residing on-chip, increased in size, and changed

from a mono-level system to two and three levels of cache on a chip. The cache

has become an integral part of system design, and plays a large role in the overall

performance of a computational system, particularly as the disparity between CPU
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speeds and memory speeds has continued to increase.

2.1 The Basics of Cache Operation

Vital to the efficacy of these high-speed cache buffers is the selection of the subset

of addresses to place in the buffers. At the crux of the question is not which addresses

to bring into the cache, but what to replace when the cache is full. Research involving

the paging of virtual memories in multiprogrammed environments had already led

to the concept of a working set (i.e, a set of data of which quick access times would

provide efficient performance of the corresponding process) [14]. Denning, who coined

the term working set, posited that pages used in the recent past were a good predictor

for pages to be used in the near future. Around the same time, Belady performed a

study of replacement heuristics for virtual memory and found that employing a least

recently used (LRU) algorithm, which evicted pages that had been used furthest in the

past, generally provided performance closest to optimal [6]. These two ideas together

led to the locality principle, which has become a cornerstone of resource allocation

resolution in virtually all of computer science [15]. These principles apply just as well

to cache memories as virtual memories.

For the purposes of cache management, the locality principle means that memory

addresses from a given application tend to exhibit both temporal and spatial locality.

Temporal locality implies that an address used now is likely to be used again in the

near future. Spatial locality implies that an address used now is likely to be near or

adjacent to an address to be used in the future. The intuition behind the success of

the LRU algorithm is how it takes advantage of the temporal locality principle by

keeping the most recently used address blocks close to memory.

Since fully associative memories tend to be both expensive and slow [52], caches

are generally built as smaller sets of associative memories. Any address requested in
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the cache is indexed into only a single associative set, and any address block to be

replaced to make room for the incoming block is taken solely from within this set.

The associativity of a cache indicates the number of blocks within a set, such that

an n-way associative cache would have n blocks within each set, and the LRU block

refers to least recently used block in that set of n blocks.

Addresses are used to index into a set based on a subset of the address bits; the

remainder is stored in the cache along with the affiliated data in a tag array as an

address tag. Address tags are used to distinguish between the multiple addresses that

can index into a set [52].

Modern caches are generally all built as described, and this thesis evaluates all

proposals under the lens of feasibility in this paradigm.

2.1.1 The Shift to Multicore

LRU is quite effective as a replacement policy for caches in uniprocessor systems

because LRU acts as a predictor for which address blocks are to be used in the near

future within the stream of instructions from its affiliated process. However, once a

cache becomes shared among multiple simultaneous threads of execution, LRU may

not be as effective because the stream of accesses to the cache is no longer from

a single source. Rather, accesses can be finely interleaved among all simultaneous

processes. As a result, researchers have moved their focus towards making caches

thread-aware and differentiating between accesses from different threads in order to

make space allocations decisions in the context of a shared cache [12, 18, 33, 35, 37,

48, 54, 57, 64, 65, 66]. Whereas the goal of the LRU replacement policy is to try to

ensure that blocks to be used in the near future are kept close to the processor, the

goal of any new mechanism has to balance the needs of multiple threads.

Likely the first piece of work on studying a cache shared between separate streams

of accesses is by Stone, et al. While not involving a multicore platform, this study
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developed a model for evaluating the optimal allocation of cache memory between

distinct streams of accesses, noting that the overall miss rate of a cache shared by

multiple streams is just the average of the miss rates of the contributing streams [55].

Thus, finding an optimal allocation among streams requires modeling a function of

the form

F (CacheAllocation) = MissRate

for each stream, summing them, and solving for the minimum. Additionally, Stone,

et al. performed empirical studies involving optimizing allocation for data streams

versus instructions streams in a single application, and found that empirically, LRU

did remarkably well relative to optimal—but they were unable to mathematically

bound the delta between LRU and optimal in a rigorous manner.

2.2 Shared Cache Performance Optimization

With the move towards shared caches and the potential for inter-thread interfer-

ence in cache usage, a number of proposals have emerged for shared cache performance

optimization, many using the marginal gain analysis approach described in Chapter 1.

The various proposals are described below.

2.2.1 Partitioning for Optimality

Cache partitioning is a prominent strategy for shared cache management, in

which a scheme tries to dynamically determine a specific optimal cache partition

for each hardware thread [57, 65, 18, 35, 48]. Each scheme monitors and enforces

cache usage, and then adjust partitions based on recorded measurements on an epoch

granularity. These schemes each have four attributes: 1) measurement techniques,

whereby marginal utility is measured over an epoch, 2) partition assignment heuris-

tics, whereby data from the measurement techniques are used to assign partition

15



Proposal Measurement Partitioning Heuristic Partition Enforcement Proposed Epoch Length

Dynamic Partitioning [57] Per-way Hit Counters Per-block Greedy Modified LRU 5M cycles
Fast and Fair [65] Per-Thread Shadow Tags 256KB Greedy Modified LRU 100M cycles

Partitioning-aware LRU [17] Per-Thread Victim Tags Local Search Modified LRU 2000 misses
Fair Caching [35] Profile + Miss Rates Local Search Modified LRU 10K accesses

Utility Cache Partitioning [48] Per-Thread UMON Per-block Greedy Modified LRU 5M cycles

Table 2.1: Cache Partitioning Proposals - This table describes the approaches for
several optimal cache partitioning proposals with respect to four major attributes..

sizes to each hardware thread for the next epoch, 3) partition enforcement tech-

niques, whereby the assignments are enforced during an epoch, and 4) epoch length.

Table 2.1 describes the approaches for these schemes.

Dynamic Partitioning, proposed by Suh, et al. use per-thread, per-way hit coun-

ters to approximate the marginal gain of each way for each thread. Each time a

hit occurs in a particular way for a particular thread, the affiliated counter is incre-

mented. Thus each counter approximately represents the marginal gain in cache hits

for its thread by having that way. Every 5 million cycles, it uses a greedy algorithm

to partition the cache, block by block, to individual sharers based on the measured

marginal gains. A modified LRU policy (described later in this section) enforces

partitions [57].

Fast and Fair, proposed by Yeh and Sherwood, uses per-thread shadow tags, i.e.,

a complete set of duplicated tag arrays, for each hardware thread in the system to

track what would happen to the hit rates of each thread assuming sole ownership of

the cache. Every 100 million cycles, the cache is partitioned in chunks of 256kB to

individual sharers based on the shadow tag measurements. A modified LRU policy

enforces partitions [65].

Partitioning-aware LRU, proposed by Dybdahl, et al. use per-thread victim tags

to measure the marginal gain for each thread of having one more way. Each cache

set has a single extra tag associated with it for storing the most recent eviction; hits

to this victim tag indicate that one more way allocation would have resulted in more

hits. There is also a counter per thread for the LRU way of the cache, which is also
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incremented upon hits in that way. Every 2000 misses, if the thread with the most to

gain from having an additional way as measured by the victim tag counter exceeds

the thread with the most to lose from having its LRU way taken away, an additional

block per set is allocated for the gaining thread for the next epoch. A modified LRU

policy enforces partitions [17].

Fair Caching, proposed by Kim, et al. focus on maximizing fairness in a cache

rather than minimizing miss rates; thus the measurement technique is quite differ-

ent. Applications are profiled beforehand running alone on a shared platform to get

baseline miss rates. At run time, shared miss rates are tracked and compared against

these baseline rates. Every 10,000 accesses, blocks are taken from the thread per-

forming the best relative to baseline rates and given to threads performing the worst.

A modified LRU policy enforces partitions [35].

Utility Cache Partitioning, proposed by Qureshi and Patt, uses a monitoring

mechanism called UMON (Utility Monitor) for each hardware thread. Essentially,

a UMON is a sampled version of the shadow tags used by the Fast and Fair proposal;

instead of having a full duplicate of tags for each thread, only a subset of sets are

used for measurement in order to save tag storage space. The subset is presumed

to be representative of the entire cache. Every 5 million cycles, a greedy algorithm

allocates blocks to each thread, block by block, based on the measurements of the

UMONs. A modified LRU policy enforces partitions [48].

An analysis of the overheads of each portion of each technique is described further

below.

Measurement techniques: Dynamic Partitioning relies on per-way hit counters

to measure the approximate marginal gain of a way for a thread. The technique is

lightweight (one counter per way, per thread), but is prone to inaccuracies because

of noise from inter-thread interference, which would increase as a platform scales to

greater numbers of threads. Fast and Fair, on the other hand, is a storage heavyweight
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and cites 32-way shadow tags per thread to measure the exact marginal gains of

256KB chunks of cache, which they estimate to be a 10% area overhead on a 4-thread

platform. Partitioning-aware LRU needs two counters and one register per thread,

plus a single shadow tag per set per thread, representing the most recent eviction

of of each set, which is relatively lightweight. Fair Caching requires a static profile

of a thread’s entire execution, and miss rates are then measured online. While this

is low storage overhead, in practice the profiling is unlikely. Finally, the UMONs

used in Utility Cache Partitioning (UCP) are sampled shadow tags, i.e., shadow tags

for a subset of the sets in a cache. There is one UMON per thread in a system.

Out of these proposals, only Partitioning-aware LRU, with a measurement storage

overhead of 3N counters/registers and TagWidth ∗NumSets ∗N bits of shadow tag

storage; and UCP, with a measurement storage overhead of Assoc ∗N counters and

Assoc ∗TagWidth ∗ 32 ∗N bits for shadow tags, could conceivably be scaled into the

hundreds of threads.

Partitioning heuristics: The partitioning heuristics used by these schemes can

be divided into two camps — greedy algorithms and local search algorithms. The

schemes with greedy algorithms attempt to achieve the optimal partition based on

measurements from the previous epoch, while the local search algorithms only perturb

allocations slightly, such that each epoch is only a step in the search for convergence to

an optimal partition. The computation required for the greedy algorithms as number

of threads increases simply does not scale; indeed most of the proposals were tested

on two-thread systems. The exception is Fast and Fair, which was evaluated on a

4-thread system and mitigates potential scaling issues by allocating on a granularity

of 256KB at a time rather than on a block granularity, but is still not scalable. The

schemes employing local search require much simpler computation, but are slow to

converge, even more so as platforms scale. Both Fair Caching and Partitioning-aware

LRU make a single pass through their measurements from the previous epoch and
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trade block allocation from the best and worst performers. Even on a platform with

64 threads, convergence could be painfully slow.

Partition enforcement: One thing all the schemes in Table 2.1 share is the use

of a modified LRU replacement policy, whereby all blocks in a cache are tagged with a

thread-ID bitfield, amounting to log2(N) bits for every block in the cache, where is N

is the number of hardware threads. This is significant overhead as the value of N and

cache sizes increase. The cache usage of every thread is tracked by incrementing its

usage counter when a line is brought into the cache, and decrementing it when a line

belonging to it is evicted. In order to maintain assigned allocations, upon replacement

the LRU block of the desired thread is found and evicted. While replacement may not

be on the critical path, this departure is not a trivial modification in modern caches,

which by and large employ pseudo-LRU algorithms because true LRU is too high

overhead for high-associativity caches. PLRU algorithms (described by Al-Zoubi,

et al. [1]) take shortcuts to evict a block close to but not necessarily LRU, but the

problem characteristics that are leveraged to achieve these shortcuts disappear when

seeking the LRU block belonging to a certain thread, increasing the costliness of the

replacement algorithm.

Worthy of note here is a proposal from Xie and Loh [64], which is essentially an

alternative to partition enforcement and could be used in conjunction with any of

the measurement techniques, partitioning heuristics, or epoch lengths described in

Table 2.1. The authors present a novel way to pseudo-partition caches in order to

avoid bit-tagging overheads from exact cache tracking. Promotion/Insertion Pseudo-

Partitioning effects allocations close to prescribed partitions by manipulating the

insertion and promotion policies of the cache, such that blocks can be placed in

arbitrary locations in a set, and can be promoted arbitrary numbers of spots on an

access, rather than always going to the MRU position. In practice, and particularly

with respect to pseudo-LRU algorithms, this is very difficult to implement.
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Epoch length: Epoch length admittedly should differ from between local search

heuristics and greedy algorithms. In cases of local search, the algorithm takes small

steps towards optimal every iteration; thus epoch length should be relatively short in

the hopes that convergence could happen within a reasonable number of iterations.

But since each iteration of the greedy algorithm is computationally intensive and

hopes to find an optimal allocation each time, the epoch length should be longer in

order to amortize computation cost, as well as measure enough information to make

a good decision. However, an epoch that is too long risks missing phase changes in

program behavior or context switches. In practice it is difficult to determine an epoch

length that is appropriate for the plethora of workloads that could be potentially run

on a CMP platform. Sherwood et al. [51] show that it is not possible to have a

universal phase length that applies to workloads in a general sense and, even within

an application, phase lengths can vary. Su et al. [56] find that, while reconfigurations

of a shared cache based on optimal phase lengths determined offline can provide good

performance, fixing an optimal phase length is not effective across workloads, nor is

it easy to dynamically predict phase lengths that approach the offline optimal.

2.2.2 Other Approaches to Resource Management

In general, partitioning for optimality is unrealistic in the large scale for several

reasons:

1. The convergence to an optimal solution in a system with many agents is likely

to be overly complex and take multiple iterations (of epochs taking non-trivial

amounts of time) to approach optimality.

2. At the same time, the nature of the domain being optimized is constantly

shifting—in the large scale, phase changes and context switches are likely to

occur before convergence.
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3. Enforcement is also a non-trivial task, generally requiring the tracking of each

thread’s usage and the restriction of which thread’s data can be replaced in the

cache, which would represent a significant departure from the functionality of

current caches.

4. Research has also shown that determining appropriate epoch lengths is not a

simple task [51, 56], an area of research in and of itself.

Fundamentally, optimality is precise, and being precise when juggling the needs

of N agents, where N is large, is bound to be complex and difficult. This is exac-

erbated when enforcing precision is not totally straightforward in practice, and the

precise definition of optimality is not static. There are a number of other papers that

approach shared cache resource allocation in a different way than the partitioning

paradigm.

Chang and Sohi propose Cooperative Cache Partitioning (CCP) [12]. CCP con-

sists of a hybrid approach, using Cooperative Caching(CC) [11] and Multiple Time-

sharing Partitions (MTP). CC approaches the cache sharing problem from a different

level of abstraction. It is fundamentally a LRU-based scheme and does not evaluate

the relationship between cache space and performance, rather it is a mechanism for

optimizing latencies within a distributed shared cache structure. MTP, however, is

a partitioning approach that time-shares cache partitions rather than using a single

partition allocation. While MTP is not exactly a proposal to partition for optimality,

it maintains many of the drawbacks of the schemes described in the previous section.

MTP essentially cycles threads through large, unfair allocations of cache so that over

a larger time quantum, macro-level fairness is achieved. Thus MTP has two forms of

epochs—the first is the macro-epoch, which identifies the time-share partitions and

how long each should run, and the micro-epoch, which is the time of each time-share.

MTP is an intriguing concept but can take very long periods of time not only to adapt

to changes in program behavior due to the necessarily long nature of the macro-epoch,
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but will be difficult to scale. Since all threads “take turns” at having generous cache

allocations, the more hardware threads there are the longer each thread has to wait

before getting its turn. The tension between having long enough micro-epochs and the

resultant O(N) increase in wait time before obtaining the generous cache allocations

makes this an unlikely solution for large scale machines.

Srikantaiah, et al. present Adaptive Set Pinning [54], a mechanism to avoid misses

that result from contention between hardware threads sharing a cache. Rather than

focusing on space in general, they focus on addresses. The crux of their approach

is to identify “hot blocks,” blocks from a thread which are frequently accessed and

the cause of the displacement of blocks belonging to other threads. To do this, they

introduce set pinning, a way to pin a cache set to a particular hardware thread such

that no references from other threads may displace anything from that set. Instead,

references to pinned sets belonging to other threads are placed into a Processor Owned

Private (POP) caches, which are basically small, associative caches operating under

LRU replacement. In essence, these POP caches will capture the hot blocks of their

associated threads, and since the sets of the main cache are all pinned to a certain

thread, thrashing between threads is reduced to zero. The key to the performance

of this scheme is judicious assignment of sets to threads, which Srikantaiah et al. do

with saturating counters for each set roughly approximating hit/miss ratios of the

pinned and unpinned threads. This mechanism does avoid the epoch-based approach

of partitioning, while taking a fuzzier approach to partitioning by avoiding precise

allocation prescriptions. However, this part-private, part-shared scheme necessitates

a significant overhaul to current cache designs, while limiting cache usage flexibility.

Not only do designers have to decide a priori the size of each private cache, but

power-saving schemes that turn off cores when not in use would lose the ability to

utilize the cache space in the POPs belonging to the powered down threads.
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Jaleel et al. proposes a mechanism called Thread Aware Dynamic Insertion Policy

(TADIP) for managing shared caches [33]. It is an extension of Qureshi and Patt’s

Dynamic Insertion Policy (DIP) [47]. Fundamentally, DIP is a simple mechanism

for voting between the LRU replacement policy (which inserts new blocks into the

Most Recently Used, or MRU, position), and a modified policy called BIP (Bimodal

Insertion Policy) which inserts new blocks into the LRU position with high proba-

bility. The key observation in DIP is that a few sampled sets (empirically set at 32)

dedicated to different policies can approximate the performance of that policy over

the entire cache. Leveraging the knowledge that cache usage for a stream of accesses

can be throttled by adopting LRU insertion, first used to deprioritize prefetching ac-

cesses [39], DIP chooses between normal operation and performing LRU insertion to

improve cache performance in single-threaded platforms where the cache is not quite

large enough to handle the footprint of the running application. TADIP is a natural

extension of DIP for CMP platforms, where every hardware thread is assigned a pair

of sampled sets (32 sets for each policy) to duel. TADIP samples the global miss

rates of the cache between the two groups of pinned sets, which vary only the inser-

tion policy for one thread. TADIP then selects the policy for that thread that yields

a lower global miss rate, which that thread follows upon accesses to remaining sets.

TADIP is the most scalable, feasible, and high-performing scheme for shared cache

performance optimization in the literature.

Kron, Brooks, and Loh also extend Qureshi’s DIP in a scheme they call Double-

DIP [37]. The key observation for Double-DIP is that if a set is accessed by different

threads at different rates, the more frequently accessing thread will very quickly

push out the blocks of the lower frequency thread by virtue of constantly promoting

its own blocks to the MRU position of the set. To mitigate this problem, a dueling

mechanism is added to the original DIP to select between a standard MRU promotion

policy, where a block moves to the MRU position every time it is accessed, or a less
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aggressive promotion policy, where a is chosen to be promoted 1, 2, 4, or n steps

towards MRU (where n is the associativity of the cache). This scheme avoids any

requirement of knowing which accesses are from which threads, and uses only local

information to lead to better performance; however it is unclear how this scheme

would be implemented in an actual cache, which generally uses pseudo-LRU and is

not literally a spectrum from LRU to MRU. Additionally, varied levels of promotion

are not a trivial mechanism to implement in practice.

