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Chapter I 

INTRODUCTION 

Population-based health studies in a community or in the nation require a well-

planned survey design.  Sampling designs usually involve multistage cluster sampling 

and unequal selection probabilities.  A statistical analysis that ignores the complex design 

feature could lead to biased estimates and invalid inferences of the population quantities.  

To make valid inferences for the target population, survey design information needs to be 

incorporated in the statistical analysis.  This thesis is concerned with two major topics of 

finite population inference.  In Chapter II and III, I focus on the model-based inference of 

finite population proportions and quantiles in unequal probability sampling.  In Chapter 

IV and V, I study two specific problems of incomplete data analysis from complex 

survey samples. 

In descriptive survey inference, the target population consists of all the units in the 

population, from which the sample is drawn.  Let N be the number of units in the 

population and let { }NYYYY ,,, 21 …=  be the outcome variable of interest.  Let 

{ }NIIII ,,, 21 …=  be the indicator of inclusion in the sample, with 1=iI  if iY  is 

observed and 0=iI  if iY  is not observed.  The indicator for inclusion is fully observed 

for all the units in the population.  Assume that the probabilities of selection 

{ }Nππππ ,,, 21 …=  are known for all the units in the population before a sample is drawn.  

Let s be an unequal probability random sample and n be the number of units in the
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sample.  The survey outcome Y  can be partitioned into two parts, where obsY  denote the 

sample values with 1=I  and obsnonY −  denote the non-sampled values corresponding to 

0=I .   

There are two inferential paradigms in the estimation of population values for survey 

samples.  They are design-based and model-based inferences.   

In the design-based framework, the population is regarded as fixed whereas the 

inference is based on the random distribution of the sample inclusion indicator.  The 

random distribution refers to the distribution of the estimates that result from all possible 

samples under the sampling design.  Horvitz and Thompson (1952) formulated three 

classes of linear estimators for population totals in unequal probability sampling and 

derived the most commonly used design-based Horvitz-Thompson estimator: 

∑∈
=

si iiyT πˆ .  When the population total of an auxiliary variable X associated with Y 

is known and X is observed in the sample, a more efficient estimator is the ratio estimator 

( )∑∑∑ =∈∈

N

i isi iisi ii xxy
1

ππ .  These design-based estimators are design consistent 

(Isaki and Fuller 1982) and provide reliable inferences in large samples by assuming 

asymptotic normality.  However, the design-based estimators are potentially very 

inefficient.  Moreover, the small sample distribution of the design-based estimators is 

generally unknown.  The variance estimation is not clear and sometimes cumbersome 

because it requires second-order selection probabilities.   

An alternative approach is model-based inference.  The model-based approach 

assumes that the finite population has itself been generated from a super population.  If 

the super population can be specified with some distribution, the values in the non-

sampled units can be related to the values in the sample via the assumed super population 
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distribution.  For the population total, the model-based estimator is defined as 

∑∑ ∈∈
+=

sj jsi i YYT ˆˆ , where jŶ  is the predictor of jY  from some regression model.  

When some auxiliary or design variables are available, the model-based estimator, by 

employing the relationship between the survey outcome and these auxiliary or design 

variables, can improve the efficiency compared to the design-based estimators (Smith 

1976).  In general, the variance of the design-based estimators is larger than the model-

based estimators under a given model. The increase in variance is higher the smaller the 

sample size and the larger the variability of the weights (Pfeffermann 1993, 1996).  

Model-based inference is a predictive statistical inference.  In contrast to the design-

based estimators, the inference of the model-based estimators is based on the distribution 

of Y instead of the randomness in the sampling process.  Therefore, the variance and 

confidence interval are more straightforward to calculate in model-based inference. 

When the sampling design is defined by a set of design variables other than the 

response variable and the design variables are included in the model, the design 

mechanism is ignorable.  Rubin (1983) showed that when the probability sampling 

mechanism satisfied ( ) )|Pr(,|Pr πIXYI = , where X are the design variables, the 

selection probabilities provide a complete summary of the data used to make sampling 

decisions.  Thus, conditioning on π  the sampling design is ignorable and modelers 

should focus primarily on the proper specification of the conditional distribution of the 

outcome variable given the selection probabilities. 

The model-based prediction estimator is efficient under the assumed model, but is 

potentially subject to very large bias when the underlying model is misspecified.  

Parametric models are not adequate to approximate all continuous functions.  Recently, 
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efforts have been made to develop nonparametric model-based inference of descriptive 

population quantities.  In Kuk (1993), a kernel-based estimator was proposed, which 

combines the known distribution of the auxiliary variable with a kernel estimate of the 

conditional distribution of the survey variable given the value of the auxiliary variable.  

Chambers, Dorfman, and Wehrly (1993) also gave a model-based estimator using kernel 

smoothing to estimate distribution functions.  Zheng and Little (2003, 2005) estimated 

the finite population total using a nonparametric regression on a penalized spline (p-

spline) of the selection probabilities for continuous survey data.   

In Chapter II and III, I extend the penalized spline model-based estimator for 

population totals proposed by Zheng and Little (2003) to estimate population proportions 

and quantiles using penalized splines on the selection probabilities.  I consider the setting 

of one-stage unequal probability sampling without clusters or strata, ignoring the 

problems of nonresponse and post-stratification.   

In Chapter II, I give a Bayesian p-spline predictive (BPSP) estimator of proportions 

that is suitable for a binary outcome.  I adopt a Bayesian approach to inference for this 

model, since Bayesian methods often yield better inference for small sample problems 

and are conveniently implemented for our proposed model via the Gibbs' sampler 

(Gelman, Carlin, Stern, and Rubin, 2004).  Simulation studies show that the BPSP 

estimator is more efficient, and its 95% credible interval provides better coverage with 

shorter average width than the sample-weighted and the generalized regression estimators, 

especially when the population proportion is close to zero or one for small samples.  

Compared to parametric model-based predictive estimators, the BPSP estimators achieve 

robustness to model misspecification and influential observations in the sample.  
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In Chapter III, I develop two robust Bayesian model-based estimators of finite 

population quantiles for continuous survey variables in unequal probability sampling.  

The first method is to estimate cumulative distribution functions of the continuous survey 

variable using the BPSP approach.  The finite population quantiles are then obtained by 

inverting the distribution function, but heavy computation is involved in this procedure.  

Therefore, I consider the second method that posits a smoothly-varying relationship 

between the continuous survey variable and the probability of selection by modeling both 

the mean function and the variance function nonparamtrically.  Simulation studies show 

that both methods yield smaller root mean squared errors than the sample-weighted 

estimator.  With spare data included in the sample, the 95% credible intervals of the two 

new methods have closer to the nominal level confidence coverage than the sample-

weighted estimator.   

The second part of the thesis focuses on incomplete data analysis with complex 

survey data.  In survey studies, item nonresponse happens when particular items are 

missing for an individual.  If the amount of item nonresponse is nontrivial or if a small 

amount of nonresponse occurs in several variables in different individuals, the default 

strategy of eliminating all incomplete cases from the analysis wastes data that is costly to 

collect, and can lead to problematic inference for the target population.  Item nonresponse 

is often handled by multiple imputation (Rubin 1987; Little and Rubin 2002).  Multiple 

imputation refers to a procedure of replacing each missing value by multiple imputed 

values.  In Chapters IV and V, I discuss two statistical issues in using multiple imputation, 

which are motivated by the University of Michigan Dioxin Exposure Study (UMDES). 
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The UMDES was designed to assess exposures to polychlorinated dibenzo-p-dioxins 

in the adult population of Midland and Saginaw Counties, Michigan, USA. (Garabrant et 

al, 2009)  The sampling used a stratified two-stage area probability selection of housing 

units and a third stage of selection of an eligible person within each sample housing unit. 

(Lepkowski et al. 2006)  As is typical in surveys, item nonresponse was encountered in 

the UMDES and was handled by multiple imputation.  By measuring factors that reflect 

potential exposure to dioxins, the study sought to determine factors that explain variation 

in serum dioxin concentrations.  However, within the framework of multiple imputation, 

the complete-data variable selection methods often yielded a different selected model 

from each imputed data set, which posed difficulties in pooling the variable selection 

results across multiple imputed data sets.  Some authors suggest including in a model 

variables that were selected (for example using stepwise selection) in at least 3 out of 5 

(60%) of the imputed data sets (Heymans et al. 2007; Wood et al. 2005; Brand 1999).  I 

refer to this variable selection strategy as the “select then combine” (SC) method.  For 

simplicity, researchers also perform stepwise variable selection with any one of the 

multiply imputed data sets.  I call this approach the “single imputation” (SI) method.  In 

Chapter IV, I develop a “combine then select” (CS) method which calculated combined 

p-values using the multiple imputation combining rule and then selected variables based 

on the combined p-values in each step of the selection.  The CS method leads to a single 

selected variable set.  With the CS method, uncertainty due to missing data is taken into 

account in the variable selection process, which leads to a parsimonious model.  

The limit of detection (LOD) issue has posed formidable limitations to the estimation 

of serum dioxin concentrations in the general population.  The LOD is defined as the 
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concentration of analyte which gives a signal equal to a laboratory blank (obtained when 

no analyte is present) plus three times the standard deviation of the blank. (Keith et al. 

1983) The LOD represents the level below which we cannot be confident whether or not 

the analyte is actually present.  Conventional approaches of imputing the values below 

the LOD as 0, LOD, LOD/2, or LOD/√2 depend on the blood sample volume and the 

LOD levels of the measurement methods and may lead to biased estimates of serum 

TCDD concentration, especially in the scenario of high proportion of data below the 

LOD and high LOD levels. (Hornung and Reed 1990)  In Chapter V, I employ a proper 

multiple imputation approach to impute the serum dioxin concentrations for those below 

the LOD in the combined data of the NHANES 2003-2004 (n=719) and the UMDES 

reference population (n=251).  For each imputation, a bootstrap sample is generated from 

the combined data, and a weighted left-censored linear regression model, assuming a 

lognormal distribution, is fitted on the bootstrap sample with important predictors of 

serum dioxin concentrations.  For those subjects having values below the LOD, the 

natural logarithm transformed imputed values are drawn from a normal distribution with 

mean and variance estimated from the left-censored regression model, with left truncation 

at their corresponding natural logarithm LOD.  The above procedure is repeated five 

times to generate five imputed data sets.  The multiply imputed complete data is then 

used to predict the age- and gender- specific percentiles of serum dioxin concentrations 

using survey-weighted quantile regression models among the non-Hispanic white 

population.  
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Chapter II 

BAYESIAN PENALIZED SPLINE MODEL-BASED INFERENCE 
FOR FINITE POPULATION PROPORTION IN UNEQUAL 

PROBABILITY SAMPLING 
 

II.1. Introduction 

Unequal probability sampling designs are commonly employed in data collection by 

science and government.  Perhaps the simplest unequal probability design is stratified 

sampling, which samples units from different strata with different selection probabilities.  

Another important form of unequal probability sampling is probability-proportional-to-

size (pps) sampling, in which the selection probability is proportional to the value of a 

size variable measured for all population units.  

An unequal probability sampling design such as pps sampling is often used for 

efficient estimation of population means of continuous variables, for which the variance 

increases with size of sample unit. However, inferences about discrete variables are often 

also of interest in a multipurpose survey (e.g. Lehtonen and Veijanen 1998, Lehtonen, 

Särndal and Veijanen 2005).  In this paper, we focus on methods of inference for finite 

population proportions from unequal probability sampling designs, based on an auxiliary 

variable measured for all the units in the population. We use pps sampling as a specific 

design to illustrate and assess our methods.  

The selection probabilities play important and somewhat different roles in design-

based and model-based inference from unequal probability survey samples (Smith 1976, 
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1994; Kish 1995; Little 2004).  In design-based inference, survey variables are fixed, and 

inference is based on the distribution of the sample inclusion indicators; the standard 

design-based approaches to estimation such as the Horvitz-Thompson (HT) estimator 

(1952) and its extensions weight sampled units by the inverse of their selection 

probabilities. These estimators are design consistent (Isaki and Fuller 1982) and provide 

reliable inferences in large samples without the need for modeling assumptions.  

However, these estimators are potentially very inefficient, as illustrated in Basu's (1971) 

famous elephant example. Also, variance estimation is cumbersome because it requires 

second-order selection probabilities. Corresponding confidence intervals are based on 

asymptotic theory, and may deviate from nominal levels for moderate or small sample 

sizes.   

Model-based inference predicts values of survey variables in the non-sampled units 

by including the selection probabilities as covariates in the prediction model (Little 2004).  

Model-based prediction estimators are consistent and efficient under the assumed model, 

but are potentially subject to very large bias when the underlying model is misspecified. 

This limitation motivates the development of flexible statistical models that are more 

robust to model misspecification.  For continuous survey data, Zheng and Little (2003) 

estimated the finite population total using a nonparametric regression on a penalized 

spline (p-spline) of the selection probabilities. We propose here Bayesian p-spline 

prediction (BPSP) estimators that are suitable for a binary, as opposed to continuous, 

outcome. We adopt a Bayesian approach to inference for this model, since Bayesian 

methods often yield better inference for small sample problems, and are conveniently 

implemented for our proposed model via the Gibbs' sampler. In this approach, auxiliary 
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variables other than the selection probability can also be included in the model, but the 

selection probability is singled out since modeling of this variable is prone to model 

misspecification. 

We compare the performance of BPSP estimators with Hájek (Horvitz-Thompson-

type) estimators and with generalized regression (GR) estimators for a binary outcome 

proposed by Lehtonen and Veijanen (1998). The GR approach is a popular model-

assisted modification of the design-based estimators that combines predictions from a 

model with design-weighted model residuals (Montanari 1998), to yield estimates that are 

approximately design unbiased.   

Zheng and Little (2003; 2005) compared HT, penalized spline prediction, and GR 

estimates of the total of a continuous survey variable by simulation. They found that p-

spline model-based estimators had better root mean squared error than the other methods, 

and with jackknife standard errors providing superior confidence coverage to HT or GR 

inferences. We conduct similar comparisons for inference about a population proportion 

for a binary outcome, and show similar advantages for our BPSP estimator over the 

design-based and GR alternatives.  

 

II.2. Design-based estimator 

Suppose that we have a finite population consisting of N identifiable units.  Let Y  be 

the binary survey variable of interest and ∑
=

−=
N

i
iYNp

1

1  be the proportion of the 

population for which Y = 1.  Let iπ  denote the probability of inclusion for unit i , which 

is assumed to be known for all units in the finite population before a sample is drawn.  
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An unequal probability random sample s with elements nyy ,...1  is then drawn from the 

finite population according to the selection probabilities Nππ ,...,1 .  The design-based 

Hájek estimator in the discussion of Basu (1971) is defined as 

∑
∑

∈

∈=

si
i

si
ii

H

y
p

π

π

/1

/
ˆ .                                                      (1) 

The variance for Hp̂  can be estimated via linearization of the Yates-Grundy estimator 

(1953) of totals,   

( )
2

1

1 1

2 ˆˆ
/1ˆˆ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
⎟
⎠

⎞
⎜
⎝

⎛
= ∑ ∑∑

−

= +=

−

∈ j

Hj

i

Hi
n

i

n

ij ij

ijji

sk
kHYG

pypy
pV

πππ
πππ

π . 

The Yates-Grundy variance estimator requires pairwise selection probabilities.  When the 

pairwise selection probabilities are not available, as in our simulations, the approximate 

formula proposed by Hartley and Rao (1962),  

( ) ∑
=

−
−+

−
+

−
≈

N

k
kjijijijiij n

n
n

n
n

n
1

2
3

22
2

111 ππππππππππ ,  

has frequently been used.  An approximate α−1  level confidence interval for the 

population proportion Hp̂  is then obtained based on the normal approximation.  

 

II.3. Bayesian p-spline predictive (BPSP) estimator 

Royall (1970) argued for the use of models for finite-population descriptive 

inferences by predicting the unobserved values based on models, since model-based 

inferences should be more efficient than design-based inferences.  To model the 

relationship between the binary outcome Y and the continuous selection probabilityπ , we 

need to fit a binary regression of Y on π .  Parametric binary regressions, such as the 
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linear or quadratic logistic or probit model, may not be adequate in fitting the data.  One 

solution for this problem of inflexibility is to fit a binary regression on a spline of π  by 

adding some knots.  However, too many knots may result in roughness of model fit.  One 

way to overcome this problem is to retain all of the knots but to constrain their influence, 

by fitting a binary penalized spline (p-spline) regression model.   

Common methods for modeling a binary outcome are logistic and probit regressions, 

and they generally give similar results.  We choose to adopt probit models in our study 

for computational convenience.  The probit regression model for binary outcomes has an 

underlying truncated normal regression structure on latent continuous data.  If the latent 

continuous data are known, the parameters in binary p-spline regression models can be 

estimated using standard approaches for Gaussian p-spline regression models.  In a 

Bayesian context, the posterior distribution of parameters in the probit p-spline model can 

be computed using Gibbs sampling (Albert and Chib 1993; Ruppert, Wand, and Carroll 

2003, chapter 16).  In contrast, the logistic p-spline regression model requires a more 

complicated computation procedure such as the Metropolis-Hastings algorithm.  The 

computational advantage makes the probit link function more desirable than the logit link 

function in Bayesian binary p-spline regression models.   

