
TIME-DELAY SYSTEMS: ANALYSIS AND CONTROL

USING THE LAMBERT W FUNCTION

by

Sun Yi

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mechanical Engineering)

in The University of Michigan
2009

Doctoral Committee:

Professor A. Galip Ulsoy, Co-Chair
Assistant Professor Patrick W. Nelson, Co-Chair
Professor Huei Peng
Professor Dawn M. Tilbury
Associate Professor John G. Younger





c© Sun Yi
All Rights Reserved

2009



To my wife, my parents, my parents-in-law

ii



ACKNOWLEDGEMENTS

First of all, I sincerely thank my advisors Professor A. Galip Ulsoy and Professor

Patrick W. Nelson for their continuous support, guidance and education through this study.

Also, I want to express my gratitude to Professor Huei Peng, Professor Down M. Tilbury

and Professor John Younger for their helpful inspirations and for serving on my committee

and guiding me with their own expertise on system dynamics and control, and biology.

Special thanks go to all the researchers, who showed interests in my research and

shared their opinions and relevant experience with me through reviews of publications and

discussions at conferences. I will remember this period as aperiod of opening up my

eyes to various interesting research areas and to ways to make contributions. I would like

to acknowledge my lab members for their friendship and discussions about research. I

especially appreciate Dr. Jaspreet for his collaboration,and sharing his theoretical and

experimental experience regarding machining processes.

My parents gave me endless confidence throughout my life. I hope this achievement

will pay back a small part of their support, and encouragement. Finally, my wife Jungeun

O has been my constant soul mate throughout every moment. Sheshared all my setbacks,

hesitations, delights, and achievements. I would like to give my thanks and apologies to all

those who helped me but not mentioned here. This research wassupported by the National

Science Foundation (NSF grant #555765).

iii



PREFACE

This dissertation collects recent research work on the development of an analytical

approach for solutions of delay differential equations viathe Lambert W function. It,

also, includes methods for analysis and control based on thesolutions, and their applica-

tions to mechanical and biological systems. Delay differential equations represent systems

that include inherent time-delays in the system or a deliberate introduction of time-delays

for control purposes. Such time-delays, frequent in systems in engineering and science,

can cause some significant problems (e.g., instability and inaccuracy) and, thus, limit and

degrade the achievable performance of controlled systems.However, due to innate com-

plexity including infinite-dimensionality, it is not feasible to analyze such systems with

classical methods developed for ordinary differential equations (ODEs).

The research presented in this dissertation uses the Lambert W function to obtain free

and forced analytical solutions to such systems. Hence, it provides a more analytical

and effective way to treat time-delay systems. The advantage of this approach lies in the

fact that the solution has an analytical form expressed in terms of the parameters of the

system and, thus, one can explicitly determine how the parameters are involved in the

solution. Furthermore, one can know how each parameter affects the eigenvalues of the

system. Also, each eigenvalue in the infinite eigenspectrumis associated individually with

a branch of the Lambert W function.

The Lambert W function-based approach for the analytical solution to systems of delay

differential equations (DDEs) had been developed for the homogeneous first-order scalar

iv



and some special cases of systems of delay differential equations using the Lambert W

function as introduced in Chapter I. In Chapter II, the analytical solution is extended to

the more general case where the coefficient matrices do not necessarily commute, and to

the nonhomogeneous case. The solution is in the form of an infinite series of modes written

in terms of the matrix Lambert W function. The derived solution is used to investigate the

stability of time-delay systems via dominant eigenvalues in terms of the Lambert W func-

tion. It is also applied to the regenerative machine tool chatter problem of a manufacturing

process in Chapter III. Based on the solution form in terms ofthe matrix Lambert W func-

tion, algebraic conditions and Gramians for controllability and observability of DDEs are

derived in a manner analogous to the well-known controllability and observability results

for the ODE case in Chapter IV. In Chapter V, the problem of feedback controller design

via eigenvalue assignment for linear time-invariant time-delay systems is considered. The

method for eigenvalue assignment is extended to design robust controllers for time-delay

systems with uncertainty and to improve transient responsein Chapter VI. For systems

where all state variables cannot be measured directly, a newapproach for observer-based

feedback control is developed and applied to diesel engine control in Chapter VII. In

Chapter VIII, the approach using the Lambert W function is applied to analyze a HIV

pathogenesis dynamic model with an intracellular delay.

The author hopes that this dissertation will be of interest to graduate students and re-

searchers in engineering and mathematics who have special interest in studying properties

and designing control of time-delay systems.

The author acknowledges support by a research grant (# 0555765) by National Science

Foundation.

Sun Yi

Ann Arbor, Michigan, USA
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CHAPTER I

INTRODUCTION

1.1 Motivation

Time-delay systems (TDS) arise from inherent time-delays in the components of the

systems, or from the deliberate introduction of time-delays into the systems for control

purposes. Such time-delays occur often in systems in engineering, biology, chemistry,

physics, and ecology (Niculescu, 2001). Time-delay systems can be represented by delay

differential equations (DDEs), which belong to the class offunctional differential equa-

tions, and have been extensively studied over the past decades (Richard, 2003). Such

time-delays can limit and degrade the achievable performance of controlled systems, and

even induce instability. Time-delay terms lead to an infinite number of roots of the char-

acteristic equation, making systems difficult to analyze with classical methods, especially,

in checking stability and designing stabilizing controllers. Thus, such problems are often

solved indirectly by using approximation. A widely used approximation method is the

Padé approximation, which is a rational approximation andresults in a shortened fraction

as a substitute for the exponential time-delay term in the characteristic equation. How-

ever, such an approach constitutes a limitation in accuracy, can lead to instability of the

actual system and induce non-minimum phase and, thus, high-gain problems (Silva and

Datta, 2001). Prediction-based methods (e.g., Smith predictor (Smith, 1957), finite spec-

1
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trum assignment (FSA) (Zhong, 2006), and adaptive Posicast(Niculescu and Annaswamy,

2003)) have been used to stabilize time-delay systems by transforming the problem into

a non-delay system. Such methods require model-based calculations, which may cause

unexpected errors when applied to a real system. Furthermore, safe implementation of

such methods is still an open problem due to computational issues. Controllers have also

been designed using the Lyapunov framework (e.g., linear matrix inequalities (LMIs) or

algebraic Riccati equations (AREs)) (Gu and Niculescu, 2006; Liu, 2003). These methods

require complex formulations, and can lead to conservativeresults and possibly redundant

control.

To find more effective methods, an analytic approach to obtain the complete solution

of systems of delay differential equations based on the concept of the Lambert W function,

which has been known to be useful to analyze DDEs (Corless et al., 1996), was developed

in (Asl and Ulsoy, 2003). The solution has an analytical formexpressed in terms of the

parameters of the DDE and, thus, one can explicitly determine how the parameters are

involved in the solution and, furthermore, how each parameter affects each eigenvalue and

the solution. Also, each eigenvalue is associated individually with a particular ‘branch’ of

the Lambert W function. In this dissertation, the analytical approach using the Lambert W

function is extended to general systems of DDEs and non-homogeneous DDEs, and com-

pared with the results obtained by numerical integration. The advantage of this approach

lies in the fact that the form of the solution obtained is analogous to the general solution

form of ordinary differential equations, and the concept ofthe state transition matrix in

ODEs can be generalized to DDEs using the concept of the matrix Lambert W function.

This suggests that some approaches for analysis and controlused for systems of ODEs,

based on concept of the state transition matrix, can potentially be extended to systems of

DDEs. These include analysis of stability, controllability and observability, and methods
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for eigenvalue assignment for linear feedback controller design with an observer, and ex-

tension to robust stability and time-domain specifications. Also, the approaches developed

based on the proposed solution method are applied to time-delay systems in engineering

and biology as discussed in subsequent chapters.

1.2 Background

1.2.1 Delay differential equation

Delay differential equations are also known as difference-differential equations, were

initially introduced in the 18th century by Laplace and Condorcet (Gorecki et al., 1989).

Delay differential equations are a type of differential equation where the time derivatives

at the current time depend on the solution, and possibly its derivatives, at previous times.

A class of such equations, that involve derivatives with delays as well as the solution itself

has historically been calledneutralDDEs (Hale and Lunel, 1993). In this dissertation only

retardedDDEs where there is no time-delay in the derivative terms areconsidered.

The basic theory concerning stability and works on fundamental theory, e.g., existence

and uniqueness of solutions, was presented in (Bellman and Cooke, 1963). Since then,

DDEs have been extensively studied in recent decades and a great number of monographs

have been published including significant works on dynamicsof DDEs by Hale and Lunel

(1993), on stability by Niculescu (2001), and so on. The reader is referred to the detailed

review in (Richard, 2003; Gorecki et al., 1989; Hale and Lunel, 1993). The interest in study

of DDEs is caused by the fact that many processes have time-delays and have been mod-

eled for better representations by systems of DDEs in sciences, engineering, economics,

etc. (Niculescu, 2001). Such systems, however, are still not feasible to precisely analyze

and control, thus, the study of systems of DDEs has actively been conducted during recent

decades (Richard, 2003).
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Figure 1.1: Ranges of each branch of the Lambert W function (Corless et al., 1996). Note
that real part of the principal branch,W0, is equal to or larger than−1.

1.2.2 Lambert W function

Introduced in the 1700s by Lambert and Euler (Corless et al.,1996), the Lambert W

function is defined to be any function,W (H), that satisfies

W (H)eW (H) = H (1.1)

The Lambert W function is complex valued, with a complex argument,H, and has an

infinite number of branches,Wk, wherek = −∞, · · · ,−1, 0, 1, · · · ,∞ (Asl and Ulsoy,

2003). Figure 1.1 shows the range of each branch of the Lambert W function. For example,

the real part of the principal branch,W0, has a minimum value,−1. The principal and all

other branches of the Lambert W function in (1.1) can be calculated analytically using a
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series expansion (Corless et al., 1996), or alternatively,using commands already embedded

in the various commercial software packages, such as Matlab, Maple, and Mathematica.

An analytic approach to obtain the complete solution of systems of delay differential

equations based on the concept of the Lambert W function was developed by Asl and

Ulsoy (2003). Consider a first-order scalar homogenous DDE:

ẋ(t) = ax(t) + adx(t − h), t > 0

x(0) = x0, t = 0

x(t) = g(t), t ∈ [−h, 0)

(1.2)

Instead of a simple initial condition as in ODEs, two initialconditions need to be specified

for DDEs: a preshape function,g(t), for −h ≤ t < 0 and initial point,x0, at time,t = 0.

The quantity,h, denotes the time-delay. The solution to Eq. (1.2) can be derived in terms

of an infinite number of branches of the Lambert W function, defined in Eq. (1.1), (Asl

and Ulsoy, 2003):

x(t) =

∞∑

k=−∞

eSktCI
k , whereSk =

1

h
Wk(adhe−ah) + a (1.3)

The coefficient,CI
k , is determined numerically from the preshape function,g(t), and ini-

tial state,x0, defined in the Banach space as described by Asl and Ulsoy (2003). The

analytic methods to find the coefficient,CI
k and the numerical and analytic methods for

other coefficients for non-homogeneous and higher order of DDEs are also developed in

a subsequent chapter. Note that, unlike results by other existing methods, the solution in

(1.3) has an analytical form expressed in terms of the parameters of the DDE in (1.2), i.e.,

a, ad andh. One can explicitly determine how the parameters are involved in the solution

and, furthermore, how each parameter affects each eigenvalue and the solution. Also, each

eigenvalue is distinguished byk, which indicates the branch of the Lambert W function as

seen in Eq. (1.3).
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For a given system of Delay Differential Equations

1. Derive the solution (free & forced): Chapter II

3. Check the conditions for controllability/observability: Chapter IV

4. Design feedback control via eigenvalue assignment: Chapter V

2. Determine stability of the system: Chapter III

5. Robust stability & Time-domain specifications: Chapter VI

6. Observer-based feedback control: Chapter VII

Applications in engineering (Chs. III, VII) and biology (Ch. VIII)

Figure 1.2: The matrix Lambert W function-based approach: using the approach devel-
oped in this research, the steps in the figure, which are standard for systems of
ODEs, become tractable for DDEs

1.3 Scope of This Document

This dissertation presents the derivation of solutions of systems of DDEs, and the

development of methods to analyze and control time-delay systems with application to

systems in engineering and biology. This new technique allows one to study how the

parameters in time-delay systems are involved in the solution, which is essential to in-

vestigate system properties, such as stability, controllability, observability, and sensitivity.

Finally, controllers for time-delay systems, with observers, are designed via eigenvalue
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assignment to improve robust stability and to meet time-domain specifications as well as

to stabilize unstable systems (See figure 1.2).

Because each chapter of this dissertation is based on manuscripts that have been pub-

lished in or submitted to a journal, the background materialfor each is included in the

relevant chapters. The remaining chapters are summarized as follows.

Chapter II : “Solutions of Systems of DDEs via the Matrix Lambert W Function”,

which was published in theDynamics of Continuous, Discrete and Impulsive Systems (Se-

ries A) (Yi et al., 2007d) and an early version of this work was presented in part at the

2006 American Control Conference (Yi and Ulsoy, 2006) and inpart at the 2006 IEEE

Conference on Decision and Control (Yi et al., 2006b). Previously, an approach for the

analytical solution to systems of DDEs had been developed for homogeneous scalar and

some special cases of systems of delay differential equations using the Lambert W func-

tion (Asl and Ulsoy, 2003). In this chapter, the approach is extended to the more general

case where the coefficient matrices in a system of DDEs do not necessarily commute, and

to the nonhomogeneous cases. The solution is in the form of aninfinite series of modes

written in terms of thematrixLambert W function. The form of the obtained solution has

similarity to the concept of the state transition matrix in linear ordinary differential equa-

tions, enabling its use for general classes of linear delay differential equations. Examples

are presented to illustrate the new approach by comparison to numerical methods. The

analytical solution in terms of the Lambert W function is also presented in the Laplace

domain to reinforce the analogy to ODEs.

Chapter III : “Stability of Systems of Delay Differential Equations viathe Matrix

Lambert W Function: Application to machine tool chatter,” which was published in the

Mathematical Biosciences and Engineering(Yi et al., 2007b) and an earlier version of

this work was presented at the 2006 ASME International Conference on Manufacturing
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Science and Engineering (Yi et al., 2006a). This chapter investigates stability of systems

of DDEs using the solution derived in terms of the parametersof systems in Chapter II.

By applying the matrix Lambert W function-based approach tothe chatter equation, one

can solve systems of DDEs in the time domain, obtain dominanteigenvalues, and check

the stability of the system. With this method one can obtain ranges of preferred operating

spindle speed that do not cause chatter to enhance productivity of processes and quality of

products. The new approach shows excellent accuracy and certain other advantages, when

compared to existing graphical, computational and approximate methods.

Chapter IV : “Controllability and Observability of Systems of Linear Delay Differ-

ential Equations via the Matrix Lambert W Function,” which was published in theIEEE

Transactions on Automatic Control(Yi et al., 2008a) and an earlier version of this work

was presented at the 2007 American Control Conference (Yi etal., 2007a). Controllability

and observability of linear time-delay systems has been studied, and various definitions

and criteria have been presented since the 1960s (Malek-Zavarei and Jamshidi, 1987), (Yi

et al., 2008a). However, the lack of an analytical solution approach has limited the ap-

plicability of the existing theory. In this chapter, based on the solution form in terms of

the matrix Lambert W function, algebraic conditions and Gramians for controllability and

observability of DDEs were derived in a manner analogous to the well-known control-

lability and observability results for the ODE case. The controllability and observability

Gramians indicate how controllable and observable the corresponding states are, while al-

gebraic conditions tell only whether a system is controllable/observable or not. With the

Gramian concepts, one can determine how the changes in some specific parameters of the

system affect the controllability and observability of thesystem via the resulting changes

in the Gramians. Furthermore, for systems of ODEs, a balanced realization in which the

controllability Gramian and observability Gramian of a system are equal and diagonal was
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introduced in (Moore, 1981). Using the Gramians defined in this chapter, the concept of

the balanced realization has been extended to systems of DDEs for the first time.

Chapter V: “Eigenvalue Assignment via the Lambert W Function for Control for

Time-Delay Systems,” which is in press in theJournal of Vibration and Control(Yi et al.,

2009c) and an earlier version of this work was presented at the 2007 ASME International

Design Engineering Technical Conferences (Yi et al., 2007c). In this chapter, the problem

of feedback controller design via eigenvalue assignment for linear time-invariant systems

of linear delay differential equations with a single delay is considered. Unlike ordinary

differential equations, DDEs have an infinite eigenspectrum and it is not feasible to as-

sign all closed-loop eigenvalues. However, one can assign acritical subset of them using

a solution to linear systems of DDEs in terms of the matrix Lambert W function. The

solution has an analytical form expressed in terms of the parameters of the DDE, and is

similar to the state transition matrix in linear ODEs. Hence, one can extend controller

design methods developed based upon the solution form of systems of ODEs to systems

of DDEs, including the design of feedback controllers via eigenvalue assignment. Such

an approach is presented here, illustrated using some examples, and compared with other

existing methods.

Chapter VI : “Robust Control and Time-Domain Specifications,” which isunder re-

view in theJournal of Dynamic Systems, Measurement, and Control(Yi et al., 2009d)

and an earlier version was presented at the 2008 American Control Conference (Yi et al.,

2008c). One of the main concerns in designing controllers isto maintain robust stability

against uncertainty in the models. When uncertainty existsin the coefficients of the sys-

tem, a robust control law, which can guarantee stability, isrequired. To realize robust sta-

bilization, after calculating the allowable size of uncertainty (i.e., norms of the uncertainty

matrices), the rightmost eigenvalues are placed at an appropriate distance from the imagi-
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nary axis to maintain stability even with the uncertainty inthe coefficients. An algorithm

for eigenvalue assignment for systems of DDEs, based upon the Lambert W function, is

devised for the problem of robust control design for perturbed systems of DDEs. With

this algorithm, after considering the size of the allowableuncertainty in the coefficients of

systems of DDEs via the stability radius analysis and comparing the stability radius and

real uncertainty in parameters, the appropriate positionsof the rightmost eigenvalues for

robust stability are chosen such that the stability radius of the controlled system is larger

than the size of uncertainty. Corresponding to the calculated positions, one can find appro-

priate gains of the linear feedback controller by assigningthe rightmost eigenvalues using

the method introduced in Chapter V. By moving the rightmost eigenvalues, the stability ra-

dius is increased to be larger than the size of uncertainty. The procedure presented in this

chapter can be applied to uncertain systems, where uncertainty in the system parameters

cannot be ignored. Also, the method developed in Chap. V makes it possible to assign si-

multaneously the real and imaginary parts of a critical subset of the eigenspectrum for the

first time. Therefore, similar guidelines to those for systems of ODEs to improve transient

response and to meet time-domain specifications, can be developed and used for systems

of DDEs via eigenvalue assignment.

Chapter VII : “Design of Observer-Based Feedback Control for Time-Delay Systems

with Application to Automotive Powertrain Control,” whichhas been submitted toJournal

of Franklin Institute(Yi et al., 2009a), and is in press in Proceedings of 2009 ASMEDy-

namic Systems and Control Conference (Yi et al., 2009b). In this chapter, a new approach

for observer-based feedback control of time-delay systemsis developed. The approach,

based on the Lambert W function, is used to control time-delay systems by designing

an observer-based state feedback controller via eigenvalue assignment. The designed ob-

server provides estimation of the state, which converges asymptotically to the actual state,
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and is then used for state feedback control. It is shown that the separation principle applies

as for the case of ODE’s. The feedback controller and the observer take simple linear

forms and, thus, are easy to implement when compared to nonlinear methods. This new

approach is applied, for illustration, to the control of a diesel engine to achieve improve-

ment in fuel efficiency and reduction in emissions. The simulation results show excellent

closed-loop performance.

Chapter VIII : “Eigenvalues and Sensitivity Analysis for a Model of HIV Pathogene-

sis with an Intracellular Delay”, which is based upon a manuscript presented at the 2008

ASME Dynamic Systems and Control Conference (Yi et al., 2008b). During the past

decade significant research has been aimed at better understanding of the human immun-

odeficiency virus (HIV), and the use of mathematical modeling to interpret experimental

results has made a significant contribution. However, time-delays, which play a critical

role in various biological models, are still not amenable tomany traditional analysis meth-

ods. In this chapter, the approach using the Lambert W function is applied to handle the

time-delay in a HIV pathogenesis dynamic model. Dominant eigenvalues in the infinite

eigenspectrum of these time-delay systems are obtained andused to understand the effects

of the parameters of the model on the immune system. Also, theresult is extended to

analyze the sensitivity of the eigenvalues with respect to the parameters in the HIV model.

The research makes it possible to know which parameters are more influential than others,

and the information obtained is used to investigate the HIV dynamic system analytically.

1.4 Original Contributions

The original contributions of the research documented in this dissertation for time-

delay systems can be summarized as follows:

1. Derivation of free and forced solutions of general systems of DDEs, which take an
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analytical form in terms of systems parameters and, thus, enable understanding of

how they are involved in the solutions and dynamics. (Chapter II)

2. Determination of stability of infinite dimensional systems of DDEs based upon a

finite, but dominant, number of eigenvalues. (Chapter III)

3. Development of conditions for controllability and observability, which indicate how

controllable and observable for a system is, for DDEs. The conditions also indicate

how the change in some specific parameters of the system affect the controllabil-

ity and observability of the systems and, furthermore, can be used for balancing a

realization. (Chapter IV)

4. A method for the design of feedback controllers via eigenvalue assignment to assign

dominant eigenvalues to desired positions. (Chapter V)

5. Algorithms for robust stabilization and achievement of time-domain specifications.

(Chapter VI)

6. Design of observer-based feedback controllers for time-delay systems where all state

variables cannot be measured directly. (Chapter VII)

7. Dominant eigenvalues in the infinite eigenspectrum of these time-delay systems are

obtained and used to understand the effects of the parameters of a HIV pathogenesis

dynamic model. (Chapter VIII)



CHAPTER II

SOLUTIONS OF SYSTEMS OF DDES VIA THE
MATRIX LAMBERT W FUNCTION

An approach for the analytical solution to systems of delay differential equations

(DDEs) has been developed for homogeneous scalar and some special cases of systems

of DDEs using the Lambert W function. In this chapter, such anapproach is extended to

the more general case where the coefficient matrices in a system of DDEs do not commute,

and to the nonhomogeneous case. The solution is in the form ofan infinite series of modes

written in terms of the matrix Lambert W function. The form ofthe obtained solution

has similarity to the concept of the state transition matrixin linear ordinary differential

equations (ODEs), enabling its use for general classes of linear delay differential equa-

tions. Examples are presented to illustrate the new approach by comparison to numerical

methods. The analytical solution in terms of the Lambert W function is also presented in

the Laplace domain to reinforce the analogy to ODEs.

2.1 Introduction

Time-delay systems are systems in which a significant time-delay exists between the

applications of input to the system and their resulting effect. Such systems arise from an

inherent time delay in the components of the system or from a deliberate introduction of

13
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time delay into the system for control purposes. Such time-delay systems can be repre-

sented by delay differential equations, which belong to theclass of functional differential

equations, and have been extensively studied over the past decades (Richard, 2003). The

principal difficulty in studying DDEs results from their special transcendental character.

Delay problems always lead to an infinite spectrum of frequencies. The determination of

this spectrum requires a corresponding determination of roots of the infinite-dimensional

characteristic equation, which is not feasible, in general, by using standard methods de-

veloped for systems of ODEs. For this reason, instead of obtaining closed-form solutions,

systems of DDEs are often handled using numerical methods, asymptotic solutions, and

graphical approaches mainly for stability analysis and design of controllers. For a more

detailed discussion and comparison of such existing methods, the reader is referred to

(Richard, 2003; Asl and Ulsoy, 2003; Gorecki et al., 1989; Yiet al., 2009c) and the refer-

ences therein.

During recent decades, the spectral decomposition methodsfor solutions of DDEs

in terms of generalized eigenfunctions have been developed(Banks and Manitius, 1975;

Bellman and Cooke, 1963; Bhat and Koivo, 1976a,b; Hale and Lunel, 1993), and applied to

control problems. Recently, based on the concept of the Lambert W function, an analytic

approach to obtain the solution of homogeneous scalar delaydifferential equations has

been developed by Asl and Ulsoy (2003) and Corless et al. (1996). That is, as introduced

in Section 1.2.2, for the first-order scalar homogenous DDE in Eq. (1.2), the solution in

Eq. (1.3) is derived in terms of an infinite number of branchesof the Lambert W function,

Wk. Note that, unlike results by other existing methods (see, e.g., (Richard, 2003) and the

references therein), the solution in (1.3) has an analytical form expressed in terms of the

parameters of the DDE in (1.2), i.e.,a, ad andh. One can explicitly determine how these

parameters are involved in the solution and, furthermore, how each parameter affects each
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Figure 2.1: Eigenspectrum of the system (1.2) whena = −1, ad = 0.5, andh = 1:
due to the delay term,adx(t − h), and, thus, an exponential term in the
characteristic equation, the number of eigenvalues is infinite. The Lambert
W function-based approach provides a tool for analysis and control of time-
delay systems: each eigenvalue can be expressed analytically in terms of pa-
rametersa, ad, andh, and associated individually with a particular ‘branch’
(k = −∞, · · · ,−1, 0, 1, · · · ,∞) of the Lambert W function.

eigenvalue and the solution. Also, each eigenvalue is associated withk, which indicates

the branch of the Lambert W function (see Fig. 2.1). Such an approach has been applied

to control problems (Hovel and Scholl, 2005; Wang and Hu, 2008) and extended to other

cases, such as fractional-order systems (Chen and Moore, 2002a; Cheng and Hwang, 2006;

Hwang and Cheng, 2005) and some special cases of systems of DDEs (Chen and Moore,

2002b; Shinozaki and Mori, 2006; Jarlebring and Damm, 2007).

In this chapter, this analytical approach is extended to general systems of DDEs, in-

cluding nonhomogeneous DDEs where external inputs are nonzero, and compared with

the results obtained by numerical integration. The form of the solution obtained is anal-

ogous to the general solution form for ordinary differential equations, and the concept of



16

the state transition matrix in ODEs can be generalized to DDEs using the matrix Lambert

W function (see Table 2.2).

2.2 Free System of DDEs

2.2.1 Generalization to free system of DDEs

Consider the system of DDEs in matrix-vector form,

ẋ(t) = Ax(t) + Adx(t − h), t > 0

x(t) = x0, t = 0

x(t) = g(t), t ∈ [−h, 0)

(2.1)

whereA andAd aren×n matrices, andx(t) is ann× 1 state vector, andg(t) andx0 are a

specified preshape function and an initial state defined in the Banach space, respectively.