2.3 Quality of Service

Another aspect of shared caches is the idea of quality of service (QoS), most com-

monly used in the networking domain, where it is a mature concept. Cisco Systems

defines network QoS in their Internetworking Technology Handbook [13] as:

Quality of Service (QoS) refers to the capability of a network to provide

better service to selected network traffic....The primary goal of QoS is

provide priority....Also important is making sure that providing priority

for one or more flows does not make other flows fail.

Essentially, networks are shared by numerous flows of network traffic, and QoS

considerations guide the allocation of network resource among these flows. With

the advent of virtualization in computing, where multiple distinct systems can each

run multiple distinct programs on a single platform, there is an increased likelihood

of non-cooperative processes running simultaneously on a CMP. In many commer-

cial virtualization situations, some applications may be more important than others,

and even in client environments, background processes may be less important than

foreground processes. Thus, QoS is an emerging need in computing platforms as well.

As such, there have been a number of studies [31, 32, 23, 22] about the need for

the ability to provide differentiated quality of service to different virtual machines
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and present architectural frameworks to do so.

Iyer [31] describes the need for a priority-based resource allocation framework by

illustrating the strong impacts threads could have on one another when sharing a

platform.

Iyer, et al. [32] describe a comprehensive platform which enables a software layer

to dictate several forms of QoS, as well as a taxonomy for describing them. Re-

source Usage Metrics (RUM) track the exact usages of each sharer on a resource,

and employ the modified LRU replacement algorithm as listed in Table 2.1 and de-

scribed in Section 2.2.1. A thread’s RUM allowance could be dictated by the user,

or be dictated by an algorithm trying to achieve QoS goals. Iyer’s framework also

describes resource performance metrics (RPM), which measure the performances of

individual sharers and does local search optimization of the cache partition in order

to satisfy the requirements set by the software layer. Finally, Iyer describes overall

performance metrics (OPM), which allow for high priority threads to obtain more

and more resources until the platform performance degrades to a certain level. While

there is value in the taxonomy provided, the framework also has the same issues as

optimal partitioning proposals involving epoch length, scalability of convergence, and

enforcement/measurement overhead.

Rafique, et al. [50] propose an interface to allow for the setting of usage quo-

tas for the cache via operating system and a hardware enforcement layer which is

thread-aware. Essentially, it is a framework to enforce RUM with a thread-aware re-

placement policy, with a software interface to allow for software dictated allocations

from arbitrary policies at the OS-level. Nesbit, et al. [45] have similar cache alloca-

tion enforcement within their framework of providing systemic QoS in a virtualized

environment. Both rely on exact cache usage knowledge for enforcement.

Guo, et al. [23] proposes a detailed policy framework in which a CMP is able to

assess its own ability for providing certain guarantees of performance for a given job,
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and accept or reject the job based on this assessment. However, this work operates

at a level different than this thesis. Even so, this work does presume cache allocation

enforcement on the basis that each block is tagged with an owner bitfield.

In many ways, the QoS problem space as addressed by the above proposals faces

the same obstacles as the shared cache optimization space; QoS just enforces allo-

cations for a different end goal than for performance optimization. But underlying

mechanisms for one can be used for another; likewise difficulties in implementation

for one are shared by the other. Namely, the tracking of exact cache usage requires

thread-IDs per block, and enforcement of exact allocations in the form of modified

LRU are a burden in realistic hardware design.

As far as I know, all cache QoS frameworks in the literature require exact usage

tracking of the cache in order to enforce exact allocations prescribed by some higher

level policy, and is thus fundamentally limited by the need to attribute every cache

block to an owner.

In this thesis, I make the case for not guaranteeing absolute levels of resources in

for cache QoS because of the difficulties just listed. After all, even Cisco describes

three different types of QoS levels: guaranteed service, differentiated service, and best

effort service [13], where guaranteed service is an absolute reservation of resources,

differentiated service provides preferential treatment to higher priority flows without

absolute guarantees, and best effort makes no distinction between flows. Their In-

ternetworking Technology Handbook also states, “Fundamentally, QoS enables you to

provide better service to certain flows. This is done by either raising the priority of a

flow or limiting the priority of another flow.” The emphasis is not upon guaranteed

allocation of resources. This thesis contends that the computing community should

take a cue from the networking domain and focus on differentiated QoS rather than

guaranteed QoS because not only is there a clear, established domain where customers

accept such a model of service, but it is much simpler for platforms to be designed to
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provide differentiation than exact resource guarantees.

2.4 Other Related Work

2.4.1 Operating systems involvement in cache management

Some studies move upward in the stack and utilize the operating system for man-

aging the sharing of shared caches. Fedorova and Seltzer investigate using the OS

scheduler to ensure that contentious processes are not run simultaneously [20], while

Rafique, Lim, and Thottethodi present a mechanism for providing architectural sup-

port for OS-driven cache management to enforce partitions [50] (while not presenting

a policy for generating partitions).

2.4.2 Latency optimizations for distributed caches

In distributed shared caches, the last level cache is distributed in that it is not a

monolithic structure and is banked, but is shared in that any thread can have blocks

in any bank. Accesses to a bank that is closer to a processor is lower-latency than

accesses to a faraway bank, thus the aim for these studies is to make sure needed

blocks are as close to their requesting processors as possible.

Beckmann, Marty, and Wood use dynamic monitoring techniques to assess the

needs of running applications to decide whether to replicate data across banks [5].

The scheme, called Adaptive Selective Replication, determines the expected tradeoff

between lower latencies and smaller effective cache size and makes its decision.

Other studies parameterize the level of private and shared use of each distributed

bank [16, 66], adapting at run-time to maximize performance.

Cooperative Caching, presented by Chang and Sohi [11], uses private caching as

its baseline but appends cooperative techniques to achieve the benefits of a shared

cache. Cooperative techniques include the spilling of data from an overtaxed private
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cache to an underutilized one, rather than evicting it from the chip entirely.

Qureshi takes this lateral spilling to another level with set dueling, the concept

behind DIP, TADIP, and Double-DIP. In this scheme, a private cache is pegged either

as a spiller (i.e., belonging to a thread with a large cache footprint), or a receiver

(i.e., having capacity to spare for spiller cache victims), such that a cache cannot be

both [49].

2.5 Conclusion

It is clear that while shared cache management is not a new area of study, there

is opportunity for a scheme that scales, is feasible, provides good performance, and

meets the emerging need for QoS in shared computing platforms. This thesis seeks to

address this opportunity by first assessing the problem of metrics. In order to craft

a good solution, a reasonable metric for measuring the quality of solution must be

defined; in the area of shared caches there are a number of metrics to choose from.

The next chapter assesses this metric space in a rigorous manner, setting the stage

for measurement for the remainder of this dissertation.

28



CHAPTER 3

Shared Cache Metrics

To begin studying the best approach to managing shared caches in a CMP context,

the question is immediately raised as to what the optimal policy might be. Naturally,

the answer to this question hinges on the objective for which we optimize. What

is more important, maximal overall system performance, or fairness across threads?

Given one of these goals, what specific metric do we seek to maximize or equalize?

While the notion of performance in single-threaded uniprocessors is straightforward,

multithreaded systems are amenable to multiple definitions, including instruction pro-

cessing rates and miss rates, both raw (absolute) and weighted—and among weighted

metrics, multiple weighting factors may be selected.

Thus, in a dissertation about shared cache management, I begin with a study

about the impact of varying definitions of “optimal performance” on the partitioning

of a shared cache among multiple threads. Specifically, I seek to answer the following

questions:

1. To what extent does the definition of “optimal” impact the resulting partitions

and performance?

2. In targeting one definition of “optimal”, how well does the system fare with

regard to other reasonable definitions? In particular, how do policies targeting
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overall performance rate in terms of fairness, and how do policies targeting

fairness rate in terms of overall performance?

3. If optimality is defined based on metrics that are not readily available online,

are there online measurable metrics that correlate well that could be used to

drive an online policy?

Borrowing loosely from economics terminology, I define four high-level policies

for cache allocation. A “Communist” approach seeks to maximize fairness, ensuring

that each thread bears an equal portion of the cache sharing penalty, or alternatively

derives an equal benefit from the presence of the cache. The goal of a “Utilitarian”

policy is to maximize the total benefit for the aggregate group – e.g., by maximizing

total throughput – without regard to individual thread performance. A “Utopian”

policy attempts to balance throughput and fairness. Finally, a “Capitalist” cache

policy is an unregulated free-for-all—the most common policy in use today.

Intuitively, either a Communist or Utilitarian policy seems preferable to a Capi-

talist policy, as these seek to maximize some desirable property, while the Capitalist

policy makes no effort toward any form of “goodness”. The Utopian policy seems

even more preferable—as a balance of fairness and throughput it seems ideal. Stud-

ies have suggested the use of harmonic mean for effecting a balance between overall

performance and fairness [41, 12], and this study evaluates harmonic mean as a way

of implementing a Utopian policy.

In addition to the question of which policy to use, there is the issue of which metric

to apply on these policies. Miss rate is a common metric for cache performance, but

miss rate is not always proportional to perceived performance. Memory bandwidth

is a scarce commodity in CMPs, so it may be appropriate for a Utilitarian policy to

minimize total bandwidth. Throughput is often the bottom line, but raw IPC is not

a very useful metric, since different threads have different levels of ILP (Instruction

Level Parallelism, discussed in Chapter 1). Weighted IPCs [53] are attractive and
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have been used in past studies, but raise the question of what weighting factor should

be used.

Overall, I identify four distinct aspects of a cache partitioning policy: performance

targets, evaluation metrics, policies, and policy metrics.

• A performance target is the end goal. A performance target may be for all

threads to have the same miss rate, or that all threads should have the same IPC

relative to some baseline configuration. The performance targets examined are:

minimizing total memory bandwidth, maximizing weighted IPC with respect to

various baselines, equalizing weighted IPC with respect to various baselines, and

maximizing harmonic mean of weighted IPC with respect to various baselines.

• The evaluation metric is the metric used to express the performance target and

to evaluate the extent to which the target is achieved. For example, if the target

is to maximize total weighted IPC, then the evaluation metric is weighted IPC.

• A policy is the aspect of the cache implementation which makes allocation

decisions. One well-known policy is LRU replacement, intended to achieve low

miss rates in the general case. This study compares LRU, the general default

policy, to policies that perform allocation based on metric values measured

from application behavior. To keep the focus on fundamental behavior rather

than specific implementations, these policies are modeling using static optimal

partitioning based on offline analysis.

• A policy metric is a metric used to drive an allocation policy (the offline opti-

mal policies in our case). Ideally, the policy metric and evaluation metric would

be identical. However, the desired evaluation metric may not be measurable

online, and thus may not be useful in driving policy decisions. Practical im-

plementations may be forced to use policy metrics that are online observable

metrics that merely correlate with the evaluation metric.
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The primary contribution of this chapter is to provide a rigorous analysis of the

objective function space in shared cache design along numerous axes. This study con-

cludes that the optimal partition for a shared cache can vary greatly as different but

reasonable definitions of optimality are applied. Additionally, none of these defini-

tions of optimality encompass every positive attribute for shared cache performance;

no metric is a functional superset of the rest. As a result, this investigation concludes

that it is folly to pursue optimality along a particular metric in shared cache design.

This conclusion further shows that marginal cost analysis in shared caches, which

persistently pursue an optimal partition along some metric, is not the ideal approach

for shared cache management. A better approach is to pursue a broadly applicable

policy which provides good performance in the general case and prevents poor perfor-

mance as measured under any reasonable metric. Experiments in this chapter show

that LRU, the policy de rigeur, is insufficient for this purpose.

This study also makes the distinction between the pursuit of optimality along

a metric, i.e., using a metric as an objective function; and the use of a metric to

measure performance. Results show that harmonic mean-based metrics do provide

somewhat Utopian properties by not diverging very excessively from optimal fairness

or throughput; in other words Utopian metrics are generally preferable to measure

performance results, if not as an objective function.

3.1 Methodology

3.1.1 Performance Target Selection

A performance target is some function of the overall cache allocation which we seek

to minimize or maximize by adjusting the allocation. The notation (p1, p2, p3, ...pN)

is used to denote the set of cache allocations for an N -thread workload, such that pi

is the cache allocation for thread i and
∑N

i=1 pi = C, where C is the total cache space
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Target Name Description

1 MPC-None-Util Minimizing Overall Bandwidth
2 IPC-128-Util Maximizing IPC weighted wrt 128KB performance
3 IPC-256-Util Maximizing IPC weighted wrt 256KB performance
4 IPC-512-Util Maximizing IPC weighted wrt 512KB performance
5 IPC-1024-Util Maximizing IPC weighted wrt 1MB performance
6 IPC-128-Comm Equalizing IPC weighted wrt 128KB performance
7 IPC-256-Comm Equalizing IPC weighted wrt 256KB performance
8 IPC-512-Comm Equalizing IPC weighted wrt 512KB performance
9 IPC-1024-Comm Equalizing IPC weighted wrt 1MB performance
10 IPC-128-Utop Maximizing Harmonic Mean of IPC weighted wrt 128KB performance
11 IPC-256-Utop Maximizing Harmonic Mean of IPC weighted wrt 256KB performance
12 IPC-512-Utop Maximizing Harmonic Mean of IPC weighted wrt 512KB performance
13 IPC-1024-Utop Maximizing Harmonic Mean of IPC weighted wrt 1MB performance

Table 3.1: Performance Targets - Performance targets used in this study.

available.

As discussed previously, targets can be either Communist, Utilitarian, or Utopian

in nature, emphasizing either fairness, overall performance, or a balance of the two.

Each of these high-level targets can be applied to a variety of metrics.

A metric has two components: a “base” metric and an (optional) weighting factor.

Included in this study are three base metrics:

• Misses per access (MPA), i.e., miss rate. This is a fundamental cache perfor-

mance metric that is easy to measure online.

• Misses per cycle (MPC) measures bandwidth usage. We include this metric

because off-chip bandwidth may be a precious resource in future servers.

• Instructions per cycle (IPC) is instruction rate. For a fixed program path length,

e.g., no spin-wait loops, IPC directly corresponds to throughput, and is thus a

direct measure of observed performance.

A meaningful performance target should reflect some tangibly useful goal. Be-

cause IPC directly indicates performance, this study focuses primarily on IPC-based

targets. Since MPC may prove useful as a target for severely bandwidth-constrained
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systems, MPC-based targets are also included. MPA-based performance targets are

not considered, since low miss rates do not directly translate into measurable im-

provement on the system level. Nevertheless, MPA is attractive because of its ease of

online measurement; MPA will be revisited in Section 3.2.4 to consider whether it is

useful as a policy metric, i.e., a measurable proxy for other more significant metrics.

The other component, the weighting factor, was born out of SMT processor per-

formance studies [53]. Any of the metrics defined above can be weighted, i.e.:

Metricweighted(pi) =
Metric(pi)

Metric(baseline)
(3.1)

The need for weighting came about because of the observation that simply max-

imizing raw aggregate IPC leads to policies that favor inherently high-IPC threads

– threads which inherently have high ILP – at the expense of low-IPC threads. Us-

ing weighted IPCs, where the baseline is the IPC a thread achieves when it has the

processor to itself, eliminates this bias, yielding a metric that does not reward starva-

tion of inherently low-IPC threads. This same concept can be used when comparing

policies for cache resource sharing.

For cache sharing studies, the choice of baseline for weighted metrics is less clear.

In the context of a CMP system with 64 cores and 32MB of shared cache, for example,

the performance of a single thread when it has the system to itself (i.e., with all 32MB

of cache) is largely irrelevant to its performance with the roughly 512KB of cache it

would be expected to receive in shared operation. This baseline would also be costly

to measure online, as it would require idling 63 cores for long enough for a single

thread to warm up such a large cache, then repeating this task 64 times for each

running thread. Instead, this study uses a set of baseline partition sizes that bracket

the static uniform allocations of the studied systems – 128KB, 256KB, 512KB, and

1024KB – to see the impact of baseline selection on the resulting partitioning.
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A useful performance target must combine a metric with a Utilitarian, Commu-

nist, or Utopian model to describe some meaningful optimization goal. A Utilitarian

target minimizing raw MPC seeks to alleviate the demand for potentially limited

off-chip bandwidth, and thus may be useful. However, there is little motivation for

MPC targets based on weighted MPC or a Communist or Utopian model. As dis-

cussed above, raw IPCs also do not make meaningful performance targets due to their

tendency to favor high-IPC threads at the expense of low-IPC threads, so this study

considers only weighted IPC (WIPC) as performance targets. Table 3.1 lists all the

performance targets evaluated in this study.

3.1.2 Optimal Cache Allocations

Having selected a set of performance targets, the question turns to determining an

optimal allocation for a given target. Because this study examines the fundamental

behavior of different performance targets, the optimal partition for a given target

is determined using static offline analysis. I start by discussing partitioning using

MPA-based targets, then use an analytic model to extend this methodology to the

desired MPC- and IPC-based targets.

Past studies have observed that the overall cache miss rate (measured in terms of

misses per access, or MPA) is a simple function of the sum of the miss rates of the

contributing threads [55, 58]. That is, for N threads, where MPAi(pi) is the the miss

rate of of thread i with cache allocation pi:

OverallMissRate =
1

N

N∑
i=1

MPAi(pi) (3.2)

Combining this observation with miss rate data for each application of interest on

a range of cache sizes, a simple search algorithm can determine the statically optimal

cache allocation p1, p2, ...pN for applications 1−N that minimizes the total misses
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incurred.

A trace-based behavioral cache simulator called CASPER [30] is used to determine

the miss rate functions of several benchmark applications for a spectrum of cache sizes.

The CASPER simulator yields non-timing cache behavior information like miss rate,

and is parameterizable according to size, associativity, and block size, among other

things.

This study uses sixteen different benchmark traces. Five of the benchmarks are

server workloads, which generally exhibit different behavior than user applications,

while 11 are non-server. The intent behind the variety is to generate a varied cross-

product of behavioral interactions with respect to cache sharing.

Workloads Source

TPC-CTM Intel machine traces
SAPTM Intel machine traces

SPECjAppServer R© Intel machine traces
SPECweb R©99 M5 full-system simulation

iSCSI M5 full-system simulation
art M5 EIO trace simulation

perlbmk M5 EIO trace simulation
vpr M5 EIO trace simulation

applu M5 EIO trace simulation
apsi M5 EIO trace simulation
bzip M5 EIO trace simulation
twolf M5 EIO trace simulation

equake M5 EIO trace simulation
mcf M5 EIO trace simulation

povray M5 syscall-emulation simulation

Table 3.2: 16 workloads - The 16 workloads (five server, 11 non-server) used in this
study.

All of the benchmarks as well as the source of their traces are listed in Table 3.2.

Since CMPs are likely to be useful in the server market, common server workloads:

TPC-CTM, SPECweb R©99, SpecjAppServer R©, iSCSI, and SAPTMare included in the

benchmark mix. The TPC-C, SAP, and SPECjApp traces are from Intel and were

generated from real machines, while the SPECweb and iSCSI traces were generated
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with the M5 full-system simulator [7]. M5 is a modular, parameterizable simulator

capable of performing full-system simulation for server workloads. For less system-

intensive workloads, it can also run in syscall-emulation mode where system calls are

emulated, not simulated. Additionally, users have a choice of ISAs and CPU models.