There are various types of p-splines.  When applying p-splines, we need to make 

choices on the degree and knot locations, and the basis functions used to present the 

model.  We choose to use the truncated polynomial p-splines because they are simple and 

intuitive.  More numerically stable estimators can be obtained using B-splines via 

orthogonalizing the truncated power bases (Eilers and Marx 1996).  The probit truncated 
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polynomial p-spline regression model has a generalized linear mixed model 

representation, 

( )( ) ( )p
li

m

l
l

p

k

k
ikii kbbyE +

==

− −++=Φ ∑∑ ππββπβ
11

0
1 ,,|                        (2)   

( )2,0~ τNbl  

ml ,...,1= ; ni ,...,1= , 

where ( )⋅Φ−1  denote the inverse CDF of a standard normal distribution, and the constants 

mkk << ...1  are m selected fixed knots.  A function such as ( )p
i k +−π  is called a truncated 

polynomial spline basis function with power p, where ( )pu +  is equal to ( ){ }puIu 0≥×  for 

any real number u.  Since the truncated polynomial spline basis function has p-1 

continuous derivatives, higher values of p lead to smoother spline functions.  By 

specifying a normal distribution for b, the influence of the m knots is constrained in 

Model (2), which is equivalent to smoothing the splines via the penalized likelihood.  

The parameters in Model (2) can be estimated using generalized linear mixed model 

methods.  An alternative Bayesian approach that simplifies computation is to assume 

weak prior and hyperprior distributions and use Gibbs sampling to obtain draws from the 

posterior distributions of the parameters as follow: the probit regression model for binary 

responses has an underlying normal regression structure on latent continuous data; if the 

latent data are known, the posterior distribution of the parameters can be computed using 

standard results for normal regression models; and given the posterior distribution of the 

parameters, the latent continuous data can be simulated from a suitable truncated normal 

distribution. (Ruppert, Wand, and Carroll 2003, p. 290)  The detailed algorithm of Gibbs 

sampling is in the Appendix.  In addition, the Bayesian inference for p-spline regression 
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can also been implemented using WinBUGS, the standard Bayesian analysis software 

(Crainiceanu, Ruppert, and Wand 2005).   

The posterior distribution of the population proportion is simulated by generating a 

large number D of draws of the form ( ) 1 ( )ˆd d
i j

i s j s

p N y y−

∈ ∉

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ ∑ , where ( )ˆ d

jy  is a draw 

from the posterior predictive distribution of the jth non-sampled unit of the binary 

outcome. The average of these draws simulates the Bayesian p-spline predictive (BPSP) 

estimator of the finite population proportion, and is denoted as BPSPp̂ .  The Bayesian 

analog of a ( )%1100 α−×  confidence interval for the population proportion is a 

( )%1100 α−×  credible interval, which can be formed in a number of different ways.  We 

split the tail area α  equally between the upper and lower endpoints in the simulations. 

Firth and Bennett (1998) showed that any parametric logistic regression model 

containing an intercept term and the inverse of selection probabilities as a covariate, fitted 

by ordinary, unweighted maximum likelihood, was “internally bias calibrated” (IBC) for 

population proportions, and thus yields design consistency.  This property is also true for 

logistic truncated polynomial p-spline regression models on the inverse of selection 

probabilities, fitted via penalized likelihood.  With the probit link function used instead of 

the logit link function and fitted via Markov chain Monte Carlo algorithm instead of 

maximum penalized likelihood, the BPSP estimator may no longer have the IBC property.  

However, the similarity between the probit model and the logistic model implies that the 

predictive estimator based on a probit p-spline regression model is approximately design-

consistent.  We believe that obtaining efficient estimates with close to nominal 

confidence coverage in finite samples is more important than exact design consistency. 
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II.4. Generalized regression (GR) estimator 

For the estimation of class frequencies of a discrete response variable, Lehtonen and 

Veijanen (1998) proposed a GR estimator t̂  of the total, which combines the predicted 

values ( )iii Yu π|1rP̂ˆ ==  based on a suitable model and the HT estimator for the 

residuals iii uyr ˆ−=  of the sampled units,  

i
si

i

N

i
i rut π/ˆˆ

1
∑∑
∈=

+=                                              (3) 

The GR estimator in Equation (3) is then used in constructing an estimator for population 

proportions by dividing by the known population size N (Duchesne 2003),  
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We also consider here another version of the GR estimator for the estimation of finite 

population proportions, in which the denominator of the bias calibration term for the 

residuals ir  is the estimated population size 1/ i
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For the variance estimate of (4), we use the variance estimator of the estimated total 

of a discrete response variable, given by Lehtonen and Veijanen (1998), divided by N2.  

For the variance estimate of (5), we apply the Taylor linearization technique (Särndal, 

Swensson, and Wertman 1992, p.182). 
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iikk rre ππ .  These variance estimators also require pairwise 

selection probabilities, which can be approximated by the method of Hartley and Rao 

(1962).   

However, the Hartley and Rao approximation may lead to bias in the variance 

estimator.  Thus, we also consider the jackknife method for variance estimation (Shao 

and Wu 1989).  The sample is stratified into n/G strata each of size G with similar values 

of selection probabilities, and the G subgroups are then constructed by selecting one 

element at a time from each stratum without replacement (Zheng and Little 2005).  Let 

( )gp̂  be the same GR estimators in (4) and (5) calculated from the reduced sample 

without the elements in the gth subgroup, and let p  be the average of the G estimators 

based on the G reduced samples.  The jackknife variance estimator of GRp̂  is  

( ) ( )( )∑
=

−
−

=
G

g
gGRjackknife pp

G
GpV

1

2ˆ1ˆˆ . 

A design-weighted logistic regression model on other covariates was used as the 

assisting model to predict iû  in the GR estimators for binary outcomes (Lehtonen and 

Veijanen 1998; Lehtonen, Särndal, and Veijanen 2005).  Since our interest here is in 

comparisons of GR estimators with the BPSP estimator, we apply the estimators (4) and 

(5) with parametric probit models and probit p-spline models, as described in detail in 

Section 5.  For the GR estimator using a linear probit model as the assisting model, we 

apply the selection probability as a covariate as well as a weight in our simulations.   
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II.5. Simulation study 

II.5.1 Design of the simulation study 

Simulation studies are conducted to study the performance of the BPSP estimator 

compared with the Hájek estimator, the GR estimators, and the parametric model-based 

predictive estimators for a variety of populations in pps sampling.  We present the 

simulation results for the following six estimators: 

a) HK, the Hájek estimator in equation (1). 

b) LR, predictive estimator with the maximum likelihood predictions from the 

linear logistic regression model containing a constant term and the reciprocal 

selection probability as the covariate.  LR has the IBC property, and hence is 

design-consistent.  LR is exactly the same as its GR estimator in equation (4). 

c) PR, predictive estimator with predictions from the Bayesian linear probit model 

containing an intercept term and the selection probability as the covariate. 

d) PR_GR, the GR estimator in equation (5), where iû  is the prediction for unit i 

with unknown parameters replaced by weighted maximum likelihood estimates 

from the probit model with a constant term and the selection probability as the 

covariate. 

e) BPSP, the BPSP estimator with p = 1 and inverse-gamma prior distribution for 

2τ  and using 15 knots. 

f) BPSP_GR, the GR estimator in equation (5), where iû  is the posterior mean of 

( )iiY π|1Pr =  from the BPSP model. 
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We only report the simulation results based on the linear splines for the BPSP 

estimator, since simulations not shown here suggest that linear splines perform as well as 

quadratic splines or cubic splines in all the simulation scenarios.  We choose two fixed 

numbers of knots (15 or 30), and place knots at evenly spaced sample percentiles.  The 

choices of knots work well and a number of 15 knots is good enough to catch the 

curvatures in our simulations.  In addition, the GR estimators in (4) perform similarly to 

the estimators in (5); some differences between these estimators emerge in the real 

application in Section 6, leading us to prefer (5) over (4).   

We simulated two artificial populations of size 2,000 with sampling rates of 5% and 

10%, where the size variable takes the consecutive integer values 71, 72, ..., 2,070.  The 

selection probabilities in the population were then calculated as proportional to the size 

variable, with the maximum value about 30 times the minimum value.   

Continuous data Z  were generated from normal distributions with mean structure 

( )πf  and constant error variance 0.04.  Two different mean structures ( )πf  were 

simulated: a linearly increasing function (LINUP) ( ) ii kf ππ 1=  and an exponential 

function (EXP) ( ) ( )ii kf ππ 264.4exp +−= .  To make the range of Z similar across 

different mean structures, 1k  takes values of 3 and 6, and 2k  takes values of 26 and 52, 

when the sampling rate is 10% and 5%, respectively.  Figure II.1 plots the two 

populations.  Binary outcomes { }321 ,, YYYY =  were then created by using the 

superpopulation 10th, 50th, and 90th percentiles of Z as cut-off values.  For instance, 1Y  is 

equal to one if Z is less than or equal to its superpopulation 10th percentile, otherwise 1Y  

is equal to zero.  The target of inference here is the population proportion with Y equal to 

one.   
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In each simulation replicate, a finite population was generated before a sample was 

drawn.  A pps sample was then drawn systematically from a randomly ordered list of the 

finite population.  For each population and sample size combination, 1,000 replicates 

were obtained and the six estimators were compared in terms of bias, root mean squared 

error (RMSE), and the non-coverage rate of the 95% confidence /credible interval.  

Simulation results are presented in Tables II.1 through II.3.  

 

II.5.2 Simulation results 

Figure II.2 shows the posterior means of ( )iiY π|1Pr =  and 95% credible intervals 

based on the Bayesian probit linear p-spline model for a random pps sample from the 

EXP case.  The upper left plot is the scatter plot of the continuous variable Z in a pps 

sample, with three horizontal parallel lines superimposed, representing the 

superpopulation 10th, 50th, and 90th percentiles, respectively.  In the upper right plot, the 

binary variable Y, defined as 1 if Z is less than or equal to the superpopulation 10th 

percentile, are plotted with black circles, and the superpopulation ( )iiY π|1Pr =  are 

plotted with a solid black curve. The solid grey curve and two dashed grey curves are the 

posterior means of ( )iiY π|1Pr =  and 95% credible intervals based on the Bayesian 

probit linear p-spline regression model.  The other two plots are similar to the upper right 

plot, but with superpopulation 50th and 90th percentiles as cut-off values in defining Y.  

These plots show that the true probabilities of Y = 1 fall within the 95% credible intervals, 

and are close to the posterior means of ( )iiY π|1Pr = .  We conclude that the Bayesian 

probit p-spline regression model fits well for the binary outcomes in the nonlinear case.   
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Table II.1 shows the empirical bias (×104) for the six estimators in the two 

populations.  Overall the design-based estimators are less biased than the model-based 

estimators.  In the LINUP case, the linear probit regression model is correctly specified, 

so that the empirical bias of the PR estimators are similar to the empirical bias of the 

BPSP estimator; while in the EXP case, a nonlinear probit regression is needed to fit the 

data, and thus the PR estimator is more biased than the BPSP estimator when the true 

population proportions are 0.1 and 0.5.  However, we do not observe this severe bias in 

the LR estimator because of its IBC property.  Compared to the model-based PR and 

BPSP estimators, the PR_GR and BPSP_GR estimator reduce the bias by adding the bias 

calibration term.   

Table II.2 shows the empirical root mean squared error (×103) for the six estimators.  

The BPSP estimator has the smallest empirical root mean squared errors in all cases.  The 

PR estimator performs as well as the BPSP estimator in the LINUP case, but is less 

efficient than the BPSP estimator in the EXP case.  To protect again model 

misspecification, the GR estimators lose some efficiency compared to their 

corresponding model-based predictive estimators. 

Table II.3 shows the noncoverage probability (×102) of 95% confidence/credible 

intervals.  For the LR, PR_GR, and BPSP_GR estimators, we use both the linearization 

(V1) and the jackknife resampling (V2) methods to calculate the variances of estimators.  

Overall, the confidence coverage of credible interval for the BPSP estimator is closer to 

the nominal level than the other five estimators, especially when the population 

proportion is close to zero or one or when few observations are selected into sample in 

the tails.  Specifically, the BPSP estimator achieves more improvement in coverage when 
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p is close to zero in both the LINUP and EXP cases, since little data are included in the 

sample from the lower tail of the two populations.  Of interest is the rather poor 

confidence coverage of the HK, LR, PR_GR, and BPSP_GR confidence intervals, even 

when the sample size is considerable; the coverages are consistently below nominal 

levels.  Note that the improved coverage of the BPSP estimator is achieved with intervals 

that are narrower on average than those of the HK, LR, PR_GR, and BPSP_GR 

estimators.  

The choice of prior and hyperprior distributions in mixed models can have a big 

effect on inferences.  We used the prior distribution ( )610,0Ni ∝β  for the fixed effects 

parameters, iβ .  In our simulations, we report results based on a proper inverse-gamma 

prior distribution for 2τ , namely ( )1.0,1.02 IG∝τ .  To assess sensitivity to the choice of 

prior distributions, we also computed results using ( )01.0,01.02 IG∝τ  and 

( )001.0,001.02 IG∝τ , as well as an improper uniform prior distribution on τ  (Gelman 

2006).  These different priors had little impact on posterior inference of the proportion of 

interest.  

 

II.6. Example of tax auditing 

We now compare the BPSP estimator with alternative methods on a real population 

involving income tax auditing data (Compumine 2007). The data set consists of 3,119 

Swedish income tax returns for persons who during the year sold mutual funds managed 

in a foreign country. The outcome of interest Y is whether the income tax return is 

incorrect (coded as 1 for incorrect, and 0 for correct), and it is measured for all 

observations in this data set. We treated the 3,119 income tax returns as a finite 
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population here, so that the true population proportion of incorrect income tax returns is 

0.517.  Since the amount of the realized profit or loss is an important feature for 

determining whether a taxpayer reports his return of income of the sale of a foreign fund 

correctly, it was chosen as the size variable used in drawing pps samples. If the amount of 

the realised profit is negative (a negative number represents loss), it was assigned a value 

of 1 Swedish Krona, the minimum amount of the positive profits, where negative values 

are not allowed in the size variable. One thousand repeated systematic pps samples of 

size 300 and 600 were drawn without replacement from randomly ordered population 

lists. The 78 and 241 returns with largest profits were included with certainty into the 

samples of size 300 and 600 respectively.   

Figure II.3 shows that the probability of selection has a highly right-skewed 

distribution for the population even after excluding the observations with selection 

probability of 1.  We applied the same six estimators as in the simulation study with 30 

knots on the pps samples, and compared their performances in terms of bias, RMSE, and 

average width and noncoverage rate of the 95% confidence/credible interval.  For the 

BPSP estimator, a fixed number of 30 knots are placed at evenly spaced sample 

percentiles of the selection probabilities.  For the GR estimators, neither the linearization 

nor the jackknife variance estimator has predominantly better performance than the other, 

we present the inference based on the linearization variance estimator for simple 

calculation.  We report the GR estimators based on both equations (4) and (5).  The 

results are displayed in Table II.4.   

Table II.4 shows that the BPSP estimator has slightly increased bias but smaller 

RMSE, shorter average width and closer to the nominal level credible interval than the 
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design-based estimators.  Results not shown here indicate that the BPSP estimator with a 

uniform prior distribution has slightly better performance than that with inverse-gamma 

prior distribution with respect to bias, RMSE, and coverage rate, because there are more 

fluctuations in the data and the uniform prior allows the fitted function to have more 

flexibility.  The BPSP_GR estimator is less biased, but achieves less efficiency and worse 

coverage rate than the BPSP estimator.  The predictive estimator using the probit linear 

regression model as prediction model performs poorly here since the model is 

misspecified, but its GR estimator does reduce bias and RMSE and improve coverage 

rate.  The BPSP_GR estimator based on equation (4) performs very poorly in terms of 

RMSE compared to the estimator in equation (5), because a situation similar to that in 

Basu’s (1971) circus elephant example occurs, where one or more observations having 

very low selection probabilities are selected into the sample and hence receive large 

weights.  However, the PR_GR estimator in equation (4) performs as well as that in 

equation (5) with predictions obtained from the weighted maximum likelihood estimates, 

where selection probability is used as a covariate as well as the sample weights.  Overall, 

the GR estimator in equation (5) is more desirable than that in equation (4).  As the 

sample size increases from 300 to 600, the noncoverage probability of the 95% credible 

interval of the BPSP estimator approaches the nominal level quickly from 14% to 5%, 

but the coverages are consistently below the nominal level for the other estimators.   