For this system of linear DDEs, Hale and Lunel proved the existence and uniqueness of

the solution (Hale and Lunel, 1993). In the special case where the coefficient matrices,A

andAd, commute the solution is given as (Asl and Ulsoy, 2003)

x(t) =
∞∑

k=−∞

e
(
1

h
Wk(Adhe−Ah) + A)t

CI
k (2.2)

However, this solution, which is of the same form as the scalar case in (1.3), is only

valid when the matricesA andAd commute, that isAAd = AdA (Yi and Ulsoy, 2006).

Therefore, Eq. (2.2) cannot be used for general systems of DDEs and, thus, the solution

in (2.2) is not correct in general. This has been, also, pointed independently in (Zafer,

2007), (Jarlebring and Damm, 2007) and (Asl and Ulsoy, 2007). The solution in terms of

the matrix Lambert W function to systems of DDEs in Eq. (2.1) for the general case is

derived here (Yi and Ulsoy, 2006).

First a solution form for (2.1) is assumed as

x(t) = eStCI (2.3)
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whereS is n × n matrix andCI is constantn × 1 vector. Typically, the characteristic

equation for (2.1) is obtained by assuming a nontrivial solution of the formestC wheres

is a scalar variable andCI is constantn × 1 vector (Hale and Lunel, 1993). Alternatively,

one can assume the form of (2.3) to derive the solution to systems of DDEs in (2.1) using

the matrix Lambert W function. Substitution of (2.3) into (2.1) yields,

SeStCI − AeStCI − Ade
S(t−h)CI = 0 (2.4)

and

SeStCI − AeStCI − Ade
−SheStCI

= (S− A − Ade
−Sh)eStCI = 0

(2.5)

Because the matrixS is an inherent characteristic of a system, and independent of ini-

tial conditions, it can be concluded for Eq. (2.5) to be satisfied for any arbitrary initial

condition and for every time,t,

S− A − Ade
−Sh = 0 (2.6)

In the special case whereAd = 0, the delay term in (2.1) disappears, and (2.1) becomes a

system of ODEs, and (2.6) reduces to

S− A = 0 ⇐⇒ S = A (2.7)

Substitution of (2.7) into (2.3), which becomes a system of ODEs only withx0 without

g(t) (i.e.,CI = x0), yields

x(t) = eAtx0 (2.8)

This is the well-known solution to a homogeneous system of ODEs in terms of the matrix

exponential. Returning to the system of DDEs in (2.1), one can multiply through by

heShe−Ah on both sides of (2.6) and rearrange to obtain,

h(S− A)eShe−Ah = Adhe−Ah (2.9)
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In general,S andA do not commute. It is shown in Appendix A that whenA andAd

commute, thenS andAd also commute. However, in general,A andAd do not commute,

and

h(S− A)eShe−Ah 6= h(S− A)e(S−A)h (2.10)

Consequently, to compensate for the inequality in (2.10) and to use thematrixLambert W

function defined as

W(H)eW(H) = H (2.11)

here, an unknown matrixQ is introduced to satisfy

h(S− A)e(S−A)h = AdhQ (2.12)

Comparing Eqs. (2.11) and (2.12) yields

(S− A)h = W(AdhQ) (2.13)

Then the solution matrix,S, is obtained by solving (2.13):

S =
1

h
W(AdhQ) + A (2.14)

Substituting (2.14) into (2.9) yields the following condition which can be used to solve for

the unknown matrixQ:

W(AdhQ)eW(AdhQ)+Ah = Adh (2.15)

The matrix Lambert W function,W(H), is complex valued, with a complex argumentH,

and has an infinite number of branchesWk(Hk), wherek = −∞, · · · ,−1, 0, 1, · · · ,∞

(Asl and Ulsoy, 2003). Corresponding to each branch,k, of the Lambert W function,Wk,

there is a solutionQk from (2.15), and forHk = AdhQk, the Jordan canonical formJk is

computed fromHk = ZkJkZ−1
k . Jk = diag(Jk1(λ̂1), Jk2(λ̂2), . . . , Jkp(λ̂p)), whereJki(λ̂i)
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ism×m Jordan block andm is multiplicity of the eigenvaluêλi. Then, the matrix Lambert

W function can be computed as (Pease, 1965)

Wk(Hk) = Zk

{

diag
(

Wk(Jk1(λ̂1)), . . . , Wk(Jkp(λ̂p))
)}

Z−1
k (2.16)

where

Wk(Jki(λ̂i)) =













Wk(λ̂i) W
′

k(λ̂i) · · · 1
(m−1)!

W
(m−1)
k (λ̂i)

0 Wk(λ̂i) · · · 1
(m−2)!

W
(m−2)
k (λ̂i)

...
...

. . .
...

0 0 · · · Wk(λ̂i)













(2.17)

With the matrix Lambert W function,Wk, given in (2.16),Sk is computed from (2.14). The

principal (k = 0) and other (k 6= 0) branches of the Lambert W function can be calculated

from a series definition (Corless et al., 1996) or using commands already embedded in

various commercial software packages, such as Matlab, Maple, and Mathematica. With

Wk, which satisfies

Wk(Hk)e
Wk(Hk) = Hk (2.18)

finally, theQk is obtained from

Wk(AdhQk)e
Wk(AdhQk)+Ah = Adh (2.19)

and theQk obtained can be substituted into (2.14),

Sk =
1

h
Wk(AdhQk) + A (2.20)

and thenSk into (2.3) to obtain the free solution to (2.1),

x(t) =

∞∑

k=−∞

eSktCI
k (2.21)

The coefficientCI
k in (2.21) is a function ofA, Ad, h and the preshape function,g(t),

and the initial state,x0. The numerical method for computingCI
k were developed in (Asl
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and Ulsoy, 2003), and an analytical method is also presentedin Section 2.4. Conditions

for convergence of the infinite series in (2.21) have been studied in (Banks and Manitius,

1975; Bellman and Cooke, 1963; Hale and Lunel, 1993), and (Lunel, 1989). For example,

if the coefficient matrix,Ad, is nonsingular, the infinite series converges to the solution.

The solution to DDEs in terms of the Lambert W function, and its analogy to that of ODEs,

is summarized in Table 2.2. The matrixQk is obtained numerically from Eq. (2.19), for

a variety of initial conditions, for example, using thefsolvefunction in Matlab. In the

examples, which have been studied, Eq. (2.19) has a unique solution,Qk, for each branch,

k, if Ad is nonsingular. WhenAd is rank deficient, some elements ofQk do not appear in

Eq. (2.19) because they are multiplied by zeros and, thus, are undetermined. In such cases,

due to the undetermined elements,Qk is clearly not unique. However, those undetermined

elements ofQk do not appear inSk in Eq. (2.20) either, due to multiplication withAd, and

so do not affect the solutions.

Example 2.1 The following example, from (Lee and Dianat, 1981), illustrates the

approach and compares the results to those obtained using numerical integration. Consider

a system of DDEs,

ẋ(t) =






−1 −3

2 −5




 x(t) +






1.66 −0.697

0.93 −0.330




 x(t − 1) (2.22)

Then, with the parameters in Eq. (2.22) for solution,Qk is computed from Eq. (2.19)

for each branch and, subsequently,Sk is computed from Eq. (2.20). Table 2.1 shows the

resulting values fork = −1, 0, 1 and the eigenvalues,λk1 andλk2, of Sk. Using the values

of Sk from Table 2.1, the solution is obtain as

x(t) =
∞∑

k=−∞

eSktCI
k = · · · + eS−1tCI

−1 + eS0tCI
0 + eS1tCI

1 + · · · (2.23)

The coefficientsCI
k in (2.23) are determined from specified preshape function,g(t), initial
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Table 2.1: Intermediate results for computing the solutionfor the example in (2.22) via the
matrix Lambert W function

k = 0 k = ±1 · · ·

Qk






−9.9183 14.2985

−32.7746 6.5735











−18.8024 ∓ 10.2243i 6.0782 ∓ 2.2661i

−61.1342 ∓ 23.6812i 1.0161 ∓ 0.2653i




 · · ·

Sk






0.3055 −0.4150

2.1317 −3.3015











−0.3499 ± 4.9801i −1.6253 ∓ 0.1459i

2.4174 ∓ 0.1308i −5.1048 ± 4.5592i




 · · ·

λki







−1.0119

−1.9841







−1.3990 ± 5.0935i

−4.0558 ± 4.4458i

· · ·

state,x0, time delay,h, numerically (Asl and Ulsoy, 2003) or analytically as discussed

subsequently in section 2.4. For example, letx0 = g(t) = {1 0}T , for h = 1, k = −1, 0, 1,

the corresponding values computed by using the approach in (Asl and Ulsoy, 2003) are

CI
−1 =







1.3663 + 3.9491i

3.2931 + 9.3999i







, CI
0 =







−1.7327

−6.5863







, CI
1 =







1.3663 − 3.9491i

3.2931 − 9.3999i







(2.24)

The results are compared to those obtained using numerical integration in Fig. 2.2, and

show good agreement as more branches are used. As seen in Fig.2.2, as one adds terms

(i.e., branches), the errors between the two approaches continue to be reduced. However,

an explicit expression for the error in terms of the number ofbranches used is not available.

2.2.2 Stability

For systems of DDEs as in Eq. (2.1), it is difficult to determine the rightmost eigenval-

ues in the infinite eigenspectrum. However, this is important, as the rightmost eigenvalues

determine system stability. If one computes a finite set of eigenvalues from the infinite

eigenspectrum, it is difficult to draw a conclusion about stability, because one cannot be
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Figure 2.2: Comparison for example in (2.22) of results fromnumerical integration vs.
(2.23) and (2.24) with one, three, and, seven terms. With more branches the
results show better agreement.

sure that the rightmost eigenvalue is included in that finiteset. For the scalar case in

(1.2), it has been proven that the root obtained using the principal branch (k = 0) always

determines the stability of the system using monotinicity of the real part of the Lambert

W function with respect to its branchk (Shinozaki and Mori, 2006) (e.g., see Fig. 2.1).

Such a proof can readily be extended to systems of DDEs whereA andAd are simultane-

ously triangularizable and, thus, commute with each other (Radjavi and Rosenthal, 2000).

Although such a proof is not currently available in the case of the general matrix-vector

DDEs in (2.1), if the coefficient matrixAd does not have repeated zero eigenvalues, then,

the same behavior has been observed in all the examples whichhave been have consid-

ered. In the example in (2.22), the value of the real part of the dominant eigenvalue is in

the left half plane and, therefore, the system is stable (seeTable 2.1). Consequently, an

important advantage of the solution approach based on the Lambert W function, is that the

stability of the system can be determined based only on the principal branch. Based on
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this observation, in Chap. III, aConjecture(see Subsection 3.3.1) is formulated for sta-

bility analysis. Note that for the case whereAd has repeated zero eigenvalues, it has been

observed that the rightmost eigenvalue is obtained by usingthe principal branch (k = 0),

or k = ±1.

2.3 Forced Systems

Consider a nonhomogeneous version of the DDE in (1.2):

ẋ(t) = ax(t) + adx(t − h) + bu(t), t > 0 (2.25)

whereu(t) is a continuous function representing the external excitation. In (Malek-Zavarei

and Jamshidi, 1987), the forced solution to (2.25) is presented as,

xforced(t) =

∫ t

0

Ψ(t, ξ)bu(ξ)dξ (2.26)

where the following conditions for the kernel function,Ψ(t, ξ), must be satisfied.

a)
∂

∂ξ
Ψ(t, ξ) = −aΨ(t, ξ), t − h ≤ ξ < t

= −aΨ(t, ξ) − adΨ(t, ξ + h), ξ < t − h

b)Ψ(t, t) = 1

c)Ψ(t, ξ) = 0, ξ > t

(2.27)

Because the above conditions contain a scalar DDE, the approach based upon the Lambert

W function can be used to obtainΨ(t, ξ) to extend the free solution in (1.3) to nonhomo-

geneous DDE. First, aΨ(t, ξ) which satisfies the first condition in (2.27) is

Ψ(t, ξ) = ea(t−ξ) (2.28)

A Ψ(t, ξ) satisfying the second condition in (2.27) can be obtained using (1.3), and can be

confirmed by substitution as

Ψ(t, ξ) =

∞∑

k=−∞

eSk(t−ξ)CN
k (2.29)
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Thus, it can be concluded that

a)Ψ(t, ξ) = ea(t−ξ), t − h ≤ ξ < t

=
∞∑

k=−∞

eSk(t−ξ)CN
k , ξ < t − h

b)Ψ(t, ξ) = 0, ξ > t

(2.30)

Consequently, the forced solution can be represented in terms of the Lambert W function

solution as:

Case I0 ≤ t ≤ h

xforced(t) =

∫ t

0

ea(t−ξ)bu(ξ)dξ (2.31)

Case II t ≥ h

xforced(t) =

∫ t−h

0

∞∑

k=−∞

eSk(t−ξ)CN
k bu(ξ)dξ +

∫ t

t−h

ea(t−ξ)bu(ξ)dξ (2.32)

The coefficient,CN
k , is a function of the parameters of the system in (2.25), thatis, a, ad

and the delay timeh. It can be computed approximately depending on the total number of

branches,N , used in the solution in a similar way toCI
k , based on the continuity of Eqs.
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(2.31) and (2.32) (Yi and Ulsoy, 2006):






σ(h)

σ(h − h
2N

)

σ(h − 2h
2N

)

...

σ(0)







︸ ︷︷ ︸

σ̄

=

















η−N(h) · · · ηN(h)

η−N(h − h
2N

) · · · ηN(h − h
2N

)

η−N(h − 2h
2N

) · · · ηN(h − 2h
2N

)

... · · · ...

η−N(0) · · · ηN(0)

















︸ ︷︷ ︸

η̄







CN
−N

CN
−(N−1)

CN
−(N−2)

...

CN
N







+







π(h)

π(h − h
2N

)

π(h − 2h
2N

)

...

π(0)







︸ ︷︷ ︸

π̄

(2.33)

where

σ(t) =

∫ t

0

ea(t−ξ)bu(ξ)dξ

ηk(t) =

∫ t−h

0

eSk(t−ξ)bu(ξ)dξ

π(t) =

∫ t

t−h

ea(t−ξ)bu(ξ)dξ

(2.34)

Consequently theCN
k can be represented as:

CN
k = lim

N→∞
[η̄−1(h, N) · (σ̄ − π̄)]k (2.35)

also,CN
k can be expressed analytically in terms of the system parameters as shown in

Section 2.4. The coefficientsCI
k depend on the initial conditions and the preshape function,

but as seen from the above procedure, theCN
k do not. An analytical method to compute

CI
k andCN

k based on the Laplace transform is presented in Section 2.4. With the obtained

CN
k , using Eqs. (2.33)-(2.35) the forced solution in Eqs. (2.31) and (2.32) is reduced to
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Figure 2.3: Total forced response with seven branches (k = −3,−2,−1, 0, 1, 2, 3) and
comparison between the new method (solid) and the numericalmethod
(dashed), which shows good agreement. Parameters area = ad = −1, h = 1
with Eq. (2.38).

the forced solution, as shown in Section 2.4 (also alternatively in Appendix A):

xforced(t) =

∫ t

0

∞∑

k=−∞

eSk(t−ξ)CN
k bu(ξ)dξ (2.36)

Hence, combined with Eq. (1.3) the total solution to (2.25) becomes

x(t) =

∞∑

k=−∞

eSktCI
k

︸ ︷︷ ︸

free

+

∫ t

0

∞∑

k=−∞

eSk(t−ξ)CN
k bu(ξ)dξ

︸ ︷︷ ︸

forced

(2.37)

Example 2.2Consider (2.25), witha = ad = −1 andh = 1 and the forcing input

bu(t) = cos(t), t > 0 (2.38)

The total response is shown in Fig. 2.3 forg(t) = 1, x0 = 1 with seven branches (k =

−3,−2,−1, 0, 1, 2, 3), and compared to the result obtained by numerical integration.
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2.3.1 Generalization to system of DDEs

The nonhomogeneous matrix form of the delay differential equation in (2.1) can be

written as

ẋ(t) = Ax(t) + Adx(t − h) + Bu(t), t > 0

x(t) = x0, t = 0

x(t) = g(t), t ∈ [−h, 0)

(2.39)

whereB is ann×r matrix, andu(t) is ar×1 vector. The particular solution can be derived

from (2.31)-(2.32) as,

Case I0 ≤ t ≤ h

xforced(t) =

∫ t

0

eA(t−ξ)Bu(ξ)dξ (2.40)

Case II t ≥ h

xforced(t) =

∫ t−h

0

∞∑

k=−∞

eSk(t−ξ)CN
k Bu(ξ)dξ +

∫ t

t−h

eA(t−ξ)Bu(ξ)dξ (2.41)

In (2.41),CN
k is a coefficient matrix of dimensionn× n and can be calculated in the same

way as in the scalar case. Like the scalar case in the previoussection, (2.40)-(2.41) are

combined as

xforced(t) =

∫ t

0

∞∑

k=−∞

eSk(t−ξ)CN
k Bu(ξ)dξ (2.42)

And the total solution is

x(t) =
∞∑

k=−∞

eSktCI
k

︸ ︷︷ ︸

free

+

∫ t

0

∞∑

k=−∞

eSk(t−ξ)CN
k Bu(ξ)dξ

︸ ︷︷ ︸

forced

(2.43)

where the coefficientCI
k in (2.43) is a function ofA, Ad, h and the preshape functiong(t)

and the initial conditionx0, while CN
k is a function ofA, Ad, h and does not depend ong

or x0. As seen in (2.43), the total solution of DDEs using the Lambert W function has a
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Figure 2.4: Total response for (2.44) and a comparison of thenew method with numerical
integration

similar form to that of ODEs. (see Table 2.2).

Example 2.3Consider the system of DDEs in (2.22) with a sinusoidal external excitation:

Bu(t) =







cos(t)

0







, t > 0 (2.44)

Then the solution to (2.44), with the same preshape functionand initial state, is obtained

from (2.43) and shown in Fig. 2.4. The differences between our new method with seven

branches and numerical integration are essentially indistinguishable.

2.4 Approach Using the Laplace Transformation

In this section, solutions to DDEs in the Laplace domain are considered. Transformed

DDEs and their solution are compared with the solutions in the time domain as (2.37) and

(2.43), and the analytical expressions ofCI
k , CN

k , CI
k andCN

k are obtained in terms of

system parameters by using the Lambert W function.
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2.4.1 Scalar case

Consider the scalar free DDE in (1.2). The Laplace transformof the free equation is

sX(s) − x0 − ade
−shX(s) − ade

−shG(s) − aX(s)

= (s − ade
−sh − a)X(s) − x0 − adG(s) = 0

(2.45)

Then,

X(s) =
x0 + ade

−shG(s)

s − ade−sh − a
(2.46)

On the other hand, the solution obtained by the approach using the Lambert W function in

(1.3) can be transformed as

X(s) = · · ·+ CI
−1

s − S−1
+

CI
0

s − S0
+

CI
1

s − S1
+ · · ·

=
∞∑

k=−∞

CI
k

s − Sk

(2.47)

whereSk is obtained from (1.3). Two solutions in Eqs. (2.46) and (2.47) are compared to

deriveCI
k analytically. After some algebraic manipulation and usingL’Hopital’s rule, Sk

is substituted into both equations to get (Yi et al., 2006b)

CI
k =

x0 + ade
−SkhG(Sk)

1 + adhe−Skh
(2.48)

For the nonhomogeneous DDE in (2.25),CN
k is also obtained in the same way as

CN
k =

1

1 + adhe−Skh
(2.49)

Note thatCI
k is dependent on the initial conditions,x0 and the preshape function,g(t), but

CN
k is not. As seen in (2.48) and (2.49), comparing the solution in the Laplace domain and

that in the time domain using the Lambert W function enables one to derive the analytical

expressions forCI
k andCN

k . Thus, withSk in (1.3), the solution in (2.37) is explicitly

expressed in terms of parameters of the scalar DDE,a, ad andh.
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2.4.2 Generalization to systems of DDEs

For the system of DDEs in (2.39), if one takes the Laplace transform, the unknown

X(s) yields, as in the scalar case in (2.45),

x(t) = L−1
[
(sI − A − Ade

−sh)−1{x0 + Ade
−shG(s)}

]

︸ ︷︷ ︸

free

+ L−1
[
(sI − A − Ade

−sh)−1{BU(s)}
]

︸ ︷︷ ︸

forced

(2.50)

On the other hand, the free solution to (2.1) is (2.21) and it can be transformed as

X(s) =

∞∑

k=−∞

(sI − Sk)
−1CI

k =

· · · + (sI − S−1)
−1CI

−1 + (sI − S0)
−1CI

0 + (sI − S1)
−1CI

1 + · · ·
(2.51)

Comparing (2.51) with the free solution part in (2.50) provides the condition for calculat-

ing CI
k. Here, a2 × 2 example is provided. If the coefficients are

A =






a1 a2

a3 a4




 , Ad =






ad1 ad2

ad3 ad4




 (2.52)

the term in (2.50) can be written, using the inverse of the matrix, as

(sI − A − Ade
−sh)−1 =

1

Υ(s)






s − a4 − ad4e
−sh a2 + ad2e

−sh

a3 + ad3e
−sh s − a1 − ad1e

−sh




 (2.53)

whereΥ(s) is defined as

Υ(s) ≡ s2 − {a1 + a4 + (ad1 + ad4)e
−sh}s + (a1a4 − a2a3)+

(a1ad4 + ad1a4 + a2ad3 + ad2a3)e
−sh + (ad1ad4 − ad2ad3)e

−2sh

(2.54)

And the term in (2.51) can be written as

sI − Sk =




s






1 0

0 1




 −






pk1 pk2

pk3 pk4









 =




s






1 0

0 1




 − Vk






λk1 0

0 λk2




 V−1

k




 ,

where Sk =






pk1 pk2

pk3 pk4






(2.55)
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Applying (2.53) and (2.55), one can find the coefficientsCI
k in (2.21). For example, to

obtain the coefficient of the principal branch,CI
0,

1

Υ(s)






s − a4 − ad4e
−sh a2 + ad2e

−sh

a3 + ad3e
−sh s − a1 − ad1e

−sh




 × {x(0) + Ade

−shG(s)}

=
1

(s − λ01)(s − λ02)






s − p04 p02

p03 s − p01




 + (sI − S−1)

−1CI
−1 + (sI − S1)

−1CI
1 + · · ·

(2.56)

Multiply (s − λ01)(s − λ02) on both sides to get

(s − λ01)(s − λ02)

Υ(s)
×






s − a4 − ad4e
−sh a2 + ad2e

−sh

a3 + ad3e
−sh s − a1 − ad1e

−sh




 × {x(0) + Ade

−shG(s)}

=






s − p04 p02

p03 s − p01




 CI

0

+(s − λ01)(s − λ02)(sI − S−1)
−1CI

−1 + (s − λ01)(s − λ02)(sI − S1)
−1CI

1 + · · ·
(2.57)

Then, substitution ofλ01 for s in (2.57) makes the other terms on the right hand side zero

except the first term. And after some algebraic manipulationand using L’Hopital’s rule as

in the scalar case, one can obtain (Yi et al., 2006b)

lim
s→λ0i

∂

∂s
(s − λ01)(s − λ02)

∂

∂s
Υ(s)

×






λ0i − a4 − ad4e
−sh a2 + ad2e

−sh

a3 + ad3e
−sh λ0i − a1 − ad1e

−sh






× {x0 + Ade
−shG(λ01)}

=






λ0i − p04 p02

p03 λ0i − p01




 CI

0, for i = 1, 2

(2.58)

andCI
0, is computed by solving the two equations in (2.58) simultaneously. Also, for the

other branches,CI
k is computed withλki, wherek = −∞, . . . ,−1, 1, . . . ,∞.

Similarly, the coefficientsCN
k are computed by comparing the forced parts of (2.43)
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and (2.50), that is,

(sI − A − Ade
−sh)−1 =

∞∑

k=−∞

(sI − Sk)
−1CN

k

= · · ·+ (sI − S−1)
−1CN

−1 + (sI − S0)
−1CN

0 + · · ·
(2.59)

Then, following a similar derivation, one can get the equation forCN
k as

lim
s→λki

∂

∂s
(s − λk1)(s − λk2)

∂

∂s
Υ(s)

×






λki − a4 − ad4e
−sh a2 + ad2e

−sh

a3 + ad3e
−sh λki − a1 − ad1e

−sh






=






λki − pk4 pk2

pk3 λki − pk1




 CN

k , for i = 1, 2

(2.60)

Solving the two equations in (2.60) simultaneously, one cancomputeCN
k . The above

approach can readily be generalized to the case of higher order systems of DDEs.

Example 2.4Consider the example in (2.22) with an external forcing termof

Bu(t) =






cos(t)

sin(t)




 (2.61)

The coefficientCI
k andCN

k are computed from (2.58) and (2.60), respectively. Applying

these values into (2.43), one can obtain the solution to (2.22) with (2.61). The result

obtained using 11 branches is shown in Fig. 2.5 and compared to that obtained using the

numerical integration method (dde23in Matlab). As seen in the figure, the agreement is

excellent.

2.5 Concluding Remarks

In this chapter, the Lambert W function-based approach for solution of linear delay dif-

ferential equations is extended to general systems of DDEs,including nonhomogeneous
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Figure 2.5: Solution obtained using the Laplace transform combined with the matrix Lam-
bert W function method of 11 branches(straight). Compared to those obtained
using the numerical method (dashed),dde 23in Matlab, they show good agree-
ment.

Table 2.2: Comparison of the solutions to ODEs and DDEs. The solution to DDEs in
terms of the Lambert W function shows a formal semblance to that of ODEs

ODEs DDEs
Scalar Case
ẋ(t) = ax(t) + bu(t), t > 0 ẋ(t) = ax(t) + adx(t − h) + bu(t), t > 0
x(t) = x0, t = 0 x(t) = g(t), t ∈ [−h, 0) ; x(t) = x0, t = 0

x(t) = eatx0 +

∫ t

0

ea(t−ξ)bu(ξ)dξ x(t) =

∞∑

k=−∞

eSktCI
k +

∫ t

0

∞∑

k=−∞

eSk(t−ξ)CN
k bu(ξ)dξ

where,Sk =
1

h
Wk(adhe−ah) + a

Matrix-Vector Case
ẋ(t) = Ax(t) + Bu(t), t > 0 ẋ(t) = Ax(t) + Adx(t − h) + Bu(t), t > 0
x(t) = x0, t = 0 x(t) = g(t), t ∈ [−h, 0) ; x(t) = x0, t = 0

x(t) = eAtx0 +

∫ t

0

eA(t−ξ)Bu(ξ)dξ x(t) =

∞∑

k=−∞

eSktCI
k +

∫ t

0

∞∑

k=−∞

eSk(t−ξ)CN
k Bu(ξ)dξ

where,Sk =
1

h
Wk(AdhQk) + A
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systems. The solution obtained using the matrix Lambert W function is in a form anal-

ogous to the state transition matrix in the solution to systems of linear ordinary differen-

tial equations (see Table 2.2). Free and forced responses for several cases of DDEs are

presented based on this new solution approach and compared with those obtained by nu-

merical integration. Unlike other solutions to systems of DDEs (i.e., Eq. (2.1)) the main

contributions of the research presented in this chapter are:

(1) The solution to Eq. (2.1) in Eq. (2.43), in terms of the matrix Lambert W function,

is given explicitly in terms of the system coefficientsA, Ad, B and the time delay,h.