The non-server workloads are included to provide heterogeneity in application

miss rates and behavior. These benchmarks are Simplescalar EIO traces of SPEC

CPU2000 workloads [10], with the exception of povray, which was run in M5 syscall

emulation mode due to the unavailability of an EIO trace. Art and swim are included

as “pathological” workloads, in the sense that they are cache insensitive. On the other

end of the spectrum are perlbmk and vpr, meant to represent threads that are not

cache intensive.

Traces ranged from 40 million to 200 million instructions in length, with the

shortest traces being the Intel machine traces, and the longest being from M5.

The sixteen benchmarks are measured with cache sizes varying in increments of

16KB from 16KB up to 1MB; results are shown in Figure 3.1. The top end size

is limited to 1MB because experimental data showed that miss rate errors would

have been unacceptably high with larger cache sizes. Error rates stem from the fact

that in trace-based simulation, the first miss to a block may have been a hit had

the simulation been running from the beginning, rather than from the middle of a

trace [63]. So, all cold misses are actually of unknown status and comprise the error

margin. Error margins can be reduced by running longer simulations, but the lengths

of available traces dictated that the way to limit error in this study was via limiting

simulated cache size.

One of the goals of benchmark selection is to encompass a variety of behaviors;

this is especially important in multiprogrammed workloads in order to achieve a rich

cross product of cache sharing behaviors. Based on the variety of miss rate curves

and “knees” in the graph, the 16 benchmarks used do achieve this.
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Figure 3.1: Miss Rate Curves - The sixteen benchmarks used in this study are plotted
here. On the x-axis is cache size in KB, and on the y-axis is miss rate in terms of
misses per thousand instructions (MPKI). For the X86 traces, instructions are in
terms of micro-ops.

The simulated caches in this study have 64-byte blocks and as close to 32-way

associativity as possible. Since some cache sizes were not perfect powers of 2 (e.g.,

48KB), 32-way associativity would be impossible. In cases like these, associativity

moves to the nearest possible value to 32; in the case of 48KB, it is 24-way associa-

tivity. The use of high-associativity caches stems from the desire to emphasize the

relationship between cache size and miss rate without undue interference from the

relationship between limited associativity and miss rates.

In order to examine MPC and IPC metrics, this study uses an analytical model

to translate the cache size-to-MPA mappings to obtain cache size-to-MPC and cache

size-to-IPC mappings. Equation 3.3 shows the derivation of this mapping. MPI is

misses per instruction, API is accesses per instruction, CPIbase is the base CPI of the
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CPU, and CPImemory is the CPI added due to miss penalties. The value p denotes

cache partition size.

MPC(p) =
MPI(p)

CPI(p)

=
MPA(p) ∗ API

CPIbase + CPImemory(p)

=
MPA(p) ∗ API

CPIbase +MPA(p) ∗ API ∗MissPenalty

(3.3)

Thus, Equation 3.3 determines MPC as a function of cache size with a given MPA

curve. API is constant for each benchmark, and experimentally determined. Since

the traces used are taken from both RISC and CISC sources, the API for the Intel

traces are adjusted to reflect accesses per micro-op, so that numbers between the

traces are comparable. This study assumes a simple 1-CPI machine, thus CPIbase is

set to 1. MissPenalty is set at 500 cycles, a large value to represent miss penalties

to DRAM; in addition this study seeks to shed light on the qualitative behavior of

cache sharing policies and by using a large cache miss penalty, relationships between

cache size and IPC are more clearly highlighted.

Equation 3.4 shows the derivation of the mapping from MPA to CPI, using the

same constants as previously. Note the use of the somewhat more awkward IPC form

rather than CPI—this is because CPI is not additive across threads.

IPC(p) =
1

CPI(p)

=
1

CPIbase + CPImemory(p)

=
1

CPIbase +MPA(p) ∗ API ∗MissPenalty

(3.4)

Converting these equations to weighted metrics is trivial; a thread’s performance

at a given cache size is divided by the thread’s performance at the baseline size.

Given all of these size versus metric curves, determining optimal allocations is a
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simple matter of evaluation. A brute force technique considers all possible partitions

in granularities of 16KB. For Utilitarian targets, the partition that yields the best

possible overall performance is selected. For Communist targets, the partition that

yields the lowest standard deviation between all contributing threads is chosen. For

Utopian targets, the partition yielding the maximum harmonic mean value across all

contributing threads is selected. The equations below use weighted IPC with respect

to 256KB as an example.

To find the optimal partition for IPC-256KB-Utilitarian, the equation below

must be maximized:

WIPCtotal(p1, p2, ...pN) =
N∑
i=1

IPCi(pi)

IPCi(256KB)
(3.5)

For IPC-256KB-Communist, the following must be minimized over all threads i:

σ = stddev(
IPCi(pi)

IPCi(256KB)
) (3.6)

3.1.3 CMP Thread Model

This study constructs workloads by choosing every possible two- and four-thread

application mix from the 16 benchmarks described previously. Greater thread counts

are modeled via logical replication, e.g., a two-application mix is replicated four times

to yield an eight-thread workload, or a four-application mix is replicated twice. This

method enables the modeling of 2, 4, 8, 16, and 32 threads sharing 1MB of cache.

This technique is enabled by the static trace-based simulation methodology, in

which a four-thread workload consisting of two threads from application A and two

threads from application B sharing a C MB cache yields the same partition for each

thread as a two-thread workload consisting of one A thread and one B thread sharing

an C/2 MB cache. Thus the partition for a 32-thread workload on a 1MB cache can
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be determined by evaluating the constituent four-thread workload on a 128KB cache.

This technique shortens search time for optimal significantly since all possible ways to

divide 128KB between four threads is a much more limited problem than evaluating

all possible ways to divide 1MB by 32 threads.

3.2 Results

3.2.1 Optimal Partitions

2 4 8 16 32
Number of threads sharing 1MB

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 C

ac
he

tpcc-specweb

tpcc
specweb

Figure 3.2: Two-application Partitioning Example - TPC-C and SPECweb sharing a
CMP platform can yield widely varying ideal allocations, depending on the definition
of ideal. Performance targets are unlabeled due to spacing reasons — however within
one cluster of bars, the targets vary from left to right in the order listed in Table 3.1
from 1 through 13.

Figure 3.2 shows an example of how significantly partitioning can vary due to

different definitions of optimality. This graph shows the various optimal cache allo-

cations of the TPC-C/SPECweb application mix. The clusters along the horizontal

axis represent different numbers of threads sharing a 1MB cache. Each member of

a cluster is a different performance target. Due to spacing reasons, the targets are

41



2 4 8 16
Number of threads sharing 1MB

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 C

ac
he

specweb-iscsi-sap-swim

specweb
iscsi
sap
swim

Figure 3.3: Four-application Partitioning Example - Another example of widely vary-
ing partitions, with four benchmarks sharing a CMP. Performance targets are unla-
beled due to spacing reasons — however within one cluster of bars, the targets vary
from left to right in the order listed in Table 3.1 from 1 through 13.

not labeled on the plot; however, each member from left to right corresponds to the

targets 1 through 13 listed in Table 3.1. The vertical axis indicates the fraction of

cache given to each benchmark. As is clear from the graph, the allocations can vary

widely even from within a metric “family”, like IPC-*-Util or IPC-*-Comm. This

graph shows evidence that Communist, Utilitarian, and Utopian targets can differ

greatly from each other, and that even choosing different weighting factors can yield

significantly different results. The only generalization that can be made is that there

are no generalizations evident from the graph.

Figure 3.3 shows the same results for a 4-application case, with benchmarks

SPECweb, iSCSI, SAP, and swim. Optimal partition behavior varies widely and

the impact of changing performance targets is difficult to predict. Trends caused by

varying the baseline cache size are non-monotonic. For example, at 8 threads, going

from IPC-128-Util to IPC-256-Util yields a larger partition for SPECweb, but its

partition size shrinks again when moving from IPC-256-Util to IPC-512-Util. The
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same phenomenon occurs for SAP, and the inverse occurs for iSCSI.

The details of the individual partitions are not important here, but Figures 3.2

and 3.3 do visually demonstrate the dramatic variety in optimal partitions there are

for different valid and reasonable definitions of optimal.
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(a) 2-application variation
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Figure 3.4: Partition Variation - The variation in partition size between any given
pair of performance targets. The values on the y-axis indicate the average relative
change in cache allocation as the performance target changes. The 2-application plot
shows the variation for all 120

(
16
2

)
application mixes; the 4-application plot shows

the variation for all 1820
(
16
4

)
application mixes.

To quantify how much partitions can vary overall, this study uses a partition

metric specifically devised for this study to measure partition variation. For any

application mix, the metric determines the average difference in allocation for a single

thread when going from any one performance target to another. Specifically, say the

optimal partition for AppA-AppB with performance target i is such that AppA receives

allocation piA and AppB receives allocation piB. Then the partition difference metric

for a particular workload is defined as:

PartitionV ariation =

∑
i

∑
j>i

∑
x |pix − pjx|

xmax ∗
(
imax

2

) (3.7)

The numerator represents the sum of all the allocation changes between all possible

pairs of performance targets and all pairs of applications within the mix, while the
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denominator represents the total number of possibilities, with the result yielding an

average. Figure 3.4 shows the spectrum of partition variation for all the mixes used in

this study. This box-and-whiskers plot shows the inner two quartiles inside the box,

with the horizontal line representing the median. The whiskers extending outside

the box show the remaining values of the outer two quartiles. The y-axis shows the

partition variation values for each workload. When a plot is abutted on the x-axis,

this indicates the entire bottom quartile (and likely some of the boxed middle two

quartiles) have a value of zero.

Figure 3.4 shows the results for over all workloads in this study. Figure 3.4a shows

results for when two applications out of the 16 used in this study are replicated to

achieve the thread counts in the x-axis, while Figure 3.4b shows results for when

four applications are replicated to achieve the thread counts in the x-axis. In the

2-application case, two threads sharing 1MB can yield partition variations up to

40%, with a median above 20%. The 16- and 32-thread cases have many zero-change

instances resulting in lower medians because the 16KB partitioning granularity we

use represents a significant fraction of the typical per-thread allocation in a 1MB

cache. However, there are still cases where there is a significant partition variation

between different performance targets.

In the 4-application graph, variation in the four thread case can go up to 25%, with

a median at nearly 15%. Even in the 32-thread plot, optimal partitions between any

two definitions of optimal can vary over 15%. In all cases, it is clear that varying the

performance target selection among a set of reasonable choices can yield significant

variations in the optimal cache partition, not just in the case studies shown previously

in Figures 3.2 and 3.3, but in general.

These graphs demonstrate one aspect of the difficulty in selecting a single defini-

tion of optimal out of multiple reasonable definitions. It would be one thing if differing

definitions of optimal led to more or less the same optimal partitions, in which case

44



selecting one definition or another may not be a decision with very big implications.

However, selecting a particular definition can mean highly variable partitions, even

when the definitions are highly related.
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Figure 3.5: Communist vs. Utilitarian Histograms - Histograms indicating reductions
in performance from optimizing throughput or fairness. On the left is a histogram
of fairness measurements on caches optimized for throughput, and the delta with
optimal fairness is shown. On the right is a histogram of throughput measurements
on caches optimized for fairness, and the % difference from optimal throughput is
shown along the x-axis.

3.2.2 Comparing the “-isms”

The last section demonstrated the high variability in optimal partitions for varying

definitions of optimal. However, that could be unimportant if the different optimal

partitions, despite their variability, led to relatively similar performance numbers.

This section examines the differing levels of performance when optimizing for different

metrics.

One of the key distinctions among previously proposed performance targets is

whether they target overall performance (Utilitarianism) or fairness (Communism)

or attempt to balance both performance and fairness (Utopianism). Both aggregate

performance and fairness are important aspects of shared cache performance, and it
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is difficult to say which is more important. Utopian ideals attempt to balance the

two, but given the potential incompatibilities between the two “-isms”, it is unclear

how achievable that is.

This portion of the study evaluates the quantitative difference between these tar-

gets. Specifically, the compatibility of these targets are compared to determine how

much of one metric is lost when optimizing for another.

Communism versus Utilitarianism

First, this study focuses on the compatibility between Communism and Utilitari-

anism, as these two approaches are most clearly at odds with one another. Figure 3.5

shows the results. The plots in this figure are both histograms of all WIPC work-

loads in the 4-application case, over all thread combinations. The raw MPC metric

used previously is ignored in this set of graphs since it does not make sense under a

Communist policy.

Figure 3.5a is a histogram of the delta in fairness performance between workloads

optimized for WIPC fairness and workloads optimized for WIPC aggregate perfor-

mance. Essentially, what Figure 3.5a demonstrates is the amount of potential fairness

lost when optimizing for throughput.

Figure 3.5b shows the opposite scenario; a histogram of the delta in overall WIPC

performance between workloads optimized for maximal WIPC and workloads op-

timized for WIPC fairness. Thus, this plot demonstrates the amount of potential

aggregate WIPC lost when optimizing for fairness.

Both histograms have most of their samples in the bin closest to zero, meaning

that for the most part, Communist and Utilitarian metrics are comparable; i.e., opti-

mizing for throughput tends to provide near-optimal fairness and vice versa. However,

both distributions have a significant tail. In other words, Communist targets mostly

yield partitions that have near-optimal overall performance, but there are a few cases
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where the optimal Communist partition yields extremely poor overall performance.

Likewise, Utilitarian targets mostly yield optimal partitions that are not extremely

unfair, but there are a non-trivial number of cases which are.

These two graphs do not indicate which target is preferable, but they do indicate

that whichever target is used, it is important to guard against these heavy tails such

that the resultant partitions can be both fair and have good overall performance.

How Utopian is Utopia?

Since the previous section has shown Communism and Utilitarianism to be oc-

casionally fundamentally incompatible, the question naturally turns to whether op-

timizing for a harmonic mean truly effects a Utopian balance between the two, the

way minimizing standard deviations effects Communism and maximizing overall per-

formance effects Utilitarianism.

Figure 3.6 shows the fairness reduction from optimizing for Utopianism rather

than Communism on the left, and the throughput reduction from optimizing for

Utilitarianism on the right. The appropriate comparisons are between Figures 3.6a

and 3.5a, and between Figures 3.6b and 3.5b. What is clearly noticeable is that the

heavy tails in Figure 3.5 are reduced somewhat in Figure 3.6. What this indicates

is that optimizing for Utopianism leads to a lesser loss of fairness from optimal than

optimizing for Utilitarianism. It also shows that optimizing for Utopianism leads to

a lesser loss in overall performance from optimal than optimizing for Communism.

Thus, using a harmonic mean as a means of effecting Utopianism, i.e., a balance

between fairness and throughput, is a reasonably good approach. However, it should

also be noted that heavy tails still exist, such that a system optimized for Utopianism

may still suffer from poor fairness and/or throughput. For this reason, while Utopian

metrics may be better measures of shared cache performance because they are less

likely to mask very poor performance in terms of fairness or throughput, they are still
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Figure 3.6: Utopian Histograms - Histograms indicating reductions in performance
from optimizing for Utopianism. Note the contrast between Figure 3.5a and the
figure on the left. Optimizing for Utopianism is a lot less unfair than optimizing for
Utilitarianism. At the same time, note the contrast between Figure 3.5b and the
figure on the right. Optimizing for Utopianism maintains throughput much better
than optimizing for Communism. In conclusion, the Utopianism seems to strike a
balance between the Communism and Utilitarianism.

incompatible enough with other valid and reasonable metrics to discourage designing

a shared cache entirely around them.

3.2.3 Baseline Weighting Choices

As previously discussed, one of the subtleties to choosing a weighted performance

target is the selection of the baseline weighting factor. Prior work has taken the

baseline as “what the performance would be if a thread had the whole system to

itself”. While this approach may be reasonable for small-scale systems, it may be

both impractical and irrelevant on an LCMP system with tens or hundreds of threads

and tens of megabytes of cache.

Figure 3.7 examines the impact of the choice of baseline by showing the correlation

coefficients between weighted metrics with various baselines. A perfect correlation of

1.0 indicates that there is no difference between choosing one baseline or another.

Lower correlation values indicate larger differences between the results of different
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Figure 3.7: Baseline Weighting Choices - This graph demonstrates the dramatic differ-
ences there can be in choosing different baselines for weighted metrics for Communist
metrics. The differences are more muted for Utilitarian and Utopian metrics. Each
cluster has a bar with value 1 because every metric correlates perfectly to itself.

baselines. As can be seen from the graph, Utilitarian weighted IPC metrics are all

reasonably close, with correlations staying above 0.8. Utopian WIPC metrics are even

closer, with correlations staying at or above 0.9. However, with Communist weighted

IPCs, the selection of weighting factor has a great impact on resulting performance.

Given this sensitivity to the weighting factor, it seems difficult to define “fairness” in a

robust and precise fashion. On the other hand, weighting factor is virtually irrelevant

in Utopian targets, implying that these metrics are relatively baseline agnostic, at

least in the “reasonable” spectrum tested. Utopian metrics thus seem the most robust.

3.2.4 Policy Metrics

As mentioned in the introduction, an evaluation metric may not be measurable

on-line in real time. A weighted metric is difficult to measure online because knowing
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how some thread would fare if it had some greater portion of the cache is impossible to

know without one of several unappealing options. One of them, offline profiling, can

be inaccurate when inputs vary, and typically does not capture time-varying program

behavior. The other, online sampling, may be impractical if it requires running

each of many threads alone sequentially in order to achieve unperturbed samples.

Thus, it is useful to find policy metrics, online measurable metrics that serve as

proxies for evaluation metrics and can be used to drive policy decisions that yield

good performance with respect to the performance target. This section examines the

correlations between metrics that are reasonably measurable online and all studied

performance targets. Unweighted metrics are assumed to be measurable, as they can

typically be captured online using simple counters without requiring special sampling

phases.

The results are shown in Figure 3.8. The graph shows that miss rate (MPA)

is actually correlates quite poorly with all Communist and Utilitarian performance

metrics, but reasonably well for Utopian metrics. MPC and IPC, however, are rel-

atively good indicators for Utilitarian targets, tepid predictors for Utopian targets,

and poor for Communist targets. This figure indicates that none of the policy met-

rics considered is sufficient to drive an on-line policy for Communist weighted IPC

targets. Thus, having a runtime shared cache policy which seeks to optimize fairness

is not only unappealing because of the potential major loss in overall performance

described in Section 3.2.2, but because it seems unlikely that fairness can even be

feasibly and reasonably measured in such a way to provide adequate feedback on

allocation decisions.

Thus, it may make more sense to use Utilitarian targets, while simply trying to

avoid the unfair outliers seen in the previous section. Even better would be using

Utopian targets, which largely capture both fairness and throughput, and for which

MPA is a reasonably good policy metric.
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Figure 3.8: Policy Correlations - Correlations between possible policy metrics and
performance targets. The y-axis shows the absolute value of r-values.

One interesting side result is that MPC (bandwidth) and IPC always correlate

perfectly. It turns out that this is an artifact of the performance model described in

Section 3.1.2. In this model, raw MPC and raw IPC are linearly related, such that

minimizing raw MPC yields the same partitions as maximizing raw IPC. Due to this

mathematical connection, this relationship will likely continue to hold, though less

precisely, in real-world executions.