Compared to the parametric model-based predictive estimators, the BPSP estimator is 

robust not only to model misspecification, but also to the influential observations in the 

sample.  To demonstrate the robustness to the influential observations, we compare the 

changes in the model fitting using probit p-spline models, linear probit model, and 
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quadratic probit model based on the pps sample only in Figure II.4, and based on the pps 

sample as well as the observations with selection probabilities of 1 in Figure II.5.  In each 

figure, the population is stratified by the 100 quantiles of the probabilities of selection, 

and the true probabilities of Y = 1 are calculated and plotted with a black dot for each 

stratum. The grey curves are the posterior means of ( )iiY π|1Pr =  from 10 random pps 

samples using 3000-iterate Gibbs sampler and linear spline in the left plot, using linear 

probit regression in the middle plot, and using quadratic probit regression in the right plot.  

Figure II.4 shows that the probit p-spline regression model is more flexible in catching 

the pattern among the observations than the parametric models.  From Figure II.4 to 

Figure II.5, the posterior means of ( )iiY π|1Pr =  do not change except for those with 

very large selection probabilities using the p-spline model.  However, the posterior means 

curves change dramatically using the parametric probit regressions, especially the 

quadratic probit regression.  These comparisons indicate that probit p-spline regression 

model is less likely affected by influential observations than parametric regression 

models, and hence is a good choice of prediction model in the model-based inference.   

 

II.7. Discussion 

 Bayesian inferences based on the p-spline model outperform the Hájek estimator, the 

GR estimator, and parametric model-based prediction estimators in our simulations.  The 

BPSP estimators are more efficient than the Hájek and GR estimators, and despite 

slightly higher empirical bias, their 95% credible intervals provide better confidence 

coverage and shorter average interval width, especially when the population proportion is 

closer to zero or one and few data are selected into the sample in the tails. This suggests 
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the importance of current research in estimating finite population prevalence of rare 

events. Compared to parametric model-based predictive estimators, the BPSP estimator 

achieves robustness to model misspecification and influential observations in the sample 

by using a flexible model, without much loss of efficiency for the sample sizes 

considered.   

The BPSP estimators are not sensitive to two choices of prior distributions of 2τ  

considered here, though it appears from the tax auditing example that the uniform prior 

yields slightly smaller bias and RMSE, shorter 95% credible intervals, and better 

coverage when a nonlinear prediction model is needed.  The tax auditing example also 

shows that in the GR estimator, an estimated population size using the sum of inverse 

selection probabilities is more desirable than the true population size when one or more 

observations with very low selection probability are included in the sample, since the GR 

estimator with denominator N has high variance and low efficiency in this case. 

The design-based estimators and their 95% confidence intervals can provide valid 

inferences for population proportions when the sample is large.  However, these 

asymptotic properties do not appear to hold when the sample size is moderate or small 

and the true population proportion to be estimated is close to 0 or 1.  The BPSP approach 

can provide more valid inferences for small samples, although confidence coverage 

appears to be less than nominal when the sample size gets small, and lack of parsimony 

of the model is an issue.  

The choice of variance estimator is problematic for some unequal probability designs 

for the design-based estimators, but the Bayesian p-spline prediction approach provides a 

simulation approximation of the full posterior distribution of the population proportion.  
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Extra work is not needed to estimate the variance or 95% credible interval for the BPSP 

estimator, as it can be obtained simultaneously with the point estimators.  In Zheng and 

Little (2005), three variance estimators of the p-spline model-based estimator for finite 

population total in a pps sample were compared, including the model-based empirical 

Bayes variance estimator, the jackknife variance estimate, and the balanced repeated 

replication (BRR) variance estimate. The simulation studies showed that the jackknife 

method worked well, whereas the BRR method tended to yield conservative standard 

errors and the model-based empirical Bayes estimator was vulnerable to misspecification 

of the variance structure.  In the present work, the α−1  level credible interval for the 

BPSP estimator of population proportion is constructed by splitting α  equally between 

the upper and lower endpoints of the posterior distribution of p.  This pure Bayesian 

approach based on draws from the posterior distributions seemed to work well in our 

setting, and avoids the heavy computation associated with the jackknife and BRR method. 

The BPSP estimator we propose here can be extended to include additional auxiliary 

covariates by adding linear terms for these variables.  For domain estimation, an 

interaction term between the spline of selection probabilities and the domain indicator 

should also be modeled.  Both the additive effects of auxiliary variables and the 

interaction between the domain indicator and selection probabilities can be represented in 

a mixed model (Ruppert, Wand, and Carroll 2003, p231) and estimated using Gibbs 

sampling or WinBUGS (Crainiceanu, Ruppert, and Wand 2005).  The BPSP estimator for 

finite population proportions can also be extended to a more general case of a 

polychotomous response.  The Gibbs sampling approach for the binary case can be 

generalized to the case of ordered categories, and can be applied to the unordered 
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categories with a latent multinomial distribution (Albert and Chib 1993).  Another 

extension for the BPSP estimator is in the small area estimation, by combing small area 

random effects with the smooth spline on the selection probabilities (Opsomer et al., 

2008). This extension will be the focus of future research.  

Finally, one reviewer questioned whether the proposed approach can be applied in a 

multipurpose survey with many outcomes, since the modeling procedure does not provide 

a single set of weights and needs to be repeated for all variables of interest. It is true that 

our methods are more computationally intensive than existing approaches, but the BPSP 

method can be easily implemented with a Gibbs sampling algorithm or using WinBUGS, 

so computing is not a major obstacle. We point out that the simulations in the paper 

involved repeating the iterative Gibbs analysis 6000 times, so an equivalent level of 

computation on a single survey of comparable size would allow the implementation of 

the BPSP method for 6000 outcomes! These were done on a garden-variety laptop PC. 

While we do not advocate automatic use of any analytical method, design or model-based, 

our point is that computational complexity is no longer a major obstacle to applying these 

methods. We suggest that the statistical properties of a method are more important than 

computing time, given modern day computing resources. 
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Appendix 

Algorithm of Gibbs sampling 

Model (2) can also be written in the matrix form, 
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The algorithm of Gibbs sampling for estimating the parameters in Model (2) is as follows:   

a) The probit regression model for the binary outcome [ ]Tnyyy ,...,1=  corresponds to a 

normal regression model for a latent continuous data [ ]Tnyyy **
1

* ,...,= , which has a 

truncated multivariate normal distribution with mean ( )ZbX +β  and identity 

covariance matrix (Albert and Chib 1993), and iy  is the indicator that 0* >iy .  With 

some initial values of ( )b,β , values of the latent continuous data *
iy  can be 

simulated.   

b) Specifying a proper flat normal prior distribution ( )610,0N  on β  and an inverse 

gamma distribution ( )1.0,1.0IG  on 2τ , the posterior distribution of ( )2,, τβ b  given 

the simulated latent continuous data *y  is  

( ) *2 ,|, yb τβ ( ) ( )( )12*12
1 /,/~ −−

++ ++ ττ DCCyCDCCMVN TTT
pm  

       ( )2/1.0,2/1.0~,| 22 bmIGb ++βτ ,                                        (6) 



29 

where C=[X, Z] and D is a diagonal matrix with p+1 values of 10-6 followed by m 

ones on the diagonal.  Gelman (2006) recommended a uniform prior distribution onτ , 

which results in the posterior distribution for 2τ  as  

( )2/,2/)1(~,| 22 bmIGb −βτ                                         (7) 

c) At iteration t, draws of ( ))(2)()( ,, ttt b τβ  from the posterior distribution in equation (6) 

or (7) are used to generate new latent data )*(ˆ ty  conditional on observed binary 

variable y for the sample, and to obtain the posterior predicted values )(ˆ ty  for non-

sample units.  We then can obtain draws from the posterior distribution of the finite 

population proportion at iteration t as 
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Table II.1 Empirical bias × 103 of six estimators  
 

Population n True prop. HK LR PR PR_GR BPSP BPSP_GR 
LINUP 
 
 
 
 
 

100 0.10 -0.01 13.04 10.3 1.62 8.04 1.18 
0.25 -3.04 2.36 0.90 -2.09 -0.77 -2.45 
0.5 -3.99 -2.88 -4.28 -2.97 -5.21 -3.27 

0.75 -1.77 -0.61 -3.58 -0.75 -3.83 -0.88 
0.90 -0.40 0.34 -2.46 0.27 -2.88 0.08 

200 0.10 2.49 7.92 5.82 1.49 5.07 1.43 
0.25 2.60 1.85 0.71 0.22 0.15 0.05 
0.50 3.32 -0.13 -1.34 -0.06 -1.66 -0.17 
0.75 3.80 1.15 -0.30 1.24 -0.50 1.16 
0.90 1.63 0.35 -1.01 0.32 -1.23 0.33 

EXP 
 
 
 
 
 

100 0.10 1.19 18.05 25.79 4.67 16.99 3.91 
0.25 -1.16 6.59 27.72 2.76 12.65 0.55 
0.5 -4.00 -3.48 12.52 -1.61 -1.44 -3.39 

0.75 -2.01 -0.41 -2.98 0.01 -3.43 -0.52 
0.90 -1.27 -0.15 -0.98 -0.13 -1.01 -0.24 

200 0.10 3.11 11.03 22.05 3.48 13.38 2.73 
0.25 3.22 4.04 27.58 2.63 9.64 0.95 
0.50 3.77 -0.56 14.01 0.44 0.01 -0.72 
0.75 4.22 0.02 -2.86 0.07 -2.37 0.04 
0.90 2.30 0.12 -0.69 0.13 -0.68 0.02 

 
 
 
 
 
Table II.2 Empirical RMSE × 103 of six estimators  
 

Population n True prop. HK LR PR PR_GR BPSP BPSP_GR 
LINUP 
 
 
 
 
 

100 0.10 55 57 46 51 47 52 
0.25 71 62 54 59 55 60 
0.5 65 51 47 50 48 50 

0.75 46 36 36 36 36 36 
0.90 26 23 23 23 23 23 

200 0.10 39 41 32 36 32 36 
0.25 48 43 35 39 36 40 
0.50 46 36 33 34 33 35 
0.75 31 24 24 24 24 24 
0.90 18 15 16 15 16 15 

EXP 
 
 
 
 
 

100 0.10 51 60 54 52 52 52 
0.25 67 65 59 61 57 61 
0.5 66 56 43 53 47 52 

0.75 44 23 22 22 23 22 
0.90 24 12 12 12 12 12 

200 0.10 36 42 40 36 36 36 
0.25 47 49 45 43 41 43 
0.50 45 39 31 36 32 35 
0.75 29 15 14 15 15 14 
0.90 16 8 8 8 8 8 
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Table II.3 Average length of 95% CI × 102 of six estimators  
 

Population n True 
prop. HK LR PR PR_GR BPSP BPSP_GR 

V2 V3 V4 V1 V2 V3 V4 V1 V2 
LINUP 
 
 
 
 
 

100 0.10 19 21 16 15 16 20 15 15 17 21 
0.25 26 22 19 19 20 23 19 19 21 23 
0.5 25 19 18 18 19 20 18 18 19 20 

0.75 17 13 14 13 13 14 14 14 13 14 
0.90 10 8 9 9 9 9 9 9 9 9 

200 0.10 15 15 12 11 13 14 12 11 13 15 
0.25 19 16 14 14 15 16 14 14 15 16 
0.50 18 13 13 12 13 14 13 13 13 14 
0.75 12 9 9 9 9 10 9 9 9 10 
0.90 7 6 6 6 6 6 6 6 6 6 

EXP 100 0.10 18 21 16 16 16 19 16 16 16 20 
0.25 25 23 18 18 21 23 19 19 21 25 
0.5 25 19 14 14 19 21 17 16 18 20 

0.75 17 8 8 8 8 9 8 8 8 9 
0.90 9 4 4 4 4 5 5 4 4 5 

200 0.10 13 15 12 12 12 14 12 12 13 14 
0.25 18 17 13 13 16 17 14 14 16 18 
0.5 18 13 10 9 14 14 12 12 13 14 

0.75 11 5 5 5 6 6 6 6 6 6 
0.90 6 3 3 3 3 3 3 3 3 3 

 
* V1: variance estimator using linearization; V2: jackknife variance estimator 

   V3: posterior variance using equal tails; V4: highest probability density posterior variance 
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Table II.4 Noncoverage rate of 95% CI × 102 of six estimators  
 

Population n True 
prop. HK LR PR PR_GR BPSP BPSP_GR 

V2 V3 V4 V1 V2 V3 V4 V1 V2 
LINUP 
 
 
 
 
 

100 0.10 16.2 18.0 8.4 10.3 20.9 16.1 9.0 11.1 18.4 14.2 
0.25 9.1 12.5 7.4 9.4 12.9 10.2 7.3 8.6 12.2 9.6 
0.5 7.5 9.4 5.0 6.0 7.2 7.6 4.4 4.8 7.3 7.1 

0.75 7.6 11.8 5.5 5.2 7.3 9.9 5.5 5.5 7.8 8.8 
0.90 7.4 11.4 5.7 6.5 8.0 9.4 5.4 5.9 8.4 7.1 

200 0.10 10.8 12.6 6.4 8.1 13.9 10.9 6.2 7.8 12.6 9.4 
0.25 6.3 10.2 5.0 5.6 8.2 6.7 5.2 6.0 7.3 6.7 
0.50 5.5 8.3 5.5 6.4 6.2 5.9 5.1 5.7 6.0 5.5 
0.75 5.8 9.3 5.7 5.9 7.4 6.2 5.6 5.7 7.0 6.2 
0.90 6.0 8.4 4.4 5.4 6.1 4.4 4.7 5.0 6.3 5.5 

EXP 100 0.10 15.0 18.1 10.5 11.4 19.4 14.8 9.2 11.7 18.4 14.4 
0.25 9.6 15.1 11.1 12.7 12.0 10.9 8.1 10.6 12.9 10.7 
0.5 7.4 13.5 12.2 13.3 9.0 11.4 8.9 9.2 10.2 8.4 

0.75 6.2 10.7 9.6 9.4 7.5 8.4 8.2 8.4 8.2 7.2 
0.90 6.1 10.5 7.9 8.7 9.9 7.6 7.0 8.1 9.8 7.2 

200 0.10 10.8 13.3 9.9 11.0 12.5 11.7 7.5 8.9 12.4 9.4 
0.25 6.4 13.6 14.8 15.9 9.7 8.7 7.3 7.9 11.2 7.8 
0.5 6.0 11.5 14.3 15.2 7.2 8.5 6.2 6.4 7.5 6.9 

0.75 5.4 7.4 5.6 6.1 5.1 4.2 4.5 4.5 5.2 3.9 
0.90 5.5 8.8 5.5 5.7 6.8 4.6 5.5 5.8 6.6 3.7 

 
* V1: variance estimator using linearization; V2: jackknife variance estimator 

   V3: posterior variance using equal tails; V4: highest probability density posterior variance 
 
 
 
 
 
Table II.5 Comparison of various estimators for empirical bias, root mean squared 
error, and average width and noncoverage rate of 95% CI, in the tax return 
example 

 
Methods bias*100 RMSE*100 average width*100 noncoverage*100 

300 600 300 600 300 600 300 600 
HK -2.4 -1.8 12.4 10.2 36 29 14.1 10.2 
LR 6.7 5.5 11.9 9.2 27 21 43.5 45.6 
PR -11.6 -10.1 12.4 10.6 18 14 69.8 83.4 
PR_GR1 -1.2 -0.4 11.5 8.7 31 25 22.4 16.8 
PR_GR2 -1.2 -0.3 11.5 8.8 33 26 16.1 11.4 
BPSP -6.8 -2.7 9.3 5.2 27 19 14.2 5.0 
BPSP_GR1  -3.0 -0.5 102.6 56.9 77 57 14.4 9.2 
BPSP_GR2  -0.7 0.2 12.0 10.1 34 26 15.9 12.8 

 
* GR_1: GR estimators using equation (4);  

 GR_2: GR estimators using equation (5). 
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Figure II.1 Two simulated artificial populations (N=2,000) X-axis: selection 
probability; Y-axis: Z 
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Figure II.2 A random pps sample from the EXP case (n=200, N=2000): (a) scatter 
plot of Z; the three grey lines are the superpopulation 10th, 50th, and 90th percentiles, 
respectively. (b) black circles are observed units of binary survey variable Y in the 
sample, defined as Y = I (Z ≤ 10th percentile); the grey solid and dashed curves are 
posterior means of Pr(Yi=1|πi) and 95% credible intervals, respectively, simulated 
based on a probit p-spline model on π; and the black curve is the superpopulation 
Pr(Yi=1|πi). (c) similar to (b), but with Y = I (Z ≤ 50th percentile). (d) similar to (b), 
but with Y = I (Z ≤ 90th percentile). 
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Figure II.3 Box plots of the probabilities of selection for two sample sizes in the tax 
auditing example 

 
 
 
 
 
 
 

 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

 

 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

 

 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c)

 

 

 
 
Figure II.4 Predictions based on pps samples only in the tax auditing example, X-
axis: selection probabilities π, Y-axis: P(Y=1|π); black dots are the true P(Y=1|π) 
within each percentile of π; grey curves are ten realizations of the posterior means 
of P(Y=1|π).  The prediction models are (a) probit linear p-spline regression, (b) 
linear probit regression, (c) quadratic probit regression. 
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Figure II.5 Predictions based on the combined data of pps samples and the 
observations sampled with certainty in the tax auditing example, X-axis: selection 
probabilities π, Y-axis: P(Y=1|π); black dots are the true P(Y=1|π) within each 
percentile of π; grey curves are ten realizations of the posterior mean of P(Y=1|π).  
The prediction models are (a) probit linear p-spline regression, (b) linear probit 
regression, (c) quadratic probit regression. 
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Chapter III 

BAYESIAN INFERENCE OF FINITE POPULATION QUANTILES 
FROM UNEQUAL PROBABILITY SAMPLES 

 

III.1. Introduction 

In survey practice, it is often of interest to estimate quantiles for continuous finite 

population characteristics. The finite-population quantiles are often estimated using the 

sample-weighted quantiles in the traditional survey sample approach.  These estimators 

are design-based estimators.  In sample surveys it is common that the design variable or a 

correlated auxiliary variable is measured along with the survey variables of interest.  

