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PREFACE

This dissertation collects recent research work on theldpueent of an analytical
approach for solutions of delay differential equations thia Lambert W function. It,
also, includes methods for analysis and control based osdluions, and their applica-
tions to mechanical and biological systems. Delay diffeatequations represent systems
that include inherent time-delays in the system or a daligentroduction of time-delays
for control purposes. Such time-delays, frequent in systenengineering and science,
can cause some significant problems (e.qg., instability aaddauracy) and, thus, limit and
degrade the achievable performance of controlled systelowever, due to innate com-
plexity including infinite-dimensionality, it is not fedde to analyze such systems with
classical methods developed for ordinary differentialagtuns (ODES).

The research presented in this dissertation uses the Lakdeinction to obtain free
and forced analytical solutions to such systems. Henceroitiges a more analytical
and effective way to treat time-delay systems. The advant@ighis approach lies in the
fact that the solution has an analytical form expressedringeof the parameters of the
system and, thus, one can explicitly determine how the patens are involved in the
solution. Furthermore, one can know how each parametertaffee eigenvalues of the
system. Also, each eigenvalue in the infinite eigenspeciswassociated individually with
a branch of the Lambert W function.

The Lambert W function-based approach for the analytidatsm to systems of delay

differential equations (DDESs) had been developed for thedgeneous first-order scalar



and some special cases of systems of delay differentialtiegsausing the Lambert W
function as introduced in Chapter I. In Chapter Il, the ahedy solution is extended to
the more general case where the coefficient matrices do wessarily commute, and to
the nonhomogeneous case. The solutionis in the form of antmferies of modes written
in terms of the matrix Lambert W function. The derived salatis used to investigate the
stability of time-delay systems via dominant eigenvalueterms of the Lambert W func-
tion. Itis also applied to the regenerative machine tootteh@roblem of a manufacturing
process in Chapter lll. Based on the solution form in terntheimatrix Lambert W func-
tion, algebraic conditions and Gramians for controllapiéind observability of DDEs are
derived in a manner analogous to the well-known contrditgtand observability results
for the ODE case in Chapter IV. In Chapter V, the problem ofifeeck controller design
via eigenvalue assignment for linear time-invariant tideday systems is considered. The
method for eigenvalue assignment is extended to desigrstabatrollers for time-delay
systems with uncertainty and to improve transient respanghapter VI. For systems
where all state variables cannot be measured directly, aapgnoach for observer-based
feedback control is developed and applied to diesel engiméral in Chapter VII. In
Chapter VIII, the approach using the Lambert W function iplegal to analyze a HIV
pathogenesis dynamic model with an intracellular delay.

The author hopes that this dissertation will be of intereggraduate students and re-
searchers in engineering and mathematics who have spaeigdst in studying properties
and designing control of time-delay systems.

The author acknowledges support by a research grant (# 8556y National Science

Foundation.

SunYi

Ann Arbor, Michigan, USA
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CHAPTER|

INTRODUCTION

1.1 Motivation

Time-delay systems (TDS) arise from inherent time-delaythé components of the
systems, or from the deliberate introduction of time-dslayo the systems for control
purposes. Such time-delays occur often in systems in eegimgg biology, chemistry,
physics, and ecology (Niculescu, 2001). Time-delay systeam be represented by delay
differential equations (DDESs), which belong to the clas$uonictional differential equa-
tions, and have been extensively studied over the past ded&ichard, 2003). Such
time-delays can limit and degrade the achievable perfocaan controlled systems, and
even induce instability. Time-delay terms lead to an inimitimber of roots of the char-
acteristic equation, making systems difficult to analyzthwlassical methods, especially,
in checking stability and designing stabilizing contradleThus, such problems are often
solved indirectly by using approximation. A widely used eppmation method is the
Padé approximation, which is a rational approximation eesdilts in a shortened fraction
as a substitute for the exponential time-delay term in theradteristic equation. How-
ever, such an approach constitutes a limitation in accuiay lead to instability of the
actual system and induce non-minimum phase and, thus,daghproblems (Silva and

Datta, 2001). Prediction-based methods (e.g., Smith gi@diSmith, 1957), finite spec-



trum assignment (FSA) (Zhong, 2006), and adaptive Podisiasilescu and Annaswamy,
2003)) have been used to stabilize time-delay systems hgftaming the problem into
a non-delay system. Such methods require model-basedat@as, which may cause
unexpected errors when applied to a real system. Furthernsafe implementation of
such methods is still an open problem due to computatioeaks. Controllers have also
been designed using the Lyapunov framework (e.g., linedrixnaequalities (LMIs) or
algebraic Riccati equations (ARES)) (Gu and Niculescug2Qfu, 2003). These methods
require complex formulations, and can lead to conservagiselts and possibly redundant
control.

To find more effective methods, an analytic approach to alitee complete solution
of systems of delay differential equations based on theequtraf the Lambert W function,
which has been known to be useful to analyze DDEs (Corleds é686), was developed
in (Asl and Ulsoy, 2003). The solution has an analytical faxpressed in terms of the
parameters of the DDE and, thus, one can explicitly detegrhiow the parameters are
involved in the solution and, furthermore, how each paramaffects each eigenvalue and
the solution. Also, each eigenvalue is associated indallgwith a particular ‘branch’ of
the Lambert W function. In this dissertation, the analytaggroach using the Lambert W
function is extended to general systems of DDEs and non-gemepus DDEs, and com-
pared with the results obtained by numerical integratidme &dvantage of this approach
lies in the fact that the form of the solution obtained is agals to the general solution
form of ordinary differential equations, and the conceptha state transition matrix in
ODEs can be generalized to DDEs using the concept of thexmatmbert W function.
This suggests that some approaches for analysis and costdlfor systems of ODEs,
based on concept of the state transition matrix, can paignbe extended to systems of

DDEs. These include analysis of stability, controllalgibind observability, and methods



for eigenvalue assignment for linear feedback controlésigh with an observer, and ex-
tension to robust stability and time-domain specificatigkso, the approaches developed
based on the proposed solution method are applied to tinag-dgstems in engineering

and biology as discussed in subsequent chapters.

1.2 Background

1.2.1 Delay differential equation

Delay differential equations are also known as differedifierential equations, were
initially introduced in the 18th century by Laplace and Corubt (Gorecki et al., 1989).
Delay differential equations are a type of differential agon where the time derivatives
at the current time depend on the solution, and possiblyeitsatives, at previous times.
A class of such equations, that involve derivatives wittagielas well as the solution itself
has historically been callateutral DDEs (Hale and Lunel, 1993). In this dissertation only
retardedDDESs where there is no time-delay in the derivative termscarsidered.

The basic theory concerning stability and works on fundaaleheory, e.g., existence
and uniqueness of solutions, was presented in (Bellman ao#e 1963). Since then,
DDEs have been extensively studied in recent decades amdargmber of monographs
have been published including significant works on dynamid@DEs by Hale and Lunel
(1993), on stability by Niculescu (2001), and so on. The eeaglreferred to the detailed
review in (Richard, 2003; Gorecki et al., 1989; Hale and Uub@93). The interest in study
of DDEs is caused by the fact that many processes have tilagsdand have been mod-
eled for better representations by systems of DDESs in segrengineering, economics,
etc. (Niculescu, 2001). Such systems, however, are stiteasible to precisely analyze
and control, thus, the study of systems of DDESs has activeiylronducted during recent

decades (Richard, 2003).
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Figure 1.1: Ranges of each branch of the Lambert W functiaml€Ss et al., 1996). Note
that real part of the principal branch/,, is equal to or larger than 1.

1.2.2 Lambert W function

Introduced in the 1700s by Lambert and Euler (Corless el @886), the Lambert W

function is defined to be any functiol/ (H), that satisfies
W(H)eVH) = [ (1.1)

The Lambert W function is complex valued, with a complex anguat, //, and has an
infinite number of branche$},, wherek = —oc0,---,—1,0,1,---, 00 (Asl and Ulsoy,
2003). Figure 1.1 shows the range of each branch of the Lambfmction. For example,
the real part of the principal brancl/,, has a minimum value; 1. The principal and all

other branches of the Lambert W function in (1.1) can be d¢aled analytically using a



series expansion (Corless et al., 1996), or alternatiuslpg commands already embedded

in the various commercial software packages, such as Maflaple, and Mathematica.
An analytic approach to obtain the complete solution of&yst of delay differential

equations based on the concept of the Lambert W function weaslabed by Asl and

Ulsoy (2003). Consider a first-order scalar homogenous DDE:

r(t) = ax(t)+aqgz(t—h), t>0

z(0) = o, t=20 (1.2)

z(t) = g(t), t € [-h,0)
Instead of a simple initial condition as in ODEs, two initainditions need to be specified
for DDEs: a preshape function(t), for —h < ¢t < 0 and initial point,z,, at time,t = 0.
The quantity,, denotes the time-delay. The solution to Eq. (1.2) can bieetkim terms
of an infinite number of branches of the Lambert W functiorfjraal in Eq. (1.1), (Asl

and Ulsoy, 2003):

z(t)= > el whereS, = %Wk(adhe‘“h) +a (1.3)

k=—00
The coefficientCY, is determined numerically from the preshape functign), and ini-
tial state,r,, defined in the Banach space as described by Asl and Ulsoy)20the
analytic methods to find the coefficiertt; and the numerical and analytic methods for
other coefficients for non-homogeneous and higher orderE®are also developed in
a subsequent chapter. Note that, unlike results by othstiegimethods, the solution in
(1.3) has an analytical form expressed in terms of the paemef the DDE in (1.2), i.e.,
a, ag andh. One can explicitly determine how the parameters are imia the solution
and, furthermore, how each parameter affects each eigenaal the solution. Also, each
eigenvalue is distinguished ldy which indicates the branch of the Lambert W function as

seenin Eq. (1.3).



For a given system of Delay Differential Equations

1. Derive the solution (free & forced): Chapter 11

1

2. Determine stability of the system: Chapter III

-

3. Check the conditions for controllability/observability: Chapter IV

-

4. Design feedback control via eigenvalue assignment: Chapter V

-

5. Robust stability & Time-domain specifications: Chapter VI

-

6. Observer-based feedback control: Chapter VII

@

Applications in engineering (Chs. III, VII) and biology (Ch. VIII)

Figure 1.2: The matrix Lambert W function-based approadingithe approach devel-
oped in this research, the steps in the figure, which are atdridr systems of
ODEs, become tractable for DDEs

1.3 Scope of This Document

This dissertation presents the derivation of solutionsysteans of DDEs, and the
development of methods to analyze and control time-delayesys with application to
systems in engineering and biology. This new techniquenallone to study how the
parameters in time-delay systems are involved in the swlutivhich is essential to in-
vestigate system properties, such as stability, conbititig observability, and sensitivity.

Finally, controllers for time-delay systems, with obsesyeare designed via eigenvalue



assignment to improve robust stability and to meet time-@larspecifications as well as
to stabilize unstable systems (See figure 1.2).

Because each chapter of this dissertation is based on nrgptashat have been pub-
lished in or submitted to a journal, the background matdédakeach is included in the
relevant chapters. The remaining chapters are summarszed@vs.

Chapter Il : “Solutions of Systems of DDEs via the Matrix Lambert W Fuant,
which was published in thBynamics of Continuous, Discrete and Impulsive Systems (Se
ries A) (Yi et al., 2007d) and an early version of this work was préseénn part at the
2006 American Control Conference (Yi and Ulsoy, 2006) angart at the 2006 IEEE
Conference on Decision and Control (Yi et al., 2006b). Rresiy, an approach for the
analytical solution to systems of DDEs had been developetidomogeneous scalar and
some special cases of systems of delay differential equatising the Lambert W func-
tion (Asl and Ulsoy, 2003). In this chapter, the approachismded to the more general
case where the coefficient matrices in a system of DDEs doet#ssarily commute, and
to the nonhomogeneous cases. The solution is in the form offiaite series of modes
written in terms of thenatrix Lambert W function. The form of the obtained solution has
similarity to the concept of the state transition matriximelr ordinary differential equa-
tions, enabling its use for general classes of linear delfégrential equations. Examples
are presented to illustrate the new approach by comparsonrmerical methods. The
analytical solution in terms of the Lambert W function isafsresented in the Laplace
domain to reinforce the analogy to ODEs.

Chapter IlI : “Stability of Systems of Delay Differential Equations viae Matrix
Lambert W Function: Application to machine tool chatterfish was published in the
Mathematical Biosciences and Engineerif)j et al., 2007b) and an earlier version of

this work was presented at the 2006 ASME International Genfee on Manufacturing



Science and Engineering (Yi et al., 2006a). This chaptergtigates stability of systems
of DDEs using the solution derived in terms of the paramedéiss/stems in Chapter Il.
By applying the matrix Lambert W function-based approacthtochatter equation, one
can solve systems of DDEs in the time domain, obtain domieg@nvalues, and check
the stability of the system. With this method one can obtanges of preferred operating
spindle speed that do not cause chatter to enhance pratjuofiprocesses and quality of
products. The new approach shows excellent accuracy atadrcether advantages, when
compared to existing graphical, computational and appnat methods.

Chapter IV : “Controllability and Observability of Systems of Linearey Differ-
ential Equations via the Matrix Lambert W Function,” whiclasvpublished in théEEE
Transactions on Automatic ContrfYi et al., 2008a) and an earlier version of this work
was presented at the 2007 American Control Conference @i,e2007a). Controllability
and observability of linear time-delay systems has beediestiy and various definitions
and criteria have been presented since the 1960s (Malek&iaand Jamshidi, 1987), (Vi
et al., 2008a). However, the lack of an analytical solutippraach has limited the ap-
plicability of the existing theory. In this chapter, basedtbe solution form in terms of
the matrix Lambert W function, algebraic conditions andr@iens for controllability and
observability of DDEs were derived in a manner analogouséowell-known control-
lability and observability results for the ODE case. Thetodlfability and observability
Gramians indicate how controllable and observable theesponding states are, while al-
gebraic conditions tell only whether a system is contradaibservable or not. With the
Gramian concepts, one can determine how the changes in gatificparameters of the
system affect the controllability and observability of $ystem via the resulting changes
in the Gramians. Furthermore, for systems of ODEs, a bathreaization in which the

controllability Gramian and observability Gramian of ateys are equal and diagonal was



introduced in (Moore, 1981). Using the Gramians defined is ¢hapter, the concept of
the balanced realization has been extended to systems of RIDEhe first time.

Chapter V: “Eigenvalue Assignment via the Lambert W Function for Gohfor
Time-Delay Systems,” which is in press in theurnal of Vibration and Contra(Yi et al.,
2009c) and an earlier version of this work was presentedes2®7 ASME International
Design Engineering Technical Conferences (Yi et al., 2D0nchis chapter, the problem
of feedback controller design via eigenvalue assignmariirfear time-invariant systems
of linear delay differential equations with a single delayconsidered. Unlike ordinary
differential equations, DDEs have an infinite eigenspectend it is not feasible to as-
sign all closed-loop eigenvalues. However, one can assagitieéal subset of them using
a solution to linear systems of DDEs in terms of the matrix bamh W function. The
solution has an analytical form expressed in terms of tharpaters of the DDE, and is
similar to the state transition matrix in linear ODEs. Henome can extend controller
design methods developed based upon the solution form tdragsof ODES to systems
of DDEs, including the design of feedback controllers vigegivalue assignment. Such
an approach is presented here, illustrated using some éxsnapd compared with other
existing methods.

Chapter VI: “Robust Control and Time-Domain Specifications,” whichursder re-
view in the Journal of Dynamic Systems, Measurement, and Cof¥fioét al., 2009d)
and an earlier version was presented at the 2008 AmericatraC@onference (Yi et al.,
2008c). One of the main concerns in designing controllets rmaintain robust stability
against uncertainty in the models. When uncertainty existise coefficients of the sys-
tem, a robust control law, which can guarantee stabilitseégiired. To realize robust sta-
bilization, after calculating the allowable size of unegmty (i.e., norms of the uncertainty

matrices), the rightmost eigenvalues are placed at an ppate distance from the imagi-
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nary axis to maintain stability even with the uncertaintyhe coefficients. An algorithm
for eigenvalue assignment for systems of DDESs, based umohambert W function, is
devised for the problem of robust control design for pertdrsystems of DDEs. With
this algorithm, after considering the size of the allowabieertainty in the coefficients of
systems of DDEs via the stability radius analysis and comgahe stability radius and
real uncertainty in parameters, the appropriate positidrise rightmost eigenvalues for
robust stability are chosen such that the stability radiut® controlled system is larger
than the size of uncertainty. Corresponding to the caledlpbsitions, one can find appro-
priate gains of the linear feedback controller by assigtimegyightmost eigenvalues using
the method introduced in Chapter V. By moving the rightmagtevalues, the stability ra-
dius is increased to be larger than the size of uncertairig. procedure presented in this
chapter can be applied to uncertain systems, where unagriaithe system parameters
cannot be ignored. Also, the method developed in Chap. V miak®ssible to assign si-
multaneously the real and imaginary parts of a critical stibéthe eigenspectrum for the
first time. Therefore, similar guidelines to those for sysseof ODES to improve transient
response and to meet time-domain specifications, can béogexdeand used for systems
of DDEs via eigenvalue assignment.

Chapter VII : “Design of Observer-Based Feedback Control for Time-p&gstems
with Application to Automotive Powertrain Control,” whidtas been submitted dmurnal
of Franklin Institute(Yi et al., 2009a), and is in press in Proceedings of 2009 ASNWE
namic Systems and Control Conference (Yi et al., 2009bhikdhapter, a new approach
for observer-based feedback control of time-delay systsmgsveloped. The approach,
based on the Lambert W function, is used to control timeydsistems by designing
an observer-based state feedback controller via eigemeasignment. The designed ob-

server provides estimation of the state, which converggsptotically to the actual state,
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and is then used for state feedback control. It is shown bigeséparation principle applies
as for the case of ODE’s. The feedback controller and therebs¢ake simple linear
forms and, thus, are easy to implement when compared tongamlimethods. This new
approach is applied, for illustration, to the control of askl engine to achieve improve-
ment in fuel efficiency and reduction in emissions. The satiah results show excellent
closed-loop performance.
Chapter VIII : “Eigenvalues and Sensitivity Analysis for a Model of HIVtRagene-

sis with an Intracellular Delay”, which is based upon a manips presented at the 2008
ASME Dynamic Systems and Control Conference (Yi et al., 2)08During the past
decade significant research has been aimed at better wartt#irgj of the human immun-
odeficiency virus (HIV), and the use of mathematical modgtminterpret experimental
results has made a significant contribution. However, tilekys, which play a critical
role in various biological models, are still not amenableneny traditional analysis meth-
ods. In this chapter, the approach using the Lambert W fands applied to handle the
time-delay in a HIV pathogenesis dynamic model. Dominagémvalues in the infinite
eigenspectrum of these time-delay systems are obtainegsaado understand the effects
of the parameters of the model on the immune system. Alsorehdt is extended to
analyze the sensitivity of the eigenvalues with respedtegarameters in the HIV model.
The research makes it possible to know which parametersare influential than others,

and the information obtained is used to investigate the Hiagnic system analytically.

1.4 Original Contributions

The original contributions of the research documented is dissertation for time-

delay systems can be summarized as follows:

1. Derivation of free and forced solutions of general systeffDDES, which take an
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analytical form in terms of systems parameters and, thuehlerunderstanding of

how they are involved in the solutions and dynamics. (Chdpte

. Determination of stability of infinite dimensional syste of DDEs based upon a

finite, but dominant, number of eigenvalues. (Chapter IlI)

. Development of conditions for controllability and obsayility, which indicate how
controllable and observable for a system is, for DDEs. Thelitmns also indicate
how the change in some specific parameters of the systent #dffecontrollabil-
ity and observability of the systems and, furthermore, camsed for balancing a

realization. (Chapter IV)

. A method for the design of feedback controllers via eigéun assignment to assign

dominant eigenvalues to desired positions. (Chapter V)

. Algorithms for robust stabilization and achievementiwfe-domain specifications.

(Chapter V1)

. Design of observer-based feedback controllers for tiglay systems where all state

variables cannot be measured directly. (Chapter VII)

. Dominant eigenvalues in the infinite eigenspectrum afeéhteme-delay systems are
obtained and used to understand the effects of the paradt@HIV pathogenesis

dynamic model. (Chapter VIII)



CHAPTER I

SOLUTIONS OF SYSTEMS OF DDES VIA THE
MATRIX LAMBERT W FUNCTION

An approach for the analytical solution to systems of deldferntial equations
(DDESs) has been developed for homogeneous scalar and s@tialsgases of systems
of DDEs using the Lambert W function. In this chapter, suctapproach is extended to
the more general case where the coefficient matrices in emystDDES do not commute,
and to the nonhomogeneous case. The solution is in the foam ioffinite series of modes
written in terms of the matrix Lambert W function. The formtble obtained solution
has similarity to the concept of the state transition maittinear ordinary differential
equations (ODESs), enabling its use for general classesiealidelay differential equa-
tions. Examples are presented to illustrate the new approacomparison to numerical
methods. The analytical solution in terms of the Lambert Wetion is also presented in

the Laplace domain to reinforce the analogy to ODEs.

2.1 Introduction

Time-delay systems are systems in which a significant tislaydexists between the
applications of input to the system and their resultingaff&uch systems arise from an

inherent time delay in the components of the system or froraliderate introduction of

13
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time delay into the system for control purposes. Such tigleydsystems can be repre-
sented by delay differential equations, which belong todhss of functional differential
equations, and have been extensively studied over the paatlds (Richard, 2003). The
principal difficulty in studying DDEs results from their spal transcendental character.
Delay problems always lead to an infinite spectrum of fregie=n The determination of
this spectrum requires a corresponding determinationasrof the infinite-dimensional
characteristic equation, which is not feasible, in gendralusing standard methods de-
veloped for systems of ODEs. For this reason, instead ofrabtaclosed-form solutions,
systems of DDEs are often handled using numerical methegs@totic solutions, and
graphical approaches mainly for stability analysis andgtesf controllers. For a more
detailed discussion and comparison of such existing mesthib reader is referred to
(Richard, 2003; Asl and Ulsoy, 2003; Gorecki et al., 1989etval., 2009c) and the refer-
ences therein.
During recent decades, the spectral decomposition mettowdsolutions of DDEs

in terms of generalized eigenfunctions have been devel(paoks and Manitius, 1975;
Bellman and Cooke, 1963; Bhat and Koivo, 1976a,b; Hale ameL,1993), and applied to
control problems. Recently, based on the concept of the keanvid function, an analytic
approach to obtain the solution of homogeneous scalar daifeyential equations has
been developed by Asl and Ulsoy (2003) and Corless et al6)19%at is, as introduced
in Section 1.2.2, for the first-order scalar homogenous DIDEJ. (1.2), the solution in
Eq. (1.3) is derived in terms of an infinite number of branabfehe Lambert W function,
W.. Note that, unlike results by other existing methods (sgg, Richard, 2003) and the
references therein), the solution in (1.3) has an analyfiscen expressed in terms of the
parameters of the DDE in (1.2), i.e., a; andh. One can explicitly determine how these

parameters are involved in the solution and, furthermare, éach parameter affects each
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Figure 2.1: Eigenspectrum of the system (1.2) when- —1, a; = 0.5, andh = 1:
due to the delay termg,z(t — h), and, thus, an exponential term in the
characteristic equation, the number of eigenvalues isiiafinThe Lambert
W function-based approach provides a tool for analysis amdrol of time-
delay systems: each eigenvalue can be expressed andyyiicedrms of pa-
rametersz, ay, andh, and associated individually with a particular ‘branch’
(k=—00,---,—1,0,1,---,00) of the Lambert W function.

eigenvalue and the solution. Also, each eigenvalue is &gsdcwithk, which indicates
the branch of the Lambert W function (see Fig. 2.1). Such gmageh has been applied
to control problems (Hovel and Scholl, 2005; Wang and Hu8@Mhd extended to other
cases, such as fractional-order systems (Chen and Mod@2a2CGheng and Hwang, 2006;
Hwang and Cheng, 2005) and some special cases of systemskd (@Ihen and Moore,
2002b; Shinozaki and Mori, 2006; Jarlebring and Damm, 2007)

In this chapter, this analytical approach is extended tegdrsystems of DDEs, in-
cluding nonhomogeneous DDEs where external inputs areemonand compared with
the results obtained by numerical integration. The formhefsolution obtained is anal-

ogous to the general solution form for ordinary differehéiquations, and the concept of
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the state transition matrix in ODEs can be generalized to ®ding the matrix Lambert

W function (see Table 2.2).

2.2 Free System of DDEs

2.2.1 Generalization to free system of DDEs

Consider the system of DDEs in matrix-vector form,

X(t) = AX(t)+Agx(t—h), t>0

X(t) = Xo, t=0 (2.1)

x(t) = g(t), t € [-h,0)
whereA andAy aren x n matrices, anc(t) is ann x 1 state vector, and(t) andx, are a
specified preshape function and an initial state definedarBémach space, respectively.
For this system of linear DDESs, Hale and Lunel proved theterise and uniqueness of
the solution (Hale and Lunel, 1993). In the special case atter coefficient matrice#,

andAg4, commute the solution is given as (Asl and Ulsoy, 2003)
o 1

xty= 3 e'h

k=—o00

W (Aghe ") + At

However, this solution, which is of the same form as the scedae in (1.3), is only
valid when the matriced andAy commute, that ifAy = AgA (Yi and Ulsoy, 2006).

Therefore, Eq. (2.2) cannot be used for general systems &<2dnd, thus, the solution
in (2.2) is not correct in general. This has been, also, pdimidependently in (Zafer,
2007), (Jarlebring and Damm, 2007) and (Asl and Ulsoy, 200/ solution in terms of
the matrix Lambert W function to systems of DDEs in Eq. (2dr)the general case is
derived here (Yi and Ulsoy, 2006).