(2) Although the eigenspectrum of Eq. (2.1) is infinite, eacheigenvalue is distinguished

by k, which indicates a branch of the Lambert W function.

(3) If Ad does not have repeated zero eigenvalues, then, it is our observation that the

stability of Eq. (2.1) is determined by the principal branch(k = 0).

Even though time-delay systems are still resistant to many methods from control theory

(Richard, 2003), the presented approach suggests that someanalyses used in systems of

ODEs, based on the concept of the state transition matrix, can potentially be extended to

systems of DDEs. In systems of ODEs, the parameters of the system appear explicitly

in the solutions. Using the Lambert W function, the solutionto system of DDEs can be

expressed in terms of the coefficients and the delay time,h, as in the ODE case. This

approach, with the state transition matrix concept, can pave the way to application of

methods from control theory to systems of DDEs, and such an extension is presented in

subsequent chapters.

It is noted that there are still several currently outstanding fundamental research prob-

lems. First, the method using the matrix Lambert W function hinges on the determination

of a matrix,Qk. As discussed in Section 2.2, it has always been possible to find Qk for
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the problems, which have been considered. However, conditions for the existence and

uniqueness ofQk are lacking and needed. Second, as discussed in Section 2.2.2, it has

been observed in all our examples using DDEs that, whenAd does not have repeated zero

eigenvalues, stability is determined by the principal branch (i.e.,k = 0) of the matrix

Lambert W function. This observation has been proven to be correct in the scalar case and

for some special forms of the vector case, however a general proof is lacking. These, and

others, are all potential topics for future research, whichcan build upon the foundation

presented in this chapter.



CHAPTER III

STABILITY OF SYSTEMS OF DDES VIA THE
LAMBERT W FUNCTION WITH APPLICATION TO

MACHINE TOOL CHATTER

In a turning process model represented by delay differential equations, the stability

of the regenerative machine tool chatter problem is investigated. An approach using the

matrix Lambert W function for the analytical solution to systems of delay differential

equations, introduced in the previous chapter, is applied to this problem and compared

with the result obtained using a bifurcation analysis. The Lambert W function-based ap-

proach, known to be useful for solving scalar first-order DDEs, was extended to solve

general systems of DDEs in Chap. II. The essential advantages of the matrix Lambert

W function-based approach are not only the similarity to theconcept of the state transi-

tion matrix in linear ordinary differential equations, enabling its use for general classes

of linear delay differential equations, but also the observation that only the finite number

of roots obtained by using one branch, the principal branch,among an infinite number of

branches is needed to determine the stability of a system of DDEs. With this approach, one

can obtain the critical values of delay that determine the stability of a system and hence the

preferred operating spindle speed without chatter. In thischapter, the matrix Lambert W

function-based approach is applied to the problem of chatter stability in turning, and the

36
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result is compared with previous results using existing methods. The new approach shows

excellent accuracy and certain other advantages, when compared to traditional graphical,

computational and approximate methods.

3.1 Introduction

Machine tool chatter, which can be modeled as a time-delay system, is one of the ma-

jor constraints that limit the productivity of the turning process. Chatter is the self-excited

vibration that is caused by the interaction between the machine structure and the cutting

process dynamics. The interaction between the tool-workpiece structure and the cutting

process dynamics can be described as a closed-loop system (e.g., see Fig. 3.2). If this

system becomes unstable (equivalently, the system of DDEs that represents the process

has any unstable eigenvalues), chatter occurs and leads to deteriorated surface finish, di-

mensional inaccuracy in the machined part, and unexpected damage to the machine tool,

including tool breakage. Following the introduction of theclassical chatter theories intro-

duced by Tobias (1965) and Tlusty (2000) in the 1960s, various models were developed

to predict the onset of chatter. Tobias (1965) developed a graphical method and an alge-

braic method to determine the onset of instability of a system with multiple degrees of

freedom (DOF). Merritt presented a theory to calculate the stability boundary by plotting

the harmonic solutions of the system’s characteristic equation, assuming that there were

no dynamics in the cutting process, and also proposed a simple asymptotic borderline to

assure chatter-free performance at all spindle speeds (Merritt, 1965). Optiz and Bernardi

(1970) developed a general closed loop representation of the cutting system dynamics for

turning and milling processes. The machine structural dynamics were generally expressed

in terms of transfer matrices, while the cutting process waslimited by two assumptions:

(1) direction of the dynamic cutting force is fixed during cutting, and (2) the effects of
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feed and cutting speed are neglected. These assumptions were later removed by Minis

et al. (1990), who described the system stability in terms ofa characteristic equation and

then applied the Nyquist stability criterion to determine the stability of the system. Chen

et al. (1997) introduced a computational method that avoidslengthy algebraic (symbolic)

manipulations in solving the characteristic equation. In (Chen et al., 1997), the character-

istic equation was numerically formulated as an equation ina single unknown, but well

bounded, variable. Also, the stability criteria for time-delay systems were analytically de-

rived by Stepan (1989), Kuang (1993), and Stepan and Moon (1997), and using the Hopf

Bifurcation Theorem (Nayfeh et al., 1997; Kalmar-Nagy et al., 2001; Fofana, 2003). Re-

cently, Olgac and Sipahi developed an approach based on the cluster treatment of charac-

teristic roots, examining one infinite cluster of roots at a time for stability of delay systems

to enable the determination of the complete stability regions of delay (Sipahi and Olgac,

2003b), and also applied the approach to machining chatter (Olgac and Sipahi, 2005).

In this chapter, an approach based on the matrix Lambert W function for the problem

of chatter stability by solving the chatter equation is presented. By applying the approach

in Chap. II to the chatter equation, one can solve systems of DDEs in the time domain

and determine the stability of the system from the eigenvalues in terms of the Lambert W

function. Using this method one can obtain ranges of preferred operating spindle speed

that does not cause chatter. The form of the solution obtained is analogous to the general

solution form for ordinary differential equations (ODEs),and the concept of the state

transition matrix in ODEs can be generalized to DDEs with thepresented method.

3.2 The Chatter Equation in the Turning Process

In the turning process, a cylindrical workpiece rotates with a constant angular veloc-

ity, and the tool generates a surface as material is removed.Any vibration of the tool
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m

x(t)

f

Figure 3.1: 1 DOF orthogonal cutting model

is reflected on this surface, which means that the cutting force depends on the position

of the tool edge for the current revolution as well as the previous one, which is reflected

on the surface. Thus, to represent such a phenomenon, delay differential equations have

been widely used as models for regenerative machine tool vibration. The model of tool

vibration, assuming a 1-DOF orthogonal cutting depicted inFig. 3.1, can be expressed as

(Kalmar-Nagy et al., 2001)

ẍ(t) + 2ζωnẋ(t) +

(

ω2
n +

kc

m

)

x(t) − kc

m
x(t − T )

=
kc

8f0m

(

(x(t) − x(t − T ))2 − 5

12f0
(x(t) − x(t − T ))3

)

,

(3.1)

wherex(t) is the general coordinate of tool edge position and the delay, T = 2π/Ω, is the

time period for one revolution, withΩ being the angular velocity of the rotating workpiece.

The coefficient,kc, is the cutting coefficient derived from a stationary cutting force model

as an empirical function of the parameters such as the chip width, the chip thickness,f
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(nominallyf0 at steady-state), and the cutting speed. The natural angular frequency of the

undamped free oscillating system isωn andζ is the relative damping factor. Note that the

zero value of the general coordinatex(t) of the tool edge position is selected such that the

x component of the cutting force is in balance with the stiffness when the chip thickness,

f , is at the nominal value,f0 (Kalmar-Nagy et al., 2001).

To linearize Eq. (3.1), definex1 ≡ x andx2 ≡ ẋ, and rewrite the equation in first-order

form as

ẋ1 = x2(t),

ẋ2 = −2ζωnx2(t) −
(

ω2
n +

kc

m

)

x1(t) −
kc

m
x1(t − T )

+
kc

8f0m

(

(x1(t) − x1(t − T ))2 − 5

12f0
(x1(t) − x1(t − T ))3

)

.

(3.2)

At equilibrium, the condition,ẋ1(t) = ẋ2(t) = 0, is satisfied and, thus, the equation

becomes

0 = x2(t),

0 = −2ζωnx2(t) −
(

ω2
n +

kc

m

)

x1(t) −
kc

m
x1(t − T )

+
kc

8f0m

(

(x1(t) − x1(t − T ))2 − 5

12f0
(x1(t) − x1(t − T ))3

)

.

(3.3)

and if no vibration from previous processing is left, thenx1(t) = x1(t−T ) = 0. Therefore,

it can be concluded that one of the equilibrium points is

x̄1(t) = x̄1(t − T ) = x̄2(t) = 0, (3.4)

which means that at this equilibrium point, the tool edge is in the zero position as defined

previously. Linearizing (3.2) using a Jacobian matrix evaluated at the equilibrium point

gives
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





ẋ1(t)

ẋ2(t)







=







∂f

∂x1(t)

∂f

∂x2(t)
∂g

∂x1(t)

∂g

∂x2(t)







0







x1(t)

x2(t)







+







∂f

∂x1(t − T )

∂f

∂x2(t − T )
∂g

∂x1(t − T )

∂g

∂x2(t − T )







0







x1(t − T )

x2(t − T )







where







f = x2

g = −2ζωnx2(t) −
(

ω2
n +

kc

m

)

x1(t) +
kc

m
x1(t − T )

+
kc

8f0m

(

(x1(t) − x1(t − T ))2 − 5

12f0

(x1(t) − x1(t − T ))3
)

(3.5)

Consider the equilibrium point in Eq.(3.4), Eq.(3.5) becomes







ẋ1

ẋ2







=







0 1

−
(

ω2
n +

kc

m

)

−2ζωn













x1(t)

x2(t)







+






0 0

kc

m
0












x1(t − T )

x2(t − T )







.

(3.6)

Equivalently, (3.6) can be written as

ẍ(t) + 2ζωnẋ(t) +

(

ω2
n +

kc

m

)

x(t) − kc

m
x(t − T ) = 0 (3.7)

or in the form of (Chen et al., 1997)

1

ω2
n

ẍ(t) +
2ζ

ωn

ẋ(t) + x(t) = − kc

km

(x(t) − x(t − T )) , (3.8)

wherekm is structural stiffness (N/m) andmω2
n ≡ km.

Figure 3.2 shows the block diagram of the chatter loop. In thediagram, two feedback

paths exist: a negative feedback of position (primary path)and a positive feedback of

delayed position (regenerative path). Theu0(s) is the nominal depth of cut initially set

to zero (Merritt, 1965). Chatter occurs when this closed loop system becomes unstable

and, thus, Eq. (3.8) has any unstable eigenvalues. Therefore, the stability of the linearized
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Figure 3.2: Block diagram of chatter loop (Merritt, 1965). Two feedback paths exist: a
negative feedback of position (primary path) and a positivefeedback of de-
layed position (regenerative path). Chatter occurs when this closed loop sys-
tem becomes unstable.

model in (3.8) can be used to determine the conditions for theonset of chatter. However,

the linearized equations do not capture the amplitude limiting nonlinearities associated

with the chatter vibrations. Although comparison with experimental data is not provided

here, similar models have been extensively studied and validated in prior works (e.g., see

(Chen et al., 1997) and the references therein).

3.3 Solving DDEs and Stability

The linearized chatter equation (3.8) can be expressed in state space form as Eq. (2.1).

Definingx = {x ẋ}T , whereT indicates transpose, equation (3.8) can be expressed as

A =







0 1

−
(

1 +
kc

km

)

ω2
n −2ζωn







, Ad =






0 0

kc

km
ω2

n 0




 , and h = T. (3.9)

A andAd are the linearized coefficient matrices of the process modeland are functions of

the machine-tool and workpiece structural parameters suchas natural frequency, damping,

and stiffness. The analytical method to solve scalar DDEs, and systems of DDEs as in
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(2.1) using the matrix Lambert W function was introduced in the previous chapter. Here

the matrix Lambert W function-based approach introduced inChap. II is applied to the

chatter problem to find stable operating conditions (e.g., spindle speed and depth of cut).

Assume the unknownQ in (2.15) as

Q =






q11 q12

q21 q22




 . (3.10)

Then matrices in Eqs. (3.9) and (3.10), the argument of the Lambert W function, “AdhQ”

is

AdhQ =






0 0

q11
kc

km
ω2

nT q12
kc

km
ω2

nT




 . (3.11)

Hence, the eigenvalue matrix and the eigenvector matrix forAdhQ are

d =






λ̂1 0

0 λ̂2




 =






q12
kc

km
ω2

nT 0

0 0




 , V =






0 −q12

q11

1 1




 . (3.12)

As seen in (3.12), one of the eigenvalues is zero. This point makes the chatter equation

unusual, because of the following property of the Lambert W function (Corless et al.,

1996):

Wk(0) =







0 when k = 0

−∞ when k 6= 0

(3.13)

Because of this property, in contrast to the typical case where identical branches (k1 = k2)

are used in (2.16) of the previous chapter, here it is necessary to use hybrid branches

(k1 6= k2) of the matrix Lambert W function defined as

Wk1,k2(AdhQ) = V






Wk1(q12
kc

km
ω2

nT ) 0

0 Wk2(0)




 V−1. (3.14)

By settingk2 = 0 and varying onlyk1 from −∞ to ∞, one can solve (2.15) to getQk1,0;

then using (2.14), one determines the transition matrices of the system (2.1) with the co-

efficients in Eq. (3.9). The results for gain(kc/km) = 0.25, spindle speed(1/T ) = 50,
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Table 3.1: Results of calculation for the chatter equation

Sk1,k2 Eigenvalues ofSk1,k2

k1 = k2 = 0

[
0 1

−33083 −0.24

] {

−0.12 + 181.88i

−0.12− 181.88i

k1 = −1 & k2 = 0

[

0 1

−77988 + 32093i −177− 247i

] {

−0.12 + 181.88i

−176.73− 428.66i
[

0 1

−11 − 1663i −92 − 182i

] {

−91.61

−0.12 − 181.88i

k1 = 1 & k2 = 0

[

0 1

−77988− 32093i −177 + 247i

] {

−0.12 − 181.88i

−176.73 + 428.66i
[

0 1

−11 + 1663i −92 + 182i

] {

−91.61

−0.12 + 181.88i

k1 = −2 & k2 = 0

[

0 1

−137360 + 42340i −230 − 570i

] {

−0.12 + 181.88i

−233.30− 755.05i
[

0 1

77945− 31297i −177 − 611i

] {

−0.12− 181.88i

−176.73− 428.66i

k1 = 2 & k2 = 0

[

0 1

−137360− 42340i −230 + 570i

] {

−0.12 − 181.88i

−233.30 + 755.05i
[

0 1

77945 + 31297i −177 + 611i

] {

−0.12 + 181.88i

−176.73 + 428.66i

...
...

...

ωn = 150(sec−2), andζ = 0.05, are in Table 3.1. As seen in Table 3.1, even thoughk1

varies, it is observed that the eigenvalues fork1 = k2 = 0 repeat, which is caused by the

fact that one of the branches (k2) is always zero.

The responses, obtained by using the approach in Chap. II with the transition matrices

in Table 3.1, are illustrated in Figure 3.3 and compared withthe response using a numerical

integration of the nonlinear equation (3.1) and the linearized one (3.7). Note that this is

for the linearized equation given by (2.1) with the coefficients in Eq. (3.9). As seen in
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Figure 3.3: Responses for the chatter equation in Eq. (3.1).With more branches used, the
results show better agreement.

Figure 3.3, because there are an infinite number of transition matrices for DDEs with

varying branches, as more transition matrices are utilized, the response approaches the

numerically obtained response.

3.3.1 Eigenvalues and stability

The solution approach based on the Lambert W function in Eq. (2.21) reveals that the

stability condition for the system (2.1) depends on the eigenvalues of the matrixSk. That

is, a time-delay system characterized by Eq. (2.1) is asymptotically stable if and only if

all the eigenvalues ofSk have negative real parts. However, computing the matricesSk
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for an infinite number of branches,k = −∞, · · · ,−1, 0, 1, · · · ,∞, is not practical. As

explained in Subsection 2.2.2, if the coefficient matrix,Ad, does not have repeated zero

eigenvalues, then, it has been observed that the characteristic roots of Eq. (2.1) obtained

using only the principal branch are the rightmost ones in thecomplex plane and determine

the stability of the system in Eq. (2.1). Since there is currently no general proof, these

observations are formally summarized here in form of aConjecture. That is,

Conjecture:

if Ad does not have repeated zero eigenvalues, then

max{ℜ{eigenvalues for the principal branch,k = 0}} ≥ ℜ{all other eigenvalues}
(3.15)

Note that ifAd has repeated zero eigenvalues, the rightmost eigenvalues are obtained by

using the principal branch (k = 0), or k = ±1, for all cases considered.

The eigenvalues in Table 3.1 are presented in the complex plane in Figure 3.4. Figure

3.4 shows that the eigenvalues obtained using the principalbranch (k1 = k2 = 0) are

closest to the imaginary axis and determine the stability ofthe system (3.8). For the scalar

DDE case, it has been proven that the root obtained using the principal branch always

determines stability (Shinozaki and Mori, 2006), and such aproof can readily be extended

to systems of DDEs whereA andAd commute. However, such a proof is not available

in the case of general matrix-vector DDEs. Nevertheless, the same behavior has been

observed in all the examples that have been considered. Thatis, the eigenvalues ofS0,0,

obtained using the principal branch for both ofk1 andk2, are closest to the imaginary axis,

and their real parts are negative. Furthermore, using additional branches to calculate the

eigenvalues always yields eigenvalues whose real parts arefurther to the left in thes-plane.

Thus, it can be concluded that the system (3.8) with the parameter set is stable.

If one observes the roots obtained using the principal branch, one can find the critical
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Figure 3.4: Eigenvalues in Table 3.1 in the complex plane. The eigenvalues obtained using
the principal branch (k = 0) are dominant and determine the stability of the
system.

point when the roots cross the imaginary axis. For example, when spindle speed(1/T ) =

50, ωn = 150(sec−2) andζ = 0.05, the critical ratio of gains(kc/km) is 0.2527. This value

agrees with the result obtained by the Lyapunov method (Malek-Zavarei and Jamshidi,

1987), the Nyquist criterion and the computational method of (Chen et al., 1997). The

stability lobes by this method are depicted in Figure 3.5 with respect to the spindle speed

(rps, revolution per second). In obtaining the result shown in the Figure 3.5, it is noted

that the roots obtained using the principal branch always determine stability. One of the

advantages of using the matrix Lambert W function over othermethods appears to be the

observation that the stability of the system can be obtainedfrom only the principal branch

among an infinite number of roots. The main advantage of this method is that solution
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(2.21) in terms of the matrix Lambert W function is similar tothat of ODEs. Hence, the

concept of the state transition matrix in ODEs can be generalized to DDEs using the matrix

Lambert W function. This suggests that the analytical approach using the matrix Lambert

W function can be developed fortime-varyingDDEs based on Floquet theory and such

study is being currently investigated.

Recently, Forde and Nelson (2004) developed a bifurcation analysis combined with

Sturm sequences for determining the stability of delay differential equations. The method

simplifies the task of determining the necessary and sufficient conditions for the roots of

a quasi-polynomial to have negative real parts, and was applied to a biological system

(Forde and Nelson, 2004). For the chatter problem considered here, the bifurcation analy-

sis presented in (Forde and Nelson, 2004) also provides a useful algorithm for determining

stability. In (Yi et al., 2007b), the method was applied to chatter equation in (3.8). Com-



49

pared with existing methods, the bifurcation analysis withSturm sequence can be used

determine the critical values of delay that the stability limit of the system with relatively

simple calculations, avoiding restrictive geometric analysis. Also, it showed excellent

agreement with the result presented in this chapter.

3.4 Concluding Remarks

In this chapter, a new approach for the stability analysis ofmachining tool chatter

problems, which can be expressed as systems of linear delay differential equations, has

been presented using the matrix Lambert W function. The mainadvantage of the analytical

approach based on the matrix Lambert W function lies in the fact that one can obtain

the solution to systems of linear DDEs in the time domain, andthe solution has a form

analogous to the state transition matrix in systems of linear ordinary differential equations.

It can be applied to systems of linear DDEs of arbitrary order, and thus can be used in

chatter models that include multiple structural vibrationmodes. Though the solution is in

the form of an infinite series of modes computed with different branches, it is observed

that the principal branch always determines the stability of a system (e.g., see Figure 3.4).

The results show excellent agreement with those obtained using traditional methods, e.g.,

Lyapunov (Malek-Zavarei and Jamshidi, 1987), Nyquist, thenumerical method used in

(Chen et al., 1997), and bifurcation analysis via Sturm sequence (Yi et al., 2007b). The

method presented in this chapter not only yields stability results but also can be used to

obtain the free and forced response of the linearized machine tool dynamics.



CHAPTER IV

CONTROLLABILITY AND OBSERVABILITY OF
SYSTEMS OF LINEAR DELAY DIFFERENTIAL
EQUATIONS VIA THE MATRIX LAMBERT W

FUNCTION

During recent decades, controllability and observabilityof linear time-delay systems

have been studied, including various definitions and corresponding criteria. However, the

lack of an analytical solution approach has limited the applicability of existing theory.

Recently, the solution to systems of linear delay differential equations has been derived in

the form of an infinite series of modes written in terms of the matrix Lambert W function

as introduced in Chap. II. The solution form enables one to put the results for point-wise

controllability and observability of systems of delay differential equations to practical use.

In this chapter, the criteria for point-wise controllability and observability are derived,

the analytical expressions for their Gramians in terms of the parameters of the system are

obtained, and a method to approximate them is developed for the first time using the matrix

Lambert W function-based solution form.

4.1 Introduction

The Lambert W function has been used to develop an approach for the solution of lin-

ear time invariant (LTI) systems of DDEs with a single delay for scalar first order DDEs

50
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and, subsequently, general systems of DDEs (e.g., see Chap.II and the references therein).

The approach using the Lambert W function provides a solution form for DDEs and thus

enables one to put the theoretical results on point-wise controllability and observability

of time-delay systems and their Gramians (e.g., see (Malek-Zavarei and Jamshidi, 1987),

(Richard, 2003) and the references therein), to practical use. In this chapter, the properties

of controllability and observability for time-delay systems are studied via the matrix Lam-

bert W function approach-based solution. Using the analytical solution form in terms of

the matrix Lambert W function, the point-wise controllability and observability criteria,

and their Gramians, for LTI systems of DDEs with a single delay are derived. Also, the re-

sults are applied to an example for illustration. The resultprovides an analytical approach

to investigate the two system input-output properties (controllability and observability),

and also is used for obtaining balanced realizations for time-delay systems.

Consider a real LTI system of DDEs with a single constant delay, h, in Eq. (2.39) with

an output equation. That is,

ẋ(t) = Ax(t) + Adx(t − h) + Bu(t) t > 0

x(t) = g(t) t ∈ [−h, 0)

x(t) = x0 t = 0

y(t) = Cx(t)

(4.1)

The coefficient matrixC is p × n andy(t) is ap × 1 measured output vector. Note that

there exist two kinds of initial conditions for systems of DDEs,x0 which is the value of

x(t) at t = 0, and the preshape function,g(t) in (4.1) and is equal tox(t) on the in-

terval t ∈ [−h, 0). For general retarded functional differential equations,the existence

and uniqueness of the solution are proved based upon the assumption of continuity, i.e.,

g(0) = x0. However, in the specific case of the LTI system of DDEs with a single constant

delay as in (4.1), the existence and uniqueness can be also proved without such an assump-
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tion (Tsoi and Gregson, 1978) and (Hale and Lunel, 1993). Consequently, for generality,

one can assume thatg(0) is not necessarily equal tox0 in (4.1). In Chap. II, the solution

to (4.1) was derived using the matrix Lambert W function-based approach and given as in

Eq. (2.43).

4.2 Controllability

Controllability and observability are two fundamental attributes of a dynamical system.

Such properties of time-delay systems have been explored since the 1960s and the control-

lability and observability Gramians for time-delay systems were presented respectively by

Weiss (1967) and Delfour and Mitter (1972) based upon assumed symbolic solution forms

of the DDEs. However, application of the results with Gramians to verify controllability

and observability of linear time-delay systems has been difficult, due to the lack of analyti-

cal solutions to DDEs (Malek-Zavarei and Jamshidi, 1987). The analysis of controllability

and observability based on the solution form in terms of the matrix Lambert W function

are presented in this, and subsequent, sections respectively.

Depending on the nature of the problem under consideration,there exist various def-

initions of controllability and observability for time-delay systems (Richard, 2003) (also

see Appendix B for comparison of various types). Among them,the concept ofpoint-wise

controllabilityof a system of DDEs, as in (4.1), and the related conditions were introduced

in (Richard, 2003).

Definition 1 The system (4.1) is point-wise controllable (or equivalently, defined as fixed-

time completely controllable in (Choudhury, 1972a) orRn-controllable to the origin in

(Richard, 2003), (Weiss, 1970)) if, for any given initial conditionsg(t) andx0, there exists

a timet1, 0 < t1 < ∞, and an admissible (i.e., measurable and bounded on a finite time

interval) control segmentu(t) for t ∈ [0, t1] such thatx(t1; g, x0, u(t)) = 0 (Weiss, 1967).
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The solution form to (4.1) is assumed as (Bellman and Cooke, 1963)

x(t) ≡ x(t; g, x0, u) = M(t; g, x0) +

∫ t

0

K (ξ, t)Bu(ξ)dξ, (4.2)

whereM(t; g, x0) is the free solution to Eq. (4.1) andK (ξ, t) is the kernel function for Eq.

(4.1). Then using the kernelK (ξ, t) in (4.2), the condition for point-wise controllability

was derived in (Weiss, 1967) with the following definition.

Definition 2 A system (4.1) is point-wise complete at timet1 if, for all x1 ∈ Rn, there

exist initial conditionsg(t) andx0, such thatx(t1; g, x0, 0) = x1, wherex(t; g, x0, 0) is a

solution of (4.1) starting at timet = 0 (Choudhury, 1972b).

The conditions for point-wise completeness are presented in (Choudhury, 1972b), (Malek-

Zavarei and Jamshidi, 1987), and (Thowsen, 1977). For example, all2×2 DDEs or DDEs

with a nonsingular coefficient,Ad, are point-wise complete.

Even though the equations to obtain the kernel function in (4.2) were presented in

(Bellman and Cooke, 1963) and (Malek-Zavarei and Jamshidi,1987) the lack of the knowl-

edge of a solution to the systems of DDEs has prevented the evaluation and application

of the results in (Weiss, 1967). This has prompted many authors to develop algebraic

controllability criteria in terms of systems matrices (Buckalo, 1968), (Choudhury, 1972a),

(Kirillova and Churakova, 1967), and (Weiss, 1970). Other definitions of controllability,

which belong in different classifications, such as spectralcontrollability, have alternatively

been provided (Manitius and Olbrot, 1979). For definitions and conditions of various types

of controllability and comparisons, refer to (Malek-Zavarei and Jamshidi, 1987), (Richard,

2003) (also see Appendix B).