When the design variable or the auxiliary variable is measured on the non-sampled units, 

this information should be incorporated to construct an estimator more efficient than the 

sample-weighted estimators.   

The use of auxiliary information for estimating finite-population distribution 

functions has been extensively studied.  Chambers and Dunstan (CD) (1986) proposed a 

model-based method which allows the use of auxiliary information to improve the 

estimation of finite-population distribution functions.  Rao, Kovar, and Mantel (1990) 

proposed design-based ratio and difference estimators of finite-population distribution 

functions and demonstrated the advantage of the ratio and difference estimators over the 

CD estimator for large samples under model misspecification.  Wang and Dorfman (1996) 

suggested a weighted average of the CD and the Rao’s estimators.  Kuk and Welsh (2001) 

modified the CD estimator to fine-tune for departure from the model assumed by 
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estimating the conditional distribution of residuals as a function of the auxiliary variable.  

In Kuk (1993), a kernel-based estimator was proposed, which combines the known 

distribution of the auxiliary variable with a kernel estimate of the conditional distribution 

of the survey variable given the value of the auxiliary variable.  In Chambers, Dorfman, 

and Wehrly (1993), a model-based estimator using kernel smoothing was proposed to 

estimate distribution functions, with the estimator calibrated for its bias under the model 

in Chambers and Dunstan (1986).  Wu and Sitter (2001) also proposed a model-

calibration estimator of finite population distribution functions. 

Compared to distribution functions, the research on finite population quantiles in 

using auxiliary information is limited.  Chambers and Dunstan (1986) discussed the 

estimation of α -quantile by inverting the CD estimator of the distribution function.  

However, heavy computation is involved in this procedure, so that they did not compare 

the performances of this quantile estimator in their simulation study.  Moreover, 

Chambers and Dunstan assumed a superpopulation model for Y  that corresponds to a 

regression through the origin with some specified heteroscedastic errors, 

( ) iiii UxvxY += β .  When the association between Y and the auxiliary variable is more 

complicated than this assumed model, the CD estimator can be very biased (Rao, Kovar, 

and Mantel 1990).  

In this paper, we assume that the selection probabilities in an unequal probability 

sampling are known for all the units in the population.  We develop two robust Bayesian 

model-based estimators of finite population quantiles by incorporating the selection 

probabilities at the estimation stage. The first method is to estimate the distribution 

functions evaluated at a number of sample values using Bayesian Penalized Spline 
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Predictive estimators (Chen, Elliott, and Little 2007).  The finite population quantiles are 

then estimated by inverting the predictive distribution function.  We also propose a 

Bayesian two moment p-spline predictive (B2PSP) estimator for quantiles, by predicting 

values of nonsampled units based on a normal model with the mean and the variance both 

modeled using penalized splines on the selection probabilities.  We use a simulation 

study to compare the performance of these two new methods with the sample-weighted 

estimator. 

 

III.2. Estimators of the quantiles  

Suppose that there is a finite population consisting of N identifiable units.  Let iπ  

denote the probability of selection for unit i, which is assumed to be known for all units 

in the finite population before a sample is drawn.  Let s denote an unequal probability 

random sample with a sample size of n, which is drawn from the finite population 

according to the selection probabilities{ }Nπππ ,,, 21 … .  Let Y denote the continuous 

survey variable, with { }nyyy ,,, 21 …  observed in the random sample s.   

The finite-population α-quantile of Y is given by ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

≥−Δ= ∑
=

−
N

i
iYtNt

1

1;inf ααθ .  

The finite population α-quantile is often estimated using the sample weighted α-

quantile ( )αθ̂ .  Woodruff (1952) proposed a method of calculating confidence limits for 

the sample weighted α-quantile: a pseudo-population is obtained by weighting each 

sample item by its proper weight; the standard deviation of the percentage of items less 

than the estimated α-quantile is estimated, and then the estimated standard deviation is 

added to and subtracted from α to construct the confidence limits for the percentage of 
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items less than the estimated α-quantile; and the values of the survey variable 

corresponding to the confidence limits of the percentage of items less than the estimated 

α-quantile are read-off the pseudo-population arrayed in order of size.  Sitter and Wu 

(2001) showed that the Woodruff intervals perform very well even in the moderate to 

extreme tail regions of the distribution function.  Alternative variance estimation for 

finite population quantiles was derived by Francisco and Fuller (1991) using a smoothed 

version of the large-sample test inversion.   

 

III.2.1. Invert-CDF Bayesian model-based approach 

In probability theory, a quantile function is the inverse of its cumulative distribution 

function.  We can estimate the finite population quantiles by first building a continuous 

and strictly monotonic predictive finite population distribution function.  The finite 

population distribution function evaluated at t is defined as ( ) ( )∑
=

− −Δ=
N

i
iytNtF

1

1 , where 

( ) 1=Δ x  when 0≥x  and ( ) 0=Δ x  elsewhere.  By treating ( )yt −Δ  as a binary outcome 

variable, we can apply the methods of estimating finite population proportions to estimate 

this finite population distribution function.   

Chen, Elliott, and Little (2007) provided a Bayesian penalized spline predictive 

(BPSP) estimator for finite population proportions in unequal probability sampling. They 

first fitted a probit penalized spline regression model (1) with m pre-selected fixed knots 

between a binary survey variable z and the selection probabilities in the sample:  

( )( ) ( )p
li

m

l
l

p

k

k
ikii kbbzE +

==

− −++=Φ ∑∑ ππββπβ
11

0
1 ,,|                            (1) 

( )2,0~ τNbl  
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They then simulated the posterior predictive distribution of z among the non-sampled 

units. The posterior distribution of the finite population proportion is obtained by 

generating a large number of draws of the average of the observed sample units and the 

predictive non-sample units. They showed through simulation studies that the BPSP 

estimator is more efficient with confidence coverage closer to nominal levels than the 

sample-weighted estimators in estimating finite population proportions in unequal 

probability sampling. 

We employ the BPSP approach n times to estimate ( )tF , { }nyyyt ,,, 21 …= .  The 

BPSP estimator of ( )tF  is based on a pointwise argument which does not take into 

account the fact that we are estimating a whole distribution function.  As a result, the 

monotonic property of a cumulative distribution function does not necessarily hold here.  

In addition, linear interpolation of the n estimated distribution functions may lead to a 

rough predictive cumulative distribution function. To overcome these two problems, we 

fit a smooth cubic regression curve on the n estimated distribution functions with 

monotonicity constraints (Wood 1994).  We denote the estimated distribution function 

as ( )tF̂ .  We also fit another two monotonic smooth cubic regression curves on the upper 

and lower limits of the 95% credible intervals of these estimated distribution functions, 

denoted as ( )tFU
ˆ  and ( )tFL

ˆ .  To reduce computation time, we only estimate the 

distribution functions for nk <  times on k pre-selected sample points in our simulation 

studies.  

The basic principle behind the invert-CDF Bayesian approach can best be explained 

graphically in Figure III.1. Let us assume that a sample of size 100 is drawn from a finite 

population.  We pick 20 observations from the sample and estimate their corresponding 
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distribution functions and associated 95% credible intervals using the BPSP estimator.  In 

(a), we plot the BPSP estimates of these 20 points with black dots and the upper and 

lower limits of 95% CI with “-” signs and connect the upper and lower limits with solid 

lines.  In (b), we add three monotonic smooth predictive curves using black solid curve 

for the point estimate and black dash curves for the upper and lower limits of 95% CI.  

We can easily estimate the finite population α-quantile by inverting the predictive 

monotonic smooth cumulative distribution function.  Let x  denote the estimated α-

quantile θ .  The 95% CI of an estimated quantile is then calculated in two ways.  The 

first method is the extension of the Woodruff’s method to the Bayesian setting (1952).  

This can be illustrated graphically in Figure III.2(a).  Let us draw two horizontal red 

dashed lines across the graph with the upper (A) and lower (B) limits of the BPSP 

estimator for ( )xF  as the y-axis values.  We read Ax  and Bx  from the x-axis which 

correspond to ( ) AxF A =ˆ  and ( ) BxF B =ˆ , the posterior means or medians of ( )AxF  and 

( )BxF .  According to the definition of the 95% credible interval for ( )xF , the probability 

that ( )xF  falls between A and B given the sample is exactly 0.95.  If we take a ( )⋅−1F̂  

transformation on ( )xF , it is immediately apparent that the posterior probability that 

( )( )xFF 1ˆ −  falls between ( ) AxAF =−1ˆ  and ( ) BxBF =−1ˆ  is also 0.95 because of the 

monotonic property of ( )⋅F̂ .  With ( )( )xFF ˆ1−=θ  ( ( ) αθ =F  and ( ) α=xF̂ ) and 

assuming that the posterior mean/median ( )⋅F̂  is a good estimate of ( )⋅F , we can 

conclude that an approximate 95% credible interval for θ  is within the limits Ax  and Bx .  

The performance of the Woodruff’s CI relies on how well ( )⋅F̂  perform in estimating 

( )⋅F . 
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The second method is illustrated in Figure III.2(b).  We draw a horizontal line across 

the graph with α  as the y-axis value.  We read Ax′  and Bx′  from the x-axis such that 

( ) α=′AL xF̂  and ( ) α=′BU xF̂ , respectively. If the 95% credible interval of the distribution 

function ( )⋅F  is formed by equally splitting the tail area in the posterior distribution, the 

interval formed by Ax′  and Bx′  is another 95% credible interval of θ .  The proof is as 

follows: Because α  is the lower limit of the 95% credible interval of ( )AxF ′ , only 2.5 

percents of the draws of ( )AxF ′  in the posterior distribution are smaller than α .  That is, 

the probability that ( )α1−F  is greater than ( )( )AxFF ′−1  is equal to 0.025 given the 

observed data, or θ  is greater than Ax′  with only a 2.5 percent chance.  Similarly, because 

α  is the upper limit of the 95% credible interval of ( )BxF ′ , we conclude that the 

probability that θ  is smaller than Bx′  given the data is 0.025.  Therefore, there is 95% 

probability that θ  is within Ax′  and Bx′  in the posterior distribution, given the sample. 

This invert-CDF Bayesian model-based approach does not depend on any strong 

modeling assumption. It can be applied to normal or skewed distributions as long as the 

selection probabilities are known for all the units in the finite population. However, the 

limitation of this approach is the heavy computation associated with the estimation of the 

distribution functions.  There is a trade-off between precision and computation time here.  

When we estimate the distribution functions n times at all sample units, we have best 

used the sample information but this requires intensive computation.  As we pick k of the 

n sample units and estimate only the k distribution functions, we lose information, but 

need less computation time.  A simulation study not shown here indicates that the 

distribution function curve estimated based on a well selected subset of the k sample units 
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is similar to the curve estimated based on all sample units but the computation time is 

significantly reduced. 

 

III.2.2. Bayesian two-moment penalized spline predictive approach 

We consider an alternative straightforward model-based estimator of the finite 

population quantiles defined as: 

( ) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−Δ+−Δ= ∑ ∑

∈ ∉

− ;ˆ;infˆ 1 ααθ
si sj

ji ytytNt ,                                            (2) 

where jŷ  is the predicted value of the thj  observation in the non-sample units based on 

some statistical model.  For a continuous survey variable, the most commonly used 

prediction model is the normal linear regression model 

( )2
10 ,~ σπββ ii

ind

i cNY + .                                                                                        (3) 

Model (3) assumes a strong linear association between the survey variable and the 

selection probabilities.  When this linear association is not true, Model (3) will lead to a 

very biased and inefficient estimator of θ .  For the estimation of finite population totals, 

Zheng and Little (2003, 2005) replaced the parametric mean function on the selection 

probabilities with a penalized spline and assumed ic  was equal to k
i
2π  with some known 

value of k.  They showed by simulation that their model-based estimator of finite 

population totals outperforms the design-based estimators despite assuming the wrong 

variance structure.   

However, correctly specifying the variance structure is as important as the mean 

structure for quantile estimation.  Ignoring heteroscedasticity may lead to incorrect 

inferences.  Therefore, we extend the penalized spline model in Zheng and Little (2003) 
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to a two-moment model by modeling both the mean and the variance nonparametrically.  

The two-moment penalized spline model can be written as (Ruppert, Wand, and Carroll 

2003, p.264): 

⎪
⎪
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In Model (4), the continuous survey variable is assumed to follow a normal distribution, 

given the selection probabilities.  The mean is modeled as a first penalized spline (SPL1) 

on the selection probabilities and the variance is modeled as an exponential of a second 

spline (SPL2).  The exponential transformation is applied on the second spline to 

guarantee the positive estimate of the variance.  Without losing generality, we allow the 

different orders of the polynomial splines ( 21 , pp ) and the variate number and location of 

knots ( kk ′, ) for the two splines.   

Ruppert, Wand, and Carroll (2003) suggested an iterative frequentist approach to 

estimate the parameters in Model (4).  They first assumed that SPL2 was known and fit a 

linear mixed model to obtain the parameter estimates in SPL1.  They calculated the square 

of the difference between Y and SPL1, which followed a Gamma distribution with the 

shape parameter as ½ and the scale parameter of 2SPL2.  And then they fit a generalized 

linear mixed model of the squared difference to obtain the parameter estimates in SPL2.  

They iterated the above procedures until the parameter estimates converged.  This 

iterative frequentist approach is simple to implement.  However, our goal here in using 

Model (4) is not to estimate the parameters but to obtain the predictive estimates of Y in 
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the non-sample units so that we can use Formula (2) to estimate the quantiles.  In using 

the frequentist approach, we face the challenges of obtaining the predictive values of Y in 

the non-sampled units as well as of estimating the 95% CI for the quantiles.  

In this paper, we extend the iterative frequentist approach to a Gibbs-Bootstrap 

iterative approach.  At the beginning of the iteration, we get the initial values of the two 

splines as ( )
1

0ˆ ∧

= SPLf  and ( )
2

0ˆ
∧

= SPLg .  For the Gibbs step, we pretend that ( )( )0ˆexp g  is 

the actual variance, so that Model (4) is simplified as a first-moment model with the 

variance known.  We then use Gibbs sampling to obtain a draw from the posterior 

predictive distributions of β  and 2
bτ  and a draw of ( )1f̂  by assuming the prior distribution 

( )610,0N∝β  and the hyperprior distribution ( )662 10,10 −−∝ IGbτ .  Given ( )1f̂ , we 

proceed to the Bootstrap step – we calculate the squared error ( )( )212 ˆˆ fyr −= .  To 

properly account for the modeling uncertainty in this step, we draw a Bootstrap sample 

from the unequal probability random sample s (Holmberg 1998); we then fit a 

generalized smooth regression model of the squared errors in the Bootstrapped sample 

using a frequentist approach and obtain the fitted function ( )1ĝ .  After the Gibbs-

Bootstrap step, we obtain a draw of ( )1ˆ jy  for the non-sampled units from Model (4) by 

plugging in ( )1f̂  and ( )1ĝ  and a draw of ( )1θ̂  defined in formula (2).  We iterate the above 

steps to simulate the posterior distributions of the finite-population quantiles.  The 

average or the median of the draws of ( )⋅θ̂  simulates the Bayesian two-moment penalized 

spline prediction (B2PSP) estimator PSPB2θ̂ .   
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Instead of the Gibbs-Bootstrap approach, we could also use WinBUGS to implement 

Model (4) and obtain the posterior distribution of the quantiles defined in formula (2).  

However, Crainiceanu et al. (2007) stated that “Our implementation of the MCMC using 

multivariate Metropolis-Hastings steps proved to be unstable with poor mixing 

properties”.  They suggested adding error terms to the second spline to make 

computations feasible by replacing sampling from complex full conditionals by simple 

univariate Metropolis-Hastings steps.  This idea can be expressed as  

( ) ( )( )ii

ind

i kSPLNY πσπ ε
2

1 ,,~ , ( )( ) ( )( )01.0,,~log 2
2 kSPLN i

iid

i ′ππσε . 