First a solution form for (2.1) is assumed as

x(t) = eSC’ (2.3)
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whereSis n x n matrix andC’ is constant: x 1 vector. Typically, the characteristic
equation for (2.1) is obtained by assuming a nontrivial 8ofuof the forme*!C wheres

is a scalar variable an@’ is constant: x 1 vector (Hale and Lunel, 1993). Alternatively,
one can assume the form of (2.3) to derive the solution tesysbf DDEs in (2.1) using

the matrix Lambert W function. Substitution of (2.3) intaXRyields,
SeSCt — AeSIC — AgeStMCT =0 (2.4)

and
SeSCT — AeSCT — Age ¥ eSC!
(2.5)
=(S—A—Age ¥)e¥C' =0
Because the matri$ is an inherent characteristic of a system, and independeni-o
tial conditions, it can be concluded for Eq. (2.5) to be $@tikfor any arbitrary initial

condition and for every time,
S—A—-Age =0 (2.6)

In the special case wherkg; = 0, the delay term in (2.1) disappears, and (2.1) becomes a

system of ODEs, and (2.6) reduces to
S-A=0«<=S=A (2.7)

Substitution of (2.7) into (2.3), which becomes a system DES only withx, without
g(t) (i.e.,C’ = xo), yields

X(t) = e*xq (2.8)

This is the well-known solution to a homogeneous system oE®ID terms of the matrix
exponential. Returning to the system of DDEs in (2.1), one waultiply through by

heSe~A" on both sides of (2.6) and rearrange to obtain,

h(S— A)eSe ™ = A jhe N (2.9)
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In general,S andA do not commute. It is shown in Appendix A that whAnand Ay
commute, thers andA4 also commute. However, in generAlandA4 do not commute,
and

h(S—A)eSe ™ £ (S — A)elS A (2.10)

Consequently, to compensate for the inequality in (2.1@)taruse thenatrix Lambert W
function defined as

W(H)eWH =H (2.11)

here, an unknown matriQ is introduced to satisfy
h(S—A)eS A = AjhQ (2.12)
Comparing Egs. (2.11) and (2.12) yields
(S— A)h = W(AghQ) (2.13)

Then the solution matridXg, is obtained by solving (2.13):

S= %W(Ath) +A (2.14)

Substituting (2.14) into (2.9) yields the following condit which can be used to solve for
the unknown matrix:

W (A hQ)eWAdhQ+AR — A py (2.15)

The matrix Lambert W functioriV(H), is complex valued, with a complex arguméht
and has an infinite number of branché&s (H), wherek = —c0,--- ,—1,0,1,--- , 00
(Asl and Ulsoy, 2003). Corresponding to each brarglof the Lambert W functionW,,
there is a solutiol®, from (2.15), and foH, = A4hQ,, the Jordan canonical fordy, is

computed fromH;, = Z,3,Z;%. Iy = diag(Jx1 (A1), Jra(X2), - - -, Jep(Ny)), WhereJi; ()
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ism xm Jordan block anchis multiplicity of the eigenvalué\i. Then, the matrix Lambert

W function can be computed as (Pease, 1965)

Wi (Hy) = Z, {diag (Wk(Jkl(S\l)), . ,wk(Jkp(xp))) } z;! (2.16)
where _ -
Wih) Wih) -+ oW ()
WG — |0 O ) (2.17)
0 0o - Wi(\)

With the matrix Lambert W function)V,, givenin (2.16) S, is computed f;om (2.14). The
principal (¢ = 0) and other £ # 0) branches of the Lambert W function can be calculated
from a series definition (Corless et al., 1996) or using comusaalready embedded in
various commercial software packages, such as Matlab, éMapld Mathematica. With
W, which satisfies

Wi (Hy)e M) = H, (2.18)

finally, theQ,, is obtained from
W (AghQ, )eWrAdhRQi+AR — A p, (2.19)
and theQ,, obtained can be substituted into (2.14),
S, = %Wk(Athk) +A (2.20)
and thertS, into (2.3) to obtain the free solution to (2.1),

X(t) = i eSHCy (2.21)

k=—o00
The coefficientC;, in (2.21) is a function ofA, A4, h and the preshape functiog(t),

and the initial statex,. The numerical method for computi@f, were developed in (Asl
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and Ulsoy, 2003), and an analytical method is also present8éction 2.4. Conditions
for convergence of the infinite series in (2.21) have beedistlin (Banks and Manitius,
1975; Bellman and Cooke, 1963; Hale and Lunel, 1993), and€L,1989). For example,
if the coefficient matrixAq4, iS nonsingular, the infinite series converges to the smuti
The solution to DDEs in terms of the Lambert W function, asditalogy to that of ODEs,
is summarized in Table 2.2. The matf, is obtained numerically from Eq. (2.19), for
a variety of initial conditions, for example, using tfslvefunction in Matlab. In the
examples, which have been studied, Eq. (2.19) has a unituigosnQ,., for each branch,
k, if Aq is nonsingular. Whei is rank deficient, some elements@f do not appear in
Eq. (2.19) because they are multiplied by zeros and, thesiradetermined. In such cases,
due to the undetermined elemer@s, is clearly not unique. However, those undetermined
elements of),, do not appear i, in Eq. (2.20) either, due to multiplication withy, and
so do not affect the solutions.

Example 2.1 The following example, from (Lee and Dianat, 1981), illasés the
approach and compares the results to those obtained usimgyical integration. Consider

a system of DDEs,

-1 -3 1.66 —0.697
X(t) = X(t) + X(t—1) (2.22)
2 =5 0.93 —-0.330
Then, with the parameters in Eq. (2.22) for soluti@y, is computed from Eqg. (2.19)
for each branch and, subsequen8y,is computed from Eg. (2.20). Table 2.1 shows the
resulting values fok = —1, 0, 1 and the eigenvalues,; and )., of S;. Using the values
of S, from Table 2.1, the solution is obtain as

X(t)= Y e¥Cf =+ eSMC +eMC 4 eMC + - (2.23)

k=—o00

The coefficient<,, in (2.23) are determined from specified preshape functje), initial
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Table 2.1: Intermediate results for computing the solutorrthe example in (2.22) via the
matrix Lambert W function

k=0 k=+1
0 —9.9183 14.2985 —18.8024 F 10.22437 6.0782 F 2.2661:
' —32.7746  6.5735 —61.1342 3 23.68127 1.0161 F 0.2653¢
s 0.3055 —0.4150 —0.3499 £ 4.98017 —1.6253 F 0.1459:
' 2.1317 —=3.3015 24174 F0.1308;  —5.1048 £ 4.5592i
\ —1.0119 —1.3990 £ 5.0935:¢
! —1.9841 —4.0558 £ 4.4458:

state,xo, time delay,h, numerically (Asl and Ulsoy, 2003) or analytically as dissed
subsequently in section 2.4. For examplexlet g(t) = {1 0}7,forh =1,k = —1,0, 1,

the corresponding values computed by using the approadsiratd Ulsoy, 2003) are

1.3663 + 3.94914 —1.7327 1.3663 — 3.94914
C C!

3.2931 + 9.3999: —6.5863 3.2931 — 9.3999:

The results are compared to those obtained using numeniegjration in Fig. 2.2, and
show good agreement as more branches are used. As seen ihZigs one adds terms
(i.e., branches), the errors between the two approachemuerio be reduced. However,

an explicit expression for the error in terms of the numbdarahches used is not available.
2.2.2 Stability

For systems of DDEs as in Eq. (2.1), itis difficult to deterenthe rightmost eigenval-
ues in the infinite eigenspectrum. However, this is impdrtas the rightmost eigenvalues
determine system stability. If one computes a finite set gémvalues from the infinite

eigenspectrum, it is difficult to draw a conclusion aboubsiiy, because one cannot be
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Figure 2.2: Comparison for example in (2.22) of results froamerical integration vs.
(2.23) and (2.24) with one, three, and, seven terms. Witherboanches the
results show better agreement.

sure that the rightmost eigenvalue is included in that fisge For the scalar case in
(1.2), it has been proven that the root obtained using theip@l branch £ = 0) always
determines the stability of the system using monotinicityhe real part of the Lambert
W function with respect to its brandh (Shinozaki and Mori, 2006) (e.g., see Fig. 2.1).
Such a proof can readily be extended to systems of DDEs wharedA4 are simultane-
ously triangularizable and, thus, commute with each otRadfavi and Rosenthal, 2000).
Although such a proof is not currently available in the cakthe general matrix-vector
DDEs in (2.1), if the coefficient matriAy4 does not have repeated zero eigenvalues, then,
the same behavior has been observed in all the examples Wawehbeen have consid-
ered. In the example in (2.22), the value of the real part efdbminant eigenvalue is in
the left half plane and, therefore, the system is stable Tabée 2.1). Consequently, an
important advantage of the solution approach based on tmbé&d W function, is that the

stability of the system can be determined based only on timeipal branch. Based on
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this observation, in Chap. lll, @onjecture(see Subsection 3.3.1) is formulated for sta-
bility analysis. Note that for the case whekg has repeated zero eigenvalues, it has been
observed that the rightmost eigenvalue is obtained by ukiagrincipal branchi( = 0),

ork = +1.

2.3 Forced Systems

Consider a nonhomogeneous version of the DDE in (1.2):

©(t) = ax(t) + aqx(t —h) +bu(t), t>0 (2.25)

whereu(t) is a continuous function representing the external exoitatn (Malek-Zavarei

and Jamshidi, 1987), the forced solution to (2.25) is prieskas,

xforced(t) :/ ‘I’(t,g)bU(f)dg (226)
0
where the following conditions for the kernel functioht, £ ), must be satisfied.
a)%\lf(t,g) = —aV¥(t,¢), t—h<E<t
= —a‘l’(t,g) _adq](ta§+h)7 6 <t—h (227)
bU(t,t) = 1
A)¥(t,§) = 0, >t

Because the above conditions contain a scalar DDE, the agipttased upon the Lambert
W function can be used to obtain(¢, £) to extend the free solution in (1.3) to nonhomo-

geneous DDE. First, ®(t, £) which satisfies the first condition in (2.27) is
(t, &) = ¥t (2.28)

A ¥ (t,¢) satisfying the second condition in (2.27) can be obtainétbud..3), and can be

confirmed by substitution as

U6 = Y ey (2.29)

k=—00
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Thus, it can be concluded that

a)U(t, &) = M9, t—h<&é<t
= Y SO c<t—h (2.30)
k=—o00
DU(t,§) = 0, {>t

Consequently, the forced solution can be representednmstef the Lambert W function

solution as:

Caselo<t<h
t
xfm"ced@) = / €a(t_5)bU<£)d£ (231)
0
Casellt > h

t—h t
T forced(t) = /0 > OO bu(€)de + /t_h e bu(€)d¢ (2.32)

k=—o00

The coefficientC}Y, is a function of the parameters of the system in (2.25),ithat a,
and the delay timé. It can be computed approximately depending on the totakeurof

branches)N, used in the solution in a similar way @, based on the continuity of Egs.
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(2.31) and (2.32) (Yi and Ulsoy, 2006):

a(h)
a(h — 3%)
olh—30) |
a(0)
N ~- > (2.33)
n-n(h) - an(h) Chy m(h)
n-n( —%) o —%) C]—V(N—l) 7( —%)
n-n( —%) o —%) C]—V(N—2) Ty ( —%)
| o0 @ [ ooy ) | o

KR
EIR

o(t) = /O e by (€)de
t—h

nul(t) = / S -Ou(€)de (2.34)
0

t

W(t):/t e =Obu(€)de

—h
Consequently thé’)¥ can be represented as:

CY = lim [ (h,N) - (6 — 7)|x (2.35)

N—oo

also, C{’ can be expressed analytically in terms of the system paeasas shown in
Section 2.4. The coefficiens! depend on the initial conditions and the preshape function,
but as seen from the above procedure,@edo not. An analytical method to compute
Cl andC}Y based on the Laplace transform is presented in Section 2tH.thé obtained

C}, using Egs. (2.33)-(2.35) the forced solution in Eqgs. (R&1d (2.32) is reduced to
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Responses, x(7)

Time, ¢

Figure 2.3: Total forced response with seven branches-(—3,—2,—1,0, 1,2, 3) and
comparison between the new method (solid) and the numenmhod
(dashed), which shows good agreement. Parameters-are; = —1, h = 1
with Eqg. (2.38).

the forced solution, as shown in Section 2.4 (also alteraitin Appendix A):

2 forcea(t) = /O t > OO bu(€)dg (2.36)

k=—o0

Hence, combined with Eq. (1.3) the total solution to (2.2&¢dmes

o} t 0o
z(t)= > O+ /0 > e OCNbu(€)de (2.37)
k=—o00

free forced

k=—o00

Example 2.2Consider (2.25), witla = a; = —1 andh = 1 and the forcing input

bu(t) = cos(t), t>0 (2.38)

The total response is shown in Fig. 2.3 fgr) = 1, xy = 1 with seven branches: (=

-3,-2,-1,0,1,2,3), and compared to the result obtained by numerical integrat
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2.3.1 Generalization to system of DDEs

The nonhomogeneous matrix form of the delay differentialagigpn in (2.1) can be

written as

X(t) = Xo, t=0 (2.39)

x(t) = 9(t), t € [—h,0)
whereB is ann x r matrix, andu(t) is ar x 1 vector. The particular solution can be derived

from (2.31)-(2.32) as,

Casel0<t<h

Xforced(t) = /0 t AUIBuU(E)dg (2.40)

Casellt > h
t—h t
X forcea(t) = /O > S UICYBu(6)dE + / heA“—ﬁ)Bu(g)dg (2.41)
k=— =

In (2.41),C; is a coefficient matrix of dimensiom x n and can be calculated in the same

way as in the scalar case. Like the scalar case in the preseui®on, (2.40)-(2.41) are

combined as
t [oe)
ora®) = [ 32 eHOCBUE e (2.42)
k=—o00
And the total solution is
o] t 0o
X(t)= Y e*Ci+ / > SUTOCYBuU(S)dE (2.43)
k=—o00 0 k=—o00
f;(:c for‘crod

where the coefficient,, in (2.43) is a function of\, A4, h and the preshape functigft)
and the initial conditiorx,, while C' is a function ofA, A4, i and does not depend gn

or Xo. As seen in (2.43), the total solution of DDEs using the Larn®é function has a
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Numerical

Lambert W function-based
08 - method with 7 branches

Responses, x(7)

-02 -

-0.4 —

—0.6 L L L L L L L I
0 5 10 15 20 25 30 35 40 45 50
Time, ¢

Figure 2.4: Total response for (2.44) and a comparison ofdwemethod with numerical
integration

similar form to that of ODESs. (see Table 2.2).

Example 2.3Consider the system of DDEs in (2.22) with a sinusoidal exkexcitation:

cos(t)
Bu(t) = >0 (2.44)

0

Then the solution to (2.44), with the same preshape funeiahinitial state, is obtained
from (2.43) and shown in Fig. 2.4. The differences betweamew method with seven

branches and numerical integration are essentially ingdistshable.

2.4 Approach Using the Laplace Transformation

In this section, solutions to DDEs in the Laplace domain ares@ered. Transformed
DDEs and their solution are compared with the solutionsatittme domain as (2.37) and
(2.43), and the analytical expressions@f, Ci¥, Ci. andC, are obtained in terms of

system parameters by using the Lambert W function.
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2.4.1 Scalar case
Consider the scalar free DDE in (1.2). The Laplace transfofrthe free equation is

sX(s) — 20 — age "X (s) — age "G (s) — aX(s) (2.45)

= (5 —age™" —a)X(s) — xg — agG(s) =0

Then,
_ x0 + age*"G(s)

s —age st —a

X(s) (2.46)

On the other hand, the solution obtained by the approacly tisenLambert W function in

(1.3) can be transformed as

CI C«I CI
X(s) = -+ i SRR 0o L.
S — S_l S — S() S — Sl
= "ol (2.47)

- ZS—Sk

whereS}, is obtained from (1.3). Two solutions in Egs. (2.46) and T2 &re compared to
deriveC{ analytically. After some algebraic manipulation and udittgopital’s rule, Sy

is substituted into both equations to get (Yi et al., 2006b)

o = 0+ ae” Gy

2.48
k 1+ adhe_skh ( )

For the nonhomogeneous DDE in (2.26)) is also obtained in the same way as

1
oN-— - 2.49
k 1+ adh6_skh ( )

Note thatC! is dependent on the initial conditions, and the preshape functiog(t), but

C} is not. As seenin (2.48) and (2.49), comparing the soluticheé Laplace domain and
that in the time domain using the Lambert W function enabtesto derive the analytical
expressions for”} andC}'. Thus, withS, in (1.3), the solution in (2.37) is explicitly

expressed in terms of parameters of the scalar DD&; andh.
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2.4.2 Generalization to systems of DDEs

For the system of DDEs in (2.39), if one takes the Laplacesftam, the unknown

X(s) yields, as in the scalar case in (2.45),

X(t) = L7'[(sl —A—Aqe™*") " {Xo + Ade_ShG(s)}l

free (250)
+ L7 [(s1 — A — Age™") " {BU(s)}]

~
forced

On the other hand, the free solution to (2.1) is (2.21) andntlee transformed as

o)

X(s)= > (sl =S)7'Cp =
k=—o00 (251)

cook (sl =S (sl = S)TICh (sl = Sy)TICT -
Comparing (2.51) with the free solution part in (2.50) pd®s the condition for calculat-

ing CL. Here, & x 2 example is provided. If the coefficients are

ap as Qd1 Qg2

ag aq Aq3 Qg4

A —

the term in (2.50) can be written, using the inverse of theimats

sh sh

b1 1 S — Qg — Qg€ as + agee™
(sl = A — Age™*M) ™ = o) (2.53)
5 as + age " s —a; —age"
whereY (s) is defined as
T(s) = 5% — {a1 + as + (ags + ag)e™*"}s + (ayaq4 — azas)+
(2.54)
(a1G4s + agrag + azags + agaz)e ™" + (agag — agpags)e” "
And the term in (2.51) can be written as
Lo Pkl Pr2 10 Ak 0 .
sl =S, =|s — =1s — Vg A I
0 1 Dk3  Pka 01 0 Ao
Pr1 Di2
where S, =
Pr3  Dka

(2.55)
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Applying (2.53) and (2.55), one can find the coefficie@sin (2.21). For example, to

obtain the coefficient of the principal branety,,

sh

—sh —
1 S — Q4 — Ggu€ a2 + agé
o) x {x(0) + Age *"G(s)}
as + agze” " S —a; —age "
1 § — Po4 Po2

- | -s.,)"'C! | —s)'cl + ...
(5 = A1) (s — Ao2) + (sl =S.1)"CLi+ (sl =S)"Cy +
p03 S —p()l

(2.56)
Multiply (s — Xo1)(s — Ao2) On both sides to get
_ _ S —ay — age " ay + age "
(s AO})(S Ao2) y 4 d4 2 d2 % X(0) —i—Ade_ShG(s)}
(S) as + CLd3€_8h S—ay — adle_Sh
S—Dp p
_ 04 02 C{)
DPos3 S — Po1

+(S — )\01)(8 — )\02)(8' — 8_1)_1CI_1 + (8 — )\01)(8 — )\02)(8' — Sl)_1C{ 4+

(2.57)

Then, substitution oh; for s in (2.57) makes the other terms on the right hand side zero
except the first term. And after some algebraic manipulaimhusing L'Hopital’s rule as

in the scalar case, one can obtain (Yi et al., 2006b)

0
. g(s - )‘01)(5 - )‘02) )\01' — Q4 — Cl,d46_8h as + &d26_8h
hril_ B X
s %T(S) as + agze™*" Xoi — a1 — agre”*"
x {Xo + Ade_ShG()\Ol)} (2.58)

Aoi — Poa Po2
= Cl, fori=1,2
Po3 Aoi — Po1

andC/, is computed by solving the two equations in (2.58) simtarsly. Also, for the

other branche<;;, is computed with\,;, wherek = —oo,...,—1,1,..., cc.

Similarly, the coefficient<) are computed by comparing the forced parts of (2.43)
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and (2.50), that is,

(sl —A—Age™) ™ = > (sl =) 'CY
koo (2.59)

=4 (sl _5_1)—1(;1171 + (sl _50)—1(;(1)V+...

Then, following a similar derivation, one can get the ecurafor C’ as

0

) 8_(5 - )‘k’l)(s - Ak?) Aki — Qg — ad46_5h ag + adge_Sh
lim 9 X
S—>>\ki _ _
aT(S) as + agze " Aoi — a1 — agre "

(2.60)

Aki — Pka Dk2
= CY, fori=1,2

Dk3 ki — Dkl

Solving the two equations in (2.60) simultaneously, one camputeC;'. The above

approach can readily be generalized to the case of higher sydtems of DDEs.

Example 2.4Consider the example in (2.22) with an external forcing tefm

cos(t)
Bu(t) = (2.61)

sin(t)
The coefficientC; andC. are computed from (2.58) and (2.60), respectively. Apglyin
these values into (2.43), one can obtain the solution ta2j2ath (2.61). The result
obtained using 11 branches is shown in Fig. 2.5 and compartt obtained using the
numerical integration methodlde23in Matlab). As seen in the figure, the agreement is

excellent.
2.5 Concluding Remarks

In this chapter, the Lambert W function-based approachdimti®n of linear delay dif-

ferential equations is extended to general systems of DIDERJding nonhomogeneous
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2
Time,t

Figure 2.5: Solution obtained using the Laplace transfasmlwned with the matrix Lam-
bert W function method of 11 branches(straight). Compawdtdse obtained
using the numerical method (dashetfje 23n Matlab, they show good agree-

ment.

Table 2.2: Comparison of the solutions to ODEs and DDEs. Tihatien to DDES in
terms of the Lambert W function shows a formal semblancedabdhODEs

ODEs DDEs

Scalar Case

&(t) = azx(t) + bu(t), t>0 (t) = ax(t) + age(t — h) + bu(t), t>0

x(t) =x9, t=0 z(t) =g(t), t € [—h,0);z(t) =a0, t=0

z(t) = ez + / by (€)de Z el + / > eSO CNbu(€)de
0 k=—o0 0 p=—oo

1
Where,Sk = EWk(adhe_ah) +a

Matrix-Vector Case
X(t) = Ax(t) +Bu(t), t>0
X(t) =X, t=0

X(t) = e*xo + / t A=OBU(E)de
0

X(t) = AX(t) + Adx(t —h)+Bu(t), t>0

X(t)zg(t), € [=h,0);x(t) =Xo, =0
X(t) = Sktcf+/ Z eS=OCNBu(¢)de¢

where,S, = —Wk<Athk) +A
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systems. The solution obtained using the matrix Lambert W¢tion is in a form anal-
ogous to the state transition matrix in the solution to systef linear ordinary differen-
tial equations (see Table 2.2). Free and forced responseveral cases of DDEs are
presented based on this new solution approach and compdétethase obtained by nu-
merical integration. Unlike other solutions to systems &fE3 (i.e., Eq. (2.1)) the main

contributions of the research presented in this chapter are

(1) The solution to Eq. (2.1) in Eqg. (2.43), in terms of the nxatambert W function,

is given explicitly in terms of the system coefficiedtsAq4, B and the time delayj.

(2) Although the eigenspectrum of Eq. (2.1) is infinite, eaenvalue is distinguished

by k, which indicates a branch of the Lambert W function.

(3) If Aq does not have repeated zero eigenvalues, then, it is ourvaltisa that the

stability of Eq. (2.1) is determined by the principal brarigh= 0).

Even though time-delay systems are still resistant to magthaus from control theory
(Richard, 2003), the presented approach suggests that @oaheses used in systems of
ODEs, based on the concept of the state transition matnxpogentially be extended to
systems of DDEs. In systems of ODEs, the parameters of themsyasppear explicitly
in the solutions. Using the Lambert W function, the solutiorsystem of DDEs can be
expressed in terms of the coefficients and the delay timas in the ODE case. This
approach, with the state transition matrix concept, carepghe way to application of
methods from control theory to systems of DDESs, and such tansion is presented in
subsequent chapters.

It is noted that there are still several currently outstagdundamental research prob-
lems. First, the method using the matrix Lambert W functiorghs on the determination

of a matrix,Q,. As discussed in Section 2.2, it has always been possibladd}j for
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the problems, which have been considered. However, conditior the existence and
uniqueness of), are lacking and needed. Second, as discussed in Secti@ i2 2as
been observed in all our examples using DDEs that, whedoes not have repeated zero
eigenvalues, stability is determined by the principal brafi.e., k& = 0) of the matrix
Lambert W function. This observation has been proven to becbin the scalar case and
for some special forms of the vector case, however a genmyaf |3 lacking. These, and
others, are all potential topics for future research, witah build upon the foundation

presented in this chapter.



CHAPTER III

STABILITY OF SYSTEMS OF DDES VIA THE
LAMBERT W FUNCTION WITH APPLICATION TO
MACHINE TOOL CHATTER

In a turning process model represented by delay differeatjaations, the stability
of the regenerative machine tool chatter problem is ingag#d. An approach using the
matrix Lambert W function for the analytical solution to 8ms of delay differential
equations, introduced in the previous chapter, is appbethis problem and compared
with the result obtained using a bifurcation analysis. Thenbert W function-based ap-
proach, known to be useful for solving scalar first-order BDfwas extended to solve
general systems of DDEs in Chap. Il. The essential advastafjthe matrix Lambert
W function-based approach are not only the similarity todbecept of the state transi-
tion matrix in linear ordinary differential equations, &fag its use for general classes
of linear delay differential equations, but also the obagon that only the finite number
of roots obtained by using one branch, the principal braanigng an infinite number of
branches is needed to determine the stability of a systenD&d With this approach, one
can obtain the critical values of delay that determine thbibty of a system and hence the
preferred operating spindle speed without chatter. In¢hapter, the matrix Lambert W

function-based approach is applied to the problem of chat#bility in turning, and the

36
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result is compared with previous results using existinghoes. The new approach shows
excellent accuracy and certain other advantages, whenameochpo traditional graphical,

computational and approximate methods.