Using the matrix Lambert W function, however, the linear time-invariant system with

a single delay can be solved as in (2.43) and, thus, the kernelfunction used in the condition

for point-wise controllability can be derived. The kernel functionK(ξ, t1) is obtained, by
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comparing (4.2) with (2.43), as

K(ξ, t1) ≡
∞∑

k=−∞

eSk(t1−ξ)CN
k (4.3)

Therefore, it is possible to express the controllability Gramian, and state the following

main result, for controllability of the systems of DDEs in (4.1)

Theorem 1 If a system (4.1) is point-wise complete, there exists a control which results

in point-wise controllability in finite time of the solutionof (4.1) for any initial conditions

g(t) andx0, if and only if

rank



Co(0, t1) ≡
∫ t1

0

∞∑

k=−∞

eSk(t1−ξ)CN
k BBT

{
∞∑

k=−∞

eSk(t1−ξ)CN
k

}T

dξ



 = n (4.4)

whereCo(0, t1) is the controllability Gramian of the system of DDEs andT indicates the

transpose.

Proof: SufficiencyIn (2.43), in order to transferx(t) to 0 at t1, substitute an input

obtained with the inverse of the controllability Gramian in(4.4)

u(t) = −BT {K(t, t1)}T C−1
o (0, t1)M(t1; g, x0) (4.5)

whereM is the free solution to (4.1), and comparing (4.2) with (2.43) yields

M(t1; g, x0) ≡
∞∑

k=−∞

eSk(t1−0)CI
k (4.6)

thenx(t1) = 0.

NecessityGiven anyg andx0, suppose there existt1 > 0 and a controlu[0,t1] such that

x(t1) = 0, but (4.4) does not hold. The latter implies that there exists a non-zero vector

x1 ∈ ℜn such thatxT
1 K (t, t1)B = 0, 0 ≤ t ≤ t1 due to the following fact. LetF be an

n × p matrix. Define

P(t1,t2) ≡
∫ t2

t1

F(t)FT (t)dt (4.7)
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Then the rows ofF are linearly independent on[t1, t2] if and only if then × n constant

matrixP(t1,t2) is nonsingular (Chen, 1984). Then, from (4.2),

xT
1 x(t1) = xT

1 M(t1; g, x0) +

∫ t1

0

xT
1 K(ξ, t1)Bu(ξ)dξ (4.8)

and 0 = xT
1 M(t1; g, x0). By hypothesis, however,g and x0 can be chosen such that

M(t1; g, x0) = x1. ThenxT
1 x1 = 0 which contradicts the assumption thatx1 6= 0 �

In the ODE case, the input computed using the controllability Gramian will use the

minimal energy in transferring(x0, 0) to (0, t1) (Chen, 1984). Using the controllability

Gramian in (4.4), one can prove that such a result is also available for DDE’s in a similar

way to the ODE case in (Chen, 1984) (see proof in Appendix B). That is, the input defined

in (4.5) consumes theminimalamount of energy, among all theu’s that can transfer(x0, 0)

to (0, t1).

With Theorem 1 and (4.7), assuming that the system (4.1) is point-wise complete, it

can be concluded as that

Corollary 1 The system in (4.1) is point-wise controllable if and only ifall rows of

∞∑

k=−∞

eSk(t−0)CN
k B (4.9)

are linearly independent on[0,∞).

The Laplace transform of (4.9) is (Yi et al., 2006b)

L

{
∞∑

k=−∞

eSk(t−0)CN
k B

}

=
(
sI − A − Ade

−sh
)−1

B (4.10)

Since the Laplace transform is a one-to-one linear operator, one can obtain the following

corollary.

Corollary 2 The system in (4.1) is point-wise controllable if and only ifall rows of

(
sI − A − Ade

−sh
)−1

B (4.11)
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are linearly independent, over the field of complex numbers except at the roots of the

characteristic equation of Eq. (4.1).

In systems of ODEs, if the state variablex(t) is forced to zero att = t1, it stays at

zero on[t1,∞). However, because the system of DDEs in (4.1) has adelayed termin its

equation, even though all the individual state variables are zero att = t1 they can become

non-zero again aftert1. For this reason, additional definitions of controllability for systems

of DDEs for functional, not point-wise, types of controllability are available in (Richard,

2003), (Weiss, 1967). Also see Appendix B.

Remark 1 It have been shown with some examples in (Yi et al., 2009c) that if the system

of DDEs is point-wise controllable, it is possible to designlinear feedback controllers via

rightmost eigenvalue assignment for the system in Eq. (4.1); otherwise, it is not. This

chapter presents the theoretical foundation for establishing point-wise controllability. To

date there is no general theory for DDEs, as there is for ODEs,that controllability is

required for eigenvalue assignment by linear feedback (Tsoi and Gregson, 1978), (Vande-

venne, 1972).

4.3 Observability

Consider the system given in (4.1). If one knows the initial conditions,g(t) andx0,

then one can know all state variables for any time using the solution in (2.43) to the sys-

tems of DDEs. As seen in (2.43), however, the main obstacle isthe fact that the free

solution does not have the form of just the product of initialconditions and the transition

matrix, in contrast to the ODE case. Therefore, a concept of point-wise observability was

introduced for systems of DDEs in (Delfour and Mitter, 1972), which is different from that

of observability for systems of ODEs.
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Definition 3 The system of (4.1) is point-wise observable, (or equivalently, observableas

in (Delfour and Mitter, 1972)) in[0, t1] if the initial point x0 can be uniquely determined

from the knowledge ofu(t), g(t), andy(t) (Delfour and Mitter, 1972).

This concept was introduced by Gabasov et al. (1972) for purely mathematical reasons.

However, disturbances which can be approximated by Dirac distributions cause the sys-

tem response to be approximatable by jumps in the trajectoryresponse (Lee and Olbrot,

1981). For such cases, the concept of point-wise observability has been used in analyz-

ing singularly perturbed delay system, where the perturbation is very small but cannot be

ignored (see, e.g., (Glizer, 2004; Kopeikina, 1998)).

Just as in the case of controllability, the lack of analytical solutions of the systems of

DDEs has prevented the evaluation and application of the above condition. Unlike con-

trollability, the development of algebraic conditions forthe investigation of the observabil-

ity of time-delay systems has not received much attention (Malek-Zavarei and Jamshidi,

1987). Bhat and Koivo (1976a) used spectral decomposition to decompose the state space

into a finite-dimensional and a complementary part. In (Lee and Olbrot, 1981), various

types of observability of time-delay systems and corresponding algebraic conditions were

presented. For a detailed study, refer to (Malek-Zavarei and Jamshidi, 1987; Lee and Ol-

brot, 1981), and the references therein.

Applying the kernel function in (4.3) to the observability Gramian defined symboli-

cally in (Delfour and Mitter, 1972), one can present the following condition for observabil-

ity for systems of DDEs. Here the system of (4.1) is assumed tobepoint-wise complete.

Theorem 2 The system of (4.1) is point-wise observable if and only if

rank



Ob(0, t1) ≡
∫ t1

0

{
∞∑

k=−∞

eSk(ξ−0)CN
k

}T

CT C
∞∑

k=−∞

eSk(ξ−0)CN
k dξ



 = n (4.12)

whereOb(0, t1) is the observability Gramian of the system of DDEs.
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With Theorem 2 and (4.7) in a way similar to controllability study in the previous section,

one can conclude that

Corollary 3 The system of (4.1) is point-wise observable if and only if all columns of the

matrix

C
∞∑

k=−∞

eSk(t−0)CN
k (4.13)

are linearly independent.

Since the Laplace transform is a one-to-one linear operator, the following corollary then

obtained.

Corollary 4 The system of (4.1) is point-wise observable if and only if all columns of the

matrix

C
(
sI − A − Ade

−sh
)−1

(4.14)

are linearly independent except at the roots of the characteristic equation of Eq. (4.1).

Proof The proofs are essentially similar to those of controllability in Section 4.2 and

are omitted for brevity.�

Remark 2 As in the case of point-wise controllability, for point-wise observable systems

of DDEs, a linear asymptotic observer can be designed via rightmost eigenvalue assign-

ment as shown by examples in (Yi et al., 2009b).

In the case thatg(t) is unknown, ifg(t), as well asx0, can be determined uniquely from

a knowledge ofu(t) and y(t), the system of (4.1) is termedabsolutely observable(or

strongly observablein (Delfour and Mitter, 1972)). For a detailed explanation of the defi-

nition of absolute observabilityand the corresponding conditions, the reader is referred to

(Delfour and Mitter, 1972).
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Figure 4.1: Response of the example in (4.15) obtained by thematrix Lambert W function
approach with 33 terms (a) and the maximum of errors between the response
by the solution form in (2.43) and the numerically obtained one (b) corre-
sponding to the number of branches used for the response. Theerrors continue
to be reduced as more terms in the series solution are included.

4.4 Illustrative Example

Consider a system of DDEs (4.1) with parameters, from (Lee and Dianat, 1981),

A =






−1 −3

2 −5




 , Ad =






1.66 −0.697

0.93 −0.330




 , h = 1 (4.15)

The response, using the solution form in (2.43), is depictedin Fig. 4.1-(a) wheng(t) =

{ 1 0 }T andx0 = { 1 0 }T . The solution (2.43) has the form of an infinite series of

modes written in terms of the matrix Lambert W function. Eventhough it is not practically

feasible to add all the infinite terms of the series in (2.43),it can be approximated by a

finite number of terms. For example, in Fig. 4.1-(a), 33 branches (k = −16, . . . , 16) of the

Lambert W function are used. As one adds terms, the errors between the response (from

Eq. (2.43)) and a solution obtained numerically (usingdde23in Matlab) continue to be

reduced and validate the convergence of the solution in Eq. (2.43) (see Fig. 4.1-(b)).
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Figure 4.2: Determinant of the controllability Gramian versus branches. As more branches
are included, the value of determinant converges to a non-zero value.

Using the criterion in (Choudhury, 1972b) (also presented in Section 4.2), the system

in (4.15) is point-wise complete. ForB=[ 1 0 ]T , the controllability GramianCo(0, t1) in

(4.4) can be computed. Then in order for the system (4.15) to be point-wise controllable,

Co(0, t1) should have full rank. This means that the determinant of thematrix is non-zero.

That is,

det |Co(0, t1)| 6= 0 (4.16)

Computing the determinant of the matrix for an increasing number of branches yields the

result in Fig. 4.2. As more branches are included, the solution in (2.43) converges (see Fig.

4.1), so do the kernel function in (4.3) and the controllability Gramian in (4.4). Figure 4.2

shows that the determinant converges to a non-zero value, which implies that the system

is point-wise controllable.

Even though a system satisfies the algebraic criteria already provided in previous work,

such as (Lee and Olbrot, 1981), (Malek-Zavarei and Jamshidi, 1987), in cases where the
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Figure 4.3: Determinant of observability Gramian whenC = [0 1] andC = [1 0]. As
the number of branches used increases, the value of the determinant in case of
C = [1 0] tends to converge to a higher value than forC = [0 1].

determinant of the observability Gramian in (4.12) is smaller than a specific value, then

it is not practical to design an observer as the gains in the observer can become unreal-

istically high. Comparing the determinant of the observability Gramian corresponding to

the system in (4.15), one can obtain a practical assessment.For example, the determinants

of the observability Gramian for (4.15) whenC = [ 1 0 ] andC = [ 0 1 ] are com-

pared in Fig. 4.3 witht1 = 4. As the number of branches used increases, the value of the

determinant in case ofC = [ 1 0 ] tends to converge to a higher value than the case of

C = [ 0 1 ].

From the results in Figures 4.2 and 4.3, although a formal study of truncation errors is

needed, the convergence of the Gramians is observed as the number of terms in the series

is increased. When the convergence conditions, which are explained in Chap. II, and also
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Table 4.1: Comparison of the criteria for controllability and observability for the systems
of ODEs and DDEs

ODEs DDEs
Controllability Point-Wise Controllability

Co(0, t1) ≡

∫
t1

0
e

A(t1−ξ)BBT
{

e
A(t1−ξ)

}T
dξ Co(0, t1) ≡

∫
t1

0

∞∑

k=−∞

e
Sk(t1−ξ)CN

k BBT







∞∑

k=−∞

e
Sk(t1−ξ)CN

k







T

dξ

(sI − A)−1 B
(

sI − A − Ade−sh
)
−1

B

e
A(t−0)B

∞∑

k=−∞

e
Sk(t−0)CN

k B

Observability Point-Wise Observability

Ob(0, t1) ≡

∫
t1

0

{

e
A(ξ−0)

}T
CT Ce

A(ξ−0)
dξ Ob(0, t1) ≡

∫
t1

0







∞∑

k=−∞

e
Sk(ξ−0)CN

k







T

CT C
∞∑

k=−∞

e
Sk(ξ−0)CN

k dξ

C (sI − A)−1 C
(

sI − A − Ade−sh
)
−1

Ce
A(t−0) C

∞∑

k=−∞

e
Sk(t−0)CN

k

in the cited references, are satisfied, then the series expansion of the solution in Eq. (2.43)

converges. The controllability Gramian in Eq. (4.4) and theobservability Gramian in Eq.

(4.12) are the integrals of products of the kernel (Eq. (4.3)) and constant matrices (B and

C) over a finite interval. Thus, the convergence of the Gramians is also assured under the

same conditions.

The presented results agree with those obtained using existing algebraic methods.

However, using the method of Gramians developed in this paper, one can acquire addi-

tional information. The controllability and observability Gramians indicate how control-

lable and observable the corresponding states are (Holfordand Agathoklis, 1996), while

the algebraic conditions for controllability/observability reveal only whether a system is

controllable/observable or not. Therefore, with the conditions using Gramian concepts,

one can determine how the change in some specific parameters of the system or the delay

time, h, affects the controllability and observability of the system via the changes in the

Gramians.

Using the Gramians presented in the previous sections, the concept of the balanced

realization, in which the controllability Gramian and observability Gramian of a system

are equal and diagonal, can be extended to systems of DDEs. For systems of ODEs,
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the balanced realization has been studied because of its desirable properties such as good

error bounds, computational simplicity, stability, and its close connection to robust multi-

variable control (Verriest and Kailath, 1983). However, for systems of DDEs, results on

balanced realizations have been lacking. Here, the developed Gramians are applied to

the problem of the balanced realization for systems of DDEs for the first time. LetT be

a nonsingular state transformation, thenx̂(t) = Tx(t). The corresponding effect on the

Gramians is

Ĉo(0, t1) = TCo(0, t1)TT , Ôb(0, t1) = T−T Ob(0, t1)T−1 (4.17)

Thus,Ĉo(0, t1) andÔb(0, t1) can be made equal and diagonal with the aid of a suitably

chosen matrixT. In the numerical example in (4.15), whenB = [ 1 0 ]T and C =

[ 1 0 ], theCo(0, t1 = 4) andOb(0, t1 = 4) are respectively

Co(0, t1) =






0.2992 0.1079

0.1079 0.0554




 , Ob(0, t1) =






0.2992 −0.1484

−0.1484 0.0975




 (4.18)

when computed using 11 branches of the matrix Lambert W function. In this case, using

the result in (4.17), the transformation

T =






−0.3929 1.1910

1.0880 −0.5054




 (4.19)

makes the the Gramiansbalanced, i.e., equal to each other and diagonalized,

Ĉo(0, t1) = Ôb(0, t1) =






0.0238 0.0000

0.0000 0.2497




 (4.20)

Future research is needed to establish conditions for the existence of the transformationT

to achieve a balanced realization for DDEs, and to study its convergence as the number of

branches used in the Lambert W function solution increases.
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4.5 Conclusions and Future Work

The controllability and observability of linear systems ofDDEs is studied using the

solution form based on the matrix Lambert W function. The necessary and sufficient con-

ditions for point-wise controllability and observabilityare derived based on the solution

of DDEs. The analytical expressions of Gramians are obtained and approximated for ap-

plication to real systems with time-delay. Using Gramian concepts, it is possible to figure

out how the change in some specific parameters of the system orthe delay time,h, affect

the controllability and observability of the system via thechanges in the Gramians. Also,

for the first time, for systems of DDEs, the balanced realization is investigated in the time

domain as in the case of ODEs. An example is presented to demonstrate the theoretical

results.

Based upon the results presented, extension of well-established control design concepts

for systems of ODEs to systems of DDEs appears feasible. For example, the design of

feedback controllers and observers for DDEs can be developed in a manner analogous to

ODEs via eigenvalue assignment (Yi et al., 2009c,a) (also see Chaps. V and VII).



CHAPTER V

EIGENVALUE ASSIGNMENT VIA THE LAMBERT W
FUNCTION FOR CONTROL OF TIME-DELAY

SYSTEMS

In this chapter, the problem of feedback controller design via eigenvalue assignment

for linear time-invariant systems of delay differential equations (DDEs) with a single de-

lay is considered. Unlike ordinary differential equations(ODEs), DDEs have an infinite

eigenspectrum and it is not feasible to assign all closed-loop eigenvalues. However, an

approach is developed to assign a critical subset of eigenvalues using a solution to linear

systems of DDEs in terms of the matrix Lambert W function. Thesolution has an ana-

lytical form expressed in terms of the parameters of the DDE,and is similar to the state

transition matrix in linear ODEs. Hence, one can extend controller design methods devel-

oped based upon the solution form of systems of ODEs to systems of DDEs, including the

design of feedback controllers via eigenvalue assignment.Such an approach is presented

here, is illustrated using some examples, and is compared with other existing methods.

5.1 Introduction

Using the classical pole placement method, if a system of linear ordinary differential

equations (ODEs) is completely controllable, the eigenvalues can be arbitrarily assigned

via state feedback (Chen, 1984). However, delay differential equations (DDEs) always

65
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lead to an infinite spectrum of eigenvalues, and the determination of this spectrum requires

a corresponding determination of roots of the infinite-dimensional characteristic equation.

Moreover, an analytical solution of systems of DDEs has beenlacking. Thus, such a pole

placement method for controller design for systems of ODEs cannot be applied directly to

systems of DDEs.

During recent decades, the stabilization of systems of linear DDEs using feedback

control has been studied extensively. The problem of robuststabilization of time-delay

systems, or the stabilization problem via delayed feedbackcontrol, is most frequently

solved via the Finite Spectrum Assignment method (Brethe and Loiseau, 1998; Manitius

and Olbrot, 1979; Wang et al., 1995), which transforms the problem into one for a non-

delay system. The stabilization problem can also be approached using stability conditions

as expressed by solving a Riccati equation (Lien et al., 1999), or by the feasibility of

a set of linear matrix inequalities (Li and deSouza, 1998; Niculescu, 2001). A stability

analysis called theDirect Method, in which a simplifying substitution is used for the tran-

scendental terms in the characteristic equation (Olgac andSipahi, 2002), was applied for

active vibration suppression by Sipahi and Olgac (2003a). The act-and-wait control con-

cept was introduced for continuous-time control systems with feedback delay by Stepan

and Insperger (2006). The study showed that if the duration of waiting is larger than the

feedback delay, the system can be represented by a finite dimensional monodromy matrix

and, thus, the infinite dimensional pole placement problem is reduced to a finite dimen-

sional one. Also, variants of the Smith predictor method have been developed to decrease

errors enabling one to design Proportional-Integral-Derivative (PID) control in time-delay

systems (Fliess et al., 2002; Sharifi et al., 2003). A numerical stabilization method was

developed by Michiels et al. (2002) using a simulation package that computes the right-

most eigenvalues of the characteristic equation. The approach is similar to the classical
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pole-assignment method for ODEs in determining the rightmost eigenvalues of a linear

time-delay system using analytical and numerical methods.

As introduced in Chap. II, an approach for the solution of linear time invariant systems

of DDEs has been developed using the Lambert W function (Asl and Ulsoy, 2003; Yi et al.,

2007d). The approach using the Lambert W function provides asolution form for DDEs

similar to that of the transition matrix for ODEs (see Table 2.2). Unlike results obtained

using other existing methods, the solution has an analytical form expressed in terms of the

parameters of the DDE. One can determine how the parameters are involved in the solution

and, furthermore, how each parameter affects each eigenvalue and the solution. Also, each

eigenvalue in the infinite eigenspectrum is associated witha branch of the Lambert W

function. Hence, the concept of the state transition matrixin ODEs can be generalized

to DDEs using the matrix Lambert W function. This suggests that some analyses used in

systems of ODEs, based upon the concept of the state transition matrix, can potentially be

extended to systems of DDEs.

In this chapter, the matrix Lambert W function-based approach for the solution to

DDEs is applied to stabilize linear systems of DDEs. A new approach for controller design

via eigenvalue assignment of systems of DDEs is presented, and the method is illustrated

with several examples. Using the proposed method, it is possible to move a dominant

subset of the eigenvalues to desired locations in a manner similar to pole placement for

systems of ODEs. For a given system represented by DDEs, the solution to the system is

obtained based on the Lambert W function, and stability is determined. If the system is

unstable, after controllability of the system is checked, astabilizing feedback is designed

by assigning eigenvalues, and finally the closed-loop system of DDEs can be stabilized.

These processes are conducted based upon the Lambert W function-based approach.
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5.2 Eigenvalue Assignment for Time-Delay Systems

5.2.1 Stability

Consider a linear time invariant (LTI) real system of delay differential equations with

a single constant delay,h, in Eq. (2.39). TheConjecturein Subsection 3.3.1 has been

observed consistently in all the examples that have been considered. TheConjecturewas

formulated as the basis not only to determine the stability of systems of DDEs, but also to

place a subset of the eigenspectrum at desired locations as presented in this chapter.

A major difficulty with designing a feedback controller for atime-delay system is as-

signing all of the eigenvalues. This difficulty is due to the infinite spectrum of eigenvalues

and a finite number of control paramteters (Manitius and Olbrot, 1979). Placing a selected

finite number of eigenvalues by classical pole placement method for ODEs (Chen, 1984)

may cause other uncontrolled eigenvalues to move to the right half plane (RHP) (Michiels

et al., 2002). However, the approach presented for control design using the matrix Lambert

W function, based on theConjecture, provides proper control laws without such loss of

stability.

5.2.2 Eigenvalue assignment

First, consider a free first-order scalar DDE, as in Eq. (1.2). The solution to Eq. (1.2)

can be obtained using the Lambert W function as in Eq. (1.3). And the roots,λk, of the

characteristic equation of Eq. (1.2),λ − a − ade
−λh = 0, are given by

λk =
1

h
Wk(adhe−ah) + a, for k = −∞, · · · ,−1, 0, 1, · · · ,∞ (5.1)

This solution is exact and analytical. In this scalar case, one can compute all of the roots

and the rightmost pole among them is always obtained by usingthe principal branch (k =
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0), and the pole determines stability of Eq. (1.2) (Shinozakiand Mori, 2006), that is,

max [Re{Wk(H)}] = Re{W0(H)} (5.2)

In designing a control law for delayed system, it is crucial to handle the rightmost poles

among an infinite set. In this regard, the property in (5.2) ofthe Lambert W function

provides a useful basis for assigning the rightmost pole. Byadjusting the parameters,a,

ad and/or the delay time,h, one can assign the rightmost pole of the system to the desired

values in the complex plane based on Eq. (5.2). First, decideon the desired location of the

rightmost pole,λdes, thus equate it to the pole corresponding tok = 0, that is,

λdes = λ0 =
1

h
W0(adhe−ah) + a (5.3)

Equation (5.3) can be solved using numerical methods, e.g.,commands already embedded

in Matlab, such asfsolveandlambertw.

Example 5.1: Consider the scalar DDE in Eq. (1.2) witha = −1 andh = 1. Table

5.1 shows the corresponding values ofad required to move the rightmost pole of equation

to the exact desired locations. As seen in Fig. 5.1, each rightmost pole is located at the

desired position corresponding to a value ofad.

However, each branch of the Lambert W function has its own range and, especially,

the value of the principal branch has the range (e.g., see Fig. 1.1):

Re {W0(H)} ≥ −1 (5.4)

Therefore, depending on the structure or parameters of a given system, there exist lim-

itations on assigning the rightmost pole. Although generalresearch on the limitation is

lacking so far (refer to Chap. VII and Appendix C), in the example above it can be con-

cluded that using Eq. (5.4)

Re {S0} =
1

h
Re

{
W0(adhe−ah)

}

︸ ︷︷ ︸

≥−1

+a ≥ −1

h
+ a (5.5)
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Table 5.1: Corresponding values ofad for each desired pole. By adjusting the parameter,
ad, it is possible to assign the rightmost pole of the system in Eq. (1.2) to the
desired values.

λdes −0.5 0 0.5

ad 0.3033 1.0000 2.4731
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Figure 5.1: Eigenspectra of Eq. (1.2) witha = −1, h = 1 andad, in Table 5.1. Using
the values ofad, it is possible make the rightmost poles move exactly to the
desired locations (−0.5(▽); 0 (O); 0.5(X)).

Thus, the rightmost eigenvalue cannot be smaller than−2 for any value ofad.

In the case of systems of DDEs, by adjusting the elements in the coefficient matrices in

Eq. (2.39), one can assign the eigenvalues of a single matrixcorresponding to the principal

branch,S0, by solving simultaneously Eqs. (2.19) and (2.20), and

Eigenvalues of S0 = desired values (5.6)

using numerical methods embedded in software packages, such asfsolvein Matlab. This

approach is based upon theConjecturepresented previously in Chapter III, and applied

here to design feedback controllers and is validated with examples. In the subsequent
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section, the approach presented above is applied to the design the feedback control laws

for both scalar DDEs and systems of DDEs.

5.3 Design of a Feedback Controller

Delay terms can arise in two different ways: i) delays in the control, that is,u(t − h),

or ii) delays in the state variables,x(t− h). In both cases the resulting feedback operators

contain integrals over the past values of control or state trajectory (Manitius and Olbrot,

1979). For systems without time delay, in addition, a time-delayed control is often used

for various special purposes, often motivated by intuition. The most common examples

are the vibration absorber with delayed feedback control, with which is possible to absorb

an external force of unknown frequencies (Olgac et al., 1997), and delayed feedback to

stabilize unstable periodic orbits without any information of the periodic trajectory except

the period by constructing a control force from the difference of the current state to the

state one period before (Hovel and Scholl, 2005; Pyragas, 1992). For those systems, the

approach for eigenvalue assignment for time-delay systemscan be important.

5.3.1 Scalar case

For a scalar DDE with state feedback

ẋ(t) = ax(t) + adx(t − h) + u(t)

u = kx(t)

(5.7)

One may try to design the feedback control,u = kx(t), by using the first-order Padé

approximation as

e−hs ≈ 1 − hs/2

1 + hs/2
(5.8)

Then, the characteristic equation of (5.7) becomes a simple2nd order polynomial as

s2h + s(2 − ah − kh + adh) − 2(a + k) − 2ad = 0 (5.9)
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Figure 5.2: Eigenspectrum with the feedback controller designed with Pad́e approximation
shows the failure in moving the pole to the desired value and thus stabilizing
the system.