3.2.5 Policy Evaluation

Recall that one of the four aspects to cache partitioning policies is the policy

itself—the aspect of the cache implementation which makes allocation decisions. LRU

is the most common default policy today and is meant to effect high-IPC performance

from the cache. In this portion of this study, LRU is compared against policies that are

intended to effect high performance with respect to the various performance targets

studied in this chapter. In order to avoid aliasing implementation issues with policy

goals, LRU is compared against the optimal partitions for each of the performance

targets. This way, the upper bound of performance differential between the default

LRU policy the various performance targets can be exposed.
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Figure 3.9: LRU vs. Perfect Raw MPC Partitioning - This plot shows that LRU
achieves nearly perfect raw MPC performance. The value on the x-axis indicates the
percentage difference between LRU and optimal MPC-None-Util partitioning. Recall
that in this study, IPC and MPC are linearly related because of the nature of the
analytical model used to generate these values, and so LRU, long used to effect high-
IPC performance from the cache, does exactly that here.

First, Figure 3.9 shows that LRU really does achieve quite good raw MPC perfor-

mance. In the figure, the x-axis designates the performance differential (in percent)

between LRU and an optimal partition for MPC-None-Util, where a positive value

indicates that LRU underperformed the optimal partition, and a negative value in-

dicates that LRU achieved better raw MPC performance than the optimal partition.

This is due to the dynamic nature of LRU, as opposed to the static nature of the

partitions. Since there is virtually no tail on this plot, this indicates near ideal per-

formance on the part of LRU with respect to raw MPC. While there are still some

workloads that underperform optimal by up to 30%, they are a minimal portion of

the distribution.

Recall also from the previous section that due to the nature of the analytical

models used here, MPC and IPC are linearly related. So this plot also demonstrates

the facility of LRU at providing high-IPC performance. So, LRU, long called upon to

provide good raw throughput, is shown to truly do so here in most cases. However,

high raw throughput can mean poor individual performances, as demonstrated by the
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following graphs, which compare LRU against the more thread-aware performance

targets studied in this chapter.

Figure 3.10 shows the histograms comparing LRU to the remaining 12 policy tar-

gets studied in this chapter. The x-axes are all in terms of percent relative to optimal,

with the exception of the Communist targets. Since these performance numbers are

in terms of standard deviations, a percentage different in standard deviation makes

little intuitive sense. Instead, comparisons between LRU and optimal are done in

terms of absolute differences in σ. Across the spectrum of histograms in Figure 3.10,

it is clear that certainly, with respect to Utilitarian and Utopian targets, LRU vastly

underperforms an optimally partitioned cache. Non-trivial numbers of workloads un-

derperform optimal partitions for their affiliated performance targets by 30, 40, 50,

and even 60%.

With respect to the Communist policies, the plots appear less dramatic but still

indicate non-trivial departures from optimal fairness performance, no less because

of the difference in measurement and scaling just described. These x-axis values

indicate the raw difference in standard deviation between the contributing weighted

IPC values. In other words, a value of say, 0.2 indicates that the average deviation

from the mean of all values has grown by 0.2 in the LRU case from optimal, indicating

a significant increase in the spread of weighted IPC values and thus a significant

decrease in fairness.

The primary result from this collection of graphs is that LRU, while quite good

at providing high performance with respect to raw throughput, leaves quite a bit to

be desired when it comes to other performance targets that focus on shared cache

performance. At the same time, while LRU does not provide performance in the

general case for these other performance targets, it does do reasonably well in a

significant number of cases. This results points to the idea that perhaps a better

approach to shared cache management would be to use LRU as a default, and reacting
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(a) IPC-128-Util
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(b) IPC-128-Comm
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(c) IPC-128-Utop
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(d) IPC-256-Util
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(e) IPC-256-Comm
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(f) IPC-256-Utop
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(g) IPC-512-Util
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(h) IPC-512-Comm
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(i) IPC-512-Utop

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
Difference between LRU and Optimal

0

500

1000

1500

2000

2500

3000

3500

Nu
m

be
r o

f w
or

kl
oa

ds

(j) IPC-1024-Util
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(k) IPC-1024-Comm
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(l) IPC-1024-Utop

Figure 3.10: Policy Evalutaions - The histograms in this figure compare the perfor-
mance of the LRU policy against optimal partitions for the affiliated performance
targets indicated by the labels. X-axis values indicate the amount LRU underper-
formed the optimal partitions. In cases where x-axis values are negative, this means
the dynamic nature of LRU outperformed the statically optimal partition.
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when a poor sharing situation is detected, rather than actively pursuing an optimal

partition for a particular performance target.

3.3 Conclusions

Controlling the allocation of shared cache resources among threads is a necessary

task in future CMP systems. However, the selection of the objective function for

guiding this allocation is a subtle issue, and different seemingly reasonable objectives

can lead to significantly different results.

This study makes the distinction between performance targets, the goals of a cache;

evaluation metrics, the metrics to measure the achievement of that goal; policies, the

decision rules meant to achieve the performance target; and policy metrics, the actual

metrics used to direct policy decisions. Many researchers use policy metrics and eval-

uation metrics interchangeably in the literature. However, our results indicate that a

common policy metric, miss rates, is a poor proxy for both fairness and throughput,

despite being commonly used as such in the literature. Additionally, selecting differ-

ent performance targets can cause optimal cache allocations to vary greatly, which

implies that the selection of a performance target cannot be done in an arbitrary

manner.

In addition, this study compares the effect of applying Communist or Utilitarian

goals in cache partitioning, i.e., optimizing for fairness across threads or for optimal

aggregate behavior. For most workloads, there is little conflict between these targets,

in that Communist goals typically lead to near-global optima, and Utilitarian goals

typically provide good fairness. However, in either case, there are outlying workloads

for which a Communist goal severely degrades global performance or a Utilitarian goal

severely impacts fairness. Thus choosing one or the other of these goals as primary

may be less useful than guaranteeing that neither fairness nor global performance is
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unduly sacrificed in pathological conditions.

Utopian policies, however, where harmonic means are used to balance fairness

and throughput in a single measure, do reduce the risk of having a high performance

measure but actually fare poorly in either fairness or throughput, and thus are a

reasonable way to measure shared cache performance.

This study also shows that weighted metrics, a standard technique in the area of

SMT research intended to alleviate unfairness in resource allocation, have unexpected

issues as well. CPU-oriented SMT research uses standalone performance – i.e., a

single thread having all resources to itself – as a baseline. However, using standalone

performance as a baseline for a multi-megabyte shared cache in a large-scale CMP is

both less practical and less meaningful. Unfortunately, choosing different arbitrary

baselines yields significant variations in performance for Communist targets, and it

is unclear why there might be any reason to pick one over another. Utopian targets,

however, can be robustly defined without regard to weighting factor in a reasonable

range of values.

Additionally, this study investigates the ability of online measurable policy met-

rics to act as proxies for more desirable but less practical evaluation metrics. For

the benchmarks selected, miss rate is a poor policy metric for both throughput and

fairness, even though it is commonly used as such. However, miss rate is a good

policy metric for Utopian policies, while raw IPC and MPC are relatively good policy

metrics for weighted IPC evaluation metrics in the Utilitarian model. This study did

not find a good policy metric for Communist performance targets.

Thus, for a variety of reasons, Utopian policies emerge as a pragmatic metric for

measuring the performance of shared caches. These reasons include: the existence

of a reasonable policy metric, in that miss rates seem to correlate well with Utopian

policies; the policies seem to be generally baseline weight agnostic; and most impor-

tantly, they do seem to capture fairness and throughput in a single value. However,
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given that there are still heavy tails in the performance histograms, showing that it is

possible to have a high Utopian value but have poor fairness or poor throughput, it

seems there is no one metric that truly encompasses the idea of optimal. This shows

that selecting any one performance target as the goal of cache design is a mistake.

Instead, this study demonstrates that it may be more important to identify clearly

poor cache sharing situations and alleviate them, rather than explicitly chasing a par-

ticular definition of optimal which may mask poor performance in some important

way. This approach is further bolstered by the result that LRU, the de facto cache

policy in use today, does well at providing Utopian performance in a significant num-

ber of cases; it would seem that taking advantage of this fact is wise. Thus, the

primary conclusion of this chapter is that using LRU as a starting point, and only

reacting to poor cache sharing situations, rather than proactively pursuing some def-

inition of optimal, is the preferred approach. The key question then becomes: how

can poor cache sharing be detected at runtime? The remainder of this dissertation

takes this approach and seeks to answer this question.

57



CHAPTER 4

Machine Learning Techniques for Discovering

Salient Characteristics of Poor Performance

Given the results of Chapter 3, this study seeks to identify some set of characteris-

tics that correlate with poor performance (i.e., detecting the heavy tails in the results

histograms). If such characteristics can be found, the situation can be mitigated at

runtime, thus leading to a reactive approach to shared cache management instead

of a proactive one. Not only does this eliminate the complexity of explicitly seeking

an optimal shared cache partition, but acknowledges the finding that there is no one

metric that can definitively describe optimality anyway.

The studies in this chapter use supervised machine learning techniques in an

attempt to determine what aspects of a multiprogrammed workload lead to significant

losses in fairness or aggregate performance. The end goal is to use these discovered

characteristics to build a runtime detection mechanism for identifying poor shared

cache performance, and also to inform the crafting of a feasible and scalable solution

for mitigating poor performance.

Supervised machine learning is the act of building a predictor that takes inputs

(features) and uses them to predict specific outputs [24]. In this case, the goal is to

use runtime application characteristics as features, and a classification of “acceptable”
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Weight Age BP Family History Eye Color Siblings Heart Disease?

150 35 High Yes Blue 3 Yes
118 24 Low No Brown 2 No
250 55 High No Green 4 Yes
220 47 Low No Brown 1 No

Table 4.1: Sample Supervised Learning Data - Sample matrix for a supervised learning
problem. Data points (patients) are mapped to characteristics (features) and outputs
(heart disease).

or “poor” as outputs. In contrast, unsupervised machine learning does not seek to

measure or predict outcomes, but rather seeks to describe how data are organized or

clustered. For the remainder of this thesis, all references to machine learning (ML)

will imply supervised learning.

A simple example of supervised learning is building a predictor for heart dis-

ease. If one is to be judicious about choosing features to build the predictor, fea-

tures like weight, age, blood pressure, exercise, and family history would be

taken into account. Less advisable features would include hair color, eye color,

or number of siblings. To build a predictor, a matrix of data points and features

must be created, along with known outcomes. See Table 4.1 for a sample table.

In this simple example, the given input matrix could be fed into any number of

ML model-building techniques, and yield a model for predicting the presence of heart

disease in an arbitrary patient, given the appropriate data inputs. However, anyone

could guess that number of siblings and eye color would be essentially useless

features in generating a predictor for heart disease. Some ML techniques are useful

not just for model creation, but also for subset selection [25], which is the process

of pruning the feature set down to useful features. This concept will be discussed

further later in the chapter.

In this dissertation, machine learning is used as an analysis tool. The usage

model here would be to collect large amounts of known input and output data, use

ML to extract salient inputs for a given output through subset selection, and use this
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knowledge to better understand the problem and inform the crafting of a solution.

ML could also be used in an online and dynamic fashion by deploying a learner at

runtime to discover techniques for given executions, such that continual feedback

and adjustment to the learner are possible. However, this dissertation avoids that

approach for the following reasons:

• Characteristics leading to poor performance are potentially generalized. In

other words, being able to build a dynamic predictor in the hardware that can

learn on the fly seems like overkill if the characteristics to poor performance are

generally the same across executions of different workloads.

• The complexity of building a runtime dynamic learning mechanism is less ap-

pealing than finding simple factors leading to poor performance and building a

static detector. While this dissertation does not evaluate the complexity of a

dynamic learning mechanism, the result given by ML as an analysis tool does

lead to an extremely simple static mechanism.

• Feedback in a runtime system is non-trivial matter; the system must know

when something is performing poorly in order to train itself to detect a poor

performer, which is essentially a chicken and egg situation.

The studies in this chapter primarily aim to use machine learning as an analysis

tool for sifting through large quantities of data in order to discover characteristics

correlating to poor performance. The end goal is to be able to use these discovered

characteristics to not only build an on-line detection mechanism for poor performance,

but also give hints as to how to alleviate the problem.

Since machine learning is used as a tool in these studies, this chapter also ends

up providing some insights into using ML in architectural research. Machine learning

can certainly be used effectively as a research tool when used properly, but cannot

be counted on without some hands-on human guidance and intuition. Care must be
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taken in selecting the ML technique used; additionally the set of features fed into the

ML process must be selected judiciously.

The basic methodological approach to this chapter is described in Section 4.1.

The two ML techniques used in this chapter, ridge regression and decision tree anal-

ysis, as well as the results of their application, are discussed in Sections 4.2 and

4.3. Conclusions about the use of machine learning in this study are described in

Section 4.4.

4.1 Methodological Approach

The basic methodology of this chapter begins with generating large quantities of

data using the CASPER cache simulator [30]. As discussed in Chapter 3, CASPER

is a trace-based behavioral cache simulator that is highly parameterizable.

An important aspect of data generation is the selection of benchmarks. In order

for the generated predictor to be generalized, the benchmarks used to generate the

data must be varied enough to be representative. The benchmarks used here are

exactly the same as the ones used in Chapter 3, and are listed in Table 3.2.

For this study, four of the sixteen applications are run simultaneously on CASPER,

sharing a single 1MB last-level cache using an LRU replacement policy. The perfor-

mance of these simulations are compared against the performance of an optimally

partitioned cache (discussed in Chapter 3).

As discussed in Chapter 3, Utopianism may not make sense as a performance

target, i.e., as an overt goal to persistently achieve optimal Utopianism, but as a

performance metric, it can be a helpful tool. The goal of this chapter is to determine

a set of characteristics that indicate that a cache is exhibiting poor Utopian qualities.

Fair Speedup is a metric proposed by Chang and Sohi which is Utopian in na-

ture [12]. It is defined as the harmonic mean of speedups over a baseline of private,
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equal-share caches, i.e.,

FS(scheme) = #app/

#app∑
i=1

IPCi(equal)

IPCi(scheme)
(4.1)

With respect to the metrics studied in Chapter 3, this amounts to IPC-Private-Utopian,

such that the weighting factor is always 1/Nth of the total cache space available. This

is an intuitively pleasing metric because qualitatively, Fair Speedup (FS) measures

aggregate performance relative to an equal share platform but weights high-value

outliers less to measure fairness across sharers.

For the studies in this chapter, the “output” of the datasets used for model gener-

ation is the relative FS performance of LRU compared to the a statically partitioned

cache optimized for FS. An LRU cache is considered to exhibit poor cache sharing

performance when it performs at less than 80% of optimal. Thus, the datasets in

these studies consist of a particular workload of four benchmarks and their feature

data as the input, with relative FS performance as output. The goal is to find a

robust model for being able to predict the latter given the former.

4.2 Ridge Regression

4.2.1 Background

Ridge regression is a subset of the more general linear regression analysis tech-

nique. Linear regression analysis has recently become popularized in the architecture

domain as a processor design tool [29, 38, 34].

A linear regression model is a mathematical representation of the relationship

between an array of input parameters and the observed output response, usually of

the form:
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y = β0 +

p∑
i=1

βixi + ε (4.2)

Note that the linear form of the model does not indicate that this method is

only capable of expressing linear relationships between inputs and outputs. Input

features can be non-linear transformations of variables, i.e., log(x), thus enabling the

technique to capture non-linear relationships as well.

Linear regression analysis can be used for both investigating and modeling rela-

tionships between variables. Given a dataset of features to mapped to known outputs

(i.e. feature matrix X and output vector y in Equation 4.2), simply solving for

the β̂ that yield the smallest error yields a mathematical model between X and y.

Note that the hat above β indicates that the values are the solved-for values, not the

actual values. Error between the solved and actual values is measured in the form

of the residual sum of squares (RSS), shown in Equation 4.3 for N data points of p

features each. Solving for the β̂ that provides the smallest RSS is called least squares

estimation [62].

RSS =
N∑
i=1

(yi − β̂0 +

p∑
j=1

xijβ̂j)
2 (4.3)

The ridge regression is essentially a least squares estimation problem with one

additional constraint:

p∑
j=1

β̂2
j ≤ s (4.4)

Constraining the possible values of the β̂s in this way serves to limit the variance

of the models generated between two different datasets with the same relationship.

For example, imagine a a single large dataset that represents a particular relationship

between X and y. Intuitively, one would imagine that dividing the dataset in half,
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and building two models out of the separated datasets would yield the exact same

model. However, this is not necessarily the case, particularly when the features

representing the columns of X are not orthogonal. Through constraining the β̂

values, ridge regression offers some stability to the achieved solution [25].

Another reason for using the ridge regression is the simple closed form with which

one can solve for β̂. Solving for the ridge β̂ is just a simple linear algebra equation

shown below, where I is the identity matrix (all zeros with a stream of ones through

the diagonal) [25]:

β̂ = (XT X + λI)−1XT y (4.5)

This simple transform yields the vector β̂ providing the smallest model error for

a given λ. Note that there is a one-to-one ratio between λ and the s constraint

shown in Equation 4.4. The intuitive meaning of λ is that as λ→ 0, the ridge model

approaches the simple least squares solution, as in Equation 4.3. As λ → ∞, the

βs are all pushed to 0 and the model will yield a simple β0 intercept—regardless of

input, the output predicted will be β0. In short, the greater the λ, the more the

ridge β values will be pushed toward 0 (and each other) to prevent wild swings in the

variance of β̂ values from dataset to dataset [25].

Naturally, it is important to select an appropriate λ value. The idea of K-fold

cross validation is to find a λ for the model that will have the least mean squared

error when applying the model to new data. This can be done by taking a single set

of input/output observations and dividing it into K separate subsets of equal size.

Common choices of K include K = 5 and K = 10 [26].

Now, there at K training sets T , each called a fold. For each k ∈ [1, · · · , K], the

ridge regression should be solved on all training subsets except the kth fold Tk. The

resulting β̂ weights yield a model fk(x). The error measure when applying this model

to the excluded fold Tk is described in Equation 4.6.
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CV λ
k =

1

|Tk|
∑

(X,y)∈Tk

y − fk(x) (4.6)

The average model error over the entire cross validation of the λ model is then:

CV λ =
1

K

K∑
k=1

CV λ
k (4.7)

Over a range of λ, which in practice are generally small values ranging logarith-

mically from 0.0 to 1.0, the value which yields the lowest average error is selected for

the final model.

There is one more relevant issue to this portion of the methodology, involving

the standardization of inputs. Ridge regressions perform better when the inputs and

outputs are scaled, so that magnitudes of values in feature xi are directly comparable

to the magnitudes of values in feature xj [25]. More concretely, if the input features

have different units, then the obtained β̂ vector could be skewed, hiding the truly

salient input features. For example, imagine a relationship like the following:

y = 128 + 1024x1 + x2

At first, it might seem clear that the x1 variable is the most dominant term of

the relationship because the β associated with it (i.e., 1024) is so large. However, if

x1 is an input measured in kilobytes, x2 is an input measured in bytes, and y is in

terms of kilobytes, then it becomes clear that a change of 1KB for either x1 or x2 will

yield the exact same change in y. This not only has implications on the quality of the

model generated, but when ridge regression is used for subset selection, the means

of selecting features with high predictive value are based on the magnitudes of the β̂

weights.
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In order to avoid this phenomenon, both the input matrix as well as the known

output vector need to become dimensionless. In other words, each vector (whether it

be a column of the input matrix of the output vector) should have a mean of 0 and

unit variance. This is often called obtaining the z-score.