3.1 Introduction

Machine tool chatter, which can be modeled as a time-delsigsy, is one of the ma-
jor constraints that limit the productivity of the turninggegess. Chatter is the self-excited
vibration that is caused by the interaction between the mac$tructure and the cutting
process dynamics. The interaction between the tool-wedestructure and the cutting
process dynamics can be described as a closed-loop sysgmsge Fig. 3.2). If this
system becomes unstable (equivalently, the system of DB&s¢presents the process
has any unstable eigenvalues), chatter occurs and leads$eodated surface finish, di-
mensional inaccuracy in the machined part, and unexpecterge to the machine tool,
including tool breakage. Following the introduction of #tlassical chatter theories intro-
duced by Tobias (1965) and Tlusty (2000) in the 1960s, varioodels were developed
to predict the onset of chatter. Tobias (1965) developedphycal method and an alge-
braic method to determine the onset of instability of a systéth multiple degrees of
freedom (DOF). Merritt presented a theory to calculate thbikty boundary by plotting
the harmonic solutions of the system’s characteristic egoaassuming that there were
no dynamics in the cutting process, and also proposed aaiagyimptotic borderline to
assure chatter-free performance at all spindle speedsiflyi#065). Optiz and Bernardi
(1970) developed a general closed loop representatioreafittiing system dynamics for
turning and milling processes. The machine structural dyosiwere generally expressed
in terms of transfer matrices, while the cutting process kvaged by two assumptions:

(1) direction of the dynamic cutting force is fixed during tng, and (2) the effects of



38

feed and cutting speed are neglected. These assumptioadater removed by Minis
et al. (1990), who described the system stability in terma ofiaracteristic equation and
then applied the Nyquist stability criterion to determihe stability of the system. Chen
et al. (1997) introduced a computational method that avieidgthy algebraic (symbolic)
manipulations in solving the characteristic equation.Ghén et al., 1997), the character-
istic equation was numerically formulated as an equatioa #ingle unknown, but well
bounded, variable. Also, the stability criteria for timelaly systems were analytically de-
rived by Stepan (1989), Kuang (1993), and Stepan and Mod@v(1and using the Hopf
Bifurcation Theorem (Nayfeh et al., 1997; Kalmar-Nagy et 2001; Fofana, 2003). Re-
cently, Olgac and Sipahi developed an approach based otugtercreatment of charac-
teristic roots, examining one infinite cluster of roots ahaetfor stability of delay systems
to enable the determination of the complete stability negiof delay (Sipahi and Olgac,
2003b), and also applied the approach to machining ch&tga¢ and Sipahi, 2005).

In this chapter, an approach based on the matrix Lambert \&tiimfor the problem
of chatter stability by solving the chatter equation is préed. By applying the approach
in Chap. Il to the chatter equation, one can solve systemsDEdin the time domain
and determine the stability of the system from the eigemsin terms of the Lambert W
function. Using this method one can obtain ranges of prefeoperating spindle speed
that does not cause chatter. The form of the solution obdaseanalogous to the general
solution form for ordinary differential equations (ODEs)d the concept of the state

transition matrix in ODESs can be generalized to DDEs withgresented method.

3.2 The Chatter Equation in the Turning Process

In the turning process, a cylindrical workpiece rotatedwaitconstant angular veloc-

ity, and the tool generates a surface as material is remo®eg. vibration of the tool
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Figure 3.1: 1 DOF orthogonal cutting model

is reflected on this surface, which means that the cuttingefalepends on the position
of the tool edge for the current revolution as well as the jotev one, which is reflected
on the surface. Thus, to represent such a phenomenon, dé&gmtial equations have
been widely used as models for regenerative machine tochtiiim. The model of tool
vibration, assuming a 1-DOF orthogonal cutting depicteBig 3.1, can be expressed as

(Kalmar-Nagy et al., 2001)

() + 2w (t) + (wg + %) 2(t) — %x(t 1)
. . (3.1)
~ o= ((6t0) — ale = D = 2 tolt) — st~ 1))

wherex(t) is the general coordinate of tool edge position and the dé&lay 27/, is the
time period for one revolution, with being the angular velocity of the rotating workpiece.
The coefficientk., is the cutting coefficient derived from a stationary cugtiarce model

as an empirical function of the parameters such as the chdthwihe chip thicknessf
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(nominally f, at steady-state), and the cutting speed. The natural arfgeg@ency of the
undamped free oscillating systemus and( is the relative damping factor. Note that the
zero value of the general coordinatg) of the tool edge position is selected such that the
x component of the cutting force is in balance with the stée/hen the chip thickness,
f, is at the nominal valuefy (Kalmar-Nagy et al., 2001).

To linearize Eq. (3.1), define, = 2 andz, = z, and rewrite the equation in first-order

form as
Ty = x5(t),
t o (0 == 1) = ) - aale — 1))

(3.2)

At equilibrium, the conditiong,(t) = @2(t) = 0, is satisfied and, thus, the equation

becomes
O = l’g(t),
0 = —2Cw,xa(t) — <w,2L + %) xq(t) — %xl(t -T)
(@0 == 1) = ) = e~ 1))

(3.3)
and if no vibration from previous processing is left, theft) = =, (t—7") = 0. Therefore,

it can be concluded that one of the equilibrium points is

T () = 2:1(t = T) = T2(t) = 0, (3.4)

which means that at this equilibrium point, the tool edgenithe zero position as defined
previously. Linearizing (3.2) using a Jacobian matrix aaééd at the equilibrium point

gives
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p

x1(t) B
| #2()
of of of of
Dx1(t) Do) n® | On(t—1) ma(t—T) n(t=T)
% 9 (1) % % 2o(t — T)
| 9y () Oxa(t) [, 77 O (t —T) dugt —T) ], L 77
f =12
h = —2Cwyo(t) — w2+@ x(t)—%@x(t—T)
where g9 = nd2 n o 1 m 1
k. 5
o (@0 == 1) = )~ e - 7))
) (3.5)
Consider the equilibrium point in Eq.(3.4), Eq.(3.5) beesm
. - 2 kC 9 + kc
) —\ Wy + E - Cwn l’g(t) E 0 l’g(t — T)
(3.6)
Equivalently, (3.6) can be written as
Z(t) + 2Cw,x(t) + (wi + @) x(t) — @x(t -T)=0 (3.7)
m m
or in the form of (Chen et al., 1997)
%i(t} + i—cg‘:(t) +x(t) = —:—c (x(t) —z(t—=T)), (3.8)

wherek,, is structural stiffness (N/m) angw? = k,,,.

Figure 3.2 shows the block diagram of the chatter loop. Irdibgram, two feedback
paths exist: a negative feedback of position (primary patig a positive feedback of
delayed position (regenerative path). Thgs) is the nominal depth of cut initially set
to zero (Merritt, 1965). Chatter occurs when this closeglegstem becomes unstable

and, thus, Eq. (3.8) has any unstable eigenvalues. Therefar stability of the linearized
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Cutting Process Structural Dynamics
k 1/k m X (S )
e — 1 2 >
5 st + ¢ s+1
a)f‘l a)fl
Primary Feedback Path

e*TS

Regenerative Feedback Path

Figure 3.2: Block diagram of chatter loop (Merritt, 1965)wd feedback paths exist: a
negative feedback of position (primary path) and a posiiesiback of de-
layed position (regenerative path). Chatter occurs whisnctbsed loop sys-
tem becomes unstable.

model in (3.8) can be used to determine the conditions foottset of chatter. However,
the linearized equations do not capture the amplitude itwgnihonlinearities associated
with the chatter vibrations. Although comparison with esipeental data is not provided
here, similar models have been extensively studied andatalkl in prior works (e.g., see

(Chen et al., 1997) and the references therein).

3.3 Solving DDEs and Stability

The linearized chatter equation (3.8) can be expressedta space form as Eq. (2.1).

Definingx = {x i}T, where’ indicates transpose, equation (3.8) can be expressed as

0 1 0 0
A= e , Aa=| g ;and h=T. (3.9)
— (1 + k:_c) w2 —2Cwn k—cwi 0

A andA, are the linearized coefficient matrices of the process marlare functions of
the machine-tool and workpiece structural parameters asiclatural frequency, damping,

and stiffness. The analytical method to solve scalar DDEd, systems of DDEs as in
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(2.1) using the matrix Lambert W function was introducedha previous chapter. Here
the matrix Lambert W function-based approach introduce@hap. Il is applied to the
chatter problem to find stable operating conditions (emgjndie speed and depth of cut).

Assume the unknow® in (2.15) as

q q
o= | " (3.10)

21 422
Then matrices in Egs. (3.9) and (3.10), the argument of tmelemt W function, A4hQ”

is -
0 0
AqhQ = I I ) (3.11)
AT qro—w?T
q11 e, kot
Hence, the eigenvalue matrix and the eigenvector matriAfaQ are
A0 o2 w2T 0 0 22
d= — km . V= Q| (3.12)
0 Ao 0 0 1 1

As seen in (3.12), one of the eigenvalues is zero. This poakes the chatter equation
unusual, because of the following property of the Lambertufction (Corless et al.,

1996):

0 when k=0
Wi(0) = (3.13)

—00 when K= 0

Because of this property, in contrast to the typical case&itentical brancheg( = ;)
are used in (2.16) of the previous chapter, here it is nepessause hybrid branches

(k1 # k3) of the matrix Lambert W function defined as
ke
Wi, (q12 k_sz) 0

Wi, 1o (AghQ) = V v (3.14)

0 W, (0)

By settingk, = 0 and varying onlyk; from —ooc to oo, one can solve (2.15) to g&, o,
then using (2.14), one determines the transition matri€éseosystem (2.1) with the co-

efficients in Eq. (3.9). The results for gaih./k,,) = 0.25, spindle speedl/T") = 50,
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Table 3.1: Results of calculation for the chatter equation

Sk ks Eigenvalues of;, 4,

0 1 —0.12 + 181.88i

ey = ky =0 + !
—33083 —-0.24 —0.12 — 181.882

0 1 —0.12 4 181.88i

ki=—1 & ky=0 + ‘
—TT7988 + 320937 —177 — 247¢ —176.73 — 428.66¢

0 1 —91.61

—11 —-16637 —92 — 182¢ —0.12 — 181.88¢

0 1 —0.12 — 181.882

ki=1 & ky=0 !
—T77988 — 320937 —177+ 2471 —176.73 + 428.66%

0 1 —91.61
—11+1663¢ —92 4 1821 —0.12 + 181.88:

—0.12 4 181.881

0
kiy=-2 & k=0
—137360 + 423407 —230 — 570z —233.30 — 755.05¢

0

—0.12 — 181.88¢
—137360 — 42340¢ —230 + 5701

]{31 - 2 &. ]{72 == 0 [ .
—233.30 + 755.05¢

—0.12 + 181.881

0 ~0.12 — 181.88i
77945 — 31297i 177 — 611 ~176.73 — 428.66i
{ —176.73 + 428.66i

0
l 77945 + 312977 —1774 611: ]

w, = 150(sec™?), and¢ = 0.05, are in Table 3.1. As seen in Table 3.1, even thokigh
varies, it is observed that the eigenvaluesifpe= k, = 0 repeat, which is caused by the
fact that one of the branchek,] is always zero.

The responses, obtained by using the approach in Chap.Hkiéttransition matrices
in Table 3.1, are illustrated in Figure 3.3 and compared thiéiresponse using a numerical
integration of the nonlinear equation (3.1) and the lireadione (3.7). Note that this is

for the linearized equation given by (2.1) with the coefiitgein Eq. (3.9). As seen in
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Nonlinear Response of Eq. (3.1)
/Linear Response of Eq. (3.7)

with 9 transition matrices

0.8
0.6 with 1 transition matrix

0.4

0.2

Solution, x(t)

-0.21-

04f |

-0.6(-

-0.8

Figure 3.3: Responses for the chatter equation in Eqg. (8/ith more branches used, the
results show better agreement.

Figure 3.3, because there are an infinite number of transitiatrices for DDEs with
varying branches, as more transition matrices are utilileel response approaches the

numerically obtained response.

3.3.1 Eigenvalues and stability

The solution approach based on the Lambert W function in EQ1{ reveals that the
stability condition for the system (2.1) depends on themigkies of the matri,. That
is, a time-delay system characterized by Eq. (2.1) is asyticptly stable if and only if

all the eigenvalues df, have negative real parts. However, computing the matis;es
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for an infinite number of brancheg,= —oo,---,—1,0,1,---, 00, IS not practical. As
explained in Subsection 2.2.2, if the coefficient matAy, does not have repeated zero
eigenvalues, then, it has been observed that the chastittedots of Eq. (2.1) obtained
using only the principal branch are the rightmost ones irctimaplex plane and determine
the stability of the system in Eq. (2.1). Since there is qutyeno general proof, these
observations are formally summarized here in form Gfoajecture That is,

Conjecture

if Aq does not have repeated zero eigenvalues, then

max{ R{eigenvalues for the principal brandh= 0}} > R{all other eigenvaluds
(3.15)

Note that ifAq has repeated zero eigenvalues, the rightmost eigenvaleedbtained by
using the principal branch:(= 0), or k = +1, for all cases considered.

The eigenvalues in Table 3.1 are presented in the complee phaFigure 3.4. Figure
3.4 shows that the eigenvalues obtained using the prinbi@aich ¢; = &, = 0) are
closest to the imaginary axis and determine the stabilitheksystem (3.8). For the scalar
DDE case, it has been proven that the root obtained usingrtheigal branch always
determines stability (Shinozaki and Mori, 2006), and suphoaf can readily be extended
to systems of DDEs wher& and Ay commute. However, such a proof is not available
in the case of general matrix-vector DDEs. Nevertheless,same behavior has been
observed in all the examples that have been considered.igltae eigenvalues &,
obtained using the principal branch for bothgfandk,, are closest to the imaginary axis,
and their real parts are negative. Furthermore, usingiadditbranches to calculate the
eigenvalues always yields eigenvalues whose real parfsréner to the left in thes-plane.
Thus, it can be concluded that the system (3.8) with the pat@mnset is stable.

If one observes the roots obtained using the principal bramee can find the critical
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Figure 3.4: Eigenvalues in Table 3.1 in the complex plane digenvalues obtained using
the principal branchk(= 0) are dominant and determine the stability of the
system.

point when the roots cross the imaginary axis. For examphervepindle speed /T') =
50, w, = 150(sec2) and¢ = 0.05, the critical ratio of gaingk../k,,) is 0.2527. This value
agrees with the result obtained by the Lyapunov method (KMZkvarei and Jamshidi,
1987), the Nyquist criterion and the computational methb{Chen et al., 1997). The
stability lobes by this method are depicted in Figure 3.%watspect to the spindle speed
(rps, revolution per second). In obtaining the result shown & Eigure 3.5, it is noted
that the roots obtained using the principal branch alwaysrdene stability. One of the
advantages of using the matrix Lambert W function over othethods appears to be the
observation that the stability of the system can be obtaireed only the principal branch

among an infinite number of roots. The main advantage of tlethad is that solution
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Figure 3.5: Stability lobes for the chatter equation

(2.21) in terms of the matrix Lambert W function is similarttat of ODEs. Hence, the
concept of the state transition matrix in ODESs can be geizeito DDESs using the matrix
Lambert W function. This suggests that the analytical apginaising the matrix Lambert
W function can be developed fdime-varyingDDEs based on Floquet theory and such
study is being currently investigated.

Recently, Forde and Nelson (2004) developed a bifurcatieaiyais combined with
Sturm sequences for determining the stability of delayedéftial equations. The method
simplifies the task of determining the necessary and suftigdenditions for the roots of
a quasi-polynomial to have negative real parts, and wasegbpb a biological system
(Forde and Nelson, 2004). For the chatter problem congidezee, the bifurcation analy-
sis presented in (Forde and Nelson, 2004) also providedal asgorithm for determining

stability. In (Yi et al., 2007b), the method was applied tattér equation in (3.8). Com-
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pared with existing methods, the bifurcation analysis vdthrm sequence can be used
determine the critical values of delay that the stabilitgitiof the system with relatively
simple calculations, avoiding restrictive geometric geel. Also, it showed excellent

agreement with the result presented in this chapter.

3.4 Concluding Remarks

In this chapter, a new approach for the stability analysisnathining tool chatter
problems, which can be expressed as systems of linear délesedtial equations, has
been presented using the matrix Lambert W function. The admantage of the analytical
approach based on the matrix Lambert W function lies in tlo¢ tlaat one can obtain
the solution to systems of linear DDEs in the time domain, #redsolution has a form
analogous to the state transition matrix in systems of tinedinary differential equations.
It can be applied to systems of linear DDEs of arbitrary qrded thus can be used in
chatter models that include multiple structural vibratinades. Though the solution is in
the form of an infinite series of modes computed with difféderanches, it is observed
that the principal branch always determines the stabifity ystem (e.g., see Figure 3.4).
The results show excellent agreement with those obtained traditional methods, e.g.,
Lyapunov (Malek-Zavarei and Jamshidi, 1987), Nyquist, tlnenerical method used in
(Chen et al., 1997), and bifurcation analysis via Sturm eaqa (Yi et al., 2007b). The
method presented in this chapter not only yields stabigguits but also can be used to

obtain the free and forced response of the linearized madbwl dynamics.



CHAPTER IV

CONTROLLABILITY AND OBSERVABILITY OF
SYSTEMS OF LINEAR DELAY DIFFERENTIAL
EQUATIONS VIA THE MATRIX LAMBERT W

FUNCTION

During recent decades, controllability and observabiityinear time-delay systems
have been studied, including various definitions and cpmeding criteria. However, the
lack of an analytical solution approach has limited the iapility of existing theory.
Recently, the solution to systems of linear delay diffearquations has been derived in
the form of an infinite series of modes written in terms of thetnx Lambert W function
as introduced in Chap. Il. The solution form enables one tdlpiresults for point-wise
controllability and observability of systems of delay difntial equations to practical use.
In this chapter, the criteria for point-wise controllabyiland observability are derived,
the analytical expressions for their Gramians in terms efgrameters of the system are
obtained, and a method to approximate them is developelddirst time using the matrix

Lambert W function-based solution form.

4.1 Introduction

The Lambert W function has been used to develop an approatthefgolution of lin-

ear time invariant (LTI) systems of DDEs with a single delay $calar first order DDES

50
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and, subsequently, general systems of DDEs (e.g., see Claap.the references therein).
The approach using the Lambert W function provides a soidttom for DDEs and thus
enables one to put the theoretical results on point-wisérakebility and observability
of time-delay systems and their Gramians (e.g., see (Ma#slarei and Jamshidi, 1987),
(Richard, 2003) and the references therein), to pract®al bn this chapter, the properties
of controllability and observability for time-delay systs are studied via the matrix Lam-
bert W function approach-based solution. Using the aralysolution form in terms of
the matrix Lambert W function, the point-wise controllatyiland observability criteria,
and their Gramians, for LTI systems of DDEs with a single gelie derived. Also, the re-
sults are applied to an example for illustration. The regtdvides an analytical approach
to investigate the two system input-output properties tfadiability and observability),
and also is used for obtaining balanced realizations foe-ilalay systems.

Consider a real LTI system of DDEs with a single constantydélain Eq. (2.39) with

an output equation. That is,

X(t) = AX(t)+Agx(t—h)+Bu(t) t>0

x(t) = g(t) t € [—h,0) 4.1
X(t) = Xo t=0
y(t) = Cx(1)

The coefficient matrixC is p x n andy(t) is ap x 1 measured output vector. Note that
there exist two kinds of initial conditions for systems of B x, which is the value of
X(t) att = 0, and the preshape functiog(t) in (4.1) and is equal tx(¢) on the in-
tervalt € [—h,0). For general retarded functional differential equatiahs, existence
and uniqueness of the solution are proved based upon thepssn of continuity, i.e.,
9(0) = Xo. However, in the specific case of the LTI system of DDEs witingle constant

delay asin (4.1), the existence and uniqueness can be alsedorithout such an assump-
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tion (Tsoi and Gregson, 1978) and (Hale and Lunel, 1993).s€guently, for generality,
one can assume thgt0) is not necessarily equal tq in (4.1). In Chap. Il, the solution
to (4.1) was derived using the matrix Lambert W functiondshapproach and given as in

Eq. (2.43).
4.2 Controllability

Controllability and observability are two fundamentatigtites of a dynamical system.
Such properties of time-delay systems have been explaned gie 1960s and the control-
lability and observability Gramians for time-delay systewere presented respectively by
Weiss (1967) and Delfour and Mitter (1972) based upon asdwyrabolic solution forms
of the DDEs. However, application of the results with Gramsi#o verify controllability
and observability of linear time-delay systems has beditdif, due to the lack of analyti-
cal solutions to DDEs (Malek-Zavarei and Jamshidi, 198 @nalysis of controllability
and observability based on the solution form in terms of tlagrix Lambert W function
are presented in this, and subsequent, sections resggctive

Depending on the nature of the problem under considerati@ne exist various def-
initions of controllability and observability for time-tiy systems (Richard, 2003) (also
see Appendix B for comparison of various types). Among thiéya concept opoint-wise
controllability of a system of DDEs, as in (4.1), and the related conditiorre weroduced

in (Richard, 2003).

Definition 1 The system (4.1) is point-wise controllable (or equivdigulefined as fixed-
time completely controllable in (Choudhury, 1972a) i&t-controllable to the origin in
(Richard, 2003), (Weiss, 1970)) if, for any given initiahditionsg(t) andx,, there exists
atimet;, 0 < t; < oo, and an admissible (i.e., measurable and bounded on a fimi t

interval) control segmeni(t) for t € [0, ¢;] such thatx(¢,; g, Xo, u(t)) = 0 (Weiss, 1967).
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The solution form to (4.1) is assumed as (Bellman and Cod@&3)L

X(t) = X(t;9,%0,u) = M(t; 9, %) +/O K (¢, t)Bu(&)dg, (4.2)

whereM (t; g, Xo) is the free solution to Eq. (4.1) atd(&, ¢) is the kernel function for Eq.
(4.1). Then using the kern&l (¢, ¢) in (4.2), the condition for point-wise controllability

was derived in (Weiss, 1967) with the following definition.

Definition 2 A system (4.1) is point-wise complete at titpef, for all x; € R", there
exist initial conditiongy(¢) and Xy, such thatx(¢;; g, Xo, 0) = X;, wherex(t; g, Xo, 0) is a

solution of (4.1) starting at time= 0 (Choudhury, 1972b).

The conditions for point-wise completeness are present@dhoudhury, 1972b), (Malek-
Zavarei and Jamshidi, 1987), and (Thowsen, 1977). For eleamlp2 x 2 DDEs or DDEs
with a nonsingular coefficienf 4, are point-wise complete.

Even though the equations to obtain the kernel function i&)(&ere presented in
(Bellman and Cooke, 1963) and (Malek-Zavarei and Jamst8@i7) the lack of the knowl-
edge of a solution to the systems of DDEs has prevented theatia and application
of the results in (Weiss, 1967). This has prompted many astteodevelop algebraic
controllability criteria in terms of systems matrices (Ralo, 1968), (Choudhury, 1972a),
(Kirillova and Churakova, 1967), and (Weiss, 1970). Othefirdtions of controllability,
which belong in different classifications, such as specwatrollability, have alternatively
been provided (Manitius and Olbrot, 1979). For definitiond eonditions of various types
of controllability and comparisons, refer to (Malek-Zasieand Jamshidi, 1987), (Richard,
2003) (also see Appendix B).

Using the matrix Lambert W function, however, the lineardimvariant system with
a single delay can be solved as in (2.43) and, thus, the kienmation used in the condition

for point-wise controllability can be derived. The kerneh€tionK (¢, ¢,) is obtained, by
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comparing (4.2) with (2.43), as

K(E t) = Z eSHt=9¢C (4.3)

k=—00

Therefore, it is possible to express the controllabilitya@ran, and state the following

main result, for controllability of the systems of DDEs in1}#

Theorem 1 If a system (4.1) is point-wise complete, there exists arabwhich results
in point-wise controllability in finite time of the solutiaf (4.1) for any initial conditions
g(t) andxq, if and only if
00 T
rank | C,(0, 1) / Z Si(t1=¢) CNBBT{ D Sy } d¢| =n (4.4)
k=—00 k=—o00
whereC,(0, t,) is the controllability Gramian of the system of DDEs anihdicates the

transpose.

Proof: Sufficiencyin (2.43), in order to transfex(¢) to O at ¢;, substitute an input

obtained with the inverse of the controllability Gramiarn(4n4)

u(t) = —BT {K(t,t1)} C,;(0,£1)M (t1; 9, Xo) (4.5)

whereM is the free solution to (4.1), and comparing (4.2) with (2 .yi2lds

M (t1; 0, Xo) = Z eS¢l (4.6)

k=—00

thenx(t;) = 0.

NecessityGiven anyg andx,, suppose there exist > 0 and a controly,; such that

X(t;) = 0, but (4.4) does not hold. The latter implies that there exashon-zero vector
x; € R" such thatx?K (¢,#,)B = 0, 0 < t < ¢, due to the following fact. LeF be an

n X p matrix. Define

Py 1oy = / . F(t)FT (t)dt 4.7)

t1
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Then the rows of are linearly independent dn, ¢, if and only if then x n constant

matrix P, +,) is nonsingular (Chen, 1984). Then, from (4.2),

XTX(11) = XTM (119 %) + / CXTK (€, 1)BU(€)de 4.8)
0

and0 = xTM(t1;9,%0). By hypothesis, howeveg and x, can be chosen such that
M (%159, %X0) = X;. Thenx'x; = 0 which contradicts the assumption thxat~= 0 B

In the ODE case, the input computed using the controllgb@itamian will use the
minimal energy in transferringx,, 0) to (0,¢;) (Chen, 1984). Using the controllability
Gramian in (4.4), one can prove that such a result is alsdedlaifor DDE’s in a similar
way to the ODE case in (Chen, 1984) (see proof in Appendix BatTs, the input defined
in (4.5) consumes thminimalamount of energy, among all thés that can transfefx,, 0)
to (0,t).