Then, for a desired pole, one can obtain the control gain. Forexample, with parameters

a = 1, ad = −2, andh = 1, Eq. (5.9) becomes

s2 − s(1 + k) + 2 − 2k = 0 (5.10)

For the valuek = −1.1, Eq. (5.10) has two stable poles. However, this control gainis

applied to the original system (5.7) will fail to stabilize the system. The resulting eigen-

spectrum is shown in Fig. 5.2. Even though higher order Padé approximations, or other

advanced rational approximations, can be used to approximate the exponential term in the

characteristic equation more precisely, such approaches are limited by an inevitable lim-

itation in accuracy, and at worst may lead to instability of the original system (Richard,

2003; Silva and Datta, 2001).

Alternatively, from the characteristic equation of (5.7) with the desired pole, the linear
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Figure 5.3: Eigenspectrum with the feedback controller designed with the linear approach
in (5.11) shows the failure in moving the pole to the desired value and thus
stabilizing the system.

equation fork can be derived as

λdes − a − ade
−λdesh − k = 0 (5.11)

For example, with the parametersa = 1, ad = −1, andh = 1, just by substituting the

variable asλdes = −1, then, the obtained gain,k, using Eq. (5.11) is0.7183. However,

this control gain is also applied to the original system in (5.7) and fails to stabilize the

system, because the desired pole is not guaranteed to be the rightmost pole. The resulting

eigenspectrum is shown in Fig. 5.3. While one of the poles, not rightmost, is placed at

the desired location,−1, the rightmost one is in the RHP. Although for the desired pole,

the control gain,k, is derived, when the gain is applied to (5.11), there existsother infinite

number of poles to satisfy the equation, some of them can havereal parts larger than that

of the desired pole.

On the other hand, using the Lambert W function one can safelyassign the real part of
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Figure 5.4: Eigenspectrum with the feedback controller designed using the Lambert W
function approach. The rightmost eigenvalues are placed atthe exact desired
location.

the rightmost pole exactly. For example, for the system (5.7) with a = 1, ad = −1, and

h = 1,

Re(S0 =
1

h
W0(adhe−(a+k)h) + a + k) = −1 (5.12)

Then, the resulting value ofk is−3.5978. As seen in Fig. 5.4, the rightmost eigenval-

ues are placed at the exact desired location. Compared with the results in Fig. 5.2 and Fig.

5.3, the approach using the Lambert W function provides the exact result and stabilizes the

unstable system safely. In the next two subsections, this approach is generalized to two

different types of systems of DDEs.

5.3.2 Systems with control delays

In systems of controllable ODEs, one of the significant results of control theory is that,

with full state feedback, one can specify all the closed-loop eigenvalues arbitrarily by se-
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lecting the gains. However, systems of DDEs have an infinite number of eigenvalues and

it is not feasible to specify all of them with linear controllers, which have finite number

of gains. Furthermore, research on the explicit relation between controllability and eigen-

value assignment is lacking so far (refer to Chap. IV). Nevertheless, in this subsection and

the next, for the controllable system of DDEs, the Lambert W function-based approach

is used to specify the first matrix,S0, corresponding to the principal branch,k = 0, and

observed to be critical in the solution form in Eq. (2.43), bychoosing the feedback gain

and designing a feedback controller.

First, consider the system of DDEs:

ẋ(t) = Ax(t) + Bu(t − h) (5.13)

Then, the feedback,

u(t) = Kx(t) (5.14)

yields the a closed-loop form

ẋ(t) = Ax(t) + BKx(t − h) (5.15)

The gain,K , to assign the rightmost eigenvalues is determined as follows. First, select

desired eigenvalues,λi,des for i = 1, , n, and set an equation so that the selected eigenvalues

become those of the matrixS0 as

λi(S0) = λi,des, for i = 1, . . . , n (5.16)

where,λi(S0) is ith eigenvalue of the matrixS0. Second, apply the two new coefficient

matricesA′ ≡ A, A′
d ≡ BK in Eq. (5.15) to Eq. (2.19) and solve numerically to obtain

the matrixQ0 for the principal branch (k = 0). Note thatK is an unknown matrix with

all unknown elements in it, and the matrixQ0 is a function of the unknownK . Then,

for the third step, substitute the matrixQ0 from Eq. (2.19) into Eq. (2.20), to obtainS0
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and its eigenvalues as the function of the unknown matrixK . Finally, Eq. (5.16) with

the matrix,S0, is solved for the unknownK using numerical methods, such asfsolvein

Matlab. As mentioned previously in this chapter, dependingon the structure or parameters

of given system, there exists a limitation of the rightmost eigenvalues and some values

are not proper for the rightmost eigenvalues. In that case, the above approach does not

yield any solution forK . To resolve the problem, one may try again with fewer desired

eigenvalues, or different values of the desired rightmost eigenvalues. Then, the solution,

K , is obtained numerically for a variety of initial conditions by an iterative trial and error

procedure.

Example 5.2: Consider the van der Pol equation, which has become a prototype for

systems with self-excited limit cycle oscillations and hasthe form of

ẍ(t) + f(x, t)ẋ(t) + x(t) = g(x, t; h) (5.17)

with

f(x, t) = ε
(
x2(t) − 1

)
(5.18)

For the dynamics of the van der Pol equation under the effect of linear position and velocity

time delayed feedback, the left side of Eq. (5.17) can be written as

g(x, t; h) = k1x(t − h) + k2ẋ(t − h) (5.19)

Then, with the damping coefficient function in (5.18) and feedback in (5.19), Eq. (5.17)

becomes

ẍ(t) + x(t) = ε
(
1 − x2(t)

)
ẋ(t) + k1x(t − h) + k2ẋ(t − h) (5.20)

Linearizing Eq. (5.20) about the zero equilibrium yields the equation for infinitesimal

perturbations,

ẍ(t) + x(t) = εẋ(t) + k1x(t − h) + k2ẋ(t − h) (5.21)
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Or, equivalently, by definingx1 = x andx2 = ẋ, one obtains the state equations






ẋ1(t)

ẋ2(t)







=






0 1

−1 ε












x1(t)

x2(t)







+






0 0

k1 k2












x1(t − h)

x2(t − h)







(5.22)

which can also be expressed in the form of (5.15) as

ẋ(t) =






0 1

−1 ε






︸ ︷︷ ︸

A

x(t) +






0

1






︸ ︷︷ ︸

B

[

k1 k2

]

︸ ︷︷ ︸

K

x(t − h) (5.23)

Equations of this type have been investigated using the asymptotic perturbation method

(Maccari, 2001), bifurcation methods (Reddy et al., 2000; Wirkus and Rand, 2002; Xu and

Chung, 2003) and a Taylor expansion with averaging (Li et al., 2006) to show that vibration

control and quasi-periodic motion suppression are possible for appropriate choices of the

time delay and feedback gains. The effect of time-delays under an external excitation

with various practical examples was considered by (Maccari, 2003), demonstrating the

importance of this oscillator in engineering science.

Controllability and stabilizability of the system of equations in (5.13) have been stud-

ied during recent decades (Frost, 1982; Mounier, 1998; Olbrot, 1972). For example, the

linear system of (5.13) is said to be controllable on[0, t1] if there exists anadmissible(that

is, measurable and bounded on a finite time interval) controlu(t) such thatx(t1) = 0

wheret1 > h. According to the criterion presented by Olbrot (1972), thesystem is con-

trollable on[0, t1] if and only if

rank [B
...AB] = n (5.24)

According to the definition and the corresponding simple rank condition in Eq. (5.24), the

system of Eq. (5.22) is controllable. Thus, using the pole placement method introduced

in the previous section, one can design an appropriate feedback controller to stabilize the
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system and choose the gains,k1 andk2, to locate the eigenvalues at desired positions in

the complex plane.

Without the delayed feedback term (i.e.,k1 = k2 = 0), the system in (5.22) is unstable

whenε = 0.1, and its rightmost eigenvalues are0.0500 ± 0.9987i. For example, when

h = 0.2 if the desired eigenvalues are−1 and−2, which are arbitrarily selected, then, the

required gains arek1 = −0.0469, k2 = −1.7663 found by using the presented Lambert

W function-based approach. As seen in Fig. 5.5, the responsewithout feedback control

is unstable. Applying the designed feedback controller stabilizes the system. Fig. 5.6

shows the eigenspectra of systems without feedback and withfeedback. The rightmost

eigenvalues are moved exactly to the desired locations and all the other eigenvalues are to

the left. If the desired eigenvalues are−1.0000 ± 2.0000i, or −1.0000 ± 1.0000i, then

the corresponding gains areK = [−1.9802 − 1.8864], or, K = [−0.2869 − 1.5061],

respectively.

In (Michiels et al., 2002), a numerical stabilization method was developed using a

simulation package that computes the rightmost eigenvalues of the characteristic equa-

tion. For the obtained finite number of eigenvalues, the eigenvalues can be moved to the

LHP using sensitivities with respect to changes in the feedback gain,K (see Fig. 5.7 and

5.8). Compared with the approach, the matrix Lambert W function-based method yields

the equation for assignment of the rightmost eigenvalues with the parameters of the sys-

tem. Using the analytical expression, one can obtain the control gain to move the critical

eigenvalues to the desired positions without starting withtheir initial unstable positions

or computing the rightmost eigenvalues and their sensitivities after every small movement

in a quasi-continuous way. Using the Lambert W function, onecan find the control gain

independently of the path of the rightmost eigenvalues. Without planning the path, only

from the destination of them, the control laws for the systemare obtained.
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For the system in Eq. (5.13) with Eq. (5.14), the control law by Finite Spectrum

Assignment (FSA) method based on prediction, which is givenby

u(t) = KeAhx(t) + K

∫ h

0

eA(h−θ)Bu(t + θ − h)dθ (5.25)

can make the system finite dimensional and the assign the finite eigenvalues to be desired

values (Brethe and Loiseau, 1998; Manitius and Olbrot, 1979; Wang et al., 1995). How-

ever, such a method requires model-based calculation, which may cause unexpected errors

when applied to a real system. Limitations on FSA have been studied with several exam-

ples in (Engelborghs et al., 2001) and (Van Assche et al., 1999), the implementation of

such controller is still an open problem (Richard, 2003).

5.3.3 Systems with state delays

Consider the following time delayed system:

ẋ(t) = Ax(t) + Adx(t − h) + Bu(t) (5.26)

and a generalized feedback containing current and delayed states:

u(t) = Kx(t) + Kdx(t − h) (5.27)

Then, the closed-loop system becomes

ẋ(t) = (A + BK)x(t) + (Ad + BKd)x(t − h) (5.28)

The gains,K andK d are determined in a way similar to the previous subsection asfollows.

First, select desired eigenvalues,λi,des for i = 1, . . . , n, and set an equation so that the

selected eigenvalues become those of the matrixS0 as

λi(S0) = λi,des, for i = 1, . . . , n (5.29)
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where,λi(S0) is ith eigenvalue of the matrixS0. Second apply the new two coefficient

matricesA′ + BK andA′
d + BKd in Eq. (5.28) to Eq. (2.19) and solve numerically to

obtain the matrixQ0 for the principal branch (k = 0). Note thatK andKd are unknown

matrices with all unknown elements, and the matrixQ0 is a function of the unknownK and

K d. For the third step, substitute the matrixQ0 from Eq. (2.19) into Eq. (2.20) to obtain

S0 and its eigenvalues as the function of the unknown matrixK andKd. Finally, Eq. (5.29)

with the matrix,S0, is solved for the unknownK andKd using numerical methods, such as

fsolvein Matlab. As mentioned in Section 5.2, depending on the structure or parameters

of given system, there exist limitations on the location of the rightmost eigenvalues, and

some values are not proper for the rightmost eigenvalues. Inthat case, the above approach

does not yield any solution forK andKd. To resolve the problem, one may try again with

fewer desired eigenvalues, or different values of the desired rightmost eigenvalues. Then,

the solution,K andK d, is obtained numerically for a variety of initial conditions by an

empirical trial and error procedure.

The controllability of such system, using the solution formof Eq. (2.39) was studied

by Yi et al. (2008a) as introduced in Chap. IV. In the case of LTI systems of ODEs, if

it is completely controllable, then the eigenvalues can arbitrarily be assigned by choos-

ing feedback gain. Here examples regarding controllability and eigenvalue assignment in

DDEs are considered.

Example 5.3: Consider the following system of DDEs,

ẋ(t) =






1.1000 −0.1732

−0.0577 1.1000




x(t)+






0.3500 0.2598

0.0866 0.3500




x(t−h)+






1.0000

−0.5774




u(t)

(5.30)

When the coefficients are applied to the condition in (4.11) for controllability, the corre-
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sponding matrix is

(sI −A − Ade−sh)−1B =







5

5s − 6 − e−sh

−5/
√

3

5s − 6 − e−sh







(5.31)

Obviously, the two elements in Eq. (5.31) are linearly dependent and Eq. (5.30) fails the

rank condition in (4.11). Thus, the system in Eq. (5.30) is not point-wise controllable and

one cannot find any appropriate feedback control in the form of (5.27) to stabilize it.

Example 5.4: Consider the following time-delay model, from (Mahmoud and Ismail,

2005)

ẋ(t) =






0 0

0 1




x(t) +






−1 −1

0 −0.9




x(t − h) +






0

1




u(t) (5.32)

Before applying the feedback, the two rightmost eigenvalues are−1.1183 and0.1098, and,

thus, the system is unstable when the delayed time,h = 0.1 (see Figures 5.9 and 5.10).

When the coefficients are applied to the condition in (4.11),the system in Eq. (5.32)

satisfies the criterion, and, thus, is point-wise controllable. Then, using the pole placement

method, one can design an appropriate feedback controller to stabilize the system and

choose the gainsK andK d to locate the eigenvalues at desired positions in the complex

plane. For example, when the desired eigenvalues are−1.0000 and−6.0000, which are

chosen arbitrarily, the gains obtained by using the presented approach areK = [−0.1391−

1.8982]; Kd = [−0.1236−1.8128], orK = [−0.1687−3.6111]; Kd = [1.6231−0.9291]

for −2.0000 and−4.0000. By applying the obtained feedback gains to Eq. (5.27), one

can stabilize the system (see Fig. 5.9) and place the eigenvalues at a desired positions in

the complex plane (see Fig. 5.10).
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5.4 Conclusions

In this chapter, new results for feedback controller designfor a class of time-delay sys-

tems are presented. For a given system, which can be represented by DDEs, based on the

Lambert W function, the solution to the system is obtained, and stability is subsequently

determined. If the system is unstable, after the controllability of the system is checked,

a stabilizing feedback is designed by assigning eigenvalues, and finally the closed-loop

system of DDEs can be stabilized. All of these results are based upon the Lambert W

function-based approach. Numerical examples are presented to illustrate the approach.

Although DDEs have an infinite eigenspectrum, and it is not possible to assign all closed-

loop eigenvalues, it is possible to assign a subset of them, i.e., the rightmost or dominant

eigenvalues critical for determining stability.

The proposed method, based upon the Lambert W function, is compared with other ap-

proaches (see examples in Section 5.3). Many of these are ad-hoc, and can fail on certain

problems (Richard, 2003; Silva and Datta, 2001). The FSA method is based upon predic-

tion, and known to have implementation problems (Engelborghs et al., 2001; Van Assche

et al., 1999). The method of Michiels et al. (2002) is the mosteffective, but is an itera-

tive method based upon sensitivity of eigenvalues to the control gains. The Lambert W

function-based method is direct and effective in all problems evaluated.

The presented approach is extended for the design of systemswith observer-based

feedback controller for systems of DDEs, and problems of robust controller design and

time-domain specifications in the following chapters.



CHAPTER VI

ROBUST CONTROL AND TIME-DOMAIN
SPECIFICATIONS FOR SYSTEMS OF DELAY

DIFFERENTIAL EQUATIONS VIA EIGENVALUE
ASSIGNMENT

An approach to eigenvalue assignment for systems of delay differential equations

(DDEs), based upon the solution in terms of the matrix Lambert W function, is applied

to the problem of robust control design for perturbed systems of DDEs, and to the prob-

lem of time-domain response specifications. Robust stability of the closed-loop system

can be achieved through eigenvalue assignment combined with the real stability radius

concept. For a linear system of DDEs with a single delay, which has infinite number of

eigenvalues, the recently developed Lambert W function-based approach is used to assign

a dominant subset of them, which has not been previously feasible. Also, an approach to

time-domain specifications for the transient response of systems of DDEs is developed in

a way similar to systems of ordinary differential equationsusing the Lambert W function-

based approach.

6.1 Introduction

A primary goal for control engineers is to maintain the stability of a system, an essen-

tial requirement, while achieving good performance to meetresponse specifications (Suh

86
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and Yang, 2005). For a system of delay differential equations (DDEs), even though more

complex than systems of ordinary differential equations (ODEs) due to its transcendental

characteristic equation, various methods to achieve that goal have been introduced in the

literature in recent decades. For a detailed survey, refer to (Yi et al., 2009c; Richard, 2003)

and the references therein.

However, systems frequently have uncertainties in model parameters caused by esti-

mation errors, modeling errors, or linearization. For suchperturbed systems, it is naturally

required to design controllers to make sure that the controlled system remains stable in the

presence of such uncertainties.

Usually, the robust control problem for systems of DDEs has been handled by using

Lypunov functions, and employing linear matrix inequalities (LMIs) or algebraic Ric-

cati equations (AREs) (see, e.g., (Mahmoud, 2000; Niculescu, 1998) and the references

therein). Even though such approaches can be applied to quite general types of time-

delay systems (e.g., systems with multiple delays, time-varying delay), they provide only

sufficient conditions and are substantially conservative because of their dependence on

the selection of cost functions and their coefficients (Michiels and Roose, 2003). More-

over, general systematic procedures to construct appropriate Lyapunov functions are not

available, and solving the resulting LMI/ARE can be nontrivial (Hrissagis and Kosmidou,

1998). Analysis and design of control systems in the frequency domain is well estab-

lished in control engineering. Stability is investigated based on the transfer function and

the Nyquist criteria. By computing the robust stability margin in the Nyquist plane, the

method has been used for robust control of systems of ODEs (Postlethwaite and Foo,

1985) and, also, DDEs (Wang and Hu, 2007) with uncertainties. However, although being

improved extensively, typically the method requires an exhaustive numerical search in the

frequency domain plus an exhaustive search in the parameterdomain.
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On the other hand, while pursuing robust control, one may have to retain the positions

of the eigenvalues to meet the response specifications, suchas time-domain specifications

(see Sect. 6.3), of the nominal system. For this reason, robust stability of the closed-

loop system has often been achieved through eigenvalue assignment combined with robust

stability indices (e.g,. the stability radius concept in Sect. 6.2). Such indices set the upper

limit on parameter perturbations and help select the positions of the desired eigenvalues

in the complex plane. Then using an eigenvalue assignment method, it is possible to

find feedback control for robust stabilization for systems of ODEs (e.g., see (Kawabata

and Mori, 2009) and the references therein). However, systems of DDEs have an infinite

number of eigenvalues, which are the roots of a transcendental equation, and it is not

practically feasible to assign all of them. Thus, the usual pole placement design techniques

for ODEs cannot be applied without considerable modification to systems of DDEs (Tsoi

and Gregson, 1978).

In this chapter, a new approach to design robust controllersfor a system of DDEs

through eigenvalue assignment based on the Lambert W function approach is presented.

An eigenvalue assignment method for systems of DDEs was developed in Chap. V. Using

that approach, one can design a linear feedback controller to place the rightmost eigenval-

ues at the desired positions in the complex plane and, thus, stabilize systems with a single

time-delay. In that study, the critical rightmost subset ofeigenvalues, which determine

stability of the system, among the infinite eigenspectrum isassigned. This is possible be-

cause the eigenvalues are expressed in terms of the parameters of the system and each one

is distinguished by a branch of the Lambert W function.

In this chapter, the Lambert W function-based approach to eigenvalue assignment for

DDEs, is combined with the stability radius concept to address the problem of robust

stability of systems with uncertain parameters (Sect. 6.2). Also, an approach for improve-
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ment of the transient response for systems of DDEs is presented. The method developed

in Chap. V also makes it possible to assign simultaneously the real and imaginary parts

of a critical subset (based on the concept ofdominant poles(Franklin et al., 2005)) of the

eigenspectrum with linear feedback control. Therefore, guidelines, similar to those used

for systems of ODEs to improve transient response, can be used for systems of DDEs via

eigenvalue assignment by using the matrix Lambert W function-based approach to meet

time-domain response specifications (Sect. 6.3).

6.2 Robust Feedback

6.2.1 Stability radius

To design robust feedback controllers through eigenvalue assignment, it is required to

decide where is the appropriate positions in the complex plane to guarantee robust stability

depending on the size of uncertainty. The decision can be made by using robust stability

indices. The real stability radius, which is one of the indices and the norm of the minimum

destabilizing perturbations, was obtained for linear systems of ODEs and a computable

formula for the exact real stability radius was presented byQiu et al. (1995). The real

stability radius measures the ability of a system to preserve its stability under a certain

class of real perturbations. The formula was extended to perturbed linear systems of DDEs

in (Hu and Davison, 2003).

Assume that the perturbed system (2.1) can be written in the form

ẋ(t) = {A + δA}x(t) + {Ad + δAd}x(t − h)

= {A + E∆1F1}x(t) + {Ad + E∆2F2}x(t − h)

(6.1)

whereE ∈ Rn×m, Fi ∈ Rli×n, and∆i ∈ Rm×li denotes the perturbation matrix. Provided

that the unperturbed system (2.1) is stable, the real structured stability radius of (6.1) is
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defined as (Hu and Davison, 2003)

rR = inf{σ1(∆) : system (6.1) is unstable} (6.2)

where∆ = [∆1 ∆2] and σ1(∆) denotes the largest singular value of∆. The largest

singular value,σ1(∆) is equal to the operator norm of∆, which measures the size of∆

by how much it lengthens vectors in the worst case. Thus, the stability radius in Eq. (6.2)

represents the size of the smallest perturbations in parameters, which can cause instability

of a system. And the real stability radius problem concerns the computation of the real

stability radius when the nominal system is known. The stability radius is computed from

(Hu and Davison, 2003)

rR =







sup
ω

inf
γ∈(0,1]

σ2











ℜ(Ω(jω)) −γℑ(Ω(jω))

γ−1ℑ(Ω(jω)) ℜ(Ω(jω))

















(6.3)

where

Ω(s) =






F1

F2e
−hs




 (sI − A − Ad)

−1E (6.4)

In (6.3), it is not practically feasible to compute the supremum value for the whole range

of ω ∈ (−∞,∞). However, for the valueω∗, which satisfies

ω∗ < σ̄(A) + σ̄(Ad) + σ̄(E)σ[W(0)]σ̄([F1F2]) (6.5)

whereσ̄(·) andσ(·) are the largest and smallest singular values of(·), respectively, and

W(0) =






F1

F2




 (−A − Ad)

−1E (6.6)

Then,

restab(ω∗) ≤ restab(ω) (6.7)
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where

restab(ω) =






infγ∈(0,1] σ2











ℜ(Ω(jω)) −γℑ(Ω(jω))

γ−1ℑ(Ω(jω)) ℜ(Ω(jω))

















(6.8)

Therefore, one has only to checkω ∈ [0, ω∗] to obtain the supremum value in (6.3).

The obtained stability radius from (6.3) provides a basis for assigning eigenvalues for

robust stability of systems of DDEs with uncertain parameters.

6.2.2 Design of robust feedback controller

In this subsection, an algorithm is presented for the calculation of feedback gains to

maintain stability for uncertain systems of DDEs. The approach to eigenvalue assign-

ment using the Lambert W function is used to design robust linear feedback control laws,

combined with the stability radius concept. The feedback controller can be designed to

stabilize the nominal delayed system (2.1) using the methodpresented in Chap. V. How-

ever, if the system has uncertainties in the coefficients, which can be introduced by static

perturbations of the parameters or can arise in estimating the parameters, the designed

controller cannot guarantee stability. Therefore, arobust feedback controller is required

when uncertainty exists in the parameters. Such a controller can be realized by providing

sufficient margins in assigning the rightmost eigenvalues of the delayed system. However,

conservative margins over those required can raise problems, such as cost of control. The

stability radius, outlined in the previous subsection provides a reasonable measurement of

how large the margin should be.

The basic idea of the proposed algorithm is to shift the rightmost eigenvalue to the

left by computing the gains in the linear feedback controller in Chap. V and increase the

stability radius until it becomes larger than the uncertainty of the coefficients. Then, one

can obtain a robust controller to guarantee stability of thesystem with uncertainty.
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Algorithm 6.1 Designing a robust feedback controller for systems of DDEs with un-

certainty.

Step 1. Compute the radius,r1, from actual uncertainties in parameters of given delayed

system, (i.e.,r1 = σ1(∆)).

Step 2. Using the eigenvalue assignment method presented in Chap. V, computeK and

Kd, to stabilize the system.

Step 3. Then, compute the theoretical stability radius of the stabilized system,r2 from

Eq. (6.3).

Step 4. If r1 > r2, then, the system can be destabilized by the uncertainties.Therefore,

go to Step 2 and increase the margin (computeK andK d to move the rightmost

eigenvalues farther to the left).

Example 6.1From Chap. V, consider a system

ẋ(t) =






0 0

0 1




 x(t) +






−1 −1

0 −0.9




 x(t − 0.1) +






0

1




 u(t) (6.9)

Without feedback control, the system in (6.9) has one unstable eigenvalue0.1098. Using

feedback control as in Eq. (5.27), designed by the method presented in Chap. V, if the

desired rightmost eigenvalue is−1, the computed gains areK = [−0.1391 − 1.8982] and

K d = [−0.1236 − 1.8128], and the stability radius computed from Eq. (6.2) is0.6255.

However, if the system (6.9) has uncertainties in the parameters

ẋ(t) =












0 0

0 1




 + δA







x(t)

+












−1 −1

0 −0.9




 + δAd







x(t − 0.1) +






0

1




 u(t)

(6.10)
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Table 6.1: The gains,K andK d, of the linear feedback controller in (5.27) corresponding
to each rightmost eigenvalues. computed by using the approach for eigenvalue
assignment presented in Chap. V.