Equation 4.8 shows how to obtain a standardized version of X, Z. In the equation,

i indicates the ith row and j indicates the column, x̄j indicates the mean of the jth

column of X, and sxj
indicates the standard deviation of the jth column of X:

zij =
xij − x̄j
sxj

i ∈ [1, · · · , N ], j ∈ [1, · · · , p] (4.8)

The same thing is done for the output vector y to obtain the standardized vector

y′:

y′i =
yi − ȳ
sy

i ∈ [1, · · · , N ] (4.9)

Using these dimensionless matrices Z and y′ ensure a dimensionless solution, which

indicates high-weight features with more clarity. The following equations, where β′ is

the standardized β, demonstrates how to return standardized β′ values back to their

original units [4]:

β̂j = (
sy
sxj

)β′j (4.10)

β̂0 = ȳ −
∑

i∈features

β′ix̄i (4.11)
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Category Feature Template Features

1 N/A

w = weight
1/w
log(w)
e−w

w2

2 N/A

s = sharedsize
1/s
log(s)
e−s

s2

3 N/A

σ(occs)
max(occs)
min(occs)

max(occs)−min(occs)

4 transform(Metric(CacheSize))

transforms = {σ, µ}
×

Metrics = {IPC,WIPC,MPI,MPA}
×

CacheSize = {16KB,w, s, p, lru}

5 transform(Metric(CacheSize1) - Metric(CacheSize2))

transforms = {σ, µ,max,min}
×

Metrics = {IPC,WIPC,MPI,MPA}
×

(CacheSize1, CacheSize2) =
(
CacheSize

2

)
Table 4.2: 214 Member Feature Set - Representation of 214 features used in this study
for model generation.

4.2.2 Isolating Features of Poor Performance

This study uses the ridge regression technique to isolate runtime attributes of poor

performance in a shared cache. As was alluded to at the beginning of this chapter, the

choice of features to use in building a model can be extremely important. Leaving out

a relevant feature can lead to a faulty model. Adding superfluous or useless features is

a lesser evil—if the model generation technique is capable of pruning useless features.

This section discusses the selection of features used in this study, as well as the

procedure used to generate composite features (like A ∧ B) from singleton features

(A, B).
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Singleton Features

In the hopes of having ML be the sole influence in selecting the most salient input

features, this study uses many, many features in the initial dataset. This avoids

having too much human intuition directing the potential solution. These features fall

into several subclasses, described below and listed in Table 4.2:

1. Five features that are based on baseline weight (as described in Chapter 3) are

used to find potential relationships between poor performance and weighting.

They are: weight, 1/w, log(w), e−w, and w2.

2. Five features based on overall shared cache size are used to find potential re-

lationships between poor performance and total shared cache size. They are:

shared, 1/s, log(s), e−s, and s2.

3. Four features relating to cache occupancy are used to find potential relationships

between the distribution of cache occupancy in an LRU cache among bench-

marks and poor performance. Occupancy is measured as the average occupancy

over the course of the entire simulation. The first feature is the standard de-

viation of the measured occupancies of all benchmarks (denoted hereafter as

σ(occs)), the second is the maximum of all occupancies (max(occs)), the third

is the minimum (min(occs)), and the last is the delta between the maximum

and minimum occupancies (max(occs) − min(occs)). Mean is not used here

because ostensibly the mean of all the occupancies would be C/N , where C is

total cache size and N is number of hardware threads.

4. Forty features are related to various performance metrics at particular cache

sizes. These are best explained by example. Figure 4.1 is a plot of a sample

workload: TPC-C, perlbmk, povray, and twolf. The x-axis is cache size, and the

y-axis is the resulting IPC response, produced by the analytical transformations
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on miss rate described in Chapter 3. The machine learning features in this

category are transforms of the y-values for all benchmarks at a particular x-

value. The x-values considered are: 16KB, weight, the cache size of a private,

equal-share cache (p), s, and the measured occupancy in an LRU simulation

(lru). Thus, the feature µ(IPC(s)) is the mean of all the IPC values of the

workload benchmarks at cache size s. These transforms (mean and standard

deviation) are performed on IPC, weighted IPC (WIPC), misses per access

(MPA), and misses per instruction (MPI). The cross-product of five cache sizes,

four metrics, and two transforms leads to 40 distinct features.

5. Finally, 160 features are related to performance at two different cache sizes.

Essentially, in an effort to avoid having to dynamically determine performance

online the way marginal gain techniques do, the intent behind these features

is to search for deltas in performance between two particular x-values on a

plot like Figure 4.1. Thus, an example of a feature from this category is:

σ(IPC(p)−IPC(s)), i.e., the standard deviation of every benchmark’s delta in

IPC performance between cache size p and cache size s. Thus, for every feature,

there are two x-values chosen out of five, resulting in ten possibilities. Each of

these ten are used on four metrics, and each of these are transformed to mean,

standard deviation, max, and min, yielding 160 features.

Composite Feature Generation Using YAGGA

It is easy to imagine that the relationship between workload behavioral features

and poor performance could take the form of some sequence of pairwise relationships

such as A ∗ B or A/B. Clearly, generating composite features of arbitrary length

using 214 features and various pairwise operations quickly explodes into an intractable

problem. To avoid this issue, this study uses YAGGA, a generating genetic algorithm

implemented in the RapidMiner data-mining tool suite. YAGGA is essentially a
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Figure 4.1: Sample Workload Plot - Sample plot of the workload consisting of bench-
marks TPC-C, perlbmk, povray, and twolf. On the x-axis is cache size (in KB), and
on the x-axis is IPC, as produced from CASPER miss rates and the analytical model
described in Chapter 3.

search heuristic [42], and stems from a general class of genetic algorithms, which are

computational procedures modeled after biological evolution and intended to yield

the “fittest” features [43].

Genetic algorithms are aimed towards subset selection problems, by which the

most relevant and valuable features in the context of a prediction model are selected

from the feature set. Genetic algorithms do this in an evolutionary manner, build-

ing on ideas of inheritance, mutation, and survival of the fittest. Probabilistically

generated subsets of the full feature set are used to build predictive models, and the

best (fittest) feature subsets are kept with high probability for breeding the next

generation of feature subsets. Breeding involves splicing two feature subsets together

to form a new subset. There can also be mutations between generations to slightly

perturb the solution space and avoid being stuck in local minima. Breeding new gen-

erations of feature subsets continues until M generations without improvement in the
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generated model’s predictive powers, or until a set number of generations is reached.

The intuition is that by breeding “fitter” subsets, eventually the best feature subset

for creating a useful model will be found, thus achieving the goal of subset selection.

While genetic algorithms are used for subset selection, they still do not address the

problem of generating potential composite features. This is addressed with generating

genetic algorithms, which modify genetic algorithms to also generate new composite

features as part of the breeding process. YAGGA is a specific implementation of such

an algorithm.

For both genetic and generating genetic algorithms, feature subsets are judged on

their fitness and viability according to user-defined definitions of fitness.

4.2.3 Evaluation Environment

The 16 benchmarks used in this study can generate 1,820 four-thread workloads,

each of which are run sharing a 1MB cache. These 1,820 workloads are broken up into

a training set, consisting of 445 workloads, and a test set, consisting of the remaining

1,375 workloads.

YAGGA is trained on the 445-workload training set to both generate composite

features from the 214 singleton features listed in Table 4.2, as well as select an optimal

subset of the total feature set, consisting of both singleton and composite features.

Fitness is judged by taking the selected subset and building a ridge regression model

to model the relationship between the selected features and the relative performance

between a statically partitioned cache for optimal Fair Speedup performance and an

LRU cache. That model is tested for error, which is used at the fitness measure of

that subset.

In this study, error is not so straightforward as raw error values—in this particular

usage it is more important to predict correctly when there is a large delta between

LRU and optimal performance. In other words, accurately knowing when LRU is
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vastly underperforming optimal is more important than accurately knowing when

LRU is only slightly underperforming against optimal. Thus, I use the measure shown

in Equation 4.12 as the error calculation. By weighting the error value against the

magnitude of the actual performance delta, mispredictions when performance deltas

are large are punished more strongly than mispredictions when performance deltas

are small.

error = abs(predictedV alue− actualV alue) ∗ abs(actualV alue) (4.12)

The subset of features selected by YAGGA tends to be larger than what is needed

by this study. This is partially on purpose; the seed parameter for deciding whether

a feature is part of the selected subset or not is a user-defined probability. Having a

probability that is too low reduces the “genetic variety” of each subset and makes for

a breeding process that is not effective at feature generation. This study uses a value

of p = 0.25, which means that the average feature subset examined from the initial

214 singleton features is around 54 features long.

In order to further reduce the feature subset into just the few most relevant, the

final, fittest feature subset selected by YAGGA is then further fed into a simple ridge

solver. This ridge solver provides the β̂ values for each of the features selected by

YAGGA. The ten features with the greatest magnitudes of β̂, implying high relevance,

are then selected for further evaluation.

These final ten are then selected, in order of the magnitude of their β̂s, to create

models using the top one feature, the top two features, and so on, all the way to using

all ten. These simple ridge solvers are programmed in MATLAB R©, which is simpler

to program, enabling more flexible definitions of error. Recall that the final goal of

this examination is to find salient runtime characteristics which indicate poor shared
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cache performance; the implication is that if this poor performance can be predicted,

then something can be done about it dynamically.

Fundamentally, this prediction of poor performance is a binary value. YAGGA

is used to effectively generate and prune the feature space for predicting large mag-

nitudes of performance deltas between an LRU and an optimally partitioned cache;

now MATLAB is used to quantize these numeric predictions into binary “poor” and

“acceptable” values. “Poor performance” is defined as having a Fair Speedup (FS)

measure more than 20% worse than the FS performance of a statically and optimally

partitioned cache of the same size.

With this sort of quantization, simple prediction error would merely encapsulate

misprediction rates, i.e., the percentage of times a workload was correctly labeled.

However, recall that in this usage model it is more valuable to make correct predic-

tions when there are large performance differences between LRU and optimal. In

light of this distinction, the custom error measure shown in Equation 4.13 is used to

determine the quality of a ridge model, assuming that a feature matrix X is multiplied

against the model β̂ to yield a prediction vector ŷ, with actual values represented

by y. Having an error measure as shown below creates a strong emphasis on getting

predictions correct for large magnitudes of performance difference.

thresh = 20%

weightSum =
∑
i∈ŷ


0 if correctPrediction

(y − thresh)2 if mispredicted

N =
∑
i∈ŷ


0 if correctPrediction

1 if mispredicted

weight =

√
weightSum

N

weightedError = 0.75 ∗ weight+ 0.25 ∗mispredictRate

(4.13)

73



In the end, the best models with respect to the above weighted error are produced

for one, two, three, and up to ten features. Each model is then tested against the

1,375 workloads not used in the training set to generate a final prediction error. From

these, I make qualitative judgements on the marginal gain of reduction in prediction

error versus increase in model complexity to determine a final model.

4.2.4 Results

From 214 singleton features, YAGGA selected 74 features, 42 of which are gener-

ated composite features. When these 74 features are fed into the simple ridge solver,

the top ten features are:

1. σ(occs)

2. σ(MPI(w))

3. µ(IPC(p))

4. σ(MPI(p))

5. µ(IPC(16KB)− IPC(lru))

6. σ(IPC(16KB)− IPC(lru))

7. σ(MPI(p)) ∗ µ(MPI(16KB)−MPI(lru))

8. max(WIPC(w)−WIPC(lru)) ∗ µ(MPA(w)−MPA(lru))

9. µ(MPA(16KB)−MPA(w)) ∗ µ(IPC(w)− IPC(s))

10. σ(occs) ∗ σ(MPI(16KB))

Ideally, a model would include only a few features—obviously a 10-feature model

using all the features just listed would be extremely complex. The only reason to
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consider it would be if a model with 3 or so features does not provide reasonable

predictive capability.

In the end, the model using the top three features, i.e., the three features with

the greatest β̂′ values, yields the best “bang for buck” in attempting to optimize both

complexity and accuracy. Excluding mispredictions within 5% of the 20% threshold

(to emphasize accuracy when LRU and optimal performance differ widely), the model

with the top two features yields a misprediction rate of 4.1%, while the top three

yields a model with a misprediction rate of 2.76%, and the top four features yields

a model with a misprediction rate of 2.83%. This highlights one of the unwieldy

aspects of the ridge regression—increasing the number of features used in a model

does not monotonically increase the accuracy of a prediction. This can occur because

certain aspects of the model need to be present in groups; when using the top five

features, the misprediction rate goes down to 2.03%, indicating the the fourth feature

really needs the fifth feature to be included in the model to be useful. Clearly, the

three-feature model optimizes simplicity and predictive capability.

The final features chosen from the list above are: 3, 6, and 8, leading to the

model shown in Equation 4.14. A graphical representation of the results are shown

in Figure 4.2.

y = 0.22673

−0.88603 ∗ µ(IPC(p))

+0.44529 ∗ σ(IPC(16KB)− IPC(lru))

−2.64678 ∗max(WIPC(w)−WIPC(lru)) ∗ µ(MPA(w)−MPA(lru))

(4.14)

Red bars indicate the model makes a correct prediction that LRU is within 20%

of optimal FS performance. Blue bars indicate the model makes a correct prediction

that LRU is more than 20% worse than optimal. Black bars indicate a false positive;
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Figure 4.2: Stacked Histogram Results - A stacked histogram representing the re-
sults of the YAGGA/Ridge generated prediction model. The overall mispredic-
tion rate (the white, black, purple, and green bars bars, together) is 15.5%, with
a weightedError = 0.096, and weight = .080, indicating a mean squared differential
from the 20% threshold of 8%, for all mispredictions. When excluding the mispre-
dictions that are within the 5% noise threshold, the misprediction rate goes down to
2.76%.

i.e., a workload was incorrectly predicted problematic, while white bars indicate a

false negative, i.e., a workload was incorrectly predicted to be sufficient under LRU.

The light blue and purple bars indicate that, while predictions prove incorrect, they

are within 5% of the threshold.

The results prove to be reasonably good—a total misprediction rate of 15.5%. The

mean squared distance from the 20% threshold when mispredicted is 8%, meaning

that mispredictions when far the the 20% threshold are rare. When ignoring the

mispredictions within the 5% noise limit, the misprediction rate is only 2.76%. While

the results prove to be reasonably good, particularly since the number of outright

mispredictions at the extreme ends of the histogram in Figure 4.2 are very few, there

is little intuition with this model. The ability to translate the model in Equation 4.14
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to a runtime detector in a shared cache for detecting poor behavior is tenuous at

best, and the utility of the model in guiding the mechanism for mitigating poor

performance is virtually nonexistent. Thus, this study, while successful in building

an accurate analytical model, does not provide the hoped for insight into building a

simple run time predictor for poor performance.

4.2.5 Conclusions

This study makes a number of methodological decisions that, in hindsight, turn

out to be sub-optimal. From this experience I draw the following conclusions:

• When using machine learning to extract salient features through feature selec-

tion for a certain outcome, it is important to realize that the power of ML to

zone in on a uniquely optimal model is only as good as the differences between

the features in the feature set fed to it. For example, given a feature set consist-

ing of MPA(16KB) and MPI(16KB), the ML mechanism could be hard pressed

to strongly be in favor of either feature because they are so highly related. ML

can be counted on, however, to realize that MPA(16KB) is likely much more

useful than the age of the owner of the machine a workload is running on for

predicting poor cache performance. Thus, it is overly optimistic to count on

ML for teasing out minimally optimal models in an extremely massive search

space.

• In a related note, using such highly correlated features in conjunction with a

generating genetic algorithm (GGA) for composite feature generation proves to

be somewhat unstable. The idea behind a GGA is to expand the feature space

prudently in a probabilistic way, and prune the feature space prudently in a

probabilistic way. With such a huge feature space and such correlated features,

it is not always clear how to be prudent. Something else is needed for composite
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feature generation.

• Generating complicated singleton features such as σ(MPI(s) −MPI(lru)) is

impractical, and the assumption that the very best and most salient features

will be extracted and provide insights to solutions turns out to be optimistic.

Not only does the model generated in this study not provide clear insights

into how to alleviate poor shared cache performance, it also does not provide

clear insights into how to build realizable detector in hardware. The intention

behind feeding a wide, detailed, and varied set of features in to ML was to find

a highly accurate model first, and then dial back the precision in order to build

a realizable model. However, with this feature set and with this final model,

this proves to be an impractical approach. At best, this provides a baseline

comparison for more practical predictors.

4.3 Decision Tree Analysis

4.3.1 Background

This section relies on a different approach than ridge regression and YAGGA, and

uses decision tree analysis to find and extract salient runtime features for poor cache

sharing performance. Decision tree learning leverages the concepts in information

theory to associate features to outcomes in a simple manner.

In a decision tree, each node represents a feature, while each branch represents

a value, or a range of values, for that feature. The leaf nodes of the tree provide

a classification into a bin for the outcome in question, which must be discrete. For

the purposes of this thesis, the leaf nodes would classify a workload datapoint into

“poor” or “acceptable” categories, where “poor” and “acceptable” are defined in the

same way as in the YAGGA/ridge study.
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The process of decision tree model creation utilizes the concepts within informa-

tion theory and the idea of entropy [43], where entropy is the level of variability in the

values of a random variable. Mathematically, for a dataset where y can have values

of {y1, y2, y3, ...ym} and p(yi) indicates the probability that y = yi, entropy is defined

as:

Entropy(y) = −
m∑
i=0

p(yi)log2(p(yi)) (4.15)

As an example, a dataset with output vector y that has 50% of datapoints with

y = True and 50% with y = False has maximal uncertainty—if the value of y is

unknown, there is no educated guess that is better than another. This distribution

has maximal entropy. However, if the distribution is such that there are 85% of

datapoints with y = True and 15% of datapoints with y = False, then even if the

value of y for a new datapoint is unknown, betting that y = True is a good guess.

The goal of a decision tree is to have as few nodes as possible en route to leaf

nodes which classify datapoints into values of y with good certainty, i.e., minimal

entropy. The most basic algorithm recursively divides a dataset to maximize infor-

mation gain, i.e., choosing the best feature that will minimize entropy for the next

node. Information gain Gain(y, F ) is the expected reduction in entropy from sorting

on feature F, and is mathematically defined as:

Gain(y, F ) = Entropy(y)−
∑
f∈F

|yf |
|y|

Entropy(yf ) (4.16)

One issue with recursing based on information gain is that attributes with many

different values can be selected first, without providing much actual predictive gain.