In the simulation studies, we only show the results of the B2PSP estimators for quantiles 

using the Gibbs-Bootstrap iterative approach and use the other approaches in the 

sensitivity analysis. 

 

III.3 Simulation study 

III.3.1. Design of the simulation study 

Simulation studies are conducted to compare the performance of the following three 

estimators of finite population quantiles using systematic probability-proportional-to-size 

(pps) sampling design: 

(1) ( )αθ̂ , sample-weighted estimator; 

(2) ( )αθ CDFinv−
ˆ , invert-CDF Bayesian model-based estimator; 

(3) ( )αθ PSPB2
ˆ , Bayesian two-moment penalized spline predictive estimator. 

We simulate an artificial finite population (N = 2,000) from a super-population (M = 

20,000).  The size variable x in the super-population takes 20,000 consecutive integer 
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values from 710 to 20,709.  The finite population is selected from the super-population 

using systematic pps sampling with the probability proportional to the inverse of the size 

variable.  We consider the following six finite populations.   

(1) LINUP + homogeneity: ( )2
10 ,~ σββ i

iid

i xNY +  

(2) EXP + homogeneity: ( )( )2
10 ,exp~ σββ i

iid

i xNY +  

(3) LINUP + heterogeneity: ( )2
10 ,~ σββ ii

iid

i xxNY +  

(4) EXP + heterogeneity: ( )( )2
10 ,exp~ σββ ii

iid

i xxNY +  

(5) LINUP + mixture model: ( )7.0,~ =pMBinomialZi  

        ( )2
10 ,~)1(| σββ ii

iid

ii xxNZY +=  

                                               ( ) ( )2
10 ,~)0(|log νββ i

iid

ii xNZY +=     

(6) EXP + mixture model: ( )7.0,~ =pMBinomialZi  

    ( )( )2
10 ,exp~)1(| σββ ii

iid

ii xxNZY +=  

                                           ( ) ( )( )2
10 ,exp~)0(|log νββ i

iid

ii xNZY += .  

We draw a sample of size 100 from each finite population using systematic pps sampling 

with x as the size variable, thus the selection probabilities are ∑ =
=

N

j jii xnx
1

π .  The 

scatter plots of Y versus π  for these six populations are displayed in Figure III.3.   

One thousand replicates of the simulations are obtained and the three estimators are 

compared in terms of empirical bias, root mean squared error (RMSE), average width and 

non-coverage rate of the 95% confidence/credible interval.  In each replicate of 
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simulation, a finite-population is generated before a sample is drawn.  For the 95% CI, 

we use Woodruff’s method for the sample-weighted estimator, the two methods 

illustrated in Figure III.2 for the invert-CDF Bayesian model-based estimator, and the 

95% posterior probability of the quantile with equal tails for the B2PSP method.  We use 

cubic splines with 15 equally spaced knots for both the probit spline in the invert-CDF 

method and the two-moment linear spline in the B2PSP method.  In using the invert-CDF 

method, we estimate the distribution functions upon 20 observations (the 3 smallest, the 3 

largest, and the other 14 equally spaced points in the middle from the ordered sample) 

and apply logit transformation on the 20 estimated distribution functions to achieve better 

fit of the monotonic smooth spline.   

 

III.3.2. Simulation results 

Tables III.1 shows the simulation results for ( )αθ̂ , ( )αθ CDFinv−
ˆ , and ( )αθ PSPB2

ˆ  in 

estimating the finite-population 10th, 25th, 50th, 75th, and 90th percentiles when the survey 

variable follows a normal distribution with homogeneous errors.  The empirical bias is 

similar among the three estimators.  Both of the Bayesian model-based approaches yield 

smaller root mean squared errors and shorter average 95% CI width than the sample-

weighted estimator, especially with the B2PSP estimator.  The coverage rate of the 95% 

CI is similar among the three estimators, except when α is equal to 0.1.  When α is equal 

to 0.1, the 95% CI of the B2PSP estimator has the shortest average width and the best 

coverage, while the sample-weighted estimator has serious under-coverage.  This 

happens because the Woodruff method for the sample-weighted estimator is based on a 



50 

large sample assumption but here with pps sampling only a small fraction of data is 

sampled in the lower tail.   

Table III.2 is similar to Table III.1 but studies the scenario of heteroscedastic errors.  

The three estimators are comparable in empirical bias.  Compared to the sample-weighted 

estimator, both ( )αθ CDFinv−
ˆ  and ( )αθ PSPB2

ˆ  have smaller root mean squared errors.  As α 

increases from 0.1 to 0.9, the gain in efficiency becomes more and more substantial using 

the two Bayesian approaches.  For instance, when α is equal to 0.75 or 0.9, the root mean 

squared error for the sample-weighted estimator is about twice of that for the B2PSP 

estimator in both the LINUP and EXP cases. When α is equal to 0.1 or 0.25, the invert-

CDF Bayesian approach yield the shortest average width and very close to nominal level 

confidence coverage, but the confidence coverage is too low using the sample-weighted 

estimator or too high using the B2PSP estimator.  When α is equal to 0.5, 0.75, or 0.9, the 

confidence coverage of the sample-weighted estimator is close to the nominal level but 

the confidence interval is very wide. Both the two Bayesian approaches lead to shorter 

average 95% credible intervals, but the confidence coverage for the B2PSP is over-

estimated.  

The validity of the B2PSP estimator relies on the normality assumption of the survey 

outcome conditioning on selection probabilities.  When the normality assumption does 

not hold, the B2PSP estimator may no longer have the advantages we see in Tables III.1 

and III.2.  The invert-CDF approach does not assume normality, so we are interested in 

comparing the sample-weighted and the invert-CDF Bayesian estimators in the scenario 

of non-normal data.  Their comparisons are displayed in Table III.3.  Overall, the 

empirical bias is similar between the two estimators, and the invert-CDF approach yields 
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smaller root mean squared errors.  The 95% CI for the invert-CDF estimator using the 

method illustrated in Figure III.1(b) has similar or shorter width of confidence intervals 

and similar confidence coverage compared to the sample-weighted estimator, except 

when α is 0.1 or 0.9.  When α is equal to 0.1, the sample-weighted estimator has low 

confidence coverage as we see in the other scenarios. When α is equal to 0.9, the 

confidence coverage for the invert-CDF approach is higher than the nominal level. The 

invert-CDF estimator using Woodruff’s CI leads to the under-estimate of confidence 

coverage, as we discussed before the performance of the Woodruff’s CI is dependent on 

the point estimate of the distribution functions here.  

Finally, we consider the conditional behavior of estimates by studying the variation in 

the bias generated by each estimator as the sample mean for the selection probability 

increases.  We use the technique in Royall & Cumberland (1981): the estimates from the 

1,000 samples are ordered according to the sample mean of the selection probabilities and 

are split into 20 groups of 50 each, and then the empirical bias is calculated for each 

group.  Figure III.4 displays the conditional bias of various estimators of the 90th 

percentile for the “EXP + homogeneity” case.  Figure III.4 shows that there is a linear 

trend for the bias of ( )αθ̂  as the sample mean of the selection probabilities increases, 

while the grouped bias of ( )αθ CDFinv−
ˆ  and ( )αθ PSPB2

ˆ  is less affected by the sample mean 

of selection probabilities, although Table III.1 shows that the overall bias is similar 

among the three estimators.  Similar findings are also seen in other scenarios. 

 

III.4. Discussion 
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Sample-weighted estimators for finite population quantiles are widely used in survey 

practice.  Although the sample-weighted estimators with Woodruff’s confidence intervals 

can provide valid large-sample inferences, they may be inefficient and confidence 

coverages can be poor in small-to-moderate-sized samples.  Model-based estimators can 

improve the efficiency of the estimates when the model is correctly specified.  For the 

quantile estimation of a continuous survey variable, we can either estimate the model-

based distribution functions then invert the distribution function to obtain quantiles or 

model the survey outcome on the selection probabilities directly.   

We show by simulations that Bayesian inferences of finite population quantiles based 

on inverting model-based predictive distribution functions or the Bayesian two-moment 

penalized spline regression outperform the sample-weighted estimator.  Though the two 

Bayesian model-based estimators and the sample-weighted estimator have comparable 

overall empirical bias, there is a linear trend in the variation of bias for the sample-

weighted estimator as the sample mean of selection probabilities increases.  Both new 

methods yield smaller root mean squared errors than the sample-weighted estimators.  In 

some scenarios, the improvement in efficiency using the two Bayesian methods is very 

significant.  When the normality assumption of the survey outcome given the selection 

probabilities is correct, the B2PSP estimator has smaller root squared mean errors than 

the invert-CDF approach.  The Woodruff’s method performs well when a large fraction 

of the data is selected from the finite population.  However, when data from the 

population is sparse, the Woodruff’s method tends to under-estimate the confidence 

coverage.  On the other hand, the 95% CI calculated from the posterior distribution of the 

quantiles associated with the B2PSP estimator is more likely to have higher than the 
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nominal level confidence coverage.  Interestingly, the conservative confidence intervals 

are associated with shorter intervals compared to the sample-weighted estimator in most 

of cases.  The invert-CDF approach generally performs well for confidence coverage in 

most cases.  

Although both the invert-CDF and the B2PSP estimators outperform the sample-

weighted estimator, they have various advantages and disadvantage.  The B2PSP 

estimator requires a strong normality assumption.  It yields smaller root mean squared 

errors than the invert-CDF approach when the normality assumption is true.  On the other 

hand, since the invert-CDF approach is based upon inverting the distribution functions, 

intensive computation is involved in the estimation of distribution functions but weaker 

assumptions are needed.  In the future work, we intend to remove the normality 

assumption for the B2PSP estimator, so that it can be applied to data having any 

distribution of form.  

 

 

 

 

 

 

 

 

 



  

 

Table III.1 Empirical bias × 102, root mean squared errors × 102, average width of 95% CI × 102, and non-coverage rate of 
95% CI × 102 of ( )αθ  for α = 0.1, 0.25, 0.5, 0.75, and 0.9: the homogeneous errors case. 
 

 α = 0.1 α = 0.25 α = 0.5 α = 0.75 α = 0.9
 

Wθ̂  CDFinv−θ̂
 

PSPB2θ̂
 

Wθ̂  CDFinv−θ̂
 

PSPB2θ̂
 

Wθ̂  CDFinv−θ̂
 

PSPB2θ̂
 

Wθ̂  CDFinv−θ̂
 

PSPB2θ̂
 

Wθ̂  CDFinv−θ̂
 

PSPB2θ̂
 

LINUP 
Bias -1.5 -0.9 0.7 -0.3 0.1 0.3 -0.3 -0.2 -0.2 -0.2 -0.3 -0.1 -0.6 -0.5 0.2
RMSE 7.7 6.8 5.4 5.7 5.0 4.2 4.8 3.9 3.5 4.4 3.3 3.0 4.2 3.2 2.7
Width of 
95% CI 24.8 25.7+ 

26.4# 21.0 23.1 19.1+

20.7# 15.7 18.8 14.9+

15.5# 12.8 17.9 13.4+

13.6# 11.3 18.7 13.3+

13.5# 10.6

Noncov. 
Rate 11.9 8.6+ 

7.5# 5.6 6.0 6.6+

4.5# 5.9 4.2 6.3+

3.7# 5.6 4.1 7.1+

4.1# 5.6 3.9 8.4+

4.3# 5.9

EXP 
Bias -0.9 -0.4 0.04 -0.3 0.4 -0.1 -0.2 0.4 -0.6 -0.2 0.5 -0.6 -0.8 0.8 0.7
RMSE 6.5 5.9 4.8 4.9 4.5 3.9 4.6 3.9 3.6 5.0 4.0 3.5 7.2 4.5 3.4
Width of 
95% CI 23.1 22.8+ 

24.4# 19.6 19.9 17.5+

18.8# 14.6 17.5 15.2+

16.0# 12.6 21.0 16.0+

17.1# 13.2 40.2 18.7+

23.0# 13.4

Noncov. 
rate 10.6 8.5+ 

5.8# 5.5 6.4 5.9+

3.7# 6.0 4.7 6.9+

3.8# 5.8 4.0 7.0+

3.4# 6.6 4.0 7.0+

4.2# 6.4

 
* Wθ̂  is the sample-weighted estimator; CDFinv−θ̂  is the invert-CDF Bayesian estimator; PSPB2θ̂  is the B2PSP estimator. 
+ Woodruff’s CI method for the invert-CDF Bayesian approach illustrated in Figure III.2(a) 
# The second CI calculation method for the invert-CDF Bayesian approach illustrated in Figure III.2(b) 
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Table III.2 Empirical bias × 102, root mean squared errors × 102, average width of 95% CI × 102, and non-coverage rate of 
95% CI × 102 of ( )αθ  for α = 0.1, 0.25, 0.5, 0.75, and 0.9: the heterogeneous errors case. 
 

 α = 0.1 α = 0.25 α = 0.5 α = 0.75 α = 0.9
 

Wθ̂  CDFinv−θ̂
 

PSPB2θ̂
 

Wθ̂  CDFinv−θ̂
 

PSPB2θ̂
 

Wθ̂  CDFinv−θ̂
 

PSPB2θ̂
 

Wθ̂  CDFinv−θ̂
 

PSPB2θ̂
 

Wθ̂  CDFinv−θ̂
 

PSPB2θ̂
 

LINUP 
Bias -0.5 -0.4 -1.0 -0.1 0.3 -0.1 -0.01 0.7 0.8 -0.1 0.1 0.8 -0.4 -0.4 0.1
RMSE 3.1 2.9 3.0 2.8 2.4 2.5 3.3 2.5 2.3 4.5 2.7 2.4 5.1 3.5 3.0
Width of 
95% CI 14.1 12.5+ 

13.6# 18.8 11.0 10.1+

10.8# 15.9 13.3 9.6+

10.1# 13.7 18.4 11.8+

12.0# 12.6 21.9 14.9+

15.1# 12.9

Noncov. 
Rate 13.8 6.2+ 

5.2# 1.5 6.9 5.4+

3.4# 0.2 4.1 5.1+

4.3# 0.5 5.0 4.0+

3.1# 2.2 4.2 4.9+

3.5# 3.8

EXP 
Bias -0.3 -0.7 -1.7 -0.3 -0.1 -1.2 -0.2 0.6 -0.05 0.1 1.0 1.0 -0.2 -0.4 0.4
RMSE 3.0 3.0 3.2 2.6 2.3 2.7 2.6 2.3 2.1 4.1 3.0 2.5 8.4 4.4 3.5
Width of 
95% CI 13.5 12.5+ 

13.8# 19.2 10.0 9.8+

10.5# 15.6 10.6 9.4+

10.1# 13.4 18.6 11.7+

12.8# 13.7 37.8 19.9+

22.4# 14.8

Noncov. 
rate 11.1 4.9+ 

3.6# 2.4 6.5 5.2+

3.8# 0.9 4.6 4.8+

2.8# 0.1 4.5 4.5+

5.3# 2.7 3.4 5.0+

3.4# 4.7

 
* Wθ̂  is the sample-weighted estimator; CDFinv−θ̂  is the invert-CDF Bayesian estimator; PSPB2θ̂  is the B2PSP estimator. 
+ Woodruff’s CI method for the invert-CDF Bayesian approach illustrated in Figure III.2(a) 
# The second CI calculation method for the invert-CDF Bayesian approach illustrated in Figure III.2(b) 
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Table III.3 Empirical bias × 102, root mean squared errors × 102, average width of 95% CI × 102, and non-coverage rate of 
95% CI × 102 of ( )αθ  for α = 0.1, 0.25, 0.5, 0.75, and 0.9: the mixture model case. 
 