Rightmost eigenvalues K Kd

-0.5 & -6 [-0.6971 -1.6893] [-0.7098 -1.5381]

-1.0 & -6 [-0.1391 -1.8982] [-0.1236 -1.8128]

-1.5 & -6 [-0.3799 -1.6949] [1.0838 -2.3932]

-2.0 & -6 [0.8805 -2.1095] [0.9136 -2.3932]

-2.5 & -6 [1.8716 -2.1103] [0.8229 -2.5904]

-3.0 & -6 [2.5777 -1.7440] [0.7022 -2.9078]

-3.5 & -6 [2.8765 -1.6818] [0.9721 -3.1311]

-4.0 & -6 [3.1144 -1.5816] [1.1724 -3.3304]

and σ(δA + δAd) = 0.7, the system can become unstable due to uncertainty. To en-

sure stability, set the desired rightmost eigenvalue to be−2, then the computed gains

areK = [−0.1687 − 3.6111] andKd = [1.6231 − 0.9291], and the stability radius in

(6.2) increases to0.8832. Therefore, the system can remain stable despite the uncertainty

(σ(δA + δAd) = 0.7). Table 6.1 shows the gains,K andKd, corresponding to the several

subsets of eigenvalues ofS0.

The computed stability radii versus the rightmost eigenvalues, moving from−0.5 to

−4 are shown in Fig. 6.1. As seen in the figure, for the system (6.10), as the eigenvalue
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Figure 6.1: As the eigenvalue moves left, then the stabilityradius increases consistently,
which means, improved robustness.

moves left, the stability radius increases monotonically.Note that, in general, an explicit

relationship between the stability radius and the rightmost eigenvalues is not available, and

moving the rightmost eigenvalues further to the left does not always lead to an increase

of stability radius (Michiels et al., 2002). However, as shown above, by comparing the

stability radius and uncertainty for a given system, Algorithm 6.1 can be used to achieve

robust stability of time-delay systems with uncertainty.

Michiels and Roose (2003) developed an algorithm to maximize the stability radius

by calculating its sensitivity with respect to the feedbackgain for a type of time-delay

systems. However, in maximizing it, the rightmost eigenvalues can be moved to undesired

positions and one can fail to meet other specifications of thesystem response. If the

system has relatively small uncertainty, instead of maximizing the stability radius, one can

focus more on the position of eigenvalues to improve the transient response of the system,

which will be discussed in the subsequent section. Also, robust stabilization of systems
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of DDEs has been investigated by conversion into rational discrete models (Wang et al.,

2007), or by canceling undesired dynamics of plants based onsystem model (de la Sen,

2005). Compared to such methods, the Lambert W function-based approach can improve

accuracy and robustness of the controllers.

6.3 Time-Domain Specifications

To meet design specifications in the time-domain, PID-basedcontrollers have been

combined with a graphical approach (Shafiei and Shenton, 1997), LQG method using ARE

(Suh and Yang, 2005), or Smith predictors (Kaya, 2004). These methods are available for

systems with control delays. For systems with state delays,some sufficient conditions

based on linear matrix inequality approaches have been proposed (see, e.g., (Mao and

Chu, 2006) and the references therein). In this section, theLambert W function-based

approach, presented in Chap. V, is applied to achieve time-domain specifications via

eigenvalue assignment. Unlike other existing methods (e.g., continuous pole placement in

(Michiels et al., 2002)), for the first time the Lambert W function-based approach can be

used to assign the imaginary parts of system eigenvalues, aswell as their real parts, for a

critical subset of the infinite eigenspectrum. It is not practically feasible to assign the entire

eigenspectrum; however, just by assigning some finite, but rightmost, eigenvalues the tran-

sient response of systems of DDEs can be improved to meet time-domain specifications

for desired performance.

Example 6.2Consider the system in (6.9). Table 6.2 shows the gains,K and K d,

corresponding to the several subsets of eigenvalues ofS0, which have a real part,−0.2,

and different imaginary parts,±0.2i,±0.5i, and±1.0i.

The eigenvalue is written asλ = σ ± ωdi = −ζωn ± ωn

√

1 − ζ2i, the requirements

for a step response are expressed in terms of the quantities,such as the rise time,tr, the
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Table 6.2: Gains,K andK d, and parameters corresponding to the several subsets of eigen-
values ofS0.

Rightmost −0.2 ± 0.2i −0.2 ± 0.5i −0.2 ± 1.0i −0.5 ± 1.0i

Eigenvalues

σ -0.2 -0.2 -0.2 -0.5

ωd 0.2 0.5 1.0 1.0

ωn 0.2828 0.5385 1.0198 1.1180

ζ = −σ/ωn 0.7 0.3714 0.1961 0.4472

K [0.0584 -1.7867] [0.1405 -1.7998] [0.4311 -1.8152] [0.2380 -2.1656]

Kd [0.6789 2.3413] [0.7802 2.3204] [1.1421 2.2124] [0.9027 1.9451]

1% settling time,ts, the overshoot,Mp, and the peak time,tp. In the case of ODEs, if the

system is2nd order without zeros, the quantities have exact representations:

tr =
1.8

ωn

, ts =
4.6

σ
, Mp = e−πζ/

√
1−ζ2

, tp =
π

ωd

(6.11)

For all other systems, however, these provide only approximations, and can only provide

a starting point for the design iteration based on the concept of dominant poles(Franklin

et al., 2005). Figure 6.2 shows the responses correspondingto the rightmost eigenvalues

considered in Table 6.2. Not surprisingly, the approximatevalues from Eq. (6.11) in Table

6.3 are not exactly same as the results obtained from the responses in Figure 6.2. But, for
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this example, the guidelines for2nd order ODEs still work well in the case of DDEs. That

is, as raising the value of the imaginary part,ωd, of the rightmost eigenvalue, the rise time,

tr, of system, i.e., the speed at which the system respond to thereference input, decreases

from 6.9 to 0.8. On the other hand, the maximum overshoot,Mp, rises from 6% to 75%,

which is typically not desirable. In this way, moving up or down the imaginary part, one

can adjust the quantities related to the time-domain response and, thus, meet time-domain

specifications.
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Figure 6.2: Responses of the system in (6.9) with the feedback (5.27) corresponding to
the rightmost eigenvalues in Table 6.2 with different imaginary parts of the
rightmost eigenvalues.

Figure 6.3 shows two responses corresponding to the severalsubsets of eigenvalues of

S0, which have different real parts (−0.2 and−0.5) with the same imaginary part (±1.0i).

As seen in the figure, the settling time, the rise time, and overshoot decrease with increas-

ing σ, but the peak time remains almost the same. Thus, for this example, the guidelines

based ondominant polesfor ODEs still work well in case of DDEs. The approach pre-
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Table 6.3: Comparison of the actual results for and the approximations using Eq. (6.11) of
time-domain specifications for Figure 6.2.

tr ts Mp tp

Rightmost approximate actual appro- actual appro- actual appro- actual

Eigenvalues Eq. (6.11) ximate ximate ximate

−0.2 ± 0.2i 6.4 6.9 23.0 23.0 4.6 6.0 15.7 14.6

−0.2 ± 0.5i 3.3 2.5 23.0 23.0 28.5 31.0 6.3 6.0

−0.2 ± 1.0i 1.8 0.8 23.0 27.0 53.4 75.0 3.1 2.4

sented in this section is straightforward for systems of ODEs. However, it represents the

first approach to assign the real and imaginary parts of the eigenvalues simultaneously to

meet time-domain specifications for time delay systems, andis very easy to use, since only

the eigenvalues for the principal (k = 0) branch are used.

In this approach, it is tried to assign the real and imaginaryparts of only the rightmost,

thus dominant, eigenvalues. Even though the presented approach handles only a subset

of eigenvalues among an infinite eigenspectrum, the subset is rightmost in the complex

plane and dominates all other eigenvalues. Thus, for other linear time-delay systems with

a single delay this method can also be applied to achieve approximate time-domain spec-

ifications with linear feedback controllers. The approach presented follows the simple

dominant polesdesign guidelines for ODEs, and provides an effective rule of thumb to

improve the transient response of systems of DDEs.
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Figure 6.3: Responses of the system in (6.9) with the feedback (5.27) corresponding to
the rightmost eigenvalues in Table 6.3 with different real parts of the rightmost
eigenvalues.

6.4 Concluding Remarks

In this chapter, the eigenvalue assignment method based on the Lambert W function

is applied to design linear robust feedback controllers andto meet time-domain specifica-

tions for LTI systems of DDEs with a single delay. An algorithm for design of feedback

controllers to maintain stability for uncertain systems ofDDEs is presented. With the al-

gorithm, considering the size of the uncertainty in the coefficients of systems of DDEs via

the stability radius, one can find appropriate gains of the linear feedback controller by as-

signing the rightmost eigenvalues. The procedure presented in this chapter can be applied

to uncertain systems, where uncertainty in the system parameters cannot be ignored.

To improve the transient response of time delay systems, thedesign guideline for sys-

tems of ODEs has been used via the Lambert W function-based eigenvalue assignment.

The presented approach based ondominant polesis quite standard in case of ODEs. How-
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ever, it has not been previously feasible to use such methodsfor systems of DDEs. Be-

cause, unlike ODEs, DDEs have an infinite number of eigenvalues, and controlling them

has not been feasible due to the lack of an analytical solution form.

Using the approach based upon the solution form in terms of the matrix Lambert W

function, the analysis for robustness and transient response can be extended from ODEs

to DDEs as presented in this chapter. The proposed approach,which is directly related

to the position of the rightmost eigenvalues, provides an accurate and effective approach

to analyze stability robustness and transient response of DDEs. Even though it is not

feasible to assign all of the infinite eigenvalues of time-delay systems, just by assigning

the rightmost eigenvalues, which tend to be dominant, one can control systems of DDEs in

a way similar to systems of ODEs. This is the advantage of the Lambert W function-based

approach over other existing methods.



CHAPTER VII

DESIGN OF OBSERVER-BASED FEEDBACK
CONTROL FOR TIME-DELAY SYSTEMS WITH

APPLICATION TO AUTOMOTIVE POWERTRAIN
CONTROL

A new approach for observer-based feedback control of time-delay systems is devel-

oped. Time-delays in systems lead to characteristic equations of infinite dimension, mak-

ing the systems difficult to control with classical control methods. In this chapter, the

approach based on the Lambert W function is used to address this difficulty by designing

an observer-based state feedback controller via assignment of eigenvalues. The designed

observer provides estimation of the state, which convergesasymptotically to the actual

state, and is then used for state feedback control. The feedback controller and the observer

take simple linear forms and, thus, are easy to implement when compared to nonlinear

methods. This new approach is applied, for illustration, tothe control of a diesel engine to

achieve improvement in fuel efficiency and reduction in emissions. The simulation results

show excellent closed-loop performance.

7.1 Introduction

As is well known, excellent closed-loop performance can be achieved using state feed-

back control. In cases where all state variables are not directly measurable, the controller

101
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may have to be combined with a state observer, which estimates the state vector. For lin-

ear systems, the design of such a controller with an observeris typically carried out based

on eigenvalue assignment (Chen, 1984). Unlike systems of linear ordinary differential

equations (ODEs), where the methods for eigenvalue assignment are well-developed, the

design procedure for linear systems with time-delays in thestate variables is not straight-

forward. In this chapter, a new method for design of observer-based feedback control of

time-delay systems is presented, and illustrated with a diesel engine control application.

Successful design of feedback controllers and observers hinges on the ability to check

stability and find stabilizing controller and observer gains. In this chapter, a recently de-

veloped method using the matrix Lambert W function presented in Chap. V is applied to

design of feedback controllers and observers. The method isused to ensure asymptotic

stability and dominant eigenvalues at desired positions inthe complex plane to achieve

desired performance. Using the Lambert W function-based approach, observer-based con-

trollers for time-delay systems represented by delay differential equations (DDEs) can be

designed in a systematic way as for systems of ODEs. That is, for a given time-delay sys-

tem, the analytical free and forced solutions are derived interms of parameters of the sys-

tem (Chap. II). From the solution form, the eigenvalues are obtained and used to determine

stability of the system (Chap. III). Furthermore, criteriafor controllability/observability

and Gramians are derived from the solution form (Chap. IV). For a controllable system, a

linear feedback controller is designed by assigning dominant eigenvalues to desired loca-

tions (Chap. V), and this can be done to achieve robust stability and to meet time-domain

specifications (Chap. VI).

Numerous methods have been developed for control of time-delay systems (e.g., see

Table 7.1). However, existing methods enable one to design either the controller or ob-

server, yield nonlinear forms of controllers, and/or do notassign eigenvalues exactly to the
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Figure 7.1: The block diagram for observer-based state feedback control for time-delay
systems is analogous to the case for ODEs (Chen, 1984). By choosing gains
K and L an asymptotically stable feedback controller and observercan be
designed so that the system has good closed-loop performance using the esti-
mated state variables,x̂, obtained from the system output,y.
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desired positions. The approach presented here allows one to design linear feedback con-

trollers and linear observers via eigenvalue assignment (see Fig. 7.1). The observer-based

feedback control designed in this chapter offers advantages of accuracy (i.e., no approxi-

mation of time-delays), ease of implementation (i.e., no estimates of relevant parameters

or use of complex nonlinear controllers), and robustness (i.e., not requiring model-based

prediction). For illustration, the developed method is applied to control of a diesel pow-

ertrain, where the controller design is challenging due to an inherent time-delay, and the

proposed approach can provide advantages in terms of ease ofdesign, as well as the per-

formance of observer-based control. This chapter is organized as follows. In Section 7.2,

a problem formulation and background are provided. The proposed method is presented

in Section 7.3, and the diesel engine control application isgiven in Section 7.4. In Section

7.5, a summary and conclusions are presented, and topics forfuture research are noted.

7.2 Problem Formulation

Consider a real linear time-invariant (LTI) system of DDEs with a single constant time-

delay,h, described by Eq. (2.39). With linear state feedback, combined with a reference

input, r(t) ∈ Rr,

u(t) = r (t) − Kx(t) − Kdx(t − h) (7.1)

one can stabilize, improve performance, and/or meet time-domain specifications for the

system (2.39) as presented in Chap. VI, under the assumptionthat all the state variables,

x(t), can be measured directly. This is achieved by choosingK andK d(∈ Rr×n) based

on desired rightmost closed-loop eigenvalues. Note that the Lambert W function-based

approach is applicable to systems with a single delay as in Eq. (2.39). For systems with

multiple delays caused by, e.g., additional feedback delays or delays in sensors, stability

results introduced in (Olgac et al., 2005) can be applied.
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In cases where direct access to all state variables is limited, use of a state observer

(estimator) is needed to obtain̂x(t), an estimate of the state variable,x(t). Like systems

of ODEs, an asymptotically stable closed-loop system with astate observer (so-called

Luenberger observer wherex̂(t) converges asymptotically tox(t) ast goes to infinity) can

be achieved by placing eigenvalues for the observer dynamics at desired locations in the

complex plane (e.g., on the left half plane (LHP)). However,in contrast to ODEs, systems

of DDEs, as in Eq. (2.39), have an infinite number of eigenvalues (e.g., see Fig. 2.1) and,

thus, calculation and assignment of all of them is not feasible.

The state estimation problem for time-delay systems has been a topic of research in-

terest (e.g., see (Bengea et al., 2004) and the references therein for a survey). The problem

has been approached by using methods based on spectral decomposition and state trans-

formation developed in (Bhat and Koivo, 1976b), (Pearson and Fiagbedzi, 1989), and

(Salamon, 1980). Such methods require extensive numericalcomputations to locate the

eigenvalues of time-delay systems. Prediction-based approaches (e.g., FSA) with a co-

ordinate transformation have been used to address this typeof problem in (Jankovic and

Kolmanovsky, 2009). Converting time-delay systems into non-delay ones, the observer

of an integro-differential form is designed to assign the eigenvalues of finite dimensional

systems. Based on the assumption that stabilizing feedbackgains exist and are known, an

observer can be designed based on a coordinate transformation (Trinh, 1999). For such an

approach, it is assumed that the system is stabilized by the memoryless linear state feed-

back,u(t) = −Kx(t), and the gain,K , is known. Also, Lyapunov-based approaches have

been used for development of design methods for observers and/or controllers (e.g., ARE

(Pila et al., 1999) , LMI (Bengea et al., 2004; Darouach, 2001)). See the comparison of

various developed approaches in Table 7.1.
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Table 7.1: Motivation for a new approach for design of observers: for time-delay systems,
various studies devoted to observer design are summarized in this table. For
comparisons of approaches for feedback controllers, referto (Richard, 2003; Yi
et al., 2009c).

Description of approach References

Bhat and Koivo (1976b)

Spectral decomposition Observer: an integro-differential form Pearson and Fiagbedzi (1989)

-based Salamon (1980)

Observer: a linear form Leyvaramos and Pearson (1995)

Linear matrix inequality Darouach (2001)

Lyapunov (LMI) Bengea et al. (2004)

framework Algebraic Riccati equation

(ARE)

Pila et al. (1999)

Coordinate transformation Trinh (1999)

Finite spectrum assignment (FSA) Jankovic and Kolmanovsky (2009)

7.2.1 Eigenvalue assignment

While problems in handling time-delay systems arise from the difficulty in: 1) check-

ing the stability and 2) finding stabilizing gains, Eq. (5.16) for eigenvalue assignment

provides a explicit formulation useful to address such problems, as shown in (Yi et al.,

2009c) and (Yi et al., 2008c) with numerical examples. However, as explained in Subsec-
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tion 7.2.2 below, due to assignability issues, Eq. (5.16), which is solved by using numerical

nonlinear equation solvers (e.g.,fsolvein Matlab), may not always yield a solution forK

andKd. To resolve such a problem, instead of using Eq. (5.16), one can try with fewer

desired eigenvalues, or with just the real parts of the desired eigenvalues (Yi et al., 2009c)

to reduce the number of constraints, as

λrm(S0) = λdes (a)

ℜ{λrm(S0)} = ℜ{λdes} (b)

(7.2)

whereλrm(S0) are the rightmost eigenvalues from among then eigenvaluesS0, andℜ

indicates the real part of its argument. In numerical computation one can use, for example,

functions in Matlab, such asmaxandreal.

In Chap. V, the method for eigenvalue assignment, based on the Conjecturein Sub-

section 3.3.1, was used to design only full-state feedback control as in Eq. (7.1) (Yi et al.,

2009c). In this chapter, it is now used to find the controller and observer gains (i.e.,K

andL in Eqs. (7.3) and (7.4) in the next section) for the combined observer-based control

in Fig. 7.1. This is described in Section 7.3 below. In other words, using Eq. (5.16), or

Eq. (7.2), it will be shown that one can assign both controller and observer rightmost (i.e.,

dominant) poles for the infinite dimensional closed-loop eigenspectrum of the observer-

based controller for time-delay systems shown in Fig. 7.1.

7.2.2 Controllability, observability, and eigenvalue assignability

For systems of DDEs, controllability and observability have been studied extensively

(see e.g., (Richard, 2003), (Yi et al., 2008a) and the references therein). Unlike systems

of ODEs, there exist numerous different definitions of controllability and observability

for systems of DDEs depending on the nature of the problem under consideration (e.g.,

approximate, spectral, weak, strong, point-wise and absolute controllability). Among the
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various notions, point-wise controllability and point-wise observability were investigated

to derive criteria and Gramians for such properties using the solution form in Eq. (2.43)

based on the Lambert W function in Chap. IV.

For linear systems of ODEs, controllability (or observability) is equivalent to the arbi-

trary assignability of the eigenvalues of the controller (observer) (Chen, 1984). However,

conditions for such arbitrary assignment are still lackingfor systems of DDEs. Even for

the scalar case of Eq. (2.1), limits in arbitrary assignmentof eigenvalues exist and de-

pend on the values of the time-delay and the coefficients (seeAppendix C). Although,

for a simple scalar DDE, study of the limits has been conducted in (Beddington and May,

1975; Bellman and Cooke, 1963; Cooke and Grossman, 1982), generalization of such re-

sults are challenging. The relationship between the derived criteria for controllability and

eigenvalue assignability by using a ‘linear feedback controller’ was partially studied in (Yi

et al., 2009c) with examples, and is being further investigated by the authors. Although ex-

tensive research during recent decades has been reported inthe literature, the relationship

between eigenvalue assignment and controllabilty/observabilty is still an open research

problem.

7.3 Design of Observer-Based Feedback Controller

This section describes a systematic design approach for thecombined controller-observer

for time-delay systems (see Fig. 7.1). The observer estimates the system states from the

output variables, while the control provides inputs to the system as a linear function of the

estimated system states.
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Step 1. Obtain the equation for the closed-loop system withK andKd:

ẋ = Ax + Adxd + Bu

u = −Kx − Kdxd + r

⇒ ẋ = (A − BK ) x + (Ad − BK d) xd + Br

(7.3)

wherexd ≡ x(t − h). Then, choose the desired positions of therightmosteigen-

values of the feedback controller dynamics. They can be selected, for example, to

meet design specifications in the time domain with desired damping ratio,ζ , de-

sired natural frequency,ωn, of the closed loop response and asλdes = σ ± jωd =

−ζωn ± jωn

√

1 − ζ2.

Step 2. Using the desired eigenvalues, Eq. (5.16) and Eq. (2.20), the gains,K andK d, are

obtained numerically for a variety of initial conditions byan iterative trial and error

procedure with the coefficients of the closed-loop system inEq. (7.3),A′ ≡ A−BK

andA′
d ≡ Ad−BK d. As explained in Subsection 7.2.1, if solutions cannot be found,

one can try with fewer desired eigenvalues, or with just the real parts of the desired

rightmost eigenvalues (i.e., using Eq. (7.2) instead of Eq.(5.16)), to find the control

gains.

Step 3. Consider an observer with gainL :

ẋ = Ax + Adxd + Bu

y = Cx(t)

˙̂x = Ax̂ + Adx̂d + L(y −Cx̂) + Bu

ẋ− ˙̂x = A (x − x̂) + Ad (xd − x̂d) − L(y − Cx̂)

⇒ ė = (A − LC) e + Aded

(7.4)

wheree ≡ x − x̂. Then, choose the desired positions of therightmosteigenvalues

of the observer dynamics. A reasonable choice of desired positions of observer
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rightmost eigenvalues mainly depends on the amount of measurement noise and the

size of modeling inaccuracies. While fast eigenvalues amplify measurement noise,

slow eigenvalues lead to slow convergence of the estimates of the state variables.

A typical “rule of thumb” is that the magnitudes of the negative real parts of the

rightmost eigenvalues of (7.4) should be1.5 ∼ 2 times larger than those of Eq. (7.3)

to guarantee fast response (Chen, 1984).

Step 4. Using the desired eigenvalues, Eq. (5.16) and Eq. (2.20), find the observer gain,

L , with new coefficients in Eq. (7.4),A′ ≡ A − LC andA′
d ≡ Ad. As in Step 2, if

solutions cannot be found, one can try with fewer desired eigenvalues, or with just

the real parts of the desired rightmost eigenvalues (i.e., using Eq. (7.2) instead of

Eq. (5.16)).

In Step 1, the desired positions of the rightmost eigenvalues, with selected damping

ratio and frequency, provide only an approximation for systems of order higher than two.

They provide starting points for the design iteration basedon the concept ofdominant

poles(Yi et al., 2008c; Franklin et al., 2005).

Note that, as mentioned in Subsection 7.2.2, unlike ODEs, conditions for assignability

are still lacking for systems of DDEs. Even for the scalar case of Eq. (2.1), limits in

arbitrary assignment of eigenvalues exist (e.g., see Appendix C of this chapter). For sys-

tems of DDEs, depending on the structure or parameters of thegiven system, there exists

limitations on the rightmost eigenvalues. In that case, theabove approach does not yield

any solution for the controller and observer gains. To resolve the problem, one can find the

gains by using a trial and error method with fewer desired eigenvalues (or with just the real

parts of the desired eigenvalues), or different values of the desired rightmost eigenvalues

as explained in Steps 2 and 4.
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Although the Kalman filter for time-delay systems renders anobserver optimal in the

sense of minimizing the estimation error in the presence of noise and model uncertainty

(see, e.g., (Fattouh et al., 1998; Yu, 2008) and the references therein), such an approach

requires the selection of covariance matrices for process and measurement noise by trial-

and-error to obtain the desired performance of the filter/estimator. On the other hand,

the design of observers via eigenvalue assignment may be sub-optimal, but can achieve a

similar performance by adjusting desired location for eigenvalues (Chen, 1984).

Even though only an approach for the full-dimensional observer is presented here, a

reduced-dimensional observer, if needed, can be designed in a similar way.

7.3.1 Separation principle

For systems of ODEs, it is shown that the eigenvalues of the state estimator are not

affected by the feedback and, consequently, the design of state feedback and the design

of the state estimator can be carried out independently (i.e., the so-called separation prin-

ciple). For the time-delay system in (7.3) and (7.4), it can be shown in a straightforward

manner that the separation principle holds. The two equations can be combined into

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









xd

ed






(7.5)

Then, the eigenvalues are roots of the characteristic equation given by

det






sI − A + BK + BKd − Ade−sh −BK

0 sI − A + LC −Ade−sh






= 0

⇒ det
[
sI − A + BK + BKd −Ade−sh

]
×

det
[
sI −A + LC −Ade−sh

]
= 0

(7.6)
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Figure 7.2: Eigenspectrum of the linearized diesel engine system with the coefficients
in (7.7). Due to the inherent transport time-delay the number of eigenval-
ues is infinite and without any control the system has an unstable eigenvalue
(left). Thus, the response of the system is unstable (right)(Jankovic and Kol-
manovsky, 2009).

Therefore, the two sets of eigenvalues can be specified separately and the introduction of

the observer does not affect the eigenvalues of the controller. Hence, selection of gainsK

(and/orKd) andL can be performed independently.

7.4 Application to Diesel Engine Control

In this section, control of a diesel engine is considered to illustrate the advantages

and potential of the method proposed in Section 7.3. Specifically, a feedback controller

and observer are designed via eigenvalue assignment using the Lambert W function-based

approach. A diesel engine with an exhaust gas recirculation(EGR) valve and a turbo-

compressor with a variable geometry turbine (VGT) was modeled in (Jankovic and Kol-

manovsky, 2000) with 3 state variables,x(t) ≡ {x1 x2 x3}T : intake manifold pressure

(x1), exhaust manifold pressure (x2), and compressor power (x3). The model includes

intake-to-exhaust transport delay (h = 60ms when engine speed,N , is 1500 RPM). Thus,

a linearized system of DDEs was introduced in (Jankovic and Kolmanovsky, 2009), for a
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Figure 7.3: Diagram of a diesel engine system in Eq. (7.7). With limited measurement
y = x2, all the state variables are estimated by using an observer,and then
used for state feedback control (Jankovic and Kolmanovsky,2009).

specific operating point (N = 1500 RPM) whose coefficients are given by:

A =










−27 3.6 6

9.6 −12.5 0

0 9 −5










,Ad =










0 0 0

21 0 0

0 0 0










,B =










0.26 0

−0.9 −0.8

0 0.18










(7.7)

Because of the time-delay, which is caused by the fact that the gas in the intake man-

ifold enters the exhaust manifold after transport time,h, the system can be represented

by a system of DDEs as in Eq. (2.1) with the coefficients in Eq. (7.7). The number of

eigenvalues is infinite and one of them is positive real. Thus, the response of this linearized

system shows unstable behavior (see the eigenspectrum and the response in Fig. 7.2). The

system with the coefficients in (7.7) satisfies the conditions for pointwise controllability
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Figure 7.4: Eigenvalues of the closed-loop systems with coefficients in (7.10) and (7.11).
Among an infinite number of eigenvalues, the rightmost (i.e., dominant) sub-
set is computed by using the principal branch (k = 0) and all the others are
located to the left. Note that the rightmost eigenvalue is placed exactly at the
desired position,λdes = −10, and the open-loop unstable system is stabilized
(compare to Fig. 7.2).

andobservability. That is, all rows of (4.11) and all columns of (4.14) with thecoefficients

in (7.7) are linearly independent. Therefore, the system of(7.7) ispointwise controllable

andpointwise observable(Yi et al., 2008a) (see Chap. IV).