With Theorem 1 and (4.7), assuming that the system (4.1)iigt-@ose complete, it

can be concluded as that

Corollary 1 The system in (4.1) is point-wise controllable if and onlgllifows of

D eST0cB (4.9)

k=—o00

are linearly independent oj), o).
The Laplace transform of (4.9) is (Yi et al., 2006b)
L { > esk<t—0>cffs} = (sl —A—Age™")'B (4.10)
k=—o00

Since the Laplace transform is a one-to-one linear operan@ can obtain the following

corollary.

Corollary 2 The system in (4.1) is point-wise controllable if and onlgllifows of

(sl —A—Age")7'B (4.11)
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are linearly independent, over the field of complex numbgce@ at the roots of the

characteristic equation of Eq. (4.1).

In systems of ODEs, if the state variabl¢) is forced to zero at = ¢4, it stays at
zero onfty, o0). However, because the system of DDEs in (4.1) hdslayed ternin its
equation, even though all the individual state variableszaro at = t; they can become
non-zero again afte. For this reason, additional definitions of controllalifior systems
of DDEs for functional, not point-wise, types of controliély are available in (Richard,

2003), (Weiss, 1967). Also see Appendix B.

Remark 1 It have been shown with some examples in (Yi et al., 2009¢t)fthee system
of DDEs is point-wise controllable, it is possible to deslgear feedback controllers via
rightmost eigenvalue assignment for the system in Eq. ;(étherwise, it is not. This
chapter presents the theoretical foundation for estalntiglpoint-wise controllability. To
date there is no general theory for DDESs, as there is for ODigaf controllability is
required for eigenvalue assignment by linear feedbacki(d@iso Gregson, 1978), (Vande-

venne, 1972).

4.3 Observability

Consider the system given in (4.1). If one knows the init@hditions,g(t) andx,,
then one can know all state variables for any time using theisa in (2.43) to the sys-
tems of DDEs. As seen in (2.43), however, the main obstadbkedact that the free
solution does not have the form of just the product of init@hditions and the transition
matrix, in contrast to the ODE case. Therefore, a concepomitpsvise observability was
introduced for systems of DDEs in (Delfour and Mitter, 197&hich is different from that

of observability for systems of ODEs.
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Definition 3 The system of (4.1) is point-wise observable, (or equitiaerbservables
in (Delfour and Mitter, 1972)) irf0, ¢, if the initial pointx, can be uniquely determined

from the knowledge af(t), g(t), andy(t) (Delfour and Mitter, 1972).

This concept was introduced by Gabasov et al. (1972) forlpunathematical reasons.
However, disturbances which can be approximated by Dirsiributions cause the sys-
tem response to be approximatable by jumps in the trajecesponse (Lee and Olbrot,
1981). For such cases, the concept of point-wise obseityabds been used in analyz-
ing singularly perturbed delay system, where the pertiohas very small but cannot be
ignored (see, e.g., (Glizer, 2004; Kopeikina, 1998)).

Just as in the case of controllability, the lack of analytgmutions of the systems of
DDEs has prevented the evaluation and application of theeabondition. Unlike con-
trollability, the development of algebraic conditions tbe investigation of the observabil-
ity of time-delay systems has not received much attentioal¢ktZavarei and Jamshidi,
1987). Bhat and Koivo (1976a) used spectral decompositiaietompose the state space
into a finite-dimensional and a complementary part. In (Leg @Ilbrot, 1981), various
types of observability of time-delay systems and corredpanalgebraic conditions were
presented. For a detailed study, refer to (Malek-Zavareizamshidi, 1987; Lee and OlI-
brot, 1981), and the references therein.

Applying the kernel function in (4.3) to the observabilityaian defined symboli-
cally in (Delfour and Mitter, 1972), one can present thedwihg condition for observabil-

ity for systems of DDEs. Here the system of (4.1) is assumée pmint-wise complete

Theorem 2 The system of (4.1) is point-wise observable if and only if

t1 00 T [e's}
04(0, ) E/ { > eSk@—O)C{j} c'c Y esk@O)c{fdg} =n (4.12)
0

k=—00 k=—00

rank

whereO,(0, t1) is the observability Gramian of the system of DDEs.
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With Theorem 2 and (4.7) in a way similar to controllabilitygy in the previous section,

one can conclude that

Corollary 3 The system of (4.1) is point-wise observable if and onlyl é@umns of the

matrix

C ) -0cy (4.13)

k=—o00
are linearly independent.
Since the Laplace transform is a one-to-one linear opertterfollowing corollary then

obtained.

Corollary 4 The system of (4.1) is point-wise observable if and onlyl é@umns of the
matrix

C(sl —A—Age) ™ (4.14)
are linearly independent except at the roots of the charastte equation of Eq. (4.1).

Proof The proofs are essentially similar to those of controliabih Section 4.2 and

are omitted for brevityll

Remark 2 As in the case of point-wise controllability, for point-&isbservable systems
of DDEs, a linear asymptotic observer can be designed viatngst eigenvalue assign-

ment as shown by examples in (Yi et al., 2009b).

In the case thag(¢) is unknown, ifg(t), as well asxy, can be determined uniquely from

a knowledge ofu(t) andy(t), the system of (4.1) is termembsolutely observabléor
strongly observablen (Delfour and Mitter, 1972)). For a detailed explanatidnie defi-
nition of absolute observabilitgnd the corresponding conditions, the reader is referred to

(Delfour and Mitter, 1972).
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Figure 4.1: Response of the example in (4.15) obtained bgnttex Lambert W function
approach with 33 terms (a) and the maximum of errors betweenesponse
by the solution form in (2.43) and the numerically obtaineg ¢b) corre-
sponding to the number of branches used for the responseeriidre continue
to be reduced as more terms in the series solution are irttlude

4.4 lllustrative Example

Consider a system of DDEs (4.1) with parameters, from (LeeRianat, 1981),

—1 -3 1.66 —0.697
. Ag= . h=1 (4.15)

2 =5 0.93 —0.330

A —

The response, using the solution form in (2.43), is depioideig. 4.1-(a) wherg(t) =

{1 0} andxy ={ 1 0o }*. The solution (2.43) has the form of an infinite series of
modes written in terms of the matrix Lambert W function. Etteough it is not practically
feasible to add all the infinite terms of the series in (2.433an be approximated by a
finite number of terms. For example, in Fig. 4.1-(a), 33 bhesok = —16, ..., 16) of the
Lambert W function are used. As one adds terms, the errovgelatthe response (from
Eq. (2.43)) and a solution obtained numerically (usiltig23in Matlab) continue to be

reduced and validate the convergence of the solution inZ43) (see Fig. 4.1-(b)).
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x10~°

det [Controllability Gramian]

I I I I I I I I I |
10 1 12 13 14 15 16 17 18 19

L L L L L
1 2 3 4 5 6 7 8 9
Number of Branches Used

Figure 4.2: Determinant of the controllability Gramianstes branches. As more branches
are included, the value of determinant converges to a nomvadue.

Using the criterion in (Choudhury, 1972b) (also presentefiaction 4.2), the system
in (4.15) is point-wise complete. F&=[ 1 ( |7, the controllability Gramiai®’,(0, ¢,) in
(4.4) can be computed. Then in order for the system (4.15¢ todint-wise controllable,
C,(0,t1) should have full rank. This means that the determinant ofrtatix is non-zero.
That is,

det |Co(0, ;)] # 0 (4.16)

Computing the determinant of the matrix for an increasingnber of branches yields the
resultin Fig. 4.2. As more branches are included, the souti (2.43) converges (see Fig.
4.1), so do the kernel function in (4.3) and the controlipEramian in (4.4). Figure 4.2
shows that the determinant converges to a non-zero valuehwhplies that the system
is point-wise controllable.

Even though a system satisfies the algebraic criteria aly@adided in previous work,

such as (Lee and Olbrot, 1981), (Malek-Zavarei and Jamst®&i7), in cases where the
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x 10

det [Gramian]

L L L L L L L L L I
1 2 3 4 5 6 7 8 9 10 11
Number of Branches Used

Figure 4.3: Determinant of observability Gramian wh@én= [0 1] andC = [1 0]. As
the number of branches used increases, the value of therdesert in case of
C = [1 0] tends to converge to a higher value than@o« [0 1].

determinant of the observability Gramian in (4.12) is seralhan a specific value, then
it is not practical to design an observer as the gains in tlsemier can become unreal-
istically high. Comparing the determinant of the obsergbGramian corresponding to
the system in (4.15), one can obtain a practical assesskargxample, the determinants
of the observability Gramian for (4.15) whé&h = [ 1 o] andC = [ 1 | are com-
pared in Fig. 4.3 with; = 4. As the number of branches used increases, the value of the
determinantin case & = [ 1 ( | tends to converge to a higher value than the case of
C=[o 1]

From the results in Figures 4.2 and 4.3, although a formalystdi truncation errors is
needed, the convergence of the Gramians is observed asrtiieenof terms in the series

is increased. When the convergence conditions, which guiaieed in Chap. I, and also
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Table 4.1: Comparison of the criteria for controllabilitychobservability for the systems
of ODEs and DDEs

ODEs DDEs
Controllability Point-Wise Controllability
T
ot ot oo oo
Co(0, 1) = /0 1 A(t1—€)ggT {EA(nf&)}TdE Co(0,t1) = /01 3 esk(“*g)cﬁsBT{ 3 esk“l*&)cfs’} de
k=—o0 k=—oc
—1 —sh) 1
(sl —A)~"1B (slfAfAde ) B
oo
At—0)g S S 0chB
k=—o0
Observability Point-Wise Observability
T
ot T B ot oo B oo B
Ob(O,tl)E/ol{eA(5 01T cTeeAlE= g ob(o,tl)z/01{ S Sk ‘%fj} cTe 3 SeE-0cNge
k=—o0 k=—o00
—1 —sh) 1
C(sl —A) C(slfAfAde )
oo
CAt—0) c Z esk(t*mcﬁj

k=—occ

in the cited references, are satisfied, then the series sijpeof the solution in Eq. (2.43)
converges. The controllability Gramian in Eq. (4.4) anddbservability Gramian in Eq.
(4.12) are the integrals of products of the kernel (Eq. j4aBH constant matrice8 (and
C) over afinite interval. Thus, the convergence of the Gramiamlso assured under the
same conditions.

The presented results agree with those obtained usingrexialgebraic methods.
However, using the method of Gramians developed in thispape can acquire addi-
tional information. The controllability and observabjliGramians indicate how control-
lable and observable the corresponding states are (HadfoddAgathoklis, 1996), while
the algebraic conditions for controllability/observatyikreveal only whether a system is
controllable/observable or not. Therefore, with the ctinds using Gramian concepts,
one can determine how the change in some specific paramétaessystem or the delay
time, h, affects the controllability and observability of the sstvia the changes in the
Gramians.

Using the Gramians presented in the previous sections,aheept of the balanced
realization, in which the controllability Gramian and obsbility Gramian of a system

are equal and diagonal, can be extended to systems of DDEssybtems of ODEs,
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the balanced realization has been studied because of itallleproperties such as good
error bounds, computational simplicity, stability, anslétose connection to robust multi-
variable control (Verriest and Kailath, 1983). However, $gstems of DDESs, results on
balanced realizations have been lacking. Here, the des@l@ramians are applied to
the problem of the balanced realization for systems of DQ#sHe first time. Lefl be

a nonsingular state transformation, thgn) = Tx(¢). The corresponding effect on the

Gramians is

Co(0,t1) = TCH(0,t)TT,  0u(0,11) = T-T0,(0,1,) T (4.17)

Thus,C,(0,t,) and0,(0,t,) can be made equal and diagonal with the aid of a suitably
chosen matrixT. In the numerical example in (4.15), whé& = [ { o |F andC =
[1 0 ],theC,(0,t; = 4) and0,(0,t,; = 4) are respectively

0.2992 0.1079 0.2992 —0.1484
Co(0,t) = . 0(0,t) = (4.18)

0.1079 0.0554 —0.1484 0.0975

when computed using 11 branches of the matrix Lambert W foimctn this case, using

the resultin (4.17), the transformation

~0.3929 1.1910
T = (4.19)

1.0880 —0.5054

makes the the Gramiamslancedi.e., equal to each other and diagonalized,

. R 0.0238 0.0000
Co(oatl) = Ob(oatl) = (420)

0.0000 0.2497
Future research is needed to establish conditions for tiseeexe of the transformatioh
to achieve a balanced realization for DDEs, and to studyomsergence as the number of

branches used in the Lambert W function solution increases.
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4.5 Conclusions and Future Work

The controllability and observability of linear systems@DES is studied using the
solution form based on the matrix Lambert W function. Theassary and sufficient con-
ditions for point-wise controllability and observabiligye derived based on the solution
of DDEs. The analytical expressions of Gramians are obdaamel approximated for ap-
plication to real systems with time-delay. Using Gramianaapts, it is possible to figure
out how the change in some specific parameters of the systéme delay time/, affect
the controllability and observability of the system via tfenges in the Gramians. Also,
for the first time, for systems of DDESs, the balanced reabreis investigated in the time
domain as in the case of ODEs. An example is presented to d#ratsthe theoretical
results.

Based upon the results presented, extension of well-ésteldlcontrol design concepts
for systems of ODEs to systems of DDEs appears feasible. ¥eonge, the design of
feedback controllers and observers for DDEs can be dewveliopg manner analogous to

ODEs via eigenvalue assignment (Yi et al., 2009c,a) (aledC&ps. V and VII).



CHAPTER YV

EIGENVALUE ASSIGNMENT VIA THE LAMBERT W
FUNCTION FOR CONTROL OF TIME-DELAY
SYSTEMS

In this chapter, the problem of feedback controller designeigenvalue assignment
for linear time-invariant systems of delay differentiabatjons (DDEs) with a single de-
lay is considered. Unlike ordinary differential equatiq@DEs), DDEs have an infinite
eigenspectrum and it is not feasible to assign all close@-kigenvalues. However, an
approach is developed to assign a critical subset of eiyggwaising a solution to linear
systems of DDEs in terms of the matrix Lambert W function. Fbé&ition has an ana-
lytical form expressed in terms of the parameters of the D@, is similar to the state
transition matrix in linear ODEs. Hence, one can extendrodiet design methods devel-
oped based upon the solution form of systems of ODEs to sgatéDES, including the
design of feedback controllers via eigenvalue assignnf&mnth an approach is presented

here, is illustrated using some examples, and is compartbdotvier existing methods.
5.1 Introduction

Using the classical pole placement method, if a system efliordinary differential
equations (ODEs) is completely controllable, the eigamesican be arbitrarily assigned

via state feedback (Chen, 1984). However, delay diffea¢riuations (DDES) always

65
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lead to an infinite spectrum of eigenvalues, and the detextmimof this spectrum requires
a corresponding determination of roots of the infinite-digienal characteristic equation.
Moreover, an analytical solution of systems of DDEs has baeking. Thus, such a pole
placement method for controller design for systems of OCdmot be applied directly to
systems of DDEs.

During recent decades, the stabilization of systems ofatil@DEs using feedback
control has been studied extensively. The problem of rostadtilization of time-delay
systems, or the stabilization problem via delayed feedlwackrol, is most frequently
solved via the Finite Spectrum Assignment method (Brethielamiseau, 1998; Manitius
and Olbrot, 1979; Wang et al., 1995), which transforms tlablam into one for a non-
delay system. The stabilization problem can also be appszhasing stability conditions
as expressed by solving a Riccati equation (Lien et al., 1999by the feasibility of

a set of linear matrix inequalities (Li and deSouza, 199&uMiscu, 2001). A stability

analysis called thBirect Method in which a simplifying substitution is used for the tran
scendental terms in the characteristic equation (OlgacSipahi, 2002), was applied for
active vibration suppression by Sipahi and Olgac (2003ag dct-and-wait control con-
cept was introduced for continuous-time control systentk ¥éedback delay by Stepan
and Insperger (2006). The study showed that if the duratiamadting is larger than the
feedback delay, the system can be represented by a finitengiomal monodromy matrix
and, thus, the infinite dimensional pole placement probkemneduced to a finite dimen-
sional one. Also, variants of the Smith predictor methodehaeen developed to decrease
errors enabling one to design Proportional-Integral-xnre (P1D) control in time-delay
systems (Fliess et al., 2002; Sharifi et al., 2003). A nunaéstabilization method was
developed by Michiels et al. (2002) using a simulation pgek#nat computes the right-

most eigenvalues of the characteristic equation. The agpres similar to the classical
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pole-assignment method for ODEs in determining the riglstneagenvalues of a linear
time-delay system using analytical and numerical methods.

As introduced in Chap. Il, an approach for the solution aédéintime invariant systems
of DDEs has been developed using the Lambert W function (Agk#isoy, 2003; Yiet al.,
2007d). The approach using the Lambert W function provideslation form for DDEs
similar to that of the transition matrix for ODEs (see Tabl2)2 Unlike results obtained
using other existing methods, the solution has an analyooa expressed in terms of the
parameters of the DDE. One can determine how the paramegdrsalved in the solution
and, furthermore, how each parameter affects each eigenaal the solution. Also, each
eigenvalue in the infinite eigenspectrum is associated aibdtanch of the Lambert W
function. Hence, the concept of the state transition matri®DEs can be generalized
to DDEs using the matrix Lambert W function. This suggests fome analyses used in
systems of ODEs, based upon the concept of the state tcansiaitrix, can potentially be
extended to systems of DDEs.

In this chapter, the matrix Lambert W function-based apghofor the solution to
DDEs is applied to stabilize linear systems of DDEs. A newagph for controller design
via eigenvalue assignment of systems of DDEs is presemtedha method is illustrated
with several examples. Using the proposed method, it isilpleseo move a dominant
subset of the eigenvalues to desired locations in a manmélasito pole placement for
systems of ODEs. For a given system represented by DDEsohhtos to the system is
obtained based on the Lambert W function, and stability terdeined. If the system is
unstable, after controllability of the system is checkestadilizing feedback is designed
by assigning eigenvalues, and finally the closed-loop systeDDESs can be stabilized.

These processes are conducted based upon the Lambert \idfubased approach.
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5.2 Eigenvalue Assignment for Time-Delay Systems

5.2.1 Stability

Consider a linear time invariant (LTI) real system of dela@fedential equations with
a single constant delay,, in Eq. (2.39). TheConjecturein Subsection 3.3.1 has been
observed consistently in all the examples that have beesidened. The&Conjecturewas
formulated as the basis not only to determine the stabifigystems of DDES, but also to
place a subset of the eigenspectrum at desired locatiomesared in this chapter.

A major difficulty with designing a feedback controller fotime-delay system is as-
signing all of the eigenvalues. This difficulty is due to thénite spectrum of eigenvalues
and a finite number of control paramteters (Manitius and @Jldr979). Placing a selected
finite number of eigenvalues by classical pole placemenhatetor ODEs (Chen, 1984)
may cause other uncontrolled eigenvalues to move to themahplane (RHP) (Michiels
etal., 2002). However, the approach presented for contga using the matrix Lambert
W function, based on th€onjecture provides proper control laws without such loss of

stability.
5.2.2 Eigenvalue assignment

First, consider a free first-order scalar DDE, as in Eq. (ITRe solution to Eq. (1.2)
can be obtained using the Lambert W function as in Eq. (1.3)d the roots )\, of the

characteristic equation of Eq. (1.2)— a — aqe~*" = 0, are given by
1
e = %Wk(adhe_“h) +a, fork=—o00,---,—1,0,1,--,00 (5.1)

This solution is exact and analytical. In this scalar case, @an compute all of the roots

and the rightmost pole among them is always obtained by ukmgrincipal branchi( =
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0), and the pole determines stability of Eqg. (1.2) (Shinozaid Mori, 2006), that is,
max [Re{Wy(H)}] = Re{Wy(H)} (5.2)

In designing a control law for delayed system, it is cructah&indle the rightmost poles
among an infinite set. In this regard, the property in (5.2jhaf Lambert W function
provides a useful basis for assigning the rightmost poleadjysting the parameters,

aq and/or the delay timéy, one can assign the rightmost pole of the system to the desire
values in the complex plane based on Eq. (5.2). First, dexidbe desired location of the

rightmost pole 4., thus equate it to the pole correspondingte 0, that is,
1
Ades = Ao = ﬁWO(adhe_“h) +a (5.3)

Equation (5.3) can be solved using numerical methods,ammands already embedded
in Matlab, such a$solveandlambertw

Example 5.1 Consider the scalar DDE in Eq. (1.2) with= —1 andh = 1. Table
5.1 shows the corresponding valuesigtequired to move the rightmost pole of equation
to the exact desired locations. As seen in Fig. 5.1, eachmigsét pole is located at the
desired position corresponding to a value:@f

However, each branch of the Lambert W function has its owgeamnd, especially,

the value of the principal branch has the range (e.g., se€lHiy
Re {Wo(H)} = —1 (5.4)

Therefore, depending on the structure or parameters ofengystem, there exist lim-
itations on assigning the rightmost pole. Although genszakarch on the limitation is
lacking so far (refer to Chap. VII and Appendix C), in the exdenabove it can be con-
cluded that using Eq. (5.4)

1 1
Re{So} = 7 Re {Wo(adhe_ah)} +a > ~% +a (5.5)

>—1
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Table 5.1: Corresponding values @f for each desired pole. By adjusting the parameter,
ag, it is possible to assign the rightmost pole of the systemgn @&.2) to the
desired values.

Ades || —0.5 0 0.5

aq | 0.3033 | 1.0000 | 2.4731

50

40~

301 X

20

O X
<10 O X
5 | v 0 .
£ 0 v O X
e vV O X
E 10 o X
O X

Figure 5.1: Eigenspectra of Eq. (1.2) with= —1, h = 1 anday, in Table 5.1. Using
the values otu,, it is possible make the rightmost poles move exactly to the
desired locations<0.5(x7); 0 (O); 0.5(X)).

Thus, the rightmost eigenvalue cannot be smaller thafor any value ofu,.
In the case of systems of DDES, by adjusting the element®indbkfficient matrices in
Eq. (2.39), one can assign the eigenvalues of a single nzatnigsponding to the principal

branch,S,, by solving simultaneously Egs. (2.19) and (2.20), and

Eigenvalues of Sy = desired values (5.6)

using numerical methods embedded in software packagds asigolvein Matlab. This
approach is based upon tR®njecturepresented previously in Chapter Ill, and applied

here to design feedback controllers and is validated witmgples. In the subsequent
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section, the approach presented above is applied to thgndidw feedback control laws

for both scalar DDEs and systems of DDEs.

5.3 Design of a Feedback Controller

Delay terms can arise in two different ways: i) delays in tbetml, that isu(t — i),

or i) delays in the state variables(t — h). In both cases the resulting feedback operators
contain integrals over the past values of control or staedtory (Manitius and Olbrot,
1979). For systems without time delay, in addition, a tine¢agled control is often used
for various special purposes, often motivated by intuitidine most common examples
are the vibration absorber with delayed feedback contrith which is possible to absorb
an external force of unknown frequencies (Olgac et al., 1,987d delayed feedback to
stabilize unstable periodic orbits without any informatwf the periodic trajectory except
the period by constructing a control force from the diffaxerf the current state to the
state one period before (Hovel and Scholl, 2005; Pyrag&?2)19or those systems, the

approach for eigenvalue assignment for time-delay systam$e important.

5.3.1 Scalar case

For a scalar DDE with state feedback

z(t) = ax(t) + agx(t —h) +u(t) 5.7)

u = kx(t)
One may try to design the feedback contrel= kz(t), by using the first-order Pad

approximation as
—hs ~ 1 - hS/2

~ T hers (5.8)

Then, the characteristic equation of (5.7) becomes a sifplerder polynomial as

s*h + s(2 — ah — kh + agh) — 2(a + k) — 2a4 = 0 (5.9
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Imaginay (A)

Figure 5.2: Eigenspectrum with the feedback controllergiesd with Pad approximation
shows the failure in moving the pole to the desired value and stabilizing
the system.

Then, for a desired pole, one can obtain the control gain.ekkample, with parameters

a=1,aq=-2,andh =1, Eq. (5.9) becomes
s —s(1+k)+2—-2k=0 (5.10)

For the valuek = —1.1, Eq. (5.10) has two stable poles. However, this control gain
applied to the original system (5.7) will fail to stabiliZeet system. The resulting eigen-
spectrum is shown in Fig. 5.2. Even though higher ordeiRggroximations, or other
advanced rational approximations, can be used to appreithe exponential term in the
characteristic equation more precisely, such approaaieengited by an inevitable lim-
itation in accuracy, and at worst may lead to instability feé briginal system (Richard,
2003; Silva and Datta, 2001).

Alternatively, from the characteristic equation of (5.7)mthe desired pole, the linear
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Figure 5.3: Eigenspectrum with the feedback controllergiesdi with the linear approach
in (5.11) shows the failure in moving the pole to the desiralli® and thus
stabilizing the system.

equation fork can be derived as
Ndes — @ — age e — | =0 (5.11)

For example, with the parametets= 1, a;, = —1, andh = 1, just by substituting the
variable as\,., = —1, then, the obtained gaitt, using Eq. (5.11) i$.7183. However,
this control gain is also applied to the original system irv]%nd fails to stabilize the
system, because the desired pole is not guaranteed to bghbmast pole. The resulting
eigenspectrum is shown in Fig. 5.3. While one of the polesrightmost, is placed at
the desired location;-1, the rightmost one is in the RHP. Although for the desiredepol
the control gaing, is derived, when the gain is applied to (5.11), there exisisr infinite
number of poles to satisfy the equation, some of them can tealgarts larger than that
of the desired pole.