 α = 0.1 α = 0.25   α = 0.5 α = 0.75 α = 0.9
 θ̂  CDFinv−θ̂  θ̂  CDFinv−θ̂  θ̂  CDFinv−θ̂  θ̂  CDFinv−θ̂  θ̂  CDFinv−θ̂  

LINUP 
Bias -0.4 -0.04 0.1 1.1 0.5 0.2 0.5 -0.4 0.4 -0.2
RMSE 3.6 3.5 4.0 3.6 6.5 5.1 10.7 9.7 22.3 19.9
Width of 
95% CI 15.5 14.6+ 

15.6# 15.5 13.4+

14.3# 25.7 18.5+

20.3# 44.8 35.0+

40.8# 126.8 67.0+

88.5#

Noncov. 
Rate 14.2 7.3+ 

4.6# 7.2 9.0+

4.8# 5.2 10.9+

7.1# 5.4 11.9+

6.3# 5.0 17.0+

9.6#

EXP 
Bias -0.5 -0.7 -0.1 0.7 0.7 1.6 -0.5 -0.4 -0.7 0.7
RMSE 3.4 3.3 3.4 3.3 6.7 5.7 5.2 4.5 6.5 5.2
Width of 
95% CI 15.5 14.2+ 

15.6# 13.2 13.5+

14.1# 23.8 18.7+

19.6# 21.8 18.3+

19.3# 42.8 19.4+

22.4#

Noncov. 
Rate 9.9 4.0+ 

3.6# 6.9 5.9+

3.7# 5.0 11.7+

6.3# 4.5 8.4+

4.6# 2.7 7.5+

3.8#

 
* Wθ̂  is the sample-weighted estimator; CDFinv−θ̂  is the invert-CDF Bayesian estimator  
+ Woodruff’s CI method for the invert-CDF Bayesian approach illustrated in Figure III.2(a) 
# The second CI calculation method for the invert-CDF Bayesian approach illustrated in Figure III.2(b) 
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Figure III.1 Bayesian model-based approach in estimating finite population distribution functions illustrated using a sample of 
size 100 drawn from a finite population.  (a) BPSP method is used to estimate the finite population distribution functions at 20 
sample points; the dots denote BPSP estimators and the minus signs denote the upper and lower limits of the 95% CI.  (b) 
Three monotonic smooth cubic regression models are fit on the BPSP estimators, upper limits, and lower limits; the solid 
curve is the predictive continuous distribution functions and the two dash curves are the 95% CI of the distribution functions. 
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Figure III.2 Invert-CDF Bayesian model-based approach of estimating finite population quantiles and methods of calculating 
the 95% CI.  (a) Extension of the Woodruff’s confidence intervals; x is the estimated α-quantile, A and B are the upper and 
lower limits of the 95% CI of F(x), and xA and xB are the upper and lower limits of 95% CI for the quantile. (b) Direct 
estimation from the upper and lower bound of the 95% CI of the distribution functions; x’A and x’B are the upper and lower 
limits of 95% CI for the quantile. 
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Figure III.3 Scatter plots of Y versus the selection probabilities among six artificial 
finite populations. 
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Figure III.4 Variation of empirical bias of the three estimators for 90th percentile 
from the “EXP + homogeneity” case 
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Chapter IV 

STEPWISE VARIABLE SELECTION IN MULTIPLY IMPUTED 
DATA 

 

IV.1 Introduction 

In health survey studies, item nonresponse happens when particular items are missing 

for an individual.  For example, a sensitive question regarding income may not be 

answered on a questionnaire.  The missing values due to item nonresponse typically have 

a haphazard pattern.  If the amount of item nonresponse is nontrivial or if a small amount 

of nonresponse occurs in several variables in different individuals, the default strategy of 

eliminating all incomplete cases from the analysis is wasteful of costly collected data, and 

can lead to problematic inference for the target population.   

Item nonresponse is often handled by multiple imputation (Rubin 1987; Little and 

Rubin 2002), which refers to a procedure of ‘filling in’ missing data with plausible values 

D > 1 times to create multiple datasets.  Commonly, D = 5.  It has been used in, for 

example, the National Health and Nutrition Examination Survey (Schafer et al. 1993), the 

National Survey of Family Growth (Lepkowski et al. 2006), and National Health 

Interview Survey (Schenker et al. 2006).  After multiple imputation, each imputed dataset 

is analyzed identically by a complete-data method.  The multiple parameter estimates and 

standard errors are then combined using Rubin’s multiple imputation combining rule 

(Rubin 1987) to account for both the within-imputation and between-imputation 

variations.   
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Besides the problem of item nonresponse, there are often many potential explanatory 

variables for an outcome of interest in large health surveys.  Health scientists usually 

have some predictors of interest in mind, but they are also interested in knowing if there 

are any confounders or additional important explanatory variables beyond their 

hypotheses of interest.  When the number of candidate explanatory variables is large, 

variable selection algorithms are used to identify statistically significant predictors.   

While there are other more rigorous variable selection methods available, the methods 

of all possible subsets, backward elimination, and forward stepwise selection are the most 

commonly used variable selection methods for regression models in complete-data.  The 

method of all possible subsets is only feasible with small number of potential predictors 

(less than or equal to 10).  Backward elimination and forward stepwise selection methods 

are commonly used when investigators need to explore large numbers of potential 

explanatory variables, and are practical because standard statistical software packages 

allow their implementation.  Backward elimination starts with all potential explanatory 

variables in the model and deletes a variable in each step.  It is impossible to use 

backward elimination when the number of predictors is equal to or larger than the number 

of observations.  Forward stepwise selection starts with null model and adds a variable in 

each step.  It is the only feasible method for very large predictor pools.  When selecting a 

set of important variables, statistical significance should not be the only criterion 

considered.  Consideration should also be given to issues such as the form of the 

variables in the model, variable stability, confounding, collinearity, and clinic 

significance.  Therefore, model checking must be performed for a statistical model 

determined by data-driven statistical selection methods.  
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However, there are currently no guidelines for the extension of these variable 

selection methods to the setting of multiply imputed data.  Given the multiply imputed 

data, the method of all possible subsets can be implemented easily by applying Rubin’s 

multiple imputation combining rule to all possible subsets of models.  While backward or 

forward stepwise selection methods commonly produce different statistically significant 

variables for different imputed data sets; this poses difficulty in pooling the variable 

selection results across imputed data sets.  That is, Rubin’s multiple imputation 

combining rule cannot be directly applied in this situation.  Some authors suggest 

including in a model variables that were selected in at least 3 out of 5 (60%) of the 

imputed data sets. (Heymans et al. 2007 and Brand 1999) In this paper we refer to this 

strategy as the select then combine (SC) method.  For simplicity, researchers also 

perform variable selection with any one of the multiply imputed data sets.  We call this 

approach the single imputation (SI) method.  Both the SC and SI methods do not fully 

account for the imputation uncertainty.  Alternatively, we develop and implement a 

combine then select (CS) method by applying Rubin’s multiple imputation combining 

rule in each step of backward or forward stepwise selection (Wood et al. 2008).  The CS 

method leads to a single set of selected variables.  We focus on the CS forward stepwise 

selection method in this paper, since there is a large pool of candidate variables in our 

real-world example of a community-based dioxin exposure study collected by the 

University of Michigan.  This dioxin exposure study data is used to demonstrate the CS 

forward stepwise selection method, and simulation studies are conducted to compare the 

various methods.   
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IV.2   Materials and methods 

IV.2.1 Study design 

The University of Michigan Dioxin Exposure Study (UMDES) was designed to 

assess exposures to polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, 

and dioxin-like polychlorinated biphenyls in the adult population of Midland and 

Saginaw Counties, Michigan, USA.  By measuring factors that reflect potential exposure 

to dioxins through air, water, soil, food intake, occupations, and various recreational 

activities, the study sought to identify factors which explain variation in serum dioxin 

concentrations.  Blood serum was analyzed for the World Health Organization 29 list of 

dioxin-like compounds (Van den Berg et al. 2005) using high resolution gas 

chromatography-mass spectrometry.  Serum concentrations of dioxins were summarized 

into a single toxic equivalency (TEQ) value, which is the sum of the mass concentrations 

of the individual dioxin-like compounds multiplied by their toxic equivalent factors (Van 

den Berg et al. 2005).  In total, 946 participants had serum TEQ measures. 

 

IV.2.2 Potential explanatory variables 

The following demographic and health variables were considered to be potentially 

associated with serum TEQ levels: age, gender, race, education, income, body mass index 

(BMI), BMI loss and gain in the past 12 months, smoking status, pregnancy, childbearing 

and months of breastfeeding for each child.  In addition, the respondent recalled possible 

dioxin exposure pathways over their entire lifetime, including a full residential history 

(residence region and number of years living in the contaminated areas), property use 

(trash burning, pets entering the home, wearing shoes in the home, gardening activities, 
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using weed killers, raising crops or poultry, use of fireplaces and wood burning stoves, 

fire damage to the home, and flooding in contaminated areas), occupations with likely 

exposure to dioxins, military service in Vietnam, fishing, hunting, water sports in the 

contaminated areas, and consumption of meat, fish, game, eggs, milk, other dairy 

products, fruits, and vegetables from the contaminated areas or bought from stores 

(consumption frequency in the last 5 years and the number of years of consumption in the 

lifetime).  According to our hypotheses, TEQ levels in soil and dust samples from the 

participant’s home were of particular interest.   

 

IV.2.3 Statistical analyses 

As typically encountered in surveys, the presence of item missing values was 

encountered in the UMDES.  By assuming missing at random (MAR) (Rubin 1987; Little 

and Rubin 2002), the item missing values in the survey questionnaire and the dust and 

soil samples were imputed five times using a sequential regression imputation procedure 

(Raghunathan et al. 2001) as implemented in IVEware (Raghunathan et al. 2008).  A 

logarithm 10 transformation was taken on the serum dioxin concentrations.  Forms of 

candidate explanatory variables and collinearity were investigated before variable 

selection.  A simple, credible model on the serum TEQ levels was constructed with nine 

important variables based on our prior knowledge and hypotheses of interest.  Once we 

had specified the starting model, we added complexities by an expanding search process 

using the CS, SC, and SI forward stepwise selection methods.  There were a total of 114 

continuous or categorical variables in the pool of candidate explanatory variables.  All 

regression models were fit using the survey weights dictated by the study design.  
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However, the variable selection algorithms can be used in either survey weighted or 

unweighted regression settings.   

The implementation of the CS forward stepwise selection is straightforward.  For 

each data set completed by imputation, a survey-weighted linear regression model was 

fitted on a variable list including the nine forced-in variables and one variable at a time 

from the 114 potential variables.  Let ijij W,β̂ , 5,,1"=i , 114,,1"=j  be the estimated 

regression coefficient and its variance, respectively, for thj  variable in the thi  imputed 

data set.  By applying the multiple imputation combining rule, the combined coefficient 

estimate for the thj  variable is 5/ˆ5

1∑=
=

i ijj ββ .  The variability associated with jβ  is 

( ) jjj BWT 5/11++= , where 5/5

1∑ =
=

i ijj WW , and ( ) )15/(ˆ5

1

2
−−= ∑ =j jijjB ββ .  The 

statistic test ( ) 2/1−×− jjj Tββ  follows a t  distribution, with 

( ) ( )( )2)15/(/115 ++−= jj BWv  degrees of freedom.  Let jp , 114,,1"=j , denote the 

combined P value associated with the t-test for the thj  variable.  The variable with the 

smallest jp  was selected into the model, so long as this jp  was not greater than 0.05, the 

entry significance level into the model.   

The procedure successively re-fitted the linear regression models on a variable list 

including the forced-in variables, the variables entering the model in the previous steps, 

and one new variable at a time.  At the same time, variables once entered could be 

dropped if they were no longer significant (we set the significance level for staying in the 

model as 0.05, though this significance level is usually set higher than the significance 

level for entry into the model) as other variables were added.  The stepwise selection 
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procedure continued until the jp  values for all variables in the model were less than the 

significance level for staying and none of the variables not in the model satisfied the 

significance level for entry.   

 

IV.2.4 Results 

A SAS macro %MI_SREG_SW was designed to perform the CS stepwise variable 

selection in linear regression models for complex survey data.  This SAS macro can be 

easily modified and extended to other SAS procedures, such as REG, GLM, and 

LOGISTIC.   

The CS stepwise selection method identified 14 out of the 114 candidate explanatory 

variables as statistically significant predictors, not including the nine forced-in variables 

already in the model.  The 23 variables accounted for 71.7% (R-square) of variation in 

serum TEQ concentrations.  For comparison to the SI and SC methods, Table IV.1 lists 

side by side the statistically significant variables selected by using SI method based on 

each imputed dataset, SC method using a selection rule of significance in at least two or 

three of five imputations, and the CS method.  Table IV.1 shows that the first 11 

variables were selected into a model by using any of the three selection methods.  In 

addition, the SI method selected another three, five, nine, six, and nine variables into a 

model by using imputations 1-5, respectively.  As a result, the SC method selected 12 

additional variables that appeared at least twice in the SI method, and five additional 

variables that appeared at least three times in the SI method.  This shows that the SC 

method can lead to different numbers of variables being selected, based on an arbitrary 

selection rule.   
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For the CS method, variables 12-14 together with the first 11 common variables were 

selected into a model, where variables 12-14 were selected in different combinations in 

different imputations with the SI method.  We performed regression model diagnostics 

which indicated that the significance of some of variables 15-24 (selected by the SI 

method) was due to a few influential observations.  This demonstrated that the SI method 

was more likely to select unstable variables into the model compared to the CS method.   

 

IV.3. Simulation study 

We performed a series of simulation studies similar to those given by Yang et al. 

(2005) in a Bayesian variable selection.  We compared the performance of the CS 

stepwise selection method with two existing methods: the SI method and the SC method 

(with variable entry requiring significance in at least three out of five simulations).  We 

generated a complete dataset of size 500 with 10 variables{ }1021 ,, XXX "  which 

followed a multivariate normal distribution.  We considered two compound symmetric 

correlation matrices for the 10 variables, with an off-diagonal value of 0.1 for lower 

collinearity and of 0.5 for higher collinearity.  The outcome, Y, was generated from a 

normal distribution with a mean function of 7641 32 XXXX +++ , and a variance of 2.5.  

We studied two data missing mechanism: missing complete at random (MCAR) and 

MAR.  Under the MCAR mechanism, where the missingness does not depend on the data 

values, 5% or 10% of observations were dropped independently for each variable X1 to 

X10, yielding 60% or 35% complete cases across the 10 variables.  Alternatively, under 

the MAR mechanism, where missingness depends on the observed data but not on the 

missing components, X1, X2, X3, X4, and X5 were fully observed and 10% or 20% of data 
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were deleted independently in each variable X6, X7, X8, X9, and X10, producing 

comparative missing fractions as with the MCAR mechanism.  The probability of 

missingness among X6, X7, X8, X9, and X10 was in a form of  logit(P(Xk = 

missing)) ∑ =
+=

5

10 j jjkk Xαα , 10,,6 …=k , with parameters chosen to produce the 10% 

or 20% of missing data.  We used sequential regression imputation to impute the missing 

data five times before the variable selection.   

The performance of the three methods were compared by counting the number of 

incorrect variable selections C, including the number of variables that were not selected 

into model among the important variables{ }7641 ,,, XXXX  and the number of 

variables that were selected into model among the remaining six other variables.   A total 

of 100 replicates were created, and the mean and standard deviation of C were compared 

among the SI, SC (with significance in at least 3 out of 5 imputations), and the CS 

methods.   

Table IV.2 shows that the CS method produces fewer incorrectly selected variables 

than either the SI or SC methods, and the SC method performs better than the SI method 

in all cases.  The latter result is because the SC has partially incorporated the imputation 

uncertainty, whereas the SI method does not.  In addition, the rule of including variables 

that were statistically significant in three of five imputations is arbitrary, and led to more 

incorrectly selected variables than the CS method.  The C values are higher when the 

missing fraction is higher and when the correlation coefficient ρ is large. 

 

IV.4. Discussion 
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Researchers often face the challenge of performing variable selection with multiply-

imputed datasets.  The commonly used approaches have limitations and deficiencies that 

reduce their utility.  Stepwise variable selection based on a single imputation fails to 

account for imputation uncertainty.  A modification includes choosing only the variables 

that are selected repeatedly across the multiple imputations.  However, the selection rule 

based on an arbitrarily chosen significance proportion (such as three of five imputations) 

can lead to different variables being selected if different significant proportions are 

chosen.  We modified the stepwise variable selection method for complete-data to the 

setting of multiply imputed data by using the multiple-imputation combination rule to 

obtain combined inferences from multiple datasets in each step of variable selection and 

selecting variables based on the combined P values.  This CS stepwise selection method 

has theoretical advantages because it accounts for imputation uncertainty and yields a 

single model.  Furthermore, our approach, which is based on Rubin's multiple imputation 

combining rule, preserves the type I error, which the SI and SC methods do not. (Wood et 

al. 2008) 

A simulation study in the setting of MCAR and MAR showed that the CS stepwise 

selection method is less likely to incorrectly select variables into the models compared to 

both the SI method and the SC method (with 60% as cutoff value).  We did not include 

the setting of not missing at random (NMAR) in the simulation study, because it usually 

requires more complicated multiple imputation methods than the sequential regression 

imputation method, but the CS stepwise selection method is still applicable after the 

missing values are properly imputed.   
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The number of incorrectly selected variables included the number of important 

variables that were missing and the number of noise variables that were incorrectly 

included.  When these two kinds of mistakes were separated, the incorrectly selected 

variables were actually all the noise variables that were incorrectly included in the 

simulation study.  All the important variables were included by using all three methods, 

but more noise variables were included in the SI and SC methods than the CS method, 

because imputation uncertainty is not or only partially accounted for.  

Although in this article we only describe the modified stepwise variable selection 

method in the setting of multiply imputed data, this combine then select variable selection 

algorithm can also be applied to forward and backward variable selection methods.  We 

have not applied this method to the setting of simultaneous imputation and variable 

selection. There are many instances where these activities cannot be combined, as in the 

use of public datasets for example, where the imputation is performed before the data are 

released to the public.  Extension of our approach to this setting would be valuable.  