For a non-delay model, which is also unstable, by constructing the control Lyapunov

function (CLF) a feedback control law was designed in (Jankovic and Kolmanovsky,

2000). A feedback controller for the diesel engine systems with the time-delay was de-

veloped in (Jankovic, 2001) using the concept of control Lyapunov-Krasovsky functionals

(so-called CLKF). In (Jankovic and Kolmanovsky, 2009), FSAcombined with a coor-

dinate transformation (FSA cannot be applied directly to the system where time-delays

are not in actuation) was used for design of the observer for the system, which takes an

integro-differential form.

As shown in Subsection 7.3.1, the separation principle holds, and, thus the controller

and observer can be designed independently. First considerthe case of linear full-state

feedback. The control input,u(t) = {u1(t) u2(t)}T , whereu1(t) is a control input for

EGR valve opening andu2(t) is a control input for the turbine (VGT) mass flow rate (for a
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detailed explanation, the reader may refer to (Jankovic andKolmanovsky, 2000)), is given

by

u(t) = Kx(t) + r (t) (7.8)

whereK is the2 × 3 feedback gain matrix,

K =






k1 k2 k3

k4 k5 k6




 (7.9)

Then, the system matrices of the closed-loop system become

A′ ≡ A + BK =









−27 + 0.26k1 3.6 + 0.26k2 6 + 0.26k3

9.6 − 0.9k1 − 0.8k4 −12.5 − 0.9k2 − 0.8k5 0 − 0.9k3 − 0.8k6

0.18k4 9 + 0.18k5 −5 + 0.18k6










,

A′
d ≡ Ad

(7.10)

Following the Steps 1 and 2 introduced in Section 7.3, based on the Lambert W function,

the gain,K, is selected so that the system can have improved performance as well as be

stabilized. For the system in Eq. (7.7), it was not possible to assign all eigenvalues of

S0 by using Eq. (5.16). Instead, by reducing the number of eigenvalues specified to one,

one can find the feedback gain and assign the rightmost eigenvalue of the system with

Eq. (7.2-a). For example, assuming that the desired rightmost eigenvalue,λdes = −10,

which is chosen by considering the desired speed of the closed-loop system (Jankovic and

Kolmanovsky, 2009), the resulting feedback gain is obtained as

K =






0.0001 −13.8835 0.0000

0.0000 50.3377 50.8222




 (7.11)

The resulting eigenspectrum is shown in Fig. 7.4. Among an infinite number of eigen-

values, the rightmost (i.e., dominant) subset is computed by using the principal branch
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Figure 7.5: Eigenvalues of the closed-loop systems with coefficients in (7.13) and (7.14):
among an infinite number of them, the rightmost (i.e., dominant) subset is
computed by using the principal branch (k = 0) and all the others are located
to the left. Note that the rightmost eigenvalue is placed exactly at the desired
position,λdes = −15, and the unstable system is stabilized (compare to Fig.
7.2).

(k = 0) and all the others are located to the left, which is one of theprominent advantages

of the Lambert W function-based approach. Note that the rightmost eigenvalue is placed

exactly at the desired position,λdes = −10, and the unstable system is stabilized (compare

to the eigenspectrum in Fig. 7.2).

Next consider the design of an observer to estimate the unmeasured states. The ob-

server gain,L , is obtained in a similar way, following Steps 3 and 4 in Section 7.3. Con-

sidering available sensors (Jankovic and Kolmanovsky, 2009), only the exhaust manifold

pressure is measured. Thus,y = x2 and the output matrix and observer gain are given by

C =

[

0 1 0

]

,L =










L1

L2

L3










(7.12)
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Then, the new coefficients of the dynamical equation of the state observer become

A − LC =










−27 3.6 − L1 6

9.6 −12.5 − L2 0

0 9 − L3 −5










,Ad =










0 0 0

21 0 0

0 0 0










(7.13)

For example, for a chosen desired eigenvalueλdes = −15 so that the dynamics of the

observer is well damped and faster than the controller dynamics, the gain obtained is

L =










6.4729

9.5671

16.0959










(7.14)

Similarly to the controller case, one can find the observer gain, L , just with one rightmost

eigenvalue specified (i.e., by using Eq. (7.2-a)). The resulting eigenspectrum is shown in

Fig. 7.5.

As mentioned in Sections 7.2 and 7.3 and Appendix C, there exist limits in assignment

of eigenvalues with linear controllers or observers. For the system with coefficients in Eq.

(7.7), the rightmost eigenvalues can be moved as far to the left as λdes = −25.0 for the

controller andλdes = −15.3 for the observer, respectively, and the corresponding limiting

gains, as determined numerically for this example, are:

K =






−0.0004 −3.3044 −0.0006

0.0020 45.9131 84.0699




 , L =










6.4650

9.5660

16.0991










(7.15)

Overall performance of the controlled system in Fig. 7.1 with the parameters in (7.7),

(7.11), (7.12) and (7.14) is shown in Fig. 7.6. The referenceinputs for this simulation

run are selected arbitratily:r1 is a step input with amplitude0.5 andr2 is a sine wave

with amplitude20 and frequency0.7 (Hz). The rightmost eigenvalues of the feedback
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Figure 7.6: Responses with each controller: the reference inputs for this simulation run
are selected randomly:r1 is a step input with amplitude0.5 andr2 is a sine
wave with amplitude20 and frequency0.7 (Hz). The rightmost eigenvalues
of feedback control and observer are−10 and−15, respectively. The state
variables estimated by using observer (dashed line) converge into those of the
plant (solid line), which are stabilized by state feedback control.

controller and observer are−10 and−15, respectively. The state variables estimated using

the observer (dashed line) converge to those of the plant (solid line), which are stabilized

by state feedback control.

As shown in Fig. 7.1, the asymptotically stable feedback controller with observer

takes a simple form similar to that for linear systems of ODEs(Chen, 1984). They do not

require, as with previous approaches, the approximate integration of state variables during

finite intervals, nor construction of a cost function or inequalities. This can lead to ease of

design, analysis, and implementation, which is one of the main advantages of the proposed

approach.
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7.5 Conclusions

In this chapter, a new approach for the design of observer-based state feedback control

for time-delay systems was developed. The separation principle is shown to hold, thus,

the controller gain and the observer gain can be independently selected so that the two

dynamics are simultaneously asymptotically stable. The design hinges on eigenvalue as-

signment to desired locations that are stable, or ensure a desired damping ratio and natural

frequency. The main difficulty, which is addressed in this chapter, is caused by the fact

that systems of DDEs have an infinite number of eigenvalues, unlike systems of ODEs.

Thus, to locate them all to desired positions in the complex plane is not feasible. To find

the dominant subset of eigenvalues and achieve desired eigenvalue assignment, the Lam-

bert W function-based approach, developed recently by the authors has been used. Using

the proposed approach, the feedback and the observer gains are obtained by placing the

rightmost, or dominant, eigenvalues at desired values. Thedesigned observer provides an

estimate of the state variables, which converges asymptotically to the actual state and is

then used for state feedback to improve system performance.The technique developed is

applied to a model for control of a diesel engine, and the simulation results show excellent

performance of the designed controller and observer.

The proposed method complements existing methods for observer-based controller de-

sign and offers several advantages. The designed observer-based controller for DDEs has

a linear form analogous to the usual case for ODEs. The rightmost (i.e., dominant) eigen-

values, for both observer and controller, are assigned exactly to desired feasible positions

in the complex plane. The designed control can have improvedaccuracy by not ignor-

ing or approximating time-delays, ease of implementation compared to nonlinear forms of

controllers, and robustness since it does not use model-based prediction.
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To make the proposed approach more effective, the relation between controllability

(or observability) and eigenvalue assignability for time-delay systems needs to be investi-

gated further. Specifically, research is needed to generalize the results for the scalar case

(see Appendix C). As new engine technologies are continuously developed, the proposed

design approach can play a role in handling delay problems for automotive powertrain

systems. Other than the presented diesel control, for example, air-to-fuel ratio control,

where time-delays exist due to the time between fuel injection and sensor measurement

for exhaust, and idle speed control, where time-delays exist due to the time between the

intake stroke of the engine and torque production, are also being studied.



CHAPTER VIII

EIGENVALUES AND SENSITIVITY ANALYSIS FOR A
MODEL OF HIV PATHOGENESIS WITH AN

INTRACELLULAR DELAY

During the past decade, numerous studies have aimed at better understanding of the

human immunodeficiency virus (HIV). For example, the combination of mathematical

modeling and experimental results has made a significant contribution. However, time-

delays, which play a critical role in various biological models including HIV models,

are still not amenable to many traditional analysis methods. In this chapter, a recently

developed approach using the Lambert W function is applied to handle the time-delay

inherent in an HIV pathogenesis dynamic model. Dominant eigenvalues in the infinite

eigenspectrum of these time-delay systems are obtained andused to understand the effects

of the parameters of the model on the immune system. Also, theresult is extended to

analyze the sensitivity of the eigenvalues with respect to uncertainty in the parameters of

the model. The research makes it possible to know which parameters are more influential

relative to others, and the obtained information is used to make predictions about HIV’s

outcome.

121
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8.1 Introduction

During the past decade, a number of mathematical models for the human immunod-

eficiency virus (HIV), based on systems of differential equations, have been developed.

These models, combined with experimental results, have yielded important insights into

HIV pathogenesis (Adams et al., 2005; Kirschner and Webb, 1996; Nowak et al., 1997;

Perelson and Nelson, 1999; Perelson, 2002). This success inmodeling the HIV patho-

genesis dynamics has led to various analyses (Banks and Bortz, 2005; Bortz and Nelson,

2006, 2004; Nelson and Perelson, 2002), and helped in designing better therapy regimes

(Adams et al., 2004).

To account for the time between viral entry into a target celland the production of new

virus particles, models that include time-delays have beenintroduced (Herz et al., 1996;

Mittler et al., 1998; Nelson et al., 2000). Models of HIV infection that include intracellular

delays are more accurate representations of the biology andchange the estimated values of

kinetic parameters when compared to models without delays (Nelson and Perelson, 2002).

Also, it has been shown that allowing for time-delays in the model better predicts viral

load data when compared to models with no time-delays (Bortzand Nelson, 2006; Ciupe

et al., 2006; Nelson et al., 2001). Due to the complexity of delay differential equations

(DDEs), many scientists do not include them in their models.However, many biological

processes have inherent delays and including them may lead to additional insights in the

study of complicated biological processes (Nelson and Perelson, 2002).

In this chapter, dominant eigenvalue analysis and its sensitivity with respect to param-

eters in the model of HIV dynamics are studied. For this research, the matrix Lambert W

function approach is applied to investigate analytically the HIV pathogenesis model with

an intracellular delay. Eigenvalues of the delayed systemsare obtained and used: i) to
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(a) (b)

Figure 8.1: HIV-1 infects target cells (T ) with a rate constantβ and causes them to become
productively infected cells (T ∗) (b). Time-delay results from the time between
initial viral entry into a cell and subsequent viral production (a).

analyze the effects of time-delay on the stability and decayrate of the viral load, and ii) to

determine the stability of the immune systems. Also, via sensitivity analysis of the eigen-

values with respect to parameters, the effects of parameters are studied. The approach

presented in this chapter for HIV dynamics can be used to dealwith time-delay terms in

many other pathogenesis models (e.g., hepatitis B viral dynamics (Ciupe et al., 2007) and

tuberculosis (Marino et al., 2007)).

8.2 HIV Pathogenesis Dynamic Model with an Intracellular Delay

The HIV pathogenesis dynamic models have been used to interpret experimental re-

sults for complex immune systems. Research on relations between parameters in the mod-

els and their impact on the immune system has been reported inthe literature (see, e.g.,

(Perelson and Nelson, 1999; Perelson, 2002)) and have made asignificant contribution

during the past decade. When an intracellular delay is included, the models of HIV in-

fection provide more accurate representations of the biology. This is because allowing for

time-delays in the model enables it to better predict the viral load dynamics. One of the

delay models, where it is assumed that the generation of virus producing cells at timet is
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due to the infection of target cells at timet − h as seen in Fig. 8.1, consists of systems of

coupled delay differential equations given by (Nelson et al., 2000):

dT ∗(t)

dt
= βT0VI(t − h) − δT ∗(t)

dVI(t)

dt
= (1 − np)NδT ∗(t) − cVI(t)

dVNI(t)

dt
= npNδT ∗(t) − cVNI(t)

(8.1)

wheret is the elapsed time since treatment was initiated (i.e.,t = 0 is the time of onset

of the drug effect), andT ∗ is the concentration of productively infected T-cells. Thestate

variablesVI andVNI represent the plasma concentrations of virions in the infectious pool

(produced before the drug effect) and in the noninfectious pool (produced after the drug

effect), respectively. In Eq. (8.1), it is assumed HIV infects target cells with a rateβ and

causes them to become productively infected T-cells,T ∗. The time-delay,h, in Eq. (8.1)

results from the time between initial viral entry into a celland subsequent viral production,

and is termed “intracellular delay”. In this model,c is the rate for virion clearance;δ is

the rate of loss of the virus-producing cell;N is the number of new virions produced per

infected cell during its lifetime;T0 is the target T-cell concentration;np represents the drug

efficacy of a protease inhibitor, a drug that inhibits the cleaving of viral polyproteins and

renders newly produced virions non-infectious,VNI . The term (1−np) represents the level

of leakiness of a protease inhibitor and ifnp = 1, the protease inhibitor is100% effective

and no infectious virus particles are produced. The parameters in (8.1) have been estimated

by applying the models to data from drug perturbation experiments (Nelson et al., 2001).

For the research presented in this chapter, the parameter set for patient 103, which is given

in Table 8.1, is used (Nelson et al., 2001). Viral load,VI + VNI , had been collected from

patient 103 after administration (600 mg twice daily) of a potent inhibitor (Ritonavir) of

HIV protease. For detailed study, refer to (Perelson et al.,1996) on the experiment and the

data.
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Table 8.1: Estimated parameter values from one (patient 103) of the 5 patients studied in
(Nelson et al., 2001)

Name Description Value Reference
T0 Target T-cell concentration 408 cells mm−3 Ho et al. (1995)
h Intracellular delay 0.91 days Nelson et al. (2000)
δ Death rate of an infected T-cell1.57/day Perelson et al. (1996)
c Clearance rate of virus 4.3/day Perelson et al. (1996)
N Bursting term for viral 480 virions/cells Perelson et al. (1996)

production after lysis
np Protease inhibitor efficacy 0.7 Perelson and Nelson (1999)

β Viral infectivity rate
c

NT0
Ho et al. (1995)

The system in Eq. (8.1) is expressed in the form of Eq. (2.1) with the coefficients

A =










−δ 0 0

(1 − np)Nδ −c 0

npNδ 0 −c










, Ad =










0 βT0 0

0 0 0

0 0 0










(8.2)

and the initial conditionsg(t) = x0 = {T ∗
ss Vss 0}T . The characteristic equation of the

system in Eq. (8.1) is derived as

H(λ) =
{
λ2 + (δ + c)λ + δc − (1 − np)δNβT0e

−λh
}

(λ + c) (8.3)

And from the roots of Eq. (8.3), the eigenvalues,λ, of the system (8.1) are obtained. Due

to the term,e−λh, Eq. (8.3) becomes infinite-dimensional and, thus, an infinite number

of roots satisfy the equation. The principal difficulty in studying DDEs results from this

special transcendental character, and the determination of this spectrum typically requires

numerical, approximate, and graphical approaches (Richard, 2003). Computing, analyz-

ing, and controlling the infinite eigenspectrum are not as straightforward as for systems of

ordinary differential equations (ODEs). Instead, for the time-delay system in Eq. (8.1), it

is crucial to compute and analyze the dominant eigenvalues.To do that, the Lambert W

function-based approach (e.g., see Sections 2.2 and 3.3.1)is applied.
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Figure 8.2: Change of eigenvalues by introduction of delay in the HIV model: the right-
most eigenvalue shifted towards the imaginary axis. Also the time-delay leads
to imaginary parts of the eigenvalues and, thus, to oscillations in the response.

8.3 Rightmost Eigenvalue Analysis

For the model of HIV in (8.1), the stability of a patient’s immune system and the viral

decline rate can be expressed with the eigenvalues of the system and, thus, its analysis is

interesting from the practical point of view. In this section, the eigenvalues are obtained

by using the approach based on the Lambert W function and the results are discussed.

8.3.1 Delay effects on rightmost eigenvalues

Introducing a discrete delay in a system of DDEs changes the structure of the solution

as seen in (2.43), which has the form of an infinite series withan infinite eigenspectrum.

Figure 8.2 shows the change of the eigenspectrum by introducing a delay to the HIV

model. If the system in Eq. (8.1) has no time-delay, all of theeigenvalues of the system

are real (shown by the ‘x’ mark). However, as seen in Fig. 8.2,the time-delay leads to

imaginary parts of the eigenvalues (shown by the ‘o’ mark) and, thus, to oscillations in
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the response. In the literature (Nelson et al., 2000), time-delays, when used in population

dynamic models, have been shown to create fluctuations in population size. Without diffi-

culty, from Eq. (8.3) it can be shown that one of the eigenvalues is always−c, regardless

of the value of the time-delay,h, as seen in Fig. 8.2. Also, there exists one real eigenvalue

of the system (8.1) on the interval between−c and the origin (Nelson et al., 2000). In

the model of HIV, introduction of a time-delay makes the rightmost eigenvalues move to

the right (i.e., less stable). This can be confirmed using an eigenvalue sensitivity analysis,

which is introduced in the next section, as well as direct computation using the matrix

Lambert W function as shown in Fig. 8.2. Because the eigenvalues of the HIV model de-

scribe the viral decline rate, via the eigenvalue changes shown in Fig. 8.2, it is confirmed

that the delay reduces the long-term rate of decline of the viral load (Nelson et al., 2000).

Also, depending on the parameters of the system, the stability can be determined via

the rightmost eigenvalues. In Fig. 8.2, the system has one real rightmost eigenvalue of

the system (8.1) on the interval between−c and the origin. As the value ofc declines,

this rightmost eigenvalues moves toward to the origin and, thus, the system becomes less

stable (see Fig. 8.3). This will be discussed more in detail via sensitivity analysis in the

next section.

8.3.2 Mutation, drug efficacy and eigenvalues

Over the last decade, a number of potent drugs that inhibit HIV replication in vivo

have been developed. Treatment regimes involving a combination of three or more dif-

ferent drugs can lead to a decline in viral load by several orders of magnitude. Although

research is finding more drugs to combat HIV infection, the virus is continuously evolving

to be resistant against these newly developed drugs. The high error rate in the reverse tran-

scription process of viral RNA into DNA, combined with the continual viral replication
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Figure 8.3: As the clearance rate,c, declines, the rightmost eigenvalues, which are on the
interval between−c and the origin, moves toward to the right and, thus, the
system becomes less stable.

of HIV, leads to the emergence of mutant strains of HIV that are drug resistant (D’Amato

et al., 2000). Most models for HIV assume either a perfect drug or an imperfect drug with

a less than 100%, but constant, efficacy. In reality, the effect of antiviral treatment appears

to change over time, due to i) pharmacokinetic variation, ii) fluctuating adherence, and iii)

the emergence of drug resistant mutations (Huang et al., 2003). Among them, drug re-

sistance is a major concern in the treatment of some human infectious disease, especially,

HIV. If strains that are resistant to the drug increase, thenpatients can become infected

with the resistant virus, causing therapy to be ineffective(Wodarz and Lloyd, 2004). The

result is a continuously varying efficacy of drug action. Accounting for this varying effi-

cacy may be particularly important in recent clinical studies (Dixit and Perelson, 2004).

The efficacy can be expressed as a function of time (see, e.g.,(Huang et al., 2003) and the

references therein).

Although combination therapy can result in sustained suppression of viral load in many
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patients, it is not effective in all patients and fails afterthe emergence of drug-resistant

strains. Hence, although finding new drugs to fight HIV is important for improving our

chances for success, it is equally important to devise therapy regimes that minimize the

chance of drug resistance emerging (Wodarz and Nowak, 2000). To do this, more detailed

information about the status of patients and stability of the immune system of the patients

with HIV is needed. Figure 8.4 shows the movement of the rightmost eigenvalue of the

system with respect to drug efficacy. The rightmost eigenvalue moves toward the imag-

inary axis as the drug efficacy,np, decreases, and the status of the patient becomes less

stable. This result tells us about the stability of the patient’s immune system, and one can

monitor the status of the immune system. Consequently, as time goes, the drug efficacy de-

clines and the rightmost eigenvalue becomes larger and moves toward the imaginary axis

(Fig. 8.4). Therefore, to sustain suppression of the viral load for AIDS patients, proac-

tive switching and alternation of antiretroviral drug regimens is required (Martinez-Picado

et al., 2003).

Previously, the total viral load,VI +VNI , has been established as the primary prognos-

tic indicator of progression to AIDS (D’Amato et al., 2000),and the status of a patient’s

immune system is determined only in terms of viral load. However, the differences in pa-

rameters lead to widely varying conclusions about HIV pathogenesis (Ciupe et al., 2006).

Depending on the parameters involved in the system, such asδ andc, the viral load pre-

dictions can vary widely. Therefore, it would be more desirable to determine the stability

of the immune system from the eigenvalues of the system, which is a function of the pa-

rameters involved in the model of HIV, in addition to the total viral load. Switching drugs

too early risks poor adherence to a new drug regimen and may prematurely exhaust the

limited number of remaining salvage therapies. Otherwise,switching too late leads to ac-

cumulation of mutations which leads to failure (i.e., viralrebound) (D’Amato et al., 2000).
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Figure 8.4: Movement of the rightmost eigenvalues w.r.t drug efficacy: The rightmost
eigenvalue moves to the imaginary axis as the drug efficacy,np decreases,
and the status of the patient becomes less stable.

The eigenvalue movement corresponding to the change of drugefficacy over time in Fig.

8.4 provides information about stability of the immune system for patients with HIV, and

therapy regimes to sustain suppression of virus load continuously.

8.4 Sensitivity Analysis

In this section, eigenvalue and response sensitivity analysis with respect to parameters

is considered. For systems of differential equations designed to model real systems, such

as biological, chemical, or physical, one of the main goals is to understand the manner in

which the parameters interact with properties of the systems, such as stability, dynamics,

and response. These parameters are designed to correspond to aspects of the phenomena

under investigation (e.g., productively infected T-cell death rate,δ, and clearance rate,c,

in the HIV pathogenesis dynamics). Thus, it is desirable to predict how changes in the

parameters will affect the system’s properties: response and eigenvalues. Some previous
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work on this topic for the HIV model can be found in literature(see, e.g., (Banks and

Bortz, 2005; Bortz and Nelson, 2004; Rong et al., 2007), and the references therein).

Sensitivity analysis for eigenvalue and response, which has been developed in the con-

text of modern control theory, can provide a mathematical tool for the model given by Eq.

(8.1). The improved understanding the models can then help to design better experiments

and develop better treatment regimes. Also, the interpretation of the results of sensitiv-

ity analysis for complex models makes it possible to understand which parameters have a

greater influence on the response and/or eigenvalues. Theseparameters play an important

role in the model and obtaining good estimates for them is critical especially when com-

pared to other parameters to which solutions are less sensitive (Banks and Bortz, 2005).

8.4.1 HIV: Eigenvalue sensitivity

Sensitivity of the rightmost eigenvalues analysis revealsan understanding of the inter-

actions of parameters with properties of systems, such as stability or movement behavior

of state variables. Although a stability analysis was carried out using a random sampling

method to identify which parameters are important in determining stability for systems

of ODEs in (Rong et al., 2007), the study on eigenvalue sensitivity analysis for an HIV

model with a time-delay is presented here for the first time. The analytical expression for

sensitivity of the rightmost eigenvalues can be derived by differentiating both sides of the

characteristic equation (8.3) with respect to a parameter,sayq, i.e.,

∂H(λ)

∂q
= C(λ)

∂λ

∂q
+ D(λ) = 0 ⇒ ∂λ

∂q
= −D(λ)

C(λ)
(8.4)

For example, the resulting sensitivity for the clearance rate of virus,c, the time-delay,h,

productively infected T-cell death rate,δ, and for drug efficacy,np is given in Eqs. (8.5-

8.8).
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∂λ

∂c
=

− 2λ2 + (2δ + 2c) λ + 2δc − (λ + c) (1 − np)δe
−λh − (1 − np)δce

−λh

3λ2 + 2 (2c + δ)λ + (2δc + c2) − (1 − np)δce−λh − (λ + c) (1 − np)δce−λh (−h)
(8.5)

∂λ

∂h
=

(λ + c)
{
ηe−λh (−λ)

}

3λ2 + (2c + δ) 2λ + (2δc + c2) + ηe−λh (−1 + (λ + c) h)
(8.6)

∂λ

∂δ
=

− λ2 + 2cλ + c2 − (λ + c) (1 − np)ce
−λh

3λ2 + 2 (2c + δ)λ + (2δc + c2) − (1 − np)δce−λh − (λ + c) (1 − np)δce−λh (−h)
(8.7)

∂λ

∂np
=

− (λ + c) δce−λh

3λ2 + 2 (2c + δ)λ + (2δc + c2) − (1 − np)δce−λh − (λ + c) (1 − np)δce−λh (−h)
(8.8)

With the parameter set in Table 8.1, the rightmost eigenvalues,λrm, of the system (8.1)

from the previous section is (see Fig. 8.2)

λrm = −0.6118 (8.9)

Then, by applying this rightmost eigenvalue and the parameter set in Table 8.1, the eigen-

value sensitivity is obtained from Eqs. (8.5-8.8) as

∂λrm

∂h
= 0.4495,

∂λrm

∂c
= −0.0173,

∂λrm

∂δ
= −0.1828,

∂λrm

∂np
= −1.4983.

(8.10)

The signs determine whether a small increase in a parameter will increase or decrease the

rightmost eigenvalue. If the sensitivity with respect to a parameter is positive, a small

increase in the parameter makes the rightmost eigenvalues shift toward the right and, thus,

the system becomes more unstable, and vice versa. As mentioned in the previous section

(see Fig. 8.2), an increase of delay time destabilizes the system (sign of∂λ/∂h is positive).