On the other hand, using the Lambert W function one can sagsign the real part of
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Figure 5.4: Eigenspectrum with the feedback controllerigiesd using the Lambert W
function approach. The rightmost eigenvalues are placéueatxact desired
location.

the rightmost pole exactly. For example, for the system)with a« = 1, a; = —1, and

h =1,

1
Re(Sy = ﬁWO(adhe_(aJrk)h) +a+k)=-1 (5.12)

Then, the resulting value a@fis —3.5978. As seen in Fig. 5.4, the rightmost eigenval-
ues are placed at the exact desired location. Comparedheittesults in Fig. 5.2 and Fig.
5.3, the approach using the Lambert W function providesxhetaesult and stabilizes the
unstable system safely. In the next two subsections, thpsoagh is generalized to two

different types of systems of DDESs.

5.3.2 Systems with control delays

In systems of controllable ODEs, one of the significant tssaflcontrol theory is that,

with full state feedback, one can specify all the closeglemenvalues arbitrarily by se-
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lecting the gains. However, systems of DDEs have an infinitalver of eigenvalues and
it is not feasible to specify all of them with linear contei, which have finite number
of gains. Furthermore, research on the explicit relatiawben controllability and eigen-
value assignment is lacking so far (refer to Chap. IV). Nthadess, in this subsection and
the next, for the controllable system of DDEs, the Lambertufction-based approach
is used to specify the first matri$,, corresponding to the principal brandh= 0, and
observed to be critical in the solution form in Eqg. (2.43),dhwosing the feedback gain
and designing a feedback controller.

First, consider the system of DDEs:
x(t) = Ax(t) + Bu(t — h) (5.13)
Then, the feedback,
u(t) = Kx(t) (5.14)
yields the a closed-loop form
x(t) = Ax(t) + BKx(t — h) (5.15)

The gain,K, to assign the rightmost eigenvalues is determined aswselld-irst, select
desired eigenvalues; 4 fori = 1,,n, and set an equation so that the selected eigenvalues

become those of the matrg as
Ai(So) = Nidess for i=1,....n (5.16)

where, )\;(Sy) is i'* eigenvalue of the matri$,. Second, apply the two new coefficient
matricesA’ = A, A, = BK in Eq. (5.15) to Eg. (2.19) and solve numerically to obtain
the matrixQ, for the principal branchi( = 0). Note thatK is an unknown matrix with
all unknown elements in it, and the mati@, is a function of the unknowiK. Then,

for the third step, substitute the matiiy, from Eq. (2.19) into Eq. (2.20), to obtahy
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and its eigenvalues as the function of the unknown marixFinally, Eq. (5.16) with
the matrix,S,, is solved for the unknowi using numerical methods, such faslvein
Matlab. As mentioned previously in this chapter, dependimghe structure or parameters
of given system, there exists a limitation of the rightmdgeavalues and some values
are not proper for the rightmost eigenvalues. In that cdseabove approach does not
yield any solution forK. To resolve the problem, one may try again with fewer desired
eigenvalues, or different values of the desired rightmastresalues. Then, the solution,
K, is obtained numerically for a variety of initial conditi®iby an iterative trial and error
procedure.

Example 5.2 Consider the van der Pol equation, which has become a ppatdor

systems with self-excited limit cycle oscillations and i@ form of
Z(t) + f(z,t)2(t) + x(t) = g(x,t; h) (5.17)
with
flz,t) =e (2*(t) — 1) (5.18)
For the dynamics of the van der Pol equation under the efféictaar position and velocity
time delayed feedback, the left side of Eq. (5.17) can baevrias

g(x,t;h) = kyx(t — h) + kod(t — h) (5.19)

Then, with the damping coefficient function in (5.18) anddiegck in (5.19), Eq. (5.17)
becomes

i(t) +x(t) =€ (1 — 2°(t)) &(t) + kix(t — h) + koio(t — h) (5.20)

Linearizing Eq. (5.20) about the zero equilibrium yieldg #quation for infinitesimal
perturbations,

#(t) + 2(t) = ei(t) + kyx(t — h) + kyir(t — h) (5.21)
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Or, equivalently, by defining; = = andz, = 7, one obtains the state equations

Ig(t) -1 ¢ Ig(t) ]{51 ]{fg Ig(t—h)

which can also be expressed in the form of (5.15) as

0 1 0
x(t) = x(t) + { ki ko } x(t — h) (5.23)
-1 € 1 | ———
A B “

Equations of this type have been investigated using the pistio perturbation method
(Maccari, 2001), bifurcation methods (Reddy et al., 2000kwé and Rand, 2002; Xu and
Chung, 2003) and a Taylor expansion with averaging (Li @28I06) to show that vibration
control and quasi-periodic motion suppression are passiblappropriate choices of the
time delay and feedback gains. The effect of time-delayssuad external excitation
with various practical examples was considered by (Mac@&03), demonstrating the
importance of this oscillator in engineering science.

Controllability and stabilizability of the system of eqigats in (5.13) have been stud-
ied during recent decades (Frost, 1982; Mounier, 1998;dDI4972). For example, the
linear system of (5.13) is said to be controllable]@yt, | if there exists amdmissiblgthat
is, measurable and bounded on a finite time interval) coni(ol such thatx(t;) = 0
wheret; > h. According to the criterion presented by Olbrot (1972), $gstem is con-

trollable on[0, ¢,] if and only if

rank [B :AB] =n (5.24)

According to the definition and the corresponding simpl&m@ndition in Eq. (5.24), the
system of Eq. (5.22) is controllable. Thus, using the poée@inent method introduced

in the previous section, one can design an appropriate &edtontroller to stabilize the
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system and choose the gairs,andk,, to locate the eigenvalues at desired positions in
the complex plane.

Without the delayed feedback term (i.k.,= k2 = 0), the system in (5.22) is unstable
whene = 0.1, and its rightmost eigenvalues &#500 + 0.9987:. For example, when
h = 0.2 if the desired eigenvalues arel and—2, which are arbitrarily selected, then, the
required gains aré; = —0.0469, k, = —1.7663 found by using the presented Lambert
W function-based approach. As seen in Fig. 5.5, the respeitkeut feedback control
is unstable. Applying the designed feedback controllebibtas the system. Fig. 5.6
shows the eigenspectra of systems without feedback andfeattback. The rightmost
eigenvalues are moved exactly to the desired locations laticeather eigenvalues are to
the left. If the desired eigenvalues ard.0000 + 2.00007, or —1.0000 £+ 1.00004, then
the corresponding gains ak€¢ = [—1.9802 — 1.8864], or, K = [-0.2869 — 1.5061],
respectively.

In (Michiels et al., 2002), a numerical stabilization methoas developed using a
simulation package that computes the rightmost eigensabfiehe characteristic equa-
tion. For the obtained finite number of eigenvalues, thereigleies can be moved to the
LHP using sensitivities with respect to changes in the faekllyain K (see Fig. 5.7 and
5.8). Compared with the approach, the matrix Lambert W fionebased method yields
the equation for assignment of the rightmost eigenvalués thie parameters of the sys-
tem. Using the analytical expression, one can obtain the@again to move the critical
eigenvalues to the desired positions without starting wigir initial unstable positions
or computing the rightmost eigenvalues and their sensés/after every small movement
in a quasi-continuous way. Using the Lambert W function, oae find the control gain
independently of the path of the rightmost eigenvalues.hilit planning the path, only

from the destination of them, the control laws for the syséeenobtained.
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Figure 5.5: Comparison of responses before (dashed) amd(aftlid) applying feedback
in Eq. (5.19) withK = [-0.0469 — 1.7663]. Chosen feedback gain stabilizes
the system.
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Figure 5.6: Movement of eigenvalues after applying the lbee#t ¢ without feedbackp
with feedback). The rightmost eigenvalues are located atettact desired
location—1 and—2.
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Figure 5.7: Movement of eigenvalues from their originaliposs, 0.0500 + 0.9987:, to
LHP when the method in (Michiels et al., 2002), is appliedhe system in
(5.23).
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Figure 5.8: The value oK in Eq. (5.23) corresponding to the number of iteration to
compute for the movement of eigenvalues in Fig. 5.7
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For the system in Eq. (5.13) with Eq. (5.14), the control layvAnite Spectrum

Assignment (FSA) method based on prediction, which is giwen
h
u(t) = Ke*x(t) + K / AM=OBu(t + 6 — h)do (5.25)
0

can make the system finite dimensional and the assign the éigienvalues to be desired
values (Brethe and Loiseau, 1998; Manitius and Olbrot, 19V&ng et al., 1995). How-
ever, such a method requires model-based calculationhvahéy cause unexpected errors
when applied to a real system. Limitations on FSA have baatiesi with several exam-
ples in (Engelborghs et al., 2001) and (Van Assche et al.9)19Be implementation of

such controller is still an open problem (Richard, 2003).

5.3.3 Systems with state delays

Consider the following time delayed system:
x(t) = Ax(t) + Aax(t — h) + Bu(t) (5.26)
and a generalized feedback containing current and deldgiatss
u(t) = Kx(t) + Kgx(t — h) (5.27)
Then, the closed-loop system becomes
x(t) = (A 4+ BK)x(t) + (Aq + BKq4)x(t — h) (5.28)

The gainsK andK 4 are determined in a way similar to the previous subsectidolksvs.
First, select desired eigenvalues., for i = 1,...,n, and set an equation so that the

selected eigenvalues become those of the m&{ras

Ai(So) = Niges, for i=1,....n (5.29)



82

where, \;(Sy) is i'" eigenvalue of the matri®,. Second apply the new two coefficient
matricesA’ + BK andA’y + BK,4 in Eq. (5.28) to Eq. (2.19) and solve numerically to
obtain the matribxQ,, for the principal branchi = 0). Note thatk andK4 are unknown
matrices with all unknown elements, and the ma@jxs a function of the unknowK and
Kg. For the third step, substitute the mat€dy from Eq. (2.19) into Eqg. (2.20) to obtain
Sy and its eigenvalues as the function of the unknown métrandK 4. Finally, Eq. (5.29)
with the matrix,S,, is solved for the unknowK andK 4 using numerical methods, such as
fsolvein Matlab. As mentioned in Section 5.2, depending on thectire or parameters
of given system, there exist limitations on the locationha tightmost eigenvalues, and
some values are not proper for the rightmost eigenvalugbalrcase, the above approach
does not yield any solution fa€ andK 4. To resolve the problem, one may try again with
fewer desired eigenvalues, or different values of the ddgightmost eigenvalues. Then,
the solution K andKy, is obtained numerically for a variety of initial conditisfy an
empirical trial and error procedure.

The controllability of such system, using the solution fasfrEq. (2.39) was studied
by Yi et al. (2008a) as introduced in Chap. IV. In the case of $yistems of ODEs, if
it is completely controllable, then the eigenvalues caritianily be assigned by choos-
ing feedback gain. Here examples regarding controllgtalitd eigenvalue assignment in
DDEs are considered.

Example 5.3 Consider the following system of DDEs,

1.1000 -0.1732 0.3500 0.2598 1.0000
x(t) = x(t)+ x(t—h)+ u(t)

~0.0577 1.1000 0.0866 0.3500 —0.5774
(5.30)

When the coefficients are applied to the condition in (4.bt)cbntrollability, the corre-
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sponding matrix is

5
55 — 6 — e~sh
—5//3

55 — 6 — e—sh

(sT — A — Age™"'B = (5.31)

Obviously, the two elements in Eq. (5.31) are linearly dejger and Eq. (5.30) fails the

rank condition in (4.11). Thus, the system in Eq. (5.30) ispwnt-wise controllable and

one cannot find any appropriate feedback control in the fdr(8.2@7) to stabilize it.
Example 5.4 Consider the following time-delay model, from (Mahmoudidsmail,

2005)

0 0 -1 -1 0
x(t) = x(t) + x(t —h) + u(t) (5.32)
0 1 0 -09 1

Before applying the feedback, the two rightmost eigenvalre—1.1183 and0.1098, and,
thus, the system is unstable when the delayed time, 0.1 (see Figures 5.9 and 5.10).
When the coefficients are applied to the condition in (4.11i¢, system in Eq. (5.32)
satisfies the criterion, and, thus, is point-wise contlddaThen, using the pole placement
method, one can design an appropriate feedback controllstabilize the system and
choose the gaink andKy to locate the eigenvalues at desired positions in the comple
plane. For example, when the desired eigenvalues-ar8000 and-6.0000, which are
chosen arbitrarily, the gains obtained by using the preskmpproach arK = [—0.1391—
1.8982); Kg = [—0.1236—1.8128], or K = [—0.1687—3.6111]; Kq = [1.6231—0.9291]
for —2.0000 and-4.0000. By applying the obtained feedback gains to Eq. §5@7e
can stabilize the system (see Fig. 5.9) and place the eilymsvat a desired positions in

the complex plane (see Fig. 5.10).
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Figure 5.9: Comparison of responses before (dashed) agd(aflid) applying feedback
(5.27) with feedback gainK = [ — 0.1687 — 3.6111] andK4 = [1.6231 —
0.9291]. The chosen feedback gain stabilizes the system.
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Figure 5.10: Movement of eigenvalues after applying feellbja without feedback;o
with feedback). The rightmost eigenvalues are locatedeaeiact desired
location,—2.0000 and-4.0000, using the feedback gail&,= [—0.1687 —
3.6111] andKq = [1.6231 — 0.9291]
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5.4 Conclusions

In this chapter, new results for feedback controller defiga class of time-delay sys-
tems are presented. For a given system, which can be reprdd®nDDES, based on the
Lambert W function, the solution to the system is obtained stability is subsequently
determined. If the system is unstable, after the contriditglof the system is checked,
a stabilizing feedback is designed by assigning eigensalaled finally the closed-loop
system of DDEs can be stabilized. All of these results aredagpon the Lambert W
function-based approach. Numerical examples are praséntdlustrate the approach.
Although DDEs have an infinite eigenspectrum, and it is nasge to assign all closed-
loop eigenvalues, it is possible to assign a subset of themthe rightmost or dominant
eigenvalues critical for determining stability.

The proposed method, based upon the Lambert W functionmgared with other ap-
proaches (see examples in Section 5.3). Many of these dre@dnd can fail on certain
problems (Richard, 2003; Silva and Datta, 2001). The FSAotets based upon predic-
tion, and known to have implementation problems (Engelb®eg al., 2001; Van Assche
et al., 1999). The method of Michiels et al. (2002) is the nefctive, but is an itera-
tive method based upon sensitivity of eigenvalues to thérabgains. The Lambert W
function-based method is direct and effective in all praideevaluated.

The presented approach is extended for the design of syst@m®bserver-based
feedback controller for systems of DDEs, and problems ofisbloontroller design and

time-domain specifications in the following chapters.



CHAPTER VI

ROBUST CONTROL AND TIME-DOMAIN
SPECIFICATIONS FOR SYSTEMS OF DELAY
DIFFERENTIAL EQUATIONS VIA EIGENVALUE
ASSIGNMENT

An approach to eigenvalue assignment for systems of deldgretitial equations
(DDEs), based upon the solution in terms of the matrix Lam®@érfunction, is applied
to the problem of robust control design for perturbed systeffDDES, and to the prob-
lem of time-domain response specifications. Robust stalufithe closed-loop system
can be achieved through eigenvalue assignment combinédtiétreal stability radius
concept. For a linear system of DDEs with a single delay, wiias infinite number of
eigenvalues, the recently developed Lambert W functisedapproach is used to assign
a dominant subset of them, which has not been previouslyblea®\lso, an approach to
time-domain specifications for the transient response stesys of DDEs is developed in
a way similar to systems of ordinary differential equatiosgg the Lambert W function-

based approach.

6.1 Introduction

A primary goal for control engineers is to maintain the digbof a system, an essen-

tial requirement, while achieving good performance to megponse specifications (Suh

86
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and Yang, 2005). For a system of delay differential equat{@DESs), even though more
complex than systems of ordinary differential equation®ES) due to its transcendental
characteristic equation, various methods to achieve thaltlgave been introduced in the
literature in recent decades. For a detailed survey, refefitet al., 2009c; Richard, 2003)
and the references therein.

However, systems frequently have uncertainties in modelmaters caused by esti-
mation errors, modeling errors, or linearization. For spetturbed systems, it is naturally
required to design controllers to make sure that the cdattalystem remains stable in the
presence of such uncertainties.

Usually, the robust control problem for systems of DDEs haesnbhandled by using
Lypunov functions, and employing linear matrix inequalti(LMIs) or algebraic Ric-
cati equations (ARES) (see, e.g., (Mahmoud, 2000; Nicule$898) and the references
therein). Even though such approaches can be applied te geiteral types of time-
delay systems (e.g., systems with multiple delays, tintgiug delay), they provide only
sufficient conditions and are substantially conservatiweanse of their dependence on
the selection of cost functions and their coefficients (Methand Roose, 2003). More-
over, general systematic procedures to construct apjtepryapunov functions are not
available, and solving the resulting LMI/ARE can be nonéliyHrissagis and Kosmidou,
1998). Analysis and design of control systems in the frequatomain is well estab-
lished in control engineering. Stability is investigateased on the transfer function and
the Nyquist criteria. By computing the robust stability giarin the Nyquist plane, the
method has been used for robust control of systems of ODEstIéfovaite and Foo,
1985) and, also, DDEs (Wang and Hu, 2007) with uncertainki@svever, although being
improved extensively, typically the method requires anaedtive numerical search in the

frequency domain plus an exhaustive search in the paracheteain.
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On the other hand, while pursuing robust control, one mag havetain the positions
of the eigenvalues to meet the response specifications asutime-domain specifications
(see Sect. 6.3), of the nominal system. For this reasonstatability of the closed-
loop system has often been achieved through eigenvalugnassnt combined with robust
stability indices (e.qg,. the stability radius concept irttSé.2). Such indices set the upper
limit on parameter perturbations and help select the mostof the desired eigenvalues
in the complex plane. Then using an eigenvalue assignmetitoeheit is possible to
find feedback control for robust stabilization for systeth©O®ES (e.g., see (Kawabata
and Mori, 2009) and the references therein). However, Byste#f DDES have an infinite
number of eigenvalues, which are the roots of a transceadequation, and it is not
practically feasible to assign all of them. Thus, the usoé placement design techniques
for ODEs cannot be applied without considerable modificatmsystems of DDESs (Tsoi
and Gregson, 1978).

In this chapter, a new approach to design robust controltara system of DDEs
through eigenvalue assignment based on the Lambert W fumapproach is presented.
An eigenvalue assignment method for systems of DDEs wadajmein Chap. V. Using
that approach, one can design a linear feedback controlf@ate the rightmost eigenval-
ues at the desired positions in the complex plane and, thalslise systems with a single
time-delay. In that study, the critical rightmost subseemfenvalues, which determine
stability of the system, among the infinite eigenspectruassgned. This is possible be-
cause the eigenvalues are expressed in terms of the paramitee system and each one
is distinguished by a branch of the Lambert W function.

In this chapter, the Lambert W function-based approachgersialue assignment for
DDEs, is combined with the stability radius concept to addrthe problem of robust

stability of systems with uncertain parameters (Sect.. 3B, an approach for improve-
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ment of the transient response for systems of DDEs is predeiithe method developed
in Chap. V also makes it possible to assign simultaneouglydhl and imaginary parts
of a critical subset (based on the conceptiominant polegFranklin et al., 2005)) of the
eigenspectrum with linear feedback control. Thereforédgjines, similar to those used
for systems of ODEs to improve transient response, can liefassystems of DDEs via
eigenvalue assignment by using the matrix Lambert W funetiased approach to meet

time-domain response specifications (Sect. 6.3).

6.2 Robust Feedback

6.2.1 Stability radius

To design robust feedback controllers through eigenvadsgament, it is required to
decide where is the appropriate positions in the complaxgiia guarantee robust stability
depending on the size of uncertainty. The decision can beerbgdising robust stability
indices. The real stability radius, which is one of the imdiand the norm of the minimum
destabilizing perturbations, was obtained for linear eyst of ODEs and a computable
formula for the exact real stability radius was presentedioy et al. (1995). The real
stability radius measures the ability of a system to presés/stability under a certain
class of real perturbations. The formula was extended toged linear systems of DDESs
in (Hu and Davison, 2003).

Assume that the perturbed system (2.1) can be written inoitme f

X(t) = {A+0AIX(t) + {Ad+ oAd}X(t — h) (6.1)

whereE € R, F;, € R"*", andA; € R™*! denotes the perturbation matrix. Provided

that the unperturbed system (2.1) is stable, the real stegttstability radius of (6.1) is
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defined as (Hu and Davison, 2003)

rg = inf{o1(A) : system (6.1) is unstable} (6.2)

where A = [A; A,] ando;(A) denotes the largest singular value &f The largest
singular valueg;(A) is equal to the operator norm &f, which measures the size of
by how much it lengthens vectors in the worst case. Thus téielisy radius in Eq. (6.2)
represents the size of the smallest perturbations in paeaspevhich can cause instability
of a system. And the real stability radius problem concenescomputation of the real
stability radius when the nominal system is known. The $tglsadius is computed from

(Hu and Davison, 2003)

ROQGw))  —S(Q(w))

TR = { Sup iI(lOfH o (6.3)
w S k] — . .
! 7IS(QGwW)  R(Q>jw))
where
F
Q(s) = (sl —A—Ag)"'E (6.4)
Fge_hs

In (6.3), it is not practically feasible to compute the supuen value for the whole range

of w € (—o0, 00). However, for the value*, which satisfies
w* < a(A) +5(Aq) + a(E)a[W(0)]a([FiF2]) (6.5)

wherea(-) andg(-) are the largest and smallest singular values pfrespectively, and

F
W(0) = (-A —Ay)'E (6.6)
Fs
Then,

restatfw™) < restaljw) (6.7)
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where
restab(w) =

ROQGw))  —S(Q(w)) (6.8)

YIS(QGw))  R(Q(jw))

Therefore, one has only to chegke [0, w*] to obtain the supremum value in (6.3).

infpye(oﬂ 09

The obtained stability radius from (6.3) provides a basisa&signing eigenvalues for

robust stability of systems of DDEs with uncertain paramsete

6.2.2 Design of robust feedback controller

In this subsection, an algorithm is presented for the catoun of feedback gains to
maintain stability for uncertain systems of DDEs. The apploto eigenvalue assign-
ment using the Lambert W function is used to design robustlifieedback control laws,
combined with the stability radius concept. The feedbaaktirodler can be designed to
stabilize the nominal delayed system (2.1) using the meginesented in Chap. V. How-
ever, if the system has uncertainties in the coefficientschvban be introduced by static
perturbations of the parameters or can arise in estimatiagparameters, the designed
controller cannot guarantee stability. Thereforeplaustfeedback controller is required
when uncertainty exists in the parameters. Such a conti@le be realized by providing
sufficient margins in assigning the rightmost eigenvaldese@delayed system. However,
conservative margins over those required can raise prahlemeh as cost of control. The
stability radius, outlined in the previous subsection jes a reasonable measurement of
how large the margin should be.

The basic idea of the proposed algorithm is to shift the rigigt eigenvalue to the
left by computing the gains in the linear feedback contralieChap. V and increase the
stability radius until it becomes larger than the uncettaof the coefficients. Then, one

can obtain a robust controller to guarantee stability ofstystem with uncertainty.
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Algorithm 6.1 Designing a robust feedback controller for systems of DDEB un-

certainty.

Step 1. Compute the radius;, from actual uncertainties in parameters of given delayed

system, (i.e.r; = 01(AQ)).

Step 2. Using the eigenvalue assignment method presented in ChagpnvputeK and

K4, to stabilize the system.

Step 3. Then, compute the theoretical stability radius of the $itaddl systemy, from

Eqg. (6.3).

Step 4. If r; > ry, then, the system can be destabilized by the uncertaintiesrefore,
go to Step 2 and increase the margin (compgttand K4 to move the rightmost

eigenvalues farther to the left).

Example 6.1From Chap. V, consider a system

0 0 -1 -1 0
X(t) = X(t) + X(t—0.1)+ u(t) (6.9)
0 1 0 —-09 1
Without feedback control, the system in (6.9) has one uitesiigenvalue).1098. Using
feedback control as in Eq. (5.27), designed by the methoskepted in Chap. V, if the
desired rightmost eigenvaluesl, the computed gains ake = [—0.1391 — 1.8982] and
Kg = [-0.1236 — 1.8128], and the stability radius computed from Eq. (6.2)i6255.

However, if the system (6.9) has uncertainties in the pararse

%(t) = + A b X(1)

5 (6.10)

™\ 7~

+ + 6Aqg p X(t —0.1) + u(t)
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Table 6.1: The gaind$ andKy, of the linear feedback controller in (5.27) corresponding
to each rightmost eigenvalues. computed by using the apiprfoa eigenvalue
assignment presented in Chap. V.

Rightmost eigenvalues K Kg
-0.5&-6 [-0.6971 -1.6893]| [-0.7098 -1.5381]
-1.0&-6 [-0.1391 -1.8982] [-0.1236 -1.8128]
-1.5&-6 [-0.3799 -1.6949] [1.0838 -2.3932]
20&-6 [0.8805 -2.1095]| [0.9136 -2.3932]
-25&-6 [1.8716 -2.1103] [0.8229 -2.5904]
-3.0&-6 [2.5777 -1.7440]| [0.7022 -2.9078]
-35&-6 [2.8765 -1.6818]| [0.9721 -3.1311]
-4.08&-6 [3.1144 -1.5816]| [1.1724 -3.3304]

ando(0A + 6A4) = 0.7, the system can become unstable due to uncertainty. To en-
sure stability, set the desired rightmost eigenvalue te-Be then the computed gains
areK = [-0.1687 — 3.6111] andKy4 = [1.6231 — 0.9291], and the stability radius in
(6.2) increases t0.8832. Therefore, the system can remain stable despite the andgrt
(c(6A 4+ 0Aq) = 0.7). Table 6.1 shows the gain§,andK 4, corresponding to the several
subsets of eigenvalues §.