Other approaches such as Bayesian variable selection for multiply imputed data have 

theoretical justification (Yang et al. 2005). However, there are currently no Bayesian 

variable selection methods available for multiply imputed complex survey data.   

We do not suggest that automated methods are preferable over careful model building 

based on background knowledge.  Automated methods are often used because there are 

too many possible variables and expansion terms to consider within a reasonable length 

of time (Rothman et al. 2008).  Problems with falsely narrow confidence limits, noise 

variables gaining entry into models, and lack of logical justification for models must be 

considered when automated methods are used. (Wood et al. 2008; Rothman et al. 2008) 
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Table IV.1 Comparison of various selection methods in selecting statistically 
significant predictors of log10 serum TEQ levels in the UMDES example 
 
  Methods 
Var
# Variable Name SI SC C

S 1st. 2nd. 3rd. 4th. 5th. ≥ 2/5 ≥ 3/5 
1 Living in Midland/Saginaw counties (yrs) x x x x x x x x 
2 No. of pregnancies without children x x x x x x x x 
3 BMI loss in last 12 months x x x x x x x x 
4 Interaction term of BMI and gender x x x x x x x x 
5 Interaction term of gender and age x x x x x x x x 
6 Maximum soil dioxin level on property x x x x x x x x 
7 No. of yrs living on a farm in 1940- 1959 x x x x x x x x 
8 No. of yrs using weed killers on the property 

in 1960-1979 
x x x x x x x x 

9 No. of yrs living in a property ever damaged 
by a fire in 1960 -1979 

x x x x x x x x 

10 No. of yrs working at Dow Chem. Co. x x x x x x x x 
11 No. of meals of fish except walleye or perch 

in Saginaw River/Bay in last 5 yrs 
x x x x x x x x 

12 No. of days doing water activities in or 
around the Tittabawassee River 1960 -1979 

x  x x x x x x 

13 No. of days fishing in Saginaw River/Bay 
after 1980 

x x  x  x x x 

14 No. of years eating fish after 1980 x x    x  x 
15 Household dust dioxin loading  x x x x x x  
16 No. of years doing water activities in or 

around any other Michigan rivers or lakes 
in1960-1979 

  x x x x x  

17 No. of meals of sport-caught walleye or 
perch not from the contaminated area in last 
5 yrs 

  x x x x x  

18 No. of days of fishing in Tittabawassee 
River in 1960-1979 

 x  x  x   

19 No. of meals of walleye or perch from 
Tittabawassee River in last 5 yrs. 

 x       

20 No. of meals of fish except walleye or perch 
from Tittabawassee River in last 5 yrs. 

  x  x x   

21 No. of years living on a property ever 
damaged by a fire in 1940-1959 

  x  x x   

22 No. of years of working in dioxin exposed 
jobs in 1960-1979 

  x  x x   

23 No. of days hunting in the area of the 
Tittabawassee River after 1980 

  x  x x   

24 No. of days fishing in the area of the 
Tittabawassee River after 1980 

  x  x x   
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Table IV.2 Comparison of various selection methods showing the average number of 
incorrectly selected variables C for two levels of correlation among predictors and 
varying types and levels of item missing data 
 
 Methods 
       SI      SC      CS 
Average number of incorrectly selected variables C (standard deviation) 
ρ = 0.1 
MCAR 5% 
MCAR 10% 
MAR 10% 
MAR 20% 
ρ = 0.5 
MCAR 5% 
MCAR 10% 
MAR 10% 
MAR 20% 

 
0.54 (0.64) 
1.14 (0.77) 
0.54 (0.66) 
0.69 (0.66) 
 
1.77 (0.78) 
2.80 (0.77) 
1.73 (0.78) 
2.17 (0.71) 

 
0.31 (0.51) 
0.81 (0.69) 
0.20 (0.43) 
0.32 (0.55) 
 
1.56 (0.76) 
2.78 (0.92) 
1.36 (0.80) 
2.08 (0.91) 

 
0.10 (0.33) 
0.27 (0.45) 
0.04 (0.20) 
0.05 (0.22) 
 
0.99 (0.59) 
1.91 (0.64) 
0.82 (0.64) 
1.35 (0.61) 
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Chapter V 

ESTIMATION OF BACKGROUND SERUM 2, 3, 7, 8 - TCDD 
CONCENTRATIONS USING QUANTILE REGRESSION IN THE 

MICHIGAN (UMDES) AND NHANES POPULATIONS 
 

V.1. Introduction 

The University of Michigan Dioxin Exposure Study (UMDES) was conducted in 

response to concern that people’s body burdens of dioxins might be elevated in Midland 

and Saginaw counties, Michigan, because of environmental contamination from the Dow 

Chemical Company facilities in the City of Midland and sediments in the Tittabawassee 

River flood plain.  To assess whether the concentrations of blood serum dioxins are 

elevated among residents in Midland/Saginaw, they need to be compared with the 

background concentrations of serum dioxins in other areas where there are no known, 

unusual sources of dioxin exposures.  The most studied dioxin congener, 2, 3, 7, 8-

tetrachlorodibenzo-p-dioxin (TCDD), is formed as an unintentional by-product of 

incomplete combustion and has been classified as a probable human carcinogen (Agency 

for Toxic Substances and Disease Registry 1998).  Our goal in this paper is to estimate 

the mean and quantiles of serum TCDD levels in the general population.   

Studies have shown that, among the general public, the concentrations of serum 

dioxins increase with age. (Patterson Jr. et. al 2004; Wittsiepe et al. 2000)  These 

increases are most likely the result of higher levels of dioxins in the environment in the 

1960’s and 1970’s than in recent years, the number of years of past exposure, and slower 
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elimination among older people.  In addition, the difference in serum dioxin 

concentrations by sex may be due to differences in elimination between males and 

females. (Patterson Jr. et al. 2008)  Therefore, the estimation of background 

concentrations of serum dioxins must be adjusted for these factors. 

In exposure assessment, quantiles are sometimes of more interest than means, from a 

public health perspective.  In the presence of a skewed distribution, quantiles can also 

catch important information that might be missed by measurements of central tendency 

and dispersion.  Since age and sex are associated with serum TCDD concentrations, an 

age- and sex- specific quantile estimate among the reference population is of greater 

interest than a univariate quantile estimate. Quantile regression (Koenker 2005) is used to 

estimate and allow inferences about conditional quantile functions given covariates, 

similarly as linear regression is used to predict conditional means given covariates.  

We used two referent populations for estimation of the quantiles of serum TCDD 

levels: the population of Jackson and Calhoun counties in Michigan and the 2003-2004 

National Health and Nutrition Examination Survey (NHANES). (NCEH/CDC 2005) The 

Jackson/Calhoun sample was advantageous because it was representative of local 

Michigan residents.  The NHANES sample was advantageous because it included large 

numbers of subjects and was representative of the U.S. general population.  However, for 

the serum TCDD, about half the NHANES data were below the limit of detection (LOD).  

The LOD is defined as the concentration of analyte which gives a signal equal to a 

laboratory blank (obtained when no analyte is present) plus three times the standard 

deviation of the blank. (Keith et al. 1983) The LOD represents the level below which we 

cannot be confident whether or not the analyte is actually present.  The high proportion of 
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TCDD samples below LOD in the NHANES data has resulted in the difficulty in 

estimating age- and sex- specific mean, median, and lower quantiles of serum TCDD 

concentration in general U.S. population based on the NHANES data only.   

The present study applies linear and quantile regression methods in the setting of 

complex survey data to quantify the age- and sex- specific mean and quantiles estimates 

of the background serum TCDD concentrations in the general Michigan population and 

separate estimates in the general U.S. population.  It also illustrates a multiple imputation 

approach for imputing values below the LOD. The LOD issue has posed formidable 

limitations to the estimation of serum TCDD levels (and levels of other environmental 

contaminants that are commonly measured near the limit of detection) in the general 

population.  Conventional approaches of imputing the values below the LOD as 0, LOD, 

LOD/2, or LOD/√2 depend on the blood sample volume and the LOD levels of the 

measurement methods and may lead to biased estimates of serum TCDD concentration, 

especially in the scenario of high proportion of data above the LOD and high LOD levels. 

(Hornung and Reed 1990) 

 

V.2. Materials and methods 

V.2.1. Study population   

Jackson and Calhoun counties, Michigan, are over 100 miles away from Midland, 

Michigan. The population of these counties was chosen as the reference population in the 

UMDES because it was similar to Midland and Saginaw counties in terms of 

demographics, urban/rural distribution, and percent employment in industry – except that 

there is no known unusual source of dioxins, such as the Dow Chemical Company.  To be 
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eligible for participation in this study, the Jackson/Calhoun residents were required to be 

18 years or older and to have lived in their current residence for at least five years.  The 

sampling used a two-stage area probability selection of housing units in Jackson and 

Calhoun counties and a third stage of selection of an eligible person within each sample 

housing unit. (Lepkowski et al. 2006)  Participants provided written, informed consent 

that had been approved by the University of Michigan Health Sciences Institutional 

Review Board.  Participants who met Red Cross criteria for blood donation (no clotting 

disorders or blood thinner medications, no recent chemotherapy, weight of at least 110 

pounds, etc.) were invited to provide an 80 milliliter (ml) sample of blood.  In 

Jackson/Calhoun counties, the study cooperation rates (proportion of known eligible 

persons who provided data) were 82.2 percent in the interviewing stage and 78.4 percent 

in the blood collection stage. (Lepkowski et al. 2006)  A total of 359 persons in Jackson 

and Calhoun counties completed the UMDES study questionnaire and among whom 251 

gave blood samples in the summer of 2005. (UMDES 2008)   

All serum TCDD analyses were performed by Vista Analytical Laboratory of El 

Dorado Hills, CA, using high resolution gas chromatography-mass spectrometry.  To 

ensure the precision and accuracy of the serum results, Vista Analytical Labs first 

synchronized its serum analysis methods with the methods of the National Center for 

Environmental Health (NCEH) laboratories at the Centers for Disease Control and 

Prevention (CDC) before the start of UMDES fieldwork.  Additionally, 20 serum quality 

assurance and quality control (QA/QC) samples were supplied by NCEH, blind analyzed 

by Vista Analytical Laboratory during fieldwork, and the results verified by NCEH labs.  

The mean lipid content of these samples was measured at 586 mg/dL (s.d. = 20) by Vista, 
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compared to 603 mg/dL (s.d. = 21) by NCEH.  Vista’s analytical results for TCDD 

concentration were within 2 standard deviations of the sample means determined by 

NCEH after repeated testing of these samples over time.  Serum standard reference 

materials, supplied by the National Institute of Standards and Technology (NIST), and 

pooled serum samples were analyzed periodically (1 each per 40 samples) to verify the 

method performance.  The serum TCDD concentration was divided by the total lipids and 

was reported in parts per trillion (ppt) or picograms/gram lipids.  The lipids were 

determined by measurements of triglycerides and total cholesterol and then the total 

lipids were calculated using the Phillips method, as was done in the NCEH laboratory. 

(Philips et al. 1989)  

One limitation of the Jackson/Calhoun data is that relatively few participants (n = 20) 

were older than 75 years, especially males (n = 3).  As a result, estimating age- and sex-

specific upper percentiles was problematic in this group.  However, a substantial data set 

of serum TCDD concentrations in adults aged 18 to 85 years exists in the 2003-2004 

NHANES. (NCEH/CDC 2005)  The serum dioxin analyses in the NHANES were 

performed by NCEH.  Since the methods for serum dioxin and lipid quantification are 

comparable between the NCEH labs and the Vista Analytical Lab and the results verified 

via blind sample introduction, the blood serum data of the UMDES and the NHANES 

can be combined with little or no expectation of bias.  Since the population in 

Jackson/Calhoun counties was predominantly non-Hispanic whites (91 percent) and 

pregnant women were excluded, we examined information from the NHANES subsample 

of 719 non-Hispanic whites (excluding pregnant women) who had serum TCDD 

measures.  There were 98 participants (40 males) older than 75 years who had serum 
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TCDD concentrations above the LOD in the NHANES data, and who could be useful in 

improving the age- and sex-specific percentile estimates among older people in 

Jackson/Calhoun. 

 

V.2.2. Statistical analyses 

The 719 observations from NHANES data were concatenated with the 251 

observations from UMDES Jackson/Calhoun data, with an indicator for data source (1 for 

NHANES, 0 for UMDES).  To be consistent with the NHANES dataset, participants who 

were older than 85 years in the Jackson/Calhoun dataset were recorded as being age 85 to 

preserve the anonymity of people participating in the study.  Age and sex were fully 

observed for both samples.  Other covariates potentially associated with serum TCDD 

concentration were body mass index (BMI), recent BMI change, cigarette smoking, 

income, education, and breast feeding history among women. (Garabrant et al. 2009)  All 

of these covariates had less than 7.5 percent of data missing in both samples.  They were 

imputed separately using a sequential regression imputation method in both samples 

before the combination. (Raghunathan et al. 2001)  The survey sampling weights were 

standardized within each data source by dividing by their respective mean sampling 

weights and then multiplying by 100 in order to maintain the ratio of the data source 

sample sizes; this prevents the analysis results from being overwhelmed by the NHANES 

data due to its much larger sampling weights (each individual observation represents 

many more people in the population).    

A multiple imputation technique was performed to impute the TCDD concentrations 

for those below the LOD in the combined data of Jackson/Calhoun and NHANES. 
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(Rubin 1987; Little and Rubin 2002)  For each imputation, a bootstrap sample of 970 

(n=251 for Jackson/Calhoun, n=719 for NHANES) observations was generated from the 

combined Jackson/Calhoun and NHANES data, and a survey weighted left-censored 

(Tobit) linear regression model, assuming a lognormal distribution, was fitted on the 

bootstrap sample with important covariates including data source, age, sex, BMI, BMI 

change in the past 12 months, pack-years of cigarette smoking, number of children breast 

fed (among women subjects), income, education, and the two-way interaction terms 

among age, sex, and data source.  Then, for those subjects having values below the LOD, 

the natural logarithm transformed imputed values were drawn from a normal distribution 

with mean and variance estimated from the left-censored regression model, with left 

truncation at their corresponding natural logarithm LOD.  The above procedure was 

repeated five times to generate five imputed data sets.   

A natural logarithmic transformation was applied to the serum TCDD concentrations, 

because there is an approximately linear association between log (serum TCDD) and age.  

To estimate the age- and sex-specific serum TCDD measures, survey weighted mean, 

quartiles (25th percentile, median, 75th percentile) and 95th percentile of quantile 

regression models of serum TCDD concentrations were fitted on age, sex, data source 

indicator, and their three two-way interaction terms.  Age was centered at 50 years to 

facilitate interpretation of the intercept and to remove collinearity of age with its 

interaction terms with sex and data source.  Since neither the interaction term between 

age and data source indicator nor the interaction term between sex and data source 

indicator was significant in any of the mean or quantile regression models, they were 

removed from all of the models.  For the mean regression, we used the conventional 



  

 81

method for complex surveys by using the SURVEYREG procedure in SAS, version 9.1 

(SAS Institute Inc., Cary, North Carolina).  However, since there is no statistical software 

package currently available that provides correct standard error estimates for quantile 

regression in complex surveys, we corrected the estimates of standard errors of the 

regression coefficients using 1,000 bootstrap samples. (Efron and Tibshirani 1994)  The 

estimates for each parameter from five imputed data sets were averaged to get the 

combined parameter estimate, and the variances were computed using standard multiple 

imputation combining rules that account for between and within imputation variances. 

(Rubin 1987) 

We used the bootstrap method for stratified multistage samples in both the multiple 

imputation and the quantile regression. (Rust and Rao 1996)  For a single replicate of 

bootstrap, for each stratum h, draw, from the nh primary sampling units (PSUs) in the 

sample, a simple random sample with replacement of mh = (nh-1) PSUs.  Let ( )t
hir  denote 

the number of times that PSU i from stratum h is included in replicate t and let hijw  

denote the sample weight for unit j in the PSU i and stratum h, the bootstrap weights were 

calculated as ( ) ( )t
hi

h

h
hij

t
hij r

n
nww ⋅
−

⋅=
1

.  The bootstrap weights were then used for statistical 

analysis in the bootstrap samples. 

Predictions of conditional mean, quartiles, and 95th percentile of the serum TCDD 

concentrations were plotted in raw scale versus age.  Each value below the LOD was 

plotted using the average of its imputed values in five imputed data.  All p-values are 

based on two-sided hypothesis tests.  The statistical analyses were carried out using SAS, 
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version 9.1 (SAS Institute Inc., Cary, North Carolina), and Figure V.1 was created by R 

version 2.6.1 (R Development Core Team, Vienna, Austria).  