For example, an airline attempting to build a model predicting behavior of their

frequent flyers could potentially build a model with frequent flyer number as the root

node attribute. This would minimize entropy, but yield little actual value because of
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the one-to-one relationship of frequent flyer number to customer. Building a decision

tree based on information gain in this case would yield a model which begins with

something like, “If passenger’s frequent flyer number is 1234567, then...” which clearly

is not helpful to the airline.

The way around this is to use gain ratio as the decision-making parameter for

forming a node, rather than information gain. The intuition behind gain ratio is

to specifically counter the useless entropy reduction of a many-valued feature F by

considering the entropy of F itself. Gain ratio is the ratio between information gain

from sorting on F and the entropy of the vector F itself; selecting a node based on this

attribute reduces the chances of the airline scenario just described. Mathematically,

gain ratio is:

SplitInformation(y, F ) = Entropy(F)

GainRatio(y, F ) =
Gain(y, F )

SplitInformation(y, F )

(4.17)

Decision trees can also easily be used for features with continuous numerical val-

ues rather than just discrete values—the values merely need to be converted to dis-

crete form, e.g., a feature like Weight from Table 4.1 could be converted into a

true/false feature like Weight > 135, or even a multi-valued feature with possible

values Weight < 120, 120 <= Weight < 135, 135 <= Weight < 150.

A decision tree (DT) model alleviates the feature generation difficulty faced by

the YAGGA technique because composite features do not need to be generated

explicitly—instead, the construction of the tree creates composite features. All paths

from root to leaf represent a composite feature where the features of the path nodes

are connected by an AND relationship. With the branches representing values, a tree

could easily be constructed to mean (A ∧ B)||(¬B). While the ability to generate

more complex pairwise relationships such as A
B

or 1
A

(when A is numeric) is lost when

moving from YAGGA to DTs, the experience with YAGGA indicates that simplicity
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is a boon. Additionally, given that part of the problem with YAGGA is the explo-

sion of problem space, eliminating unlikely pairwise relationships between singleton

features is hardly a loss.

4.3.2 Isolating Features of Poor Performance

Based on the lessons from the YAGGA/ridge approach, this study reduces the

feature set used by a great deal. Additionally, other modifications are made to the

feature set as a result of experiences in the YAGGA/ridge study. First, the features

based on w and s never showed up in any top models, so those are eliminated here.

Second, in the YAGGA/Ridge study, features were constructed based on the inter-

relationships between all benchmarks running together, at a given cache point, e.g.,

µ(IPC(w)). While this approach does emphasize the dependence of a workload’s

behavior on the relationships between threads, this approach masks the effect of a

single benchmark’s behavior on shared cache performance. In particular, during the

iterative process of building the YAGGA/ridge methodology, I found myself struggling

with interpreting features that rely on standard deviations, for which I could not

associate the high values or the low values with any benchmark. Even worse was

when models were generated with features relying on the σ of one metric, in addition

to the σ of another metric. In these cases I would wonder whether the high values of

one were associated with the high values of another.

Thus, the features in this study are constructed based on two principles, detailed

below:

• Primarily there is a focus on simplicity; rather than having features of the form

σ(MPA(w)−MPA(s)), which are not only complicated to grasp immediately,

but certainly difficult to measure effectively in a running system, this study

focuses largely on simpler features.
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Category Feature Template Features

1 Metric1(Place(Metric2))

Metric1 = {MPA,MPI,MPC, IPC,Occ}
×

Metric2 = {MPA,MPI,MPC, IPC,Occ}
×

Place = {Biggest, 2nd, 3rd, Smallest}

2 transform(Metric)
transform = {max,min, σ, µ,max−min}

×
Metric = {MPA,MPI,MPC, IPC,Occ}

Table 4.3: 125 Member Feature Set - Table describing the 125 features for the decision
tree approach. Occ refers to the percentage of occupancies for each benchmark, not
the absolute space usage.

• To avoid masking the behaviors of individual applications without losing a

sense of interplay between them, this study ties individual performance to

their relative ordering in the workload; i.e., there is a set of features as fol-

lows: Largest(MPA), 2nd(MPA), 3rd(MPA), Smallest(MPA). Addition-

ally, there are feature sets of the form Occ(Biggest(MPA)), Occ(2nd(MPA)),

Occ(3rd(MPA)), Occ(Smallest(MPA)) to indicate the associated occupancies

of each workload, in order. These sorts of features allowed for a clearer view of

the relations between benchmarks in the workloads.

In the end, there are two classes of features for this study. The first is of the

form: Metric1(Place(Metric2)), such as Occ(Largest(MPA)) as just described.

Metric1 and Metric2 can be {MPA,MPI,MPC, IPC,Occ}, while Place ranges

from “Largest” to “Smallest”, yielding 100 distinct features. The other class of

features is more relational, as in the YAGGA/ridge study, and are of the form

Transform(Metric), e.g., max(MPA), totaling 125 features. A table of all features

used in this study is shown in Table 4.3.
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4.3.3 Evaluation Environment

This investigation uses the decision tree implementation available in the Rapid-

Miner tool suite [42]. There are two primary user-specified parameters in this tool.

The first is the criterion for deciding which feature to use for the next node, i.e.,

information gain or gain ratio, as described in the previous section. The other pa-

rameter is the depth of the tree to be used; in order to limit the complexity of the

models produced, this study uses three to four levels.

The data points used in this study are the same as the YAGGA/ridge study, with

445 four-application workloads as the training set, used to create the model, and

1375 four-application workloads as the test set, used to test the model. All prediction

results are with respect to performance on the test set.

The primary goal of this study is to learn something valuable for the construction

of a useful mechanism for detecting and alleviating poor shared cache performance.

The YAGGA/ridge study demonstrates the unwieldiness of using YAGGA for feature

generation; it also shows the potential folly of using overly complex features as part

of the dataset.

As a result, to separate the effects of ML technique from the selection of features

used, this study begins first with using the exact same feature set as in the previous

YAGGA/ridge study but with the decision tree model-building technique. Subsequent

examinations involve the decision tree technique with the feature set just described

in the previous section.

Note that in this study, because decision trees must have discrete classification at

the leaves, there is no custom error measure as in the previous YAGGA/ridge study.

Those custom error measures are enabled by quantitative error values; here, error is

judged purely in misprediction rates.
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(a) Depth=3 (b) Depth=4

Figure 4.3: Decision Tree: YAGGA Feature Set - Decision Tree produced when using
gain ratio as the node decision factor and the feature set used in the YAGGA/ridge
study. A three-level model results in a 12.5% misprediction rate, while the four-level
model results in a 10.7% misprediction rate. Compare this to the 15.5% misprediction
rate achieved with the YAGGA/ridge methodology.

4.3.4 Results

The tree produced when using the feature set from the YAGGA/ridge study with

three levels of tree and using gain ratio for making node decisions is shown in Fig-

ure 4.3. When using a tree depth of three, the model mispredicts 12.5% of the 1375

workload test set, and when using a tree depth of four, the misprediction rate drops to

10.7%. Not only does this model prove to be more accurate than the YAGGA/ridge

model, but it is simpler to understand as well. This result demonstrates the better

suitability of decision tree analysis for this investigation. In addition, fewer steps are

required to produce this model (as indicated by the methodological descriptions), and

the compute time is reduced by several orders of magnitude. From start to finish,

a YAGGA/ridge model can take several hours to compute, while the decision tree

models shown take several seconds.

In the depth four tree, the third order predictor for poor performance is

min(WIPC(16KB) −WIPC(s)), which is a harder feature to grasp and certainly

difficult to measure in real time on a system. Now that decision tree learning is
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(a) Depth=3 (b) Depth=4

Figure 4.4: Decision Tree: New Feature Set - When using the full 125 features, a
three-level tree results in a 16.4% misprediction rate, while a four-level tree results in
a misprediction rate of 14.98%.

confirmed to be less complicated as well as more accurate than YAGGA/ridge, this

study moves towards finding an even simpler model using more intuitive features.

Using the feature set described in Section 4.3.2, the decision tree technique is

applied; again using three to four levels of tree depth and gain ratio as the node

criterion. The results of using all 125 features are shown in Figure 4.4. What is clear

from this is that the single most important factor in determining whether a shared

cache will exhibit poor performance is if the MPI of the application occupying the

largest portion of cache is above 0.094 (since this feature is the root node of both

trees). Note that the DT algorithm discretized the MPI feature for optimal gain

ratio, and the result is this 0.094 value shown in the figure. Put more abstractly, if an

application is occupying a large amount of cache space but has an MPI higher than

what should be expected, considering the cache space occupied, then the workload

is likely to show poor cache performance. This is a helpful feature because not only

is the meaning clear, but it points the way towards a possible way to mitigate the

performance problem—reduce the cache occupancy of the biggest cache occupier.
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The secondary factors are further down in the tree, and their meaning is less

glaringly clear. The second node, which translates literally to “If the application

with the 3rd largest MPI value, i.e., the application with the 2nd best MPI (since

lower MPI is better), has an occupancy less than 17.4%, then this workload is likely to

have a performance problem.” In the context of trying to build a realizable detector in

hardware, this requires an additional level of translation to be meaningful. However,

the crux of this DT model is not totally clear. This secondary factor could mean

that the 2nd best performer is only nominally so, because the greedy top performer

is pushing down the performance of all other threads. It could also mean that in

caches where the 2nd best performer is capable of doing well despite a small cache

allocation, there is a performance problem. The tree model is incapable of making

this distinction without human intervention to pinpoint the true meaning with better

precision.

Intuition would clearly imply that the true meaning of the secondary branch factor

in Figure 4.4 is the former; that the 2nd best performer is actually a low performer

because the best performer is greedy and has taken up much of the cache. Fortu-

nately, since decision trees can be built in a matter of seconds, the feature set can be

manipulated in order to create models with more clarity.

Through an iterative process, this study pares down the feature set to a limited

subset in order to maximize the clarity of meaning of the resultant decision tree,

as well as to maximize the buildability of an on-line predictor. References to MPI,

MPC, and IPC are eliminated such that all features are related to either occupancy

or MPA. The reasoning behind this stems from the idea of measurability in a real

system. MPI and IPC rely on information about instructions, which is inherently

tied to the execution core of a system, not the memory subsystem. Thus measuring

this information cannot be done locally at the cache without some design changes

extending beyond the cache. Since this study aims to find a simple way to detect
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(a) Depth=3 (b) Depth=4

Figure 4.5: Reduced Feature Decision Tree - When using the reduced set of 25 fea-
tures, a three-level tree results in a 20.2% misprediction rate, while a four-level tree
results in a misprediction rate of 18.7%.

poor cache performance at runtime, removing these features from contention will show

whether this can be done using only features that are easily measurable dynamically.

Removing MPI and IPC leaves occupancy, MPA, and MPC. Occupancy is clearly

an important factor that is distinct from MPA and MPC, while MPA and MPC are

clearly somewhat correlated. Design-wise, in a runtime prediction system the fewer

things that need to be tracked the better, and for a small loss in predictive precision

results from removing either MPA or MPC, the gain in hardware simplicity is likely

to be worth it. MPA is kept in favor of MPC because of the locality of measuring

both misses and accesses at the cache. Thus, out of the 125 features originally used,

25 remain. Results for this feature set are shown in Figure 4.5. These are the final

results of this study, which qualitatively optimize tree simplicity, intuition provided,

and potential detector buildability.

The clear trend in moving from a large, complex feature set to a smaller feature set

consisting of simpler, more measurable features is a distinct reduction in prediction

accuracy. However, the primary goal of this investigation is not to produce the best

predictive model, but to produce the best predictive model that leads to a simple,
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buildable mechanism for detecting poor performance in a shared cache. As expected,

there is a tradeoff between accuracy and simplicity. However, even at the level of

simplicity in the reduced feature set model at three levels of depth, there is a clear

message and a reasonable amount of knowledge to build upon. This reduced feature

set produces a three-level tree with a 20.2% misprediction rate. Put another way,

nearly 80% of poor performers are discovered with this model.

Translating the DT model shown in Figure 4.5 indicates that if the miss rate

of the largest cache occupier is greater than 85.2%, and the occupancy of the 3rd

largest cache occupier is less than 16%, then the workload is very likely to have a

performance problem. Thinking more deeply about this, a miss rate of the largest

cache occupier says nothing about whether the largest cache occupier is actually large,

i.e., an application could have a miss rate of 92% and occupy 28% of the cache (the

rest of the applications having 24% each), or an application could have a miss rate

of 92% and occupy 80% of the cache, leaving the remaining 20% to be split among

the remaining three applications. Increasing the accuracy of prediction requires the

second node, which says the 3rd largest occupier is 16% or less. Thus, the smallest

occupier is 16% or less as well, meaning the two largest occupiers of the cache take

up at least 68% of the cache.

In more abstract terms, pegging workloads as poor cache performers when an

application in that workload occupies a large amount of cache while still maintaining

a high cache miss rate will net most of the actual poor performers. For this level

of simplicity this is extremely useful information. In hindsight, it is also somewhat

obvious. However, nothing in the literature takes advantage of this connection. The

next chapter of this dissertation attempts to build a mechanism based on this result.

To further increase predictive accuracy, the four-depth tree has one more decision

node to consider, which adds an additional stipulation for classifying a workload as a

poor performer. This stipulation states that only when the MPA of the 3rd occupier is
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greater than 5.8% is the workload problematic. What this really shows that if the 3rd

occupier, which has been squeezed into 16% or less of the cache, has a very low miss

rate, then there actually is not a performance problem. In other words, it is unlikely

the 3rd occupier is being negatively affected by having a small cache allocation if

its miss rate registers below 5.8%, so letting the large occupiers have their large

allocation is not a problem. This minor addition improves prediction accuracy by

1.5%, to 18.7%, by refining the decision process for determining whether a workload

has poor performance. The additional 1.5% increase in prediction accuracy represents

about 20 workloads of the 1,375 workload test set.

With this result, this study achieves its aim of extracting a few simple and salient

characteristics for detecting poor shared cache performance during runtime. While

the prediction rate is not especially high, the utility of the model meets the intent of

this study, and the knowledge that a few simple characteristics cannot fully predict

poor performance is not unexpected.

At this point, it is worth breaking down the error rates of these models into more

detail. The results for the reduced feature set decision trees are shown in Table 4.4.

The vertical columns “Poor” and “Acceptable” represent the actual nature of the

workloads tested, while the horizontal columns indicate the predictions generated by

the tree. Class Precision and Recall are concepts in information science. Precision

refers to the purity of predictions; in this case, if all “Poor” predictions are actually

poor, then the tree has good precision. Recall, on the other hand, refers to ability

of the predictor to detect every case correctly; in this study, good recall would entail

tagging most poor workloads as “Poor”.

What is clear from these results is that the primary source of misprediction is

in falsely predicting a workload has poor performance when in fact it does not. In

general, the vast majority of workloads which truly are poor performers are correctly

cast as such (i.e., good recall). This is also valuable information to consider when
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Poor Acceptable Class Precision
Pred. Poor 366 266 57.92%

Pred. Acceptable 12 731 98.38%
Class Recall 96.83% 73.32%

(a) Depth=3

Poor Acceptable Class Precision
Pred. Poor 363 243 59.90%

Pred. Acceptable 15 754 98.05%
Class Recall 96.03% 75.63%

(b) Depth=4

Table 4.4: Learning Results - Table showing the results of decision tree analysis on
the 1375 workload test set using the reduced feature set models from Figure 4.5.

crafting a mechanism for detecting poor performance. This result indicates that what

a mechanism built based on these models must guard against is false positives; at the

same time, this mechanism is unlikely to miss many opportunities, as it will likely

detect most problematic scenarios.

4.4 Conclusions

This study achieves the stated goal of using a machine learning technique to

discover simple, salient characteristics for poor shared cache performance. Results

show that the first-order predictor for poor performance is when the largest cache

occupier in a workload also has a high cache miss rate. A second-order predictor

adds that the “largest” must indeed be quite disproportionately large. Finally, a

third-order predictor states that even if the two conditions above are present, there

is only a performance problem if the smallest cache occupiers suffer from non-trivial

miss rates.

These simple predictors can easily be used to craft a dynamic mechanism for both

predicting and alleviated poor shared cache performance in a real-time system, which

is done in the next chapter of this dissertation.

This chapter of the dissertation also provides useful conclusions about the nature

of machine learning as a research tool. The results dispel the notion that machine

learning can be relied on to automatically extract useful conclusions without intel-

ligent human intervention. In the first place, it is extremely important to use the
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appropriate ML mechanism. Ridge regression makes it difficult to generate compos-

ite features, and this study finds that rather than using a complicated iterative tech-

nique like YAGGA to probabilistically generate composite features, a much simpler

technique like decision tree learning can be used to more directly find useful com-

posite features, and with better accuracy. The experience from this chapter shows

that the tuning required to make a complex mechanism like YAGGA/ridge useful

makes the technique unattractive. Researchers are likely better served using simple

ML techniques, particularly when seeking generalizations rather than precise models.

The other major conclusion of this chapter is the paramount role features play in

building useful models. Machine learning is not an oracle; in order for it to give a

useful answer it must be fed useful features from which to build an answer. At the

same time, giving an ML block every potential feature imaginable may not result in

the most useful model—unless the ML technique is sensitive enough to parse through

noisy data to find an optimal model. For best results, the search space needs to be

discrete enough that the ML can more easily separate good results from bad ones.

The next chapter attempts to build on the results from the decision tree models to

create a feasible run-time detector for poor shared cache performance. Given that the

crux of poor performance is having a large cache occupier which also has a poor miss

rate, it seems logical that reducing the cache occupancy of this large occupier would

be a viable way to improve shared cache performance. This hypothesis is tested in the

next chapter by building a mechanism in an architectural simulator to investigate.

91



CHAPTER 5

Scalable Lightweight Adaptive Management

The work from the previous chapter indicates that a mechanism for detecting poor

shared cache performance should rely on detecting when a cache sharer occupies a

disproportionately large amount of space while maintaining a high cache miss rate.

I now turn to the crafting of such a mechanism, propose a scalable and feasible

solution based on the findings of the previous chapter, and provide an evaluation of

this mechanism’s ability to improve shared cache performance.

To motivate this approach, recall from Chapter 2 that most proposed cache man-

agement schemes proactively search for a partitioning of cache capacity that is optimal

under some metric [18, 35, 48, 57, 65]. These proposals iteratively assign allocations

to threads for the duration of an epoch, monitor the resulting performance, then

adjust the allocations accordingly for the next epoch. This approach has several

shortcomings. For large-scale platforms (potentially up to hundreds of threads by

2015 [9]), exploration of the space of possible allocations will be very slow, and may

never approach a optimal solution within a relevant timeframe as the optimal solution

shifts due to program phase changes and context switches. Additionally, determining

the appropriate epoch length is difficult [51, 56]. Finally, identifying an appropriate

and feasible on-line metric to optimize requires making seemingly arbitrary choices

among a variety of reasonable throughput and performance metrics that can lead to
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different allocations, as demonstrated in Chapter 3. Only several more recent ap-

proaches attempt to improve shared cache performance without explicitly seeking an

optimal partition [33, 54].

In this study, I propose a new reactive approach to shared cache management.