The computed stability radii versus the rightmost eigaemes) moving from-0.5 to

—4 are shown in Fig. 6.1. As seen in the figure, for the systenDj6ds the eigenvalue
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Figure 6.1: As the eigenvalue moves left, then the stahititlius increases consistently,
which means, improved robustness.

moves left, the stability radius increases monotonicdllgte that, in general, an explicit
relationship between the stability radius and the rightre@genvalues is not available, and
moving the rightmost eigenvalues further to the left doesahways lead to an increase
of stability radius (Michiels et al., 2002). However, as whoabove, by comparing the
stability radius and uncertainty for a given system, Algon 6.1 can be used to achieve
robust stability of time-delay systems with uncertainty.

Michiels and Roose (2003) developed an algorithm to maxantie stability radius
by calculating its sensitivity with respect to the feedbaekn for a type of time-delay
systems. However, in maximizing it, the rightmost eigenealcan be moved to undesired
positions and one can fail to meet other specifications ofsistem response. If the
system has relatively small uncertainty, instead of mazimgj the stability radius, one can
focus more on the position of eigenvalues to improve thesteant response of the system,

which will be discussed in the subsequent section. Alsaysbbtabilization of systems
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of DDEs has been investigated by conversion into ratiorsdrdie models (Wang et al.,
2007), or by canceling undesired dynamics of plants basesistem model (de la Sen,
2005). Compared to such methods, the Lambert W functioeeébapproach can improve

accuracy and robustness of the controllers.

6.3 Time-Domain Specifications

To meet design specifications in the time-domain, PID-basedrollers have been
combined with a graphical approach (Shafiei and Shentory)12Q@G method using ARE
(Suh and Yang, 2005), or Smith predictors (Kaya, 2004). &mesthods are available for
systems with control delays. For systems with state delsgsie sufficient conditions
based on linear matrix inequality approaches have beeropeap(see, e.g., (Mao and
Chu, 2006) and the references therein). In this sectionL.#mebert W function-based
approach, presented in Chap. V, is applied to achieve tiomaih specifications via
eigenvalue assignment. Unlike other existing methods, (€eogtinuous pole placement in
(Michiels et al., 2002)), for the first time the Lambert W ftino-based approach can be
used to assign the imaginary parts of system eigenvaluegelaas their real parts, for a
critical subset of the infinite eigenspectrum. It is not picdly feasible to assign the entire
eigenspectrum; however, just by assigning some finite igpltmost, eigenvalues the tran-
sient response of systems of DDEs can be improved to meetdomain specifications
for desired performance.

Example 6.2 Consider the system in (6.9). Table 6.2 shows the ganand Ky,
corresponding to the several subsets of eigenvalu&g,afrthich have a real part;-0.2,
and different imaginary parts;0.2i, +0.5¢, and=+1.0:.

The eigenvalue is written as = o 4 wyi = —Cw, + w,\/1 — (%, the requirements

for a step response are expressed in terms of the quansitiels,as the rise time,, the
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Table 6.2: GainsK andK 4, and parameters corresponding to the several subsetsofeig

values ofS,.

Rightmost —0.2£0.2 —0.2£0.5¢ —0.2+£1.0¢ —0.5£1.0¢
Eigenvalues

o -0.2 -0.2 -0.2 -0.5

Wy 0.2 0.5 1.0 1.0

Wy, 0.2828 0.5385 1.0198 1.1180
(=—0/w, 0.7 0.3714 0.1961 0.4472

K [0.0584 -1.7867] [0.1405 -1.7998] [0.4311 -1.8152] [0.2380 -2.1656]

Kg [0.6789 2.3413]| [0.7802 2.3204]| [1.1421 2.2124]| [0.9027 1.9451]

1% settling time t,, the overshoot)/,, and the peak time,,.. In the case of ODEs, if the

system i2" order without zeros, the quantities have exact represensat

20 M= eI T
P ) p »vp

Wd

(6.11)

For all other systems, however, these provide only apprations, and can only provide
a starting point for the design iteration based on the canaiegpominant polegFranklin

et al., 2005). Figure 6.2 shows the responses correspotalihg rightmost eigenvalues
considered in Table 6.2. Not surprisingly, the approxinvalees from Eq. (6.11) in Table

6.3 are not exactly same as the results obtained from themsep in Figure 6.2. But, for
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this example, the guidelines faf order ODEs still work well in the case of DDEs. That
is, as raising the value of the imaginary part, of the rightmost eigenvalue, the rise time,
t., of system, i.e., the speed at which the system respond tefia@nce input, decreases
from 6.9 to 0.8. On the other hand, the maximum overshbBt,rises from 6% to 75%,
which is typically not desirable. In this way, moving up ongothe imaginary part, one

can adjust the quantities related to the time-domain respand, thus, meet time-domain

specifications.
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Figure 6.2: Responses of the system in (6.9) with the fedd{@&7) corresponding to
the rightmost eigenvalues in Table 6.2 with different inmagy parts of the
rightmost eigenvalues.

Figure 6.3 shows two responses corresponding to the sesdrsts of eigenvalues of
Sy, which have different real parts-().2 and—0.5) with the same imaginary pari(.07).
As seen in the figure, the settling time, the rise time, andshaot decrease with increas-
ing o, but the peak time remains almost the same. Thus, for thisigbea the guidelines

based ordominant polegor ODEs still work well in case of DDEs. The approach pre-
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Table 6.3: Comparison of the actual results for and the aqqmiations using Eq. (6.11) of
time-domain specifications for Figure 6.2.

t, ls M, tp
Rightmost | approximatel actual| appro-| actual| appro-| actual| appro-| actual
Eigenvalues Eg. (6.11) ximate ximate ximate
—0.24+0.2 6.4 6.9 23.0 | 23.0 4.6 6.0 15.7 | 14.6
—0.2+0.5i 3.3 25 | 23.0 | 23.0| 285 | 31.0| 6.3 6.0
—0.24+1.0¢ 1.8 0.8 23.0 | 27.0 | 534 | 75.0 3.1 24

sented in this section is straightforward for systems of @DiHowever, it represents the
first approach to assign the real and imaginary parts of tengalues simultaneously to
meet time-domain specifications for time delay systemsjsanery easy to use, since only
the eigenvalues for the principdl & 0) branch are used.

In this approach, it is tried to assign the real and imagipanrys of only the rightmost,
thus dominant, eigenvalues. Even though the presentedagphandles only a subset
of eigenvalues among an infinite eigenspectrum, the subsahitmost in the complex
plane and dominates all other eigenvalues. Thus, for oifneaul time-delay systems with
a single delay this method can also be applied to achievezippate time-domain spec-
ifications with linear feedback controllers. The approackspnted follows the simple
dominant poleglesign guidelines for ODESs, and provides an effective riilfnomb to

improve the transient response of systems of DDEs.
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Figure 6.3: Responses of the system in (6.9) with the fedd@®&7) corresponding to
the rightmost eigenvalues in Table 6.3 with different resatg of the rightmost
eigenvalues.

6.4 Concluding Remarks

In this chapter, the eigenvalue assignment method baselgedtaimbert W function
is applied to design linear robust feedback controllerstandeet time-domain specifica-
tions for LTI systems of DDEs with a single delay. An algonitlior design of feedback
controllers to maintain stability for uncertain system©®®Es is presented. With the al-
gorithm, considering the size of the uncertainty in the ioehts of systems of DDESs via
the stability radius, one can find appropriate gains of thedr feedback controller by as-
signing the rightmost eigenvalues. The procedure pregentiis chapter can be applied
to uncertain systems, where uncertainty in the system peteascannot be ignored.

To improve the transient response of time delay systemsldhign guideline for sys-
tems of ODEs has been used via the Lambert W function-baget\lue assignment.

The presented approach basedlominant poless quite standard in case of ODEs. How-
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ever, it has not been previously feasible to use such metloodsystems of DDEs. Be-
cause, unlike ODEs, DDEs have an infinite number of eigeegaland controlling them
has not been feasible due to the lack of an analytical saididion.

Using the approach based upon the solution form in termseofithtrix Lambert W
function, the analysis for robustness and transient respoan be extended from ODEs
to DDEs as presented in this chapter. The proposed appraduith is directly related
to the position of the rightmost eigenvalues, provides amte and effective approach
to analyze stability robustness and transient responseDd#sD Even though it is not
feasible to assign all of the infinite eigenvalues of timégeystems, just by assigning
the rightmost eigenvalues, which tend to be dominant, oneagatrol systems of DDEs in
a way similar to systems of ODEs. This is the advantage of #mhkert W function-based

approach over other existing methods.



CHAPTER VII

DESIGN OF OBSERVER-BASED FEEDBACK

CONTROL FOR TIME-DELAY SYSTEMS WITH

APPLICATION TO AUTOMOTIVE POWERTRAIN
CONTROL

A new approach for observer-based feedback control of telay systems is devel-
oped. Time-delays in systems lead to characteristic empgtf infinite dimension, mak-
ing the systems difficult to control with classical controétimods. In this chapter, the
approach based on the Lambert W function is used to addrssdifficulty by designing
an observer-based state feedback controller via assigroheigenvalues. The designed
observer provides estimation of the state, which conveaggsptotically to the actual
state, and is then used for state feedback control. The &e&diontroller and the observer
take simple linear forms and, thus, are easy to implemennveoenpared to nonlinear
methods. This new approach is applied, for illustratiothtocontrol of a diesel engine to
achieve improvement in fuel efficiency and reduction in esioiss. The simulation results

show excellent closed-loop performance.

7.1 Introduction

As is well known, excellent closed-loop performance candbeeved using state feed-

back control. In cases where all state variables are natttlirmeasurable, the controller

101
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may have to be combined with a state observer, which estintlagestate vector. For lin-
ear systems, the design of such a controller with an obserwgpically carried out based
on eigenvalue assignment (Chen, 1984). Unlike systemseétiordinary differential
equations (ODEs), where the methods for eigenvalue assighane well-developed, the
design procedure for linear systems with time-delays irsthée variables is not straight-
forward. In this chapter, a new method for design of obsepased feedback control of
time-delay systems is presented, and illustrated with setlengine control application.

Successful design of feedback controllers and observegehkion the ability to check
stability and find stabilizing controller and observer gaiin this chapter, a recently de-
veloped method using the matrix Lambert W function presemteChap. V is applied to
design of feedback controllers and observers. The methoded to ensure asymptotic
stability and dominant eigenvalues at desired positiorthéncomplex plane to achieve
desired performance. Using the Lambert W function-baspdogeh, observer-based con-
trollers for time-delay systems represented by delay wdiffeal equations (DDES) can be
designed in a systematic way as for systems of ODEs. Thatrig, given time-delay sys-
tem, the analytical free and forced solutions are derivadnms of parameters of the sys-
tem (Chap. Il). From the solution form, the eigenvalues atained and used to determine
stability of the system (Chap. Ill). Furthermore, critefita controllability/observability
and Gramians are derived from the solution form (Chap. 1\é@).&controllable system, a
linear feedback controller is designed by assigning dontieggenvalues to desired loca-
tions (Chap. V), and this can be done to achieve robust gtaiid to meet time-domain
specifications (Chap. VI).

Numerous methods have been developed for control of tinerdystems (e.g., see
Table 7.1). However, existing methods enable one to desibarehe controller or ob-

server, yield nonlinear forms of controllers, and/or doamgign eigenvalues exactly to the
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Figure 7.1: The block diagram for observer-based statebfegdcontrol for time-delay
systems is analogous to the case for ODEs (Chen, 1984). Bysuigpgains
K andL an asymptotically stable feedback controller and obsecaer be
designed so that the system has good closed-loop perfoemesireg the esti-
mated state variables, obtained from the system outpuyt,
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desired positions. The approach presented here allowsatestgn linear feedback con-
trollers and linear observers via eigenvalue assignmeptkgy. 7.1). The observer-based
feedback control designed in this chapter offers advasta§accuracy (i.e., no approxi-
mation of time-delays), ease of implementation (i.e., norestes of relevant parameters
or use of complex nonlinear controllers), and robustness (1ot requiring model-based
prediction). For illustration, the developed method islagapto control of a diesel pow-
ertrain, where the controller design is challenging duentinherent time-delay, and the
proposed approach can provide advantages in terms of edsesigh, as well as the per-
formance of observer-based control. This chapter is organas follows. In Section 7.2,
a problem formulation and background are provided. Thegse@d method is presented
in Section 7.3, and the diesel engine control applicatigiMen in Section 7.4. In Section

7.5, a summary and conclusions are presented, and topittgdioe research are noted.

7.2 Problem Formulation

Consider areal linear time-invariant (LTI) system of DDE#wva single constant time-
delay, h, described by Eq. (2.39). With linear state feedback, coetbwith a reference
input,r(t) € R,

u(t) =r(t) — Kx(t) — Kgx(t — h) (7.1)

one can stabilize, improve performance, and/or meet tioveain specifications for the
system (2.39) as presented in Chap. VI, under the assuntptbll the state variables,
X(t), can be measured directly. This is achieved by chookirandK 4(¢ R™") based

on desired rightmost closed-loop eigenvalues. Note tleat.#mbert W function-based
approach is applicable to systems with a single delay as i(E89). For systems with
multiple delays caused by, e.g., additional feedback detaydelays in sensors, stability

results introduced in (Olgac et al., 2005) can be applied.
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In cases where direct access to all state variables is timitse of a state observer
(estimator) is needed to obtakit), an estimate of the state variabig¢). Like systems
of ODEs, an asymptotically stable closed-loop system witade observer (so-called
Luenberger observer whexét) converges asymptotically td¢) ast goes to infinity) can
be achieved by placing eigenvalues for the observer dyrsaatidesired locations in the
complex plane (e.g., on the left half plane (LHP)). Howeiregontrast to ODES, systems
of DDESs, as in Eq. (2.39), have an infinite number of eigeraslie.g., see Fig. 2.1) and,
thus, calculation and assignment of all of them is not fdasib

The state estimation problem for time-delay systems has adepic of research in-
terest (e.g., see (Bengea et al., 2004) and the referererestifior a survey). The problem
has been approached by using methods based on spectralpesittom and state trans-
formation developed in (Bhat and Koivo, 1976b), (Pearsoth Biagbedzi, 1989), and
(Salamon, 1980). Such methods require extensive humeacaputations to locate the
eigenvalues of time-delay systems. Prediction-basedoappes (e.g., FSA) with a co-
ordinate transformation have been used to address thiofyp®blem in (Jankovic and
Kolmanovsky, 2009). Converting time-delay systems inta-delay ones, the observer
of an integro-differential form is designed to assign thgeavalues of finite dimensional
systems. Based on the assumption that stabilizing feedipgiok exist and are known, an
observer can be designed based on a coordinate transfom{atinh, 1999). For such an
approach, it is assumed that the system is stabilized by #rearyless linear state feed-
back,u(t) = —Kx(t), and the gainkK, is known. Also, Lyapunov-based approaches have
been used for development of design methods for observdrerazontrollers (e.g., ARE
(Pila et al., 1999) , LMI (Bengea et al., 2004; Darouach, 2D0%ee the comparison of

various developed approaches in Table 7.1.
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Table 7.1: Motivation for a new approach for design of obeesvfor time-delay systems,
various studies devoted to observer design are summariztisi table. For
comparisons of approaches for feedback controllers, tef@ichard, 2003; Yi
et al., 2009c).

Description of approach References

Bhat and Koivo (1976b)

Spectral decomposition) Observer: an integro-differential forn| Pearson and Fiagbedzi (1989)

-based Salamon (1980)
Observer: a linear form Leyvaramos and Pearson (1995
Linear matrix inequality Darouach (2001)
Lyapunov (LMI) Bengea et al. (2004)
framework Algebraic Riccati equation

Pila et al. (1999)

(ARE)
Coordinate transformation Trinh (1999)
Finite spectrum assignment (FSA) Jankovic and Kolmanovsky (2009)

7.2.1 Eigenvalue assignment

While problems in handling time-delay systems arise froendifficulty in: 1) check-
ing the stability and 2) finding stabilizing gains, Eq. (5.I6r eigenvalue assignment
provides a explicit formulation useful to address such [gmis, as shown in (Yi et al.,

2009c) and (Yi et al., 2008c) with numerical examples. Haveas explained in Subsec-
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tion 7.2.2 below, due to assignability issues, Eq. (5.18)jctvis solved by using numerical
nonlinear equation solvers (e.gsplvein Matlab), may not always yield a solution f&r
andKy. To resolve such a problem, instead of using Eq. (5.16), anetry with fewer
desired eigenvalues, or with just the real parts of the ddgrgenvalues (Yi et al., 2009c¢)

to reduce the number of constraints, as

)\rm(SO) = )\des (CL)
§R{)\Mn(SO)} = §R{)\des} (b>

(7.2)

where \,,,,(S) are the rightmost eigenvalues from among theigenvaluess,, and
indicates the real part of its argument. In numerical comiom one can use, for example,
functions in Matlab, such amaxandreal.

In Chap. V, the method for eigenvalue assignment, basedeo@dhjecturein Sub-
section 3.3.1, was used to design only full-state feedbankral as in Eqg. (7.1) (Yi et al.,
2009c). In this chapter, it is now used to find the controlied abserver gains (i.ek
andL in Egs. (7.3) and (7.4) in the next section) for the combineskeover-based control
in Fig. 7.1. This is described in Section 7.3 below. In otherds, using Eq. (5.16), or
Eq. (7.2), it will be shown that one can assign both contr@tel observer rightmost (i.e.,
dominant) poles for the infinite dimensional closed-loogeaispectrum of the observer-

based controller for time-delay systems shown in Fig. 7.1.

7.2.2 Controllability, observability, and eigenvalue asgnability

For systems of DDEs, controllability and observability @deen studied extensively
(see e.g., (Richard, 2003), (Yi et al., 2008a) and the ratere therein). Unlike systems
of ODEs, there exist numerous different definitions of coltability and observability
for systems of DDEs depending on the nature of the problenemoohsideration (e.g.,

approximate, spectral, weak, strong, point-wise and alsaontrollability). Among the
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various notions, point-wise controllability and pointsgiobservability were investigated
to derive criteria and Gramians for such properties usiegsthiution form in Eq. (2.43)
based on the Lambert W function in Chap. IV.

For linear systems of ODEs, controllability (or observay)lis equivalent to the arbi-
trary assignability of the eigenvalues of the controlldsgerver) (Chen, 1984). However,
conditions for such arbitrary assignment are still lackiogsystems of DDEs. Even for
the scalar case of Eq. (2.1), limits in arbitrary assignnuérgigenvalues exist and de-
pend on the values of the time-delay and the coefficients Appendix C). Although,
for a simple scalar DDE, study of the limits has been condlictéBeddington and May,
1975; Bellman and Cooke, 1963; Cooke and Grossman, 19&®yaeation of such re-
sults are challenging. The relationship between the degvieeria for controllability and
eigenvalue assignability by using a ‘linear feedback aalgr was partially studied in (Yi
et al., 2009c) with examples, and is being further investiday the authors. Although ex-
tensive research during recent decades has been repothedliterature, the relationship
between eigenvalue assignment and controllabilty/oladelty is still an open research

problem.

7.3 Design of Observer-Based Feedback Controller

This section describes a systematic design approach foothbined controller-observer
for time-delay systems (see Fig. 7.1). The observer estsitae system states from the
output variables, while the control provides inputs to th&tem as a linear function of the

estimated system states.
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Step 1. Obtain the equation for the closed-loop system witandK :

X = AX 4+ AgXq + Bu

U=—Kx —Kgxq+r (7.3)

= X = (A —BK)x+ (Ag — BKg) Xq + Br
wherexq = X(t — h). Then, choose the desired positions of tightmosteigen-
values of the feedback controller dynamics. They can bewslefor example, to
meet design specifications in the time domain with desiradpilag ratio, , de-

sired natural frequency,,, of the closed loop response and)as, = o0 + jwy =

—(wy, £ jw,/1 — 2.

Step 2. Using the desired eigenvalues, Eq. (5.16) and Eq. (2.28pdimsK andKy, are
obtained numerically for a variety of initial conditions by iterative trial and error
procedure with the coefficients of the closed-loop systeBrn(7.3),A’ = A —BK
andA/, = Ay —BKy. As explained in Subsection 7.2.1, if solutions cannot leth
one can try with fewer desired eigenvalues, or with just #a parts of the desired
rightmost eigenvalues (i.e., using EqQ. (7.2) instead of(&d.6)), to find the control

gains.
Step 3. Consider an observer with galin

X = Ax+ Agxq+ Bu
y = Cx(t)
X = AR+ AgXq+ L(y — CX) + Bu (7.4)
X—% = A(x—%)+Aqg(xa—%q) - L(y — C%)
=¢é = (A—-LC)e+ Aqeq
wheree = x — X. Then, choose the desired positions of tightmosteigenvalues

of the observer dynamics. A reasonable choice of desirediqus of observer
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rightmost eigenvalues mainly depends on the amount of mea&nt noise and the
size of modeling inaccuracies. While fast eigenvalues dynpleasurement noise,
slow eigenvalues lead to slow convergence of the estimdtdsectate variables.
A typical “rule of thumb” is that the magnitudes of the negatreal parts of the
rightmost eigenvalues of (7.4) should bé ~ 2 times larger than those of Eq. (7.3)

to guarantee fast response (Chen, 1984).

Step 4. Using the desired eigenvalues, Eg. (5.16) and Eq. (2.2@){tie observer gain,
L, with new coefficients in Eq. (7.47" = A — LC andA}, = Aq. As in Step 2, if
solutions cannot be found, one can try with fewer desiredreiglues, or with just
the real parts of the desired rightmost eigenvalues (inguEq. (7.2) instead of

Eqg. (5.16)).

In Step 1, the desired positions of the rightmost eigenglugth selected damping
ratio and frequency, provide only an approximation for egst of order higher than two.
They provide starting points for the design iteration basedhe concept oflominant
poles(Yi et al., 2008c; Franklin et al., 2005).

Note that, as mentioned in Subsection 7.2.2, unlike ODEs]itions for assignability
are still lacking for systems of DDEs. Even for the scalarecabEqg. (2.1), limits in
arbitrary assignment of eigenvalues exist (e.g., see AgipdD of this chapter). For sys-
tems of DDEs, depending on the structure or parameters afitiea system, there exists
limitations on the rightmost eigenvalues. In that case ath@ve approach does not yield
any solution for the controller and observer gains. To nestiie problem, one can find the
gains by using a trial and error method with fewer desiredmiglues (or with just the real
parts of the desired eigenvalues), or different values efdissired rightmost eigenvalues

as explained in Steps 2 and 4.
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Although the Kalman filter for time-delay systems render®bserver optimal in the
sense of minimizing the estimation error in the presenceotdenand model uncertainty
(see, e.g., (Fattouh et al., 1998; Yu, 2008) and the referetiterein), such an approach
requires the selection of covariance matrices for procedsy@asurement noise by trial-
and-error to obtain the desired performance of the filténfegor. On the other hand,
the design of observers via eigenvalue assignment may begirbal, but can achieve a
similar performance by adjusting desired location for eigdues (Chen, 1984).

Even though only an approach for the full-dimensional obseis presented here, a

reduced-dimensional observer, if needed, can be desigreedimilar way.
7.3.1 Separation principle

For systems of ODEs, it is shown that the eigenvalues of thie gstimator are not
affected by the feedback and, consequently, the desigratd fdedback and the design
of the state estimator can be carried out independently {lne so-called separation prin-

ciple). For the time-delay system in (7.3) and (7.4), it carshown in a straightforward

manner that the separation principle holds. The two egasitan be combined into

% (A—BK-BK4) BK x Ag O Xq

é 0 (A — LC) e 0 Ad €dq

Then, the eigenvalues are roots of the characteristic equgitven by

q sI— A+ BK+BKg4 — Ade_Sh —-BK
et

0 sI—A+LC— Age "
=0 (7.6)
= det [sI — A + BK + BKq — Aqe™*"] x

det [sT— A+ LC — Age™*"] =0
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Figure 7.2: Eigenspectrum of the linearized diesel engystesn with the coefficients
in (7.7). Due to the inherent transport time-delay the numdjesigenval-
ues is infinite and without any control the system has an blestigenvalue
(left). Thus, the response of the system is unstable (rigarkovic and Kol-
manovsky, 2009).

Therefore, the two sets of eigenvalues can be specifiedatepaand the introduction of
the observer does not affect the eigenvalues of the coatrélence, selection of gaiks

(and/orK 4) andL can be performed independently.

7.4 Application to Diesel Engine Control

In this section, control of a diesel engine is consideredltstrate the advantages
and potential of the method proposed in Section 7.3. Speltfia feedback controller
and observer are designed via eigenvalue assignment gihgunbert W function-based
approach. A diesel engine with an exhaust gas recirculd&®R) valve and a turbo-
compressor with a variable geometry turbine (VGT) was medi@h (Jankovic and Kol-
manovsky, 2000) with 3 state variablest) = {z; xo z3}7: intake manifold pressure
(z1), exhaust manifold pressure,, and compressor powets). The model includes
intake-to-exhaust transport deldy £ 60ms when engine speed, is 1500 RPM). Thus,

a linearized system of DDEs was introduced in (Jankovic aoldnénovsky, 2009), for a
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Figure 7.3: Diagram of a diesel engine system in Eq. (7.7)th\lifinited measurement
y = x», all the state variables are estimated by using an obsemdrthen

used for state feedback control (Jankovic and Kolmano\ZB§9)

specific operating pointY{ = 1500 RPM) whose coefficients are given by

27 36 6 0 00 026 0
A=| 96 —-125 0 |- Aa=1]21 0 0|.B=| -09 —08 (7.7)
0 9 -5 0 00 0 0.18

Because of the time-delay, which is caused by the fact tleagjdis in the intake man-
ifold enters the exhaust manifold after transport tithethe system can be represented
by a system of DDEs as in Eq. (2.1) with the coefficients in EQ7) The number of
eigenvalues is infinite and one of them is positive real. Tthesresponse of this linearized
system shows unstable behavior (see the eigenspectrurharesponse in Fig. 7.2). The

system with the coefficients in (7.7) satisfies the condgifor pointwise controllability
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Figure 7.4: Eigenvalues of the closed-loop systems witlfficoents in (7.10) and (7.11).
Among an infinite number of eigenvalues, the rightmost,(deminant) sub-
set is computed by using the principal branéh=f 0) and all the others are
located to the left. Note that the rightmost eigenvalue é&&@tl exactly at the
desired position),., = —10, and the open-loop unstable system is stabilized
(compare to Fig. 7.2).

andobservability That is, all rows of (4.11) and all columns of (4.14) with treefficients
in (7.7) are linearly independent. Therefore, the systeif7 ) ispointwise controllable
andpointwise observablgi et al., 2008a) (see Chap. 1V).