 

V.3. Results 

Table V.1 presents characteristics of the 251 Jackson/Calhoun UMDES participants 

with the 719 NHANES non-Hispanic white participants shown for comparison. The 

proportion of serum TCDD values below the LOD was 48 percent in the NHANES data 

compared to 21 percent in the Jackson/Calhoun data.  The median LOD levels among the 

samples below the LOD were 1.1 ppt in the NHANES data, but 0.5 ppt in the 

Jackson/Calhoun data.  The differences in the proportion of serum TCDD values below 

the LOD were due in part to larger serum specimens analyzed in Jackson/Calhoun (20 ml) 

than in NHANES (5-10 ml).  The two populations were similar in BMI, BMI change in 

the last 12 months, pack-years smoking, income, education, and number of children 

breast fed (among females).  However, the Jackson/Calhoun population was slightly 

older (p-value = 0.05) and had a smaller proportion of males (p-value = 0.04) than the 

NHANES population. 

Table V.2 shows results of the five regression models with parameter and standard 

error estimates.  Age was a strong positive predictor in all the five regression models (p-

value < 0.01), and the age and sex interaction term was also significant in the mean, 25th 

percentile, median, and 95th percentile regressions. For example, for each 10-year 

increase in age, the mean serum TCDD concentrations were estimated to be increased by 

60 percent (e0.047*10 years = 1.60) among females and by 34 percent (10(0.047-0.018)*10 years = 

1.34) among males.  The data source variable was not significant in the mean, 25th 
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percentile, median, or 95th percentile regressions, but had marginally positive significant 

effects in the 75th percentile (p-value = 0.07).  This indicates that the Jackson/Calhoun 

population is similar to the NHANES non-Hispanic white population in the age- and sex- 

specific serum TCDD concentration.   

Any age- (between ages 18 and 85 years) and sex-specific predicted mean, quartiles, 

and 95th percentile of background serum TCDD concentrations can be obtained for 

Jackson/Calhoun and for the NHANES from the regression results in Table V.2.  For 

example, the predicted 95th percentile of serum TCDD concentrations measured in parts 

per trillion equals exp(1.139 + 0.031 × (age-50) + 0.063 × sex - 0.015 × sex × (age-50) + 0.239 × source).  The 

predicted mean and three quartiles can be obtained similarly.  Table V.3 displays these 

estimates for 50 year old men and 50 year old women from Jackson/Calhoun and the 

NHANES as examples.  For a 50 year old man (woman) in Jackson/Calhoun, the mean, 

25th percentile, median , 75th percentile, and 95th percentile serum TCDD concentrations 

are estimated to be 1.1 (1.3), 0.6 (0.8), 1.1 (1.4), 1.8 (2.1), and 3.3 (3.1) ppt, respectively; 

and for a 50-year old man (woman) in the NHANES, the mean, 25th percentile, median, 

75th percentile, and 95th percentile serum TCDD concentrations are estimated to be 1.1 

(1.3), 0.6 (0.8), 1.1 (1.4), 2.2 (2.5), and 4.2 (4.0) ppt, respectively. 

Figure V.1 compares the predicted mean, three quartiles, and 95th percentile serum 

TCDD values over age by sex between the NHANES and the UMDES reference 

populations.  A circle represents an observed serum TCDD concentration above the LOD, 

and an “x” is the average of the five imputations for those below the LOD.  The plots 

show that for people older than 75, the NHANES data improved the estimates in the 

Jackson/Calhoun population, especially among males (age- and sex-specific upper 



  

 84

percentiles among people older than 75 could not be fitted using only the 

Jackson/Calhoun data).  In addition, the background serum TCDD concentrations 

increased with age and increased more steeply with age in females than in males in both 

data sources.  Moreover, the plots show that the 75th and 95th percentile regression 

models on age and sex were fitted based on serum TCDD measures that were above the 

LOD for both the NHANES and the Jackson/Calhoun data sets, while the 25th percentile, 

mean, and median among young adults were estimated primarily based on the imputed 

values in the NHANES and the observed values above the LOD in Jackson/Calhoun.  

 

V.4. Discussion 

This study shows that the serum TCDD concentrations in non-Hispanic whites 

increased with age, and the rates of increase in the mean, 25th percentile, median, and 95th 

percentiles over age were greater among females than males.  This difference is probably 

the results of a longer TCDD half-life among females than males because of higher 

percent body fat in females and the peak level of TCDD in the environment in the 1960’s 

and 1970’s. (Mibrath et al. 2009)  As a result, the overall mean and percentiles of the 

background concentrations depend on the distribution of age and sex in the reference 

population, and it is not valid to compare the overall mean or percentiles of serum TCDD 

concentrations between populations that have different age and sex structures.  Therefore, 

it is important to quantify the background levels of serum TCDD concentration by age 

and sex.  For example, in comparisons to residents in Midland/Saginaw, we compared the 

serum TCDD concentrations to the background concentrations of people of the same age 

and sex to see whether the serum TCDD concentrations were elevated. (Garabrant et al. 
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2007)  Quantile regression generalizes a single quantile estimate of serum TCDD 

concentrations to continuous conditional quantile estimates given age and sex.  These 

age- and sex-adjusted quantile estimates provide better quantification of quantiles than 

the traditional method of calculating the population quantiles without adjusting for age or 

of adjusting for a limited number of age groups or strata.   

We expected to see similar results for the Jackson/Calhoun data and the NHANES 

data because they both represented general populations who were not exposed to any 

known, unusual sources of dioxins.  The present study shows that the effects of age and 

sex on the serum TCDD concentrations were not significantly different between the 

Jackson/Calhoun and the NHANES populations, and that the Jackson/Calhoun population 

was not significantly different from the NHANES population in the age- and sex- specific 

25th percentile, mean, median, and 95th percentile, but was slightly lower than the 

NHANES population in the 75th percentile.  This implies that the Jackson/Calhoun 

population is similar to the NHANES population in age- and sex- specific serum TCDD 

concentration, and thus is a valid reference population for serum TCDD concentration for 

other predominantly white populations in Michigan.  The marginally higher levels of age- 

and sex- specific 75th percentile in the NHANES than in the Jackson/Calhoun can be 

explained as slightly larger variation of serum TCDD concentrations in the U.S. 

population than in the two counties in Michigan. This could be due to more heterogeneity 

of TCDD exposures among regional U.S. populations.  However, the geographic 

information is not available in the publicly released NHANES data set, so that the 

geographic variation in serum TCDD concentration can not be accounted for in the 
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models.  With data source indicator in the model, we allow for the effect of the different 

data source to be incorporated into the model. 

Values below the limit of detection are common in studies of dioxin-like compounds.  

Simple ways of handling values below the LOD include imputing them with 0, LOD, 

LOD/2, and LOD/√2. (Hornung and Reed 1990)  However, these imputation methods do 

not account for imputation uncertainty, and they depend on the blood sample volume and 

the LOD levels of the measurement methods. (In other words, the same serum sample 

analyzed by two different methods having different LODs would be assigned different 

values.)  For studies with a low proportion of data below the LOD and low LOD levels, 

the estimation of conditional percentiles is less affected by how the LODs are imputed, 

especially for upper percentiles.  However, for environmental contaminants for which the 

concentrations are near the LOD, a substantial proportion of the analytic results will be 

below the LOD.  Lower percentiles and sometimes even median estimates in such data 

are more sensitive to the imputation methods used.   

In the present study, multiple imputations based on a left-censored regression model 

using the observed TCDD measures and the LOD levels of the non-detects were 

employed to impute the values below the LOD to obtain multiple complete data sets, so 

that complete-data statistical methods (such as quantile regression) can be implemented.  

In the multiple imputations, we assumed that the serum TCDD concentrations followed a 

lognormal distribution, because the lognormal assumption appeared reasonable for the 

Jackson/Calhoun data with 79 percent of the data that were observed (above LOD).  By 

concatenating the Jackson/Calhoun data with the NHANES data, we improved the 

imputation for the values below the LOD in the NHANES data by incorporating the 
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observed serum TCDD measures in the Jackson/Calhoun data.  At the same time, 

inclusion of the NHANES data enhanced the estimates of the upper percentiles of serum 

TCDD values among older people in the Jackson/Calhoun population.  The multiple 

imputation with the combined dataset has improved the percentile estimation in both data 

sources.  This method can be applied in other environmental and public health studies 

where LOD is an issue and multiple sources of data are available.  This article also 

provides an important example on how to incorporate the complex survey design 

information in every detail of statistical analysis in a population-based study. 

The potential limitation of the multiple imputation approach is the assumption of 

lognormality.  Although the lognormal assumption can be replaced by other statistical 

distributions, such as Gamma distribution or Weibull distribution according to some prior 

information, some distribution-free methods for handling values below the LOD, such as 

Schisterman’s method (Schisterman et al. 2006), are of great interest.  In using the 

bootstrap method for stratified multistage samples, we have modified the sample weights 

with the bootstrap weights.  However, the further weight modifications such as 

nonresponse and poststratification adjustments are not feasible here because of the 

limited information from the sub-sample of the non-Hispanic white population in the 

NHANES data.  We combined the UMDES and the NHANES data by concatenating the 

two data sets directly and normalizing their sample weights.  In future work, other 

methods for combining multiple data sources such as Bayesian hierarchical methods will 

also be considered. (Raghunathan et al. 2007)  Finally, we imputed the small fraction of 

missing covariates before the multiple imputation for values below the LOD to simplify 
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the imputation procedure.  In the future, we plan to work on multiple imputation methods 

that simultaneously impute the missing covariates and values below the LOD. 

 

 

 

 

 



  

 

Table V.1 Comparison of LOD and population-based demographics between Jackson/Calhoun, Michigan, 2005 and NHANES 
2003-2004 populations 
 
 NHANES  

(n=719) †  
Jackson/Calhoun 
 (n=251)  

p-value § 

Proportion of below LOD (amt serum) 48% (5-10 ml) 21% (20 ml) --- 
Median LOD levels (range) ‡ 1.1 (0.4-3.1) ppt  0.5 (0.3-3.2) ppt  --- 
Mean age (range) 47.0 (18-85) yrs 49.9 (18-85) yrs 0.051 
Mean BMI change in the last 12 months (SE) 0.2 (0.1) kg/m2 -0.1 (0.2) kg/m2 0.194 
Mean BMI (SE)  27.7 (0.3) kg/m2 28.7 (0.5) kg/m2 0.101 
Mean pack-yrs smoking (SE) 11.3 (0.6) 12.5 (1.4) 0.440 
Mean No. of children breast-fed among women (SE) 0.8 (0.1) 1.0 (0.1) 0.198 
Mean income (SE) $ 52,000 (2,000) $ 56,000 (2,000) 0.220 
Sex (proportion of males) 47.6% 38.1% 0.035 
Education (proportion of ≥ High School) 86.6%  86.2%  0.897 

 

† Non-Hispanic white adults (excluding pregnant women) having serum TCDD measures in 2003-2004 NHANES 
‡ The median LOD levels (among the observations below LOD) 
§ p-values using F tests to compare the population-based demographics between the NHANES and Jackson/Calhoun populations 
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Table V.2 Results of linear and quantile regressions of log (serum TCDD concentration) in the combined data of 
Jackson/Calhoun, Michigan, 2005 and NHANES 2003-2004 
 
Factor Mean† Q1

‡ Median‡ Q3
‡ 95th percentile‡ 

Intercept 0.232 (0.069) *** -0.176 (0.149) 0.346 (0.058) *** 0.726 (0.075) *** 1.139 (0.119) *** 
Age†† 0.047 (0.003) *** 0.054 (0.005) *** 0.048 (0.003) *** 0.036 (0.002) *** 0.031 (0.005) *** 
Sex§ -0.183 (0.082) ** -0.273 (0.136) * -0.223 (0.103) ** -0.126 (0.087)  0.063 (0.108)  
Age††×sex§ -0.018 (0.004) *** -0.025 (0.007) *** -0.015 (0.005) ** -0.006 (0.005) -0.015 (0.007) ** 
Source‡‡ 0.051 (0.084) -0.094 (0.169) 0.015 (0.100) 0.190 (0.099) * 0.239 (0.151)  

 
Results are reported as estimate (standard error) p-value; *** p ≤ 0.01; ** p ≤ 0.05; * p ≤ 0.1. 
† The mean model was obtained by fitting a linear regression for complex survey data using SURVEYREG procedure in SAS. 
‡ The percentile models were fitted using quantile regressions for complex survey data using bootstrap method to calculate the 
standard errors. (Q1: 25th percentile; Q3: 75th percentile) 
†† Age minus 50 (years) 
§ Sex (females = 0, males = 1) 
‡‡ Data source (Jackson/Calhoun = 0, NHANES = 1) 
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Table V.3 Predicted mean, quartiles, and 95th percentile for a 50-year old person by sex 
 
Units = ppt (lipids) Mean  Q1

‡ Median Q3
‡ 95th %tile  

50 year old woman in Jackson/Calhoun 1.3 0.8 1.4 2.1 3.1 
50 year old man in Jackson/Calhoun 1.1 0.6 1.1 1.8 3.3  
50 year old woman in NHANES 1.3 0.8 1.4 2.5 4.0 
50 year old man in NHANES 1.1 0.6 1.1 2.2 4.2 

 

‡ Q1: 25th percentile, Q3: 75th percentile 
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Figure V.1 Comparisons of predicted mean, quartiles, and 95th percentile of serum TCDD levels over age by sex between the 
Jackson/Calhoun, Michigan, 2005, and the NHANES 2003-2004 populations.
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Chapter VI 

CONCLUSION 

The first part of the research shows that the Robust Bayesian model-based inference 

for finite population proportions and quantiles outperform the design-based estimators.  

By modeling the conditional distribution of the selection probabilities, the design 

mechanism is ignorable when the selection probability is a good summary of the design 

variables.  This is often true in a one-stage unequal probability sampling design, such as 

sampling with strata or probability proportional to size sampling.  By using the 

relationship between the survey outcome and the selection probabilities, the model-based 

estimators yield more efficient estimation of the population quantities than the design-

based estimators.  Compared to the parametric model-based estimators, the penalized 

spline regression model-based estimator automatically catches the potential nonlinear 

association between the survey outcome and the selection probabilities; this avoids the 

inefficiency because of model misspecification.  When some sample units have very 

small selection probabilities, the penalized spline model-based estimators still perform 

well, while the design-based estimators are often very inefficient and the parametric 

model-based estimators are sensitive to these influential points in the regression model.     

The Bayesian inference for a population summary of the survey outcome follows 

from the posterior predictive distribution of the values of the survey outcome in the non-

sampled units given the values in the sample units and the selection probabilities.  



  

94 

By specifying noninformative prior distributions on the parameters in the super 

population distribution, the posterior distribution of the descriptive population quantities 

can be simulated by using MCMC simulations.  The 95% credible intervals can then be 

easily calculated from the posterior distribution of the population quantities.  In general, 

the CI calculated from the model-based estimators is shorter than the design-based 

estimators.  The Bayesian penalized spline model-based predictive estimator for 

population proportions yields closer to the nominal level confidence coverage than the 

sample-weighted estimator or the generalized regression estimator.  The Bayesian model-

based predictive estimator for population quantiles based on a penalized spline regression 

model accounting for heteroscedastic errors often provide conservative but shorter 

credible interval than the design-based estimators.  When sample size is small, the robust 

Bayesian model-based estimators have the most significant improvement over the design-

based estimators in the confidence coverage, where the confidence intervals associated 

with the sample-weighted estimator leads to serious under-coverage because of the 

failure of the large sample assumption.   

The robust Bayesian model-based inference can be extended to include additional 

auxiliary covariates by adding linear terms for these variables.  In the future, I am going 

to study the robust Bayesian model-based inference for multistage sampling design with 

strata and clusters.  The research on the variable selection method for multiply imputed 

data in Chapter IV provides a handy and useful approach for performing variable 

selection in multiple imputation.  The “combine then select” (CS) method is an intuitive 

use of the multiple imputation combining rule in the variable selection procedure and it 

preserves the type I error.  This CS method accounts for imputation uncertainty and is 
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less likely to incorrectly select variables into the model than competing stepwise selection 

methods currently used in epidemiological studies applied to multiply imputed data. 

Although in this article I only describe the modified stepwise variable selection method 

in the setting of multiply imputed data, I am interested in extending this to more 

advanced variable selection methods.  

The multiple imputation method proposed in Chapter V is a promising method for 

imputing serum dioxin levels below the limit of detection (LOD).  The traditional 

methods for dealing with the values below LOD include imputing them with 0, LOD, 

LOD/2, and LOD/√2, which do not account for imputation uncertainty, and they depend 

on the blood sample volume and the LOD levels of the measurement methods.  The 

multiple imputation approach based on a left-censored regression model improves the 

imputation of the values below the LOD.  The left-censored regression relates the 

unobserved serum dioxin levels below LOD with the observed serum dioxin 

concentrations above LOD by modeling the relationship between the observed serum 

dioxin concentration and the demographic variables.  This method can be applied in other 

environmental and public health studies where LOD is an issue.   
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