Instead of searching for an optimal partition, this mechanism seeks to detect poor

performance and mitigate it when it happens, doing nothing otherwise. The detection

mechanism design is guided by data from the machine learning study from Chapter 4

which indicates that the most important factors contributing to poor performance is

when a sharer of the cache has a miss rate unbefitting its cache occupancy. Because

common LRU and pseudo-LRU replacement policies perform well for shared caches in

many situations, as shown in Chapter 3, there is often no need for further optimiza-

tion. These results from the previous two chapters lend credence to the hypothesis

that a reactive approach from an LRU baseline is feasible.

The experiments in this chapter show that

1. identifying and throttling individual threads that cause poor performance is

sufficient to improve overall throughput, rather than attempting to find a global

optimum operating point;

2. these problematic threads can be identified using very simple, scalable exten-

sions of performance counters provided by existing platforms; and

3. this thread-local approach lends itself to providing differential quality of service

merely by adjusting the criteria by which a thread is considered problematic.

Specifically, problematic threads are identified as those that use the cache in-

efficiently, bringing in (and displacing) a disproportionate share of data while still

suffering a high miss rate. The genesis of these criteria from their ML roots are

discussed further in Section 5.1. These problematic threads can be detected using

two simple components—the Misses Per Access Counter (MPAC) and the Relative
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Insertion Tracker (RIT)—which provide weighted historical averages of each thread’s

local miss rate and its cache insertion (miss) rate relative to other threads. These

mechanisms require a total of three counters and one register per thread (less than

50 bits of state), plus one global counter for the platform, and are driven off the same

events that are typically already collected to drive performance counters on current

platforms. As a result, these components do not require any changes to the core of a

conventional cache design and scale easily with increasing thread counts.

These lightweight performance monitors are combined with a thresholding mecha-

nism and a simple throttling control to create a framework called Scalable, Lightweight,

Adaptive Management (SLAM) for shared caches. A thread whose MPAC and RIT

values both cross their respective thresholds, indicating a high miss rate despite a dis-

proportionate rate of cache insertions, is prevented from displacing blocks belonging

to more efficient threads by modifying the replacement priority of its newly allocated

blocks [39, 47].

SLAM also lends itself to providing differential quality of service by using different

MPAC and RIT thresholds to determine whether a thread should be throttled. As-

signing larger thresholds to a thread indicates that the thread has higher priority, and

thus can be allowed to use the cache less efficiently than its peers before being penal-

ized. Conversely, lower thresholds cause SLAM to hold threads to a higher efficiency

standard, penalizing them at efficiency levels that would otherwise be acceptable.

This chapter makes the following contributions:

• it presents a novel conceptual approach to shared cache management, based on

reactive throttling of inefficient threads rather than proactive optimization of

cache policies, which is more scalable as thread counts increase.

• it shows that inefficient threads can be detected adequately using simple, scal-

able, low-overhead mechanisms—MPAC and RIT—that do not require modifi-

cations to a conventional cache structure.

94



• it combines these simple monitoring mechanisms with a throttling mechanism

based on LRU priority insertion to create SLAM.

• it demonstrates via simulation that SLAM provides performance optimization

competitive with the best published approach across hundreds of workload

mixes and several cache sizes.

• it shows that, unlike prior performance optimization approaches, SLAM also

enables thread prioritization via varied per-thread thresholds.

5.1 SLAM

Recall from Chapter 4 that a workload has a high likelihood of poor shared cache

performance if a thread occupies a large portion of the cache while maintaining a high

miss rate. In essence, this is really making a statement about the efficiency of cache

usage—intuitively a cache that occupies a large cache allocation should also have a

low miss rate. Prediction accuracy can be improved by adding the stipulation that a

low-occupancy thread have a non-trivial miss rate. In crafting the SLAM framework,

the primary focus is proposing a mechanism that is not just effective, but scalable

and feasible. With this in mind, the additional stipulation is not considered for the

first incarnation of SLAM.

Also, recall from Section 2.2.1 that tracking the occupancy of multiple threads

of a cache is a non-trivial endeavor, particular as thread counts scale. This makes

measuring occupancy for this detection mechanism a difficult endeavor. However, it

seems likely that the crux of the result from Chapter 4 is not about occupancy, but

rather about cache efficiency. I make the observation that tying cache insertions to

performance is a very similar measure of efficiency—if a thread is bringing in many

blocks to the cache, then it should also have a low miss rate. Since insertions are

much easier and much lower overhead to track, SLAM is built around insertion rates
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rather than occupancy.

Thus, the SLAM framework seeks to detect when a hardware thread’s utilization

of the cache falls below some threshold of efficiency. If it does, then its usage of

the cache should be reduced in order to allow the cache to be used by more efficient

threads. The idea can be stated in simple terms: if a thread is responsible for bringing

some proportion of blocks into the cache, it should have a reasonable miss rate to

show for it. We describe the concept here; specific definitions of “reasonable” are

addressed in Section 5.1.3.

Every workload execution can be characterized by a graph such as the one shown

in Figure 5.1, where the relative insertion ratios of the various hardware threads in

the execution are plotted on the x-axis, against the resultant miss rate on the y-axis.

The figure shows results from a workload used in our experiments (Mix 8 in Table 5.1

sharing 8MB of cache). Viscerally, it seems clear that the right-most point, with a 48%

miss rate and responsible for nearly 57% of the insertions to the cache, is not using

the cache efficiently and should be restricted from displacing potentially useful blocks

from other threads. Given a certain standard of efficiency, we can identify inefficient

threads in this manner. While more complicated schemes are certainly possible,

e.g, curve-based thresholds, we use a quadrant-based technique for implementation

simplicity and leave exploration of more sophisticated mechanisms for future work.

5.1.1 Detecting Poor Utilization

The key to detecting whether threads are in the poor utilization zone at runtime is

tracking the x- and y-axis values from Figure 5.1 effectively. Once a thread’s behavior

has been placed somewhere in the plot, it is easy to deem it inefficient based on thresh-

old checking. We describe how we track these values in the following subsections, and

discuss how we determined appropriate threshold values in Section 5.1.3.
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Figure 5.1: SLAM intuition illustration using real data from Mix 8 in Table 5.1
sharing 8MB of cache. Each point represents an application in the workload and its
associated runtime properties. Clearly, the far-right point (lbm) is not using the cache
efficiently.

MPAC - Misses Per Access Counter

An exact measurement of misses per access (MPA) would require a division, which

is clearly to costly too implement in a real system. Instead, we present MPAC (Misses

Per Access Counter), a novel technique which approximates the misses per access

value and requires only two counters per thread. One counter is incremented when a

miss is incurred by its thread, and another is incremented on every access from that

thread. When the access counter saturates and rolls over, the miss counter is right-

shifted a single bit, thus halving the value. This study uses a counter ten bits wide,

which is experimentally shown to be sufficient for high performance. Essentially, this

is a representation of the weighted history of miss rate. The miss counter will never

exceed 11 bits1, so the hardware overhead is merely two counters of 10- and 11-bits,

plus the minimal logic to right shift upon rollover. We use this implementation for

all of our experiments.

1This counter is upper-bounded by the geometric series 1024×
n∑

i=0

(
1
2
)i → 2048.
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Because MPAC is a weighted history of misses rate, we can easily translate MPAC

values to miss rate percentages. For example, an MPAC value of 2,047 represents a

weighted history of 100% miss rate, while an MPAC value of 1,024 translates to a

weighted history of 50% miss rate.

RIT - Relative Insertion Tracker

The typical measure of utility in a cache relates miss rate to cache occupancy.

However, an exact measurement of cache occupancy would involve a counter per

thread that increments whenever a line is brought into the cache on behalf of that

thread, and decrements every time a line from that thread is evicted. This necessitates

that every cache line be tagged with a thread ID to know which counter to decrement

upon the eviction of a line.

To avoid this overhead, we present Relative Insertion Tracker (RIT) which tracks

only the relative insertions into the cache, rather than occupancy. As a result, RIT

obviates the need to pay attention to evictions. At the same time, RIT maintains the

information levels needed to make an informed judgment regarding utility. A thread

that inserts many lines ought to be using them, i.e. not have a high miss rate.

To implement this solution, we merely need one counter and one register per

thread, plus an additional global counter per shared cache. Every time an insertion

is made to the cache, the global insertion counter and appropriate thread insertion

counter are incremented. When the global counter saturates and rolls over, per-

thread insertion counter values for all threads are read into their per-thread registers.

Then, the per-thread insertion counters are right-shifted one bit to provide a weighted

history of relative insertions across all threads. When a threshold check is performed,

it is done on the register, not the counter, to avoid sawtoothing from the right-shifts.

For symmetry, we use the same counter width as MPAC for the global counter (10

bits), and each thread’s RIT is subject to the same geometric series rule as MPAC,
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with a maximum value of 2,047.

5.1.2 Mitigating Poor Utilization with Throttling

Once a thread is deemed to be using the cache inefficiently, a modified insertion

policy is used to rectify the problem. Previous work indicates that accesses can be

deprioritized by modifying the insertion policy to insert incoming lines into the LRU

position of a cache set [39, 47]. SLAM uses this LRU insertion technique as the

throttling mechanism to dial back the cache usage of inefficient threads. Specifically,

SLAM uses the BIP policy [47], which inserts blocks into the LRU position with

high probability. By doing this, the lifespan of that line is reduced, along with the

possibility of displacing a useful line belonging to a more efficient thread.

The decision to throttle is made on a per-access basis. When a miss occurs, while

the miss is sent to memory, the MPAC and RIT counters affiliated with the thread

making the miss are checked against their threshold values. If the thread is to be

throttled, then LRU insertion is achieved merely by not updating the state of the

cache set, i.e., not promoting the block to the MRU (most recently used) position.

5.1.3 Honing SLAM

With the theoretical framework of SLAM complete, some experimentation is re-

quired pin down specific design details. The exact threshold values generated from

the ML decision trees of the previous chapter are not used. Recall that those models

were generated based on data from trace-driven simulations; thus while the models

are useful for discerning first order effects, it is unlikely that the exact miss rate

threshold generated by the model is useful in a more realistic situation. Thus, all

threshold parameters are experimentally evaluated here. First, several samples of

MPAC thresholds are tested, using all combinations of four workloads chosen from a

pool of 11 SPEC CPU2000 workloads (no repeats) yielding 330 combinations.
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Figure 5.2: Varying MPAC Threshold - Varying the miss rate threshold in SLAM with
four applications sharing 1MB of cache. Notice the clear tradeoff between increasing
the sensitivity of SLAM with increasing the number of false positives.

The results shown in Figure 5.2 are for both Fair Speedup and Weighted Speedup,

two common multiprocessor cache sharing metrics described further in Section 5.2.1.

The n% in SLAM-n% indicates the threshold value for deciding an MPAC value is too

high. All 330 combinations are plotted in a single column. The top quartile of values

is shown by the markers above the box, the bottom quartile is shown by the markers

below the box, and the mean of all values is indicated by the red horizontal line

notched in the center box, which encapsulates the values of the middle two quartiles.

Because of the number of workloads examined, we find this an efficient way to show

a large volume of results without reducing values down to merely means or averages.

As expected based on the findings from Chapter 4, SLAM is subject to false

positives, as evidenced by the workloads that fall below the LRU baseline of 1.0.

To combat false positives, SLAM utilizes the dueling technique [47], which pits two

policies against one another to determine the better policy during runtime in a low

overhead manner. The results of dueling SLAM against a standard LRU policy are

shown in Figure 5.3.

In Figure 5.3, SLAM-12.5% throttles when the MPAC has measured a weighted

history of miss rates exceeding 12.5%. There is a distinct trade-off between max-
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imizing the detection of poor utilization and the number of false positives. While

SLAM-12.5% catches many more poor performers than SLAM-50%, it also catches

many that should have been left alone, causing the LRU policy to kick in from duel-

ing and losing opportunities to improve performance. Meanwhile, SLAM-50% is more

cautious and has a higher average performance, but misses some opportunities at the

top end. A happy medium is SLAM-25%, which provides an average FS improvement

of 3.4% over LRU, and a maximum of 13.1%; and an average WS improvement of

5.7% over LRU and a maximum of 22.5%. We use SLAM-25% with dueling for the

remainder of the paper unless otherwise specified.
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Figure 5.3: SLAM with Dueling - Fair Speedup and Weighted Speedup are common
CMP shared cache metrics, described further in Section 5.2. For both metrics, 25%
appears to maximize the top end of improvement (up to for 13.1% and 22.5% for FS
and WS, respectively) without harming average performance (3.1% and 5.7%) over
LRU.

The RIT threshold was initially set to be 1/N of the cache for N hardware thread

for all experiments. This has an intuitive satisfaction, in that a thread would only

be throttled if it overstepped its fair share of the cache. However, results show that

setting a threshold of 1/2N allows for greater performance due to greater flexibility.

There is very little room for reshuffling resources with a threshold of 1/N , which

limited the amount of performance gain to be had. Instead, when using a RIT
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threshold of 1/2N , performance gains are improved due to the increased latitude for

resource management given to the system. For the remainder of these experiments,

the RIT threshold is set at 1/2N , e.g., 12.5% of insertions to the cache on a four-

thread system, unless otherwise specified.

5.1.4 Using SLAM for QoS

As discussed in Chapter 2, quality of service (QoS) has a clear definition in net-

working, but it is much less clear in the context of shared computing platforms.

Nesbit, et al. [45] focus on the performance isolation aspect of QoS and defines it as

performance on allocated resources at least as good as if those resources comprised a

private machine. Iyer, et al. [32] propose three potential definitions, described in Sec-

tion 2.3, as RUM, RPM, and OPM. Even in a single paper, there is not a consistent

definition for what QoS means.

What is consistent is that proposals for QoS in the cache generally presume fine-

grained control of cache allocation. However, lessons learned from shared cache per-

formance optimization problem space indicate that this is unwieldy, especially since

recent proposals for shared cache management avoid this necessity. Additionally, seek-

ing a specific partition to best satisfy some stated goal can be difficult to converge,

particularly as platforms scale.

This thesis seeks to push QoS research along the same road as performance opti-

mization, such that prescriptive cache allocations are not the focal point of providing

QoS. After all, even Cisco’s Internetworking Technology Handbook describes QoS pri-

marily as a means of providing prioritization, rather than primarily as a means to

guarantee resources [13]. Given the difficulties in tracking and enforcing exact cache

resource usage, on top of the existence proof of using differentiation rather than re-

source guarantees as a cornerstone of networking QoS, providing differentiated QoS

seems like the more appropriate form of QoS for cache.
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This dissertation presents SLAM, based on the simple yet information-rich MPAC

and RIT techniques, as a provider of differentiated cache QoS in terms of a resource

efficiency metric–decisions are not made based on cache usage, as in RUM, or on

performance, as in RPM or OPM. By basing the decision on efficiency, and in concert

with the observation that efficiency can be measured in a lightweight manner, SLAM

can avoid the algorithmic and measurement pitfalls demonstrated from prior work in

shared cache management while still maintaining meaningful guarantees.

By exposing the thresholds for determining poor utility to software, every thread

can have individual standards according to priority. Essentially, rather than having

fixed lines in the plot in Figure 5.1, there can be a pair of lines (one horizontal, one

vertical) for every running thread according to their priority level, thus increasing

or decreasing the leniency to which cache efficiency standards are applied. Thus,

we can translate the priority differentiation provided by SLAM in a tangible and

meaningful way; if a thread is very important, a service provider could guarantee

that an application will get to use as much of the cache as it can take in competition

with other currently running threads, as long as it falls within some standard of

efficiency, e.g., a 75% miss rate and 57% of insertions.

This concrete meaning could be valuable in the context of marketing in commercial

virtualization, or even for system administrators. In the results section, we show that

SLAM can provide QoS without seeking or enforcing fine-grained cache partitions.

5.2 Methodology

This section discusses the metrics and benchmarks used in this chapter, as well

as the simulation environment used to test SLAM.
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5.2.1 Metrics

Metric selection can be one of the more important aspects of system design be-

cause it has such a heavy influence on the design decisions. Chapter 3 discusses

the differences among a number of cache-sharing metrics. Since there are various

aspects of performance that can be considered important, there is no single metric

that is all-encompassing. Least useful in a multicore context is raw IPC, which masks

information about individual performances; thus it is not used in these studies.

In keeping with earlier results in this thesis, one of the metrics used to judge SLAM

is Fair Speedup. Fair Speedup (FS) was proposed by Chang and Sohi [12] as a metric

that effectively captures fairness as well as throughput in a single measurement. The

equation is given in Equation 4.1, but it is essentially the harmonic mean of weighted

speedups over an equal-share private cache baseline. FS is an intuitively pleasing

Utopian metric and measures performance relative to a private caching scheme.

At the same time, most of the literature on shared caches includes a form of

Utilitarian metric. In order to effectively compare against other schemes, Weighted

Speedup (WS) [53], is also used in these studies. WS typically uses a thread running

alone on a platform as its baseline, but this makes little sense for large-scale plat-

forms. Instead, this study uses a private equal-share cache as the baseline, essentially

IPC-Private-Util.

Note that, because FS represses the contribution of high-fliers, the range of FS

performance improvements is generally smaller than that of WS, which includes large

individual improvements over equal share “at value.”

5.2.2 Benchmarks

This study begins with a detailed analysis on a small set of interesting workloads

that include mixes of SPEC R©CPU2000, SPEC R©CPU2006, and SPECweb R©99 bench-

marks. The misses per 1000 instructions (MPKI) profiles of these benchmarks are
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Figure 5.4: MPKI Graph - Misses per thousand instructions (MPKI) for hybrid
workloads.

shown in Figure 5.4. To keep these detailed studies tractable, the following set of

experiments focus on 16 different combinations of four workloads. The combinations

used are shown in Table 5.1. The numerals at the end of application names indicate

whether they come from CPU2000 or CPU2006, and preceding letters, if any, indicate

the reference input set used if disambiguation is necessary. For example, hmmer.r.06

indicates the hmmer benchmark from CPU2006 using the retro reference input set.

In addition to these detailed studies, this study also includes a set of experiments
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Mix App1 App2 App3 App4

Mix0 art110.00 applu.00 hmmer.r.06 xalancbmk.06
Mix1 mcf.00 art110.00 xalancbmk.06 specweb
Mix2 perlbmk.s.00 twolf.00 libquantum.06 specweb
Mix3 mcf.00 art110.00 soplex.p.06 specweb
Mix4 mcf.00 soplex.p.06 xalancbmk.06 specweb
Mix5 applu.00 twolf.00 hmmer.r.06 specweb
Mix6 art110.00 equake.00 soplex.p.06 specweb
Mix7 mcf.00 hmmer.r.06 soplex.p.06 xalancbmk.06
Mix8 mcf.00 hmmer.r.06 astar.r.06 xalancbmk.06
Mix9 applu.00 equake.00 xalancbmk.06 soplex.p.06
Mix10 twolf.00 equake.00 astar.r.06 specweb
Mix11 perlbmk.s.00 vpr.r.00 xalancbmk.06 astar.r.06
Mix12 equake.00 twolf.00 astar.r.06 lbm.06
Mix13 art110.00 xalancbmk.06 lbm.06 specweb
Mix14 xalancbmk.06 mcf.06 milc.06 gcc.s04.06
Mix15 sphinx.06 mcf.06 hmmer.r.06 soplex.r.06

Table 5.1: Workload Mixes - Workload Mixes for Detailed Studies

using a comprehensive set of workloads, comprising all combinations of N applica-

tions from a set of 11, ten being from SPEC CPU2000, and one from SPECweb. The

miss profiles for these benchmarks are shown in Figure 5.5. For the baseline of four

threads, this means 330 workload combinations. Since this thesis aims for scalabil-

ity, there is also scalability study for which up to 16-application combinations are

run simultaneously. Because more simultaneous applications make simulation time

infeasibly long, a random number generator is used select a tractable subset from

all combinations of 16 workloads from a set of 19 SPEC CPU2000 applications plus

SPECweb, resulting in 28 16-application workloads. In these scalability studies, dou-

bling the number of threads doubled the size of the cache, such that C/N is held

constant.