For a non-delay model, which is also unstable, by constigdtie control Lyapunov
function (CLF) a feedback control law was designed in (Jaitkand Kolmanovsky,
2000). A feedback controller for the diesel engine systertis the time-delay was de-
veloped in (Jankovic, 2001) using the concept of controldweov-Krasovsky functionals
(so-called CLKF). In (Jankovic and Kolmanovsky, 2009), F&#mbined with a coor-
dinate transformation (FSA cannot be applied directly ® $lgstem where time-delays
are not in actuation) was used for design of the observethmisystem, which takes an
integro-differential form.

As shown in Subsection 7.3.1, the separation principle)@dd, thus the controller
and observer can be designed independently. First coniderase of linear full-state
feedback. The control inputi(t) = {u;(t) ux(t)}?, whereu,(t) is a control input for

EGR valve opening and,(t) is a control input for the turbine (VGT) mass flow rate (for a
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detailed explanation, the reader may refer to (Jankovidaehanovsky, 2000)), is given
by

u(t) = Kx(t) 4+ r(t) (7.8)
whereK is the2 x 3 feedback gain matrix,

ki ks ks
K = (7.9)

kys ks ke

Then, the system matrices of the closed-loop system become

A'=A4+BK =
—27 4 0.26k, 3.6 + 0.26k, 6 + 0.26k;
9.6 — 0.9k, — 0.8ks —12.5—0.9ky — 0.8ks 0 — 0.9k3 — 0.8kg | (7.10)
0.18k, 9 + 0.18k; —5 + 0.18kg
A:j = Ad

Following the Steps 1 and 2 introduced in Section 7.3, basgti® Lambert W function,
the gain K, is selected so that the system can have improved perfoeramwell as be
stabilized. For the system in Eq. (7.7), it was not possibladsign all eigenvalues of
Sy by using Eq. (5.16). Instead, by reducing the number of eiglees specified to one,
one can find the feedback gain and assign the rightmost ejenef the system with
Eq. (7.2-a). For example, assuming that the desired rigstteigenvalue),.s = —10,
which is chosen by considering the desired speed of thed:llosg system (Jankovic and

Kolmanovsky, 2009), the resulting feedback gain is obthize

0.0001 —13.8835 0.0000
K= (7.11)
0.0000 50.3377  50.8222
The resulting eigenspectrum is shown in Fig. 7.4. Among &nite number of eigen-

values, the rightmost (i.e., dominant) subset is computedding the principal branch
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Figure 7.5: Eigenvalues of the closed-loop systems witlffictents in (7.13) and (7.14):
among an infinite number of them, the rightmost (i.e., domiphaubset is
computed by using the principal brandh<£ 0) and all the others are located
to the left. Note that the rightmost eigenvalue is placecttyxat the desired
position, A4 = —15, and the unstable system is stabilized (compare to Fig.
7.2).

(k = 0) and all the others are located to the left, which is one optleeninent advantages
of the Lambert W function-based approach. Note that themgit eigenvalue is placed
exactly at the desired positioh,.; = —10, and the unstable system is stabilized (compare
to the eigenspectrum in Fig. 7.2).

Next consider the design of an observer to estimate the usuned states. The ob-
server gainL, is obtained in a similar way, following Steps 3 and 4 in Sat{r.3. Con-
sidering available sensors (Jankovic and Kolmanovsky9RGghly the exhaust manifold

pressure is measured. Thys= 2, and the output matrix and observer gain are given by

c=lo1o|L-|L (7.12)
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Then, the new coefficients of the dynamical equation of tagestbserver become

—27 36-—L; 6 0 00
A-LC=1| 96 —-125—-L, 0 |,Aa=]21 0 0 (7.13)
0 9—Ly -5 0 00

For example, for a chosen desired eigenvalye = —15 so that the dynamics of the

observer is well damped and faster than the controller dycgrhe gain obtained is

6.4729
L= 95671 (7.14)

16.0959

Similarly to the controller case, one ca-n find the-observm,ga just with one rightmost
eigenvalue specified (i.e., by using Eq. (7.2-a)). The tegukigenspectrum is shown in
Fig. 7.5.

As mentioned in Sections 7.2 and 7.3 and Appendix C, thest kxiits in assignment
of eigenvalues with linear controllers or observers. Ferdfistem with coefficients in Eq.
(7.7), the rightmost eigenvalues can be moved as far to thade,., = —25.0 for the
controller and\,., = —15.3 for the observer, respectively, and the correspondindilui

gains, as determined numerically for this example, are:

6.4650
—0.0004 —3.3044 —0.0006
K = , L= 95660 (7.15)
0.0020 45.9131 84.0699
16.0991

Overall performance of the controlled system in Fig. 7.Jhwvhte parameters in (7.7),
(7.11), (7.12) and (7.14) is shown in Fig. 7.6. The referengeits for this simulation
run are selected arbitratily:; is a step input with amplitude.5 andr, is a sine wave

with amplitude20 and frequency).7 (Hz). The rightmost eigenvalues of the feedback
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Figure 7.6: Responses with each controller: the referemget$ for this simulation run
are selected randomly; is a step input with amplitude.5 andr, is a sine
wave with amplitude0 and frequency.7 (Hz). The rightmost eigenvalues
of feedback control and observer ard(0 and —15, respectively. The state
variables estimated by using observer (dashed line) cgavato those of the
plant (solid line), which are stabilized by state feedbawmhtol.

controller and observer arel0 and—15, respectively. The state variables estimated using
the observer (dashed line) converge to those of the plald (8@e), which are stabilized
by state feedback control.

As shown in Fig. 7.1, the asymptotically stable feedbacktratler with observer
takes a simple form similar to that for linear systems of OpEsen, 1984). They do not
require, as with previous approaches, the approximatgratien of state variables during
finite intervals, nor construction of a cost function or inefities. This can lead to ease of
design, analysis, and implementation, which is one of thia mdvantages of the proposed

approach.
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7.5 Conclusions

In this chapter, a new approach for the design of observescbstate feedback control
for time-delay systems was developed. The separationiplnis shown to hold, thus,
the controller gain and the observer gain can be indepelydsgiected so that the two
dynamics are simultaneously asymptotically stable. Thegtehinges on eigenvalue as-
signment to desired locations that are stable, or ensursigedelamping ratio and natural
frequency. The main difficulty, which is addressed in thiapter, is caused by the fact
that systems of DDEs have an infinite number of eigenvaluageausystems of ODEs.
Thus, to locate them all to desired positions in the complar@is not feasible. To find
the dominant subset of eigenvalues and achieve desiredveige assignment, the Lam-
bert W function-based approach, developed recently byuhi®as has been used. Using
the proposed approach, the feedback and the observer gaiobtained by placing the
rightmost, or dominant, eigenvalues at desired values.dEsegned observer provides an
estimate of the state variables, which converges asyroptiytito the actual state and is
then used for state feedback to improve system performdrieetechnique developed is
applied to a model for control of a diesel engine, and the kitian results show excellent
performance of the designed controller and observer.

The proposed method complements existing methods forwdrsbased controller de-
sign and offers several advantages. The designed obdmased controller for DDEs has
a linear form analogous to the usual case for ODEs. The rigsitne., dominant) eigen-
values, for both observer and controller, are assignedlgxadcesired feasible positions
in the complex plane. The designed control can have impraeedracy by not ignor-
ing or approximating time-delays, ease of implementatamgared to nonlinear forms of

controllers, and robustness since it does not use modebd@asdiction.
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To make the proposed approach more effective, the relagbwezn controllability
(or observability) and eigenvalue assignability for tighelay systems needs to be investi-
gated further. Specifically, research is needed to gemertiie results for the scalar case
(see Appendix C). As new engine technologies are contirlyaleseloped, the proposed
design approach can play a role in handling delay problemsuitomotive powertrain
systems. Other than the presented diesel control, for ebearap-to-fuel ratio control,
where time-delays exist due to the time between fuel ipacind sensor measurement
for exhaust, and idle speed control, where time-delayd dxis to the time between the

intake stroke of the engine and torque production, are agmtstudied.



CHAPTER VIII

EIGENVALUES AND SENSITIVITY ANALYSIS FOR A
MODEL OF HIV PATHOGENESIS WITH AN
INTRACELLULAR DELAY

During the past decade, numerous studies have aimed at betterstanding of the
human immunodeficiency virus (HIV). For example, the combon of mathematical
modeling and experimental results has made a significaritibotion. However, time-
delays, which play a critical role in various biological net&l including HIV models,
are still not amenable to many traditional analysis methddsthis chapter, a recently
developed approach using the Lambert W function is apphbeldandle the time-delay
inherent in an HIV pathogenesis dynamic model. Dominan¢raiglues in the infinite
eigenspectrum of these time-delay systems are obtainegsaado understand the effects
of the parameters of the model on the immune system. Alsorebdt is extended to
analyze the sensitivity of the eigenvalues with respechitettainty in the parameters of
the model. The research makes it possible to know which pateasiare more influential
relative to others, and the obtained information is used aterpredictions about HIV’'s

outcome.
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8.1 Introduction

During the past decade, a number of mathematical modelfiéohiman immunod-
eficiency virus (HIV), based on systems of differential dgres, have been developed.
These models, combined with experimental results, haddgdemportant insights into
HIV pathogenesis (Adams et al., 2005; Kirschner and WebBg1Blowak et al., 1997;
Perelson and Nelson, 1999; Perelson, 2002). This succeasdeling the HIV patho-
genesis dynamics has led to various analyses (Banks and, B6A5; Bortz and Nelson,
2006, 2004; Nelson and Perelson, 2002), and helped in degipetter therapy regimes
(Adams et al., 2004).

To account for the time between viral entry into a targetaetl the production of new
virus particles, models that include time-delays have begnduced (Herz et al., 1996;
Mittler et al., 1998; Nelson et al., 2000). Models of HIV iof®n that include intracellular
delays are more accurate representations of the biologgteartje the estimated values of
kinetic parameters when compared to models without deldgsOn and Perelson, 2002).
Also, it has been shown that allowing for time-delays in theded better predicts viral
load data when compared to models with no time-delays (BortzNelson, 2006; Ciupe
et al., 2006; Nelson et al., 2001). Due to the complexity daygelifferential equations
(DDEs), many scientists do not include them in their modelewever, many biological
processes have inherent delays and including them may deadiditional insights in the
study of complicated biological processes (Nelson andi&are2002).

In this chapter, dominant eigenvalue analysis and its Beitgiwith respect to param-
eters in the model of HIV dynamics are studied. For this ne$edhe matrix Lambert W
function approach is applied to investigate analyticdily HIV pathogenesis model with

an intracellular delay. Eigenvalues of the delayed systerasobtained and used: i) to
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p: infection rate

Healthy Target Cell

¢: clearance rate

(a) (b)

Figure 8.1: HIV-1 infects target cell§ with a rate constant and causes them to become
productively infected cellsi(*) (b). Time-delay results from the time between
initial viral entry into a cell and subsequent viral prodoat(a).

analyze the effects of time-delay on the stability and deass of the viral load, and ii) to
determine the stability of the immune systems. Also, vissgaity analysis of the eigen-
values with respect to parameters, the effects of paramaterstudied. The approach
presented in this chapter for HIV dynamics can be used towlgaltime-delay terms in
many other pathogenesis models (e.g., hepatitis B virahohycs (Ciupe et al., 2007) and

tuberculosis (Marino et al., 2007)).

8.2 HIV Pathogenesis Dynamic Model with an Intracellular Dday

The HIV pathogenesis dynamic models have been used to iatepperimental re-
sults for complex immune systems. Research on relatiomglegtparameters in the mod-
els and their impact on the immune system has been reportibe iiterature (see, e.g.,
(Perelson and Nelson, 1999; Perelson, 2002)) and have maidmificant contribution
during the past decade. When an intracellular delay is dedythe models of HIV in-
fection provide more accurate representations of the gjoldhis is because allowing for
time-delays in the model enables it to better predict thalVoad dynamics. One of the

delay models, where it is assumed that the generation of piroducing cells at timeis
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due to the infection of target cells at time- & as seen in Fig. 8.1, consists of systems of

coupled delay differential equations given by (Nelson gt2400):

dTC;(t) = BToVi(t — h) — 0T*(t)

d‘gt(t) = (1 =mnp)NOT"(t) — cVi(?) (8.1)
dVnr(t) )

7 npN6T™(t) — cVyi(t)

wheret is the elapsed time since treatment was initiated (i.e-, 0 is the time of onset
of the drug effect), and™ is the concentration of productively infected T-cells. Hbate
variablesl; andVy; represent the plasma concentrations of virions in the fitfes pool
(produced before the drug effect) and in the noninfectica® gproduced after the drug
effect), respectively. In Eqg. (8.1), it is assumed HIV irtketarget cells with a raté and
causes them to become productively infected T-c&lts, The time-delay}, in Eq. (8.1)
results from the time between initial viral entry into a aelld subsequent viral production,
and is termed “intracellular delay”. In this modeljs the rate for virion clearance;is
the rate of loss of the virus-producing ceN; is the number of new virions produced per
infected cell during its lifetimeTy is the target T-cell concentration, represents the drug
efficacy of a protease inhibitor, a drug that inhibits theaglag of viral polyproteins and
renders newly produced virions non-infectioug,. The term { —n,) represents the level
of leakiness of a protease inhibitor andujf = 1, the protease inhibitor i500% effective
and no infectious virus particles are produced. The parammet (8.1) have been estimated
by applying the models to data from drug perturbation expents (Nelson et al., 2001).
For the research presented in this chapter, the parameéter patient 103, which is given
in Table 8.1, is used (Nelson et al., 2001). Viral lo&@d+ Vi, had been collected from
patient 103 after administration (600 mg twice daily) of dgm inhibitor (Ritonavir) of
HIV protease. For detailed study, refer to (Perelson e18B6) on the experiment and the

data.
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Table 8.1: Estimated parameter values from one (patient dBie 5 patients studied in
(Nelson et al., 2001)

Name Description Value Reference
Th Target T-cell concentration 408 cells mm ™3 Ho et al. (1995)
h Intracellular delay 0.91 days Nelson et al. (2000)
) Death rate of an infected T-cell1.57/day Perelson et al. (1996)
c Clearance rate of virus 4.3/day Perelson et al. (1996)
N Bursting term for viral 480 virions/cells Perelson et al. (1996)
production after lysis
Ny Protease inhibitor efficacy 0.7 Perelson and Nelson (1999)

Cc

Viral infectivity rate
B y NT,

Ho et al. (1995)

The system in EqQ. (8.1) is expressed in the form of Eq. (2.1) thie coefficients

-5 0 0 0 BT, 0
A= (1-n,)N6 — 0 |, Aa=|0 0 0 (8.2)
n,No 0 —c 0O 0 0

and the initial conditiong(t) = x, = {T7, Vi 0}”. The characteristic equation of the

system in Eq. (8.1) is derived as
HN ={N+0+c)A+dc—(1— np)dNﬁToe‘”‘} (A+¢) (8.3)

And from the roots of Eq. (8.3), the eigenvalugspof the system (8.1) are obtained. Due
to the term,e=**, Eq. (8.3) becomes infinite-dimensional and, thus, an iefinumber
of roots satisfy the equation. The principal difficulty indying DDES results from this
special transcendental character, and the determindtibimsspectrum typically requires
numerical, approximate, and graphical approaches (Ri¢clz203). Computing, analyz-
ing, and controlling the infinite eigenspectrum are not emgtforward as for systems of
ordinary differential equations (ODES). Instead, for tinee-delay system in Eq. (8.1), it
is crucial to compute and analyze the dominant eigenvallieslo that, the Lambert W

function-based approach (e.g., see Sections 2.2 and &agplied.
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Figure 8.2: Change of eigenvalues by introduction of detaghe HIV model: the right-
most eigenvalue shifted towards the imaginary axis. Aleditine-delay leads
to imaginary parts of the eigenvalues and, thus, to osiaiiatin the response.

8.3 Rightmost Eigenvalue Analysis

For the model of HIV in (8.1), the stability of a patient’s inume system and the viral
decline rate can be expressed with the eigenvalues of thensysd, thus, its analysis is
interesting from the practical point of view. In this sectidhe eigenvalues are obtained

by using the approach based on the Lambert W function andethudts are discussed.

8.3.1 Delay effects on rightmost eigenvalues

Introducing a discrete delay in a system of DDEs changestthetsre of the solution
as seen in (2.43), which has the form of an infinite series aitlnfinite eigenspectrum.
Figure 8.2 shows the change of the eigenspectrum by intnogwec delay to the HIV
model. If the system in Eq. (8.1) has no time-delay, all of¢igeenvalues of the system
are real (shown by the ‘X’ mark). However, as seen in Fig. 8&,time-delay leads to

imaginary parts of the eigenvalues (shown by the ‘0’ marlgd,dhus, to oscillations in
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the response. In the literature (Nelson et al., 2000), ti@leys, when used in population
dynamic models, have been shown to create fluctuations ialgign size. Without diffi-
culty, from Eq. (8.3) it can be shown that one of the eigereslig always-c, regardless
of the value of the time-delay, as seen in Fig. 8.2. Also, there exists one real eigenvalue
of the system (8.1) on the interval between and the origin (Nelson et al., 2000). In
the model of HIV, introduction of a time-delay makes the tigbst eigenvalues move to
the right (i.e., less stable). This can be confirmed using@emealue sensitivity analysis,
which is introduced in the next section, as well as direct potation using the matrix
Lambert W function as shown in Fig. 8.2. Because the eigeegabf the HIV model de-
scribe the viral decline rate, via the eigenvalue changewsin Fig. 8.2, it is confirmed
that the delay reduces the long-term rate of decline of tred Miad (Nelson et al., 2000).
Also, depending on the parameters of the system, the $yatdlin be determined via
the rightmost eigenvalues. In Fig. 8.2, the system has aalerightmost eigenvalue of
the system (8.1) on the interval between and the origin. As the value af declines,
this rightmost eigenvalues moves toward to the origin amgss tthe system becomes less
stable (see Fig. 8.3). This will be discussed more in detaibensitivity analysis in the

next section.

8.3.2 Mutation, drug efficacy and eigenvalues

Over the last decade, a number of potent drugs that inhibit idplication in vivo
have been developed. Treatment regimes involving a coribmaf three or more dif-
ferent drugs can lead to a decline in viral load by severatierdf magnitude. Although
research is finding more drugs to combat HIV infection, thrawvis continuously evolving
to be resistant against these newly developed drugs. Theehigr rate in the reverse tran-

scription process of viral RNA into DNA, combined with thentmual viral replication
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Figure 8.3: As the clearance rate declines, the rightmost eigenvalues, which are on the

interval between-c and the origin, moves toward to the right and, thus, the
system becomes less stable.

of HIV, leads to the emergence of mutant strains of HIV thatdnug resistant (D’Amato
et al., 2000). Most models for HIV assume either a perfecg dman imperfect drug with
a less than 100%, but constant, efficacy. In reality, thece@iéantiviral treatment appears
to change over time, due to i) pharmacokinetic variatigrfluctuating adherence, and iii)
the emergence of drug resistant mutations (Huang et al3)20®mong them, drug re-
sistance is a major concern in the treatment of some humaeatiofis disease, especially,
HIV. If strains that are resistant to the drug increase, thatents can become infected
with the resistant virus, causing therapy to be ineffecfiedarz and Lloyd, 2004). The
result is a continuously varying efficacy of drug action. @inting for this varying effi-
cacy may be particularly important in recent clinical sesd(Dixit and Perelson, 2004).
The efficacy can be expressed as a function of time (see(ldugang et al., 2003) and the

references therein).

Although combination therapy can result in sustained seggon of viral load in many
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patients, it is not effective in all patients and fails aftee emergence of drug-resistant
strains. Hence, although finding new drugs to fight HIV is img@ot for improving our
chances for success, it is equally important to devise plyeragimes that minimize the
chance of drug resistance emerging (Wodarz and Nowak, 200@)o this, more detailed
information about the status of patients and stability efithmune system of the patients
with HIV is needed. Figure 8.4 shows the movement of the ngi#t eigenvalue of the
system with respect to drug efficacy. The rightmost eigerahoves toward the imag-
inary axis as the drug efficacy,,, decreases, and the status of the patient becomes less
stable. This result tells us about the stability of the pats&ammune system, and one can
monitor the status of the immune system. Consequentlyyesgoes, the drug efficacy de-
clines and the rightmost eigenvalue becomes larger andsrioward the imaginary axis
(Fig. 8.4). Therefore, to sustain suppression of the vatlifor AIDS patients, proac-
tive switching and alternation of antiretroviral drug negins is required (Martinez-Picado
et al., 2003).

Previously, the total viral load/; + Vv, has been established as the primary prognos-
tic indicator of progression to AIDS (D’Amato et al., 200@)d the status of a patient’s
immune system is determined only in terms of viral load. Hesvethe differences in pa-
rameters lead to widely varying conclusions about HIV pgénesis (Ciupe et al., 2006).
Depending on the parameters involved in the system, suglaadc, the viral load pre-
dictions can vary widely. Therefore, it would be more ddsigdo determine the stability
of the immune system from the eigenvalues of the system,hnikia function of the pa-
rameters involved in the model of HIV, in addition to the tatmal load. Switching drugs
too early risks poor adherence to a new drug regimen and neggiurely exhaust the
limited number of remaining salvage therapies. Othervaggching too late leads to ac-

cumulation of mutations which leads to failure (i.e., virbound) (D’Amato et al., 2000).
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Figure 8.4: Movement of the rightmost eigenvalues w.r.tgdefficacy: The rightmost
eigenvalue moves to the imaginary axis as the drug efficacyjecreases,
and the status of the patient becomes less stable.

The eigenvalue movement corresponding to the change ofeffiggcy over time in Fig.
8.4 provides information about stability of the immune systfor patients with HIV, and

therapy regimes to sustain suppression of virus load cootisly.
8.4 Sensitivity Analysis

In this section, eigenvalue and response sensitivity amslyith respect to parameters
is considered. For systems of differential equations aesigo model real systems, such
as biological, chemical, or physical, one of the main gaal® iunderstand the manner in
which the parameters interact with properties of the systemch as stability, dynamics,
and response. These parameters are designed to correspaspetts of the phenomena
under investigation (e.g., productively infected T-cedath rateg, and clearance rate,
in the HIV pathogenesis dynamics). Thus, it is desirablerggigt how changes in the

parameters will affect the system’s properties: responseeggenvalues. Some previous
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work on this topic for the HIV model can be found in literatusee, e.g., (Banks and
Bortz, 2005; Bortz and Nelson, 2004; Rong et al., 2007), Aed¢ferences therein).
Sensitivity analysis for eigenvalue and response, whistblegn developed in the con-
text of modern control theory, can provide a mathematiaallftar the model given by Eq.
(8.1). The improved understanding the models can then balpgign better experiments
and develop better treatment regimes. Also, the interfioetaf the results of sensitiv-
ity analysis for complex models makes it possible to undesivhich parameters have a
greater influence on the response and/or eigenvalues. phes@eters play an important
role in the model and obtaining good estimates for them tecatiespecially when com-

pared to other parameters to which solutions are less send@ianks and Bortz, 2005).

8.4.1 HIV: Eigenvalue sensitivity

Sensitivity of the rightmost eigenvalues analysis revaalsnderstanding of the inter-
actions of parameters with properties of systems, suchabdist or movement behavior
of state variables. Although a stability analysis was earout using a random sampling
method to identify which parameters are important in deteimg stability for systems
of ODEs in (Rong et al., 2007), the study on eigenvalue sgitgianalysis for an HIV
model with a time-delay is presented here for the first timee @nalytical expression for
sensitivity of the rightmost eigenvalues can be derivedibigr@ntiating both sides of the

characteristic equation (8.3) with respect to a params#gy, i.e.,

OH(N) O\ ON  D(N)
% =02 % "o &9

For example, the resulting sensitivity for the clearande od virus,c, the time-delayh,
productively infected T-cell death rate, and for drug efficacyp, is given in Egs. (8.5-

8.8).
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(8.6)
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B M 4+2cA+ = (A+o) (1 —ny)ce™™
3AN242(2c+ ) A+ (20c+ ) — (1 — ny)dce™ — (A +¢) (1 — ny)dce > (—h)
(8.7)

N
o =
(A +c) dce ™
TN +2(20+0) A+ (20c + ) — (1 —ny)dce M — (A +¢) (1 — n,)dce e (_?e); .

With the parameter set in Table 8.1, the rightmost eigem&gM\y,,,, of the system (8.1)

from the previous section is (see Fig. 8.2)

Arm = —0.6118 (8.9)

Then, by applying this rightmost eigenvalue and the paransst in Table 8.1, the eigen-

value sensitivity is obtained from Egs. (8.5-8.8) as

Odrm = 0.4495, OArm = —0.0173,
oh Oc
o o (8.10)
= _0.182 M — _1.4983.
55 0.1828, on, 083

The signs determine whether a small increase in a paramégté@ratease or decrease the
rightmost eigenvalue. If the sensitivity with respect toagmeter is positive, a small
increase in the parameter makes the rightmost eigenvaiifetosvard the right and, thus,

the system becomes more unstable, and vice versa. As medtiothe previous section

(see Fig. 8.2), an increase of delay time destabilizes tstesy(sign oD\ /0h is positive).