For the other parameters, the sensitivities have negative signs, which means increases in



133

the parameters stabilize the immune system and make the viral load decay faster. This can

be inferred from the dynamics of Eq. (8.1):δ is the death rate of infected cells, which

produce virus, andc is the clearance rate of virus. The sensitivity with respectto the

clearance rate,c, of virus is relatively small, which means its effect on the stability of the

immune system is not so significant compared to others. Also,because one infected T-

cell producesN new virions, it can be inferred that the impact of variation in δ may have

greater impact on the system than that ofc, which explains why the magnitude of∂λ/∂δ

is larger than that of∂λ/∂c. In this way, the impact of each parameter on the system is

analyzed via the signs and the magnitudes. Note that this kind of analysis is possible only

in linear cases, may not be feasible for nonlinear cases.

Also, as mentioned before, the parameters with high sensitivity should be given top

priority when choosing which parameters to determine with ahigh degree of accuracy

in estimating model parameters from data. To carry out parameter estimation for HIV

models as in (8.1), one needs to specify a variance of each parameter in prior distribution

(Huang et al., 2003). Previously (e.g., in (Huang et al., 2003; Wu et al., 2005), etc.), if

enough reliable information is available for some of the parameters, then small variances

have been used, and vice versa. In such studies, the same variance has been given for

c andδ, because enough prior information is available for both parameters. However, if

sensitivity is analyzed as seen in (8.10), it is recommendedto differentiate their variances

more delicately depending on the sensitivity results, in order that a model may not be too

sensitive to a specific parameter. By combining prior information and sensitivity analysis,

more accurate estimation of parameters can be performed.
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Table 8.2: Two different types of sensitivity for HIV model:eigenvalue sensitivity and
response sensitivity (Yi et al., 2008b).

Response sensitivity Eigenvalue sensitivity

For HIV Model Studied in (Bortz and Nelson, 2004) Studied in (Yi et al., 2008b)

Objective Effects of parameters on Response Effects of parameters on Eigenvalues

Method Numerical integration (e.g.,dde23) Analytical derivation

Result Comparison Show similar patterns in magnitudes and signs. See Eq. (8.13)

Useful in designing Useful in designing the feedback controlFuture Application
the optimal feedback control via eigenvalue assignment

8.4.2 Eigenvalue sensitivity and response sensitivity

In (Bortz and Nelson, 2004), another type of sensitivity called response sensitivity was

applied to the system (8.1). The response sensitivity analysis provides first-order estimates

of the effect of parameter variations on the solutions. For the analysis, one needs to solve

the state equation and a linear time-varying sensitivity equation simultaneously numeri-

cally, for example, using the delay differential equation solver dde23in Matlab. Consid-

ering the magnitudes and the signs, the result of a response sensitivity analysis presented

in (Bortz and Nelson, 2004) shows good agreement with the eigenvalues sensitivities as in

(8.10). The study in (Bortz and Nelson, 2004) showed that theresponse sensitivity with

respect to the time-delay has a positive slope; on the other hand, the slopes of the response

sensitivity with respect toc andδ are negative. Also, the absolute value of the response

sensitivity with respect toc is smaller than that with respect toδ. Those coincide well with

the results in (8.10). For rough comparison purposes, the response can be expressed in

terms of the rightmost (i.e., dominant) eigenvalues and theinitial condition as:

V (t) ≈ eλtV0 (8.11)
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Taking derivatives of both sides with respect to a parameteryields

∂V (t)

∂ρ
︸ ︷︷ ︸

Response
Sensitivity

≈ eλtV0
∂λ

∂ρ
︸︷︷︸

Eigenvalue
Sensitivity

t (8.12)

Then, Eq. (8.12) is divided by Eq. (8.11) to yield

∂V (t)
∂ρ

V (t)
︸ ︷︷ ︸

Normalized
Response
Sensitivity

≈ ∂λ

∂ρ
︸︷︷︸

Eigenvalue
Sensitivity

×t (8.13)

As seen in the approximation in Eq. (8.13), the normalized response sensitivity is pro-

portional to the product of eigenvalue sensitivity and time. Even though a rough approx-

imation, Eq. (8.13) can be helpful in conceptually relatingthe two different sensitivity

approaches. Response sensitivity is a combined function ofzero sensitivity and eigen-

value sensitivity (Rosenwasser and Yusupov, 2000). Therefore, for higher than first order

systems of DDEs, it is not easy to derive an explicit relationbetween two sensitivities.

However, Eq. (8.13) provides a good approximate relationship between them, based on

the concept of dominant (i.e., rightmost) eigenvalues.

Using the eigenvalue sensitivities in (8.10), without integrating all state variables with

respect to parameters of system as presented in (Bortz and Nelson, 2004), one can de-

termine which parameter has the greatest influence on the system. This is achieved by

comparing the magnitudes and signs of the eigenvalue sensitivity as in (8.10).

8.5 Concluding Remarks and Future Work

In this chapter, the model of HIV pathogenesis with an intracellular delay is consid-

ered. Because the model is represented by a system of DDEs, traditional approaches are

not suitable for its analysis. Utilizing the Lambert W function-based approach developed

in the previous chapters, the eigenvalues of the time-delaymodel of HIV pathogenesis are
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obtained. Furthermore, the approach is used to analyze changes in the eigenvalues of the

HIV model as a time-delay is introduced. An increase in delaydestabilizes the HIV sys-

tem (see Fig. 8.2), and the result is confirmed via sensitivity analysis with respect to the

time-delay,h (i.e., sign of∂λ/∂h is positive). The movement of the rightmost eigenvalues

with respect to the drug efficacy in the model is studied. Using the eigenvalues of the

HIV model, the stability of the patients’ immune system can be monitored. For example,

corresponding to the change in drug efficacy due to mutation of the virus, the rightmost

eigenvalues moves toward the right and the immune system of the patient becomes less

stable (see Fig. 8.4). Because each patient has a different parameter set, the eigenvalues

of the immune system can indicate progression to AIDS more accurately than just using

total viral load,VI + VNI , as an indicator.

Sensitivity analysis was carried out with the rightmost eigenvalues obtained by using

the Lambert W function. Sensitivities with respect to the parameters tell us about the

impact of the variation of parameters on the immune system with HIV by their signs and

magnitudes. For some parameters, the sensitivities have negative signs, which means an

increase of the parameters stabilizes the immune system, and vice versa. Also, depending

on the roles of the parameters, the magnitudes of sensitivities are different (e.g.,c andδ).

This sensitivity analysis can be used for various purposes,such as improved estimation

of parameters, model validation, and design of therapy regimes by moving the rightmost

eigenvalues by adjusting parameters, such as drug efficacy.Eigenvalues sensitivity with

respect to each parameter of the system is expressed analytically in terms of the parameter,

and shows good agreement with the response sensitivity result in (Bortz and Nelson, 2004).

Unlike the response sensitivity approach, which integrates the sensitivity equation with a

time-delay for a parameter set numerically over time, the eigenvalue sensitivity analysis is

achieved analytically as in Eqs. (8.5-8.8).
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Future work, based on the results presented in this chapter,may allow drug therapy

design via the feedback control based on the Lambert W function (Yi et al., 2009c) to

be implemented with incomplete measurements and to minimize the expected effects of

measurement error. For that, the controllability and observability analysis (Yi et al., 2008a)

for HIV model with a time-delay is also to be studied. Also, a similar approach can be

applied to models for hepatitis B virus (HBV) infections (Ciupe et al., 2007) and other

viral dynamic models. One of the main goals for this researchis to find more efficient and

reliable therapy regimes.



CHAPTER IX

SUMMARY AND CONCLUSIONS

9.1 Summary

The research described in this dissertation develops a new approach for analysis and

control of time-delay systems. Such systems can be represented by systems of delay dif-

ferential equations. The main difficulty in analyzing such equations arises from the fact

that the delays lead to exponential terms in the characteristic equation and, thus, lead to

an infinite number of roots. Consequently, it has been difficult to determine stability and

to design controllers, compared to systems without delay. Because classical methods for

delay-free systems are not directly applicable, numerical, graphical, or approximate ap-

proaches have been used. However, those methods have limitations in terms of accuracy

and/or robustness as discussed in this dissertation.

In this research, an analytical solution to delay differential equations was investigated

in order to enable their analysis and control in a way analogous to ordinary systems. Using

the Lambert W function, and based on the previous result for the free scalar case (Asl and

Ulsoy, 2003), the solutions of general systems of DDEs and nonhomogeneous DDEs were

derived. The introduction of the matrix Lambert W function enabled the solution of linear

time invariant time-delay systems with a single delay. The main advantage of this solution

approach is that the derived solution has an analytical formexpressed in terms of the sys-

138
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tem parameters. Hence, one can determine how the parametersare involved in the solution

and, furthermore, how each parameter affects each eigenvalue. Also, each eigenvalue in

the infinite eigenspectrum is distinguished by a branch of the Lambert W function. The

method was validated, for stability, and for free and forcedresponses, by comparison to

numerical integration in Chap. II. The solution of DDEs in terms of the matrix Lambert

W function is analogous to that of ODEs in terms of the state transition matrix. Therefore,

some analyses, which have been developed based upon solutions of ordinary differential

equations, can be extended to systems of delay differentialequations. One of them is sta-

bility analysis, which was investigated in Chap. III. Although delay differential equations

have an infinite number of eigenvalues, the finite number of rightmost or dominant eigen-

values can be obtained by using the Lambert W function-basedapproach. Then stability

is determined using this dominant subset without the need for considering the location of

other infinite eigenvalues. In investigating the two input-output properties of systems, con-

trollability and observability, analytical solutions areprerequisite. However, due to lack

of solutions to systems of delay differential equations, only some algebraic conditions for

controllability and observability have been available. The solution presented in Chap. II

was used to derive controllability and observability Gramians, and related conditions, in

Chap. IV. Compared to existing criteria, these new conditions provide more detailed in-

formation about system properties and can be used for achieving a balanced realization for

systems with time-delays. To stabilize systems with unstable eigenvalues, a pole place-

ment design method for feedback controllers was developed in Chap. V. Although it is

not feasible to assign all of the infinite number of eigenvalues, by assigning the dominant

(rightmost) eigenvalues to desired positions in the complex plane, linear feedback con-

trollers can be designed. The approach was used to improve transient response and to

design robust controllers for systems with time-delays in Chap. VI. For the cases where
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all the state variables of a system are not directly measurable, using the eigenvalue assign-

ment presented in Chap. V, a design method for observers was developed to estimate state

variables in Chap. VII. The estimated states converge to theactual states asymptotically,

and are then available to be used for feedback control.

9.2 Applications and Broader Impact

Because time-delays occur frequently in engineering and science, the approach pre-

sented in this dissertation promises to be of broad interest. This research provides an

effective tool for analysis and control of systems with time-delays by breaking the barriers

of infinite dimensionality. Hence, this theoretical research can be applied to benefit the

engineering and science communities.

The developed approach was applied to the chatter problem for a machining process

(i.e., turning). The application to machining enables one to determine the stable operat-

ing conditions in terms of spindle speeds and depth-of-cut for a machine. Compared to

existing methods (e.g., Nyquist, Lyapunov and bifurcationanalysis methods), one can de-

termine the critical values of delay at the stability limit of the system exactly, based upon

the rightmost eigenvalues, and avoid restrictive geometric analysis, or the use of numerical

or approximate methods. Thus, the study can be used to enhance productivity and quality

of products.

In Chap. VIII, the dynamics of HIV pathogenesis was investigated by using the Lam-

bert W function-based approach. Dominant eigenvalues of the model with an intracellular

delay was obtained to study the stability of the immune system and to predict the decay

rate of the viral load. Also, sensitivity analysis of the dominant eigenvalue was conducted

to understand the effects of the parameters on system dynamics. The research can be of

benefit not only to researchers in related fields, but also benefit patients under medical care
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by providing understanding of the disease and possibly moreeffective therapies.

Finally, the research on observer-based feedback control was applied to diesel engine

control. The controller and observer was designed to stabilize the unstable diesel engine

system with limited access to state variables. The researchcan make contributions to

improvement in fuel efficiency and reduction in emissions ofautomotive systems.

9.3 Conclusions

A novel approach to analyze and control time-delay systems,based on the Lambert

W function, was developed in this research work. Analyticalsolutions to systems of de-

lay differential equations are derived. Based on the solutions, methods for analysis and

control for systems with time-delays were developed and applied to systems in engineer-

ing and biology. Compared to existing methods, the newly developed approach offers the

following advantages:

1. Accuracy: The exponential terms in the characteristic equation due to time-delays

are not approximated, (e.g., Padé approximation). Hence,the obtained result is more

precise.

2. Robustness: The presented approach does not require prediction of response based

on system equations (e.g., Smith predictor). Because such prediction-based ap-

proaches are sensitive to uncertainty in model parameters,the Lambert W function-

based approach can yield more robust design of controllers.

3. Ease of implementation: Some methods for systems with time-delays have problems

with implementation. This is mainly because the designed controller takes a non-

linear form and is complex. The controller and observer developed in this research

takes a linear form and, thus, is easy to implement.
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Therefore, the research presented in this dissertation represents an effective method

for the complete analysis and control of time-delay systems, and one that complements

previous methods.

9.4 Open Problems and Future Work

The necessary theoretical concepts and methods for time-delay systems have been

studied in this dissertation using the Lambert W function (scalar and matrix versions).

It should be highlighted that, to make the approach more effective and widely useful, sev-

eral research topics still need to be addressed. As explained in Chap. II, it has been noted

that there are still several currently outstanding fundamental research problems.

First, the method using the matrix Lambert W function hingeson the determination

of a matrix,Qk. To obtainQk, Eq. (2.19) is solved numerically for a variety of initial

conditions, for example, using thefsolvefunction in Matlab for each branch,k. However,

conditions for the existence and uniqueness ofQk are lacking and needed.

Second, it has been observed in all our examples using DDEs that, whenAd does

not have repeated zero eigenvalues, stability is determined by the principal branch (i.e.,

k = 0) of the matrix Lambert W function (see theConjecturein Subsection 3.3.1). This

has been proven to be correct in the scalar case and for some special forms of the vector

case, however, a general proof is lacking.

Finally, as mentioned in Chaps. IV and V, the connection between controllability and

eigenvalue assignment by linear feedback (not predictive)control for systems of DDEs is

also another open problem. Although feedback controllers can be designed for time-delay

systems, the results in Chap. V do not mean that the rightmosteigenvalues can be assigned

arbitrarily. Depending on the parameters and structure of the system there exist limits and,

in the worst case, some systems may not be stabilizable with any value of the feedback
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gain (e.g., see Appendix C).

These, and others, are all potential topics for future research, which can build upon

the foundation presented in this dissertation. It is hoped that researchers in related fields

(e.g., delay differential equations, control of delayed systems) will be interested in tackling

some of these open research problems.
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APPENDIX A

Appendix for Chapter II

A.1 Commutation of matrices A and S in Eq. (2.10)

In general,

eXeY = eX+Y (A.1)

is only true, when the matricesX andY commute (i.e.,XY = YX ). As noted previously,

the solution in Eq. (2.2) for the system in Eq. (2.1) is only valid when the matricesS and

Ad commute, and in general they do not (see Eqs. (2.9) and (2.10)). Here it is shown that

when the matricesAd andA in Eq. (2.1) commute, thenS andA will commute, and the

solution in Eq. (2.2) becomes valid. From Eq. (2.14) it is noted thatScan be expressed in

terms of a polynomial function of the matricesAd andA, since both the exponential and

Lambert W functions are represented as such polynomial series (Corless et al., 1996). In

general if two matricesX andY commute, and the matrix functionsf(X) andg(Y) can be

expressed in a polynomial series form, i.e.,

f(X) =

k1∑

k=k0

pkX
k, g(Y) =

k1∑

k=k0

qkY
k (A.2)

wherepk andqk are arbitrary coefficients, then (Pease, 1965)

f(X)g(Y) = g(Y)f(X) (A.3)

Consequently, ifAd andA commute, thenSandA commute, and Eq. (2.2) is valid.
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A.2 Reduction of Eqs. (2.31) and (2.32) to Eq. (2.36)

The Eq. (2.33) means that fort ∈ [0, h],

t∫

0

ea(t−ξ)bu(ξ)dξ =

∞∑

k=−∞

t−h∫

0

eSk(t−ξ)CN
k bu(ξ)dξ +

t∫

t−h

ea(t−ξ)bu(ξ)dξ (A.4)

Continued from Eq. (A.4)

t∫

0

ea(t−ξ)bu(ξ)dξ −
t∫

t−h

ea(t−ξ)bu(ξ)dξ =
∞∑

k=−∞

t−h∫

0

eSk(t−ξ)CN
k bu(ξ)dξ

⇒
t−h∫

0

ea(t−ξ)bu(ξ)dξ =

t−h∫

0

∞∑

k=−∞

eSk(t−ξ)CN
k bu(ξ)dξ

⇒
t−h∫

0

ea(t−ξ)bu(ξ)dξ −
t−h∫

0

∞∑

k=−∞

eSk(t−ξ)CN
k bu(ξ)dξ = 0

⇒
t−h∫

0

{

ea(t−ξ) −
∞∑

k=−∞

eSk(t−ξ)CN
k

}

bu(ξ)dξ = 0

(θ=t−ξ)⇒
h∫

t

{

eaθ −
∞∑

k=−∞

eSkθ

}

CN
k bu(t − θ)dθ = 0, for ∀t ∈ [0, h]

(A.5)

For the last equation in Eq. (A.5) to hold, for any value oft ∈ [0, h], one can conclude as

h∫

t

{

eaθ −
∞∑

k=−∞

eSkθCN
k

}

bu(t − θ)dθ = 0, for ∀t ∈ [0, h]

⇒ eaθ =

∞∑

k=−∞

eSkθCN
k , where θ ∈ [0, h]

(A.6)

When the result in Eq. (A.6) is applied, Eqs. (2.31)-(2.32) can be combined into Eq. (2.36)

after only some algebraic manipulation.
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APPENDIX B

Appendix for Chapter IV

B.1 Proof about minimal amount energy

Let us define

x̄ = x(t1) − M(t1; 0, g, x0) (B.1)

Then the assumption thatu′ andu transfer(x0, 0) to (0, t1) implies that

x̄ =

∫ t1

0

K(ξ, t1)Bu(ξ)dξ =

∫ t1

0

K(ξ, t1)Bu′(ξ)dξ (B.2)

Subtracting both sides, one can obtain

∫ t1

0

K (ξ, t1)B{u(ξ)′ − u(ξ)}(ξ)dξ = 0 (B.3)

which implies that

〈∫ t1

0

K(ξ, t1)B{u(ξ)′ − u(ξ)}(ξ)dξ, C−1
o (0, t1)x̄

〉

= 0 (B.4)

where< , > indicates the inner product of vectors. By using the following property of

the inner product

〈x, Ay〉 =
〈
AT x, y

〉
(B.5)

this equation can rewritten as

∫ t1

0

〈

u(ξ)′ − u(ξ), {K (ξ, t1)B}T C−1
o (0, t1)x̄

〉

dξ = 0 (B.6)
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With the use of (4.5), and then (B.6) becomes

∫ t1

0

〈u(ξ)′ − u(ξ), u(ξ)〉 dξ = 0 (B.7)

Consider now
∫ t1

0

‖u(ξ)′‖2
dξ (B.8)

where‖x‖ ≡ (〈x, x〉)1/2. After some manipulation, and using (B.7), one can obtain

∫ t1

0

‖u(ξ)′‖2
dξ =

∫ t1

0

‖u(ξ)′ − u(ξ) + u(ξ)‖2
dξ

=

∫ t1

0

‖u(ξ)′ − u(ξ)‖2
dξ +

∫ t1

0

‖u(ξ)‖2 dξ

+ 2

∫ t1

0

〈u(ξ)′ − u(ξ), u(ξ)〉 dξ

=

∫ t1

0

‖u(ξ)′ − u(ξ)‖2
dξ +

∫ t1

0

‖u(ξ)‖2 dξ

(B.9)

Since
∫ t1

0

‖u(ξ)′ − u(ξ)‖2
dξ (B.10)

is always nonnegative, it can be concluded that

∫ t1

0

‖u(ξ)′‖2
dξ ≥

∫ t1

0

‖u(ξ)‖2 dξ (B.11)

�

B.2 Comparisons with other types of controllability and observability

Depending on the nature of the problem under consideration,there exist various def-

initions of controllability and observability for time-delay systems. For example, spec-

tral controllability has been developed to apply Finite Spectrum Assignment, a stabilizing

method counteracting the effect of the delay based on prediction of the state. Spectral

controllability is a sufficient condition for point-wise controllability used in our paper

(sometimes point-wise controllability is also called controllability or fixed time complete
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Approximately

ControllableReachable

Spectrally

Controllable

Weakly 

Controllable

[Fliess, 1995]

Weak R( )

Controllable

Point-wise controllable

= Rn- Controllable

Strong R( )

Controllable

Absolutely 

Controllable

[Richard, 2003]

Figure B.1: Relationship between various types of controllability

controllability). The other definitions of controllability and observability are not related

to linear feedback controlleror linear observeras in systems of ODEs. The presented

definitions and theorems in Chapter IV are most similar to those for ODEs among the

existing ones. The main purpose of the study in Chapter IV is to put the controllability

and observability Gramians to practical use by approximating them with the Lambert W

function approach. Figs. B.1 and B.2 show the relationshipsbetween various types of

controllability and observability.
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[Lee and Olbrot, 1981]

Infinite-time 

Observable

Spectrally

Observable

-Detectable

Essentially 

Observable

Hyper

Observable

Point-wise observable

= Rn-Observable

Figure B.2: Relationship between various types of observability
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APPENDIX C

Appendix for Chapter VII

C.1 Limits in assignment of eigenvalues

One can choose feedback gains to assign the rightmost pole ofsystems with time-

delays to desired positions in the complex plane based on theLambert W function ap-

proach (Yi et al., 2009c). Consider a simple, but unstable, example given by

ẋ(t) = ax(t) + u(t− h), where a> 0 (C.1)

with the linear feedback control

u(t) = fx(t) (C.2)

wheref is a constant feedback gain. The time-delay in Eq. (C.1) can be caused by an

inherent delay in actuator. This formulation is also applicable to an open-loop system

without delay but with a feedback delay. In these cases, the closed-loop system becomes

ẋ(t) = ax(t) + fx(t − h) (C.3)

The Lambert W function-based approach provides a method fordesign of feedback con-

trollers via pole placement (Yi et al., 2009c). The rightmost root of the characteristic

equation of Eq. (C.3) is given by (Asl and Ulsoy, 2003)

S0 =
1

h
W0(fhe−ah) + a (C.4)
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The main goal is to choose the gain,f , to stabilize the system (C.1). One can stabilize the

system (C.1) by setting the rightmost eigenvalue in Eq. (C.4), equal to the desired value:

λdes =
1

h
W0(fhe−ah) + a (C.5)

Then, by solving Eq. (C.5), one can obtain an appropriate gain, f.

Example 1 Assumea = 1, h = 0.1, and the desired rightmost eigenvalue,λdes, is −1.

Then, Eq. (C.5) is solved for the gain,f as

−1 =
1

0.1
W0(f × 0.1 × e−0.1) + 1 (C.6)

Then, the solution,f is −1.8097.

Although a feedback controller can be designed for time-delay systems, the above re-

sult does not mean that the rightmost eigenvalue can be assigned arbitrarily. Depending

on the parameters, especially the time-delay, of the systemthere exist limits and, in the

worst case, some systems cannot be stabilized with any valueof the feedback gain,f . As

mentioned in Subsection 7.2.2, several different methods have been applied to investigate

this problem. Here the problem is tackled by using the Lambert W function-based ap-

proach. As seen in Fig. C.1, each branch of the Lambert W function, Wk(H) has its own

range. Especially, for the principal branch, the real part of W0 has a minimum value,−1,

whenH is −1/e (Point A in Fig. C.2). Thus, the real part ofW0 is always equal or larger

than−1, which leads to the following inequality regarding the lower limit in assigning the

rightmost root,

ℜ{S0} = ℜ{λd} =
1

h
ℜ

{
W0(fhe−ah)

}

︸ ︷︷ ︸

≥−1

+a ≥ −1

h
+ a (C.7)
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Figure C.1: Ranges of each branch of the Lambert W function (Corless et al., 1996). Real
part of the principal branch,W0, is equal or larger than−1 and this property
sets limits on stabilization by feedback control.
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In this inequality the reciprocal of the time-delay,1/h, operates like a weighting factor.

If h is smaller, the stabilizing termW0(fhe−ah), which can be adjusted with the feedback

gain,f , has a relatively greater effect onS0 and vice versa. Therefore, when the system

is unstable (i.e.,a > 0) it can be said that if the time delayh becomes larger, the system

becomes more difficult to stabilize. Also, assuming that thefeedback gain,f , can be

selected to be any real value, even if the term,W0(fhe−ah) is minimized by choosingf as

(see Fig. C.2)

fhe−ah = −1

e
⇒ f = − 1

he1−ah
(C.8)

there exists a value,h∗, so that there is no possibility of stabilization for time delay, h,

larger thanh∗. That is,

0 = − 1

h∗
+ a ⇒ h∗ =

1

a
(C.9)

For example, ifa = 1, then for anyh > h∗ = 1 the system cannot be stabilized with

any value of feedback gain,f . For instance, whenh = 2 the rightmost eigenvalue,S0,

is always larger than+0.5 by the inequality (C.7). In this way, one can find the critical

time delay for stabilization. If the feedback gain,f , has a specific limit on its value, for

example,f > 0 in (C.7), then the argument ofW0 is also larger than zero. In that case,

W0 is also always larger than zero (see Fig. C.2), then the system can never be stabilized.

Also, depending on whether the time delay is in inputs, states and/or in the feedback

control, there can exist many different cases of this problem. For example, one can con-

sider a case other than (C.3), where:

ẋ(t) = ax(t) + adx(t − h) + u(t) where

u(t) = fx(t) + fdx(t − h)

(C.10)
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Then, the rightmost root is given by

S0 =
1

h
Wk

(
(ad + fd)he−(a+f)h

)
+ a + f (C.11)

and the problems of stabilization, and its limitations, canbe discussed in a similar way.

Example 2 Assumea = 1, ad = 1 (i.e., the system is unstable) in Eq. (C.10). Unlike

the previous case, if there is no limits in choosing the gains, f andfd, the system always

can be stabilized independent of the value ofh (e.g., whenfd = −1 and f < −1, the

closed-loop system is stable). However, ifh = 2 andf has to be larger than−0.5, then

there is no way to stabilize the system with gains,f andfd, which can be proven as in Eq.

(C.7).

As mentioned previously, the same conclusion can be reachedin different ways: using

coordinate transformation in combination with a theorem in(Bellman and Cooke, 1963),

or substituting a pure imaginary number root in the characteristic equations to check bifur-

cation conditions (Beddington and May, 1975; Cooke and Grossman, 1982). Compared

to such approaches, the approach using the Lambert W function, presented in this section,

enables one to analyze the effect of delay directly from the solution form and to find these

limits more intuitively.
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