For the comprehensive studies, computational limitations preclude testing exhaus-

tive combinations of all SPEC CPU2006 benchmarks. Given that CPU2006 workloads

tend to have larger cache and memory footprints, I had fewer machines capable of

running such workloads, and running a comprehensive of tests using CPU2006 appli-

cations would have taken more computational time than desired.
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Figure 5.5: MPKI for comprehensive workloads. Note that due to the extremely high
miss rates of mcf and art110, the variation of the remaining workloads appears muted
from the scale of the graph.

5.2.3 Simulation Environment

This study uses the M5 Simulator [7] under the Alpha ISA to perform simulations.

As opposed to the trace-based simulation platform used in earlier portions of this

thesis, this environment is more realistic, incorporating timing in the memory system.

The following experiments use an in-order 1 CPI, single-threaded CPU with a timing

memory system with two levels of cache. Each core has a private IL1 and DL1 cache,

each 16kB in size and 4-way set associative, with a 2-cycle access latency. The L2

cache is shared among all cores and is 16-way set associative with a 20-cycle access

latency. Block size for all caches is 64 bytes. The memory latency simulated is 350

cycles. Writebacks do not update LRU state.

Simulations were run until all benchmarks in a workload reached one billion in-

structions, with the exception of mcf and art110, which were run to 500 million

instructions in order to conserve computation time. Statistics for each benchmark

were updated until it reached its instruction limit, but the benchmark continued to

run in order to contend for the cache.

All CPU2000 benchmarks were run from their respective SimPoints [46], while all

107



CPU2006 workloads were run after fast-forwarding one billion instructions due to the

lack of published Alpha SimPoints for SPEC CPU2006.

5.3 Results

This section details the results along three major axes of study: detailed studies,

for which the workloads in Table 5.1 are studied in depth; comprehensive studies, for

with all combinations of SPEC CPU2000 are used; and QoS studies, which examine

the suitability of SLAM for providing differentiated QoS.

5.3.1 Detailed Studies

Figure 5.6 shows the 16 detailed study workloads described in Table 5.1 on the x-

axis plotted against their relative performance against a private cache configuration

on the y-axis. Thus, the sum of the bars is the total WS of its affiliated policy,

while the harmonic mean of all the bar components is the FS. Consequently the left-

most bars of each cluster, representing the private configuration, sum up to 4.0. This

experiment compares a private cache configuration against LRU, TADIP, and SLAM.

What the graph shows is a small but clear advantage to using SLAM when the

resources are most limited, at the 1MB cache size (Figure 5.6a). At other cache sizes,

performance more or less matches that of TADIP, demonstrating that SLAM is robust

and competitive at a variety of cache sizes.

An interesting thing to note is that for the same workloads across different cache

size, the gains to be had do not come from the same benchmarks. For example,

looking at Mix2, under 1MB the SLAM is able to give more space to App4, yielding

an improvement in performance. However, for 2 and 4MB, given the different region

of operation within the application miss rate profiles, SLAM is able to appropriately

give more cache space to App2. Finally, under 8MB, SLAM provides useful cache
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Figure 5.6: Detailed Results - Stacked WS graphs for four applications sharing various
cache sizes. Notice that the increases in performance across sizes do not always come
from the same applications, affirming SLAM’s ability to detect runtime behavior and
is not dependent upon any prior knowledge of an application.
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space to App2 and App3. This agility of operation demonstrates the robust nature of

SLAM in terms of assessing the real-time behaviors of applications that are running.
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Figure 5.7: Geometric Mean Results - Geometric means of FS and WS results across
all 16 workloads for all cache sizes studied.

Figure 5.7 shows the geometric means of both FS and WS across the cache sizes

examined above. It is quite interesting to note that despite the completely differ-

ent approaches taken by TADIP and SLAM for identifying threads that should be

throttled, on the whole performance is comparable.

5.3.2 Comprehensive Studies

In addition to the detailed studies described in Section 5.3.1, this set of experi-

ments is meant to ensure that this approach is reasonable as a comprehensive solution.

The only way to do this is to perform more comprehensive testing. These experiments

reflect the performance of 330 workloads for 4 threads, 165 for 8 threads, and 28 for

16 threads. The methodology behind benchmark selection is detailed in Section 5.2.2.

Varying Cache Size

Figure 5.8 shows our results for SLAM with four threads sharing 1MB and 2MB of

cache. As in the detailed studies above, SLAM outperforms TADIP when the cache

size being shared is 1MB. We believe this is as a result of the set pinning mechanism
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Figure 5.8: Varying Cache Size - FS performance for four applications sharing 1MB
and 2MB. At 1MB, SLAM has both a better max improvement and average perfor-
mance (13.1% and 3.4% vs. 11.4% and -0.7%, respectively), while at 2MB, the two
behave comparably (21.5% max and 6.1% average for TADIP, and 20.7% and 6.0%
average for SLAM).

in TADIP which requires 64 sets of the cache to be pinned to one policy per thread –

32 to standard LRU and 32 to the BIP policy. That means that at any given moment,

32×N sets of the cache are performing the “wrong” policy for their particular thread,

which can be an burdensome overhead when the cache size being shared is not overly

generous. Thus, if these techniques were ever to be applied to shared mid-level caches

in a three-level hierarchy, SLAM is likely the better candidate.

Scalability

To ensure scalability, SLAM is tested under all 165 combinations of eight work-

loads sharing 2MB, as well as a small randomized subset of 16-thread workloads,

taken from a larger pool of SPEC CPU2000 applications, sharing 4MB. The results

are shown in Figure 5.9. SLAM is scalable not just in terms of hardware overhead,

but in its ability to improve performance as well. TADIP and SLAM continue to be

comparable, though the relative performance of TADIP again improves slightly with

larger caches. It is possible that since the thresholds for MPAC and RIT were tuned

for four threads sharing 1MB (see Section 5.1.3), SLAM would be more competitive
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Figure 5.9: Scalability Results - The results for FS are in the first row, WS in the
second row. Again, despite the highly different approaches, the two schemes perform
comparably well. For FS, SLAM outperforms TADIP at four threads, and is within
1.5% of TADIP in mean performance at 8 threads, and is within 1% at 16 threads.

using different thresholds.

5.3.3 QoS

Using the MPAC and RIT monitors presented in this dissertation, SLAM can

easily be translated into a useful provider of differentiated QoS. Merely by adding the

ability for software or a higher level QoS policy to set MPAC and RIT thresholds,

SLAM can go from being a performance optimization to a framework for providing

differentiated QoS based on prioritized efficiency thresholds.

One potential way to do this in a commercialized environment is to provide set

service level guarantees. Table 5.2 lists a possible structure for providing differing

levels of QoS. In this setup, higher service levels are guaranteed to never be throttled

unless they are using over their equal share of insertions, while lower service levels

are held to basic SLAM standards of 1/2N . The primary point of variation here

is the change in miss rate standards, ranging from a 10% threshold at the lowest
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service level, and a 100% miss rate at the highest (essentially guaranteeing never to

be throttled).

High/Low Level MPAC Threshold RIT Threshold

Low
0 10% 1/2N
1 15% 1/2N
2 25% 1/2N

High
0 50% 1/N
1 75% 1/N
2 100% 1/N

Table 5.2: Service Level Thresholds - Potential structure for providing different QoS
service levels in a commercial shared platform.

Figure 5.10 shows a simple proof of concept; a strawman case of four copies of

SPECweb running on a shared 1MB cache, where one of the copies is considered high

priority and the rest are low priority. All nine {High}×{Low} possibilities are shown.

The blocks comprising each stack are the performance of each copy of the benchmark

relative to standard SLAM for performance optimization. The high priority copy is

designated by the x-axis label. The first immediately apparent phenomenon is that

when the low priority copies are running L0, very high performance is accorded to

the high priority thread, to the point that total performance exceeds basic SLAM

(as evidenced by the stack height being above 4.0). It is clear here that reducing the

priority of the low priority threads gives a big advantage to the high priority thread.

This phenomenon is slightly reduced when the low priority copies are at service level

L1, with the low priority threads improving slightly in performance, and the high

priority threads reducing somewhat. When low priority is L2, however, performance

is almost indistinguishable from basic SLAM, in large part because of the minor

difference between L2 and H0.

When examining the changes that result from varying H0 to H2, however, there

are hardly any changes apparent. This is because of the SPECweb benchmark—miss

rates do not go above 50% unless the cache size allotted is extremely small, so for
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Figure 5.10: Four copies of SPECweb sharing a 1MB cache. Each stack represents
a different copy as having high priority, as designated by the x-axis label. All nine
combinations of High and Low service levels given by Table 5.2 are tested and shown
here.

this case, all the high priority service levels are functionally equivalent. However, if

the workload examined were different, such that miss rates tended to be very high,

these high service levels would be differentiated, much the way there is differentiation

in the low priority levels.

Note that all of the stacks in a single graph are not merely shifted copies of each
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other because the copies are offset from each other by one million instructions so that

all of the benchmarks are not running in lockstep.

In short, this figure demonstrates that SLAM is capable of providing differentiated

service that can potentially lead directly to improved performance, in particular by

reducing the priority of lower priority threads.

A more realistic demonstration of SLAM for QoS is shown in Figure 5.11. Pic-

tured are four workload instances from the detailed studies of Section 5.3.1 where

an inefficient thread was sacrificed in favor of another for the sake of higher overall

performance. Here, those threads are labeled high priority with varying definitions

of high priority.

The low priority threads are held at standard SLAM thresholds, i.e., L2, while

high priority threads range through H0 to H2. Performance for all schemes are shown

relative to LRU, with the high priority thread on the bottom.

Across all cases, SLAM provides a non-trivial performance benefit over LRU,

trading the performance of a low-efficiency thread for a higher one. When the high

priority thread is given small amount of preferential treatment, Cases 1, 2, and 3, get

all if not more of the sacrificed performance back. Case 0 needs even more preferential

treatment to get its performance back, but at the cost of all the gains obtained by

SLAM. The application in this case is lbm from Mix 13 sharing 2MB of cache, which

has a miss rate of 60% and an insertion rate of 33% in the LRU case over the entire

simulation. This is quite inefficient. So, depending on how important lbm really is,

or what service levels its owner has paid for, a user or QoS policy can decide what

thresholds to set. What is interesting here is that, unlike in the strawman case,

increasing priority from H0 to H2 does in fact produce an effective improvement in

performance for the high priority thread; in this case, it is because the high priority

threads tend to have high miss rates and having MPAC thresholds varying above

50% produces noticeable variations in behavior. Conversely, varying the low priority
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threads between L0 and L2 has little effect; plots for L0 and L1 are virtual replicas

of Figure 5.11 and are not shown.

The upshot of these results is that a high priority thread could potentially achieve

higher performance either by running alongside very low priority threads, or by hav-

ing a high service level. Either way, SLAM can leverage MPAC and RIT to provide

a toolbox for providing differentiated quality of service. While this toolbox cannot

guarantee certain amounts of performance, it can guarantee certain degrees of pref-

erential treatment.

It is worth noting that giving the sacrificed thread high priority can sometimes

result in higher overall performance than with standard SLAM. Recall that SLAM is

not a complex enforcement of some calculation of optimal — rather, it is just a series

of local decisions which leverage the observation that threads which are inefficiently

using the cache are probably hurting the ability of other threads with better utilization

properties to use the cache. Given the simplicity of the SLAM scheme, it is not

surprising that it does not provide optimal performance in every instance, but here,

even when evidence of that is exposed, the differences are minimal.
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Figure 5.11: Threads whose performance was sacrificed in SLAM in favor of other
threads are treated as high priority threads, under increasingly lenient standards,
where SLAM-H2L2 indicates that the high-priority thread is never throttled. In-
creasing priority can bring the performance of the sacrificed thread up to LRU levels,
with various amounts of sacrifice for overall performance.
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In general, these studies show that leveraging MPAC and RIT in the SLAM frame-

work can translate to flexible and meaningful QoS prioritization. SLAM can poten-

tially be deployed in commercial virtualization environments, with different levels of

service corresponding to different prioritization levels that can be easily explained to

customers.

5.4 Conclusions

This chapter outlines a new direction in shared cache management, based on

reactive throttling of inefficient threads rather than proactive resource allocation,

whereby the criteria for detecting inefficiencies stem from empirical analysis with ma-

chine learning discussed in Chapter 4. I present an embodiment of this approach,

Scalable Lightweight Adaptive Monitoring (SLAM), which makes thread-local throt-

tling decisions based on very lightweight per-thread performance monitors. These

two novel monitoring components – the Misses Per Access Counter (MPAC) and the

Relative Insertion Tracker (RIT) – are simple and scalable to hundreds of thread

contexts, and do not require modifications to a conventional cache structure.

Comprehensive simulations of hundreds of workloads across multiple cache sizes

show that SLAM provides global performance improvements competitive with the

best published approach. Unlike previous approaches, SLAM’s intuitive approach

of throttling inefficient threads also enables differentiated quality of service using

the same hardware structures. A thread’s cache priority can be modified simply by

adjusting the threshold values used to classify it as inefficient, such that higher (lower)

priority threads will be less (more) likely to be throttled.

In short, SLAM is a simple, flexible, low hardware cost, low design cost, scalable

solution for not only providing performance optimization in a shared cache, but also

for providing differentiated QoS by allowing differing standards for cache efficiency.
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SLAM addresses the need for a scalable, feasible cache management scheme that can

also meet the emerging needs for providing QoS in large-scale server platforms.
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CHAPTER 6

Conclusions and Future Work

This dissertation focuses on shared cache management in the context of large-scale

server class machines. The results is a prescription for how to approach the design of

a high-performance shared cache for large-scale chip multiprocessors which deviates

from much of the established literature. Cache designers should focus on reacting to

and alleviating poor cache allocations, rather than explicitly searching for an optimal

allocation during run time. The reasons for this are two-fold. First, studies in cache

metrics from Chapter 3 reveal that there is no one perfect metric that encompasses

all positive attributes in shared cache performance. Indeed, sometimes optimizing

for one means poor performance in another. While some metrics, characterized by

this thesis as “Utopian” in nature, balance fairness and throughput by measuring

the harmonic mean of the performance of all sharers, optimizing for Utopianism can

sometimes mask losses in aggregate performance up to 40%, or losses in fairness with

differences in standard deviation up to 0.25. Since there is no one metric which is

clearly superior, seeking an “optimal” partition during run-time seems futile. Second,

using this reactive approach has much less inherent complexity than an algorithm that

seeks optimal partitions at run-time.

In keeping with this philosophy, this dissertation uses established machine learning

techniques to extract salient runtime characteristics which indicate that a shared
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cache is suffering from poor allocation and requires attention. A fair amount of effort

was required to produce a methodology that could provide useful results. This thesis

discusses some of the lessons and pitfalls in using machine learning for research. For

the purposes of this work, decision tree analysis is superior to ridge regression analysis.

The result of this machine learning study provides direction for how to build a

simple, scalable, feasible cache framework for identifying poor cache sharing situations

and how to mitigate these situations. This dissertation presents Scalable, Lightweight,

Adaptive Management (SLAM) as a framework for managing shared cache. SLAM

consists primarily of two performance measurement facilities that are a novel contri-

bution of this work. The Misses Per Access Counter (MPAC) is a weighted history

measure of per-hardware thread misses per access in the cache. The Relative Inser-

tion Tracker (RIT), measures the relative rates of insertion into the cache from each

contributing hardware thread. Together, identifying when a thread is using the cache

inefficiently is a simple matter knowing when a thread’s MPAC value exceeds a cer-

tain threshold (experimentally determined to be a value representing 25%), and when

that same thread’s RIT value exceeds a certain threshold (experimentally determined

to be 1/2N on a system with N hardware threads). When a thread is detected to

be inefficient, its cache capacity is throttled by placing its insertions to the cache in

the least recently used position of a cache set with high probability, rather than the

typical most recently used position, which has been demonstrated previously as an

effective way to reduce cache occupancy.

The machine learning study presaged the number of false positives produced by

this policy. These false positives can be mitigated by pitting the SLAM policy against

the standard LRU replacement policy via dueling, a technique used to select the better

of two policies during run-time. The resulting SLAM framework can provide signif-

icant performance gains over LRU performance. With respect to the Fair Speedup

metric in comprehensive four-thread studies involving 330 distinct workloads, SLAM
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provides an average improvement of 3.4% over LRU, and a maximum of 13.1%. Per-

formance gains are on par with the best scalable solution in the literature.

The SLAM framework does not merely provide effective performance optimization.

This dissertation makes the case that, as in the networking world, the concept of

quality of service (QoS) in a shared resource should primarily focus on differentiation

and preferential treatment, rather than explicit guarantees about resource usage or

performance. As such, the SLAM framework is a natural provider for this sort of

differentiated QoS. Threads can easily be prioritized based on more lenient efficiency

standards, or by placing stricter efficiency standards on other threads. This can be

done without adding new hardware on top of basic SLAM. Studies in Chapter 5 show

that by altering the efficiency thresholds for individual hardware threads, SLAM can

provide improvements in performance for thread designated as high priority.

Although SLAM is an effective technique on its own, the mechanisms and approach

taken in this work can be fruitfully extended in several ways. First, SLAM itself can

likely be improved by better tuning of thresholds and slightly more flexible throttling

conditions. Additionally, revisiting the third-order effect as extracted by the ML

studies in Chapter 4 could lead to even better detection of poor cache performance.

Also, the information provided by the MPAC and RIT, both individually and

together, can very likely be profitably employed to improve performance in other parts

of the system. For example, prioritizing cache miss requests belonging to the thread

with the lowest RIT value would be a very low-cost way of improving fairness in cache

and memory bandwidth allocation. Bitirgen et al. [8] have studied coordinated control

of the memory subsytem using learned behavior; providing the memory controller with

information of known value can reduce the complexity of the learning algorithm, or

even obviate the use of one.

Exposing MPAC and RIT values upward to the operating system could be used to

influence scheduling decisions within a single platform or thread migration decisions
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across different nodes in a cloud computing environment. While the information

provided by these mechanisms is similar to that obtainable via performance counters,

MPAC and RIT automatically provide weighted historical averages of key event ratios

for each thread, values that would require significant software overhead to maintain

based on raw event counters.

Finally, SLAM could be useful in the context of a highly software threaded ma-

chine, where the number of software threads far exceed the number of hardware

threads. Saving the limited state of SLAM upon a context switch could make for

improved performance when a thread is switched back to a running state.
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