For the other parameters, the sensitivities have negagwms,swhich means increases in
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the parameters stabilize the immune system and make théodachdecay faster. This can
be inferred from the dynamics of Eq. (8.1):is the death rate of infected cells, which
produce virus, and is the clearance rate of virus. The sensitivity with resgecthe
clearance rate;, of virus is relatively small, which means its effect on thabglity of the
immune system is not so significant compared to others. Alsoause one infected T-
cell producesV new virions, it can be inferred that the impact of variatiod imay have
greater impact on the system than that.ofvhich explains why the magnitude af /90§

is larger than that o\ /dc. In this way, the impact of each parameter on the system is
analyzed via the signs and the magnitudes. Note that thisdfianalysis is possible only

in linear cases, may not be feasible for nonlinear cases.

Also, as mentioned before, the parameters with high seitgishould be given top
priority when choosing which parameters to determine withigh degree of accuracy
in estimating model parameters from data. To carry out patamestimation for HIV
models as in (8.1), one needs to specify a variance of eacimgder in prior distribution
(Huang et al., 2003). Previously (e.g., in (Huang et al.,200u et al., 2005), etc.), if
enough reliable information is available for some of theapagters, then small variances
have been used, and vice versa. In such studies, the sameoceahas been given for
c ando, because enough prior information is available for bottapeaters. However, if
sensitivity is analyzed as seen in (8.10), it is recommerdelifferentiate their variances
more delicately depending on the sensitivity results, oleothat a model may not be too
sensitive to a specific parameter. By combining prior infation and sensitivity analysis,

more accurate estimation of parameters can be performed.
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Table 8.2: Two different types of sensitivity for HIV modetigenvalue sensitivity and
response sensitivity (Yi et al., 2008b).

Response sensitivity Eigenvalue sensitivity
For HIV Model Studied in (Bortz and Nelson, 2004) Studied in (Yi et al., 200
Objective Effects of parameters on Response Effects of parameterggen\i&lues
Method Numerical integration (e.gdde23 Analytical derivation
Result Comparisor] Show similar patterns in magnitudes and signs. See Eq.)(8.13
Future Application Usgful in designing Useful in_degigning the fegdback cdntro
the optimal feedback control via eigenvalue assignment

8.4.2 Eigenvalue sensitivity and response sensitivity

In (Bortz and Nelson, 2004), another type of sensitivityathfesponse sensitivity was
applied to the system (8.1). The response sensitivity arsabyovides first-order estimates
of the effect of parameter variations on the solutions. Reranalysis, one needs to solve
the state equation and a linear time-varying sensitivityagign simultaneously numeri-
cally, for example, using the delay differential equatiofver dde23in Matlab. Consid-
ering the magnitudes and the signs, the result of a respensdigity analysis presented
in (Bortz and Nelson, 2004) shows good agreement with trengejues sensitivities as in
(8.10). The study in (Bortz and Nelson, 2004) showed thatésponse sensitivity with
respect to the time-delay has a positive slope; on the ot tthe slopes of the response
sensitivity with respect te and¢§ are negative. Also, the absolute value of the response
sensitivity with respect to is smaller than that with respectdoThose coincide well with
the results in (8.10). For rough comparison purposes, thgorese can be expressed in

terms of the rightmost (i.e., dominant) eigenvalues andrtiial condition as:

V(t) ~ MV (8.11)
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Taking derivatives of both sides with respect to a paramaedas

oV (t O\

ovit) ~eMVy — t (8.12)
dp dp

N—— ~—

Response Eigenvalue

Sensitivity Sensitivity

Then, Eqg. (8.12) is divided by Eq. (8.11) to yield

Q

Vvt

=

op o\

Ao Xt 8.13
V(D) p (8.13)
——— ~—
Normalized Eigenvalue
Response Sensitivity
Sensitivity

As seen in the approximation in Eq. (8.13), the normalizespoase sensitivity is pro-
portional to the product of eigenvalue sensitivity and tirs®en though a rough approx-
imation, Eg. (8.13) can be helpful in conceptually relatthg two different sensitivity
approaches. Response sensitivity is a combined functiaemf sensitivity and eigen-
value sensitivity (Rosenwasser and Yusupov, 2000). Thexefor higher than first order
systems of DDEs, it is not easy to derive an explicit relath@tween two sensitivities.
However, Eq. (8.13) provides a good approximate relatignebtween them, based on
the concept of dominant (i.e., rightmost) eigenvalues.

Using the eigenvalue sensitivities in (8.10), without graing all state variables with
respect to parameters of system as presented in (Bortz alsdri\\@004), one can de-
termine which parameter has the greatest influence on thensysrThis is achieved by

comparing the magnitudes and signs of the eigenvalue setysits in (8.10).

8.5 Concluding Remarks and Future Work

In this chapter, the model of HIV pathogenesis with an irgladar delay is consid-
ered. Because the model is represented by a system of D@Hg&|dnal approaches are
not suitable for its analysis. Utilizing the Lambert W fuioct-based approach developed

in the previous chapters, the eigenvalues of the time-dualagel of HIV pathogenesis are
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obtained. Furthermore, the approach is used to analyzegyeban the eigenvalues of the
HIV model as a time-delay is introduced. An increase in delegtabilizes the HIV sys-
tem (see Fig. 8.2), and the result is confirmed via sensitasitalysis with respect to the
time-delay (i.e., sign ofo\/0h is positive). The movement of the rightmost eigenvalues
with respect to the drug efficacy in the model is studied. Ydhe eigenvalues of the
HIV model, the stability of the patients’ immune system camtonitored. For example,
corresponding to the change in drug efficacy due to mutatidheovirus, the rightmost
eigenvalues moves toward the right and the immune systeimegbatient becomes less
stable (see Fig. 8.4). Because each patient has a diffeaesutngter set, the eigenvalues
of the immune system can indicate progression to AIDS mocerately than just using
total viral load,V; + Vy, as an indicator.

Sensitivity analysis was carried out with the rightmoseeialues obtained by using
the Lambert W function. Sensitivities with respect to theapaeters tell us about the
impact of the variation of parameters on the immune systetim MiV by their signs and
magnitudes. For some parameters, the sensitivities haagine signs, which means an
increase of the parameters stabilizes the immune systehviemversa. Also, depending
on the roles of the parameters, the magnitudes of sengtiate different (e.gg and)).
This sensitivity analysis can be used for various purposesh as improved estimation
of parameters, model validation, and design of therapymegiby moving the rightmost
eigenvalues by adjusting parameters, such as drug effi€sggnvalues sensitivity with
respect to each parameter of the system is expressed aalyyith terms of the parameter,
and shows good agreement with the response sensitivitly regBortz and Nelson, 2004).
Unlike the response sensitivity approach, which integrétte sensitivity equation with a
time-delay for a parameter set numerically over time, tgemyalue sensitivity analysis is

achieved analytically as in Eqgs. (8.5-8.8).
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Future work, based on the results presented in this chapter,allow drug therapy
design via the feedback control based on the Lambert W fondtYi et al., 2009c) to
be implemented with incomplete measurements and to migithie expected effects of
measurement error. For that, the controllability and olegality analysis (Yiet al., 2008a)
for HIV model with a time-delay is also to be studied. Also,imitar approach can be
applied to models for hepatitis B virus (HBV) infections (Pe et al., 2007) and other
viral dynamic models. One of the main goals for this rese&r ¢t find more efficient and

reliable therapy regimes.



CHAPTER IX

SUMMARY AND CONCLUSIONS

9.1 Summary

The research described in this dissertation develops a pprach for analysis and
control of time-delay systems. Such systems can be repessby systems of delay dif-
ferential equations. The main difficulty in analyzing sucjfuations arises from the fact
that the delays lead to exponential terms in the charatieeequation and, thus, lead to
an infinite number of roots. Consequently, it has been difficudetermine stability and
to design controllers, compared to systems without del&gaBse classical methods for
delay-free systems are not directly applicable, numermaphical, or approximate ap-
proaches have been used. However, those methods havdibmstan terms of accuracy
and/or robustness as discussed in this dissertation.

In this research, an analytical solution to delay diffela@rgquations was investigated
in order to enable their analysis and control in a way analedo ordinary systems. Using
the Lambert W function, and based on the previous resultifree scalar case (Asl and
Ulsoy, 2003), the solutions of general systems of DDEs amthamogeneous DDEs were
derived. The introduction of the matrix Lambert W functiarabled the solution of linear
time invariant time-delay systems with a single delay. Tla@madvantage of this solution

approach is that the derived solution has an analytical fxpressed in terms of the sys-
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tem parameters. Hence, one can determine how the pararaegénsolved in the solution
and, furthermore, how each parameter affects each eigenvalso, each eigenvalue in
the infinite eigenspectrum is distinguished by a branch efLiambert W function. The
method was validated, for stability, and for free and foroesponses, by comparison to
numerical integration in Chap. Il. The solution of DDEs innes of the matrix Lambert
W function is analogous to that of ODEs in terms of the statedition matrix. Therefore,
some analyses, which have been developed based upon sslatiordinary differential
equations, can be extended to systems of delay differegigtions. One of them is sta-
bility analysis, which was investigated in Chap. Ill. Aligh delay differential equations
have an infinite number of eigenvalues, the finite numbergbftmost or dominant eigen-
values can be obtained by using the Lambert W function-bappdoach. Then stability
is determined using this dominant subset without the needdosidering the location of
other infinite eigenvalues. In investigating the two inputput properties of systems, con-
trollability and observability, analytical solutions gpeerequisite. However, due to lack
of solutions to systems of delay differential equationdy seme algebraic conditions for
controllability and observability have been available e ®olution presented in Chap. I
was used to derive controllability and observability Grand, and related conditions, in
Chap. IV. Compared to existing criteria, these new condg#iprovide more detailed in-
formation about system properties and can be used for angiawalanced realization for
systems with time-delays. To stabilize systems with urnetalyenvalues, a pole place-
ment design method for feedback controllers was develap&thap. V. Although it is
not feasible to assign all of the infinite number of eigengallby assigning the dominant
(rightmost) eigenvalues to desired positions in the complane, linear feedback con-
trollers can be designed. The approach was used to impramsiént response and to

design robust controllers for systems with time-delaysia& VI. For the cases where
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all the state variables of a system are not directly measejrabing the eigenvalue assign-
ment presented in Chap. V, a design method for observersevasoped to estimate state
variables in Chap. VII. The estimated states converge tatheal states asymptotically,

and are then available to be used for feedback control.

9.2 Applications and Broader Impact

Because time-delays occur frequently in engineering arehse, the approach pre-
sented in this dissertation promises to be of broad inter&kis research provides an
effective tool for analysis and control of systems with tidedays by breaking the barriers
of infinite dimensionality. Hence, this theoretical resfacan be applied to benefit the
engineering and science communities.

The developed approach was applied to the chatter problem fimachining process
(i.e., turning). The application to machining enables anddtermine the stable operat-
ing conditions in terms of spindle speeds and depth-of-euafmachine. Compared to
existing methods (e.g., Nyquist, Lyapunov and bifurcatioalysis methods), one can de-
termine the critical values of delay at the stability limittbe system exactly, based upon
the rightmost eigenvalues, and avoid restrictive geomatralysis, or the use of numerical
or approximate methods. Thus, the study can be used to empaoductivity and quality
of products.

In Chap. VIII, the dynamics of HIV pathogenesis was investiégl by using the Lam-
bert W function-based approach. Dominant eigenvalueseofritbhdel with an intracellular
delay was obtained to study the stability of the immune sysded to predict the decay
rate of the viral load. Also, sensitivity analysis of the doant eigenvalue was conducted
to understand the effects of the parameters on system dgaarine research can be of

benefit not only to researchers in related fields, but alsefiigratients under medical care
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by providing understanding of the disease and possibly mibeetive therapies.

Finally, the research on observer-based feedback con&lapplied to diesel engine
control. The controller and observer was designed to staliihe unstable diesel engine
system with limited access to state variables. The resemanhmake contributions to

improvement in fuel efficiency and reduction in emissionawomotive systems.

9.3 Conclusions

A novel approach to analyze and control time-delay systérased on the Lambert
W function, was developed in this research work. Analyta@ltions to systems of de-
lay differential equations are derived. Based on the smhgti methods for analysis and
control for systems with time-delays were developed andiegpo systems in engineer-
ing and biology. Compared to existing methods, the newlhetigmed approach offers the

following advantages:

1. Accuracy: The exponential terms in the characteristicatign due to time-delays
are not approximated, (e.g., Padé approximation). Heheabtained result is more

precise.

2. Robustness: The presented approach does not requiretignredf response based
on system equations (e.g., Smith predictor). Because srtedicion-based ap-
proaches are sensitive to uncertainty in model parameteré,ambert W function-

based approach can yield more robust design of controllers.

3. Ease ofimplementation: Some methods for systems witttielays have problems
with implementation. This is mainly because the designedrotier takes a non-
linear form and is complex. The controller and observer e in this research

takes a linear form and, thus, is easy to implement.
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Therefore, the research presented in this dissertatiaesepts an effective method
for the complete analysis and control of time-delay systeansl one that complements

previous methods.

9.4 Open Problems and Future Work

The necessary theoretical concepts and methods for titag-dgstems have been
studied in this dissertation using the Lambert W functiocalgr and matrix versions).
It should be highlighted that, to make the approach moregieand widely useful, sev-
eral research topics still need to be addressed. As explan€hap. Il, it has been noted
that there are still several currently outstanding fundaadeesearch problems.

First, the method using the matrix Lambert W function hingashe determination
of a matrix,Q,. To obtainQ,, Eq. (2.19) is solved numerically for a variety of initial
conditions, for example, using thigolvefunction in Matlab for each branchk, However,
conditions for the existence and uniquenes@p#fre lacking and needed.

Second, it has been observed in all our examples using DDdEs ithenAy does
not have repeated zero eigenvalues, stability is detedrayethe principal branch (i.e.,
k = 0) of the matrix Lambert W function (see ti@onjecturein Subsection 3.3.1). This
has been proven to be correct in the scalar case and for s@uorlsiprms of the vector
case, however, a general proof is lacking.

Finally, as mentioned in Chaps. IV and V, the connection ketwcontrollability and
eigenvalue assignment by linear feedback (not predictiogjrol for systems of DDESs is
also another open problem. Although feedback controllensbe designed for time-delay
systems, the results in Chap. V do not mean that the rightengstvalues can be assigned
arbitrarily. Depending on the parameters and structurbeesystem there exist limits and,

in the worst case, some systems may not be stabilizable wittvalue of the feedback
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gain (e.g., see Appendix C).

These, and others, are all potential topics for future meseavhich can build upon
the foundation presented in this dissertation. It is hoped tesearchers in related fields
(e.q., delay differential equations, control of delayestsyns) will be interested in tackling

some of these open research problems.
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APPENDIX A

Appendix for Chapter Il

A.1 Commutation of matrices A and S in Eq. (2.10)

In general,

is only true, when the matrices andY commute (i.e.XY = YX). As noted previously,
the solution in Eq. (2.2) for the system in Eq. (2.1) is onllidvavhen the matrice$ and
A4 commute, and in general they do not (see Egs. (2.9) and §2H86je it is shown that
when the matricegy andA in Eq. (2.1) commute, the8 andA will commute, and the
solution in EqQ. (2.2) becomes valid. From Eq. (2.14) it isaabthatS can be expressed in
terms of a polynomial function of the matricg andA, since both the exponential and
Lambert W functions are represented as such polynomias€torless et al., 1996). In
general if two matriceX andY commute, and the matrix functiofeX) andg(Y) can be

expressed in a polynomial series form, i.e.,

kl kl
f(X)=> mX", g¥)=> qY* (A.2)
k=ko k=ko

wherep, andg, are arbitrary coefficients, then (Pease, 1965)
£(X)g(Y) = g(Y)f(X) (A.3)

Consequently, iRy andA commute, thers andA commute, and Eq. (2.2) is valid.
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A.2 Reduction of Egs. (2.31) and (2.32) to Eq. (2.36)

The Eqg. (2.33) means that for [0, A],

t t

/ = pu(€)de = Z / Sk=OCON by (€)de + / et bu(&)de (A.4)

0 k=-c0 t—h
Continued from Eqg. (A.4)

t t 0o t—h

/6a(t—£)bu(€)d§_ /ea(t—f)bu(g)dé': Z /6Sk(t—f)clivbu(€)d§
0 t—h k=—c0 7
:»/ e by (&)de = /Ze E=OCNpu(&)de
O k——oo
N / o= puy (€ — / Z ¢St =O CNpy(€)de = 0 (A.5)
0 k=—00
t h
= / {ea“—ﬁ)— D eSOy }bu(g)dgzo
0 k=—o00
h o0
(0=e) / {ew -y eske}c,gvbu(t—e)dezo, for Vt € [0, h)
k=—o00

For the last equation in Eqg. (A.5) to hold, for any value @f [0, ], one can conclude as

h
/ {eaG _ Z eSkGCéV} bu(t — 0)dd =0, for Vt € [0,h]

¢ k=—00

(A.6)
= e = Z eSCON | where 6 € [0, h]

k=—o00
When the resultin Eqg. (A.6) is applied, Egs. (2.31)-(2.3#) be combined into Eq. (2.36)

after only some algebraic manipulation.
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APPENDIX B

Appendix for Chapter IV

B.1 Proof about minimal amount energy

Let us define

X = X(t1) = M(#1; 0,9, Xo) (B.1)

Then the assumption that andu transfer(x,, 0) to (0, ¢) implies that

x| K, t)Bu(E)dE = / K (e nBU(©)ie (B.2)
Subtracting both sides, one can obtain
[ ke tBiuey - u@)ee =0 ®.3)
which implies that
([ kietBluey - ueyene.¢; 0.0)x) =0 8.4)

where< | > indicates the inner product of vectors. By using the follogvproperty of
the inner product

(X, Ay) = (ATx,y) (B.5)

this equation can rewritten as

/ (e — ul©) (K(€.0)BY € (0,)%) d = 0 ©.6)
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With the use of (4.5), and then (B.6) becomes

/0 u(E) — u(©),u()) de = 0 (B.7)
Consider now
/0 ucey|P de (8.8)

where||x|| = ({x, x))'/2. After some manipulation, and using (B.7), one can obtain

/0 ey de = /0 lu(e) - u(e) + u(e) | de

- / Ju(e) — u(e)|2de + / u(©)? de

0 t1 (B.9)
2 / (U(E) — u(e),u(©)) de
t1 0 t1
- / Ju(e) — u()]de + / u(e)] de
0 0
Since
/0 Uy — u(e) | de (B.10)
is always nonnegative, it can be concluded that
/ ugey | de > / U de (B.11)
0 0

|
B.2 Comparisons with other types of controllability and obrvability

Depending on the nature of the problem under consideratti@ne exist various def-
initions of controllability and observability for time-tiy systems. For example, spec-
tral controllability has been developed to apply Finite Spem Assignment, a stabilizing
method counteracting the effect of the delay based on grediof the state. Spectral
controllability is a sufficient condition for point-wise otrollability used in our paper

(sometimes point-wise controllability is also called qoliability or fixed time complete
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. Strong R(A)
Approximatel
Reachable Controllable Controllable
& @ Absolutely
Spectrally Controllable
Controllable {Z
ﬂ 2 Weak R(A)
Weakly Controllable
Controllable ) .
Point-wise controllable
= R"- Controllable
[Fliess, 1995] [Richard, 2003]

Figure B.1: Relationship between various types of cordatnlity

controllability). The other definitions of controllabiiand observability are not related
to linear feedback controlleor linear observeras in systems of ODEs. The presented
definitions and theorems in Chapter IV are most similar ts¢éhfor ODEs among the
existing ones. The main purpose of the study in Chapter I\ igut the controllability
and observability Gramians to practical use by approxinggtihem with the Lambert W
function approach. Figs. B.1 and B.2 show the relationshgisveen various types of

controllability and observability.
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Hyper
Observable

g

Spectrally Infinite-time Essentially Point-wise observable
Observable <::> Observable <:> Observable :> = Rn-Observable

g

v-Detectable

[Lee and Olbrot, 1981]

Figure B.2: Relationship between various types of obsélityab
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APPENDIX C

Appendix for Chapter VII

C.1 Limitsin assignment of eigenvalues

One can choose feedback gains to assign the rightmost pagstdms with time-
delays to desired positions in the complex plane based ohdahwert W function ap-

proach (Yi et al., 2009c). Consider a simple, but unstabiangle given by
2(t) = ax(t) + u(t — h), where a> 0 (C.1)
with the linear feedback control
u(t) = fx(t) (C.2)
where f is a constant feedback gain. The time-delay in Eg. (C.1) @andused by an

inherent delay in actuator. This formulation is also apgllie to an open-loop system

without delay but with a feedback delay. In these cases,ltdsed-loop system becomes
&(t) = ax(t) + fx(t — h) (C.3)

The Lambert W function-based approach provides a methoddsign of feedback con-
trollers via pole placement (Yi et al., 2009c). The righttisot of the characteristic

equation of Eq. (C.3) is given by (Asl and Ulsoy, 2003)

Sy = %WO( fhe™ ) +a (C.4)
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The main goal is to choose the gafi,to stabilize the system (C.1). One can stabilize the

system (C.1) by setting the rightmost eigenvalue in Eq. {@dual to the desired value:
1 —ah
)\des = EWO(fhe ) +a (C5)
Then, by solving Eqg. (C.5), one can obtain an appropriate, ai

Example 1 Assume: = 1,h = 0.1, and the desired rightmost eigenvalug,, is —1.

Then, Eq. C.5) is solved for the gainf as

1
0.1

—1=—Wu(f x01xe ) 4+1 (C.6)

Then, the solutionf is —1.8097.

Although a feedback controller can be designed for timeydsl/stems, the above re-
sult does not mean that the rightmost eigenvalue can benassaybitrarily. Depending
on the parameters, especially the time-delay, of the sythene exist limits and, in the
worst case, some systems cannot be stabilized with any véthe feedback gainf. As
mentioned in Subsection 7.2.2, several different methagie been applied to investigate
this problem. Here the problem is tackled by using the LamW¥éfunction-based ap-
proach. As seen in Fig. C.1, each branch of the Lambert W itbmdt/,, (2 ) has its own
range. Especially, for the principal branch, the real p&aift/g has a minimum value;1,
whenH is —1/e (Point A in Fig. C.2). Thus, the real part &f, is always equal or larger
than—1, which leads to the following inequality regarding the lowmit in assigning the

rightmost root,

R{So} = R{\} = %3% {Wo(fhe )} +a > —% +a (C.7)

>-1
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Figure C.1: Ranges of each branch of the Lambert W functiamléSs et al., 1996). Real

part of the principal branchH}/, is equal or larger thar1 and this property
sets limits on stabilization by feedback control.

= N —W,(H)
: . --W__(H)

\
\

—1/e ‘I

b5 0 0.5 1

Figure C.2: Real values of the branchkss 0 (solid line) andk = —1 (dashed line), of
the Lambert W function (Corless et al., 1996).
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In this inequality the reciprocal of the time-delay/, operates like a weighting factor.
If 1 is smaller, the stabilizing teri/y(fhe=¢"), which can be adjusted with the feedback
gain, f, has a relatively greater effect ¢y and vice versa. Therefore, when the system
is unstable (i.e.¢ > 0) it can be said that if the time deldybecomes larger, the system
becomes more difficult to stabilize. Also, assuming that fexlback gainf, can be
selected to be any real value, even if the teivg( fhe~*") is minimized by choosing as

(see Fig. C.2)

1 1

fhe_ah = —g = f = —W (C8)

there exists a valuéy*, so that there is no possibility of stabilization for timeailg h,

larger tham*. That is,

1 1
O=———+a=h"=- (C.9
h* a

For example, ifa = 1, then for anyh > h* = 1 the system cannot be stabilized with
any value of feedback gairf,, For instance, wheh = 2 the rightmost eigenvaluey,
is always larger thar-0.5 by the inequality (C.7). In this way, one can find the critical
time delay for stabilization. If the feedback gaifi,has a specific limit on its value, for
example,f > 0in (C.7), then the argument &7, is also larger than zero. In that case,
W, is also always larger than zero (see Fig. C.2), then thersysa®m never be stabilized.
Also, depending on whether the time delay is in inputs, statel/or in the feedback
control, there can exist many different cases of this problEor example, one can con-

sider a case other than (C.3), where:

#(t) = ax(t) +aqx(t —h) +u(t) where

u(t) = fa(t) + fax(t —h)

(C.10)
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Then, the rightmost root is given by

So = %Wk ((ad + fd)he_(a+f)h) +a+ f (C.11)

and the problems of stabilization, and its limitations, bardiscussed in a similar way.

Example 2 Assume: = 1, a; = 1 (i.e., the system is unstable) in E¢C.10). Unlike
the previous case, if there is no limits in choosing the gainand f,;, the system always
can be stabilized independent of the value.de.g., whenf, = —1 and f < —1, the
closed-loop system is stable). Howevef i 2 and f has to be larger than-0.5, then
there is no way to stabilize the system with gaifiand f,;, which can be proven as in Eq.

(C.7).

As mentioned previously, the same conclusion can be reanldifferent ways: using
coordinate transformation in combination with a theorentBallman and Cooke, 1963),
or substituting a pure imaginary number root in the charestie equations to check bifur-
cation conditions (Beddington and May, 1975; Cooke and &nas, 1982). Compared
to such approaches, the approach using the Lambert W fuimgtiesented in this section,
enables one to analyze the effect of delay directly from thet®n form and to find these

limits more intuitively.
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